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Abstract 

 

The increasing number of lipophilic drug candidates in development in the 

pharmaceutical industry calls for advanced drug delivery systems with increased 

bioavailability less day-to-day and food-intake-dependent. Many of these drug 

candidates possess poor water solubility, so that their dissolution rate in the 

gastrointestinal tract (GIT) limits their absorption following oral administration. 

In the past few decades, various lipid-based formulations have been investigated 

to enhance the bioavailability of such challenging drug candidates and to increase 

their clinical efficacy when administered orally.  

Recently, self-emulsifying drug delivery systems (SEDDS) have attracted 

increasing interests and, in particular, self-nanoemulsifying drug delivery systems 

(SNEDDS). SEDDS and SNEDDS consist in micro- or nano-emulsions of oil 

containing the drug that spontaneously form in aqueous media on mild agitation. 

Usually, they use high amounts of surfactant that may cause degradation and 

instability of the drugs, being moreover toxic for the gastrointestinal tract.  

The aim of the present thesis was the preparation of novel self-nanoemulsifying 

drug delivery systems to overcome the shortages of conventional SEDDS or 

SNEDDS. 

To reduce the amount of surfactant, we formulated first a self-nanoemulsifying 

drug delivery system containing high proportion of essential lemon oil, that was 

characterized in terms of drug solubility, formulation stability, viscosity, emulsion 

droplet size, ζ-potential and in vitro drug release.  

Then, a pH-sensitive SNEDDS was developed that emulsify only at basic pHs.  

The goal was to protect the lipophilic drugs from the harsh acidic environment in 
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stomach and render it available in the enteric tract where the bioactive compound 

should be absorbed. 
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Chapter I    General Introduction 

1. Oral delivery systems for lipophilic drugs 

Oral delivery route is the most convenient route for drug administration to achieve 

desired therapeutic effects and the greatest degree of patient compliance, especially 

for chronic condition diseases [1]. Despite some clinical oral formulations have been 

developed, their low oral bioavailability is still a major hurdle, leading to challenges 

for pharmaceutical manufacturers to design delivery systems that can provide 

improved pharmacokinetic profiles and therapeutic responses [2-4]. Currently, many 

efforts such as efflux pump inhibitors, permeation enhancers and drug nanonization, 

have been made to overcome the challenges of low oral bioavailability resulting from 

low drug solubility, poor permeation and enzymatic degradation, which limiting drug 

effective delivery[5]. 

1.1. Physicochemical properties of the drugs 

1.1.1. Biopharmaceutics classification system (BCS) 

The Biopharmaceutics classification system (BCS) is a guide for predicting the 

intestinal drug absorption provided by the U.S. Food and Drug Administration (FDA). 

BCS is a useful tool for decision-making in formulation development from a 

biopharmaceutical point of view [6].  

On the basis of drug solubility and intestinal permeability, BCS categorize the 

drugs into four categories, as follows [7-9]: 

 Class I - high permeability, high solubility (Example: metoprolol),  

 Class II - high permeability, low solubility (Example: silibinin, 

ibuprofen),  

 Class III - low permeability, high solubility (Example: cimetidine), 
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 Class IV - low permeability, low solubility (Example: hydrochlorothiazide, 

Bifonazole)  

As recommended by FDA, the solubility class boundary is based on the highest 

dose strength of an immediately release product. A drug substance is considered 

highly soluble when the highest dose strength is soluble in 250 ml or less of 

aqueous media over the pH range of 1-6.8, while a drug substance is considered to 

be highly permeable when the extent of absorption in humans is determined to be 

85% or more of an administered dose based on a mass balance determination or in 

comparison to an intravenous reference dose [9]. The low permeability of Class II 

and Class IV drugs renders them poorly bioavailable, so reducing their potential 

pharmaceutical effect or requiring high dosage to achieve it [10, 11].  

Biopharmaceutics classification system (BCS) and viable formulation options based 

on the BCS are summarized in Figure 1.1. 

 

Figure 1.1 Biopharmaceutics classification system (BCS) and viable formulation 

options based on the BCS [12]. 

1.1.2. Physicochemical properties of lipophilic drugs 
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More than 40% of new drug candidates of recent years possess poor aqueous 

solubility, and approximately 40% of the marketed immediate-release (IR) oral drugs 

are categorized as practically insoluble [12]. The term “lipophilic drugs” roughly 

describes a heterogeneous group of molecules that exhibit poor solubility in water, 

but certainly not always, are soluble in various organic solvents [13]. Usually, the 

terms practically insoluble (< 0.1 mg/ml), very slightly soluble (0.1–1 mg/ml), and 

slightly soluble (1–10 mg/ml) are used to categorize lipophilic drug substances [14]. 

 Partition coefficient, P, is the ratio of the concentrations of a compound in a 

mixture of two immiscible phases at equilibrium, which particularly are water and 1-

octanol in chemical and pharmaceutical sciences [15]. P is a measure of how 

hydrophilic ("water-loving") or lipophilic ("water-fearing") a chemical substance is 

[16]. The poorly soluble drug candidates exist in two types of molecule structure, 

“grease ball” and “brick dust” [17]. Grease ball molecules are highly lipophilic with 

high log P due to no interactions with water. Brick dust molecules have melting point 

above 200 ℃ and low log P. Their poor solubility in water is caused by the strong 

intermolecular bonding and high lattice energy in solid state [18].  

1.1.3. Drug stability 

Drugs that are instable in the gastrointestinal tract (GIT) may undergo degradation. 

For instance, acid-labile drugs to be released in the small intestine must be 

protected with enteric coating.  

Drug stability studies should address the sensitivity of dissolved drug to acids, 

alkalis, and oxidation as well as solid-state humidity-related, thermal, and photo-

degradation which are very useful in drug delivery system design [13, 19]. 

 As mentioned above, many drugs are unstable under certain chemical conditions, 

such as pH, ionic strength, or ingredient interactions. In this case, it is necessary to 

protect the active component from any constituents or environmental conditions that 
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promote chemical degradation. On the other hand, a food or drink product may also 

contain a number of functional ingredients that adversely interact with each other 

and cause physical instability [20]. In this case, it may be necessary to isolate the 

different active ingredients from each other to avoid undesirable physical changes in 

the systems [21]. 

An ideal oral drug delivery system must protect the drug from the degradation in 

the gastrointestinal tract, and deliver the bioactive compounds to the specific area 

where it is better absorbed. According to these reasons, plenty of efforts in oral drug 

delivery have been made on improving drug stability in the GIT, increasing drug 

solubility and further the bioavailability [22]. 

1.2. Advantages of oral delivery systems 

Oral administration is the most widely accepted and preferred route for 

pharmaceuticals, due to its high convenience and better patient compliance [23]. 

Oral administration of drugs can avoid hospitalization, sterile manufacturing and 

trained personnel assistance, so reducing the cost of the health treatment [24]. 

Pharmaco-economic analyses were performed in clinical trials to evaluate the 

economic effectiveness of various oral drugs and to make a contrast with the cost of 

infusion administration [25].   

In 2006, Cassidy, J. et al. [26] compared the costs for oral administration of 

capecitabine and intravenous administration of 5-fluorouracil/leucovorin (5-FU/LV), 

that are two chemotherapeutic drugs. The total costs of the two therapies were 

calculated by evaluating the following direct medical cost: 

Cost of chemotherapy drugs; 

 Cost of visits for drug administration; 

 Cost of hospital use; 

 Cost of physician consultations for adverse events and for treating them;  
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Cost of ambulance trips. 

Data analysis showed that when the ‘societal costs’ were added, the total costs 

were approximately £3500 for the oral capecitabine versus £8500 of 5-FU/LV. For 

this reason, based on the economic effectiveness, they termed capecitabine as a 

‘dominant’ treatment strategy. 

Besides, higher drug dosage may lead to side effects and wastage of the drugs, 

which is not economically tolerable, especially for some kinds of expensive drugs 

[27].  

1.3. Challenges in the oral drug delivery 

Regardless of many advantages, the development of oral delivery route still 

represents a great challenge owing to peculiar physicochemical properties of 

lipophilic drug candidates, and physiological barriers such as gastrointestinal 

instability, pre-systemic metabolism and efflux pump [28]. Upon oral administration, 

lipophilic drug in a dosage form is easily ingested by patients, travels in the GIT 

passing through an extremely various environment. When drug transits from a 

strong acidic pH in stomach to basic environment of the intestine, it encounters 

harsh pH changes, but also different digestive enzymes and the resident microflora 

[6, 29]. After the digestive journey, only a fraction of dose is available to systemic 

circulation for execution of therapeutic response [30]. In view of this, the principal 

challenges to the oral delivery are classified into physicochemical properties of 

drugs and physiological barriers posed by human body (Figure 1.2). 
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Figure 1.2 Schematic representation of the various challenges to the oral delivery of 

drugs.[24] 

1.3.1. Solubility of drug substances 

A plenty of organic materials are poorly soluble in water. The poorly water-soluble 

drugs are typical examples. Poor solubility of a drug is in most cases associated with 

poor bioavailability. As reported by CA Lipinski [31], 31.2% of 2246 compounds 

synthesized in academic laboratories between 1987 and 1994 had solubility equal to 

or less than 20 μg/ml. Furthermore, in drug discovery, about 40% of new drug 

candidates display poor solubility in water, which leads to low bioavailability, erratic 

absorption, high intra-subject and inter-subject variability and lack of dose 

proportionality [32].  From a physicochemical point of view, poor aqueous solubility 

and low dissolution rate are the major factors that affect oral delivery of many 

existing lipophilic drugs [33]. Improving the drug solubility might only solve one 

aspect of the problem but it is a starting point to design efficient pharmaceutical 

formulations [25]. 

1.3.2. Gastrointestinal transit 

Human digestive system is complicatedly designed to safely, selectively, and 

effectively absorb as many nutrients as possible from our diet. In the case of drug 
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delivery, after the oral administration, drug candidates have to reach final absorption 

site – intestine. However, the gastrointestinal tract (GIT) presents various chemical 

and enzymatic barriers that affect delivery of drugs [34]. During the drug transit, the 

pH of the GI tract lumen rises from the strongly acidic (pH 1.0–2.0) in the stomach, 

to 5.0–6.0 in the duodenum, to basic (pH 7.0-9.0) in the jejunum [35]. On the other 

hand, variety of enzymes that include lipases and proteases also function to initiate 

foodstuff digestion and destroy unwanted pathogens and toxins [36]. Furthermore, 

the gastrointestinal transit time is another factor that significantly affects oral 

bioavailability and efficacy of many drugs. Many efforts have been done to enhance 

the duration for absorption, like the dosage form mucoadhesive. The use of 

mucoadhesives can increase local drug concentrations for absorption enhancement, 

improve the efficiency for prolonging drug resistance time, and in some cases 

restrict absorption to a specific site in the intestine [37, 38]. So far, various types of 

approaches have been successfully developed to extend the gastrointestinal transit 

time, further to improve the intestinal permeability and to enhance the oral 

bioavailability [39]. 

1.3.3. Drug metabolism and efflux pump 

The metabolism of drug candidates and their efflux in the intestine during the 

absorption process represent another problem arising when the drugs are orally 

administered [40]. Drug metabolism is the biochemical modification of 

pharmaceutical substances or xenobiotics respectively by living organisms, usually 

through specialized enzymatic systems before reaching the systemic circulation. 

The rate of metabolism determines the duration and intensity of a drug's 

pharmacological action [41]. After oral administration, the drug is absorbed by the 

digestive system and enters into the liver via the portal vein, where a fraction of 

absorbed dose is metabolized [42]. In the issue, the systemic availability of the drug 
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is greatly reduced, in turn, affecting the amount of the drug reaching the final 

absorption sites. Transmembrane efflux of drugs is a mechanism responsible for 

moving foreign compounds, like drug substance, toxic substances, and antibiotics, 

out of the cell via a clinically significant systematic transportation system such as P-

glycoprotein (P-gp), flurochrome efflux, methotrexate efflux (folates), etc. [24, 43, 44]. 

P-glycoprotein (P-gp) is extensively distributed and expressed in the intestinal 

epithelium where it pumps drugs back into the intestinal lumen. P-gp inhibitors are 

explored for overcoming multidrug resistance and poor bioavailability problems of 

various drug substrates [45]. Therefore, the drug metabolism is considered as major 

contributor for low oral bioavailability of many drugs. 

1.4. Approaches for enhancement of oral bioavailability  

 The common approaches to improve the systemic bioavailability of drugs are to 

deliver them by alternative administration routes such as oral, transdermal, nasal, 

vaginal or rectal. Among these routes, oral administration is the most convenient 

way to achieve the desired therapeutic effects.  

Numerous pharmaceutical scientists have logically focused on oral administration 

route to effectively enhance the bioavailability of the drug substances.  The key 

approaches to maximize oral drug absorption are described as follows:  

(1) By using efflux pump inhibitors to improve the efficiency of drug transport;  

(2) By using permeation enhancers to inhibit drug degradation and improve 

permeability;  

(3) Modifying the physicochemical properties of drugs for improving drug solubility, 

stability and dissolution rate;  

(4) Designing the specialized formulation such as nanoparticles, micro-particles 

and liposomes that improve the drug solubility and protect drugs from harsh 

environment of the gastrointestinal tract;  
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 (5) Developing stimuli-responsive systems for controlled drug delivery [46, 47]. 

Figure 1.3 summarizes the various strategies that have been investigated and 

proposed to  improve the oral bioavailability of drug substances. 

 

Figure 1.3 Strategies to improve the oral bioavailability of drug substances [24]. 

1.4.1. The use of efflux pump inhibitors 

In recent years, the impact of efflux pumps on the therapeutic activity of drugs has 

been well established. The efflux transporters such as P-gp, the breast cancer 

resistance protein (BCRP) and the multidrug resistance related protein (MRP), which 

have been identified to be over-expressed in tumor cells, are also widely distributed 

throughout normal tissues in humans [48]. In the view of this, approaches to identify 

efflux pump substrates and inhibitors as well as strategies to overcome the barrier 

caused by efflux pumps have been investigated (Figure 1.4). Several studies have 

demonstrated the possibility of using P-glycoprotein inhibitors as an attempt to 

improve the efficiency of drug transport across the epithelia, thus resulting in 
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enhanced oral bioavailability. As reported by Kwak et al [49], HM30181, a newly 

developed P-gp inhibitor, showed promising results for increasing oral absorption of 

some drugs. Nevertheless, the efflux pump inhibitor approach is scarcely used 

clinically owing to associated clinical complications such as suppression of immune 

system thus causing long term medical complications[24]. Therefore, safer 

alternatives with similar properties can be sought to enable the safe use for chronic 

therapy. 

 

Figure 1.4 Various P-gp based approaches for improving the oral bioavailability of 

drugs.[24] 

1.4.2. The use of permeation enhancers 

The membrane permeation, which is governed by the drug lipophilicity limits the 

therapeutic efficacy of many drugs. Permeation enhancers can improve the 

permeation of drug substances through intestinal barriers. In general, permeation 

enhancers improve drug absorption by the following mechanisms:  

(1) Disruption and opening of tight junctions to increase paracellular permeability;  

(2) Decrease of in the mucus viscosity; 

(3) Increase of membrane fluidity specific to their category [2, 50].  
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A large variety of permeation enhancers have been studied to improve the 

intestinal permeability of drugs. These include lipids, surfactants, fatty acids, 

medium chain glycerides, chitosan and other derivatives. Mechanistically, they are 

found to modulate the activity of the P-gp efflux pump, increase drug solubility, 

facilitate wetting, and then increase permeability across the gastrointestinal tract. 

Some of these enhancers have been developed to the stage of initial clinical trials. 

Several enhancers seem to have potential to improve oral bioavailability without 

causing significant gastrointestinal tract damages [51]. 

1.4.3. Modification of the physicochemical properties of drugs  

The physicochemical properties of drug substances dramatically influence their 

performance. Modification of the physicochemical properties of the drug molecules 

has already been confirmed to be an important approach for the development of 

effective oral delivery systems. In order to exert maximum therapeutic action, the 

drugs must be absorbed into the systemic circulation via passive diffusion to achieve 

high plasma concentrations. For the poor water soluble drugs, dissolution rate of the 

drugs is regarded as the limiting step for the absorption process, so their solubility 

should corresponds to the dissolution rate in gastrointestinal tract to achieve 

effective absorption. The drug molecular modification for solubility increase can be 

achieved by various approaches, including salt and prodrug formation, complexation, 

polymorphism or preparation of analogues. The molecular size of drugs is another 

factor that affects their bioavailability and absorption. Recently, various nanonization 

approaches have been sought to increase the dissolution rates of numerous drugs. 

Nanonization can lead the improvement on drug solubility and pharmacokinetics, 

further it may also decrease systemic side-effects [52]. 

1.4.4. The use of specialized formulation vehicles 
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Numerous specialized strategies have been attempted to enhance the 

bioavailability of drugs by using of lipid based formulation (liposomes, lipid–drug 

conjugates, layersomes, nano/micro-emulsion, self-emulsifying drug delivery 

systems), polymer based formulation (polymeric micelles, polymeric nanoparticles), 

nanocarrier based approaches (nanosuspension, carbon nanotubes, nanocrystals) 

to successfully deliver lipophilic drugs via the oral route. These approaches improve 

the oral bioavailability of lipophilic drugs by different mechanisms including improved 

drug solubilisation, absorption and protection against enzymatic and 

physicochemical degradation. Furthermore, smaller droplet/particle size of these 

systems increases the interface between the lipophilic droplet and the aqueous gut 

medium to facilitating a homogeneous and wide distribution of the drug along the 

GIT.  

