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SUMMARY

The present doctoral thesis deals with the study and the analysis of large strain and
high strain rate behavior of materials and components. Theoretical, experimental
and computational aspects are taken into consideration. Particular reference is
made to the modeling of metallic materials, although other kinds of materials are
considered as well. The work may be divided into three main parts.

The first part of the work consists in a critical review of the constitutive modeling
of materials subjected to large strains and high to very high strain rates. Specific
attention is paid to the opportunity of adopting so-called strength models and
equations of state. Damage and failure modeling is discussed as well. In this part,
specific interest is addressed to reviewing the so-called Johnson-Cook strength
model, by critically highlighting its positive and negative aspects. One of the main
tackled issue consists in a reasoned assessment of the various procedures
adoptable in order to calibrate the parameters of the model. This phase is enriched
and clarified by applying different calibration strategies to a real case, i.e. the
evaluation of the model parameters for a structural steel. The consequences
determined by each calibration approach are then carefully evaluated and compared.

The second part of the work aims at introducing a new strength model, that
consists in a generalization of the Johnson-Cook model. The motivations for the
introduction of this model are first exposed and discussed. The features of the new
strength model are then described. Afterwards, the various procedures adoptable
for the determination of the material parameters are presented. The new strength
model is then applied to a real case, i.e. a structural steel as above, and the results
are compared to those obtained from the original Johnson-Cook model. Comparing
to that, the obtained outcomes show that the new model displays a better capacity
in reproducing experimental data. Results are discussed and commented.

The third and final part of the work deals with an application of the studied topics
to a real industrial case of interest. A device called perforating gun is analyzed in its
structural problematics and critical aspects. This challenging application involves
the modeling of several typologies of material, large strains, very high strain rate
phenomena, high temperatures, explosions, hypervelocity impacts, damage,
fracture and phase changes. In this regard, computational applications of the
studied theories are presented and their outcomes are assessed and discussed.
Several finite element techniques are considered. In particular, tridimensional
Eulerian simulations are presented. The obtained results appear to be very
promising in terms of the possibilities of a fruitful use in the design process of the
device, in particular in order to achieve an optimization of its key features.






SOMMARIO

Questa tesi di dottorato tratta lo studio e I'analisi del comportamento di materiali e
componenti soggetti a grandi deformazioni ed alte velocita di deformazione.
Vengono discussi aspetti teorici, sperimentali e computazionali, con particolare
riferimento alla modellazione di materiali metallici, sebbene altre tipologie di
materiale siano altresi considerate. Il lavoro pud essere diviso in tre parti principali.

La prima parte del lavoro consiste in una revisione critica della modellazione
costitutiva di materiali soggetti a grandi deformazioni ed alte o molto alte velocita di
deformazione. Specifica attenzione € rivolta all'opportunita di utilizzare i cosiddetti
modelli di resistenza ed equazioni di stato. La modellazione del danneggiamento e
della rottura € altresi discussa. In questa parte, specifico interesse € indirizzato alla
revisione del cosiddetto modello di resistenza di Johnson-Cook, sottolineandone
entrambi gli aspetti positivi e negativi. Uno dei punti principali presentati consiste in
una valutazione ragionata delle varie procedure adottabili ai fini della calibrazione
dei parametri del modello. Questa fase € arricchita e chiarificata dall'applicazione
delle strategie di calibrazione ad un caso reale, consistente nella valutazione dei
parametri del modello per un acciaio strutturale. Le conseguenze determinate da
ogni approccio di calibrazione sono poi attentamente valutate.

La seconda parte del lavoro mira ad introdurre un nuovo modello di resistenza,
consistente in una generalizzazione del modello di Johnson-Cook. Le motivazioni
per lintroduzione di tale modello sono discusse, insieme alle sue principali
caratteristiche. In seguito, vengono presentate le varie procedure utilizzabili per la
determinazione dei parametri del modello. Il nuovo modello & poi applicato ad un
caso reale, 'acciaio strutturale di cui sopra, ed i risultati sono comparati a quelli
ottenuti con il modello di Johnson-Cook originale. Comparandosi a tale modello, le
previsioni ottenute dimostrano come il nuovo modello presenti una migliore capacita
di riprodurre i dati sperimentali. | risultati sono quindi discussi e commentati.

La terza e ultima fase del lavoro tratta un’applicazione degli argomenti studiati
ad un caso reale di interesse industriale. Un dispositivo chiamato perforating gun &
analizzato nelle sue problematiche strutturali ed aspetti critici. Questa applicazione
coinvolge la modellazione di diverse tipologie di materiali, grandi deformazioni,
fenomeni ad alta velocita di deformazione, alte temperature, esplosioni, impatti
iperveloci, danneggiamento, frattura e cambi di fase. Si propongono applicazioni
computazionali delle teorie studiate ed irisultatisono valutati e discussi. In particolare,
si presentano simulazioni Euleriane agli elementi finiti. | risultati ottenuti appaiono
molto promettenti in termini di un loro uso proficuo nella fase di progettazione del
dispositivo, in particolare riguardo I'ottimizzazione di alcune sue caratteristiche chiave.
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FOREWORD

This doctoral thesis originates from a research program conceived between
academia and industry. The research activity has been supported halfway by the
Lombardy region, through the University of Bergamo (Department of Engineering,
Dalmine), and halfway from the R&D department of the company TenarisDalmine,
nearby located. This arrangement has taken place in the context of a regional
project called Dote Ricerca Applicata (DRA). Therefore, the targets of the research
activity have been established in order to meet the expectations of both academic
and industrial partners.

The company TenarisDalmine, strongly involved in the production of seamless
pipes and specifically in their applications in the oil and gas industry business, was
contacted for possible cooperations on research themes related to computational
mechanics. It proposed the analysis and study of a specific device, called
perforating gun, which finds use in a critical phase of the extraction process of oil or
natural gas from underground deposits, i.e. the radial perforation of rocks and soil
surrounding wells. This process allows for and favors the subsequent pumping to
the surface of the fluid hydrocarbons. The practical consequences of this
perforating phase are of utter importance relatively to the well integrity and
productivity. In order to successfully accomplish this process, the perforating gun
device plays a role of absolute importance. Hence, the necessity of achieving a
good industrial design arises, together with a possible optimization of its key
parameters, which may be of different nature, e.g. geometrical, structural,
technological or related to the characteristics of the involved materials. The main
issue considered in this work regards the structural performance of a particular
component of the perforating gun device, technically called carrier.

On the other side, the academic targets were those of achieving original
research results in the field of continuum mechanics, with particular reference to
large strain and high strain rate behavior of materials. The possibility of proposing
some new ideas suitable for the description of such phenomena was evaluated and
studied.

In this scenario, the academic and industrial objectives merged successfully by
means of an in-deep analysis of the perforating gun device, which naturally led to
the study and investigation of the complex physical phenomena related to its
functionality. Large strains, very high strain rates, high temperatures, explosions,
hypervelocity impacts, damage, fracture and phase changes are the most
challenging aspects involved and considered in the present treatment.



Regarding the organization of this work, Chapter 1 briefly introduces some
assumptions that are used throughout the exposition. Appropriate considerations
about the adopted notation are presented as well. Furthermore, appropriate
simplifying assumptions are introduced and motivated.

Chapter 2 presents a brief overview of the constitutive modeling pertinent to
large strain and high strain rate material behaviors, in order to critically expose the
most popular models suitable for the description of such phenomena. Particular
attention is paid to the so-called Johnson-Cook strength model. As a matter of fact,
the major part of the presented review deals with this model. This choice is due to
the following three main facts. First of all, the Johnson-Cook model appears to be
the most implemented and used model when there is the need to model large strain
and high strain rate material behavior over a possible wide range of strain rates and
temperatures. Second, a new strength model is later introduced in the present work
and it actually originates from the Johnson-Cook model, since it considers an
enhancement based on the same framework and the same variables. Third, the
industrial application examined later in this work makes wide use of the Johnson-
Cook model. Different materials are modeled through this specific strength model,
although other models are used as well. More in detail, all the key components of
the studied perforating gun device are modeled by using the Johnson-Cook model.
These salient facts determine the importance of this specific strength model in the
context of the present work. The main issue investigated in this section regards a
reasoned assessment of the various procedures adoptable for calibrating the
parameters of the Johnson-Cook model. This phase is enriched and clarified by
applying the calibration strategies to a real case, i.e. the evaluation of the model
parameters of a structural steel, by relying on experimental data available from the
literature. The consequences determined by each calibration approach are then
carefully evaluated, together with a final discussion on the positive and negative
aspects of such strategies and some suggestions on how to choose the best
calibration approach, by considering the available experimental data and the
objectives of the modeling process.

Chapter 3 aims at presenting a new strength model. It is conceived as a
generalization of the Johnson-Cook model. The introduction of this new model is
motivated and accurately described. This strength model aims at improving the
coherency of the original Johnson-Cook model. As for the original Johnson-Cook
model, the proposed model pays attention to the fact of keeping the formulation
suitable for computational applications, with particular reference to Finite Element
Method (FEM from now on) applications. In fact, the new model may collocate itself
as a direct competitor of the Johnson-Cook model. The model is also applied to a
real case, i.e. the modeling of the elastoplastic response of a structural steel tested
throughout wide ranges of strain rates and temperatures, and the obtained results

4



are compared to the results provided by the original Johnson-Cook model. This
comparison allows to assess the positive features of the proposed model. The
differences between the two compared models are highlighted and discussed.
Furthermore, appropriate considerations about the possibility of implementing this
new model into FEM codes are pointed-out.

Chapter 4 deals with an application of the studied theories and models to the
practical industrial case suggested by the industrial partner TenarisDalmine, i.e. a
specific perforating gun device. This chapter provides a brief introductory
description of perforating gun devices, in particular by identifying the most important
components of such devices. After this phase, the specific perforating gun under
target is analyzed. Appropriate considerations regarding the constitutive modeling
options are introduced and discussed. Whenever possible, reference is made to the
experimental and technical data supplied by the industrial partner. Moreover, a
series of preliminary considerations relative to the adopted computational strategies
are presented. The difficulties and the objectives of appropriate FEM simulations of
perforating gun devices are debated. Finally, a campaign of FEM computational
simulations is presented, with the target of reproducing, as coherently as possible,
the phenomena involved during the practical application of a perforating gun. The
FEM code LS-DYNA is used extensively in this phase, after a comprehensive study
that has concerned several FEM codes and their potentialities in the present
challenging computational context. Both tridimensional Lagrangian and Eulerian
FEM simulations are presented and discussed.






1. BASIC ASSUMPTIONS AND NOTATIONS

The central aspect analyzed in the present work consists in the large strain and
high strain rate constitutive modeling of continuous media, in particular by
considering metallic materials. In continuum mechanics, the wording constitutive
model tipically refers to a function that relates a measure of strain to a measure of
stress, and conversely. Constitutive modeling is one of the most challenging branch
of continuum mechanics and its study involves a lot of aspects and considerations.
A comprehensive review of these arguments is not an aim of this work. However, it
is necessary to point-out some preliminary considerations about a number of basic
concepts and notations, as they are adopted throughout the present work.

Ordered arrays of numerical elements are referred to here as tensors, and the
number of distinct ordering levels is referred to as the valence or the order of the
tensor. A tensor with valence equal to n is denoted by the wording n-tensor. The
number of elements in a specific valence is referred to as its cardinality. Given a n-
tensor, with n strictly greater than 2, it is said to be a square n-tensor if all its
cardinalities are equal.

It is recognized that an abuse of notation may be made here. A n-tensor is
indeed something more specific than a simple set of ordered arrays of numbers.
Generally speaking, the definition of n-tensor is related to the way in which these
numbers describe a quantity in an underlying space and how they transform when
passing from one space observer to another. Examples of references on these
topics are Levi-Civita, 1926, Struik, 1953, Synge and Schild, 1969, and Moon and
Spencer, 1986. Anyway, in order to develop a flowing exposition, the wording n-
tensor is used here to refer only to a set of ordered arrays of numbers, without
specifying anything particular relatively to its transformation law. This assumption
favors simplicity and allows to avoid the involvement of a quite long preliminary
treatment of some basic assumptions on which large strain continuum mechanics is
implicitly founded, a task that would be too heavy to be presented here and actually
not strictly necessary for the achievement of the aims of this work. Furthermore, it
appears that this assumption is tacitly assumed in many references, i.e. the wording
n-tensor is used in a quite general context, without specifying strict limitations on
the transformation rules. Therefore, the approach adopted in the present work
allows to fit in this popular framework.

For the sake of simplicity, space and time are assumed to be independent
quantities. Time is considered as absolute, equal for all the observers. Space is
assumed to have three dimensions and to possess infinite extensions along these
dimensions. This assumption implies that the relevant metric is a square 2-tensor of



cardinality 3. With further simplification, the space is assumed to be assessed by an
observer characterized by having an atlas composed by only one chart. Moreover,
this chart is assumed to be Euclidean, i.e. it imposes a metric field g; that is
constant in space and equal to the identity 2-tensor, as defined in the following
relation

[1,0,0]
g,=5,=|[0,1,0] |. (1)
[0,0,1]

The assumption of imposing an Euclidean metric implies having a vanishing
linear connection, denoted by Fijk, as specified in the following equation

2 axk axj ax,

[ 90 0g.
rijk :&[ﬁﬂ +09A_&] :Oijk ) )
As a consequence, any time spatial derivatives are used, the linear connection
needs not to be introduced. More specifically, the covariant derivative reduces to
the classical derivative. For a treatment on these topics, see, e.g., Marsden and
Hughes, 1983, Moon and Spencer, 1986, and Marsden et al., 2007.

Euclidean observers imply the equality of the two natural local bases fields, i.e.
the covariant and contravariant local bases field become coincident. This fact leads
to the definition of a unique natural local bases field, thus allowing to avoid the need
to use subscripts and superscripts in order to distinguish contravariant and
covariant n-tensors. Therefore, n-tensors will be denoted by using subscripts only.
The choice of limiting the analysis to Euclidean observers only is quite restricting
but also favors simplicity and does not hinder the achievement of the targets of the
present work.

Functions are denoted by writing first the dependent variable and then the
independent variables, gathered by curly brackets and separated by commas. For
instance, if A is a function of B and C, the following symbol holds

A{B.C}. (3)

The next concise summary exposes the adopted notation for the basilar
continuum mechanics quantities involved in this work.



Generic evolutions are delimited in time by an initial instant and a current instant.
The positions of a point in the initial and in the current instants are denoted by X;
and x;, respectively, and are called initial and current positions, respectively. Motion
can then be defined by considering the current position as a function of the initial
position and time, as exposed in the following, where time is denoted by the
symbol t

x{ X1} . 4)

This function is also called mapping. The deformation gradient, or tangent mapping,
is a 2-tensor denoted by F; and defined in the following way

0X;
=i
[ ®)
The right stretch 2-tensor, denoted by Uj, the left stretch 2-tensor, denoted by
Vj, and the rotation 2-tensor, denoted by R;, arise from the right and left polar
decompositions of the deformation gradient, reported respectively in the following
equations

3

= zRik Wy (6)
k=1
3

= Z\/Ik R, - ()
k=1

It is also possible to define the velocity of the motion v;, as specified in the
following equation

oX.
Vi = a—tl . (8)

The velocity gradient is another 2-tensor denoted by L; and defined as follows

_
Ioox

(9)



The symmetric part of the velocity gradient is a 2-tensor called rate of
deformation and denoted by Dj, while its skew-symmetric part is a 2-tensor called
spin and denoted by Wj. Therefore, the following equations hold

Dy :%[é'-ii +Ly), (10)
w, = %E@L” —Lji) . (11)

It is assumed here that when a 2-tensor is indicated with subscripts arranged
inversely to the alphabetical order, the valences indicated by these subscripts are
intended as swapped, i.e. the 2-tensor is transposed in these valences. The right
stretch and the left stretch allow for defining two sets, each of which is composed by
an infinite number of 2-tensors called strain measures. One set defines the so-
called Lagrangian strain measures, whilst the other defines the so-called Eulerian
strain measures. These strain measures are denoted by E; and G; and defined
respectively by the following relations

Y8 i meo
EM=1"m , (12)

VAL
(m) I —] if m#z0
Gij = m . (13)
InV. if m=0

The parameter m is assumed to be an integer.

In the present work, a generic strain measure, that could be either Lagrangian or
Eulerian, is denoted by the symbol g;. It is possible to decompose any strain
measure into its volumetric and deviatoric parts, through the following equation

€ :sdev +£vol 3 :sdev +ﬁ[5 (14)
i i 3 i’

where the first term in the right member is referred to as deviatoric strain or strain
deviator and the second term is referred to as volumetric strain. Moreover, given a
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strain measure ¢, it is possible to define an associated scalar quantity called
equivalent or effective strain, denoted by € and defined as follows

(15)

Sometimes, the equivalent strain is calculated by using a time integral of the rate
of deformation, in particular in FEM code implementations. It is then defined by the
following equation

(16)

It is worthwhile to point-out that this time integral may not give an equivalent strain
attributable to any known strain measure. In this regard, see, e.g. Hoger, 1986.

The time derivative of a strain measure is called strain rate (referred to the
considered strain measure) and is denoted by éij. Analogously, the time derivative

of an equivalent strain is called equivalent strain rate (referred to the considered

strain measure) and is denoted by €. If elastic and plastic strains are identified, the
quantities defined above for a generic strain measure can be specialized to these
two cases.

The Cauchy stress is a 2-tensor that stems from considerations on the
equilibrium of a continuum body (see, e.g., Bigoni, 2012). It is denoted by T; and is
assumed to be symmetric. It defines a field on a body that describes its stress state.
Furthermore, the Kirchhoff stress is another 2-tensor, denoted by Ty, still symmetric
and defined by the following equation

T, =det(F, ) ;. (17)

The stress power per unit volume of a continuous body is a scalar denoted by w
and defined by the following equation

3 3
w= ZZTU D, (18)



It is then said that the Kirchhoff stress and the rate of deformation are work-
conjugate variables (see, e.g., Hill, 1978). For each of the previously introduced
Lagrangian and Eulerian strain measures, it is possible to define a work-conjugate
stress measure. To this end, the next two relations are introduced, in order to define

the so-called Lagrangian and Eulerian stress measures, denoted by Tifm) and Zi(i’“’ ,

respectively

3 3 3 3 - aEi(jm)
— —_ m
W—ZZ% DD“—ZZT” ["_at , (19)
i=1 j=1 i=1 j=1
3.3 3 3 - oGm
— — m ]
W_ZZTH EDU—ZZZU- G_at : (20)
i=1 j=1 i=1 j=1

In the present work, a generic stress measure, that may be either Lagrangian or
Eulerian, is denoted by the symbol o;. Analogously to what said for strain
measures, it is possible to decompose any stress measure in its volumetric and
deviatoric parts, through the following relation

0. =s. +pld. =s. +E [d. (21)
i i i j 3 1j’

where the first term in the right member is referred to as deviatoric stress or stress
deviator, denoted by s;, and the second term is referred to as volumetric stress. The
scalar p is called pressure. Moreover, given a stress measure oy, it is possible to
define an associated scalar quantity called equivalent or effective stress, denoted
by 0 and defined as follows

(22)

The equivalent stress of the deviatoric part of a stress measure is called von Mises
equivalent stress of such stress measure. It is denoted by s and is obtained
accordingly

12



(23)

In this equation, J, represents the second invariant of the stress deviator of the
considered stress measure, defined as follows

J :% Diisij (S - (24)

The time derivative of a stress measure is called stress rate (referred to the
considered stress measure) and is denoted by c'ri]. . Analogously, the time derivative

of an equivalent stress is called equivalent stress rate (referred to the considered

stress measure) and is denoted by G .

Furthermore, given a stress measure, it is possible to define a scalar known as
stress triaxiality of such stress measure (see, e.g., Meyers, 1994), denoted by X, by
introducing the ratio of its pressure and its von Mises stress, as reported in the
following equation

(25)

<
I
nl|o

The temperature field is denoted by symbol T throughout the work. A final
consideration is related to the choice of the strain and stress measures to be
related through a constitutive model. In this work, constitutive models are presented
in a general way in which strain and stress measures are not forcedly defined a
priori. However, when a generic strain measure and a generic stress measure or
their time derivative are related through a constitutive model, it is always assumed
that they form a couple of work-conjugate strain and stress measures. This
hypothesis ensures the fulfillment of some technical requirements which are at the
base of the constitutive modeling theory of continuum mechanics.

As already stated, this very brief summary aims only at introducing some
quantities used in the present work and at clarifying their notation. Additional
information and further comments on these topics, together with their notation, may
be found, e.g., in Fung, 1965, Malvern, 1969, Gurtin, 1981, Marsden and
Hughes, 1983, Holzapfel, 2001, Lubarda, 2002, Truesdell and Noll, 2004, Asaro
and Lubarda, 2006, and Bigoni, 2012. Some considerations regarding the use of
alternative compact tensor notation may be found, e.g., in Rizzi and Carol, 2001.
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2. BRIEF OVERVIEW OF THE CONSTITUTIVE MODELING OF
LARGE STRAIN AND HIGH STRAIN RATE PHENOMENA

Large strain and high strain rate phenomena may be defined as events that occur in
a short time, say in the order of fractions of a second, which involve large strains
and therefore high strain rates. Plastic strains, damage and fracture are usually
present in this kind of processes.

A first aspect of the study of material behavior under dynamic loading involves
the analysis of stress wave propagations in solid and fluid materials, for both elastic
and plastic regimes. Stress propagates through continuous media as waves with
finite velocity. Therefore, a certain time is required in order to allow these waves to
spread through the matter. Elastic wave, plastic wave and shock wave
propagations are phenomena of utter importance for the study of the dynamic
behavior of materials. However, reviewing this entire argument is not on aim of this
work. Among others, general treatments are provided in Meyers, 1994, and Wang,
2007. Treatments on elastic wave propagation can be found in Graff, 1965, and
Achenbach, 1973. Studies on shock waves and high-pressure shock compression
of solids are provided in Asay and Shahinpoor, 1993, Graham, 1993, Horie et al.,
2003, Ben-Dor, 2007 and Davison, 2008.

A second key aspect of the study of the dynamic behavior of materials consists
in the study of experimental procedures capable to expose the material response to
such dynamic conditions. Throughout the years, some particular experimental
procedures have emerged over others, thanks to their better feasibility and
effectiveness. Dropweight machines, Hopkinson bars, Taylor tests and plate impact
tests have become fairly popular. Nowadays, their use is common in many
situations, both academic and industrial. Procedures to carry-out these tests and
efficiently measure material responses keep on being elaborated and improved as
well. A review of these experimental techniques is also not a target of the present
work. However, general treatments are provided in Meyers, 1994, and Field et
al., 2004. The Taylor test is presented in Taylor, 1948, and Whiffin, 1948. A review
on the use of Hopkinson bars is supplied by Jiang and Vecchio, 2009. Some
considerations on the procedures necessary to technically execute such tests and
relevant test results for different materials are provided in Rajendran and
Bless, 1985, and Rajendran, 1992.

Beyond these aspects, the focus of this work is on the constitutive modeling of
dynamically loaded materials. Since decades ago, the study of such argument has
been a leading research theme in the fields of solid and structural mechanics.
Usually, a constitutive model exposed within classical continuum mechanics
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contexts involves stress and strain 2-tensor measures as a whole, i.e. it involves the
presence of both the deviatoric and volumetric parts. When large strain and high
strain rate phenomena are addressed, it is a common practice to decompose these
2-tensors in their volumetric and deviatoric parts and then define two constitutive
models, one for the deviatoric part and one for the volumetric part. This practice
derives basically from deductions suggested by experimental evidences. An ad-hoc
relation between the stress deviator and the strain deviator needs to be established,
possibly involving also the strain rate, the temperature and the pressure. Similarly,
an ad-hoc relation between the pressure, the volumetric strain and possibly other
thermodynamic parameters needs to be established. Basically, the stress deviator
is not assumed to be a function of the sole deviatoric strain, in particular when
plastic regimes are involved. Similarly, the pressure is no longer a function of the
sole volumetric strain. In this context, the wording strength model refers to a
function that has the deviatoric part of the stress as dependent variable, while the
quite general wording equation of state (also denoted by the acronym EOS) refers
to a function that has the pressure as dependent variable.

Beyond strength models and equations of state, an ad-hoc description is also
necessary for the modeling of damage and fracture of materials subjected to large
strain and high strain rate phenomena. Such models usually need to include the
strain rate, the temperature and possibly other parameters. Particular importance is
given to the role of stress triaxiality. This parameter does not appear to be widely
used in the quasi-static modeling of materials under damage and fracture
processes. However, when high strain rates and large strains are involved, the
stress triaxiality appears to play an important role in the evaluation of the damage
and fracture of the materials.

In the following, some considerations on strength models, equations of state and
damage and fracture models are presented, in order to briefly describe the nature
of the most used models. In this context, the aim of this chapter is that of analyzing
the pertinent literature seeking for the most interesting and successful constitutive
models suitable for describing large strain and high strain rate phenomena.
Particular reference is made here to the modeling of metallic materials. A brief
review of such models and of some references will be made, together with the
presentation of some original comments.

2.1. Strength Models

Several strength models suitable for the modeling of materials subjected to large
strains and high strain rates have been proposed in the literature. One of the first
references that treated these topics was probably Zener and Hollomon, 1944, in
which the plastic behavior of steel was investigated, with particular attention to the
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effects of the strain rate and the temperature. Afterwards, many authors have
contributed to the development of the knowledge on strength models. In this work,
some of the most popular strength models are analyzed and considered, namely
the Johnson-Cook model (Johnson and Cook, 1983), the Zerilli-Armstrong model
(Zerilli and Armstrong, 1987), the Steinberg-Cochran-Guinan model (Steinberg et
al., 1980) and the Steinberg-Lund model (Steinberg and Lund, 1988). These
constitutive models are believed to represent some of the most suitable options for
the description of high to very high strain rate behavior of materials, in particular for
metallic materials, i.e. the materials of highest interest for the industrial application
considered in the present research project. More in detail, these models are
potentially suitable for the description of materials subjected to the strain rate
ranges involved in the considered industrial application. In the following, these
models are briefly described and some relevant references are introduced. As
previously stated, more attention is paid to the Johnson-Cook strength model, for
the following reasons. First of all, it appears to be the most implemented and used
material model when there is the need to model large strain and high strain rate
material behavior over a possible wide range of strain rates and temperatures. Also,
the new strength model introduced later in the present work (Chapter 3) actually
originates as an enhancement of the Johnson-Cook model. Furthermore, the
industrial application examined later in this work makes wide use of the Johnson-
Cook model.

2.1.1. Johnson-Cook Strength Model

The wording Johnson-Cook strength model (also referred to as JC strength model)
refers to the hardening function proposed in Johnson and Cook, 1983. The two
authors proposed a form for the evaluation of the yield stress as a function of the
equivalent plastic strain, the equivalent plastic strain rate and the temperature.
Since its first proposal in 1983, this model has gained popularity and nowadays it
appears as the most used strength model for the modeling of strain rate dependent
phenomena.

For what it concerns the diffusion of the model in the scientific community, the
Johnson-Cook strength model has been widely used by many authors throughout
the years. Examples of such use, together with material data, can be found in
several references, starting from the original Johnson-Cook paper (Johnson and
Cook, 1983), which provided data and model parameters for 12 different materials.
Noble et al., 1999, studied the application of the Johnson-Cook model to iron.
Kay, 2003, considered applications to a titanium alloy and an aluminum alloy.
Nemat-Nasser and Guo, 2003, evaluated the use of the Johnson-Cook model for a
naval structural steel. Klepaczko et al., 2009, considered the application of the
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Johnson-Cook model to two diverse structural steels. Scapin et al., 2012, presented
an application of the model to an alumina dispersion strengthened copper. These
are only some illustrative examples of the many applications of the Johnson-Cook
model that may be found in the literature.

The Johnson-Cook strength model operates in the classic elastoplastic
framework, in which an elastic constitutive model defines the elastic response, a
yield criterion defines the delimitation of the elastic regime, and the plastic flow is
determined by a flow rule and a hardening function. A review of these classic
plasticity concepts is not an aim of this work. Reference is made to, e.g., Hill, 1950,
Kachanov, 1971, Lubliner, 2006, and Bigoni, 2012. The Johnson-Cook strength
model specifies this classical elastoplastic model by introducing a hardening
function capable to model the yield stress dependence on the equivalent plastic
strain rate and the temperature. In this context, the Johnson-Cook hardening
function is used for updating the stress deviator only. The volumetric response of
the material needs to be determined by an equation of state.

When quasi-static regimes are involved, hardening functions are tipically
conceived as function of the sole equivalent plastic strain, e.g. through a power
function. The contribution presented in Johnson and Cook, 1983, was that of
proposing a more general hardening function, suitable for the description of the
hardening of materials subjected to large strains, within a certain range of
equivalent plastic strain rates and temperatures. Only isotropic hardening was
considered, without the introduction of more complicated kinematic or combined
hardening rules. Furthermore, one of the main aims of the authors was that of
keeping the formulation in a fashion well suitable for implementations in FEM
codes.

The form of the proposed hardening function was derived through a totally
empiric approach, based on a quite high amount of experimental data collected by
the two authors. Tensile and torsion tests were carried-out, considering
experimental tests at different strain rates (through an Hopkinson bar) and
temperatures. Several metallic materials were tested and analyzed. Results were
presented in terms of the Cauchy stress and of the so-called true strain, i.e. the
logarithmic strain measure.

On the basis of the obtained experimental results, Johnson and Cook, 1983,
introduced a hardening function in which the vyield stress manifested a power
dependence on the equivalent plastic strain. Furthermore, they pointed-out that the
yield stress presented a natural logarithmic dependence on the so-called

dimensionless equivalent plastic strain rate, denoted by ?; and defined as follows
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where §p represents the current equivalent plastic strain rate and ?l? represents a

fixed equivalent plastic strain rate, taken as reference value. This value varies
accordingly to the available experimental data.

Johnson and Cook, 1983, also pointed-out the fact that the current yield stress
exhibited a power dependence on the so-called homologous or homogeneous
temperature, denoted by T* and defined as follows

T* = o (27)
Tm _To

where T,, represents the melting temperature and T, a fixed temperature, taken as
reference value. As for the reference equivalent plastic strain rate, this value varies
accordingly to the available experimental data.

On the basis of these observations, the proposed hardening function assumed
the following form, in which the yield stress, interpreted as the von Mises stress, is a
function of the equivalent plastic strain, the dimensionless equivalent plastic strain
rate and the homologous temperature, together with other material parameters

= m
_ 3 T-T
s:(A+BE’;‘)EE1+C|]h%J 1—[T TOJ ) (28)
- _
p m 0

The 8 parameters denoted by A, B, n, C, ?l? , To, Ty and m are referred to as the

parameters of the Johnson-Cook strength model. They need to be calibrated
through appropriate experimental tests. Following Table 1 reports their dimensions
and possible units.

A Stress, e.g. [MPa] m Non-dimensional

B Stress, e.g. [MPa] ér? Strain rate, e.g. [s'l]

N Non-dimensional To Temperature, e.g. [K]

C Non-dimensional T Temperature, e.g. [K]
Table 1

Dimensions and possible units of the Johnson-Cook parameters.
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It is worthwhile to note that the Johnson-Cook hardening function is conceived in
a multiplicative fashion, in which the terms contained in the three outer round
brackets act together to set the value of the current yield stress.

The first multiplicative term represents a power hardening law, characterized by
the three parameters A, B and n. This form is widely used for describing metallic
hardening functions in quasi-static modeling contexts. It may then be said that the
first multiplicative term represents the quasi-static part of the hardening function and
thus it is referred to here as the quasi-static term of the Johnson-Cook strength
model.

The second multiplicative term introduces the natural logarithmic dependence on
the dimensionless equivalent plastic strain rate and thus it is referred to here as the
strain rate term of the Johnson-Cook strength model. This term is conceived in such
a way that when the current equivalent plastic strain rate is equal to the reference
equivalent logarithmic plastic strain rate it becomes equal to 1 and therefore there
are no strain rate effects on the computation of the current yield stress. In such
conditions, the hardening response of the material is then ruled by the two other
multiplicative terms. Otherwise, the effect of the strain rate on the yield stress is
determined by the current value of the equivalent plastic strain rate and ruled by the
reference equivalent plastic strain rate and by the parameter C.

The third and last multiplicative term introduces the power dependence on the
homologous temperature and thus it is referred to here as the temperature term of
the Johnson-Cook strength model. This term is conceived in a way such that when
the current temperature is equal to the reference temperature it becomes equal to 1
and therefore there are no temperature effects on the computation of the current
yield stress. In such conditions, the hardening response of the material is then ruled
by the other 2 multiplicative terms. Otherwise, the effect of the temperature on the
yield stress is determined by the current value of the temperature and ruled by the
reference temperature, the melting temperature and the parameter m. It is also
worthwhile to note that when the current temperature reaches the melting
temperature value, this term becomes equal to 0 and thus the current yield stress is
assumed to be null and the material is assumed to offer no deviatoric resistance.
Temperatures higher than the melting temperature are allowed to occur but then
the yield stress is no longer computed with Eq. (28), which would lead to a negative
yield stress. In such cases, the yield stress is just set equal to zero.

As pointed-out by the authors themselves (Johnson and Cook, 1983), the
Johnson-Cook hardening function is a quite simple model that may not provide
accurate descriptions of the hardening response of the material, thus leading to
results that may lack in coherence. On the other hand, its simplicity implies some
advantages. Indeed, the Johnson-Cook hardening function may be seen as a valid
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compromise between simplicity, modeling coherency, requirement of experimental
tests and need of computational capacities.

Regarding the positive features of the Johnson-Cook strength model, simplicity
and readiness of computational implementation appear to be the most interesting.
The model turns-out quite cheap in terms of demand of computational
requirements. Furthermore, it is surely well suitable to fit FEM applications, since it
uses variables that are readily available in most FEM codes or so-called
hydrocodes, namely the equivalent plastic strain, the equivalent plastic strain rate
and the temperature. In order to compute the current yield stress, these three
variables are the only ones that need to be computed in each timestep of the
calculation, since the 8 parameters of the model are fixed and established at the
beginning of the calculation. Beyond this aspect, the Johnson-Cook strength model
is capable of displaying a good coherence when adopted for the modeling of some
basic high strain rate experimental tests, such as for the FEM modeling of Taylor
tests. As exposed in Johnson and Cook, 1983, applications of the model in a FEM
code (EPIC-2) showed a good matching between the Taylor test computed results
and their experimental counterparts. It is often said that the Johnson-Cook model is
a formulation able to provide results characterized by having a high enough grade
of accuracy, capable to satisfy necessities required in common engineering
practices. Actually, these features are the main factors that contributed to the large
diffusion of the Johnson-Cook model among the scientific community, in particular
towards computational applications.

Regarding the negative aspects, it may be said that the simplicity of the
Johnson-Cook strength model is paid by introducing some drawbacks in the
formulation. In particular, two main flaws can be identified. The first issue consists in
the fact that the natural logarithmic dependence of the yield stress on the
dimensionless equivalent plastic strain rate may not be suitable to coherently fit the
strain rate dependence of some materials. Analogously, the power dependence of
the vyield stress on the homologous temperature may present the same
shortcoming. These aspects might lead to heavy modeling errors in practical cases.

The second problem consists in the fact that the equivalent plastic strain, the
equivalent plastic strain rate and the temperature effects on the yield stress are
totally independent from each other. This is a direct consequence of the choice of
adopting a hardening function conceived in a multiplicative fashion, in which the
equivalent plastic strain, the equivalent plastic strain rate and the temperature terms
aim at independently representing the three effects on the yield stress. For a given
equivalent plastic strain, its effect on the yield stress is the same whatever values
the equivalent plastic strain rate and the temperature take. Similarly, for a given
equivalent plastic strain rate, its effect on the yield stress is the same whatever
values the equivalent plastic strain and the temperature take. Similarly again, for a
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given temperature, its effect on the yield stress is the same whatever value the
equivalent plastic strain and the equivalent plastic strain rate take. The main
problem due to this aspect may be the fact that the effects of the equivalent plastic
strain rate and the temperature need to be assumed as equal for each equivalent
plastic strain. As a matter of fact, this effect may instead be quite different by
passing from a condition in which the equivalent plastic strain is null (i.e., the first
yielding stress of the material, called also lower yield stress), to conditions with non
zero equivalent plastic strain. This point may imply the introduction of heavy
coherency errors in the modeling, either of the lower yield stress or of the plastic
flow. The more these two aspects present a different dependence on the equivalent
plastic strain rate and on the temperature, the more errors are to be introduced,
since a compromise between these aspects necessarily needs to be adopted. This
simplistic approach may lead to considerable modeling errors, which might actually
add to the ones due to the first issue.

At this point, there arise questions about the relevance of these flaws, i.e. how
much they may negatively affect the coherency of the model. The point is that of
assessing the magnitude of the errors in the prediction of the yield stress for a given
equivalent plastic strain, and, accordingly, the magnitude of the errors in the
prediction of the equivalent plastic strain for a given yield stress. The examination of
the hardening characteristics of the steel adopted in the industrial application under
analysis in the present work (i.e., a perforating gun device) suggested that this
aspect may be central and heavily affect the computed results, although only a low
amount of experimental data was made available. The point here is that the
Johnson-Cook hardening function may not be capable to fit the available data with
sufficient accuracy in order to produce results fruitfully usable for engineering
purposes. Most of all, the fitting may be appropriate only for selected ranges of
equivalent plastic strains, equivalent plastic strain rates and temperatures, but not
overall.

Beyond the analysis of the material used in the particular industrial application
considered in the present thesis, the belief that the Johnson-Cook model may
sometimes produce strongly incoherent predictions appears to be confirmed by the
analysis of other references, which investigate the strain rate and temperature
hardening response of different materials. Some examples of such references are
reported in the following: Krafft et al., 1954, which presented studies on iron and
steel plastic flow in the dependence of the strain rate and temperature; Hoge and
Mukherjee, 1977, which proposed an investigation on the temperature and strain
rate dependence of the flow stress of tantalum; Nemat-Nasser and Guo, 2003,
which proposed a wide strain rate and temperature investigation of the plastic flow
behavior of a structural steel; Rusinek et al., 2009, which presented similar
investigations for six high strength steels. It appears that the adoption of the
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Johnson-Cook strength model may occasionally introduce heavy modeling errors, in
particular when there is the aim of predicting material behaviors over wide ranges of
equivalent plastic strain rates and temperatures.

The two previously presented main issues of the Johnson-Cook model did not
pass unnoticed in the scientific community. Indeed, the original Johnson-Cook
strength model has been the subject of a large number of reviews and
modifications. The aims were that of solving or mitigating the negative effects due
to the two main drawbacks described above. The following exposition aims at briefly
reviewing the main proposed contributions. References that dealt with the first
Johnson-Cook issue are presented first, while those which dealt with the second
issue are presented second. In this regard, It may be said that the relevance of the
Johnson-Cook strength model is further proven by the large number of revisions
and enhancements that have been proposed since its first publication.

The first Johnson-Cook issue addresses the fact that a material may not present
a natural logarithmic dependence of the vyield stress on the dimensionless
equivalent plastic strain rate and a power dependence on the homologous
temperature. Many authors have contributed to a revision and possibly to a
modification of the original Johnson-Cook strain rate and temperature multiplicative
terms, in order to improve the coherence of the strength model.

For what it concerns the strain rate term, one of the earlier modifications was
presented in Holmquist and Johnson, 1991. These authors pointed-out how the
natural logarithmic dependence of the yield stress on the dimensionless equivalent
plastic strain rate could be replaced by a power dependence in which the parameter
C has now the role of the exponent. In detail, the original Johnson-Cook strength
model was substituted by the following one

= m
_ 3 T-T
s:(A+BE”) 2 m1- o | | (29)
PrE T.-T,

This model still uses 8 parameters. Holmquist and Johnson, 1991, presented a
FEM implementation of this modified Johnson-Cook model, with the aim of
computationally reproduce experimental data from a number of Taylor tests. This
modified model provided a better data fitting comparing to the original Johnson-
Cook model, although the differences appeared actually marginal.

Couque et al., 1995, proposed another modification of the Johnson-Cook strain
rate term. The authors pointed-out that the original Johnson-Cook model may be
capable to provide satisfactory results when equivalent plastic strain rates lower
than 10° s™ are involved. However, these authors also pointed-out that the model
may lack in coherence when higher equivalent plastic strain rates occur. In order to
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better account for this effect, the original Johnson-Cook model was modified with
the introduction of a power strain rate component added to the natural logarithm
strain rate term, leading to a model with 11 parameters, as represented in the
following equation

- - k m
_ 3 3 T-T,
s=(A+BE”) 1+Cn-2+D0-2 | |m1- o | | (30)
P £ > T~ To
p P

In this equation, §pl represents an equivalent plastic strain rate value which
determines the transition between the so-called thermally activated regime and the
so-called viscous regime. This value was stated to be about 10° s™*. Two further
parameters are introduced in the model, denoted by D and k. The modified model
was evaluated through numerical simulations of Taylor tests for pure nickel and a
high strength nickel alloy. Comparing to the original Johnson-Cook model, the
outcomes proved the modified model to display an improved coherency in
reproducing experimental data at high equivalent plastic strain rates.

Another modification of the strain rate multiplicative term was proposed by Rule
and Jones, 1998. The point was that of modifying the original Johnson-Cook strain
rate term, in order to more closely match observed material behavior at high strain
rates. Similarly to what stated by Couque et al., 1995, the two authors pointed-out
that the yield strength may increase more rapidly with the equivalent plastic strain
rates than what determined by the original Johnson-Cook hardening function, in
particular for equivalent plastic strain rates that exceed 10° s™. On this basis, Rule
and Jones, 1998, proposed to modify the original Johnson-Cook model in the
following way

- m
_ € T-T
s:(A+BE”) 1+CEI]1.—%+C1;;—i 1- o | | (31
P £ c _in C, T.-T,
-In-2
2 =0
&
p

In this equation, C; and C, are additional parameters of the model, to be
determined from experimental data. The number of parameters of the model
amounts to 11. Rule and Jones, 1998, proposed also a procedure to calibrate the
parameters of the model, with application to four metals, through the evaluation of
quasi-static tests and Taylor tests. This new model was then proven to be capable
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of providing a good fit of the yield stress at elevated equivalent plastic strain rates,
referring to the capacity of fitting Taylor impact experimental data.

Kang et al., 1999, pointed-out that the original Johnson-Cook strain rate term,
which determines a linear dependence of the yield stress on the natural logarithm of
the dimensionless equivalent plastic strain rate, may need to be enriched with a
term that adds a quadratic dependence of the yield stress on the natural logarithm
of the dimensionless equivalent plastic strain rate. This assumption was motivated
with reference to some presented experimental data. In particular, it was shown that
the quadratic term may be necessary to correctly represent the material behavior at
low equivalent plastic strain rates, i.e. rates lower than 1 s™. The Johnson-Cook
hardening function was then modified in the following way

- - 2 m

_ € € T-T,

s:(A+BEf;) 1+C[Ih;—’;+cl[EIn;—’(’)] 1—(T 1‘3] : (32)
€ € -
) ) m 0

This model uses 9 parameters. A new parameter is introduced in the model,
denoted by C;. It determines the weight of the quadratic strain rate term.

Johnson et al., 2006, proposed another modification of the strain rate term by
introducing a power term that enriches the modeling of the yield stress dependence
on the equivalent plastic strain rate. The following form was then proposed and
called high-rate Johnson-Cook model

. . C
_ ] A g " T-7, )"
s:(A+BE) 1+Clh-P +C. [In-2 1- : (33)
P A T.-T,

p p

It is worthwhile to point-out that this strength model is a generalization of the model
proposed by Kang et al., 1999, i.e. that represented in Eq. (32). This approach
introduces two additional parameters, denoted by C; and C,, leading to a total of 10
parameters. Applications of this model and comparison to the original Johnson-
Cook model have been provided in the same reference (Johnson et al., 2006).
Referring to the original Johnson-Cook model, the high-rate Johnson-Cook model
showed an improved modeling coherency.

Some modifications have been proposed for the Johnson-Cook temperature
term as well. Maheshwari et al., 2009, proposed a modification of this term based
on high temperature experimental data of the aluminum alloy Al-2024, considering
also the strain rate term modification proposed by Holmquist and Johnson, 1991,
i.e. the power dependence. The following hardening function was then proposed
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In this equation, s_, Sy

a and [ represent additional model parameters, to be
determined from experimental data. The total number of parameters becomes now
11. The two authors presented some applications of the model that demonstrated a
more coherent fitting of the experimental data, when comparing to the original
Johnson-Cook hardening function, in particular at high temperatures.

Hou and Wang, 2010, introduced a modification of the temperature term in order
to better predict the material behavior when the range of temperatures involved is
particularly wide. The focus was on a hot-extruded Mg-10Gd-2Y-0.5Zr alloy. Such
modified hardening function uses the same 8 parameters of the original Johnson-

Cook model. The proposed model is reported in the following equation

T T
§=(A+BE§”) 1+Cn-2 |m1-A 8- "¢ " |, (35)
b <0 Ty
p T
e—-em™

Other authors presented more complicated developments of the original
Johnson-Cook strain rate and temperature terms. As instance, Duc-Toan et
al., 2012, introduced a modification of the temperature term in order to enhance the
model coherency when very high temperatures are involved.

As proven by the brief review presented here, many modifications of the original
Johnson-Cook model have been proposed. In general, it may be said that the first
issue of the Johnson-Cook model is partially solved, or mitigated, by the possibility
of choosing between different strain rate and temperature terms, with the aim of
better fitting the experimental data of the considered material, by taking into
account specific equivalent plastic strain rate and temperature ranges. As a matter
of fact, some commercial FEM codes allow to choose between some of the different
strain rate and temperature terms described above.

For what it concerns the second Johnson-Cook issue, the point was that of
considering the equivalent plastic strain, the equivalent plastic strain rate and the
temperature effects on the yield stress as totally independent from each other. It
appears that no contributions capable to mitigate this problem have ever appeared
in the literature, unless some references which treated this aspect but only
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marginally. In this regard, some authors proposed modifications capable to partially
introduce the synergic dependence of the strain rate and the temperature effects.

For instance, Lin et al.,, 2010, proposed a modified Johnson-Cook model in
which a mixed strain rate and temperature term is introduced. The proposed term is
reported in the following equation

.
s=(A+B, %, +B, %) 1+Clhf | @
p

(36)

The power quasi-static term is replaced by a form that involves a second order
trend on the equivalent plastic strain. The parameters B; and B, replace the original
Johnson-Cook parameters B and n. Their role is that of describing the quasi-static
behavior. However, this is only another form to fit data throughout the equivalent
plastic strain. The point here is on the strain rate and temperature terms. The strain
rate term is maintained the same as in the original Johnson-Cook model. The
temperature term is substituted with an exponential term which involves both the
dimensionless equivalent plastic strain rate and the temperature. Two new
parameters are introduced, denoted by A; and A,, while the parameters T,, and m
are no longer present, thus keeping a total number of parameters equal to 8. The
proposed model was applied to predict the tensile behavior of a typical high-
strength alloy steel, showing a good fitting of experimental data. Furthermore,
Wang et al., 2011, proposed a modification similar to the one introduced by Lin et
al., 2010, with some variations to the quasi-static and the strain rate terms.