1.4.5. Stimuli-responsive drug delivery systems 

The therapeutic efficacy of the drug delivery systems depends on the capacity to 

release the drug to the specific region at the right time with a desired dosage to 

achieve the therapeutic response. Various stimuli-responsive materials which are 

sensitive to physical stimuli (temperature, electric charge, electrochemical, light, 

magnetic, and ultrasonic), chemical stimuli (pH, ionic, and redox), or biological 

stimuli have been sought for controlled drug delivery systems. For instance, pH-

sensitive systems have been widely used for drug delivery in colon targeted release 

and cancer therapy according to the pH change in different tissues such as tumour 

and normal tissues, extracellular and cellular, gastric fluids and intestinal tract. 

2. Nanotechnology in oral drug delivery 

Nanotechnology has been defined as “ the understanding and control of matter at 

dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel 
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applications” [53]. Recently, nanotechnologies have gained attention to enhance the 

oral bioavailability of drugs in their dosage forms, especially lipophilic drugs. The 

most acclaimed and prospective nanotechnology strategies used in oral drug 

delivery include lipid based nanoparticles (nanoemulsions, self-nanoemulsifying 

drug delivery system (SNEDDS), solid lipid nanoparticles, lipid nanocapsules 

nanosuspension, liposomes, layersomes, liquid crystalline nanoparticles, lipid-drug 

conjugates); Polymer based nanocarriers (polymeric nanoparticles, polymeric 

micelles, polymer-drug conjugates); Drug nanocrystals; Dendrimers; Carbon 

nanotubes; Silica and silicon nanoparticles; Nanogels and so on. Moreover, 

nanotechnology-based therapeutic products had been validated through the 

improvement not only for the previously approved drug substances, but also for 

many new drug candidates [54]. The use of nanotechnology in oral drug delivery 

may radically change the way we exploit drugs and the way we take drugs, thus 

providing an ideal approach for chemotherapy [55]. Numerous types of nanocarriers 

and formulations available for oral delivery have been used as delivery vehicles to 

develop effective therapeutic modalities, as shown in Figure 1.5. The variety and 

advantages associated with them have been discussed in the subsequent sections. 

The potential mechanisms responsible for enhanced oral delivery observed with 

nanocarriers are shown in Figure 1.6. 
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Figure 1.5  Examples of various nano-architectures available for oral drug delivery.[1] 
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Figure 1.6 Overview of nanocarriers-mediated mechanisms leading to enhanced 

oral drug delivery.[1] 

2.1. Lipid based nanoparticles 

2.1.1. Nanoemulsions 

Nanoemulsions are non-equilibrium, heterogeneous systems composed of oil 

droplets dispersed in an aqueous medium and stabilized by surfactant molecules. In 

a nanoemulsion, the oil droplets serve as the reservoir for hydrophobic drugs [52]. 

Moreover, nanoemulsions are regarded as kinetically stable, isotropic and 

transparent without any apparent coalescence during the long time storage. The 

nanoemulsions are usually stabilized by large amount of surfactants, which can 

improve drug solubilisation, protect active compound against physicochemical and 

enzymatic degradation and modify the permeability of the GIT membrane. Non-ionic 

surfactants are commonly preferred due to their less toxicity, less affected by pH 

and ions than ionic and amphiphilic surfactants, and better compatibility with 
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biological systems [56]. Combinations of different surfactants have also been 

employed to decrease the droplet size and improve the stability of nanoemulsions. 

Methods used for the production of nanoemulsions include high-pressure 

homogenization, microfluidization, ultrasonication, spontaneous emulsification and 

so on [57]. The advantages of nanoemulsions are increased drug loading, tissue 

targeting and enhanced permeability. 

2.1.2. Lipid-drug conjugates 

To overcome the limitation of limited loading capacity for highly potent hydrophilic 

drugs and drug expulsion during storage, lipid-drug conjugates have been made. 

Lipid-drug conjugates nanoparticle are prepared either by formation of a salt with a 

fatty acid or alternatively by covalent linkage (e.g. to ester or ethers) [58]. Further 

process is perform an aqueous surfactant solution to a nanoparticle formulation 

using high pressure homogenisation [59]. The lipids that can be used for formulation 

of lipid–drug conjugates include phospholipids, fatty acids such as stearic acid, oleic 

acid, docosahexaenoic acid, etc. and lipoamino acids [24]. 

 

2.1.3. Solid lipid nanoparticles (SLNs)  

Solid lipid nanoparticles (SLNs) are composed of melt-emulsified solid lipids like 

highly purified triglycerides, monoglycerides, hard fats, complex glyceride mixtures 

as matrix materials. As they are derived from biodegradable and compatible lipids, 

SLN represents a comparatively stable system with protective effects against 

serious drug toxicity and harsh external environment in comparison to the 

conventional nanoparticles. In addition, they also offer the advantages of avoidance 

of organic solvents in their preparation, controlled release of drugs and excellent 

tolerability [60]. Of the available methods for preparation, cold high-pressure 
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homogenisation process, hot homogenization of melted lipids at elevated 

temperatures and microemulsion technology are considered as the most feasible 

methods for large scale production of SLNs [61]. Although solid lipid nanoparticles 

(SLNs) have attracted increasing attention due to its advantages, SLNs have several 

limitations, for example, low loading efficiency for some drugs which owing to the 

densely packed lipid crystal network. Furthermore, SLNs also show considerable 

expulsion of the drug during storage [3]. The schematic structure of SLNs is shown 

in Figure 1.7. 

 

 

Figure 1.7 Schematic differences between nanocapsule, polymeric nanoparticle 

(PNP), and solid lipid nanoparticle (SLN) drug delivery systems.[62] 

2.1.4. Lipid nanocapsules (LNCs)  

Lipid nanocapsules (LNCs) provide a new nanotechnology which contributes to 

oral drug delivery development. LNCs are another kind of lipid nanoparticles, 

composed of an internal liquid or semi-liquid oil core and an external lipid layer solid 

as a core-shell structure [63]. LNCs with the unique properties such as controlled 

release profiles and high bioavailability, represent a promising biocompatible drug 

delivery platform in nanometer range with narrow size distribution [64]. The phase 

inversion temperature (PIT) method proposed by Shinoda and Saito [65] led to lipid 
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nanocapsules preparation with good mono-dispersion. LNCs prepared by PIT 

method is based on three main components: an oil phase, an aqueous phase and a 

non-ionic surfactant. Furthermore, the temperature cycling process crossing the 

phase-inversion zone (PIZ) plays another role on LNCs formulation. Increasing the 

number of cycles promotes LNC formation and improves the quality of LNC 

dispersion [66]. Recently, many lipophilic drugs have been developed in LNCs form 

for instance, ibuprofen loaded LNCs for pain treatment; indinavir, an inhibitor of HIV1 

protease; various hydrophobic anticancer agents. Consequently, LNCs provide an 

attractive drug delivery approach for highly lipophilicity drug substances that are 

usually unsuitable for oral use. 

2.1.5. Nanosuspensions 

Nanosuspensions are nanoscale colloidal dispersion of solid drug particles which 

are stabilized by surfactants, polymers or a combination of both. The key difference 

from conventional suspensions is that the particle size distribution of the solid 

particles in nanosuspensions is usually < 1 µm [67]. Nanosuspensions engineering 

processes presently used are media milling, high pressure homogenization, 

microprecipitation-high pressure homogenization, emulsion diffusion method and 

melt emulsification method. Owing to the enhanced drug solubility, increased 

surface-volume ratio of the nanocrystals, and improved dissolution rate, oral 

nanosuspensions have been specifically used. Furthermore, nanosuspensions are 

available in various dosage formats such as tablets, pellets, and capsules following 

different manufacturing techniques [18]. Nevertheless, the major challenges in 

nanosuspensions preparation are maintaining colloidal stability and particle size of 

the nanosuspensions during storage. The appropriate selection of the surfactants 

and/or steric stabilizers and the method of fabrication have been sought to prevent 
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the nanocrystal aggregation to achieve the nanosuspensions with long-term storage 

and physiological stability. 

2.1.6. Liposomes  

Liposomes are a form of self-assembled lipid bilayer vesicles which composed of 

one or more aqueous compartments are completely enclosed by hydrophilic and/or 

hydrophobic molecules. Due to the core (aqueous)-shell (lipidic) structure, 

liposomes are available for encapsulating hydrophilic drugs in the aqueous core, 

hydrophobic agents in the lipidic shell, meanwhile, amphiphilic molecules distributed 

through the hydrophobic-hydrophilic layers. In addition, using biologically and natural 

lipids makes liposomes highly biocompatible and suitable for in vivo use [68]. 

Recently, research on liposomes technology has been extensively investigated for 

the delivery of various therapeutic and bioactive agents, decreasing toxicity and 

increasing their accumulation at target sites.  Nitesh Kumar et al [69] developed 

lecithin-based silymarin liposomes. The results showed that incorporating 

phytosomal form of silymarin in liposomes had better in vitro and in vivo 

hepatoprotection and better anti-inflammatory effects in histopathological changes. 

Therefore, liposomes can be used in the oral delivery of lipophilic drugs to increase 

its oral bioavailability. 

2.1.7. Liquid crystalline nanoparticles (LCNPs)  

Liquid crystalline nanoparticles (LCNPs), which combine the properties of both 

liquid and solid states, are self-assembled from polar amphiphilic lipids in the 

presence of excess water. LCNPs are generally prepared by dispersing the liquid 

crystalline matrix formed into water phase using high-energy fragmentation, such as 

ultrasonication, microfluidization, or homogenization [70]. Normally, LCNPs enhance 

the oral bioavailability of lipophilic drug by improvement of bioadhesiveness, 
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membrane fusing properties, superior encapsulation, solubilization, etc. [24] . Ni 

Zeng et al [70] developed self-assembled LCNPs consisting of soy 

phosphatidylcholine and glycerol dioleate for oral delivery of paclitaxel. The results 

of this study suggest that LCNPs could be a promising approach for enhancing the 

oral bioavailability of lipophilic drugs and agents. 

2.1.8. Self-nanoemulsifying drug delivery system (SNEDDS)  

Self-nanoemulsifying drug delivery systems (SNEDDS) are isotropic mixtures of 

oil, surfactant, co-surfactant and drug that rapidly form fine oil-in-water (o/w) 

nanoemulsions when introduced into aqueous medium under mild agitation [59]. In 

the human body, the agitation required for formation of nanoemulsions is provided 

by digestive motility of the gastrointestinal tract [34]. In comparison with the ready to 

use nanoemulsions or nanosuspensions, SNEDDS have shown many advantages 

such as: physical or chemical stability profile improvement in long term storage; 

possibility of filling into soft/hard gelatin capsules, which results in attractive 

commercial viability and patient acceptability; no palatability-related issues. 

In recent years, SNEDDS have attracted more and more attention as the mean to 

enhance the oral bioavailability of poorly soluble and highly metabolized drugs. 

Nevertheless, conventional SNEDDS also require a relatively large amount of 

surfactants, which may induce GI irritation and side-effects. In order to achieve a 

safe and efficient delivery system for the poor oral bioavailability drugs, we have 

designed a novel self-nanoemulsifying drug delivery system with high proportion 

lemon essential oil as carrier for lipophilic drugs. 

2.2. Polymer based nanocarriers 

2.2.1. Polymeric nanoparticles  



27 

 

Polymeric nanoparticles are submicronic solid particles where drug is 

encapsulated or adsorbed onto particles. With the increasing study on polymers, 

polymeric nanoparticles have emerged as a promising approach in oral drug delivery 

field due to their unique properties such as improved drug stability, the duration of 

the therapeutic effect and to minimize drug degradation and metabolism etc.[3]. A 

variety of biodegradable and biocompatible polymers have been used in the 

research of polymeric nanoparticle preparation include starch, chitosan, poly(lactic 

acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), etc. 

[55].  These polymers can be used either separately or combined with each other. 

The advantages of polymeric nanoparticles can be their high stability in the 

gastrointestinal tract, protection and controlled release of the incorporated drugs, 

flexibly modulating, and offering targeting with improved cellular uptake. However, 

the potential challenge for polymeric nanoparticles is associated with the polymer 

toxicity and the residues of organic solvents during the preparation. In addition, 

some of the synthetic polymers are highly hydrophobic and not friendly to hydrophilic 

drugs. These limitations of polymeric nanoparticles should be addressed in the 

future studies.  

2.2.2. Polymeric micelles 

Polymeric micelles are nanosized supramolecular constructs (Figure 1.8) formed 

by amphiphilic molecules consisting of an inner hydrophobic core and an outer 

hydrophilic entity [71]. As a core-shell structure, the hydrophobic core acts a 

reservoir for lipophilic drugs whereas the hydrophilic shell protects the drugs to avoid 

the inactivation and increase the bioavailability and retention.  

Two main methods have been commonly used to produce drug-loaded polymeric 

micelles. Direct dissolution involves dissolving both polymer and drug in an aqueous 

solvent. Alternatively, organic solvents are employed when both polymer and drugs 
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are highly hydrophobic [71]. As reported by literatures, polymeric micelles are stable 

in terms of both thermodynamic and kinetics, imparting overall structural stability. 

Moreover, polymeric micelles allow a multifunctional design to achieve integrated 

diagnostic and therapeutic functions and molecular targeting capabilities [52]. 

Nevertheless, more efforts are still required in order to overcome the challenges, for 

examples, low drug loading, low permeability in transport through intestinal 

membrane.  

 

Figure 1.8 Schematic of polymeric micelles.[52] 

2.2.3. Polymer-drug conjugates 

By definition, polymer-drug conjugates are formed by the conjugation of a 

biocompatible polymeric carrier and low-molecular weight biologically active 

molecule(s) through a biodegradable linker. One of the major differences between 

polymer–drug conjugates and other nanocarriers that contain physically entrapped 

drugs is that the drug molecules are covalently bound to the polymers [72]. Mostly, 

the presence of polymers increases the solubility of hydrophobic drugs, modifies 

drug dispersion profile, extends plasma circulation half-life, and improves its 

pharmacokinetic profile, in turn, enhancing the oral bioavailability of the drugs. On 

the other hand, the biodegradable linker can also become active by triggering drug 
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release under certain conditions, such as a change in pH or in the presence of 

enzymes, such as esterases, lipases or proteases [73].  A pH-sensitive amphiphilic 

dendritic polyrotaxane drug-polymer conjugate by covalently linked doxorubicin 

(DOX) and dendritic polyrotaxane  has been designed and successfully fabricated 

by Yang Kang et al.[74]. This pH-sensitive drug-polymer conjugate showed a 

significantly faster drug release at mildly acidic condition while without burst release 

in aqueous at a physiological pH of 7.4. The results proved that this conjugate has 

tremendous potentials for targeted cancer therapy. 

2.3. Drug nanocrystals  

Besides liposomes, nanocrystals are the most successful nanocarriers when 

considering the first marketed products as well as the total number of commercial 

products and in clinical phases [59]. Nanocrystals are nanosized crystals of pure 

drug particles with the surfactants or polymeric steric stabiliser absorbed onto the 

surface of drugs. Thus, drug nanocrystals possess a 100% drug loading in contrast 

to polymer or lipid-based nanoparticles. As we known, decrease in particle size 

provides a greater surface area in the diffusion layer and leads increase of the drug 

dissolution rate, furthermore, enhancing the absorption (Figure 1.9). Industrially, the 

drug nanocrystals are produced with four main technologies, including top-down (e.g. 

pearl milling, high pressure homogenisation), bottom-up (e.g. precipitation) and 

combination (sonication–precipitation) and chemical approaches.  
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Figure 1.9 Mechanistic representation of absorption via nanocrystals.[24] 

2.4. Dendrimers  

Dendrimers are the new artificial well-defined polymeric nanostructures 

exhibiting tree-like architecture that consist of a hydrophobic central core, branching 

units and terminal functional groups. Dendrimers possess definite molecular weight, 

shape, size and specific physicochemical properties including host–guest 

entrapment properties [24].  Unlike many traditional polymeric nanocarriers, 

dendrimers can be manufactured in almost any size whereas the diameters are 

commonly 10-20nm. In addition, dendrimers also have a narrow polydispersity and 

well defined spherical shape with a variety of terminal functional groups.  These 

unique structural nanosized macromolecules offer multiple ways for incorporation of 

plenty of drugs which pose oral delivery challenges. First, drug molecules can be 

physically encapsulated in the core of the dendrimers. Second, drug molecules can 

be chemically conjugated to the functional end groups on the dendrimer surface 

during or after synthesis. Third, dendrimer drug networks can be formed.  As an 
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approach for the oral bioavailability enhancement, dendrimers provide many 

potential mechanisms. First, the dendrimers entrap the drugs to prevent the drug 

degradation from harsh gastrointestinal tract.  Next, dendrimers may act as 

permeability enhancers and alter the barrier of the intestinal epithelium, thereby 

improve the drug absorption. Last, the dendrimer-drug conjugate may be 

transported across the intestinal epithelium by itself [55]. The properties of 

dendrimers such as size, surface charge and conformation significantly affect the 

drug delivery and absorption in the GIT. Moreover, larger dendrimers have been 

found be more toxic, in comparison with the smaller ones. Conclusively, dendrimers 

are promising delivery system, but more efforts should be required to overcome 

challenging biological barriers. 