Despite these efforts, the second Johnson-Cook issue appears to be still
present, in particular in its heaviest problematics, i.e. the fact that the effects of the
equivalent plastic strain rate and the temperature need to be assumed as equal for
each equivalent plastic strain, a point which may lead to heavy modeling errors for
the prediction either of the lower yield stress or of the plastic flow. In this context,
Chapter 3 presents a new formulation capable to mitigate this important
shortcoming.

2.2.1.1. Johnson-Cook Model Calibration Strategies

The calibration of the 8 material parameters of the Johnson-Cook model (Eqg. (28))
is strictly related to the problematics exposed above. The original paper that
proposed the model (Johnson and Cook, 1983), did not actually provide a detailed
description of the procedure necessary to calibrate them. It may be said that this
fact has probably contributed to the appearance of uncertainties about the
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calibration procedure. In this regard, some considerations can be found in
Holmquist and Johnson, 1991, but it appears that several key points are still
missing. Various other references treated this aspect, such as, e.g., Langrand et al.,
1999, Schwer, 2004, Milani et al., 2008, and Scapin et al., 2012, just to cite a few.
When it comes to the determination of the 8 Johnson-Cook model parameters, the
first aspect to understand is that it is actually possible to define different calibration
strategies. In this context, the following exposition aims at reviewing systematically
the procedures for the calibration of the Johnson-Cook parameters, a process
whose importance is crucial in order to correctly use the model, say at its best
potentialities. The most popular calibration approaches are framed, described and
discussed, together with the introduction of some original contributions.

For the sake of clarity, all the calibration strategies are illustrated with application
to a practical material case, i.e. the 8 Johnson-Cook parameters are actually
determined from a selected instance of true experimental data. To this end,
literature experimental data are considered, since the experimental observations
made available for the materials used in the industrial application considered in this
work are very limited and therefore they are not complete enough to be successfully
used for presenting calibration applicative examples. Experimental data are
extracted from the work proposed by Nemat-Nasser and Guo, 2003, in which a high
strength structural steel used for naval applications (associated to the nomenclature
DH-36) has been widely tested. This choice is due to the fact that this work
presents a wide amount of experimental observations, intended in terms of
hardening functions of the material, capable to cover wide ranges of equivalent
plastic strain rates and temperatures. The experimental data considered here
consists in a set of nine hardening functions, evaluated at three different equivalent
plastic strain rates and at three different temperatures. The considered equivalent
plastic strain rates are 0.001 s?, 0.1 st and 3000 s*, while the considered
temperatures are 77 K, 296 K and 800 K. Although further data can be found in
Nemat-Nasser and Guo, 2003, the extracted subset of data is surely enough to
achieve the target of this chapter and also to avoid bringing up too much data, in
order to favor exposition conciseness. The nine hardening functions considered
have been obtained through compressive tests. Compressive Hopkinson bars,
cooling systems and furnaces have been used. Reference is made to the presented
adiabatic results. Results are provided in terms of Cauchy stress versus true
(logarithmic) equivalent plastic strain. Following Figs. 1 to 3 report the nine
hardening functions taken into consideration. These experimental data have been
extracted from Nemat-Nasser and Guo, 2003, by means of appropriate
digitalization. The scores visible in the figures represent the digitalized points.
Clearly, this process implies the introduction of some uncertainties in the
considered data, in particular for the determination of the lower yield stress. Of
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course, this is not an important issue here, since the point under question is only
that of showing the outcomes of different Johnson-Cook calibration strategies and
not that of fitting the DH-36 steel data as best as possible. Furthermore, data are
purified by possible oscillations or peaks near the lower yield stress that may
appear in some case, in order to present clearer and more useful data.

Hardening Functions, Temperature 77 K
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Figure 1. DH-36 structural steel hardening functions at temperature of 77 K and
three different equivalent plastic strain rates. Material softening arises for data at
3000 s™. Data re-elaborated from Nemat-Nasser and Guo, 2003.
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Hardening Functions, Temperature 296 K
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Figure 2. DH-36 structural steel hardening functions at temperature of 296 K and
three different equivalent plastic strain rates. Data re-elaborated from Nemat-
Nasser and Guo, 2003.

Hardening Functions, Temperature 800 K
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Figure 3. DH-36 structural steel hardening functions at temperature of 800 K and
three different equivalent plastic strain rates. Data re-elaborated from Nemat-
Nasser and Guo, 2003.
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Following Table 2 summarizes the lower yield stresses for the nine hardening
functions plotted above.

0.001s™ 01s™ 3000s™
77K 915.555 MPa 974.565 MPa 1150.46 MPa
296 K 282.455 MPa 305.455 MPa 630.137 MPa
800 K 190.345 MPa 200.213 MPa 305.345 MPa

Table 2
DH-36 structural steel lower yield stresses at different equivalent plastic strain
rates and temperatures. Data re-elaborated from Nemat-Nasser and Guo, 2003.

It is worthwhile to note that the lower yield stress is strictly increasing with the
equivalent plastic strain rate, at each temperature, and that it is strictly decreasing
with the temperature, at each equivalent plastic strain rate.

Following Figs. 4 and 5 show the trends of the lower yield stress versus the
equivalent plastic strain rate and the temperature, respectively.
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Figure 4. DH-36 structural steel lower yield stress versus equivalent plastic strain
rate for the three considered temperatures. For representation convenience, the
equivalent plastic strain rates are evaluated though their base 10 logarithm. Data
re-elaborated from Nemat-Nasser and Guo, 2003.
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Lower Yield Stress vs. Temperature
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Figure 5. DH-36 structural steel lower yield stress versus temperature for the
three considered equivalent plastic strain rates. Data re-elaborated from Nemat-
Nasser and Guo, 2003.

In the following, five different calibration strategies are described and applied to
the just presented experimental data. These approaches appear to be the most
intuitive, although it is recognized that they are not the only possible ones and other
calibration strategies may be defined. In order to ease their identification, a name is
defined here and associated to each of them. The five exposed calibration
strategies do not appear to be clearly identified and defined in the pertinent
literature. Rather, it seems that different Johnson-Cook calibration strategies are not
clearly distinguishable from each other. Thus, the following rigorous and systematic
treatment aims at clarifying such situation, at least for the five calibration strategies
considered here.

This exposition aims also at introducing some considerations about the
experimental tests necessary to get the input for each calibration procedure. In this
context, testing the material means to obtain experimental data intended in terms of
hardening functions, i.e. curves relating the yield stress to the equivalent plastic
strain. Since the Johnson-Cook model does not consider a dependence of the yield
stress on the stress triaxiality, these data may come from tensile, compressive or
torsion tests, provided that the obtained results are then transformed and evaluated
in terms of the von Mises stress and the equivalent plastic strain. However,
discrepancies through the parameters may be found when passing from one kind of
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test to another, as pointed-out by the original paper that presented the strength
model (Johnson and Cook, 1983). This may be related to a dependence of the yield
stress on the stress triaxiality, although this appears to be a controversial point and
it will not be treated in this work. In this regard, some considerations can be found
in Hopperstad et al., 2003, and in Bgrvik et al., 2003, in which the combined effects
of strain rate and stress triaxiality have been investigated.

2.2.1.1.1. LYS Calibration Strategy

The LYS (Lower Yield Stress) calibration strategy aims at determining the set of
material parameters capable to achieve the best experimental data fitting for the
lower yield stresses, i.e. at null equivalent plastic strain.

The first parameter to be determined is the melting temperature of the material.
This phase is straightforward, provided that melting data are available. It is then
necessary to identify the equivalent plastic strain rates and temperatures at which it
is possible to test the considered material. This information allows to determine the
reference values of the equivalent plastic strain rate and of the temperature.
Regarding the reference equivalent plastic strain rate, it must be chosen as one of
the equivalent plastic strain rates at which the material is tested. No other particular
conditions are proposed here, therefore it is possible to choose any of them. A
popular choice is that of taking the lowest considered value. Regarding the
reference temperature, a sound option is that of taking it equal to the lowest
temperature at which the material is tested. This choice is due to the fact that it is
necessary to avoid the computation of negative homologous temperatures, since
this term is then raised through the parameter m, that may be a non integer
number, and therefore the calculation of this power may not be possible. This
situation can lead to error terminations when the model is implemented in FEM
codes and therefore needs to be avoided. As a consequence, the choice of
identifying the reference temperature with the lowest temperature at which the
material is tested, in order to avoid this problem. If a FEM simulation is involved, it
may also be necessary to check also the fact that the material temperature shall
never go below the reference value.

The next phase consists in the determination of the three quasi-static
parameters, namely A, B and n. This point uses data obtained from the test
conducted at the reference temperature and at the reference equivalent plastic
strain rate. These data may be filtered from structural effects through an inverse
analysis of the experimental tests, to be carried-out with a FEM code. The facts that
the test is carried-out at the equivalent plastic strain rate and temperature reference
values implies that the Johnson-Cook strength model assumes the following form,
in which the second and third multiplicative terms become equal to 1
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§:A+B|I;. (37)

Under these reference conditions, the parameter A corresponds to the lower yield
stress, while the parameters B and n describe the successive hardening of the
material. It is then possible to determine the parameters A, B and n by fitting the
experimental points with the function shown in Eq. (37). A good strategy here is that
of adopting a code that provides nonlinear regression capabilities. Following this
strategy, the determination of the three quasi-static parameters, i.e. A, B and n, is
due only to the material behavior at the so-called reference conditions, i.e. at
reference equivalent plastic strain rate and temperature.

At this point, it is worthwhile to highlight a consideration about the choice of the
reference equivalent plastic strain rate. As a matter of fact, the reference equivalent
plastic strain rate must be taken as the value at which the quasi-static parameters
are evaluated, following the procedure just shown. Otherwise, it is not possible to
determine the three quasi-static parameters in the way just exposed, because the
strain rate multiplicative term does not vanish. Assuming the reference equivalent
plastic strain rate to be equal to 1 and determining the quasi-static parameters by
fitting a hardening function which refers to an equivalent plastic strain rate that is
actually different from this reference equivalent plastic strain rate may lead to
errors. Schwer, 2004, provides a discussion on this aspect, in the context of FEM
applications of the Johnson-Cook model.

The next step is relative to the determination of the strain rate parameter, i.e. the
parameter C. This step involves experimental tests conducted at the reference
temperature and at equivalent plastic strain rates different from the reference
equivalent plastic strain, from the lowest one tested up to the highest one. These
data are always to be intended as a hardening function relating the yield stress to
the equivalent plastic strain. The value of the parameter C can be obtained by
noting that the temperature term of the Johnson-Cook strength model becomes
equal to 1 and thus vanishes, since the tests are carried-out at the reference
temperature. Being the parameters A, B and n known, the only unknown remaining
parameter is C, and it can be calculated through the hardening function by using
the following equation

C=——P" . (38)
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In order to calculate the value of the parameter C, the values of the equivalent
plastic strain rate, the yield stress and the equivalent plastic strain need to be
introduced in Eq. (38). By considering experimental results at one determined
equivalent plastic strain rate, the remaining unknown values are the yield stress and
the equivalent plastic strain. It is clear that the yield stress is determined when an
equivalent plastic strain value is chosen, thanks to the experimental hardening
curve under analysis, which relates such quantities. Therefore, in order to obtain
the value of the parameter C, it is necessary to choose one equivalent plastic strain
and the corresponding yield stress. In general, choosing different couples of
equivalent plastic strain and yield stress results in the calculation of different values
of C. Since the LYS calibration strategy aims at achieving the best possible fit for
the lower yield stresses, the parameter C is calculated by considering a null
equivalent plastic strain and the correspondent vyield stress, i.e. the lower yield
stress. This strategy allows to model the strain rate effects coherently at first yield
but then its modeling may not be coherent with the experimental results when the
equivalent plastic strain increases. It is worthwhile to note that this approach does
not need to carry-out an inverse analysis to purify the hardening function, because
the only couple of yield stress and equivalent plastic strain values considered are
those at the lower yield stress, for which possible structural effects can be
considered as irrelevant.

The procedure above allows for the determination of the value of the parameter
C for a given tested equivalent plastic strain rate. The same procedure must be
followed for the other tested equivalent plastic strain rates, by considering the
corresponding hardening functions. These tests are intended again as carried-out
at the reference value of the temperature, thus allowing to use Eq. (38) for
determining the parameter C, with the same procedure proposed above. Clearly,
the more tests at different equivalent plastic strain rates can be conducted the
better for the aim of determining the material behavior. Such data allow to better
understand the trend of the yield stress on the equivalent plastic strain rate. If the
material respects the natural logarithmic dependence of the yield stress on the
dimensionless equivalent plastic strain rate, as assumed in the Johnson-Cook
model, the same value of C must be recovered for all the available experimental
data that cover the various tested equivalent plastic strain rates. This may not be
the case, as previously mentioned. In this case, the value of C is taken as an
average value of all the available values. As a result, the calibration of the
parameter C for the LYS strategy may be inevitably flawed due to such aspect, that
derives directly from the nature of the Johnson-Cook model. It may also be
interesting to check if some of the modifications of the strain rate term proposed in
the literature and previously reviewed may be more suitable for the description of
the considered material.
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The last step of the calibration procedure concerns the determination of the
temperature parameter, i.e. the parameter m. This step involves experimental tests
conducted at the reference equivalent plastic strain rate and at temperatures
different from the reference temperature, from the lowest one tested up to the
highest one. These data are always to be intended as a hardening function relating
the yield stress to the equivalent plastic strain. The value of the parameter m can be
obtained by noting that the strain rate term of the Johnson-Cook strength model
becomes equal to 1 and thus vanishes, since the tests are carried-out at the
reference equivalent plastic strain rate. Being the parameters A, B and n known, the
only unknown remaining parameter is m, and it can be calculated through the
hardening function by using the following equation

m= v/, (39)

At this point, the situation is similar to the one that arises for the calculation of
the parameter C. In order to calculate the value of the parameter m, the values of
the temperature, the yield stress and the equivalent plastic strain need to be
introduced in Eq. (39). By considering the experimental results at one determined
temperature, the remaining unknown values are the yield stress and the equivalent
plastic strain. Again, the yield stress is determined when an equivalent plastic strain
value is chosen, thank to the experimental hardening curve under analysis.
Therefore, in order to obtain the value of m, it is necessary to choose one
equivalent plastic strain and the correspondent yield stress. In general, choosing
different values of equivalent plastic strain results in calculating different values of
m, similarly to what happened for the determination of the parameter C. Since the
LYS calibration strategy aims at achieving the best possible fit for the lower yield
stresses, the parameter m is calculated by introducing a null equivalent plastic
strain and the corresponding yield stress, i.e. the lower yield stress. Considerations
similar to those stated for the determination of the parameter C hold true.

The procedure above allows for determining the value of the parameter m for a
given tested temperature. The same procedure must be followed for the other
tested temperatures, by considering the corresponding hardening functions. These
tests are intended again as carried-out at the reference value for the equivalent
plastic strain rate, thus allowing to use Eq. (39) to determine the parameter m with
the same procedure proposed above. Clearly, the more tests at different
temperatures can be conducted, the better for the aim of determining the material
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behavior. Such data allow to better understand the trend of the yield stress on the
temperature. If the material respects the power dependence of the yield stress on
the homologous temperature, as assumed in the Johnson-Cook model, the same
value of m must be recovered for all the available experimental data that cover the
various temperatures tested. This may not be the case, as previously mentioned. In
this case, the value of m is taken as an average value of all the available values.
Considerations similar to those stated for the determination of the parameters C
hold true.

It is worthwhile to point-out some considerations about the procedure stated
above. Following the LYS calibrations strategy, the experimental data necessary for
the determination of the Johnson-Cook parameters can be resumed with the
following list.

e One test conducted at the reference temperature and at the reference
equivalent spatial plastic strain rate. These data allow to determine the
reference equivalent plastic strain rate and temperature and the quasi-static
parameters A, B and n.

« A series of tests conducted at the reference temperature and at equivalent
plastic strain rates different from the reference equivalent plastic strain, from the
lowest one tested up to the highest one. As instance, these tests can be
carried-out with a Hopkinson bar. These data allow to determine the parameter
C. Clearly, the more hardening functions can be obtained, the better, in order to
cover the considered equivalent plastic strain rate range with a good resolution.

« A series of tests conducted at the reference equivalent plastic strain rate but at
different temperatures, from the lowest tested up to the highest one. As
instance, these tests can be conducted with a tensile test machine endowed
with an oven or a furnace capable to heat the specimen and keep it at a
constant temperature: Device capable to cool down the specimen may be
adopted for testing at low temperatures. These data allow to determine the
parameter m. Clearly, the more hardening functions can be obtained, the better,
in order to cover the considered temperature range with a good resolution.

In the following, the LYS calibration strategy is applied to the nine experimental
hardening functions extracted from Nemat-Nasser and Guo, 2003.

The reference equivalent plastic strain rate is chosen as the lowest equivalent
plastic strain rate tested, i.e. 0.001 s™. The reference temperature is chosen as the
lowest temperature tested, i.e. 77 K. By evaluating the experimental hardening
function at these reference values, the quasi-static parameters are obtained,

37



through a fitting carried-out with Wolfram Mathematica 7. The obtained parameters
A, B and n are equal to 915.555 MPa, 760.782 MPa and 0.60101, respectively.

Regarding the parameter C, it is obtained by introducing a null equivalent plastic
strain in Eq. (38), thus obtaining the following form

O
I
>| nl

(40)

5
o ‘-cml.

The parameter C can be calculated with the two equivalent plastic strain rates
different from the reference equivalent plastic strain rate, i.e. 0.1 s and 3000 s, at
the reference temperature of 77 K. The computed values are equal to 0.01399 and
0.01720, for the equivalent plastic strain rates of 0.1 s™ and 3000 s*, respectively.
The fact of having obtained different values for the parameter C reveals that the
material does not strictly respect the natural logarithm dependence of the lower
yield stress on the dimensionless equivalent plastic strain rate. Following the
procedure described above, the parameter C is set equal to their average value,
namely 0.01560.

Regarding the parameter m, it is determined by introducing a null equivalent
plastic strain in Eq. (39), thus obtaining the following form

m= ToT .
In[ 0 ]
Tm-TO

The parameter m can be calculated with the two temperatures different from the
reference temperature, i.e. 296 K and 800 K, at the reference equivalent plastic
strain rate of 0.001 s™. The computed values are equal to 0.18022 and 0.27336, for
the temperatures of 296 K and 800 K, respectively. The fact of having obtained
different values for the parameter m reveals that the material does not strictly
respect the power dependence of the lower yield stress on the homologous
temperature. Following the procedure described above, the parameter m is set
equal to their average value, namely 0.22679.

The 8 Johnson-Cook parameters obtained through the LYS calibration strategy
are summarized in following Table 3.

(41)
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A 915.555 MPa m 0.22679
B 760.782 MPa g, 0.001s™
n 0.60101 To 77K
C 0.01560 T 1773 K
Table 3

Johnson-Cook parameters for the DH-36 structural steel calculated through the
LYS calibration strategy.

Following Figs. 6 to 8 show the hardening functions predicted by the Johnson-
Cook model calibrated with the LYS strategy. As expected, the curves of the model
follow in the best possible way the first yield of the experimental hardening curves.
However, this target is partially hindered by the fact that the material does not
strictly respect the natural logarithm dependence of the lower yield stress on the
dimensionless equivalent plastic strain rate and the power dependence on the
homologous temperature. The fact of having chosen an average value of C and m
implies that the predictions of the models lie in between the two cases.
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Figure 6. LYS calibrated Johnson-Cook fitting to DH-36 structural steel data at
temperature of 77 K and at three different equivalent plastic strain rates.
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Figure 7. LYS calibrated Johnson-Cook fitting to DH-36 structural steel data at
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Figure 8. LYS calibrated Johnson-Cook fitting to DH-36 structural steel data at
temperature of 800 K and at three different equivalent plastic strain rates.
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Following Figs. 9 to 11 show the same results but this time the yield stress is
visualized as a two-dimensional function of the equivalent plastic strain and the
base 10 logarithm of the equivalent plastic strain rate, allowing to better understand
the predictions of the model. Experimental data are reported with black dots whilst
the predictions of the Johnson-Cook model are represented by red surfaces.
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Figure 9. LYS calibrated JC model fitting to DH-36 steel data at temperature of 77 K.
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Figure 10. LYS calibrated JC model fitting to DH-36 steel data attemperature of 296 K.
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Figure 11. LYS calibrated JC model fitting to DH-36 steel data at temperature of 800 K.
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As shown in Figs. 6 to 11, the fit to the lower yield stresses is very good for the
hardening functions in which at least one reference condition is present, i.e. an
equivalent plastic strain rate of 0.001 s™ or a temperature of 77 K. On the other
hand, when the model fits the four hardening functions that do not refer to at least
one reference condition, i.e. 0.1 s and 296 K, 3000 s™ and 296 K, 0.1 s™ and 800
K, and 3000 s™ and 800 K, large errors may be introduced, as clearly visible in the
plots. This fact is due to having calculated the parameters C and m by considering
only experimental data at the reference temperature and at the reference equivalent
plastic strain rate, respectively. As a matter of fact, the four hardening functions that
do not refer to at least one reference condition are never used when the LYS
calibration strategy is adopted. Following Table 4 reports a comparison between the
LYS calibrated Johnson-Cook model predictions of the lower yield stresses and
their experimental counterparts.

Experimental Values LYS JC Values
0.001s™, 77 K 915.555 MPa 915.555 MPa
0.1s%, 77K 974.565 MPa 981.323 MPa
3000s™, 77 K 1150.46 MPa 1128.545 MPa
0.001s™, 296 K 282.455 MPa 340.015 MPa
0.1s™, 296 K 305.455 MPa 364.439 MPa
3000 s, 296 K 630.137 MPa 419.115 MPa
0.001 s™, 800 K 190.345 MPa 160.967 MPa
0.1s™, 800K 200.213 MPa 172.533 MPa
3000 s™, 800 K 305.345 MPa 198.417 MPa
Table 4

Comparison between experimental lower yield stresses and corresponding predicted
lower yield stresses from the Johnson-Cook model calibrated with the LYS strategy.

Usually, when the LYS calibration strategy is adopted, predictions of the
calibrated Johnson-Cook model are assessed only by comparing to hardening
functions which refer to at least one reference condition. Indeed, often these
hardening functions are the only ones that are experimentally investigated. It is
clear that this kind of check may give good results, as readable in Figs. 6 to 11.
However, the model should be checked even against hardening functions that do
not refer to at least one reference condition, since large errors may be introduced.
The relevance of this aspect should not be underestimated, as large modeling
errors may be involved.

As a last observation, Figs. 6 to 11 clearly show how the requirement to best fit
the first yield implies errors, sometimes of conspicuous magnitude, when the
equivalent plastic strain increases. Such errors are obviously minimized for the
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hardening function at the reference conditions, i.e. 0.001 s* and 77 K. The
parameters A, B and n are indeed calibrated through a nonlinear regression to best
fit this hardening function. On the other hand, when it comes to the fitting of other
hardening functions, heavy modeling errors are introduced.

In order to better assess the errors of the LYS calibrated Johnson-Cook model
throughout the considered equivalent plastic strain ranges, it is possible to calculate
the yield stress Root Mean Square (RMS) error, denoted here by s, , for each of

the nine hardening function predictions, through the following relation

n

Z(giJc _giEXP )2

s =1+t , (42)

err
n

where §i‘]c and §|EXP represent the i-th Johnson-Cook yield stress prediction and
the correspondent i-th experimental yield stress measurements, respectively. Of
course, the i-th Johnson-Cook yield stress prediction is calculated by using the
same equivalent plastic strain to which the i-th experimental yield stress refers to.
The errors of the LYS calibrated Johnson-Cook model throughout the equivalent
plastic strain ranges considered can be further evaluated by introducing the

percentage yield stress RMS error, denoted here by s, , for each of the nine

hardening functions predictions, through the following relation

n SIC _gEXP 2
D100t
s =1 Si

i
Soperr =

(43)
n

Following Table 5 reports both the yield stress and the percentage yield stress
RMS errors for each one of the nine considered hardening functions, together with
their algebraic mean value, i.e. their sum divided by nine. Heavy errors are
introduced.
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§err §%err
0.001s™, 77K 19.5893 MPa 1.784%
01s™h, 77K 136.732 MPa 10.63%
3000s™, 77 K 404.147 MPa 35.74%
0.001s™, 296 K 221.587 MPa 30.92%
0.1s™, 296 K 221.711 MPa 29.56%
3000 s™, 296 K 315.801 MPa 35.85%
0.001 s™, 800 K 299.824 MPa 57.02%
0.1s™, 800K 327.546 MPa 56.91%
3000 s, 800 K 337.807 MPa 55.24%
Average 253.860 MPa 34.85%
Table 5

Yield stress (central column) and percentage yield stress (right column) root mean
square errors for the LYS calibrated Johnson-Cook model yield stress predictions.

2.2.1.1.2. OPTLYS Calibration Strategy

The OPTLYS (OPTimized Lower Yield Stress) calibration strategy aims at
improving the LYS calibration strategy by optimizing the value of the parameters C
and m. In order to achieve this target, this strategy introduces in the calibration
procedure the experimental data relative to the hardening functions which do not
refer to at least one reference condition, by trying to obtain values of the
parameters C and m capable to provide the actual best fit for all the made available
hardening functions.

For what it concerns the calibration of the melting temperature, the reference
equivalent plastic strain rate, the reference temperature and the quasi-static
parameters A, B and n, the procedure is exactly the same as that exposed for the
LYS calibration strategy. Differences arise for the determination of the parameters
C and m. In order to introduce all the lower yield stress data provided by all the
available hardening functions, the Johnson-Cook strength model, Eq. (28), is
recalled a number of times equal to the number of available hardening functions
which do not refer to reference conditions for both the equivalent plastic strain rate
and the temperature, i.e. all the available hardening functions except for the one
which refers to both reference equivalent plastic strain rate and reference
temperature. This approach leads to the construction of an overdetermined system
of nonlinear equations, in which the unknowns are the parameters C and m and the
number of equations is equal to the number of available hardening functions which
do not refer to reference conditions for both the equivalent plastic strain rate and
the temperature. Such system is reported in the following. Of course, the equivalent
plastic strain is always set to zero, in order to reach the aims of the OPTLYS
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calibration strategy, and thus only the lower yield stress is considered, resulting in
the following equation

_ g, T-7 "
S =AD1+Ch—+ |M1-| -0 . (44)
' €0 T -T

8p m 0

In this equation, the subscript i refers to the values relative to the i-th hardening
function. A system of this kind can be solved through a nonlinear least square
method. The solution values for the parameters C and m are those characterized by
being capable to minimize the square errors of the Johnson-Cook model predictions
against experimental data at the lower yield stresses. A good strategy here is that
of adopting a numerical tool capable to handle such problems.

It is worthwhile to point-out some considerations about the procedure stated
above. Following the OPTLYS calibration strategy, the experimental data necessary
for the determination of the Johnson-Cook parameters can be resumed with the
following list.

e One test conducted at the reference temperature and at the reference
equivalent plastic strain rate. These data allow to determine the reference
equivalent plastic strain rate and temperature and the quasi-static parameters
A, B and n.

A series of tests conducted in such a way that at least one between the
equivalent plastic strain and the temperature are different from their reference
values. These data allow to simultaneously determine the parameters C and m.
It is worthwhile to note that the OPTLYS calibration strategy does not
compulsorily imply to carry-out separate tests at the reference temperature but
at different equivalent plastic strain rates and then at the reference equivalent
plastic strain rate but at different temperatures. Rather, any hardening function
which does not refer to reference conditions for both the equivalent plastic
strain rate and the temperature is actually useful for the determination of the
parameters C and m. As previously stated for the LYS calibration strategy, a
coherent approach would be that of testing the material throughout the
equivalent plastic strain rate and temperature ranges of interest. As instance,
tests at different equivalent plastic strain rates and temperatures can be
carried-out with a Hopkinson bar endowed with an oven or a furnace capable to
heat the specimen, or with a system able to cool it down if low temperatures
need to be tested. Clearly, the more hardening functions can be obtained, the
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better, in order to cover the considered equivalent plastic strain rate and
temperature ranges with a good resolution.

In the following, the OPTLYS calibration strategy is applied to the nine
experimental hardening functions extracted from Nemat-Nasser and Guo, 2003.

All the parameters are equal to the ones evaluated for the LYS calibration
strategy, except for the parameters C and m, which are evaluated by solving the
following overdetermined system of 8 nonlinear equations and 2 unknowns, i.e. the
parameters C and m

m
282.455 =915.555 EEl—(Mj J

1773-77
m
190.345 = 915,555 111~ 20077
1773-77
0.1
974.565 =915.555 11+ C [In——
0.001
m
305.455 =915.555 11+ C In—2+_ | 1| 22677
0.001 1773-77
m
200.213=915.555{11+Coh— 2t |ma—-[ 89077
0.001 1773-77
1150.455 = 915,555 {11+ C T~ 200
0.001
m
630.137 =915.555 11+ C Th 2200 | g 22677
0.001 1773-77
m
305.345 = 915.555 {11+ C 2220 |1 800=77 | |
0.001 1773-77 (45)

This overdetermined system of nonlinear equations has been solved with a
nonlinear least squares trust-region-reflective algorithm with MathWorks
MatLab 2010b. A tolerance of 10® was set. This means that when the iterative
solution provided by the algorithm changes of a value lower then 10°® from one
iteration step to the next, the algorithm is stopped and these values are taken as
the final solution. The obtained values for the parameters C and m simultaneously
minimize the square errors for the eight nonlinear equations of the system, through
a multi-objective nonlinear optimization. Details on this algorithm can be found, e.g.,
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in Coleman and Li, 1994. These optimized values are equal to 0.02049 and
0.26367 for the parameters C and m, respectively.

The 8 Johnson-Cook parameters obtained through the OPTLYS calibration
strategy are summarized in following Table 6.

A 915.555 MPa M 0.26367
B 760.782 MPa g, 0.001s™
N 0.60101 To 77K

C 0.02049 T 1773 K

Table 6
Johnson-Cook parameters for the DH-36 structural steel calculated through the
OPTLYS calibration strategy.

Following Figs. 12 to 14 show the hardening functions predicted by the Johnson-
Cook model calibrated with the OPTLYS strategy.

The curves of the OPTLYS calibrated Johnson-Cook model follow in the best
possible way the lower yield stresses of the experimental hardening curves, this
time by considering not only the hardening functions which have at least one
between the equivalent plastic strain and the temperature equal to the reference
value, but all the nine hardening functions. As previously said, this target is partially
hindered by the fact that the material does not strictly respect the natural logarithm
dependence of the lower yield stress on the dimensionless equivalent plastic strain
rate and the power dependence on the homologous temperature.
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Figure 12. OPTLYS calibrated Johnson-Cook fitting to DH-36 structural steel data
at temperature of 77 K and at three different equivalent plastic strain rates.
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Figure 13. OPTLYS calibrated Johnson-Cook fitting to DH-36 structural steel data
at temperature of 296 K and at three different equivalent plastic strain rates.
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Figure 14. OPTLYS calibrated Johnson-Cook fitting to DH-36 structural steel data
at temperature of 800 K and at three different equivalent plastic strain rates.

Following Figs. 15 to 17 further show the OPTLYS results by surface plots.
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Figure 15. OPTLYS calibrated JC model fitting to DH-36 steel data at temperature of 77 K.
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Figure 16. OPTLYS calibrated JC model fitting to DH-36 steel data at temperature of 296 K.
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Figure 17. OPTLYS calibrated JC model fitting to DH-36 steel data at temperature of 800 K.
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As displayed in Figs. 12 to 17, the fit to the lower yield stresses is now the result
of a compromise between all the nine hardening functions. This point implies the
fact that the fit with the hardening functions in which at least one reference
conditions is present is less coherent than the one obtainable from the predictions
of the LYS calibrated Johnson-Cook model. On the other hand, when the model fits
the four hardening functions that do not refer to at least one reference condition, the
errors are lower. Clearly, this is a consequence of having calculated the parameters
C and m by considering experimental data from all the nine hardening functions.
Following Table 7 reports a comparison between the OPTLYS calibrated Johnson-
Cook model predictions of the lower vyield stresses and their experimental
counterparts.

Experimental Values OPTLYS JC Values
0.001s™, 77K 915.555 MPa 915.555 MPa
01s", 77K 974.565 MPa 1001.95 MPa
3000s™, 77K 1150.46 MPa 1195.34 MPa
0.001s™, 296 K 282.455 MPa 381.868 MPa
0.1s™,296 K 305.455 MPa 417.901 MPa
3000 s, 296 K 630.137 MPa 498.563 MPa
0.001s™, 800 K 190.345 MPa 184.331 MPa
0.1s™, 800K 200.213 MPa 201.724 MPa
3000 s™, 800 K 305.345 MPa 240.660 MPa
Table 7

Comparison between experimental lower yield stresses and correspondent predicted
lower yield stresses from the Johnson-Cook model calibrated with the OPTLYS strategy.

Of course, the problem of having errors when the equivalent plastic strain
increases is still present, since it is a consequence of the basic assumption of both
the LYS and the OPTLYS calibration strategies. Following Table 8 reports both the
yield stress and the percentage yield stress root mean square errors for each of the
nine considered hardening functions, together with their algebraic mean value, i.e.
their sum divided by nine. Conspicuous errors are introduced.
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§err §%err
0.001s™, 77 K 19.5893 MPa 1.784%
01s™, 77K 161.790 MPa 12.65%
3000s™, 77K 486.710 MPa 42.86%
0.001s™, 296 K 166.723 MPa 23.91%
0.1s™, 296 K 152.704 MPa 21.14%
3000 s, 296 K 209.812 MPa 23.82%
0.001s™, 800 K 268.377 MPa 50.91%
0.1s™, 800K 288.575 MPa 49.90%
3000 s™, 800 K 282.324 MPa 45.84%
Average 226.289 MPa 30.31%
Table 8

Yield stress (central column) and percentage yield stress (right column) root mean
square errors for the OPTLYS calibrated Johnson-Cook model yield stress predictions.

2.2.1.1.3. EPS Calibration Strategy

The EPS (Equivalent Plastic Strain) calibration strategy aims at determining the set
of material parameters capable to achieve the best fitting of experimental data
throughout the equivalent plastic strain ranges involved in the available hardening
functions.

For what it concerns the calibration of the melting temperature, the reference
equivalent plastic strain rate, the reference temperature and the quasi-static
parameters A, B and n, the procedure is still the same as that previously exposed
for the LYS calibration strategy. Differences arise again for the determination of the
parameters C and m. In order to achieve the best fitting throughout the equivalent
plastic strain ranges involved in the available hardening functions, data at each
value of equivalent plastic strain need to be considered for the calculation of the two
parameters.

The first step is relative to the determination of the strain rate parameter, i.e. the
parameter C. As for the LYS and OPTLYS calibration strategies, this step involves
experimental tests conducted at the reference temperature and at equivalent plastic
strain rates different from the reference equivalent plastic strain, from the lowest
one tested up to the highest one. These data are always to be intended as a
hardening function relating the yield stress to the equivalent plastic strain. The
value of the parameter C can be obtained by noting that the temperature term of the
Johnson-Cook strength model becomes 1 and thus vanishes, since the tests are
carried-out at the reference temperature. Therefore, Eq. (38) is used again,
although this time the equivalent plastic strain is not set equal to zero, but rather it
is left as an unknown. At this point, the procedure is that of performing a regression
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of the hardening function data at a given equivalent plastic strain rate, of course
different from the reference equivalent plastic strain rate, by considering the
Johnson-Cook form presented in Eq. (38), i.e. a regression in which the only
parameter to be determined is C.

This strategy allows to model coherently the strain rate effects throughout the
equivalent plastic strain range but then the prediction of the lower yield stress may
be somehow incoherent. It is worthwhile to note that this approach does need to
carry-out an inverse analysis to purify the experimental hardening function, because
all data are actually used in the calibration procedure, and thus structural effects
cannot be considered as irrelevant. Furthermore, the inverse analysis is helpful in
order to clean the results from temperature effects due to the plastic work converted
into heat during the testing of the specimens. This last aspect is particularly relevant
when the material is tested at high strain rates.

The procedure above allows to determine the value of the parameter C for a
given tested equivalent plastic strain rate. The same procedure must be followed for
the other tested equivalent plastic strain rates, by considering the corresponding
hardening functions. These tests are intended again as carried-out at the reference
value for the temperature, thus allowing to use Eg. (38) to determine the
parameter C with the same procedure proposed above. Clearly, the more tests at
different equivalent plastic strain rates can be conducted, the better for the aim of
determining the material behavior, similarly to what said for the other calibration
strategies. Such data allow to better understand the trend of the yield stress on the
equivalent plastic strain rate. At this point, the same issue previously outlined for
the LYS and OPTLYS calibration strategies arises. If the material respects the
natural logarithmic dependence of the yield stress on the dimensionless equivalent
plastic strain rate, as assumed in the Johnson-Cook model, the same value of C
must be recovered for all the available experimental data that cover the various
tested equivalent plastic strain rates. If this aspect is not respected, the value of C
is taken as an average value of all the available values. As a result, the calibration
of the parameter C for the EPS strategy may be inevitably flawed due to such
aspect, that derives directly from the nature of the Johnson-Cook model. It may also
be interesting to check if some of the modifications of the strain rate term proposed
in the literature and previously reviewed may be more suitable for the description of
the considered material.

The last step of the calibration procedure concerns the determination of the
temperature parameter, i.e. the parameter m. As for the LYS and OPTLYS
calibration strategies, this step involves experimental tests conducted at the
reference equivalent plastic strain rates and at temperatures different from the
reference temperature, from the lowest one tested up to the highest one. These
data are always to be intended as a hardening function relating the yield stress to
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the equivalent plastic strain. The value of the parameter m can be obtained by
noting that the strain rate term of the Johnson-Cook strength model becomes equal
to 1 and thus vanishes, since the tests are carried-out at the reference equivalent
plastic strain rate. Hence, Eq. (39) is used again, although this time the equivalent
plastic strain is not set to zero, but rather it is left as an unknown. At this point, the
procedure is that of performing a regression of the hardening function data at a
given temperature, of course different from the reference temperature, by
considering the Johnson-Cook form presented in Eq. (39), i.e. a regression in which
the only parameter to be determined is m.

As said for the strain rate effects, this strategy allows to model coherently the
temperature effects throughout the equivalent plastic strain range but then the
prediction of the lower yield stress may be somehow incoherent. The same
considerations previously stated about the necessity to carry-out an inverse
analysis of the experimental data hold true.

The procedure above allows for determining the value of the parameter m for a
given tested temperature. The same procedure must be followed for the other
tested temperatures, by considering the corresponding hardening functions. These
tests are intended again as carried-out at the reference value for the equivalent
plastic strain rate, thus allowing to use Eq. (39) to determine the parameter m with
the same procedure proposed above. Clearly, the more tests at different
temperatures can be conducted, the better for the aim of determining the material
behavior, similarly to what said for the other calibration strategies. Such data allow
to better understand the trend of the yield stress on the equivalent plastic strain
rate. Once again, the same issue previously seen for the LYS and OPTLYS
calibration strategies arises. If the material respects the power dependence of the
yield stress on the homologous temperature, as assumed in the Johnson-Cook
model, the same value of m must be recovered for all the available experimental
data that cover the various tested temperatures. If this aspect is not respected, the
value of m is taken as an average value of all the available values. Considerations
similar to those stated for the determination of the parameters C hold true.

Regarding the experimental data necessary in order to carry-out the EPS
calibration strategy, these are exactly the same required for the LYS calibration
strategy. In the following, the EPS calibration strategy is applied to the nine
experimental hardening functions extracted from Nemat-Nasser and Guo, 2003.

All the parameters are equal to the ones evaluated for the LYS calibration
strategy, except for the parameters C and m, which are obtained by carrying-out a
regression of the experimental data through Eq. (38). The parameter C can be
calculated with the hardening functions that refer to the two equivalent plastic strain
rates differing from the reference equivalent plastic strain rate, i.e. 0.1 s* and
3000 s™, at the reference temperature of 77 K. Wolfram Mathematica 7 has been
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used to achieve such task. The computed values are equal to -0.00479 and -
0.00407, for the equivalent plastic strain rates of 0.1 s™ and 3000 s*, respectively.
The two obtained values are quite similar, proving that the material somehow
respects the natural logarithm dependence of the plastic flow on the dimensionless
equivalent plastic strain rate. Following the procedure described above, the
parameter C is set equal to the average value, namely -0.00443.

Regarding the parameter m, it is obtained by carrying-out a regression of the
experimental data through Eqg. (39). The parameter m can be calculated with the
hardening functions that refer to the two temperatures differing from the reference
temperature, i.e. 296 K and 800 K, at the reference equivalent plastic strain rate of
0.001 s™. Wolfram Mathematica 7 has been used again. The computed values are
equal to 0.37849 and 0.62806, for the temperatures of 296 K and 800 K,
respectively. The fact of having obtained quite different values for the two computed
parameters m reveals that the material does not strictly respect the power
dependence of the yield stress on the homologous temperature. Following the
procedure described above, the parameter m is set equal to the average value,
namely 0.50328.

The eight Johnson-Cook parameters obtained through the EPS calibration
strategy are summarized in following Table 9.

A 915.555 MPa m 0.50328
B 760.782 MPa g, 0.001s™
N 0.60101 To 77K

C -0.00443 T 1773 K

Table 9
Johnson-Cook parameters for the DH-36 structural steel calculated through the
EPS calibration strategy.

Following Figs. 18 to 20 show the hardening functions predicted by the Johnson-
Cook model calibrated with the EPS strategy. As expected, the curves of the model
follow in the best possible way the experimental hardening curves throughout the
equivalent plastic strain ranges. However, this target is partially hindered by the fact
that the material does not strictly respect the natural logarithm dependence of the
yield stress on the dimensionless equivalent plastic strain rate and the power
dependence on the homologous temperature. The fact of having chosen an
average value of C and m implies that the predictions of the model lie in between
the two cases.
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Figure 18. EPS calibrated Johnson-Cook fitting to DH-36 structural steel data at
temperature of 77 K and at three different equivalent plastic strain rates.
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Figure 19. EPS calibrated Johnson-Cook fitting to DH-36 structural steel data at
temperature of 296 K and at three different equivalent plastic strain rates.
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Figure 20. EPS calibrated Johnson-Cook fitting to DH-36 structural steel data at
temperature of 800 K and at three different equivalent plastic strain rates.

Following Figs. 21 to 23 further show the EPS results by surface plots.
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Figure 21. EPS calibrated JC model fitting to DH-36 steel data at temperature of 77 K.
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Figure 22. EPS calibrated JC model fitting to DH-36 steel data at temperature of 296 K.
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Figure 23. EPS calibrated JC model fitting to DH-36 steel data at temperature of 800 K.
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As shown in Figs. 18 to 23, the hardening functions fit throughout the equivalent
plastic strain ranges is improved, by comparing to the predictions of the LYS and
OPTLYS calibrated Johnson-Cook models. Due to the nature of the EPS calibration
strategy, the best fit is achieved for the hardening functions in which at least one
reference conditions is present, i.e. an equivalent plastic strain rate of 0.001 s™ or a
temperature of 77 K. On the other hand, when the model fits the four hardening
functions that do not refer to at least one reference condition, i.e. 0.1 s™ and 296 K,
3000 s™ and 296 K, 0.1 s™ and 800 K, and 3000 s™ and 800 K, wider errors may be
introduced. This fact is due to having calculated the parameters C and m by
considering only experimental data at the reference temperature and at the
reference equivalent plastic strain rate, respectively. As a matter of fact, the four
hardening functions that do not refer to at least one reference condition are never
used when the EPS calibration strategy is adopted, as for the LYS calibration
strategy.

Another important aspect that does contribute in creating fitting errors is the fact
that the hardening parameters B and n are actually chosen as the ones capable to
best fit the hardening function at the reference conditions only, i.e. at 0.001 st and
at 77 K. As clearly visible in Figs. 18 to 23, the parameters B and n capable to best
fit the nine hardening functions vary strongly throughout the equivalent plastic strain
rate and temperature ranges. In particular, the material softening that arises for the
hardening function at 3000 s™ and 77 K is very badly fitted, since the Johnson-Cook
hardening function is not capable to fit trends which present a hardening phase
followed by a softening one. In general, the more the best fit of the parameters B
and n is dependent on the equivalent plastic strain rate and on the temperature, the
more modeling errors are introduced, when trying to model hardening functions
which do not refer to the reference conditions for both the equivalent plastic strain
and the temperature.

As shown in Figs. 18 to 23, the requirement to best fit the data throughout the
equivalent plastic strain ranges implies errors for the prediction of the lower yield
stresses, sometimes of high magnitude. Such errors are obviously minimized for the
hardening function at the reference conditions, i.e. 0.001 s* and 77 K. The
parameters A, B and n are indeed calibrated through a nonlinear regression to best
fit this hardening function. On the other hand, when it comes to the fitting of other
hardening functions, heavy modeling errors are introduced. Following Table 10
reports a comparison between the EPS calibrated Johnson-Cook model predictions
of the lower yield stresses and their experimental counterparts.
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Experimental Values EPS JC Values
0.001s™, 77 K 915.555 MPa 915.555 MPa
01s™, 77K 974.565 MPa 896.883 MPa
3000s™, 77 K 1150.46 MPa 855.085 MPa
0.001s™, 296 K 282.455 MPa 588.755 MPa
0.1s™,296 K 305.455 MPa 576.748 MPa
3000 s, 296 K 630.137 MPa 549.869 MPa
0.001s™, 800 K 190.345 MPa 319.443 MPa
0.1s™, 800K 200.213 MPa 312.928 MPa
3000 s, 800 K 305.345 MPa 298.344 MPa
Table 10

Comparison between experimental lower yield stresses and correspondent predicted
lower yield stresses from the Johnson-Cook model calibrated with the EPS strategy.

At this point, it is worthwhile to point-out the following consideration, similarly to
what done for the LYS calibration strategy. Usually, when the EPS calibration
strategy is adopted, predictions of the calibrated Johnson-Cook model are
assessed only by comparing to hardening functions which refer to at least one
reference condition. This kind of check may give good results, as readable in
Figs. 18 to 23. However, the model should be checked even against hardening
functions which do not refer to at least one reference condition, since large errors
may be introduced.

Following Table 11 reports both the yield stress and the percentage yield stress
root mean square errors for each of the nine considered hardening functions,
together with their algebraic mean value. Heavy errors are introduced, although the
situation is clearly improved by comparing to the LYS and OPTLYS strategies.