2.5. Others 

Except the above mentioned strategies, many other nanotechnologies are also 

employed in the oral drug delivery, for example, carbon nanotubes, silica and silicon 

nanoparticles, nanogels and so on. Carbon nanotubes possess unique hollow 

cylindrical structures, high surface area, conductivity, optical and potential higher 

absorption capabilities, allow the incorporation of drug molecules for controlled and 

site-specific delivery [75].  Silica/silicon nanoparticles offer a high absorption 

capacity, mesoporous channel to change the crystalline state of the drugs and the 

possibility to tailor the physicochemical properties [76]. The biocompatibility, 

chemical properties and mesoporous structure make silica/silicon nanoparticles an 

excellent alternative for drug delivery application. Nanogels are commonly used for 

oral controlled drug delivery with the advantages such as thermodynamic 

compatibility with water, enviro-intelligent, stimuli-sensitive and sustained release. 

3. Self-emulsifying drug delivery systems (SEDDS) 
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3.1. Overview of SEDDS 

3.1.1. Basic concepts 

Self-emulsifying drug delivery systems (SEDDS) are emulsion pre-concentrates or 

anhydrous forms of emulsion. These systems (SEDDS) are ideally isotropic mixtures 

of drugs, oils and surfactants, sometimes containing co-surfactant or co-solvents. 

Upon mild agitation followed by dilution with aqueous media, SEDDS can form fine 

oil-in-water emulsions spontaneously [77]. In gastrointestinal tract of human body, 

the agitation required for formation of emulsions is provided by gastric mobility, the 

aqueous media are gastrointestinal fluids.  In comparison with ready-to-use 

emulsions, which are metastable dispersed forms, SEDDS possess improved 

physical and/or chemical stability profile upon long-term storage, and also easy 

manufacture property. Thus, for the lipophilic drugs that exhibit poor water solubility 

and rate−limited dissolution, SEDDS may offer an improvement in the rate and 

extent of absorption and result in more reproducible blood−time profiles [33].  

3.1.2. Types of SEDDS 

SEDDS include both self-microemulsifying drug delivery systems (SMEDDS) and 

self-nanoemulsifying drug delivery systems (SNEDDS). SMEDDS indicate the 

formulations producing transparent microemulsions with droplets size range 

between 100 and 250 nm while SNEDDS form emulsions with the globule size 

range lower than 100 nm [77]. The term ‘droplet’ is used to describe micelles, mixed 

micelles which exist in the emulsions. In details, the microemulsion is a 

thermodynamically stable colloidal dispersion consisting of small spheroid particles 

(comprised of oil, surfactant, and possibly co-surfactant) dispersed within an 

aqueous medium and thus in equilibrium. In contrast, the nanoemulsion is non-

equilibrium colloidal dispersion system that over time spontaneously will exhibit 
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coalescence of the dispersed droplets [78, 79]. However, nanoemulsions can have a 

relatively high kinetic stability, and in this case it will be difficult to distinguish on the 

previous basis micro and nano-emulsions [79]. Actually, the structure of the droplet 

in both nanoemulsion and microemulsion are very similar: the non-polar tails of 

surfactant molecules protrude into the lipophilic core formed by the oil, while the 

polar head groups protrude into the surrounding aqueous phase (Figure 1.10). 

 

Figure 1.10 Schematic of microemulsions droplet and nanoemulsions droplet formed 

from oil, water and surfactant [78]. 

3.1.3. Advantages of SEDDS 
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Self-emulsifying drug delivery systems are new approach for enhancing the oral 

bioavailability of lipophilic drugs. They offer a number of advantages over the 

conventional micro/nanoemulsions systems owing to their interesting properties.  

Potential advantages of SEDDS include:  

Long-term stability    

As anhydrous formulations, SEDDS possess the improved physicochemical 

stability profile upon long-term storage in contrast with nanoemulsions that contain 

water; 

Patient compliance     

The SEDDS formulations can be filled into unit dosage forms, such as soft/hard 

gelatin capsules, which improves patient acceptability and commercial viability [80]; 

Palatability    

No palatability-related issues in comparison with other formulations/tablets, as 

SEDDS formulations can be filled into capsules [80]; 

Ease of manufacture & scale-up    

Ease of manufacture and scale-up are key factors that govern success in its 

industrial applicability. The methods employed for the fabrication of SEDDS 

formulations, such as simple mixed with an agitator and volumetric liquid filling 

equipment, offer easy manufacture at large-scale and economic benefits as well; 

Quick onset of action     

Quick onset of action is required in many conditions, such as inflammation, 

hypertension and angina [34, 80]. SEDDS have capacity to enhance the oral 

absorption of the drugs, which would result in quick onset of actions. Study from 

Taha et al.[81] showed that the tmax (tmax is the term used to describe the time at 

which the maximum plasma concentration of a drug after administration is observed.) 

is reduced considerably when comparing the pharmacokinetic analysis of SEDDS 
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and conventional formulation without any additives. Many other literatures can be 

found which reflect the potential of SNEDDS to increase the bioavailability of drug; 

Reduction in the drug dose 

SEDDS offer improved drug-loading capacity and oral bioavailability or therapeutic 

effect for numerous hydrophobic drugs owing to the drug solubility in excipients. The 

enhancement in drug-loading and bioavailability can be translated into reduction in 

the drug dose and dose-related side effects of many hydrophobic drugs. 

3.1.4. Limitations of SEDDS 

Each strategy has specific advantages and limitations. Limitations of SEDDS are: 

 High content of surfactant in the SEDDS formulation may irritate 

gastrointestinal tract and result in toxicity. This problem can be solved by 

designing and optimizing SEDDS with decreased amount of surfactants. 

 There is no effective in vitro model for the assessment of the SEDDS 

formulation [82]. 

 Presence of high amount of surfactant or co-solvent may cause the 

degradation and instability of the drugs [83]. 

 Soft gel or hard gel capsule must be sealed effectively, due to the possibility 

of component loss and leak. 

 In addition, SEDDS are not very suitable for controlled drug release. 

3.2. Formulation of SEDDS 

3.2.1. Excipients screening for SEDDS 

With plenty of liquid excipients available, ranging from oils through biological 

lipids and hydrophobic and hydrophilic surfactants to water-soluble co-surfactant/ 

co-solvents, there are various combinations that could form colloidal emulsions [77, 

84]. Pharmaceutical acceptability and toxicity issues of the excipients used make the 



36 

 

screening of excipients really critical. Hence, it is essential to optimize the quantities 

of the SEDDS components at the initial selection. Self-emulsification has been 

shown to be specific to the nature and amount of the components; the ratio of 

oil/surfactant; and the temperature at which self-emulsification occurs [85, 86]. 

Supporting these facts, only a few of specific pharmaceutical excipient combinations 

could form fine self-emulsifying systems. The following points should be considered 

in the SEDDS excipients selection: 

(I) Drug solubility in different oil, surfactants and co-surfactant/ 

co-solvents;  

(II) The final selection of oil, surfactant and co-surfactant/co-

solvent based on solubility studies and the preparation of the ternary 

phase diagrams [77].  

These excipients are discussed below. 

Oil phase 

Oil is the most important excipient which can solubilize the lipophilic drug in a 

specific amount. Unmodified edible oils provide the most natural basis as lipid 

vehicles, but their poor lipophilic drug dissolution and their relative difficulty in 

efficient self-emulsification markedly reduce their use [87]. Long chain triglyceride 

and medium chain triglyceride oils with different degrees of saturation have been 

used in the design of SEDDS. Hydrolysed or modified vegetable oils have 

contributed widely to the success of SEDDS because of their biocompatibility and 

physiological advantages. 

Surfactant 

Surfactants with amphiphilic character help the solubilisation of lipophilic drugs 

so preventing their precipitation in the gastrointestinal lumen.  Non-ionic surfactants 

are frequently selected for fabrication of SEDDS due to their less toxicity and 
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because typically possess low critical micelle concentration, in comparison with their 

ionic surfactants [87]. Non-ionic surfactants possessing high HLB value are widely 

employed for the immediate formation of o/w droplets and/or rapid spreading of the 

formulation in the aqueous phase, providing a good self-emulsifying performance 

[88]. 

Co-surfactant 

Stable interfacial tension is rarely achieved by the use of single surfactants, 

usually necessitating the addition of a co-surfactant. The presence of a co-surfactant 

decreases the bending stress of interface and allows the interfacial film sufficient 

flexibility to take up different curvatures required to form nanoemulsions over a wide 

range of composition [89].  

Aqueous phase 

The droplet size, stability and performance of emulsion formed from SEDDS 

formulations is influenced by the nature of the aqueous environment where 

formulations would be introduced. Therefore, pH and ionic content of the aqueous 

phase should be accurately considered in the SEDDS designing [34]. The 

physiological environment has pH ranges varying from pH 1.2 (pH in stomach) to 7.4 

and greater (pH of blood and intestine). In addition, the presence of various ions in 

the GIT significantly affects the properties of nanoemulsions generated from SEDDS 

[34]. 

3.2.2. Mechanism of SEDDS 

The mechanism by which self-emulsification takes place is not yet well understood. 

Nevetheless,  it has been suggested by Reiss et al [90] that self-emulsification 

occurs when the entropy change favoring dispersion is greater than the energy 

required to increase the surface area of the dispersion. The free energy of emulsion 
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formulation is a direct function of the energy required to create a new surface 

between the oil and water phases and can be described by 

 

∆G = ∑ (𝑁𝑖4𝜋𝑟𝑖
2𝜎)𝑖     [91]  

Where 

∆G ---  the free energy associated with the process (ignoring the free energy of 

mixing);  

N --- the number of droplets of radius r and s is the interfacial energy; 

𝑟 --- the radius of globules; 

𝜎 ---  the interfacial energy. 

The two formed phases of the emulsion will tend to separate with time to reduce 

the interfacial energy and thus reduce the free energy of the system. The 

conventional emulsifying agents stabilize emulsions, reduce the interfacial energy by 

forming a monolayer around the emulsion droplets, and in turn, provide a barrier to 

coalescence.  In this case, the separation of the two phases is merely being delayed 

as these emulsions are still thermodynamically unstable. Emulsification requiring 

very little input energy involves destabilization through contraction of local interfacial 

regions. It is necessary for the interfacial structure to show no resistance against 

surface shearing in order for emulsification to take place [86]. The potential 

mechanisms responsible for improvement in oral bioavailability by self-

nanoemulsifying drug delivery system are elucidated in Figure 1.11. 
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Figure 1.11 Mechanisms of self-nanoemulsifying drug delivery systems to improve 

bioavailability. [92] 

3.2.3. The factors influencing the phenomenon of SEDDS 

A thorough understanding of the spontaneous nanoemulsification process and 

physicochemical and biopharmaceutical properties of components used for the 

fabrication of SEDDS would be of great help for developing successful formulations 

of SEDDS.   

The factors influencing the formation of SEDDS can be summarized as following:  

 The physicochemical nature and concentration of oily phase, surfactant and 

cosurfactant; 

 The ratio of the excipients, especially the ratio of oil and surfactant; 

 The temperature, pH and ionic content of the aqueous phase where 

nanoemulsification would occur; 
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 Physicochemical properties of the drug, such as hydrophilicity/lipophilicity, pKa. 

and polarity [34]. 

3.3. Characterization of SEDDS 

3.3.1. Ternary phase diagrams 

Construction of ternary or pseudo-ternary phase diagrams is usually employed in 

the development of SEDDS. Ternary phase diagrams enable comparison of different 

surfactants and their synergistic effect with co-surfactant. They can also help to 

determine the optimum concentration ranges of different excipients and  to identify 

the self-emulsification regions. The boundaries of different phase regions can easily 

be assessed visually. 

3.3.2. Emulsification time 

With the purpose of quantifying the efficiency of emulsification of SEDDS. Pouton 

[93] employed the rotating paddle to promote emulsification in a crude nephelometer. 

This enabled an estimation of the time taken for emulsification. On completion of 

emulsification, the SEDDS samples were taken for particle sizing by photon 

correlation spectroscopy, and further by other characterizations. 

3.3.3. Turbidity measurement 

 The turbidity measurements can be carried out to identify the efficient self-

emulsification by establishing whether the dispersion reaches equilibrium rapidly and 

in a reproducible time [94]. These measurements are commonly carried out on 

turbidity meters, and also can be processed in terms of spectroscopic 

characterization of optical clarity (i.e. absorbance of suitably diluted aqueous 

dispersion at 400 nm) [95]. 
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3.3.4. Droplet size 

Droplet size is a decisive factor in self-emulsification performance because it will 

determine the rate and extent of drug release, as well as the stability of the emulsion 

[80]. Dynamic light scattering (DLS) techniques, photon correlation spectroscopy 

and microscopic techniques are mainly used for the determination of the emulsion 

droplet size. DLS is ideal for measuring particles or droplets in the diameter of 3 nm 

to 3 mm. Droplet size distributions can be further verified by cryogenic transmission 

electron microscopy (cryo-TEM), which offers the possibility to observe the droplet’s 

size and shape. 

3.3.5. Zeta potential 

Zeta potential is used to identify the charge of the oil droplets of SEDDS. The 

charge of the oil droplets in conventional SEDDS is negative due to the presence of 

free fatty acids [96]. For the droplets in SEDDS emulsions, a high zeta potential will 

confer stability and long shelf life. When the potential is low, attractive forces may 

exceed this repulsion and the emulsion may break and aggregate. Some 

investigators consider zeta potential as secondary characterization parameter for 

SEDDS, because SEDDS are preconcentrate mixture of drug in oil and surfactant 

and emulsified in vivo only. The zeta potential of SEDDS emulsion is commonly 

investigated using Malvern ZetaSizer [86]. 

3.3.6. Morphology  

The morphology of the nanoemulsion droplets can be evaluated by Cryo-

Transmission Electron Microscopy (Cryo-TEM), small-angle neutron scattering and 
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small-angle X-ray scattering. Cryo-TEM and small-angle neutron scattering offer the 

advantage of vizualising the particle sizes and shapes. Furthermore, droplets size 

distributions can be further verified by cryo-TEM. Small-angle X-ray scattering is 

used to determine the microscale or nanoscale structure of particle systems in terms 

of such parameters as averaged particle sizes, shapes, distribution and surface-to-

volume ratio [77]. 

3.3.7. Viscosity.  

The rheological properties of the SEDDS formulations are useful to assess their 

ability to be filled in the soft or hard gelatin capsules. The viscosity of formulations 

should not be high to create problem in pourability. Conversely, low viscosity may 

lead to leakage from the capsules. 

3.4. Dosage Forms from SEDDS 

SEDDS are usually limited by liquid dosage forms, because many excipients used 

in SEDDS are not solid at room temperature. In view of the advantages and 

limitations of SEDDS, various dosage forms of SEDDS have been extensively 

exploited in recent years, as they frequently represent more effective alternatives to 

conventional liquid SEDDS. 

3.4.1. Dry emulsions 

Dry emulsion formulations are typically prepared from oil in water (O/W) 

emulsions containing a solid carrier in the aqueous phase by freeze-drying, spray 

drying or rotary evaporation. The dry emulsions spontaneously disperse in vivo or 

when exposed to an aqueous solution. Dry emulsions can be used for further 

preparation of capsules and tablets. [32]. A exciting finding in this field is the newly 
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developed enteric-coated dry emulsion formulation, which is potentially applicable 

for the oral delivery of peptide and protein drugs [97]. 

3.4.2. Self-emulsifying sustained/controlled-release tablets 

In order to greatly reduce the amount of solidifying excipients required for 

transformation of SEDDS into solid dosage forms, Patil et al [98] developed a gelled 

SEDDS. The patent diclosed by Schwarz et al [99] showed that  SE tablets are of 

great utility in obviating adverse effect. Inclusion of indomethacin into self-

emulsifying tablets could increase the penetration efficiency through the 

gastrointestinal mucosal membranes, potentially reducing gastrointestinal bleeding. 

The newest improvement in the field of self-emulsifying tablet is the self-emulsifying 

osmotic pump tablet, where the elementary osmotic pump system was the carrier of 

the self-emulsifying tablet [32]. 

3.4.3. Self-emulsifying suppositories 

Some investigators proved that Solid-SEDDS could increase not only 

gastrointestinal adsorption but also rectal/vaginal adsorption [100] . Glycyrrhizin, 

which barely achieves therapeutic plasma concentrations by the oral route, can 

obtain fine therapeutic levels for chronic hepatic diseases by either vaginal or rectal 

self-emulsifying suppositories [32]. 

3.4.4. Self-emulsifying implants 

Researches on self-emulsifying implants have signifacantly improved the utility 

and application of solid-SEDDS. Carmustine (BCNU) is a chemotherapeutic agent 

used to treat malignant brain tumours. However, its short half life hinders its 

therapeutic efficacy. In order to enhance its stability and intestinal permeablity, a 

self-emulsifying system of carmustine was designed and fabricated into wafers with 
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flat and smooth surface by compression molding. The results demonstrated that the 

self-emulsifying system increased the in vitro half-life of BCNU up to 130 min 

compared with 45 min of intact BCNU. The in vitro release of BCNU from self-

emulsifying PLGA wafers was prolonged to 7 days [101]. 