§err §%err
0.001s™, 77 K 19.5893 MPa 1.784%
01s™, 77K 68.1024 MPa 5.458%
3000s™, 77K 178.521 MPa 15.59%
0.001s™, 296 K 145.517 MPa 31.88%
0.1s™, 296 K 100.287 MPa 23.54%
3000 s™, 296 K 142.636 MPa 16.19%
0.001s™, 800 K 90.808 MPa 19.20%
0.1s™, 800K 143.578 MPa 26.22%
3000 s™, 800 K 207.018 MPa 33.23%
Average 121.784 MPa 19.23%
Table 11

Yield stress (central column) and percentage yield stress (right column) root mean
square errors for the EPS calibrated Johnson-Cook model yield stress predictions.
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2.2.1.1.4. OPTEPS Calibration Strategy

The OPTEPS (OPTimized Equivalent Plastic Strain) calibration strategy aims at
improving the EPS calibration strategy, by optimizing the value of the parameters C
and m. In order to achieve this target, this strategy introduces in the calibration
procedure the experimental data relative to the hardening functions which do not
refer to at least one reference condition, by trying to obtain values of the
parameters C and m capable to provide the actual best fit for all the hardening
functions that are made available.

For what it concerns the calibration of the melting temperature, the reference
equivalent plastic strain rate, the reference temperature and the quasi-static
parameters A, B and n, the procedure is exactly the same as that exposed for the
LYS calibration strategy. Differences arise for the determination of the parameters
C and m. In order to introduce all the yield stress data provided by all the available
hardening functions, the Johnson-Cook strength model, Eq. (28), is recalled a
number of times equal to the number of available experimental observations,
intended in terms of couples of yield stress and corresponding equivalent plastic
strain values, throughout the equivalent plastic strain ranges experimentally
investigated. These data refer to all the available hardening functions which do not
refer to reference conditions for both the equivalent plastic strain rate and the
temperature, i.e. all the available hardening functions except for the one which
refers to the reference equivalent plastic strain rate and the reference temperature.
This approach leads to the construction of a large overdetermined system of
nonlinear equations, in which the unknowns are the parameters C and m and the
number of equations is equal to the number of available couples of yield stress and
corresponding equivalent plastic strain values, which depends on the number of
experimental hardening functions that are made available and on the sampling
frequency adopted for the experimental measurements. In order to avoid to set-up
too large systems, it is obviously possible to consider data at a frequency inferior to
that used for obtaining data during the experimental measurements, e.g. 10 times
lower. Such system takes the following form

_ g, T-7 )"
s.:(A+BEf”) 1+Cn-" |- — o | |, (46)
I . §’? Tm_TO

In these equations, the subscript i refers to the i-th couple of yield stress and
corresponding equivalent plastic strain values. As said for the OPTLYS calibration
strategy, a system of this kind can be solved through a nonlinear least square
method. The solution values for the parameters C and m are those characterized by
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being capable to minimize the square errors of the Johnson-Cook model predictions
against experimental data at each couple of yield stress and corresponding
equivalent plastic strain values.

Regarding the experimental data necessary in order to carry-out the OPTEPS
calibration strategy, these are exactly the same required for the OPTLYS calibration
strategy. In the following, the OPTEPS calibration strategy is applied to the nine
experimental hardening functions extracted from Nemat-Nasser and Guo, 2003.

All the parameters are equal to the ones evaluated for the LYS calibration
strategy, except for the parameters C and m, which are evaluated by solving the
overdetermined system of nonlinear equations and 2 unknowns, i.e. the parameter
C and m. Couples of yield stress and corresponding equivalent plastic strain values
are taken with the same frequency of the experimental ones, i.e. for each digitalized
couple of yield stress and corresponding equivalent plastic strain. Following this
approach, a large overdetermined system of 664 nonlinear equations and 2
unknowns is created. It has been numerically solved with a nonlinear least squares
trust-region-reflective algorithm within MathWorks MatLab 2010b, as previously
done for the OPTLYS calibration strategy, with a tolerance of 10®. The obtained
values for the parameters C and m simultaneously minimize the square errors for
the 664 nonlinear equations of the system, through a multi-objective nonlinear
optimization. These optimized values are equal to -0.00091 and 0.52988 for the
parameters C and m, respectively.

The 8 Johnson-Cook parameters obtained through the OPTEPS -calibration
strategy are summarized in following Table 12.

A 915.555 MPa m 0.52988

B 760.782 MPa g, 0.001s™

n 0.60101 To 77K

C -0.00091 T 1773 K
Table 12

Johnson-Cook parameters for the DH-36 structural steel calculated through the
OPTEPS calibration strategy.

Following Figs. 24 to 26 show the hardening functions predicted by the Johnson-
Cook model calibrated with the OPTEPS strategy. The curves of the OPTEPS
calibrated Johnson-Cook model follow in the best possible way the experimental
hardening curves throughout the equivalent plastic strain ranges, this time
considering not only the hardening functions which have at least one between the
equivalent plastic strain and the temperature equal to the reference value, but all
the nine hardening functions. As previously said, this target is partially hindered by
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the fact that the material does not strictly respect the natural logarithm dependence
of the yield stress on the dimensionless equivalent plastic strain rate and the power
dependence on the homologous temperature, together with the fact that the
hardening parameters B and n are actually chosen as the ones capable to best fit
the hardening functions at the reference conditions only.
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Figure 24. OPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel data
at temperature of 77 K and at three different equivalent plastic strain rates.
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Figure 25. OPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel data
at temperature of 296 K and at three different equivalent plastic strain rates.

Hardening Functions, Temperature 800 K

700 *s—— 4040
600 Wv T eeeemrs
= 500 WW"'
o
é /
5 400
1%}
g
» 300 f
o
Q
> 200
—e—Exper 0.001 1/s ——OPTEPS JC 0.001 1/s
100 —e—Exper0.11/s ——OPTEPSJCO0.11/s
0 —e— Exper 3000 1/s ——OPTEPS JC 3000 1/s
0 0.1 0.2 0.3 0.4 0.5 0.6

Equivalent Plastic Strain

Figure 26. OPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel data
at temperature of 800 K and at three different equivalent plastic strain rates.
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Following Figs. 27 to 29 further show the OPTEPS results by surface plots.
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Figure 27. OPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 77 K.
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Figure 28. OPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 296 K.
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Figure 29. OPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 800 K.

As displayed in Figs. 24 to 29, the fit to the data is now the result of a
compromise between all the nine hardening functions. This implies the fact that the
fit with the hardening functions in which at least one reference condition is present
is less coherent than the one obtainable from the predictions of the EPS calibrated
Johnson-Cook model. On the other hand, when the model fits the four hardening
functions that do not refer to at least one reference condition, the errors become
lower. Clearly, this is a consequence of having calculated the parameters C and m
by considering experimental data from all the nine hardening functions.

Of course, the problem of having errors at the lower yield stresses is still
present, since it is a consequence of the basic assumption of both the EPS and the
OPTEPS strategies. Following Table 13 reports a comparison between the
OPTEPS calibrated Johnson-Cook model predictions of the lower yield stresses
and their experimental counterparts.
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Experimental Values OPTEPS JC Values
0.001s™, 77K 915.555 MPa 915.555 MPa
01s™, 77K 974.565 MPa 911.718 MPa
3000s™, 77K 1150.46 MPa 903.129 MPa
0.001s™, 296 K 282.455 MPa 606.076 MPa
0.1s™7, 296 K 305.455 MPa 603.536 MPa
3000 s™, 296 K 630.137 MPa 597.851 MPa
0.001 s™, 800 K 190.345 MPa 332.813 MPa
0.1s™, 800K 200.213 MPa 331.418 MPa
3000 s™, 800 K 305.345 MPa 328.296 MPa
Table 13

Comparison between experimental lower yield stresses and correspondent predicted
lower yield stresses from the Johnson-Cook model calibrated with the OPTEPS strategy.

Following Table 14 reports both the yield stress and the percentage yield stress
root mean square errors for each of the nine considered hardening functions,
together with their algebraic mean value, i.e. their sum divided by nine. Comparing

to the EPS calibration strategy, the situation is slightly improved.

§err §%err
0.001s™, 77K 19.5893 MPa 1.784%
01s™, 77K 71.965 MPa 5.628%
3000s™, 77 K 187.663 MPa 16.63%
0.001s™, 296 K 167.537 MPa 35.08%
0.1s™7, 296 K 131.085 MPa 27.84%
3000 s™, 296 K 83.2915 MPa 9.424%
0.001 s™, 800 K 74.8550 MPa 17.20%
0.1s™, 800K 120.916 MPa 23.43%
3000 s™, 800 K 168.337 MPa 26.90%
Average 113.915 MPa 18.21%
Table 14

Yield stress (central column) and percentage yield stress (right column) root mean
square errors for the OPTEPS calibrated Johnson-Cook model yield stress predictions.

2.2.1.1.5. GOPTEPS Calibration Strategy

The GOPTEPS (Global OPTimization Equivalent Plastic Strain) calibration strategy
aims at further improving the OPTEPS calibration strategy by considering a
simultaneous optimization of 7 of the 8 parameters of the Johnson-Cook model, i.e.
all the parameters except for the melting temperature. All the experimental data are
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used, trying to obtain values of the 7 parameters capable to provide the actual best
fit for all the hardening functions made available, throughout the equivalent plastic
strain, equivalent plastic strain rate and temperature ranges involved.

This optimization is carried-out by solving an overdetermined system of
nonlinear equations and seven unknowns, namely the quasi-static parameters A, B
and n, the strain rate parameter C, the temperature parameter m and the two

and the

reference parameters, i.e. the reference equivalent plastic strain rate €,

reference temperature T,. Such nonlinear system uses all the available
experimental data, intended in terms of couples of yield stress and corresponding
equivalent plastic strain, as done for the OPTEPS calibration strategy, but this time
in seven unknowns. The obtained values for these seven parameters
simultaneously minimize the square errors for the nonlinear equations of the
system, through a multi-objective nonlinear optimization. Some authors have
investigated such calibration strategy, by introducing in the optimization more or
less of the 8 Johnson-Cook parameters, including the melting temperature. In this
regard, see, e.g., Langrand et al., 1999, Milani et al., 2008, and Scapin et al., 2012.

In the present work, the melting temperature, a parameter of clear physical
meaning, is excluded from the multi-objective optimization. Assuming the melting
temperature to be an optimization variable may lead to setting-up melting values
totally different from the real value. This approach may make the Johnson-Cook
model completely useless in FEM simulations in which it is not possible to know a
priori the temperature field, and in particular whether the real melting temperature is
reached or not. As a result, phase changes from solid to liquid, and consequent
setting of a null yield stress, may be completely missed. This is a dangerous and
unwanted consequence. Therefore, the present choice arises of not taking the
melting temperature as an optimization variable.

It is also worthwhile to point-out a consideration about the reference equivalent
plastic strain rate and temperature. In the four previous calibration strategies, such
reference values were taken by choosing among the values of one of the available
experimental hardening function, which was then labeled as the hardening function
under reference conditions. The quasi-static parameters A, B and n were then
determined through a regression of experimental data in such conditions, thanks to
the vanishing of the strain rate and temperature terms. In such calibration
strategies, the reference equivalent plastic strain rate and temperature have a value
that must be equal to those of one of the hardening functions. In the GOPT
calibration strategy, these reference values can be different from those of one of the
experimental hardening functions, since they are considered as optimization
variables. Anyway, their values identify the Johnson-Cook quasi-static conditions,
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although these conditions are now unknown. This fact should allow for a better
fitting of the experimental data.

Regarding the determination of the considered 7 Johnson-Cook parameters, the
procedure is similar to that of the OPTEPS calibration strategy, although more
complex. In order to introduce all the yield stress data provided by all the available
hardening functions, the Johnson-Cook strength model, Eq. (28), is recalled a
number of times equal to the number of available experimental observations,
intended in terms of couples of yield stress and corresponding equivalent plastic
strain values, throughout the equivalent plastic strain ranges experimentally
investigated.

This approach leads to the construction of a large overdetermined system of
nonlinear equations, in which the unknowns are the 7 parameters and the number
of equations is equal to the number of available couples of yield stress and
corresponding equivalent plastic strain values, which depend on the number of
experimental hardening functions made available and on the sampling frequency
adopted for reading the experimental measurements. In order to avoid to set-up too
large systems, it is obviously possible to consider data at a sampling inferior than
the one used for the experimental measurements, as said for the OPTEPS
calibration strategy. The nonlinear system that arises is identical to that reported in
Eq. (46), although this time the optimization variables are not composed by the
parameters C and m only but rather by the previously stated seven parameters. In
order to solve this system, an important point is relative to the enforcement of
appropriate conditions on the seven optimization variables, making the process a
multi-objective nonlinear optimization subjected to bounds. More in detail, the
reference equivalent plastic strain rate is forced to be a positive number, since it
cannot be a negative number, because natural logarithms of negative numbers
cannot be calculated. Furthermore, the reference temperature is forced to be lower
than or equal to the lowest temperature tested during the experimental campaign,
since it is necessary to avoid calculations of negative homologous temperatures, in
order to prevent computations of negative numbers raised to a possible non integer
number, as previously said. The reference temperature is also forced to be greater
than zero. Although the calculation of negative reference temperatures is not a
problem from the mathematical point of view, it is considered reasonable to keep
this parameter greater than zero, since temperatures lower than zero K are not
physically admissible. No bounds are imposed to the other optimization variables.

The created system is fairly more complex than the one introduced in the
OPTEPS calibration strategy, due to the enlargement of the optimization variables
from 2 to 7. It can still be solved through a nonlinear least square method. If there
are convergence problems, it is possible to enforce some further bounds on the
objective variables, in order to restrict their existence domains and favor the
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convergence of the system. The solution values for the considered 7 Johnson-Cook
parameters are those characterized by minimizing the square errors of the
Johnson-Cook model predictions against experimental data at each couple of yield
stress and corresponding equivalent plastic strain values.

Regarding the experimental data necessary in order to carry-out the GOPTEPS
calibration strategy, these are exactly the same as those required for the OPTLYS
and OPTEPS strategies. In the following, the GOPTEPS calibration strategy is
again applied to the data taken from Nemat-Nasser and Guo, 2003.

The overdetermined system of nonlinear equations and seven unknowns is set-
up by taking couples of yield stress and equivalent plastic strain values with the
same sampling of the experimental ones, i.e. for each digitalized couple of yield
stress and corresponding equivalent plastic strain, as previously done for the
OPTEPS calibration strategy. Following this approach, a large overdetermined
system of 740 nonlinear equations and seven unknowns is created. It has been
numerically solved with a nonlinear least squares trust-region-reflective algorithm
with MathWorks MatLab 2010b, as previously done for the OPTLYS and OPTEPS
calibration strategy, with a tolerance of 10®. Some convergence problems have
been solved by setting the reference temperature equal to 77 K, since all the
iterations showed that this parameter tended to such value. The seven Johnson-
Cook parameters obtained through the GOPTEPS calibration strategy are
summarized in following Table 15, together with the value of the melting
temperature, which is taken as fixed.

A 747.412 MPa m 0.5779

B 654.104 MPa g, 8.79832:10" s

n 0.27334 To 77K

C 0.00226 T 1773 K
Table 15

Johnson-Cook parameters for the DH-36 structural steel calculated through the
GOPTEPS calibration strategy.

Following Figs. 30 to 32 show the hardening functions predicted by the Johnson-
Cook model calibrated with the GOPTEPS strategy. The curves of the GOPTEPS
calibrated Johnson-Cook model follow in the best possible way the experimental
hardening curves throughout the equivalent plastic strain ranges. As previously
said, this target is partially hindered by the fact that the material does not strictly
respect the natural logarithm dependence of the yield stress on the dimensionless
equivalent plastic strain rate and the power dependence on the homologous
temperature.
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Hardening Functions, Temperature 77 K
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Figure 30. GOPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel
data at temperature of 77 K and at three different equivalent plastic strain rates.
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Figure 31. GOPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel
data at temperature of 296 K and at three different equivalent plastic strain rates.
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Figure 32. GOPTEPS calibrated Johnson-Cook fitting to DH-36 structural steel
data at temperature of 800 K and three different equivalent plastic strain rates.

Following Figs. 33 to 35 further show the GOPTEPS results by surface plots.
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Figure 33. GOPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 77 K.
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Figure 34. GOPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 296 K.
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Figure 35. GOPTEPS calibrated JC model fitting to DH-36 steel data at temperature of 800 K.

As shown in Figs. 30 to 35, the hardening functions fitting throughout the
equivalent plastic strain ranges appears to be improved, by comparing to the
predictions of the EPS and OPTEPS calibrated Johnson-Cook models. This is
mainly due to the fact of having optimized all together not only the parameters C
and m but also other 5 parameters, with particular reference to the parameters B
and n.

Of course, the problem of having errors at the lower yield stress is still present,
since this is a consequence of the basic assumption of the EPS, OPTEPS and
GOPTEPS strategies. Following Table 16 reports a comparison between the
GOPTEPS calibrated Johnson-Cook model predictions of the lower yield stresses
and their experimental counterparts.
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Experimental Values GOPTEPS JC Values
0.001s™, 77 K 915.555 MPa 747.628 MPa
01s™, 77K 974.565 MPa 755.407 MPa
3000s™, 77K 1150.46 MPa 772.820 MPa
0.001s™, 296 K 282.455 MPa 518.571 MPa
0.1s™7, 296 K 305.455 MPa 523.967 MPa
3000 s™, 296 K 630.137 MPa 536.045 MPa
0.001s™, 800 K 190.345 MPa 290.859 MPa
0.1s™, 800K 200.213 MPa 331.418 MPa
3000 s™, 800 K 305.345 MPa 300.660 MPa
Table 16

Comparison between experimental lower yield stresses and corresponding predicted
lower yield stresses from the Johnson-Cook model calibrated with the GOPTEPS strategy.

Following Table 17 reports both the yield stress and the percentage yield stress
root mean square errors for each one of the nine considered hardening functions,
together with their algebraic mean value, i.e. their sum divided by nine. Comparing

to the OPTEPS calibration strategy, the situation is further improved.

§(EI’I‘ §O/oel‘l‘
0.001s™, 77K 79.6277 MPa 6.163%
0.1s™, 77K 49.7374 MPa 4.289%
3000s™, 77 K 153.934 MPa 13.61%
0.001s™, 296 K 158.594 MPa 34.26%
0.1s™,296 K 137.140 MPa 29.10%
3000 s, 296 K 49.9562 MPa 5.573%
0.001s™, 800 K 69.8119 MPa 15.23%
0.1s™, 800K 110.280 MPa 21.54%
3000 s, 800 K 140.315 MPa 21.97%
Average 105.488 MPa 16.86%
Table 17

Yield stress (central column) and percentage yield stress (right column) root mean
square errors for the GOPTEPS calibrated Johnson-Cook model yield stress predictions.

2.2.1.1.6. Calibration Strategies Comparison and Assessment

Following Figs. 36 to 44 allow to compare all together the results from the five
calibration strategies presented above, by considering their application to the nine
experimental hardening functions taken from Nemat-Nasser and Guo, 2003.
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Figure 36. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 77 K and at equivalent plastic strain rate of 0.001 s™.
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Figure 37. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 77 K and at equivalent plastic strain rate of 0.1 s™.
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Figure 38. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 77 K and at equivalent plastic strain rate of 3000 s™.
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Figure 39. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 296 K and at equivalent plastic strain rate of 0.001 s™.
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Figure 40. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 296 K and at equivalent plastic strain rate of 0.1 s™.
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Figure 41. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 296 K and at equivalent plastic strain rate of 3000 s™.
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Figure 42. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 800 K and at equivalent plastic strain rate of 0.001 s™.
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Figure 43. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 800 K and at equivalent plastic strain rate of 0.1 s™.
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Figure 44. Five calibrations of JC model with different strategies and DH-36 steel
data at temperature of 800 K and at equivalent plastic strain rate of 3000 s™.

Figs. 36 to 44 show in better detail what previously presented for each Johnson-
Cook calibration strategy. The reported trends confirm the considerations previously
stated regarding the strengths and weaknesses of each calibration strategy.
Following Table 18 reports a comparison between the 5 calibrated Johnson-Cook
model predictions of the lower yield stresses and their experimental counterparts.
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0.001s™, 77K 01s™h, 77K 3000s™, 77 K

Experimental Values 915.555 MPa 974.565 MPa 1150.46 MPa
LYS JC Values 915.555 MPa 981.323 MPa 1128.545 MPa
OPTLYS JC Values 915.555 MPa 1001.95 MPa 1195.34 MPa
EPS JC Values 915.555 MPa 896.883 MPa 855.085 MPa
OPTEPS JC Values 915.555 MPa 911.718 MPa 903.129 MPa
GOPTEPS JC Values | 747.628 MPa 755.407 MPa 772.820 MPa
0.001s™, 296 K 0.1s™, 296 K 3000 s™, 296 K

Experimental Values 282.455 MPa 305.455 MPa 630.137 MPa
LYS JC Values 340.015 MPa 364.439 MPa 419.115 MPa
OPTLYS JC Values 381.868 MPa 417.901 MPa 498.563 MPa
EPS JC Values 588.755 MPa 576.748 MPa 549.869 MPa
OPTEPS JC Values 606.076 MPa 603.536 MPa 597.851 MPa
GOPTEPS JC Values | 518.571 MPa 523.967 MPa 536.045 MPa
0.001 s™, 800 K 0.1s™, 800 K 3000 s, 800 K

Experimental Values 190.345 MPa 200.213 MPa 305.345 MPa
LYS JC Values 160.967 MPa 172.533 MPa 198.417 MPa
OPTLYS JC Values 184.331 MPa 201.724 MPa 240.660 MPa
EPS JC Values 319.443 MPa 312.928 MPa 298.344 MPa
OPTEPS JC Values 332.813 MPa 331.418 MPa 328.296 MPa
GOPTEPS JC Values | 290.859 MPa 331.418 MPa 300.660 MPa

Table 18

Comparison between experimental lower yield stresses and corresponding predicted lower
yield stresses from the Johnson-Cook model calibrated with five different calibration

strategies.

Following Table 19 reports both the yield stress and the percentage yield stress
root mean square average errors for each of the five considered Johnson-Cook

calibration strategies.

gerr g%err
LYS Calibrated JC 253.860 MPa 34.85%
OPTLYS Calibrated JC 226.289 MPa 30.31%
EPS Calibrated JC 121.784 MPa 19.23%
OPTEPS Calibrated JC 113.915 MPa 18.21%
GOPTEPS Calibrated JC 105.488 MPa 16.86%

Table 2

Yield stress (central column) and percentage yield stress (right column) root mean square
average errors for the yield stress predictions of the Johnson-Cook model calibrated with five

different calibration strategies.
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Some considerations are reported in the following, in order to better understand
the consequences of choosing a particular calibration strategy or another.

The LYS calibration strategy allows to model quite coherently the lower yield
stresses, by considering data provided only by those hardening functions which
refer to at least one reference condition, whether it is the reference equivalent
plastic strain rate or the reference temperature. As a result, the lower yield stresses
are better modeled for these hardening functions, while errors may be introduced in
the modeling of the other hardening functions. The OPTLYS calibration strategy
extends the LYS calibration strategy by considering all experimental data. As a
result, the fit to the lower yield stress is a compromise between the lower yield
stresses of all the made available hardening functions. Both the LYS and the
OPTLYS calibration strategies present the problem of possibly incoherently model
the plastic flows, namely the yield stresses trends on the equivalent plastic strains.
This aspect is strictly related to how much the best fit for the parameters B and n
vary in the considered equivalent plastic strain rate and temperature ranges, i.e.
how different are the power forms of the considered hardening functions. As a
matter of fact, the LYS and OPTLYS approaches calibrate the parameters B and n
only by considering the form of the experimental hardening function obtained by
testing the material at the reference conditions. For the case under examination,
this hardening function is the one at the equivalent plastic strain rate of 0.001 st
and at the temperature of 77 K. In fact, the LYS and OPTLYS fittings of the plastic
flow are very good for these conditions, but then become worse for the other
hardening functions. The more the plastic flow at a given equivalent plastic strain
rate and at a given temperature deviates from its form at the reference conditions,
the more modeling errors are introduced. The LYS and OPTLYS trends reported in
Figs. 36 to 44 confirm these considerations, by proving also that the plastic flow
prediction errors may actually be heavy.

The EPS calibration strategy allows for minimizing the modeling errors
throughout the equivalent plastic strain ranges, by considering data provided only
by those hardening functions which refer to at least one reference condition,
whether it is the reference equivalent plastic strain rate or the reference
temperature. As a result, the plastic flows are better modeled for these hardening
functions, while errors may be introduced in the modeling of the other hardening
functions. The OPTEPS calibration strategy extended the EPS calibration strategy
by considering all experimental data. As a result, the fit to the plastic flows is a
compromise between the plastic flows of all the made available hardening
functions. The GOPTEPS calibration strategy further generalizes the OPTEPS
calibration strategy by allowing 7 out of the 8 Johnson-Cook parameters to be
optimized. As a result, its trends provide the best overall fit for all the experimental
made available hardening functions. The GOPTEPS calibration strategy capacity to
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better model the plastic flows throughout the equivalent plastic strain rate and
temperature ranges is partially due to the fact of avoiding to calculate the
parameters B and n by relying on the plastic flow at the reference conditions only,
but rather by considering how to best fit all the experimental made available plastic
flows, through a power form. This is the reason why the GOPTEPS -calibration
strategy provides the worst fit for the plastic flow at the reference conditions (0.001
st and 77 K) but it is also one of the reasons why it provides the best overall fit to
the plastic flows in the other conditions. However, since the parameters B and n are
constant, i.e. they are not functions of the equivalent plastic strain rate and the
temperature, the more the plastic flows trends at various equivalent plastic strain
rates and temperatures are different, the more modeling errors are inevitably
introduced.

The EPS, OPTEPS and GOPTEPS calibration strategies present the problem of
possibly incoherently model the lower yield stresses, since all these calibration
strategies do not assign a privileged role to the lower yield stresses (as the LYS
and OPTLYS calibration strategies do), but they are considered as any other value
in the plastic flow. The EPS, OPTEPS and GOPTEPS trends in Figs. 36 to 44
confirm these considerations, by proving also that the lower yield stress prediction
errors may be heavy. The fact of incoherently model the first yielding implies the
relevant problem of introducing an unwanted error in the determination of the
transition from the elastic phase to the plastic phase, an aspect that can imply
heavy errors in the strain computations. In particular, large errors in the evaluation
of the plastic strain may cause heavy problems in the computation of damage and
failure, at least for those damage models which mainly rely on the equivalent plastic
strain, like, e.g., the Johnson-Cook damage and failure model. On the other hand,
even if the lower yield stresses are predicted with bad coherency, if the hardening
functions are capable to quickly improve their fitting and get near to the
experimental trends, then the error in the transition from the elastic to the plastic
phase may be not too harmful. In general, it is always necessary to carefully check
the errors in the lower yield stress predictions when the calibration strategy adopted
is either the EPS, the OPTEPS or the GOPTEPS, in order to be aware of the
presence of possible errors of heavy magnitude.

Another important consideration regards the easiness of calibration, i.e. the
number of calculations that each procedure needs in order to get the Johnson-Cook
parameters and also the possible necessity of experimental data treatment. In this
regard, the simplest calibration strategy is certainly the LYS, which requires only a
regression (for determining B and n) together with the simple calculations involved
in the determination of the parameters C and m. The OPTLYS calibration strategy
involves heavier calculations, due to the fact that an overdetermined nonlinear
system is required to be solved. However, this system has only 2 unknowns
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(parameters C and m) and refers only to the single points at the lower yield stresses
and therefore it does not involve a lot of equations. The great advantage of the LYS
and OPTLYS calibration strategies is the fact that inverse analyses of the
experimental hardening functions are not necessary, since these approaches utilize
only experimental data at the lower yield stresses, for which structural effects can
actually be considered as irrelevant.

The procedure necessary to carry-out the EPS calibration strategy is a little
heavier, due to the fact that more regressions need to be considered in order to
determine the parameters C and m. No overdetermined nonlinear systems need to
be solved. Anyway, the main burden here is the fact that the experimental
hardening functions need to be treated through inverse analyses, in order to purify
results from structural and thermal effects, which are not negligible if data
throughout the tested equivalent plastic strain ranges are considered. This aspect
implies the necessity to use FEM codes. The OPTEPS calibration strategy further
increases the number of calculations to be performed, since it also requires the
solving of an overdetermined system of nonlinear equations. This system has only
two unknowns (parameters C and m) but involves almost all the made available
experimental data, intended in terms of couples of yield stress and corresponding
equivalent plastic strain values, or at least a part of them, if it is deemed that
considering only a part of this data is enough to properly represent the material
behavior. Finally, the GOPTEPS calibration strategy further complicates things by
increasing the number of experimental data to be considered and by raising from
two to seven the number of unknowns in the overdetermined system, resulting in a
problem that is more difficult to solve. All these aspects relative to the different
requirements for the calibration of each strategy have contributed in making some
calibration strategies more popular than the others. More in detail, the LYS
calibration strategy appears to be the most popular, by far, due to its readiness of
execution. The OPTLYS calibration strategy seems to be almost unused, while the
EPS approach appears to be more known. Seemingly, the OPTEPS calibration
strategy is almost unknown, while the GOPTEPS calibration strategy appears to
have an average popularity.

Another important aspect pertinent to the choice of which calibration strategy
shall be adopted is relative to the quantity of experimental data that are made
available. As instance, if the plastic flows are not accessible or if the only known
plastic flow is that referring to quasi-static conditions, and only lower yield stresses
data are available, only the LYS and OPTLYS calibration strategies are adoptable.
On the other hand, if plastic flows data are available, it is possible to choose
between the five calibration strategies. In this regard, the following considerations
appear to be of utter importance. In order to thoroughly investigate the material
behavior, it is necessary to carry-out experimental tests, i.e., to obtain hardening
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functions, at several different equivalent plastic strain rates and temperatures, with
the aim of covering all the ranges of interest with enough resolution. This is the only
way that allows to understand the real material behavior in such ranges, and the
more the equivalent plastic strain rate and temperature ranges involved are wide,
the more this aspect appears to be relevant. It is quite common to see calibrations
of the Johnson-Cook model which rely on very few experimental data, and in
particular by considering hardening functions only at two different equivalent plastic
strain rates and at two different temperatures. Of course, in such cases the
Johnson-Cook model provides very good fitting to experimental data, and this is
due to the fact that the strain rate and temperature terms of the model can exactly
fit two points in the equivalent plastic strain rate and temperature ranges. But
however, the real material behavior outside of the ranges near the two points
remains undetermined and may be quite different from the Johnson-Cook model
predictions, as just shown in this chapter. Furthermore, it is quite common to fix a
priori the values of the reference equivalent plastic strain rate and the reference
temperature and then carry-out experimental tests which always refer to at least
one reference condition, since this approach allows to calibrate the model through
the LYS or the EPS calibration strategies, which are the most popular ones.
However, such approach does not involve investigations of the material under
conditions in which both the equivalent plastic strain rate and the temperature are
different from their reference values. On the basis of the results and considerations
pointed-out in this chapter, skipping this investigation may not be optimal, as the
real material behavior in such conditions may be quite different from the prediction
of a Johnson-Cook model calibrated through the LYS or EPS strategies, as clearly
shown in Figs. 36 to 44. As a matter of fact, complicated dependencies of the
material behavior on the equivalent plastic strain rate and on the temperature may
not be revealed. Further experimental investigations of a material may indeed
reveal behaviors of such kind. As instance, the experimental data considered for
applying the calibrations introduced in the present chapter, i.e. the data taken from
Nemat-Nasser and Guo, 2003, present a more complicated material dependence
on the equivalent plastic strain rate and on the temperature. In fact, if data at 500 K
are introduced in the analysis, the yield stress does not strictly increase with the
equivalent plastic strain rate. Therefore, the more experimental data are
considered, the more the material behavior is known but also the more the
Johnson-Cook model may present difficulties in fitting complicated material
behaviors.

Regarding the obtainment of experimental data, some considerations about the
possibility of using Taylor test data to calibrate the Johnson-Cook model are made
in the following. Taylor tests can be carried-out with the aim of obtaining data at
various equivalent plastic strain rates. However, the experimental data obtainable
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from the Taylor test may be biased by important structural effects. As stated above,
the calibration of the Johnson-Cook parameters relies on the use of experimental
data intended in terms of hardening functions, i.e. curves that relate the yield stress
to the equivalent plastic strain. An inverse analysis is necessary in order to obtain a
hardening function from Taylor test impact data. However, comparing to Hopkinson
bar data, Taylor test results appear to be less prone to be treated with FEM inverse
analysis. This aspect is related to the fact that Hopkinson bars, either compressive
or tensile, produce more homogeneous equivalent plastic strain, equivalent plastic
strain rate and stress fields in the specimen. Furthermore, the temperature control
during a Taylor test may present difficulties. A specimen may be heated before
being fired against the rigid target, but this process may be difficult to be realized in
practice and however does not allow to control the specimen temperature
immediately before the impact. In addition, Taylor test data may not be indicative of
the material behavior up to fracture, as it is impossible to determine a fracture point
in such a test.

All these aspects increase the structural complications involved in the analysis of
Taylor test experimental data. Despite these problematics, some authors proposed
a procedure to determine the Johnson-Cook parameters from such kind of tests.
Among others, references that consider this topic are Johnson and
Holmquist, 1988, Johnson and Holmquist, 1991, Allen et al., 1997, and Rule, 1997.
The approaches presented in these references rely on the use of some structural
data accessible from Taylor test impact results, like the specimen change in
diameter and length, or the nature of the whole deformed shape. Anyway, it is
worthwhile to point-out that these approaches should be performed with particular
attention, due to possible mistakes introduced when trying to relate structural data
to pure material behavior.

In this view, the present work relies on the procedure stated above, i.e. high
strain rate data are assumed to be Hopkinson bar data. However, if there are Taylor
test data available, these data could be used as a structural test of an already
calibrated Johnson-Cook model. More in detail, the point here is that of carrying-out
FEM simulations on the available Taylor impact data and see how coherently the
Johnson-Cook model may fit the data, thus providing a validation of an already
calibrated model. Assessments of such kind have been presented in many
references, e.g. Johnson and Cook, 1983, Johnson and Holmquist, 1988, and
Holmquist and Johnson, 1988, 1991. However, comparisons between FEM and
experimental Taylor test results are usually done by comparing structural quantities,
such as the specimen diameter or length changes. The FEM computation of these
structural parameters depends on many aspects, among which the Johnson-Cook
predicted hardening functions. Furthermore, it may be that most of the Taylor test
specimen could be subjected to equivalent plastic strain rates and temperatures for
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which the Johnson-Cook model provides quite coherent results, therefore producing
good FEM simulations of the Taylor test, but this result does not ensure the
calibrated Johnson-Cook model to be capable of providing good predictions
throughout the equivalent plastic strain rate and temperature ranges of interest.
Therefore, even if the calibrated Johnson-Cook model under consideration is
capable to provide good results in fitting Taylor test data, its validity should be
further checked. In particular, it appears that the only procedure capable to clearly
identify the coherency of the model is that of comparing the Johnson-Cook
predicted hardening functions against the available experimental hardening
functions, as done in Figs. 36 to 44, since this comparison considers exactly what
the Johnson-Cook model predicts, i.e. hardening functions.

A last aspect to be considered for choosing which calibration strategy shall be
adopted regards whether the particular application in which the model is used is
characterized by deformations during which the material undergoes large
equivalent plastic strain or not. In the latter case, the adoption of the LYS or
OPTLYS calibration strategies shall be favored, while in the former the EPS,
OPTEPS or GOPTEPS calibration strategies should be favored. It may then be said
that there does not exist a best calibration strategy in absolute terms, but rather that
the best choice depends on many aspects relative to each specific case. Basically,
it is possible to choose where to accept errors, but not really to avoid them. Only in
very lucky cases the material behavior is actually well fit by the Johnson-Cook
hardening function, namely cases in which the natural logarithm and the power
dependences of the yield stress on the dimensionless equivalent plastic strain rate
and on the homologous temperature are respected, together with the fact of having
the parameters B and n independent from the equivalent plastic strain rate and the
temperature.

In cases in which the Johnson-Cook model fits very poorly the experimental
data, it may be worthwhile to consider a replacement of either the strain rate term or
the temperature term, or both, in order to alleviate the Johnson-Cook first issue.
Beyond this aspect, following Chapter 3 introduces a generalization of the Johnson-
Cook model that appears to be capable of providing always better results, thanks to
a mitigation of the second Johnson-Cook issue.

2.2.2. Zerilli-Armstrong Model

The wording Zerilli-Armstrong strength model refers to the hardening function
proposed in Zerilli and Armstrong, 1987. The authors aimed at an improvement of
the Johnson-Cook strength model, Eqg. (28), by formulating a more sophisticated
hardening function. As for the Johnson-Cook model, particular attention was paid to
the necessity of maintaining a good predisposition to FEM codes and hydrocodes
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implementations, and also keeping the capabilities to fit material data over wide
ranges of equivalent plastic strain rates and temperatures. The authors proposed a
critical review of the Johnson-Cook hardening function. In particular, considerations
relative to incoherencies due to the total empirical nature of the model were
pointed-out.

The framework of the Zerilli-Armstrong model consists in the classic
elastoplastic model already used for the Johnson-Cook model. However, the
strength model proposed in Zerili and Armstrong, 1987, relied on some
micromechanical considerations. The authors proposed a form for the evaluation of
the yield stress as a function of the equivalent plastic strain, the equivalent plastic
strain rate and the temperature, as for the Johnson-Cook model, but it was also
stated that the atomic structure of the material does have an effect on the
determination of the hardening laws. Indeed, the presented strength model was
based on considerations stemming from dislocation mechanics. Following this
statement, the two authors presented a model in which some microstructural
parameters found place. More in detail, a hardening function suitable for face
centered cubic metals and another hardening function suitable for body centered
cubic metals were introduced. They are respectively reported in the following
equations

§=C,+C, fg, & T T kil (47)
s=C,+C, rpCaT+C, TN, +C, E,? +kEL . (48)

In these equations, the material parameters are represented by Cy, C;, C,, Cs, Cy,
Cs, k, L and n. More in detail, k indicates the so-called microstructural stress
intensity, while L denotes the material average grain diameter. The remaining 6
parameters are to be determined from experimental investigations. Reviewing the
procedure necessary to calibrate these parameters is not an aim of the present
work.

As shown in Egs. (47) and (48), the two hardening functions introduce different
dependences on the equivalent plastic strain. In particular, the hardening function
for face centered cubic metals implies a square root dependence, while the
hardening function for body centered cubic metals implies a more general
exponential dependence. Moreover, the yield stress dependence on the equivalent
plastic strain rate and on the temperature is combined in an exponential fashion.
The microstructural parameters, i.e. the microstructural stress intensity and the
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material average grain diameter, are considered to act in the same manner for both
hardening functions.

Zerilli and Armstrong, 1987, proposed a calibration of the new model on the
same experimental data used and presented in Johnson and Cook, 1983, in
particular by relying on two of the materials tested therein, i.e. OFHC copper and
Armco iron. The model parameters for these two materials were presented as well.
The Zerilli-Armstrong model was also implemented into the FEM code EPIC-2. The
obtained results showed a good fitting to experimental data, better than that
determined by the Johnson-Cook hardening function.

An assessment of the results provided by the Johnson-Cook and the Zerilli-
Armstrong models is reported also in Holmquist and Johnson, 1988, in the context
of the computational simulations of Taylor tests. The Zerilli-Armstrong model
showed a better agreement with experimental measurements. Holmquist and
Johnson, 1991, extended this analysis by introducing in the study the Holmquist
and Johnson modification of the original Johnson-Cook model, namely Eq. (29).
This last model did not determine conspicuous differences, comparing to the results
obtained with the other considered strength models. Samantaray et al., 2009,
provided a comparison of the outcomes from the Johnson-Cook model, a so-called
modified Zerilli-Armstrong model and another strength model, with the aim to
predict elevated temperature flow behaviour in a modified 9Cr-1Mo steel. It was
shown that the Zerilli-Armstrong model provides better results comparing to the
Johnson-Cook model, throughout the equivalent plastic strain, the equivalent plastic
strain rate and the temperature tested ranges. Lin and Chen, 2010, presented an
application of the Johnson-Cook model and the Zerilli-Armstrong model to an high-
strength steel, by considering the temperature range between 850 K and 1150 K
and equivalent plastic strain rates ranging from 1 s* to 50 s™. Both strength model
predictions showed deviations from the experimental data. In this context, a
combined Johnson-Cook and Zerilli-Armstrong model was presented. The model
was capable to provide somehow better results. Gupta et al., 2013, presented a
comparison between the Johnson-Cook model, the Zerilli-Armstrong model and
other strength models, showing that the Johnson-Cook model provided the worst fit
to some available experimental data.

This very brief review indicates only some of the many applications of the Zerilli-
Armstrong strength model that can be found in the literature. However, based on it,
it may be said that the Zerilli-Armstrong model appears to be capable to provide
improvements on the modeling coherency, when comparing to the Johnson-Cook
model. On the other hand, the parameters of the model require the availability of
more information on the considered material. In particular, the determination of the
micromechanical related parameters may not be straightforward in some cases.

90



Further considerations and developments on the Zerilli-Armstrong model may be
found in Meyers et al., 2002.

2.2.3. Steinberg-Cochran-Guinan and Steinberg-Lund Models

The wordings Steinberg-Cochran-Guinan model and Steinberg-Lund model refer to
the two strength models proposed in Steinberg et al., 1980, and Steinberg and
Lund, 1988, respectively. The Steinberg-Lund model is a generalization of the
Steinberg-Cochran-Guinan model. A brief review of the Steinberg-Cochran-Guinan
model is proposed below, followed by a review of the Steinberg-Lund model.

The Steinberg-Cochran-Guinan model was developed with the aim of fitting the
behavior of metals subjected to very high strain rates. In particular, the model was
conceived with the target to fit experimental data at equivalent plastic strain rates
equal or greater than 10° s, approximately. At these conditions, the equivalent
plastic strain rate influence on the yield stress appears to be constant, i.e. the yield
stress does not change anymore if higher equivalent plastic strain rates are
involved. The point here is that, although the yield stress increases with the
equivalent plastic strain rate, it does not appear reasonable to expect it to do so
without any limit. In particular, based on shock wave experimental results presented
by the same authors (Steinberg et al., 1980), it was assumed that when the
equivalent plastic strain rate value of 10° s™ is reached, the material behavior can
effectively be considered as rate-independent. The authors related the aspect of
having a rapid decrease of rate dependent effects with increasing equivalent plastic
strain rate to the fact that this kind of phenomena implies also a strong temperature
increase, which may actually melt the material. As a matter of fact, rate dependent
effects in liquids appear to decrease exponentially with temperature. A similar
strong temperature dependence was hypothesized for shocked solids. It is
worthwhile to note that other references pointed-out this same consideration. As
instance, Wilkins and Guinan, 1973, presented experimental data that showed the
manifestation of a critical equivalent plastic strain rate beyond which the material
behavior appears to be rate-independent. This statement was sustained also by
some computational simulations of high speed Taylor tests.

Comparing to the Johnson-Cook and the Zerilli-Armstrong models, the
Steinberg-Cochran-Guinan model introduces more assumptions in order to
coherently model such very high strain rate behaviors, then resulting in a more
complicated framework. The main aspect considered in Steinberg et al., 1980, was
the fact that both the shear modulus and the yield stress are functions of the
pressure and the temperature, and in particular they increase with increasing
pressure and decrease with increasing temperature. More in detail, the model does
not consider the shear modulus G as constant with the pressure, the temperature
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and the equivalent plastic strain rate, but rather it considers G as a function of such
variables. The same assumption is made for the yield stress. The forms of these
two functions were created based on experimental observations. Regarding the
shear modulus, the authors were capable to collect an extensive amount of data.
These measurements showed the pressure and temperature variation of the shear
modulus, thus allowing to write down a relation between these parameters. The
relation for the shear modulus is reported in the following equation

G=G (l+—

f G [@T 300] (49)

In this equation, all the variables with the subscript O are intended at the
reference condition, which is defined as the state with temperature of 300 K, null
pressure and null equivalent plastic strain. Pressure and temperature are denoted
by p and T, respectively. Partial derivatives of the shear modulus with respect to the
pressure and the temperature, evaluated at the reference state, are required. The
symbol n denotes the so-called compression, defined as the initial specific volume
Vo divided by the current specific volume v, as indicated in the following equation

n==0. (50)
Eqg. (49) has been conceived with the aim of following both experimental and
theoretical observations. In particular, at low pressures, say lower than 2 GPa, the
shear modulus G varies linearly with pressure. At ultrahigh pressures, the Thomas-
Fermi theory (see, e.g., Lieb and Simon, 1977, for a description of such theory)
states that the shear modulus is proportional to the parameter ) raised to the power
4/3. Steinberg et al., 1980, presented considerations about the fact that Eq. (49) is
actually capable to respect both conditions with good accuracy, showing how this
equation owns appropriate limiting behavior at both low and high pressures.
Furthermore, Steinberg et al., 1980, stated that, for many important engineering
materials, the shear modulus G decreases nearly linearly with temperature. This
linear dependence may not be true anymore when the melting temperature is
approached. However, Eq. (49) can be used with the adoption of a linear shear
modulus dependence on temperature, up to the melting limit, thus allowing to
evaluate the shear modulus derivative with respect to the temperature as a
constant. This aspect was considered acceptable by the authors considering that
Eqg. (49) shear modulus temperature dependent term is deemed to be typically the
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10% of the pressure dependent term, and therefore the precision of its
determination is not absolutely critical.

The Steinberg-Cochran-Guinan model introduced also a hardening function. As
done for the shear modulus, the effects of the pressure and of the temperature
were considered, together with a dependence on the equivalent plastic strain. The
proposed hardening function is reported in the following equation

:§0(1+5[Q§p+§pi)) [E %Bg;

The proposed hardening function is based on a power dependence on the

g\% & aT (T - 300] (51)

equivalent plastic strain, reported in the first round parentheses. The parameter §O

represents the lower yield stress at the reference conditions, while B and n are
hardening parameters used to fit the experimental data. If necessary, an initial
equivalent plastic strain can be introduced, denoted by Epi. This option may be

useful to account for plastic deformations that the material might have undergone,
like rolling or machining, although usually this parameter is considered to be null.
The power form was adopted since it appeared as the one capable to best fit the
metals tested in Steinberg et al., 1980. Furthermore, the authors highlighted its
consistency with the indications pointed-out in Wilkins and Guinan, 1973, in which
Taylor tests capable to reach equivalent plastic strain rates equal to 10°> s™* were
presented, by considering several metals.

The second round parentheses include the terms that regulate the yield stress
dependence on the pressure and on the temperature. It is conceived in a form very
similar to the one adopted for the dependence of the shear modulus on these same
two variables. This last aspect stems from some assumptions due to the lack of
definitive data relatively to the yield stress dependence on the pressure and the
temperature. More in detail, the temperature dependence of the yield stress is
assumed to be equal to the temperature dependence of the shear modulus. This
point justifies the presence in Eq. (51) of the partial derivatives of the shear
modulus with respect to the temperature, evaluated at the reference state. The
pressure dependence of the yield stress is instead modeled through the partial
derivative of the yield stress with respect to the pressure itself, calculated at the
reference state.