4. Oral controlled drug delivery systems 

4.1. Overview of oral controlled drug delivery systems 

4.1.1. Historical perspective 

Controlled drug delivery technology has progressed for more than 60 years. This 

progression began in 1952 with the introduction of the first sustained release 

formulation. In the years 1950-80, a first generation (1G) of sustained drug delivery 

system was developed for oral and transdermal sustained release, while during 

1980–2010 a second generation (2G) comprised the development of zero-order 

release systems, self-regulated drug delivery systems, long-term depot formulations, 

and nanotechnology-based delivery systems [102].  A third generation (3G) of drug 

delivery systems is excepted to develop drug delivery formulations primarily based 

on today's necessities, and focus on understanding the biological barriers. Figure 

1.12 describes the three generations of drug delivery systems.  

Controlled drug delivery systems were developed to increase patient compliance 

and acceptability. Years ago it was common to take a drug 4 and more times a day 

by oral administration. Making the drug administration once/twice-a-day resulted in 

dramatic improvement in patient convenience and compliance. Benefit for the 

patient, drug effectiveness and better compliance are the main advantages of 

controlled drug delivery systems. Moreover, the introduction of novel administration 

or release methods rendered old drugs again effective and useful [103].  

Delayed release, sustained release, and repeat action formulations are the three 

most common controlled release formulations [104, 105]. A common example of 
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delayed release is the enteric formulation of  tablets or capsules [106], in which drug 

will not be released in gastric fluid (harsh acidic environment), and will remain 

protected until it reaches the intestine (neutral environment). In sustained release 

formulations, a portion of drug is released immediately, and the remaining drug is 

released slowly over an extended period of time. In fixed dosage combination (FDC), 

combination of immediate release (IR) and sustained release (SR) for single drug or 

double drugs are used[107, 108]. 

 

 

Figure 1.12  Evolution of controlled drug delivery systems since 1950. [102] 

4.1.2. Limiting factors for oral controlled drug delivery formulations  

There are a few unique properties of the gastrointestinal tract (GIT) that make 

development of oral controlled drug delivery rather difficult. These limiting factors 

and disadvantages can be classified into: 
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(1) Relatively short gastric emptying and intestinal transit time [109]; 

(2) Nonuniform absorption abilities of different segments of GIT [110]; 

(3) Pre-systemic clearance [111] ; 

(4) Poor absorption of peptide and protein drugs [112]; 

(5) Difficult in vitro–in vivo correlations; 

(6) Higher cost of some controlled drug delivery formulations [113].  

4.2. Classification and mechanisms of oral controlled drug delivery systems 

In general, for most of the pharmaceutical industry, drug delivery has induced 

simple, fast-acting responses (conventional forms) via oral or injection delivery 

routes. Problems include reduced potencies because of partial degradation (first 

pass metabolism), toxic levels of administration (in cases of excess dose), increased 

costs associated with excess dosing, and compliance issues due to administration 

pain [113]. A useful classification of current controlled release drug delivery systems 

based on mechanistic considerations will be outlined below [114]. This classification 

provides a systematic account of principles behind the design of various oral 

controlled release products. 

4.2.1. Membrane Systems 

Membrane systems, by virtue of its rate controlling membrane, are generally non-

disintegrating. Products are usually developed like drug core surrounded by a rate 

controlling membrane (e.g., microcapsules, coated pellets, beads, or coated tablets). 

Drug release from membrane systems is generally controlled by osmotic pumping or 

solution–diffusion mechanism. The osmotic-controlled drug release (OROS™) 

concept for controlling delivery is based on dissolved drug being transported in a 

controlled manner from the dosage form to the external media under the influence of 

osmotic pressure [115]. Dissolution-controlled release can be obtained by slowing 
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the dissolution rate of a drug in the gastrointestinal medium, by incorporating the 

drug with insoluble polymer, and coating drug particles/ granules with polymeric 

materials of varying thicknesses [116]. The rate-limiting step for the dissolution of 

drug is the diffusion across the aqueous boundary layer [19]. 

4.2.2. Matrix Systems 

Matrix systems are actually introduced by drug dissolved or dispersed in a carrier 

matrix (e.g., beads, pellets, or tablets). Drug release from matrix type products are 

mostly regulated by mechanisms such as (1) diffusion, (2) swelling/erosion, (3) 

geometry/area changes, and (4) nonuniform drug distribution. A good example of 

marketed pulsatile product is Drixoral Cold & Allergy Sustained-Action Tablets 

(pseudoephedrine sulfate and dexbrompheniramine maleate; Schering-Plough) that 

produce two pulses of drug release separated by several hours [19, 117]. 

4.2.3. Hybrid Systems 

Hybrid systems comnmonly are the combinations of membrane and matrix 

systems (e.g., coated pellets or beads embedded in a tablet matrix,core press 

coated tablets, or tablets in a capsule). Hybrid systems can be disintegrating or 

nondisintegrating. Hybrid chronotherapeutic dosage forms have been designed 

based on osmotically controlled-release, membrane-coated beads (delayed release), 

press-coated tablets, or the combination of erodible polymer coating and a drug 

matrix (e.g., beads, pellets, and tablets) [118]. Typical chronotherapeutic product 

examples include Covera-HS (verapamil HCl; Pfizer), Verelan PM (verapamil HCl; 

Schwarz), and InnoPran XL (propranolol HCl; Reliant) [19]. All of these systems can 

be in either single-unit or multiple-unit dosage forms. 

4.3. Preformation consideration for controlled release formulations 
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4.3.1. Particulate and mechanical properties’ consideration for drug 

substances  

The physicochemical properties of drug substances have a large impact on the 

selection of controlled release formulations and manufacturing process. The drug’s 

physicochemical properties to be considered include molecular size, lipophilicity, 

solubility, protein binding, polar surface area, and charge or rotatable bonds. These 

properties will ultimately influence the permeability of a compound across the lung 

epithelial barrier [113].  

4.3.2. Stability and compatibility 

A drug substance is usually more stable by itself than in a formulation with 

excipients, and as the drug concentration decreases, the stability deteriorates in a 

corresponding manner. A forced degradation study encompasses a comprehensive 

assessment of degradation under various stress conditions including acid, base, 

heat, light, and oxidative conditions which is necessary to demonstrate the stability 

of the drug substances. Furthermore, pH–stability profile and stabilization are 

especially useful for controlled release dosage forms since the drug is retained in a 

matrix or within coating membranes together with a pH modifier. In vitro pH-stability 

studies may help predict performance in first-time in human studies. 

 Besides aboved mentions, compatibility of excipient and drug is very important 

parameter for the formation of controlled drug delivery systems. Despite the 

importance of drug–excipient interaction, no standard method is generally accepted 

among pharmaceutical scientists and most methods reported in the literature have 

poor predictive values [119]. 

4.3.3. Solubility consideration 
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Solubility of the drug substance is a fundamental property that should be 

evaluated early in the development of controlled release dosage forms. In reality, it 

is difficult to predict the aqueous solubility due to the complicated solubilization 

procedure and solid-phase chemistry of the drug candidates [120]. A variety of 

approaches are employed at different phases of drug discovery and development 

such as in silico, kinetic and equilibrium solubility. A lack of solubility affects the 

ability of drug to achieve efficacious and toxicologically relevant exposures in 

animals [120].  For drugs with high solubility, dissolution rate can be slowed down by 

embedding the drug in a matrix or enclosing the drug within a film, whereas for 

drugs with low solubility, it is more difficult to shift the controlling mechanism from 

solubility to formulation [19]. 

4.4. Lipids in oral controlled release drug delivery 

4.4.1. Lipids in oral drug delivery 

   Lipids not only vary in structures and physiochemical properties, but also in their 

digestibility and absorption pathway,  therefore,  selection of lipid excipients and 

dosage form has a pronounced effect on the biopharmaceutical aspects of drug 

absorption and distribution both in vitro and in vivo [121]. In particular, the following 

properties and behaviors of lipids can play key roles: 

 Lipids may have amphiphilic structures that determine their capability to self-

assemble in aqueous environments. Such behavior can have a critical effect on 

drug disposition kinetics in the gastrointestinal tract [115].  

 Lipids can act as solvents, leading to drug being present in the gastrointestinal 

fluids thereby overcoming the drug dissolution step [122].  
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 Lipids may be digestible. Digestion of dietary and formulation lipids can lead to 

generation of colloidal structures in the GIT, providing transient solubilization of 

drug, and reducing the propensity for precipitation prior to absorption. 

4.4.2. Mechanisms of controlled release using lipids 

The mechanisms of controlled release can be summarized as follows, matrix 

controlled release; gastroretention; stimulation of lymphatic transport.   

Matrix plays as a barrier to slow the appearance of dissolved drug in 

gastrointestinal fluids, by inhibiting diffusion , or by requiring erosion of the matrix 

before exposure of undissolved drug particles [115]. Gastroretention strategies aim 

to retain the dosage form in the stomach, preventing transit before complete drug 

release. Prolonged retention coupled with slow drug release can prolong drug 

absorption and therapeutic effect. Drug transport via lymph is increased with 

increasing amounts of co-administered long-chain lipids swelling the chylomicrons 

and providing a greater pool for drugs to directly entrter systemic circulation. Such 

lymphatic transport avoids hepatic first-pass metabolism experienced by drug 

molecules transported via the portal blood system [115]. 

4.4.3. Technologies for controlled release using lipids 

Lipid-based formulations range from simple lipid solutions to complex systems 

incorporating triglycerides, partially digested triglycerides, semisynthetic ester 

glycerides, lipophilic and hydrophilic surfactants and cosolvents [123, 124]. The 

formulation can influence digestibility, dispersion and solubilization of the lipid 

vehicle in vivo, in turn, influencing drug absorption. Solid lipid particles are 

composed of melt-emulsified lipids, which are solid nature. They offer the 

advantages of avoidance of organic solvents, resulting in a comparatively stable 

system with protective effects against serious drug toxicity [125]. Slow erosion of the 



51 

 

lipid controls drug release, prolonging plasma residence and inhibit peak plasma 

concentrations. In vitro release is slowed in comparison to other formulations [126, 

127].   

 

 

References 

[1] Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations–
opportunities and limitations. Drug Discovery Today: Technologies 2012;9:e87-e95. 
[2] Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug 
delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnology 
Advances 2014;32:1269-82. 
[3] Pathak K, Raghuvanshi S. Oral Bioavailability: Issues and Solutions via Nanoformulations. Clinical 
Pharmacokinetics 2015;54:325-57. 
[4] Daugherty AL, Mrsny RJ. Regulation of the intestinal epithelial paracellular barrier. Pharmaceutical Science & 
Technology Today 1999;2:281-7. 
[5] Kuentz M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discovery Today: Technologies 
2012;9:e97-e104. 
[6] Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: 
the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research 1995;12:413-
20. 
[7] Mannhold R, Kubinyi H, Folkers G, van de Waterbeemd H, Testa B. Drug bioavailability: estimation of solubility, 
permeability, absorption and bioavailability: John Wiley & Sons; 2009. 
[8] Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen M-L, Lee VH. 
Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharmaceutical research 
2002;19:921-5. 
[9] (CDER) USDoHaHSFaDACfDEaR. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-
Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System.  2015. 
[10] Cook J, Addicks W, Wu YH. Application of the biopharmaceutical classification system in clinical drug 
development - An industrial view. Aaps Journal 2008;10:306-10. 
[11] Ku MS. Use of the biopharmaceutical classification system in early drug development. Aaps Journal 
2008;10:208-12. 
[12] Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs 
based on biopharmaceutics classification system: Basic approaches and practical applications. International 
Journal of Pharmaceutics 2011;420:1-10. 
[13] Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. 
International Journal of Pharmaceutics 2008;364:298-327. 
[14] Commission BP, Council GM, Commission GBM. British pharmacopoeia: Her Majesty's Stationery Office; 
2001. 
[15] Sangster J. Octanol-water partition coefficients: fundamentals and physical chemistry: John Wiley & Sons; 
1997. 
[16] Leo A. Citation Classic - Partition-Coefficients And Their Uses. Current Contents/Physical Chemical & Earth 
Sciences 1983:14-. 
[17] Bergstrom CAS, Wassvik CM, Johansson K, Hubatsch I. Poorly soluble marketed drugs display solvation 
limited solubility. Journal Of Medicinal Chemistry 2007;50:5858-62. 
[18] Yadollahi R, Vasilev K, Simovic S. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs. 
Journal Of Nanomaterials 2015. 
[19] Wen H, Park K. Oral controlled release formulation design and drug delivery. Theory to practice:169-83. 
[20] Pitkowski A, Nicolai T, Durand D. Stability of caseinate solutions in the presence of calcium. Food 
Hydrocolloids 2009;23:1164-8. 
[21] McClements DJ. Encapsulation, protection, and release of hydrophilic active components: Potential and 
limitations of colloidal delivery systems. Advances In Colloid And Interface Science 2015;219:27-53. 



52 

 

[22] De Robertis S, Bonferoni MC, Elviri L, Sandri G, Caramella C, Bettini R. Advances in oral controlled drug 
delivery: the role of drug-polymer and interpolymer non-covalent interactions. Expert Opinion on Drug Delivery 
2015;12:441-53. 
[23] Park K, Kwon IC, Park K. Oral protein delivery: Current status and future prospect. Reactive & Functional 
Polymers 2011;71:280-7. 
[24] Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and 
opportunities. Journal Of Controlled Release 2013;170:15-40. 
[25] Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug 
Discovery Today 2013;18:25-34. 
[26] Cassidy J, Douillard J, Twelves C, McKendrick J, Scheithauer W, Bustová I, Johnston P, Lesniewski-Kmak K, 
Jelic S, Fountzilas G. Pharmacoeconomic analysis of adjuvant oral capecitabine vs intravenous 5-FU/LV in Dukes' 
C colon cancer: the X-ACT trial. British journal of cancer 2006;94:1122-9. 
[27] Hetal T, Bindesh P, Sneha T. A review on techniques for oral bioavailability enhancement of drugs. 
International Journal of Pharmaceutical Sciences Review and Research 2010;4:203-23. 
[28] Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus 
barriers. Advanced Drug Delivery Reviews 2012;64:557-70. 
[29] Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydrate polymers 
2014;103:1-11. 
[30] Peltier S, Oger J-M, Lagarce F, Couet W, Benoît J-P. Enhanced oral paclitaxel bioavailability after 
administration of paclitaxel-loaded lipid nanocapsules. Pharmaceutical research 2006;23:1243-50. 
[31] Lipinski CA. Solubility in water and DMSO: Issues and potential solutions: AAPS Press, Arlington, VA, USA; 
2004. 
[32] Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation 
techniques and dosage forms. Drug Discovery Today 2008;13:606-12. 
[33] Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic 
drugs. Biomedicine & Pharmacotherapy 2004;58:173-82. 
[34] Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, 
applications and advances. Nanomedicine 2010;5:1595-616. 
[35] Belzer C, de Vos WM. Microbes inside-from diversity to function: the case of Akkermansia. Isme Journal 
2012;6:1449-58. 
[36] Mrsny RJ. Oral drug delivery research in Europe. Journal Of Controlled Release 2012;161:247-53. 
[37] Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G. Mucoadhesion mechanism of chitosan and 
thiolated chitosan-poly (isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 2007;28:2233-43. 
[38] Ponchel G, Irache J-M. Specific and non-specific bioadhesive particulate systems for oral delivery to the 
gastrointestinal tract. Advanced Drug Delivery Reviews 1998;34:191-219. 
[39] Bernkop-Schnurch A, Schmitz T. Presystemic metabolism of orally administered peptide drugs and strategies 
to overcome it. Current drug metabolism 2007;8:509-17. 
[40] Gottesman MM. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation 
award lecture. Cancer Research 1993;53:747-54. 
[41] Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations 
from in vitro data. Nature Reviews Drug Discovery 2007;6:140-8. 
[42] Doherty MM, Pang KS. First-pass effect: significance of the intestine for absorption and metabolism. Drug and 
chemical toxicology 1997;20:329-44. 
[43] Morita Y, Sobel ML, Poole K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas 
aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. Journal of bacteriology 2006;188:1847-
55. 
[44] Buxton IL. Pharmacokinetics and pharmacodynamics: the dynamics of drug absorption, distribution, action, 
and elimination. Goodman & Gilman's: the pharmacological basis of therapeutics 11th ed New York: McGraw-Hill 
2006;11. 
[45] Srivalli KMR, Lakshmi P. Overview of P-glycoprotein inhibitors: a rational outlook. Brazilian Journal of 
Pharmaceutical Sciences 2012;48:353-67. 
[46] Kumar P, Mishra B. Colon targeted drug delivery systems-an overview. Current drug delivery 2008;5:186-98. 
[47] Aungst BJ. Absorption enhancers: applications and advances. The AAPS journal 2012;14:10-8. 
[48] Fasinu P, Pillay V, Ndesendo VM, du Toit LC, Choonara YE. Diverse approaches for the enhancement of oral 
drug bioavailability. Biopharmaceutics & drug disposition 2011;32:185-209. 
[49] Kwak J-O, Lee SH, Lee GS, Kim MS, Ahn Y-G, Lee JH, Kim SW, Kim KH, Lee MG. Selective inhibition of 
MDR1 (ABCB1) by HM30181 increases oral bioavailability and therapeutic efficacy of paclitaxel. European journal 
of pharmacology 2010;627:92-8. 



53 

 

[50] Anilkumar P, Badarinath A, Naveen N, Prasad K, Reddy BRS, Hyndhavi M, Nirosha M. A rationalized 
description on study of intestinal barrier, drug permeability and permeation enhancers. Journal of Global Trends in 
Pharmaceutical Sciences 2011;2:431-49. 
[51] Aungst BJ. Intestinal permeation enhancers. Journal of pharmaceutical sciences 2000;89:429-42. 
[52] Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug 
Discovery Today 2011;16:354-60. 
[53] Ekins S, Xu JJ. Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies and Tools: John Wiley 
& Sons; 2009. 
[54] Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from 
discovery to applications. Nano letters 2010;10:3223-30. 
[55] Mei L, Zhang ZP, Zhao LY, Huang LQ, Yang XL, Tang JT, Feng SS. Pharmaceutical nanotechnology for oral 
delivery of anticancer drugs. Advanced Drug Delivery Reviews 2013;65:880-90. 
[56] Zhao T, Maniglio D, Chen J, Chen B, Motta A, Migliaresi C. Design and optimization of self-nanoemulsifying 
formulations for lipophilic drugs. Nanotechnology 2015;26:125102. 
[57] Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and 
targeting. Advanced Drug Delivery Reviews 2008;60:757-67. 
[58] Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal 
technology and lipid nanoparticles. Journal of biotechnology 2004;113:151-70. 
[59] Kiparissides C, Kammona O. Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. 
The Canadian Journal of Chemical Engineering 2013;91:638-51. 
[60] Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise 
review. Nanomedicine: Nanotechnology, Biology and Medicine 2005;1:193-212. 
[61] Krishnaiah YS. Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J 
Bioequiv Availab 2010;2:28-36. 
[62] Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for 
treatment of oral cancer: a review. International journal of nanomedicine 2014;9:3719. 
[63] Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug 
delivery. Expert Opinion on Drug Delivery 2012;9:497-508. 
[64] Nasr M, Abdel-Hamid S. Lipid based Nanocapsules: A Multitude of Biomedical Applications. Current 
pharmaceutical biotechnology 2014;16:322-32. 
[65] Shinoda K, Arai H. The correlation between phase inversion temperature in emulsion and cloud point in 
solution of nonionic emulsifier. The Journal of Physical Chemistry 1964;68:3485-90. 
[66] Huynh N, Passirani C, Saulnier P, Benoit J. Lipid nanocapsules: a new platform for nanomedicine. 
International Journal of Pharmaceutics 2009;379:201-9. 
[67] Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs.  2007. 
[68] Gupta AS. Nanomedicine approaches in vascular disease: a review. Nanomedicine: Nanotechnology, Biology 
and Medicine 2011;7:763-79. 
[69] Kumar N, Rai A, Reddy ND, Raj PV, Jain P, Deshpande P, Mathew G, Kutty NG, Udupa N, Rao CM. 
Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. 
Pharmacological Reports 2014;66:788-98. 
[70] Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, Gu G, Jiang M, Pang Z, Chen H. Lipid-based liquid crystalline 
nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo 
absorption. International journal of nanomedicine 2012;7:3703. 
[71] Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C. Polymeric micelles for oral drug delivery. 
European journal of pharmaceutics and biopharmaceutics 2010;76:147-58. 
[72] Emeje MO, Akpabio EI, Obidike IC, Ofoefule SI. Nanotechnology in drug delivery: INTECH Open Access 
Publisher; 2012. 
[73] Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer-drug conjugates for novel molecular targets. Nanomedicine 
2010;5:915-35. 
[74] Kang Y, Zhang X-M, Zhang S, Ding L-S, Li B-J. pH-responsive dendritic polyrotaxane drug-polymer 
conjugates forming nanoparticles as efficient drug delivery system for cancer therapy. Polymer Chemistry 
2015;6:2098-107. 
[75] Vashist SK, Zheng D, Pastorin G, Al-Rubeaan K, Luong JH, Sheu F-S. Delivery of drugs and biomolecules 
using carbon nanotubes. Carbon 2011;49:4077-97. 
[76] Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral 
bioavailability and permeation of poorly water soluble drugs. Molecular Pharmaceutics 2012;9:505-13. 
[77] Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: an approach to 
enhance oral bioavailability. Drug Discovery Today 2010;15:958-65. 



54 

 

[78] McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft matter 
2012;8:1719-29. 
[79] Müllertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant based drug delivery 
systems for oral delivery of poorly soluble drugs. Journal Of Pharmacy And Pharmacology 2010;62:1622-36. 
[80] Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Potentials and challenges in self-nanoemulsifying drug 
delivery systems. Expert Opinion on Drug Delivery 2012;9:1305-17. 
[81] Taha E, Ghorab D, Zaghloul A-a. Bioavailability assessment of vitamin A self-nanoemulsified drug delivery 
systems in rats: a comparative study. Medical Principles and Practice 2007;16:355-9. 
[82] Solanki N, Prajapati S. Self emulsifying drug delivery system (SEDDS): a review. International journal of 
pharmaceutical research and bio-science 2012;1. 
[83] Kumar S, Gupta SK, Sharma PK. Self-emulsifying drug delivery systems (SEDDS) for oral delivery of lipid 
based formulations-a review. African Journal of Basic & Applied Sciences 2012;4:07-11. 
[84] Cherniakov I, Domb AJ, Hoffman A. Self-nano-emulsifying drug delivery systems: an update of the 
biopharmaceutical aspects. Expert Opinion on Drug Delivery 2015:1-13. 
[85] Pouton CW. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. 
International Journal of Pharmaceutics 1985;27:335-48. 
[86] Gupta S, Kesarla R, Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs 
with special emphasis on self-emulsifying systems. ISRN pharmaceutics 2013;2013. 
[87] Wadhwa J, Nair A, Kumria R. Emulsion forming drug delivery system for lipophilic drugs. Acta Pol Pharm 
2012;69:179-91. 
[88] Chaus HA, Chopade VV, Chaudhri PD. Self emulsifying drug delivery system: a review. Int J Pharm Chem Sci 
2013;1:34-44. 
[89] Rahman MA, Hussain A, Hussain MS, Mirza MA, Iqbal Z. Role of excipients in successful development of self-
emulsifying/microemulsifying drug delivery system (SEDDS/SMEDDS). Drug Development And Industrial 
Pharmacy 2013;39:1-19. 
[90] Reiss H. Entropy-induced dispersion of bulk liquids. Journal Of Colloid And Interface Science 1975;53:61-70. 
[91] Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health 
Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European 
journal of pharmaceutics and biopharmaceutics 2004;58:265-78. 
[92] Laffleur F, Bernkop-Schnürch A. Strategies for improving mucosal drug delivery. Nanomedicine 2013;8:2061-
75. 
[93] Pouton CW. Formulation of self-emulsifying drug delivery systems. Advanced Drug Delivery Reviews 
1997;25:47-58. 
[94] Gursoy N, Garrigue JS, Razafindratsita A, Lambert G, Benita S. Excipient effects on in vitro cytotoxicity of a 

novel paclitaxel self‐emulsifying drug delivery system. Journal of pharmaceutical sciences 2003;92:2411-8. 

[95] Subramanian N, Ray S, Ghosal SK, Bhadra R, Moulik SP. Formulation design of self-microemulsifying drug 
delivery systems for improved oral bioavailability of celecoxib. Biological and Pharmaceutical Bulletin 
2004;27:1993-9. 
[96] Gershanik T, Benita S. Positively charged self-emulsifying oil formulation for improving oral bioavailability of 
progesterone. Pharmaceutical Development And Technology 1996;1:147-57. 
[97] Toorisaka E, Hashida M, Kamiya N, Ono H, Kokazu Y, Goto M. An enteric-coated dry emulsion formulation for 
oral insulin delivery. Journal Of Controlled Release 2005;107:91-6. 
[98] Patil P, Joshi P, Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self-
emulsifying drug delivery system (SEDDS) of ketoprofen. Aaps Pharmscitech 2004;5. 
[99] Schwarz J, Weisspapir M. Ophthalmic preparation containing menthyl ester of indomethacin. Google Patents; 
2012. 
[100] Kim JY, Ku YS. Enhanced absorption of indomethacin after oral or rectal administration of a self-emulsifying 
system containing indomethacin to rats. International Journal of Pharmaceutics 2000;194:81-9. 
[101] Chae GS, Lee JS, Kim SH, Seo KS, Kim MS, Lee HB, Khang G. Enhancement of the stability of BCNU using 
self-emulsifying drug delivery systems (SEDDS) and in vitro antitumor activity of self-emulsified BCNU-loaded 
PLGA wafer. International Journal of Pharmaceutics 2005;301:6-14. 
[102] Park K. Controlled drug delivery systems: past forward and future back. Journal Of Controlled Release 
2014;190:3-8. 
[103] Yun Y, Lee BK, Park K. Controlled drug delivery systems: the next 30 years. Frontiers Of Chemical Science 
And Engineering 2014;8:276-9. 
[104] Abdul S, Poddar S. A flexible technology for modified release of drugs: multi layered tablets. Journal Of 
Controlled Release 2004;97:393-405. 



55 

 

[105] Bartholomaeus J, Ziegler I. Delayed-release formulation of 3-(3-dimethylamino-1-ethyl-2-methyl-propyl) 
phenol. WO Patent 2003;2003035054. 
[106] Prakash A, Markham A. Oral delayed-release mesalazine. Drugs 1999;57:383-408. 
[107] Sharma SK, Ruggenenti P, Remuzzi G. Managing hypertension in diabetic patients–focus on 
trandolapril/verapamil combination. Vascular health and risk management 2007;3:453. 
[108] Simon S. Opioids and treatment of chronic pain: understanding pain patterns and the role for rapid-onset 
opioids. MedGenMed: Medscape general medicine 2004;7:54-. 
[109] Ritschel W. Targeting in the gastrointestinal tract: new approaches. Methods and findings in experimental 
and clinical pharmacology 1991;13:313-36. 
[110] Heinig R, Ahr G, Hayauchi Y, Kuhlmann J. Pharmacokinetics of the controlled-release nisoldipine coat-core 
tablet formulation. International journal of clinical pharmacology and therapeutics 1997;35:341-51. 
[111] Butler V, Neu H, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science 
1983;220:325-7. 

[112] Paul W, Sharma CP. Tricalcium phosphate delayed release formulation for oral delivery of insulin: A proof‐

of‐concept study. Journal of pharmaceutical sciences 2008;97:875-82. 

[113] Bassyouni F, ElHalwany N, Rehim MA, Neyfeh M. Advances and new technologies applied in controlled 
drug delivery system. Research on Chemical Intermediates 2013;41:2165-200. 
[114] Lee PI, Li JX. Evolution of oral controlled release dosage forms.  Oral controlled release formulation design 
and drug delivery Theory to practice: Wiley New Jersey; 2010. p. 1-20. 
[115] Rathbone M. Advances in Delivery Science and Technology.  2011. 
[116] Chen C-M, Chou JC. Controlled release of nifedipine tablets with membrane coatings of enteric polymers. 
Google Patents; 1998. 
[117] Xu X, Lee PI. Programmable drug delivery from an erodible association polymer system. Pharmaceutical 
research 1993;10:1144-52. 
[118] Wilding IR. Site-specific drug delivery in the gastrointestinal tract. Critical Reviews™ in Therapeutic Drug 
Carrier Systems 2000;17. 
[119] Monkhouse DC, Maderich A. Whither compatibility testing? Drug Development And Industrial Pharmacy 
1989;15:2115-30. 
[120] Bharate SS, Vishwakarma RA. Impact of preformulation on drug development. Expert Opinion on Drug 
Delivery 2013;10:1239-57. 
[121] Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. 
International Journal of Pharmaceutics 2013;453:215-24. 
[122] MacGregor KJ, Embleton JK, Lacy JE, Perry EA, Solomon LJ, Seager H, Pouton CW. Influence of lipolysis 
on drug absorption from the gastro-intestinal tract. Advanced Drug Delivery Reviews 1997;25:33-46. 
[123] Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and 
physiological issues and the lipid formulation classification system. European Journal Of Pharmaceutical Sciences 
2006;29:278-87. 
[124] Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, 
methods and strategies. Advanced Drug Delivery Reviews 2008;60:625-37. 
[125] Muchow M, Maincent P, Müller RH. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral 
drug delivery. Drug Development And Industrial Pharmacy 2008;34:1394-405. 
[126] Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the 
state of the art. European journal of pharmaceutics and biopharmaceutics 2000;50:161-77. 
[127] Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery 
Reviews 2004;56:1257-72. 



56 

 

 

Chapter II Objectives and outline 

Self-emulsifying drug delivery systems (SEDDS) represent a vital tool in 

enhancing oral bioavailability of lipophilic drugs. Lipophilic drugs can be dissolved in 

SEDDS formulations, enabling them to be administered as a unit dosage form for 

oral administration. 

The overall objective of the present thesis was to improve the solubility, 

dissolution rate, potentially the intestinal permeability and bioabavailability of l of 

lipophilic drugs by using self-nanoemulsifying drug delivery systems (SNEDDS) for 

oral administration. 

The main objective implies the following specific objectives: 

1. Design and optimization of novel self-nanoemulsifying drug delivery systems 

(SNEDDS) with a high proportion of essential oil as carrier. 

Surfactants are indispensable  component for self-emulsifying formulations. 

However, usage of large amount of surfactants would induce irritation to 

gastrointestinal tract (GIT) and moreover toxicity. A compromise must be 

reached between the surfactant toxicity and self-emulsifying capacity of the 

formulation.   

In our work, essential oil was using to replace part of the surfactant for 

reducing the potential toxicity of the formulation. As will be shown, our high 

essential oil containing SNEDDS formulations possess excellent self-

emulsfiying property, stability and suitable in vitro drug release profile, while 

the drug loading capacity didn’t decrease. 

2. Development of a pH-sensitive self-emulsifying formulation (pH-SNEDDS) to 

avoid the release of the drug in the stomach and protect it from its harsh 

acidic environment, that is paticularly important for acid-labile lipophilic drugs. 
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Orally administered bioactive compounds have to resist the harsh acidic fluids 

or enzyme digestion in stomach, in order to reach their absorbed destination in 

small intestine. The use of pH-sensitive self-nanoemulsifying drug delivery 

systems (pH-SNEDDS) could overcome the drug degradation in the stomach 

while enhancing drug solubility and dissolution rate.  Our in vitro characterization 

studies showed that pH-SNEDDS would protect the acid-labile drug from harsh 

acidic gastric-like fluids while providing excellent self-emulsification in the 

intestinaldtract. 
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Chapter III Design and optimization of self-nanoemulsifying formulations for 

lipophilic drugs 

 

The purpose of the current study was to develop and optimize novel self-

nanoemulsifying drug delivery systems (SNEDDS) with a high proportion of 

essential oil as carriers for lipophilic drugs. Solubility and droplet size as a function 

of the composition were investigated, and a ternary phase diagram was constructed 

in order to identify the self-emulsification regions. The optimized SNEDDS 

formulation consisted of lemon essential oil (oil), Cremophor RH40 (surfactant) and 

Transcutol HP (co-surfactant) in the ratio 50:30:20 (v/v). Ibuprofen was chosen as 

the model drug. The droplet size, ζ-potential and stability of the drug-loaded 

optimized formulations were determined. The stability of SNEDDS was proved after 

triple freezing/ thawing cycles and storage at 4 °C and 25 °C for 3 months. In vitro 

drug release studies of optimized SNEDDS revealed a significant increase of the 

drug release and release rate in comparison to the Ibuprofen suspension (80% 

versus approximately 40% in 2 h). The results indicated that these SNEDDS 

formulations could be used to improve the bioavailability of lipophilic drugs. 

 

1. Introduction 

Various approaches have been proposed to increase dissolution and 

bioavailability of lipophilic drugs [1-3]; among those, the use of self-emulsifying drug 

delivery systems has been suggested [4, 5]. Self-emulsifying drug delivery systems 

(SEDDS) are defined as isotropic mixtures of oil, a surfactant, a co-surfactant and a 

drug which can rapidly form fine oil-in-water emulsions upon mild agitation in an 

aqueous media [6]. Depending on the droplet size, SEDDS can be categorized as 

self-microemulsifying drug delivery systems (SMEDDS, droplet size range between 
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100 and 250 nm) and self-nanoemulsifying drug delivery systems (SNEDDS, 

droplets smaller than 100 nm) [7]. The larger interfacial area of SNEDDS improves 

the efficiency of drug release and absorption, resulting in the decrease of drug 

dosage and administration frequency [8]. Moreover, SNEDDS would protect the 

drug from the enzymes of the GI and reduce the first-pass effect [6]. 

Considering the advantages of SNEDDS and the shortages of previous research, 

in the present chapter, a novel high essential-oil-contained self-nanoemulsifying 

drug delivery system was carefully investigated with the aim of enhancing the 

solubility and dissolution of lipophilic drugs. Figure 3.1 demonstrates the human 

digestive tract with self-nanoemulsifying drug delivery system. 