In order to further enhance the strength model, Steinberg et al., 1980, coupled
Egs. (49) and (51) with a simply melting model. This aspect allowed for accounting
for the solid-liquid phase transition of shocked solid materials. The same reference
presented some interesting computer simulations of shock wave experiments, in
which the model appears to predict very well the experimental data. Further
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computational applications of the model may be found in Steinberg, 1987, together
with a discussion of some of its deficiencies. Further considerations about the
model can be also found in Steinberg and Sharp Jr., 1988.

Following Steinberg et al., 1980, it is also possible to modify Egs. (49) and (51)
by replacing the temperature with the internal energy, in order to make these
equations more suitable for implementations in FEM codes or hydrocodes that
operate with energy rather than temperature. The link between the temperature and
the energy can be set by defining the temperature as the difference between the
total energy E and the energy along the zero Kelvin isotherm, E., divided by the
specific heat C, as reported in the following equation

T= <. (52)

Further information about the quantity E, and the thermodynamic considerations on
which it is based may be found in Guinan and Steinberg, 1974, and in Steinberg et
al., 1980.

Steinberg and Lund, 1988, presented a hardening function that aimed at
replacing Eq. (51). The point was that of extending the Steinberg-Cochran-Guinan
hardening function in order to fit also mid and low equivalent plastic strain rates
regimes. In particular, the target was that of extending the validity of the Steinberg-
Cochran-Guinan model to fit experimental data over an equivalent plastic strain rate
range spanning from 10 s™ to 10° s™. The Steinberg-Lund model is reported in the
following equation

s=(s e, T)+s 5 ) a2 (53)

G
G, 0Tl

In this equation, §H{§p} represents a hardening term that is intended to be an

undetermined function of the equivalent plastic strain. For instance, it may be
conceived in the same power fashion adopted in the Steinberg-Cochran-Guinan

model. The symbol §A denotes a not better specified athermal part of the strength

model. The symbol §T{§p,T} denotes a so-called thermal part of the strength

model. Following Hoge and Mukherjee, 1977, Steinberg and Lund, 1988, related
this term to the following expression of the equivalent plastic strain rate
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In this equation, p represents the dislocation density, a the distance between
Peierls valleys, b the Burgers vector, v the Debye frequency, w the width of a kink
loop, 2-U, the energy necessary to form a pair of kinks in a dislocation segment of
length L, k the Boltzmann constant, D the drag coefficient and Y, the Peierls stress.
As usual, temperature is denoted by T. Eq. (54) is conceived together with the
assumption that the thermal part of the stress is limited to be lower than the Peierls
stress.

In Steinberg and Lund, 1988, the model was utilized in a series of computational
simulations that showed a good coherence of the computed results with
experimental data, even at low strain rates. Beyond these results, Zocher et
al., 2000, presented a comparison of the results provided by the Johnson-Cook
model, the Steinberg-Cochran-Guinan model and another strength model in the
context of computational simulations of Taylor tests, carried-out with the FEM code
CHAD (Computational Hydrodynamics for Advanced Design). The outcomes
proved that the Johnson-Cook model provides the worst fit to experimental data,
while the Steinberg-Cochran-Guinan model is actually capable to fit the data with
very good coherency.

As a conclusion, it may be said that the Steinberg-Cochran-Guinan and the
Steinberg-Lund strength models are capable to provide good modeling capabilities
when very high strain rates, pressures and temperatures are involved, resulting in
more coherent results when comparing to the other strength models considered in
this work, namely the Johnson-Cook and the Zerilli-Armstrong models. On the other
hand, these advanced models require the knowledge of a number of parameters
that may be difficult to be determined in practice, in particular for the Steinberg-
Lund model. To this end, a significant reference is Steinberg, 1996, in which the
Steinberg-Cochran-Guinan model parameters are provided for a considerable
number of materials.

2.3. Equations of State

Following Lemons and Lund, 1999, Equations Of State (EOS) characterize specific
systems. This statement means that an equation of state is a function that involves
two or more variables representative of the state of a material. As example, the
ideal gas equation of state is used to model behavior of gases at low densities, by
relating variables such as the relative volume, the pressure and the temperature.
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While EOS for low density gases are usually similar, EOS for solids do exhibit a
great variety of forms. This aspect is related to the fact that molecular lattices of
solid matter may exist in numerous different forms, resulting in several classes of
materials, like, e.g., metals, ceramics, composites and so on. For these reasons,
EOS for gases are much more known than EQOS for solids. Equations of state for
solids can be effectively represented through analytical forms. In the present work,
equations of state for solids are of specific interest. In particular, such EOS are
intended here as functions capable to represent the volumetric material behavior of
solid materials.

An equation of state for solids may involve several parameters, such as some
measures of the volumetric strain, the temperature, the specific heat and possibly
other thermodynamic parameters representative of the material behavior. As stated
in Zukas, 2004, the parameters of EOS for solids are usually calibrated through
flyer plate impact experiments. As a matter of fact, practical restrictions limit both
the mass and the velocity of flyer plates. This aspect leads to the existence of a
technological upper limit for pressures experimentally investigable in solid matter.
This pressure value may be identified as in the neighborhood of 600 GPa, although
technological improvements keep on enlarging the capabilities of experimentally
investigating material responses. However, this limiting value is very large. It
actually exceeds the pressure conditions within the center of the Earth. Following
Asay and Shahinpoor, 1993, the use of plate impact experimental procedures
begun after 1955, both in USA and URSS scientific laboratories. Pressure
responses of virtually hundreds of condensed materials have been studied,
including elements, compounds, alloys, rocks and minerals, polymers, fluids and
porous media. The experimental procedures have required the use of both
conventional and nuclear explosives, or impactors launched with speeds exceeding
10 km/s.

The present thesis aims at briefly introducing two of the most popular equations
of state used for the modeling of high pressure behavior of metallic materials, i.e.
the Mie-Grineisen (Mie, 1903, and Gruneisen, 1912) and the Tillotson (Tillotson,
1962) equations of state. Moreover, a concise introduction to the Jones-Wilkins-Lee
EOS (Jones and Miller, 1948, Wilkins et al., 1965, and Lee et al., 1968) is
presented, in order to introduce an EOS capable of modeling the volumetric
behavior of detonation products of explosives. The treatment provided here does
not involve considerations on thermodynamic aspects and shock wave phenomena,
but aims simply at exposing the way in which the considered equations of state
model the pressure response of the materials.

Beyond the very concise introduction presented here, extensive treatments on
equations of state for condensed matter may be found, e.g., in Asay and
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Shahinpoor, 1993, Meyers, 1994, Fortov et al., 2004, and Zukas, 2004. A specific
treatment on equations of state for metals is provided in Rose et al., 1984.

2.3.1. Mie-Grlineisen Equation of State

The wording Mie-Griineisen equation of state is used to refer to a relation which
considers the pressure of a solid material as a linear function of its internal energy.
This equation of state is usually related to the work presented by Mie, 1903, and
Grineisen, 1912, although it may be linked to older references. Mendoza, 1982,
provided a review of the history of the Mie-Griineisen equation of state, presenting
the more important developments that led to the final form of the model, tracking
back to references published in the year 1843. Regardless of its history, the
popularity and importance of this equation of state has grown throughout the years
and nowadays it is widely used for the modeling of solids, under compressive
pressures up to a few hundreds of GPa, say without exceeding 1000 GPa.
Furthermore, it is sometimes used to model liquids, in particular when high
compressive pressures are involved, even though it was originally conceived with
the aim to model solid state matter. The Mie-Griineisen equation of state is reported
in the following relation

p:pref +ym[qE_Eref)' (55)

In this equation, ps and E.s denote respectively the pressure and the internal
energy evaluated in the same reference state, while p and E represent respectively
the pressure and the internal energy at a generic state. The material density is
denoted by p and y denotes the so-called Grineisen parameter, defined by the
following equation

on(g
ain(v)

y= (56)

In this equation, £ and v denote the atomic vibration frequency and the specific
volume, respectively. In general, a solid material possesses more than one atomic
vibration frequency. Grineisen, 1912, simplified the treatment by assuming these
frequencies to display the same value, denoted by &. This assumption allows to
define a single Griineisen parameter, as defined in Eq. (56). Otherwise, further
Griineisen parameters would be needed. For a general treatment on this aspect,
see, e.g., Meyers, 1994, in which it is also possible to find a derivation of the
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Griineisen parameters starting from statistical assumptions on the atomic state of
solid matter.

As shown in Steinberg, 1981, the Griineisen parameter can be assumed to be
constant with temperature, at least up to a substantial fraction of the melting
temperature. It can then be assumed to be a function of the sole specific volume.
Following Heuzé, 2012, it is possible to express the Griineisen parameter by using
other thermodynamic variables, such as the temperature. Moreover, Zukas, 2004,
presented a further expression of the Griineisen parameter, whose importance
relies on the fact that it involves thermodynamic parameters that are usually known,
such as the bulk modulus, denoted by K, the specific heat, denoted by C, and the
thermal expansion coefficient, denoted by a. This relation is exposed as follows

3 K [
= . 57
y 5T (57)

It is recalled that, under the assumption of isotropic behavior, the bulk modulus K is
linked to the Young modulus E and the Poisson’s ratio v through the following
classic relation

K :L. (58)
3(f1-2m)

The Mie-Grineisen equation of state is sometimes said to be an incomplete
equation of state, due to the fact that it is expressed in such a way that the pressure
becomes a function of a volumetric strain measure and of the internal energy.
Therefore, it does not allow to access neither temperature nor entropy. In order to
make it a complete or general EOS, two other forms need to be specified, i.e. a
form in which the temperature is a function of the volumetric strain and the internal
energy and a form in which the entropy is a function of these same two variables.
Details on how to get these two further forms of the Mie-Griineisen equation of
state and about their thermodynamic consistency can be found in Heuzé, 2012, and
in Menikoff, 2012.

The Mie-Griineisen equation of state is extensively used in FEM codes and
hydrocodes. In these contexts, the EOS is elaborated in a structure more suitable to
be used within such codes, which involves two forms that separately compute the
pressure under compression and under tension. As exposed in Steinberg, 1996, the
following form is usually adopted for the description of compressive volumetric
behavior
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Several additional parameters appear in this equation. The parameters y, and pg
denote the Griineisen parameter and the density at a reference state, respectively.
The so-called first order volume correction to the Griineisen parameter is denoted
by a. The non-dimensional parameters S;, S, and S3 characterize the volumetric
material behavior and are obtained from plate impact experiments. The parameter p
describes the volumetric strain of the material in the form defined by the following
equation

u=Lt -1, (60)
Po

where p denotes the current density. The parameter C denotes the bulk sound
speed, which is a function of the longitudinal and transversal sound speeds in the
material, denoted by C, and Cs respectively, as indicated by the following equation

_ |2 4 0
c=,[C; -3z 61)

When tensile volumetric behavior is involved, the equation of state assumes the
following form

p=p, [T Gu+y, PE. (62)

Further information on the Mie-Griineisen equation of state can be found in
many references. Among others, applications of the Mie-Griineisen EOS to the
modeling of water are provided in Steinberg, 1987. A treatment on the
thermodynamic stability of the Mie-Griineisen equation of state can be found in
Segletes, 1991, together with some considerations on its implementation in FEM
codes and hydrocodes. Meyers, 1994, provided a discussion on the topic, including
also some considerations about the use of the Mie-Griineisen equation of state for
the modeling of predicting the shock response of porous materials. Parameters of
the Mie-Grlneisen equation of state for several materials can be found in
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Steinberg, 1996. Interesting considerations are provided in Lemons and
Lund, 1999, in which the use of the Mie-Griineisen EOS for condensed matter at
high temperatures is discussed. Further information can be found in Zukas, 2004,
and in the extensive treatment provided by Nagayama, 2011.

2.3.2. Tillotson Equation of State

Tillotson, 1962, introduced an equation of state conceived with the aim of modeling
metals subjected to ultra-high pressures and phase changes, such as melting or
vaporization.

The followed strategy was that of considering more equations of state, in order
to coherently model the material behavior under quite different pressure loadings.
More in detail, it was pointed-out that the Mie-Griineisen equation of state is
capable to model with enough coherency compressive material behavior up to
pressures of 500-1000 GPa. However, it was also pointed-out that the assumption
of considering the Mie-Gruneisen coefficient as a function of the sole specific
volume (see Eq. (56)) may no longer be justified, in particular at increasing internal
energy. As a consequence, beyond pressure values of 500-1000 GPa, other
models were assumed to be more coherent, with particular reference to the
Thomas-Fermi statistical theory of atoms (see, e.g., Lieb and Simon, 1977). It was
recognized that such theory provides poor results in the modeling of solid materials
subjected to pressures lower than 1000 GPa, but it was also pointed-out how this
theory, and its modifications, are actually capable to properly model the observed
material behavior under compressive pressures higher than 1000 GPa.

As a matter of fact, Tillotson, 1962, considered extreme loading conditions, in
terms of compressive pressures. For instance, it was pointed-out how the impact of
tungsten projectiles against tungsten targets, up to impact velocities of 100 km/s,
can result in enormous peak pressures of 90000 GPa, i.e. 900 Mbar. In this context,
the developed model aimed at achieving the capability to coherently model such
hypervelocity impacts, considering a range of compressive pressures that goes
beyond the modeling capacity of the Mie-Grlineisen equation of state. Following
these considerations, the author classified the compressive pressures in two
ranges, the first one (called “low pressures”) lower than 1000 GPa and the second
one (called “high pressures”) exceeding this value.

The proposed equations of state considered basically two regimes. The first one
deals with material not yet melted nor vaporized. It considers the following form
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In this equation, a, b, A, B and E, are material parameters to be determined from
experimental data, while p, E, p and u have the same meaning previously assigned
to the description of the Mie-Griineisen EOS. This equation of state is conceived
with the aim to model both positive (expansive) and negative (compressive)
volumetric behavior of metallic solid materials.

The modeling of metallic materials in which a phase change has occurred was
assumed to be described by another equation of state, which considered the solid
material as being transformed into a gas. The following form was proposed

p=alElp+ béE—m+AHuE3_B[EVV:O] e %V%’/OJ : (64)
&, e

In this equation, two additional material parameters are introduced, denoted by a
and . These two variables control the rate of convergence of Eq. (64) to the ideal
gas equation of state. See Tillotson, 1962, for further information on this aspect.

The equations of state defined by Eqgs. (63) and (64) provide a compromise
between the Mie-Griineisen equation of state, at low pressures, and the Thomas-
Fermi theory, at high pressures. Tillotson, 1962, declared this approach to be
capable to provide results accurate to within 3% to 5%, below 500 GPa, and within
10% for all other pressures.

Beyond the few considerations presented in this brief overview, further
information on the Tillotson equation of state can be found in Tillotson, 1962, in
which thermodynamic motivations are presented, together with material parameters
relative to nine different metals and a relevant amount of experimental data. Further
considerations may also be found in Zukas, 2004.

2.3.3. Jones-Wilkins-Lee Equation of State

The Jones-Wilkins-Lee equation of state (also referred to as JWL equation of state)
is an empirical model used to describe the volumetric behavior of detonation
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products of explosives. Its development derives from the treatments proposed by
Jones, 1947, Jones and Miller, 1948, Wilkins et al., 1965, and Lee et al., 1968.

The JWL equation of state lies on empirical bases. Basically, it provides a
relation that allows to calculate the pressure of the gaseous products resulting from
the detonation of explosive materials. Jones and Miller, 1948, proposed the
following form for evaluating such pressure

p=ARRY-B+CIT. (65)

In this equation, v represents the relative volume, defined by the ratio of the current
volume and the initial volume, while p and T represent the pressure and the
temperature, as usually done. The parameters A, B, C and R need to be
determined from experimental measurements.

Wilkins et al.,, 1965, provided experimental investigations and theoretical
considerations. In particular, the equations of state of the high explosives PBX 9404
and LX04-01 were experimentally derived, by means of experiments conducted
with spheres of explosive materials. On the basis of the obtained measurements,
the authors proposed the following equation of state, which aims at describing the
pressure of the detonation products

__afo-1) __0 |pru , WE
p_VQEqQ_l_w)+BEé1 ijce + O (66)

In this equation, v and E denote again the relative volume and the internal energy.
The other parameters, i.e. a, Q, w, B and R, are to be determined from
experimental observations.

Lee et al., 1968, gathered the information provided by Jones and Miller, 1948,
and Wilkins et al., 1965, and further developed the treatment by extending the
experimental investigations and by enriching the model. The authors pointed-out
the capability of the model proposed in Wilkins et al., 1965, to accurately predict
expansions of detonation products, in particular during the early stages of such
processes. On this basis, the experimental investigations carried-out by Wilkins et
al.,, 1965, were extended by considering so-called cylindrical metal expansion
experiments, in order to further develop the model and in particular to make it
capable to coherently model large expansions of the detonation products, i.e. to
describe explosive processes throughout their evolution, even their latter stages.
Lee et al.,, 1968, proposed the following equation of state and referred to it as
Jones-Wilkins-Lee EOS
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In this equation, v and E denote again the relative volume and the internal energy.
The parameters A, B, R1, R, and w need to be determined from experiments. The
form of the Jones-Wilkins-Lee equation of state allows to impose two important
thermodynamic limitations at large expansions. First, this equation is capable to
keep a fix total available energy, thus avoiding unrealistic divergences. Such total
energy value is determined by assuming consistency with the chemical energy
made available by a specific explosive, which may be experimentally determined
through detonation calorimetry. Second, the Jones-Wilkins-Lee equation of state
implies the detonation process at large values of relative volumes to be ruled
basically by the value of the parameter w. Following experimental observations, the
authors limited this parameter to be greater than 0.2 and smaller than 0.4, in order
to avoid unrealistic modeling of explosions when large expansions of the detonation
products are involved. The authors claimed that the respect of these
thermodynamic criteria implies the fact that Eq. (67) should not only be useful for
engineering purposes but also serve as a description of the thermodynamic
behavior of expanding gases resulting from explosive detonations. Lee et al., 1968,
provided also the JWL parameters for ten explosives, together with a complete
tabulation of the obtained experimental results.

Beyond the very brief introduction presented here and the three main related
references, further information on the Jones-Wilkins-Lee equation of state can be
found in Baudin and Serradeill, 2010, in which a description of the equation of state
and its thermodynamic properties is presented, together with the proposal of a new
derivation of the EOS. Anyway, it is necessary to say that, in order to fully describe
the Jones-Wilkins-Lee equation of state from a thermodynamic point of view, the
Chapman-Jouguet theory needs to be introduced. This is not an aim of this brief
review. In this regard, pertinent treatments can be found in Chapman, 1899,
Sternberg, 1970, Cooper, 1996, Chéret, 1999, and Fickett and Davis, 2000.

2.4. Damage and Failure Models

Damage and failure models aim at extending the description of material behavior by
introducing criteria capable to account for the damage that the material has
undergone, up to a failure level. Such models are usually conceived by creating a
function of appropriate variables, like e.g. the equivalent plastic strain, whose
values determine the level of undergone damage, through a so-called damage
variable. Furthermore, limiting values on such variables can be set, with the aim of
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triggering material failure. Simple damage and failure models do not imply that the
damage variable may affect the value of some material parameters, such as its
elastic or elastoplastic stiffness. The target is only that of providing a variable
capable of indicating the amount of damage that the material has undergone,
together with a cut-off value which determines whether the material has failed or
not. More complicated models are instead capable to account for the variation of
material properties (such as stiffness) due to the accumulated damage.

In the context of high strain rate phenomena, several damage and failure models
have been proposed and developed. The present chapter aims at briefly introducing
some considerations regarding damage and failure models used in this work. In this
view, a short introduction to the so-called Johnson-Cook damage and failure model
is provided, together with some considerations about the so-called spall
phenomena.

It is recognized that the damage models introduced here are quite simple and
more elaborated models may actually be introduced within the realm of continuum
damage mechanics. In this regard, some considerations may be found in Carol et
al., 1994 and 2001. Furthermore, an interesting contribution is provided in Carol et
al., 2002, in which a damage model based on a volumetric and deviatoric
decomposition is presented. This formulation may fit well in the context considered
in the present work, i.e. a division of the constitutive model into its deviatoric and
volumetric parts, through strength models and equations of state, respectively.
Moreover, aspects relative to strain localization and localized damage are not
addressed in this work. In this regard, information may be found, e.g., in Bigoni and
Hueckel, 1991, Bigoni and Zaccaria, 1993, Loret et al., 1995, Rizzi, 1995, and Rizzi
etal., 1996.

2.4.1. Johnson-Cook Damage and Failure Model

Johnson and Cook, 1985, proposed a cumulative damage and fracture model
suitable for materials subjected to large strains, over a possible wide range of strain
rates, temperatures and stress triaxialities. As for the Johnson-Cook hardening
function, the willing was that of keeping the formulation well suitable for
implementations in FEM codes. Three different metals, i.e. OFHC copper, Armco
iron and 4340 steel, were analyzed through a high number of experimental tests,
which aimed at revealing the fracture strain, over certain ranges of equivalent
plastic strain rates, temperatures and stress triaxialities. Both tensile and torsion
tests were considered, together with investigations carried-out through a Hopkinson
bar. In order to explore high temperature behavior, ovens capable to properly heat
the specimens were used.
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Johnson and Cook, 1985, proposed to relate the cumulated damage to the value
of equivalent plastic strain occurred in the material. A cumulative scalar damage
parameter, denoted by D, was introduced. Assuming to divide the time of the
material evolution in timesteps, the increment of the damage parameter is then
calculated in each timestep. The cumulative damage is evaluated as the sum of the

ratios between the increment of the equivalent plastic strain, denoted by A€, and

a so-called equivalent plastic strain to fracture, denoted by Ef_ , In each timestep i,

for a total number of n timesteps. Therefore, the following relation is established

n_ A€

— Pi
D= z i (68)

i=1 p

The damage parameter D is defined in such a way that when its value is zero there
is no damage. On the other hand, when its value increases, the material damage
increases accordingly. When D reaches the value of 1 the material is assumed to
be completely damaged, thus triggering material fracture due to damage.

The equivalent plastic strain to fracture is assumed to be the equivalent plastic
strain value at which the material has reached complete damage, i.e. when it
fractures. This value varies in each timestep, since it is assumed to be a function of
the current conditions of equivalent plastic strain rate, temperature and stress
triaxiality. Indeed, the key point of this model is the definition of such equivalent
plastic strain to fracture. On the basis of the obtained experimental results, Johnson
and Cook, 1985, pointed-out that the equivalent plastic strain to fracture exhibited
an exponential dependence on the stress triaxiality, a natural logarithmic
dependence on the dimensionless equivalent plastic strain rate, Eq. (26), and a
linear dependence on the homologous temperature, Eq. (27). According to these
observations, the authors proposed the following formulation

3 T-T
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In this equation, x represents the current stress triaxiality, referred to the Cauchy
stress. The five parameters denoted by D;, D,, D;, D, and Ds are material
parameters to be calibrated through appropriate experimental tests. An important
point is the fact that Eq. (69) is assumed to be valid for stress triaxiality values lower
than or equal to 1.5. When the stress triaxiality exceeds this value, Eq. (69) may not
coherently predict the equivalent plastic strain to failure, due to the presence of
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large tensile pressures which may trigger fracturing mechanisms not considered by
such equation (e.g., spall fracture). Johnson and Cook, 1985, proposed a very
simple method to overcome this problem. When the stress triaxiality exceeds 1.5,
the equivalent plastic strain to fracture is no longer calculated with Eq. (69) but
rather it is evaluated by linearly interpolating through the value calculated by
inserting a stress triaxiality of 1.5 in this equation and a so-called minimum
equivalent plastic strain to fracture, to be determined experimentally. Further details
on this aspect can be found in Johnson and Cook, 1985. However, this approach
was recognized to be too simplifying and possibly capable to produce incoherent
results. Hence, when stress triaxialities higher than 1.5 are involved, another
damage and failure model should be considered, either by replacing the Johnson
and Cook model or adding to it.