 

Figure 3.1 Schematic outline of the human digestive tract with self-nanoemulsifying 

drug delivery system. 

 

Large amount of surfactants would induce irritation to the gastrointestinal system, 

thus requiring a balance between the surfactant toxicity and self-emulsifying 

capacity of the formulation [9]. The optimization of SNEDDS was performed in terms 

of solubility, droplet size, drug loading and in vitro drug release. 
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Ibuprofen, an anti-inflammatory drug belonging to class II of the biopharmaceutical 

classification [4, 10, 11] that is poorly soluble in acid solutions, such as gastric fluid 

(21 mg l
−1

 at pH 1.2) [4, 10, 11], was chosen as the model drug (Figure 3.2). 

 

Figure 3.2 Molecular structure of ibuprofen. 

2. Materials and methods 

2.1. Materials 

Ibuprofen, lemon essential oil, anise essential oil, castor essential oil, soybean oil, 

Span80 and Cremophor RH40 were purchased from Sigma-Aldrich (Milan, Italy). 

The Labrasol, Labrafil M 1944CS, Labrafil M 2125CS, Capryol 90 and Transcutol 

HP were received as free samples from Gattefosse (Saint-Priest, France). The 

Capmul MCM C8 EP was obtained from ABITEC Corporation (Janesville, USA). The 

acetonitrile and methanol (analytical reagent grade) were purchased from Sigma-

Aldrich (Milan, Italy). Deionized water was used through the whole study. 

2.2. Drug solubility 

  The solubility of Ibuprofen in various oils, surfactants and cosurfactants was 

analyzed by high performance liquid chromatography (HPLC). The excess amount 

of Ibuprofen (approximately 500 mg) was added to a 2 ml sealed vial containing 1 ml 

of each selected oil, surfactant or co-surfactant. The mixture was vortex-mixed, then 

stirred in a shaking water bath at 38.0 ± 0.5 ℃ for 48 h to facilitate the dissolution 
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and was finally centrifuged at 3000 g for 15 min with a SIGMA 2-16 Centrifuge 

(SIGMA Laborzentrifugen GmbH, Osterode am Harz, Germany). The aliquots of the 

supernatant were filtered using a 0.2 μm PTFE filter membrane to remove the 

undissolved Ibuprofen. The filtrates were diluted with a mobile phase (acetonitrile: 

methanol (6:4 v v−1) with 4 g L−1 of chloroacetic acid, adjusted to a pH of 3.0 with 

ammonium hydroxide) and analyzed by HPLC (column Kinetex C18 100A, working 

temperature of 30 ℃, flow rate of 1 ml min−1 with a 20 μl injection volume, Jasco 

intelligent UV-1570, Jasco Corporation, Japan). The assays were repeated in 

triplicate; the mean and standard deviation (σ) were calculated. 

2.3. Surfactant and oil miscibility 

The oil and surfactant in the ratio of 1:1 were shaken at 40 °C in 3 ml transparent 

glass vials. The miscibility was monitored optically and considered to be good when 

the mixture was transparent. 

2.4. Construction of ternary phase diagrams 

Ternary phase diagrams of the selected oils, surfactants and co-surfactants at 

various proportions were constructed to identify the self-emulsification regions. A 

total of 54 formulations were investigated with various proportions of oil, surfactant 

and co-surfactant for each system. The self-emulsification was observed using the 

modified visual examination method reported by Villar et al [12]. Briefly, 200 μl 

formulations were added drop by drop to 500 ml deionized water or simulated 

gastric fluid (0.01 M HCl solution) at 38.0 ± 0.5 ℃; the mixtures were gently stirred 

with a magnetic bar to simulate the gastrointestinal wriggle and were observed to 

classify the emulsifying property. The mixtures were considered well dispersed when 

the formulation spread quickly in water and was clear or milk-white color with no 

phase separation or coalescence after the stirring stopped (Figure 3.3). Four 
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formulations are showed in Figure 3.4, panels A and B correspond with self-

nanoemulsifying systems showing “Good” emulsification capacity, in contrast with 

panels C and D show systems with “Bad” emulsification capacity [12]. All the 

measurements were repeated three times. The ternary phase diagrams were 

constructed using Origin software (OriginLab Corporation, USA). 

 

Figure 3.3 Set-up for preparation of nanoemulsions by the self-emulsification 

method. 
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Figure 3.4 Formulations classified as “Good” for emulsifying ability (A and B) and 

formulations classified as “Bad” for emulsifying ability (C and D) [12]. 

2.5. Droplet size 

The droplet size was determined through dynamic light scattering (Zetasizer 

Nano-ZS, Malvern Instruments, Worcestershire, UK) at a scattering angle of 90° at 

25 ℃. All the SNEDDS emulsions were diluted five times with deionized water in a 

disposable cuvette, and the content was gently mixed. The average droplet size and 

polydispersity index (PDI) were calculated. Three consecutive measurements for 

each sample were made, and the results were presented as the mean and standard 

deviation. 

2.6. Optimization and characterization of Ibuprofen-loaded SNEDDS 

2.6.1. Solubility in optimized formulations 

The solubility of Ibuprofen in optimized formulations was evaluated as in section 

2.2. The concentrations were detected at the wavelength of 264 nm where there 



64 

 

was no UV light absorption of the other components. The assays were repeated in 

triplicate, and the results were represented as the mean and standard deviation. 

2.6.2. Evaluation of viscosity 

The viscosity of each ibuprofen-loaded formulations were measured by Physica 

MCR 301(Anton Paar, Graz, Austrian) at 25±0.5 ℃  in triplicate. Samples were 

formulated 12 h before the measurements for purpose of stabilization. 1-2 ml sample 

was put on the plate and equilibrated for analysis. Measurements were performed at 

shear rates from 0 to 100 s
−1

. 

2.6.3. Self-emulsification time and appearance 

Followed the process of emulsification, visual observation was used to determine 

the self-emulsification time for each SNEDDS emulsion. Begin timing after the 

formulation was added completely, and stop until the homogenous emulsion was 

formulated. The appearance of emulsions was monitored and categorize as: clear, 

translucence and cloudy. 

2.6.4. Droplet size and ζ-potential measurements 

The droplet size and ζ-potential measurements were performed at 25 ℃ with a 

Zetasizer Nano-ZS dynamic light scattering apparatus (Malvern Instruments, 

Worcestershire, UK), as in paragraph 2.5. 

2.6.5. Formulation stability 

Selected Ibuprofen-loaded formulations underwent three consecutive freezing-

thawing cycles to assess their stability. Each cycle consisted of freezing the 

formulation at 4 ℃ for 24 hours in the refrigerator, followed by heating at 65 ℃ for 48 

hours in an incubator. The droplet size, PDI and ζ-potential of the emulsions were 
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determined after each cycle, and moreover every month on formulations stored at 4 ℃ 

and 25 ℃ for up to three months. 

2.6.6. Morphological characterization 

The morphology of the optimal Ibuprofen-loaded SNEDDS was assessed by TEM 

(Philips CM12 microscope operating at 120 kV). The SNEDDS emulsion was diluted 

100 times with 0.01 M HCL solution (simulated gastric fluid) and mixed by gently 

shaking. One drop of diluted emulsion was placed on the TEM copper grids; we 

removed the excess liquid with a filter paper and placed them in a hood until 

complete drying. Subsequently, the grid was stained with a 2% phosphotungstic acid 

solution for 30 seconds. 

2.6.7. In vitro drug release study 

For the in vitro release studies, a dialysis membrane tubing (MWCO: 3500 Da, 

Spectrum®) was soaked in deionized water for 24 h before use. 2 ml of Ibuprofen-

loaded SNEDDS emulsion (containing 30 mg Ibuprofen) and 2 ml Ibuprofen 

suspension (30 mg Ibuprofen in phosphate-buffered saline as the control) were 

sealed in dialysis tubings suspended in glass beakers containing 500 mL of 

simulated gastric fluid (0.01 M HCl solution) or simulated intestinal fluid (phosphate 

buffer saline, pH 6.8, SIGMA) as the release medium, magnetically stirred at 100 

rpm at 38 ± 0.5 ℃, as shown in Figure 3.5. 2 ml of aliquot were periodically taken, 

replaced with an equal amount of fresh release medium and filtered through a 0.2 

μm PTFE membrane filter. The content of the drug was analyzed by HPLC. 
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Figure 3.5 Schematic models illustrating the in vitro drug release study. 

2.7. Statistics 

The statistical analysis was performed using GraphPad Prism software 

(GraphPad Software Inc., California, USA). An one-way analysis of variance 

(ANOVA) was carried out on the results. 

3. Results and discussion 

3.1. Solubility of Ibuprofen in various vehicles 

The drug-loading capacity of the SNEDDS formulations depends on the solubility 

of Ibuprofen in the various vehicles of the system, which was determined by 

solubility studies. The results are presented in Figure 3.6. Among the four oils that 

have been tested, Ibuprofen has similar solubility in anise essential oil and lemon 

essential oil (about 120 mg ml
−1

), which is better than castor essential oil and 

soybean oil (about 90 mg ml
−1

). Surfactant has a pivotal role in stabilizing 

nanoemulsions, its nature and amount determining droplet size and stability [13]. 

Nonionic surfactants are commonly preferred because of their lower toxicity and 

higher stability to pH and ions than ionic and amphiphilic surfactants [14]. The 
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hydrophilic-lipophilic balance (HLB) is a measure of the degree to which a substance 

is hydrophilic or lipophilic [15]. A HLB value of 20 defines a fully hydrophilic molecule, 

while a value of 0 defines a lipophilic one [16]. The stability of emulsions depends 

also on the ratio between the high HLB and low HLB surfactant amounts [12, 17]. As 

shown in Figure 3.6, among all the investigated surfactants, Ibuprofen exhibited 

quite higher solubility in Transcutol HP (HLB 4.2), 694 ± 30 mg ml
−1

; Labrasol (HLB 

14), 598 ± 12 mg ml
−1

; Cremophor RH40 (HLB 13), 339 ± 21 mg ml
−1

; and Capryol 

90 (HLB 6), 306 ± 10 mg ml
−1

 that have been selected for further investigations. 

Moreover, the optimal formulation is not only determined by the drug solubility but 

also by the emulsification efficiency and surfactant synergistic effect. 

 

Figure 3.6 Solubility of Ibuprofen in various vehicles; each value is expressed as 

mean ±σ (n = 3). 
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3.2. Construction of ternary phase diagrams 

The ternary phase diagrams of SNEDDS were constructed to screen the 

optimized SNEDDS. Before the construction of ternary phase diagrams, the 

miscibility between high HLB surfactants and oils was investigated to select the best 

components. While Labrasol (HLB 14) was poorly mixed with castor essential oil and 

soybean oil, other mixtures resulted in clear or milky homogenous solutions. 

Due to the fact that all surfactants are potentially irritant or are poorly tolerated 

[18], therefore large amounts of surfactants may cause gastrointestinal tract irritation 

[19]; systems which contain a higher proportion of essential oil should be preferred. 

The ternary phase diagrams of SNEDDS selected according to the previous criteria 

are shown in Figures 3.7 (A)–(C). The shadow areas enclosed in the triangle 

represented the self-emulsification regions. SNEDDS made of lemon essential oil, 

Labrasol and Transcutol HP (Figure 3.7 (B)) showed the largest self-emulsification 

region, with an improved self-emulsification capacity at decreasing the oil 

component amounts, thanks to the reduction in interfacial tension caused by higher 

content of the surfactant [20]. At a Cremophor RH40 (HLB 13) concentration higher 

than 60% (Figure 3.7 (A)) and a Labrafil M1944CS (HLB 4) concentration higher 

than 50% (figure 2(C)), self-emulsification didn’t occur, confirming that emulsification 

is determined not only by the surfactant or co-surfactant but also by the synergistic 

effect of the two. 
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Figure 3.7 Ternary phase diagrams for SNEDDS: (A) Lemon oil/Cremophor 

RH40/Transcutol HP; (B) Lemon oil/Labrasol/Transcutol HP; (C) Lemon 

oil/Labrasol/Labrafil M1944CS. The shadow areas represent the self-emulsification 

regions. 

3.3. Droplet size analysis 

As reported in [18, 21], smaller droplet sizes induce a higher intestinal absorption 

rate. The ternary contour of SEDDS as a function of lemon essential oil, Cremophor 

RH40 and Transcutol HP amounts (Figure 3.8) indicated that self-emulsification 

occurred with a droplet size smaller than 750 nm, both with phosphate buffer saline 

(PBS, pH 6.8) and simulated gastric acid (SGA, pH 2.0). 

With the increasing surfactant amount, the droplet size in emulsion decreased for 

both cases. Moreover, droplets were smaller in a SGA medium. 
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Figure 3.8 Ternary contour for droplet size of the lemon oil/Crempohor 

RH40/Transcutol HP system: (A) Emulsified with PBS (Phosphate buffered saline, 

pH 6.8); (B) Emulsified with SGA (Simulate gastric acid, pH 2.0). The colors 

represent different droplet sizes (from 0 to 750 nm). 

3.4. Optimization and characterization of Ibuprofen-loaded SNEDDS 

3.4.1. Solubility studies in optimized formulations 

Eight formulations (F1–F8, Table 3.1) with the smaller droplet size have been 

selected for the further optimization studies. Ibuprofen solubility increased in a 

higher amount surfactant and a co-surfactant containing formulations. However, a 

high level of surfactant and co-surfactant is reported to induce irritation and other 

negative gastrointestinal issues. 
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Table 3.1 Composition of optimized SNEDDS formulations and Ibuprofen solubility. 

 

 

 

 

 

 

3.4.2. Evaluation of viscosity, emulsification time and emulsion appearance 

for ibuprofen-loaded SNEDDS formulations 

The viscosity of the SNEDDS formulations is relevant for the manufacturing of 

formulation filled in soft or hard gelatin capsules [22, 23]. Too low viscosity of the 

formulations would hinder the capsule sealing effectively and enhance the 

probability of leakage, whereas too high viscosity may create the problems of 

pourability and emulsification capacity [22-25]. Ibuprofen content was chosen as 200 

mg/ml, because higher drug contents reduced the self-emulsification capacity. The 

results showed an increase of the formulation viscosity with increasing surfactant 

proportion in the formulations with values for the optimal formulations ranging from 

7.0 ± 0.1 to 42.0 ± 0.2 centipoise, depending on the formulation composition (Table 

3.2). The measured values are in agreement with the values required for the above 

described filling process. [26]. 

Apart from the viscosity, the emulsification time and emulsion appearance were 

also observed. The self-emulsification time of all formulations was less than 20 

seconds, and decreased with the decrease of viscosity. It means that SNEDDS 

Formulation 

number 

Lemon oil/Crempohor 

RH40 (Surf)/Transcutol HP 

(Co-surf) [v/v/v, %] 

Solubility 

(±σ) [mg/ml] 

F1 70/20/10 219±4 

F2 60/30/10 241±3 

F3 60/20/20 277±5 

F4 50/30/20 299±1 

F5 50/20/30 334±5 

F6 40/50/10 285±3 

F7 40/40/20 321±2 

F8 40/20/40 392±3 
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formulations could disperse quickly and completely under gentle agitation. Except 

emulsion F1 (7.0 ± 0.1 centipoise) that was cloudy after dilution, other emulsions 

appeared translucent, this being perhaps related to the larger droplet size of 

formulation 1.Viscosity was a crucial in affecting the emulsifying efficiency but 

played a negligible role on the droplet size. This results well agreed with some 

previous studies [2, 27-29]. 

 

Table 3.2 Viscosity, emulsification time and emulsion appearance of the optimized 

ibuprofen-loaded SNEDDS formulations, ibuprofen contents was 200mg/ml. 

 

Formulation 

number 

Viscosity 

(±σ) [mPa•s] 

Self-emulsification 

time (±σ) [s] 

Emulsion 

appearance 

F1 7.0 ± 0.1 8 ± 2 Cloudy 

F2 10.6 ± 0.1 10 ± 2 Translucence 

F3 8.0 ± 0.1 9 ± 2 Translucence 

F4 14.2 ± 0.2 10 ± 2 Translucence 

F5 9.5 ± 0.1 9 ± 2 Translucence 

F6 42.0 ± 0.2 18 ± 2 Translucence 

F7 33.1 ± 0.3 15 ± 2 Translucence 

F8 25.9 ± 0.2 13 ± 2 Translucence 

 

3.4.3. Droplet size and ζ-potential 

Droplet size, PDI and ζ-potential of the optimized SNEDDS in SGA with (200 mg 

ml
−1

) and without Ibuprofen are listed in Table 3.3. In agreement with [24], a slight 

increase in droplet size is observed for the Ibuprofen-loaded SNEDDS. This can be 

attributed to the preferential dissolution of the drug in the interfacial film (formed by 

the surfactant and co-surfactant) that increases the interfacial tension. Moreover, the 
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addition of the drug could induce surfactant aggregation, thus reducing its efficiency. 

The PDI values are below 0.40, which indicates that the droplets are uniform in size. 

The ζ-potential is correlated to the electrostatic repulsion and aggregation of the 

droplets. High positive or negative ζ-potential values (higher electrostatic repulsive 

forces) prevent coalescence, thus conferring stability of the emulsions [11, 22]. As 

shown in Table 3.3, all the SNEDDS emulsions had high negative ζ-potential values. 

The negative charges are due to the presence of free fatty acids in the surfactant 

and cosurfactant [14, 30]. The ζ-potential of the Ibuprofen-loaded SNEDDS was 

found to range between −35 ± 1 and −46 ± 1 mV, which indicated that the emulsions 

were stable. The ζ-potentials of Ibuprofen-loaded emulsion showed higher negative 

charges because of the negatively charged carboxyl groups in the Ibuprofen 

molecule. 

The droplet size of F4 with ibuprofen was found to be 31 ± 3 nm (Figure 3.9 A) 

with PDI of 0.20 ± 0.02. The zeta potential of the emulsion developed by F4 was 

found to be 38 ± 1 mV (Figure 3.9 B). The conductivity of the emulsion was 0.109 ± 

0.009 mS/cm, which means the emulsion was fine oil in water (conductivity > 10 

μS/cm) [19]. 
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Table 3.3 Droplet size, DPI and ζ-potential of 200μl optimized SNEDDS in 500 ml 

SGA (pH 2.0) at room temperature, with and without drug. 

 

 

 

 

Figure 3.9 Droplet size distribution (A) and zeta potential (B) of ibuprofen-loaded F4 

emulsion. 

Formulation 

number 

Without drug With drug (200mg/ml) 

Droplet size 

(±σ) [nm] 

DPI 

(±σ) 

ζ-potential 

(±σ) [mV] 

Droplet size 

(±σ) [nm] 

DPI 

(±σ) 

ζ-potential 

(±σ) [mV] 

F1 98 ± 1 0.21±0.01 -33±1 138±7 0.28±0.08 -38±1 

F2 71 ± 5 0.19±0.01 -31±1 98±8 0.19±0.02 -35±1 

F3 87 ± 6 0.32±0.04 -31±1 93±7 0.27±0.05 -37±1 

F4 13 ± 3 0.18±0.02 -33±1 31±3 0.20±0.02 -38±1 

F5 67 ± 8 0.31±0.04 -34±1 87±5 0.24±0.04 -40±1 

F6 41 ± 5 0.22±0.05 -42±1 53±8 0.31±0.02 -46±1 

F7 30 ± 4 0.34±0.08 -38±1 70±5 0.32±0.01 -42±2 

F8 47 ± 7 0.25 ±0.05 -39±1 57±7 0.29±0.01 -44±1 
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3.4.4. Formulation stability 

The stability of F4, i.e. the formulation producing the smallest droplets after three 

freezing/thawing cycles, is summarized in Table 3.4. The droplet size increased with 

no significant changes of the ζ-potential after three freezing/thawing cycles. 

Moreover, the formulation didn’t exhibit any drug precipitation or phase separation 

during the whole process. No marked difference of droplet size was observed for 

formulations stored at 4 ℃ or 25 ℃ (Table 3.5). The above findings indicated that 

this Ibuprofen-loaded formulation is thermodynamically stable. 

 

Table 3.4 Effects of freezing/thawing cycles on the dynamic characteristics of 

nanoemulsions obtained from F4 (Lemon oil/Crempohor RH40/ Transcutol HP with 

ratio 50/30/20, v/v/v) containing 200mg/ml Ibuprofen in SGA (pH 2.0, 500ml). 

 

Freezing/thawing 

cycle 

Droplet size 

(±σ) [nm] 

DPI 

(±σ) 

ζ-potential 

(±σ) [mV] 

- 31±3 0.20±0.02 -38±1 

First 36±8 0.22±0.02 -39±2 

Second 43±5 0.15±0.02 -38±2 

Third 44±4 0.19±0.03 -39±2 
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Table 3.5 Effects of storage conditions on the dynamic characteristics of 

nanoemulsion obtained from F4 (Lemon oil/Crempohor RH40/ Transcutol HP with 

ratio 50/30/20, v/v/v) containing 200mg/ml Ibuprofen in SGA (pH2.0, 500ml). 

 

Storing Time 

[months] 

Temp=4℃ Temp=25℃ 

Droplet size 

(±σ) [nm] 

DPI 

(±σ) 

Droplet size 

(±σ) [nm] 

DPI 

(±σ) 

1 36±3 0.21±0.02 36±5 0.23±0.03 

2 34±3 0.35±0.01 33±4 0.29±0.02 

3 33±5 0.25±0.03 34±3 0.35±0.02 

 

3.4.5. Morphological characterization 

The morphology of F4 Ibuprofen-loaded emulsion droplets was observed by TEM. 

As shown in Figure 3.10, droplets are spherical with a diameter range of 20–40 nm, 

according to the light scattering data (Table 3.3). 

 

 

Figure 3.10 TEM image of F4 Ibuprofen-SNEDDS (lemon oil/ Crempohor 

RH40/Transcutol HP with ratio 50/30/20, v/v/v) nanoemulsion. 
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3.4.6. Drug in vitro release study 

The Ibuprofen in vitro release in SGA for the eight selected optimal formulations 

emulsified in PBS and Ibuprofen suspended in PBS was evaluated for 4 h at 38 ℃ 

(Figure 3.11), following the previously described method. The drug release from 

SNEDDS was significantly greater than that of the Ibuprofen suspension. In 2 h, all 

the SNEDDS released approximately 80% of drug, with respect to 40% of the 

Ibuprofen suspension. All the SNEDDS released almost all drug in 4 h, with just a 

small difference among the different SNEDDS that are consistent with the droplet 

sizes (Table 3.3). In addition, the release from SNEDDS was faster, further 

supporting the hypothesis that nano-scale emulsions can improve the release of 

lipophilic drugs. 

On the other hand, the droplet size was related with the pH of dilution medium, 

which maybe affect the drug release efficiency. Figure 3.12 represents the release 

profile of three batches emulsions which were formulated with PBS and SGA, then 

released in the both media. B1 was diluted with PBS (pH=6.8), released in SGA 

(pH=2.0); B2 was diluted with SGA, released in SGA; B3 was diluted with SGA, 

released in PBS. Comparing B1 with B2, the pH change of dilution media did not 

bring marked difference, this possibly because the droplet size of both batches was 

small enough and had weak effect on the drug release. Comparing the release of B2 

and B3, the release in PBS is more effective than that in SGA.  A possible 

explanation was that ibuprofen exhibited acidity, which renders it less soluble at low 

pH. Similar results were reported earlier [31].  
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Figure 3.11 In vitro release profile of Ibuprofen suspension and Ibuprofen-SNEDDS 

(Emulsified with PBS, pH = 6.8, 10 ml) in SGA (pH = 2.0, 500 ml). 

 

Figure 3.12 In vitro release profile of F4 in both SGA and PBS. B1-Dilution with PBS, 

release in SGA; B2-Dilution with SGA, release in SGA; B3-Dilution with SGA, 

release in PBS. 
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4. Conclusion 

In the present chapter, a novel SNEDDS was successfully designed as a stable, 

high essential oil ratio (50%) and high drug-loaded (approximate 20%) formulation 

for the solubility and dissolution rate enhancement of Ibuprofen, chosen as a model 

for the lipophilic drug. The formulation composition and pH of the emulsifying 

medium significantly impacted the droplet size. The stability study confirmed that the 

SNEDDS formulations could withstand various storage conditions with excellent 

stability. The in vitro drug release study demonstrated that the release from 

SNEDDS was more efficient when compared with the drug suspension. Under these 

circumstances, the present SNEDDS would be a promising novel system to improve 

the lipophilic drug’s dissolution rate and potentially the bioavailability. 
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Chapter IV A novel pH-sensitive self-nanoemulsifying drug delivery system for 
acid-labile lipophilic drugs 

 

 

Oral administration is the most convenient way of all the drug delivery routes. 

Orally administered bioactive compounds must resist the harsh acidic fluids or 

enzyme digestion in stomach, to reach their absorbed destination in small intestine. 

This is the case for silibinin, a drug used to protect liver cells against toxins that has 

also been demonstrated in vitro to possess anti-cancer effects. However, as many 

other drugs, silibinin can degrade in the stomach due to the action of the gastric fluid. 

The use of pH-sensitive self-nanoemulsifying drug delivery systems (pH-SNEDDS) 

could overcome the drawback due to degradation of the drug in the stomach while 

enhancing its solubility and dissolution rate. 

In this paper we have investigated pH-sensitive self-nanoemulsifying formulations 

containing silibinin as model drug. Pseudo-ternary phase diagrams have been 

constructed in order to identify the self-emulsification regions under different pH. 

Solubility of silibinin in selected formulations has been assessed and stability of the 

pure drug and of the silibinin loaded pH-SNEDDS formulations in simulated gastric 

fluid had been compared. Droplet size of the optimized pH-SNEDDS has been 

correlated to pH, volume of dilution medium and silibinin loading amount. TEM 

(Transmission electron microscopy) studies have shown that emulsion droplets had 

spherical shape and narrow size distribution. In vitro drug release studies of the 

optimal pH-SNEDDS indicated substantial increase of the drug release and release 

rate in comparison to pure silibinin and to the commercial silibinin tablet. The results 

indicated that pH-SNEDDS have potential to improve the biopharmaceutics 

properties of acid-labile lipophilic drugs. 



83 

 

1. Introduction 

Oral drug delivery is the most favorable route for drug administration. However, 

nearly half of the currently drugs exhibit low solubility in water, which leads to limited 

oral bioavailability, developments and clinical applications [1, 2]. Various approaches 

such as the use of lipid nanoparticles [3], liposomes [4] and self-emulsifying 

formulations [5], have been developed to improve the bioavailability and dissolution 

rate of poor water-soluble drugs. Among them, self-nanoemulsifying drug delivery 

systems (SNEDDS), spontaneously forming nano-droplets emulsion in water have 

acquired growing interest. SNEDDS are isotropic mixtures of drug, surfactant and 

co-surfactant that can rapidly form fine oil-in-water emulsions upon mild agitation in 

an aqueous media with a droplet size in the range 50-200 nm [6, 7]. The dissolution 

of lipophilic drug in these nano-droplets combined with the small size and the larger 

surface area results in higher loading and improved bioavailability of the drug [8, 9].  

Generally drug absorption occurs at the small intestine where absorption is more 

effective due to the presence of villi and microvilli [10]. To reach the intestine (pH 

7.0-9.0) [11, 12], drugs must however resist the extremely low pH (pH 1.0-2.0) and 

enzymes in the stomach. Furthermore, some drugs could irritate the stomach, and, 

in addition, some lipophilic drugs have poor enteral absorption. 

Silibinin (also known as silybin), is a potent and principal component of silymarin 

extracted from the silybum marianum (Milk thistle) [13]. Silibinin has been used as a 

natural remedy for hepatitis, cirrhosis and recently has been reported to possess 

anticancer activity [14]. Unfortunately, silibinin is poorly bioavailable, due to its 

degradation in the gastric fluid, low water solubility and poor enteral absorption [15-

17]. 

In order to prevent degradation of acid-labile lipophilic drugs in the stomach, 

several approaches have been attempted. Among those, pH sensitive drug carriers 
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have been proposed also to exploit the physiological pH gradient between gastric 

juice and the intestinal tract [18, 19]. 

So far, there are no publications on self-nanoemulsifying systems displaying pH 

sensitive properties. The aim of the present study was to develop a pH-sensitive 

self-nanoemulsifying drug delivery system (pH-SNEDDS) to increase solubility and 

dissolution of silibinin, thereby enhancing its oral bioavailability potentially. This 

formulation could moreover protect the drug from the acidic degradation in the 

stomach while facilitating the release in small intestine thanks to self-

nanoemulsification (Figure 4.1). Drug solubility and loading in the formulations, 

nano-emulsions droplet size and stability, and in vitro drug release have been 

evaluated. 

 

Figure 4.1 Schematic outline of the human digestive tract with pH-sensitive self-

nanoemulsifying drug delivery system. 

2. Materials and methods 

2.1. Materials 
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Silibinin and Oleic acid were purchased from Sigma Aldrich S.r.l (Milan, Italy). 

Mono/diglycerides of caprylic acid (Capmul MCM C8 EP) was received as gift 

sample from ABITEC Corporation (Janesville, United states). Tablets (Cardo 

mariano) containing 11 mg silibinin in 500 mg excipients were purchased from ALCH 

Co. (Giarre, Italy). All other chemicals used were analytical reagent grade. 

Deionized water was used through the whole study. 

2.2. Construction of pseudo-ternary phase diagrams 

Mixtures of low and high HLB (hydrophilic-lipophilic balance) surfactants are 

necessary for developing stable emulsions [8, 20]. Different ratios of oleic acid (as 

precursor of the hydrophilic surfactant) and Capmul MCM C8 (as hydrophobic 

surfactant), in the range 1:9 to 9:1, were used to identify the self-emulsification 

regions at 37.0±0.5 ℃ through the construction of pseudo-ternary phase diagrams. 

Oleic acid is a fatty acid, which included in the normal human diet as a part of 

animal fats and vegetable oils. Meanwhile, Capmul MCM C8 EP is a proven 

pharmaceutical excipient which meets the requirements of the European 

Pharmacopoeia Monograph for “Glycerol Monocaprylate” Type I [21]. The usage of 

Capmul MCM C8 EP for oral bioavailability enhancement was firstly reported by 

Panayiotis et al [22] for enhancing intestinal absorption of an RGD peptide in 1995, 

as well as the site-specific drug delivery[23]. 

Additionally, the modified visual examination method reported by Villar et al [7] 

was used to determine the self-emulsification regions. Briefly, the above 

formulations were magnetically stirred for 1 day, and 250 μl of each formulation was 

added drop by drop into 50 ml sodium phosphate buffer solution (PBS, pH range 

was between 6.8 and 8.0) under gentle magnetic stirring at 37.0±0.5 ℃ (Figure 4.2). 

The generated mixtures with clear or milk-white color were considered as self-

emulsifying emulsion. All the assays were repeated three times. The pseudo-ternary 
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phase diagrams were constructed using Origin software (OriginLab Corporation, 

USA). 

 

Figure 4.2 Set-up for preparation of nanoemulsions by the pH-sensitive self-

emulsification method. 

2.3. pH stability of silibinin 

Silibinin stock solution (300 mg silibinin in 10 ml ethanol) was added into various 

buffer solutions (pH 1.0, 3.0, 6.8, 7.0, 7.2, 7.4 and 8.0, in order to simulate all 

physiological pHs), at a concentration of about 100 ppm silibinin. Solutions were 

mixed under gentle magnetic stirring at 37.0±0.5 ℃ for 4 hours and aliquots of 200 

μl were periodically sampled and the amount of silibinin was determined by UV 

spectrophotometry (Nanodrop, Thermo Scientific, Wilmington, USA) at 288 nm 

wavelength. A calibration curve was constructed to correlate the height of the UV 

peaks to the weight concentration of silibinin in solution, using the method reported 

by Sooväli L et al [24]. Degradation was taken as the ratio between the silibinin 

content after the stability assay and the initial silibinin loading. Three consecutive 

measurements were made for each sample, and the results were presented as the 

mean and standard deviation. 

2.4. Optimization and characterization of silibinin loaded pH-SNEDDS 
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2.4.1. Drug solubility in formulations 

The solubility of silibinin in various formulations was measured by Nanodrop 

spectrophotometry. An excess of silibinin (approximately 200 mg) was placed in 1 ml 

different ratios oleic acid/Capmul MCM C8 formulations in sealed vials and the 

mixture was vortex-mixed at 37.0±0.5 ℃ for 48 hours in a water-bath to facilitate 

the dissolution. Finally, drug saturated formulations were centrifuged at 10000 x g 

for 30 min with a SIGMA 2-16 Centrifuge (SIGMA Laborzentrifugen GmbH, 

Osterode am Harz, Germany). The supernatant was filtered through a 0.2 μm PTFE 

filter membrane to remove the undissolved silibinin, and filtrates were diluted and 

analyzed by Nanodrop. The pure formulations without drug were used as reference. 

This assay was repeated in triplicate for each formulation. 

2.4.2. Silibinin stability in the SNEDDS formulation in simulated gastric fluid 

  Silibinin stability was studied in simulated gastric fluid (SGF, 0. 1 M HCl solution 

with 0.9% NaCl) at pH 1.0. In brief, 10mg silibinin was introduced to 5ml of each 

formulation and vortex-mixed for 24 hours at room temperature. After attaining 

equilibrium, the formulations were added into SGF at 37.0±0.5 ℃ under gentle 

magnetic stirring for 4 hours, and aliquots of 20 μl were taken out periodically and 

filtered through 0.2 μm PTFE filter membrane for the analysis by Nanodrop. Each 

sample was studied in triplicate. 

2.4.3. Fourier transform infrared (FTIR) spectroscopy 

  Fourier transform infrared (FTIR) spectroscopy was carried out to detect the 

possible chemical property change of silibinin in excipients and formulations. The 

FT-IR spectra in the range of 650 - 4000 cm
-1

 for pure silibinin, physical mixtures of 

silibinin with Capmul MCM C8 EP and oleic acid, and silibinin loaded pH-SNEDDS 

formulations were observed at a resolution of 2 cm
-1

 using Spectrum One 
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spectrometer with ATR correction (Perking Elmer, Waltham, MA, USA) with Zinc 

Selenide crystal. 

2.4.4. Differential scanning calorimetry (DSC) 

The thermal characteristics of silibinin powder, physical mixture of drug with 

excipients, and optimal SNEDDS formulation were investigated using a differential 

scanning calorimetry (Mettler DSC 30, Mettler-Toledo, OH, USA). The samples were 

placed in aluminum pans, while an empty pan was used as reference. The DSC 

scans were recorded at a heating rate of 10 ℃/min from 25 ℃ to 250 ℃ under a 

nitrogen flow (100ml/min). 

2.4.5. Determination of droplet size 

Droplet size of emulsions was measured by dynamic light scattering (Zetasizer 

Nano-ZS, Malvern Instruments, Worcestershire, UK) at a scattering angle of 90°. 

The liquid pH-SNEDDS emulsions were filled in a disposable cuvette after diluting 

five times with deionized water, and shaken gently to mix thoroughly. All 

measurements taken at room temperature were repeated three times, and the 

values of average diameters and standard deviation (σ) were determined. 

2.4.6. Formulation stability study 

The stability of optimal drug-loaded formulations was evaluated by exposing the 

formulations to three freeze-thaw cycles, which consisted of freezing at 4 ℃ for 24 h 

followed by thawing at 65 ℃ for 24 h in an incubator. The droplet size, PDI and ζ-

potential of the emulsions were investigated after each cycle. Moreover, accelerated 

stability of formulations were evaluated for droplet size and PDI at 4 ℃ and 25 ℃ for 

up to 6 months, respectively. 
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2.4.7. Droplets morphology characterization 

Transmission electron microscope (TEM, Philips CM12 microscope, Netherland) 

was employed to study the morphology of silibinin loaded pH-SNEDDS emulsions. 

One drop of emulsion was placed on a carbon coated copper grid and the water 

removed by drying in the hood. Subsequently, samples were stained with 2% (v/v) 

phosphotungstic acid solution and dried again before the analysis. The operating 

voltage of TEM was 120 kV. 

2.4.8. In vitro drug release 

The in vitro drug release of silibinin loaded pH-SNEDDS at 37.0±0.5 ℃  was 

evaluated as follows. 30 ml of drug loaded pH-SNEDDS emulsions (containing 10 

mg silibinin), 10 mg silibinin in PBS at pH 7.4 as the control and milled commercial 

silibinin tablet suspension (equivalent to 10 mg silibinin in PBS of pH 7.4) were 

introduced into sealed dialysis membrane tubings (MWCO: 12-14000 Da, 

Spectrum○R ). Tubings were suspended in glass beakers containing 500 mL 

simulated intestinal fluid (sodium phosphate buffer solution, pH 7.4) as release 

medium, magnetically stirred at 100 rpm. An aliquot (200 μl) of the medium was 

periodically collected, replaced with an equal amount of fresh medium, and analyzed 

for the content of silibinin by Nanodrop spectrophotometry. All measurements were 

performed in triplicate. 

2.5. Statistics 

All the results were represented as mean and standard deviation (σ). Statistical 

analysis was performed with GraphPad Prism software (GraphPad Software Inc., 

California, U.S.A) using one way analysis of variance (ANOVA). 

3. Results and discussion 
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3.1. Construction of pseudo-ternary phase diagrams 

Pseudo-ternary phase diagrams of pH-SNEDDS have been constructed to identify 

the self-emulsifying regions for the optimized formulations. Before the construction 

of the pseudo-ternary phase diagram, a series of formulations have been screened 

to assess their pH responsiveness.  

The pseudo-ternary phase diagrams of the selected pH-SNEDDS at various pH 

are shown in Figure 4.3. The whole gray area represent the self-emulsification 

region in the pH range 6.8-8.0 while the light gray area focusing on the self-

emulsification region at pH 6.8 -7.0. For pH>7.0, the emulsification region is wider 

due to the fact that above that pH more free carboxylic groups of oleic acid are 

ionized [25, 26]. Consequently, the synergistic effects between hydrophilic and 

lipophilic surfactant are more effective [27]. 
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Figure 4.3 Pseudo-ternary phase diagram for pH-SNEDDS: The whole gray area 

represents the self-emulsification region between pH 6.8 and 8.0, while the area in 

light gray is the self-emulsification region at pH 6.8 -7.0. 

 

3.2. Optimization and solubility study of pH-SNEDDS 

Three pH-SNEDDS formulations have been selected from the pseudo-ternary 

phase diagram for further optimization. Their composition and silibinin solubility data 

are reported in Table 4.1. The higher silibinin solubility of F1 is consistent with the 

higher amount of the hydrophobic component Capmul MCM C8 EP. 

Appearance of F2 pH-SNEDDS in various buffer solutions from pH 1.0 to 8.0 is 

illustrated in Figure 4.4. pH-SNEDDS formulations are stable in acidic medium (pH 

1.0 and 3.0), being able to resist harsh gastric fluids and protect the drug. 

Emulsification is only partial at pH 6.8, while improves at higher pH consistently with 

the pH range (7.0 to 9.0) of the small intestine [11, 12]. 

 

Table 4.1 Composition of optimized pH-SNEDDS formulations and silibinin solubility. 

Data expressed as μ ± σ (n = 3). 

 

Formulation 

number 

Oleic acid/ Capmul MCM C8 EP 

[v/v,%] 

Silibinin solubility (±σ) 

[mg/ml] 

F1 30/70 89.1±8.7 

F2 40/60 71.9±9.5 

F3 50/50 29.9±7.7 
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Figure 4.4 Photographs of pH-SNEDDS (F2) at various pH (up) and enlargements of 

the interface layers (down) at pH6.8 (left) and 7.2 (right). DiI, a lipophilic dye, was 

added to distinguish the formulations. 

 

3.3. pH stability of silibinin 

Besides the poor water solubility, utilization of silibinin is also limited by its 

degradation in gastric fluid [15, 28]. Figure 4.5 A indicates that silibinin concentration 

in the solution decreased by 80% in the first 5 minutes at pH 1.0 and 3.0, with 

degradation of only about 10% in 4 hours under basic pH between 7.2 and 8.0. The 

above finding is in agreement with the results reported by Patel A. et al [16]. 
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Figure 4.5 Degradation of pure silibinin at various physiological pH (A) and silibinin 

in selected formulations in simulated gastric fluid (pH=1.0, B). The results are 

presented as μ ± σ (n=3). 

3.4. Silibinin stability in formulation 

Studies of silibinin stability in formulations during gastric incubation (pH=1.0) at 

37±0.5 ℃ for 4 hours (Figure 4.5 B) , showed that silibinin degrades less than 20% 

from the optimized formulations in comparison with the pure silibinin (more than 
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90%), thus indicating that pH-sensitive self-emulsifying formulations protect silibinin 

from simulated acidic fluids. 

3.5. Fourier transformed infrared spectroscopy (FTIR) 

FTIR spectra of pure silibinin, physical mixture of silibinin with Capmul MCM C8 

EP and oleic acid, silibinin loaded optimal pH-SNEDDS formulations are 

demonstrated in Figure 4. The characteristic peaks at 3452 cm−1 can be attributed 

to the presence of hydroxyl group (–OH), while the peak at 1631 cm−1 is associated 

with the C=O stretching of the carboxylic acid group (–COOH). Similar FTIR 

observation are reported by the works of Tan et al. [29] and Pooja D et al [30]. The 

spectra of both physical mixtures and silibinin loaded optimal formulations (F1 and 

F2) don’t show any changes in characteristic peak position from silibinin spectrum, 

indicating the absence of chemical nature change of silibinin in the formulations. 
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Figure 4.6 FTIR spectra of pure silibinin, physical mixtures of silibinin with Capmul 

MCM C8 EP and oleic acid, and silibinin loaded optimal pH-SNEDDS formulations 

(F1 and F2). 

3.6. Differential scanning calorimetry (DSC) 

Differential scanning calorimetry was used to investigate the thermal behavior of 

the pure silibinin and the excipients with silibinin (Figure 4.7). Silibinin showed an 

endothermic peak at 166.31 ℃ with onset at 147.79 ℃ and endset at 174.76 ℃ that 

corresponds to the melting point of silibinin in crystalline form. No endothermic 

peaks were found in the physical mixtures of optimal formulations, Capmul MCM C8 

EP, and oleic acid, indicating that silibinin must be molecularly dissolved in an 

amorphous state in the formulations.  

 

Figure 4.7 Differential scanning calorimetry thermogram of pure silibinin, physical 

mixtures of silibinin with Capmul MCM C8 EP and oleic acid, silibinin loaded optimal 

pH-SNEDDS formulations (F1 and F2). 
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3.7. Determination of droplet size 

The droplet size distribution of emulsions is one of the most important factors for 

the self-emulsification performance. The smaller the droplet size, the higher the drug 

dissolution and intestinal absorption rate is. Due to the low solubility of silibinin in F3, 

only F1 and F2 have been compared in the following assays. 

3.7.1. Droplet size at different pH 

The effect of the emulsifying medium pH on the droplet size of silibinin pH-

SNEDDS emulsions is reported in Figure 4.8. A slight increase in droplet size is 

observed for the silibinin loaded emulsions in comparison to that without drug for 

both F1 and F2. This can be attributed to the drug dissolution in the oil-water 

interfacial films, which increases the interfacial tension, and leads the droplet size 

enlargement. In addition, the presence of drug could induce surfactant aggregation, 

thus reducing the efficiency of surfactants [31]. An increase of pH from 7.0 to 8.0 

resulted in the decrease of droplet size. F2 has smaller droplets than F1 under the 

same pH conditions. 

 

Figure 4.8 Effect of emulsifying medium pH on the droplet size of silibinin loaded pH-

SNEDDS emulsions. Formulations were diluted a 200 fold. Each value is 

represented as μ ± σ (n=3). 
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3.7.2. Droplet size by dilution medium volume 

The effect of dilution medium volume on droplet size is showed in Figure 4.9 A for 

formulations with and without drug. The dilution does not appreciably affect the 

droplet size, which proves the formulation stability under the variable dilution 

conditions that could result after the oral administration.  

 

Figure 4.9 Effect of dilution medium volume (A) and silibinin loaded amount (B) on 

droplet size of pH-SNEDDS emulsions. Dilution medium was sodium phosphate 

buffer solution with pH 7.4. Each value is represented as μ ± σ (n=3). 

3.7.3. Droplet size by different drug loading 

The droplet size profiles of pH-SNEDDS emulsion from each formulation have 

been estimated by gradually increasing drug loading (Figure 4.9B). In this 

investigation, a noticeable increase of the droplets diameter has been observed at 

increasing drug loading for both formulations, however still mantaining the size in the 

nano-range. For F2, maximum test drug loading is 60 mg/ml, because of the 

relatively limited dissolution of silibinin in this formulation (71.9 ± 9.5 mg/ml). 
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3.8. Formulation stability 

The results of characterization of F1 with silibinin after three freeze/thaw cycles 

were summarized in Table 4.2. The droplet size slightly increased with no significant 

changes of the ζ-potential. The accelerated stability of F1 was also investigated 

under different storage conditions (Table 4.3). The results suggested that no 

significant changes occurred on droplet size and PDI of the formulated emulsions. 

Thus, it could be concluded that this formulation was thermodynamically stable at 

harsh storage conditions as well as accelerated conditions. 

Table 4.2 Parameters of nanoemulsions obtained from F1 (Oleic acid/ Capmul MCM 

C8 EP with ratio 30/70, v/v) containing 60 mg/ml silibinin during freeze thaw cycles. 

Dilution medium was sodium phosphate buffer solution with pH 7.4. Data reported 

are μ ± σ (n = 3). 

Freeze thaw cycle Droplet size (±σ) 

[nm] 

PDI 

(±σ) 

ζ-potential 

(±σ) [mV] 

Initial 189 ± 11 0.15 ± 0.03 38 ± 3 

First 190 ± 9 0.19 ± 0.04 36 ± 4 

Second 192 ± 13 0.21 ± 0.02 37 ± 3 

Third 193 ± 11 0.22 ± 0.04 38 ± 2 
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Table 4.3 Accelerated stability data of nanoemulsions obtained from F1 (Oleic acid/ 

Capmul MCM C8 EP with ratio 30/70, v/v) containing 60 mg/ml silibinin. Dilution 

medium was sodium phosphate buffer solution with pH 7.4. Data reported are mean 

± σ (n = 3). 

Time 

(months) 

Temp=4 ℃ Temp=25 ℃ 

Droplet size 

(±σ) [nm] 

PDI (±σ) Droplet size 

(±σ) [nm] 

PDI (±σ) 

1 189 ± 9 0.22 ± 0.02 187 ± 14 0.29 ± 0.04 

3 192 ± 11 0.25 ± 0.03 195 ± 9 0.28 ± 0.01 

6 197 ± 12 0.28 ± 0.01 191 ± 12 0.30 ± 0.03 

 

3.9. Morphology characterization 

The TEM morphology of F1 silibinin loaded pH-SNEDDS emulsion droplets is 

shown in Figure 4.10. Nano-droplets are spherical in shape, uniform in size from 150 

nm to 200 nm, in accordance with dynamic light scattering data (Figure 4.9). 
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Figure 4.10 TEM image of F1 silibinin pH-SNEDDS (60mg/ml) nanoemulsions. 

Formulation was diluted a 200 fold in the emulsifying medium (PBS, pH 7.4). 

3.10. In vitro drug release study 

The in vitro drug release was carried out for silibinin loaded pH-SNEDDS, silibinin 

suspension and milled commercial silibinin tablet suspension (Product from 

ALCH○R ). As shown in Figure 4.11, silibinin released from suspension was less than 

10% in 9 hours, with much lower drug release from the tablets. In contrast, within 9 

hours approximately 70% and 80% of silibinin are released from pH-SNEDDS F1 

and F2, respectively. The significant release enhancement by pH-SNEDDS can be 

attributed to its amorphous nature, smaller droplet size and increased surface area 

[30]. In addition, F2 has shown higher release than F1, because of the relatively 

smaller droplet size of F2 emulsions, that is consistent with the droplet sizes study 

(Figure 4.9). 
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Figure 4.11 Comparison of in vitro release of optimized silibinin loaded pH-SNEDDS 

(Emulsified with PBS, pH=7.4), silibinin suspension and milled commercial silibinin 

tablet suspension (Product from ALCH○R ). Data expressed as μ ± σ (n = 3). 

 

 

 

4. Conclusions 

The present chapter describes an innovative approach for protecting acid-labile 

bioactive compounds and improving the solubility and dissolution rate of lipophilic 

drugs by using pH-sensitive self-emulsifying formulations. In particular, pH-SNEDDS 

protected silibinin from the harsh acidic gastric-like fluids while providing excellent 

self-emulsification in intestinal tract. Further, the formulation stability study 

demonstrated that the formulations were stable under various storage conditions. 

Increasing the emulsifying medium pH leads droplet size decrease, while size 

significantly increasing together with drug loading. In vitro release profile from pH-

SNEDDS was much higher than from powder and commercial tablets product, thus 

resulting more effective as drug carrier. 
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Accordingly, we concluded that the pH-SNEDDS could enhance the bioavailability 

of lipophilic drugs, and represent a new route for the oral administration of acid-labile 

drug delivery systems. 
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Chapter V Summary and Future perspectives 

 

1. Summary 

The overall objective of the present thesis was to design and optimize self-

nanoemulsifying drug delivery systems (SNEDDS) for poor water soluble drugs oral 

delivery.     

  Chapter III focused on the development and optimization of a surfactant reduced 

amount SNEDDS with high proportion of essential oil as carrier for lipophilic drugs. 

In fact, surfactants are generally toxic, moreover the large amount of surfactants 

used in SNEDDS could provoke irritation to GI tract.  

A second study, described in chapter VI, aimed at exploiting self-nanoemulsifying 

drug delivery systems for controlled release. In spite of the many efforts that have 

been done on the design and production of the novel self-emulsifying formulations 

as alternatives to conventional SEDDS, there is no approved controlled release self-

emulsifying product available.  

Some drugs are prone to degradation, undesired inactivation or irritation in the GI 

tract. The developed pH-sensitive self-nanoemulsifying formulations in our work 

have been shown to be able to protect acid-labile drug, control drug release, 

increase drug solubility and potentially enhance the oral bioavailability. Combination 

of SNEDDS and pH sensitive technique represents a new route for the oral 

administration of acid-labile drug delivery systems. 

2. Future perspectives 

Since nearly 40% of recent new drug substances are lipophilic, it appears that 

more drug products will be formulated as SEDDS for the pharmaceutical market in 
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the very near future. The challenges associated with the formulation of self-

emulsifying systems include the selection of right excipients with consideration of 

their solvent capacity, miscibility, chemical stability, dispersibility, regulatory issues, 

and so on. Although the potential utility of SEDDS has been known for decades, it is 

only in recent years that a mechanistic understanding of their impact on drug 

disposition has emerged [1]. To this end, more predictive in vitro models are needed 

for predicting the changes involving the drug in SEDDS in the gut, so that the fate of 

the drug in vivo can be more reliably monitored [2]. The applications of SNEDDS in 

other routes of delivery apart from the oral route can be explored. Besides, other 

techniques may be combined with self-emulsification to develop multifunctional drug 

delivery systems. With future developments in this novel technology, SEDDS will 

remove deficiencies associated with delivery of poorly soluble drugs. Thus, this field 

requires further exploration and research to bring out a wide range of commercially 

available self-emulsifying formulations [1]. 
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