Similarly to the Johnson-Cook strength model, the Johnson-Cook damage and
failure model is conceived in a multiplicative fashion. The three terms contained in
the three outer round brackets interact, with the aim of determining the value of the
equivalent plastic strain to fracture.

The first multiplicative term introduces the dependence of the equivalent plastic
strain to fracture on the stress triaxiality. Basically, this term enforces the equivalent
plastic strain to fracture to decrease as the pressure goes towards positive values,
since term Ds is usually negative. Actually, the stress triaxiality appears to play a
quite important role when high strain rates damage and failure need to be
assessed. In this regard, further considerations on the role of stress triaxiality on the
determination of the strain to fracture can be found, e.g., in Bao and
Wierzbicki, 2004 and 2005.

The second multiplicative term introduces a natural logarithmic dependence of
the equivalent plastic strain to fracture on the dimensionless equivalent plastic
strain rate. It is worthwhile to note that this term is formally equal to the strain rate
term of the Johnson-Cook hardening function, Eq. (28). This term is conceived in
such a way that when the current equivalent plastic strain rate is equal to the
reference equivalent plastic strain rate it becomes equal to one and therefore there
are no strain rate effects on the computation of the current equivalent plastic strain
to fracture. Beyond this aspect, this term determines an increase of the equivalent
plastic strain to failure when the equivalent plastic strain rate increases.

The third and last multiplicative term introduces a linear dependence of the
equivalent plastic strain to fracture on the homologous temperature. It is quite
similar to the temperature term of the Johnson-Cook hardening function, Eq. (28).
This term is conceived in such a way that when the current temperature is equal to
the reference temperature it becomes equal to one and therefore there are no
temperature effects on the computation of the current equivalent plastic strain to
failure.
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The procedure necessary for the calibration of the five parameters that appear in
the Johnson-Cook damage model is somehow similar to the one presented for the
determination of the parameters of the Johnson-Cook strength model. A review of
such procedure is not an aim of the present work. In this regard, further
considerations can be found in Johnson and Cook, 1985.

The authors evaluated their model by comparing its outcomes to independent
series of Taylor tests and biaxial tests. The obtained results proved that the fracture
occurs earlier comparing to the prediction of the model, thus proving some
modeling coherency problematics. However, as stated by its authors, the Johnson-
Cook damage and failure model should provide a coherency improvement
comparing to other fracture models based only on the value of the equivalent plastic
strain. Besides, the proposed model presents good capability to fit into
computational frameworks, since it utilizes variables that are usually readily
available in FEM codes, such as the equivalent plastic strain, the equivalent plastic
strain rate, the temperature and the stress triaxiality. The latter variable can be
evaluated after having computed the current pressure and the von Mises stress.
Moreover, it involves only one simple scalar damage variable.

Further considerations on the Johnson-Cook damage and failure model can be
found, e.g., in Xue and Wierzbicki, 2006. More sophisticated models may be
considered, such as, e.g., the model proposed in Abu Al-Rub and Voyiadjis, 2006,
and Voyiadjis and Abu Al-Rub, 2006. Evaluations on several damage and fracture
models can be found in Teng, 2004, Wierzbicki et al., 2005, and Teng and
Wierzbicki, 2006.

2.4.2. Spall Damage and Failure Models

Spall damage and fracture are phenomena due to the presence in the material of
positive pressure, i.e. tensile pressure. Rinehart, 1951, and Rinehart, 1952,
provided some of the first scientific analyses of such phenomena. Spall was
referred to as scabbing. In particular, spall phenomena were studied in relation to
the stresses produced in a body by exploding charges. Following Davison et
al., 1996, solids fracture when subjected to a tensile pressure of sufficient
magnitude. A typical manifestation of such conditions is due to the interaction of
shock waves in solids subjected to fast dynamic loadings. These conditions may
lead to tensile pressures of large magnitude and short duration, which causes the
formation of microcracks or voids in the interior of a material body, eventually
determining total fracture. Following Fig. 45 reports a component in which spall has
occurred.

107



Figure 45. Spall fracture in a three inches mild steel
plate subject to explosive loading (source Rinehart,1952).

Spall damage and failure can be experimentally investigated in different ways.
Most popular methods consist in plate impact and explosive loading experiments.
Davison et al., 1996, provided extensive information on these procedures and how
to experimentally produce spall fracture. However, spall strength may not be
straightforward to be identified and it usually does not generally correlate well to the
shear modulus or the yield strength, as stated in Cochran and Banner, 1977.
Despite these issues, several spall damage and failure models can be found in the
literature.

The simplest model consists only in setting-up a limiting tensile pressure and
enforcing the material not to exceed this value. This approach does not introduce
neither damage nor failure, but at least it is capable to limit the positive pressure in
the material, in order to contain the tensile hydrostatic resistance of the material.

A more coherent spall damage and failure model was introduced in Cochran and
Banner, 1977, resulting in one of the most popular models for describing such
phenomena. The authors conducted experimental studies on spall in uranium and
in few other metals, by carrying-out tests with a flyer plate fired by a light-gas gun
against a target plate, which forms the tested material. When a stricken specimen
spalls, stresses and displacements signals are produced, resulting in an
acceleration of the specimen free surface. It is then possible to obtain information
on the spalling properties of the material by measuring free-surface velocities of
tested specimens. The experimental tests were carried-out by using flyer plate
travelling at velocities of about 0.1 km/s, since this impact velocity is enough to
produce spall phenomena in uranium and in the other tested materials.

The authors proposed a simple model for coherently introducing the spall
phenomena in the simulations. The proposed model introduces a spall damage
variable denoted by D and defined as the ratio between the volume of microcracks
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V. and the area A in a given representative volume element, as reported in the
following relation

D:%. (70)

Clearly, the representative volume element must be large compared to that of
microcracks. Together with the introduction of such spall damage variable, the
authors considered the existence of a spall strength, which is defined as the stress
at which the material begins to spall. It can be measured through experimental
tests. After the material has reached such value, spall damage is considered to be
triggered. A simplifying approximation was introduced here. The spall damage
variable is calculated by assuming that all the volumetric expansion (i.e. positive
volumetric strain) that occurs after the spall strength has been reached actually
becomes microcracks volume. Therefore, the spall damage variable is directly
computed as a function of the volumetric expansion that the spalled material
undergoes. Furthermore, a critical spall damage value is introduced, in order to
regulate the maximum spall damage that the material can sustain before total
fracture occurs. On these bases, the Cochran-Banner model introduces only 2
material parameters, i.e. the spall strength and the maximum spall damage.

Cochran and Banner, 1977, tested such spall damage and failure model on their
experimental results, referring to uranium. The obtained experimental results were
presented, together with an accurate description of the experimental procedures
adopted for their achievement. A comparison between model predictions and
experimental data was carried-out. Excellent agreement between model predictions
and observed data was obtained, for different testing conditions.

Other spall damage and fracture models have been proposed by several
authors. Among others, Al-Hassani et al., 1997, proposed a model based on a non-
local view of spall damage and fracture, applicable to both ductile and brittle
materials, obtaining good agreement with experimental data. Clayton, 2003,
proposed a much more complicated spall model, considering a tungsten heavy
alloy. Cohesive failure models were employed, in order to represent intergranular
fracture at grain and phase boundaries. Chen et al., 2005, proposed a modification
of the Cochran-Banner spall model, by introducing some further considerations in
the model. The authors considered the same 2 material parameters introduced in
the original Cochran-Banner model, namely the spall strength and the maximum
spall damage.

Beyond this short review, further information on spall damage and failure can be
found in pertinent references. Among others, Schmidt et al., 1978, studied spall
damage and failure in the context of vulnerability of aerospace components,
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providing also relevant results on the temperature dependence of spall strength of
four metal alloys. Meyers and Aimone, 1983, provided a treatment on spalling of
metals which includes a discussion on several metallurgical aspects. Furthermore,
Cortes and Elices, 1995, provided experimental studies in aluminum, presenting
also numerical modeling of spall fracture, showing good agreement between model
predictions and experimental data. An extensive treatment on spall can be found in
Antoun et al.,, 2003. Other information can be found in Zukas, 2004, and
Kedrinskii, 2005.
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3. PROPOSAL OF A NEW STRENGTH MODEL. SPLIT JOHNSON-
COOK MODEL

In this chapter, a new strength model is introduced. This model is inspired by the
Johnson-Cook model (Johnson and Cook, 1983) and it is conceived in the same
framework. Namely, it consists in a hardening function that fits in the classic
elastoplastic context (see, e.g., Hill, 1950, Kachanov, 1971, Lubliner, 2006, and
Bigoni, 2012). It is referred to here as Split Johnson-Cook model, or also SJC
model. The aims are those of elaborating the original Johnson-Cook hardening
function in order to solve or mitigate the negative consequences due to the fact that
the equivalent plastic strain, the equivalent plastic strain rate and the temperature
effects on the yield stress are totally independent from each other. This aspect has
been described in Chapter 2, Section 2.2.1, and referred to as the second issue of
the Johnson-Cook model. Furthermore, the new model aims at maintaining the
positive features of the original Johnson-Cook model, i.e. simplicity and high
predisposition to computational implementations. In the following, the motivation for
the introduction of the new strength model are further debated. The Split Johnson-
Cook model is then exposed and described, together with a discussion on its
calibration strategies, similar to those already presented in Chapter 2. Afterwards,
the new model is applied to a real case of material behavior, i.e. to the same
structural steel analyzed for the Johnson-Cook model in Chapter 2. Results are
then compared to those of the original Johnson-Cook model as exposed in
Chapter 2.

3.1. Motivation for the Introduction of the Split Johnson-Cook Model

As described in Chapter 2, the Johnson-Cook model does present some
drawbacks. In particular, two major flaws have been identified and discussed
(Section 2.2.1), and have been referred to as first and second Johnson-Cook
issues. They are briefly recalled here.

The first issue consists in the fact that the natural logarithmic dependence of the
yield stress on the dimensionless equivalent plastic strain rate may not be suitable
to coherently fit the strain rate behavior of some materials. Analogously, the power
dependence of the yield stress on the homologous temperature may present the
same issue. The second problem consists in the fact that the equivalent plastic
strain, the equivalent plastic strain rate and the temperature effects on the yield
stress are totally independent from each other, which is a direct consequence of the
choice of adopting a hardening function conceived in a multiplicative fashion.
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As exposed in Chapter 2, these problematics may cause heavy modeling errors,
and this may hold for a wide number of engineering materials. As previously stated,
the first Johnson-Cook issue may be partially solved or mitigated by substituting
either or both the original strain rate and temperature terms with some other forms,
which may enhance the coherency of the model. A review of some of these
substitutive terms is provided in Chapter 2, Section 2.2.1. On the other hand, the
second Johnson-Cook issue appears to be less prone to be mitigated. In fact, the
main aim of the new model is that of partially solving or alleviating such problem.
More in detail, the new model aims at relieving the problem of having to choose
between coherently model either the lower yield stresses, through the LYS or
OPTLYS calibration strategies, or the plastic flows, through the EPS, OPTEPS or
GOPTEPS calibration strategies.

Since the new model derives from the Johnson-Cook model, it maintains a total
empiric nature. Actually, this aspect is central in order to properly frame the context
in which the new model lies. Comparing to the Johnson-Cook model, it is
understood that there exist some strength models capable to provide more
physically-founded descriptions of the hardening behavior of materials, such as,
e.g., the Zerilli-Armstrong model (Zerilli and Armstrong, 1987). In this regard, see
also the physically-based model exposed in Nemat-Nasser and Isaacs, 1997, and
Nemat-Nasser et al., 1999. However, the target here is that of providing a total
empiric model that does not involve material parameters that may be difficult to
determine, possibly related to micromechanical considerations. The target is that of
allowing to set-up a strength model that requires only the experimental data already
available, i.e. a set of hardening functions at different equivalent plastic strain rates
and temperatures, as assumed for the original Johnson-Cook model. On these
bases, the new model must be capable to better reproduce the experimental data,
by providing an improvement of the fitting capabilities. As already mentioned, the
Split Johnson-Cook model must also strive to maintain the same computational
appeal of the original Johnson-Cook model, i.e. it shall operate by requiring
information only from the equivalent plastic strain, the equivalent plastic strain rate
and the temperature, thus allowing to perfectly fit in the same computational
framework of the original Johnson-Cook model.

3.2. Formulation of the Split Johnson-Cook Model

The present Split Johnson-Cook model defines a hardening function which takes
the additively split following form
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The 12 parameters denoted by A, C;, ?;’ ,my, T, ,B,n Cy ?l? ,mz, T, and Ty,
1 1 2 2

are the parameters of the Split Johnson-Cook strength model. They need to be
calibrated through appropriate experimental tests. Following Table 19 reports their
dimensions and possible units.

A Stress, e.g. [MPa] n Non-dimensional
C: Non-dimensional C, Non-dimensional
m; Non-dimensional ms, Non-dimensional
g Strain rate, e.g. [s™] BN Strain rate, e.g. [s™]
b, , €.0. D, , e.g.
To, Temperature, e.g. [K] To, Temperature, e.g. [K]
B Stress, e.g. [MPa] T Temperature, e.g. [K]
Table 19

Dimensions and possible units for the Split Johnson-Cook parameters.

The proposed hardening function is conceived in the same multiplicative fashion
as for the original Johnson-Cook model, with the same strain rate and temperature
terms, but the equivalent plastic strain rate and temperature effects are now
separated for the lower yield stress, described by the parameter A, and the plastic
flow, described by the parameters B and n. The name Split Johnson-Cook model
actually refers to this aspect. Thus, the parameter A is called lower yield stress
parameter and the parameters B and n are called plastic flow parameters.
Regarding the yield stress dependence on the equivalent plastic strain, the same
power form already used in the original Johnson-Cook model is maintained. The
parameters C, m and the reference values for the equivalent plastic strain rate and
the temperature are doubled, yielding to a total number of 12 parameters, i.e. 4
parameters more than the original Johnson-Cook model.

The Split Johnson-Cook model is a generalization of the original Johnson-Cook
model, which in fact is recovered if the parameters C,; and C, are equal, if the
parameters m; and m, are equal and if the reference values of the equivalent
plastic strain rate and of the temperature are equal. On the other hand, when these
parameters are different from each other, the Split Johnson-Cook model allows to
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independently model strain rate and temperature effects on the lower yield stress
and on the plastic flow. In general, the parameters C; and C, and the parameters
m; and m, become equal only in very particular cases, i.e. cases in which the
material presents the same exact lower yield stress and plastic flow dependencies
on the equivalent plastic strain rate and on the temperature. More in general, the
parameters C; and C, may be quite different, as for the parameters m; and m,.
Beyond the splitting of the equivalent plastic strain rate and temperature effects on
the lower yield stress and on the plastic flow, the way in which these effects are
introduced in the hardening function is exactly the same as that in the original
Johnson-Cook model.

The first additive term of the hardening function describes the lower yield stress
throughout the equivalent plastic strain rate and temperature ranges. It is then
called lower yield stress term. The two multiplicative terms that act on such lower
yield stress term act together to determine the lower yield stress. The first one is
called lower yield stress strain rate term and introduces a natural logarithmic
dependence on the so-called lower yield stress dimensionless equivalent plastic

strain rate ?; , Which is reported in the following equation
1
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*
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where ?g represents the so-called lower yield stress reference equivalent plastic
1

strain rate. The lower yield stress strain rate term is conceived in such a way that
when the current equivalent plastic strain rate is equal to the lower yield stress
reference equivalent plastic strain rate it becomes equal to 1 and therefore there
are no strain rate effects on the computation of the lower yield stress. Otherwise,
the effect of the strain rate is determined by the current value of the equivalent
plastic strain rate and ruled by the lower yield stress reference equivalent plastic
strain rate and by the parameter C;.

The second multiplicative term that acts on the first additive term is called lower
yield stress temperature term and introduces a power dependence on the so-called
lower yield stress homologous temperature T,*, which is reported in the following
equation

T-T,
Tl* = ﬁ1 (73)
m 0
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where T, represents the melting temperature and T, represents the so-called
1

lower yield stress reference temperature. The lower yield stress temperature term is
conceived in such a way that when the current temperature is equal to the lower
yield stress reference temperature it becomes equal to 1 and therefore there are no
temperature effects on the computation of the lower yield stress. Otherwise, the
effect of the temperature on the lower yield stress is determined by the current
value of the temperature and ruled by the reference lower yield stress temperature,
by the melting temperature and by the parameter m;.

The second additive term of the hardening function describes the plastic flow
throughout the equivalent plastic strain rate and temperature ranges. It is then
called plastic flow term. These two multiplicative terms act together to determine the
plastic flow. The first one is called plastic flow strain rate term and introduces a
natural logarithmic dependence on the so-called plastic flow dimensionless

equivalent plastic strain rate ?; , Which is reported as follows
2
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where ?lf represents the so-called plastic flow reference equivalent plastic strain
2

rate. The plastic flow strain rate term is conceived in such a way that when the
current equivalent plastic strain rate is equal to the plastic flow reference equivalent
plastic strain rate it becomes equal to 1 and therefore there are no strain rate
effects on the computation of the plastic flow. Otherwise, the effect of the strain rate
is determined by the current value of the equivalent plastic strain rate and ruled by
the plastic flow reference equivalent plastic strain rate and the parameter C,.

The second multiplicative term that acts on the second additive term is called
plastic flow temperature term and introduces a power dependence on the so-called
plastic flow homologous temperature T,*, which is reported in the following

T2, (75)

where Ty, represents the melting temperature and T, represents the so-called
2

plastic flow reference temperature. The plastic flow temperature term is conceived
in such a way that when the current temperature is equal to the plastic flow
reference temperature it becomes equal to 1 and therefore there are no
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temperature effects on the computation of the plastic flow. Otherwise, the effect of
the temperature on the plastic flow is determined by the current value of the
temperature and ruled by the reference plastic flow temperature, the melting
temperature and the parameter m,.

In general, the lower yield stress and plastic flow reference equivalent plastic
strain rates and temperatures are not forced to be equal. As a matter of fact, the
Split Johnson-Cook model provides better fitting capabilities if these parameters
may be different in general. On the other hand, the melting temperature is
maintained equal for both the lower yield stress and the plastic flow additive terms,
and in fact it refers to the real melting temperature of the material. It is worthwhile to
note that when the current temperature reaches the melting temperature, both the
lower yield stress and the plastic flow additive terms become equal to zero and thus
the yield stress is null and the material is assumed to offer no deviatoric resistance.
Temperatures higher than the melting temperature are allowed to occur but then
the yield stress is no longer computed with the Split Johnson-Cook model, which
would lead to the computation of a negative yield stress. In such cases, the yield
stress is just set to zero, as done for the original Johnson-Cook model.

The proposed form of the Split Johnson-Cook model strives to favor as much as
possible the maintaining of characteristics similar to those of the original Johnson-
Cook model but, at the same time, it aims at providing an improvement of the
modeling capabilities. In this regard, many possible forms have been set-up and
investigated, like, e.g., generalizing the value of the plastic flow parameters B
and n, by considering them not as constants but rather as functions of the
equivalent plastic strain rate and the temperature. However, the proposed form is
believed to constitute the best compromise between the willing of improving the
model coherency and that of maintaining a simple form, possibly similar to that of
the original Johnson-Cook model. More complex hardening functions have been
elaborated and investigated, but they are always afflicted by the introduction of
unwanted complexities into the model, in particular by needing a much larger
number of material parameters. The fact of presenting a form very similar to that of
the original Johnson-Cook model allows for some interesting options, such as the
possibility to substitute one or more of the Split Johnson-Cook model lower yield
stress and plastic flow strain rate and temperature terms with some of the proposed
substitutive terms, previously reviewed in Chapter 2, Section 2.2.1. Furthermore,
having a form very similar to that of the original Johnson-Cook model allows to
partially reuse some of the material parameters of the original Johnson-Cook
model, that may be already known from previous calibrations.
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3.3. Split Johnson-Cook Model Calibration Strategies

The calibration of the Split Johnson-Cook model requires a certain amount of
experimental data. Actually, it is possible to define various calibration strategies, as
for the original Johnson-Cook model. The main approaches are described in the
following. In order to clarify the exposition, all the calibration strategies introduced
are illustrated by applications to the same practical case considered in Chapter 2,
i.e. the experimental data provided by Nemat-Nasser and Guo, 2003. Data at three
different equivalent plastic strain rates and at three different temperatures are
considered, i.e. the nine hardening functions already used in Chapter 2. The
considered equivalent plastic strain rates are 0.001 s, 0.1 s and 3000 s, while
the considered temperatures are 77 K, 296 K and 800 K.

In the following, three different calibration strategies are proposed, described
and applied to the considered experimental data. These approaches appear to be
the most intuitive, although it is recognized that they are not the only ones possible
and other calibration strategies may be defined. Due to the similarity of the Split
Johnson-Cook model with the original Johnson-Cook model, these approaches are
actually quite similar to those previously proposed for the calibration of the original
Johnson-Cook model. In order to ease the identification of such calibration
strategies, a name is defined here and associated to each of them. Considerations
about how to choose which experimental tests are necessary to carry-out each
procedure are presented as well. As for the calibration of the original Johnson-Cook
model, experimental data are always meant in terms of hardening functions.

3.3.1. STA Calibration Strategy

The STA (STAndard) calibration strategy is the simplest approach capable to
determine the 12 parameters of the Split Johnson-Cook model. This calibration
strategy has the same role played by the LYS and EPS approaches for the original
Johnson-Cook model, since it follows similar considerations, in order to determine
the values of the Split Johnson-Cook model parameters.

The very first parameter to be determined is the melting temperature of the
material. This phase is straightforward, provided that melting data are available.
The next phase of the calibration strategy consists in the determination of the lower
yield stress term parameters. Clearly, the parameters relative to the lower yield
stress term are determined by considering experimental data at zero equivalent
plastic strain, i.e. with a vanishing plastic flow additive term. In these conditions, the
Split Johnson-Cook model reduces to the following form
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The form of this equation is totally analogous to that of the original Johnson-Cook
model in the case in which the equivalent plastic strain is zero. As a first step, it is
necessary to identify the equivalent plastic strain rates and temperatures at which it
is possible to test the considered material. For what it concerns the determination of
the lower yield stress reference equivalent plastic strain rate and temperature, the
same considerations previously made for the original Johnson-Cook model LYS
calibration strategy are valid here. Hence, the lower vyield stress reference
equivalent plastic strain rate is chosen as one of the equivalent plastic strain rate at
which the material is tested, and the lower yield stress reference temperature is
chosen as the lowest temperature at which the material is tested, in order to avoid
the computation of negative lower yield stress homologous temperature, since this
term is then raised to the power parameter m;, that may be a non integer number,
and therefore, in such cases, the calculation of this power may not be possible.

The next phase consists in the determination of the lower vyield stress
parameter A, which is simply equal to the lower yield stress of the experimental
hardening function referring to the test conducted at the lower yield stress reference
equivalent plastic strain rate and temperature. In fact, when such reference
conditions are considered, the lower yield stress strain rate and temperature terms
become equal to 1 and the Split Johnson-Cook model further reduces to the
following form

S=A. (77)

The data used for the determination of the parameter A need not to be purified
from structural effects through an inverse analysis, because the only point
considered is that at the lower yield stress, for which the structural effects are
considered to be irrelevant.

The next step is relative to the determination of the lower yield stress strain rate
parameter, i.e. the parameter C;. This step is totally equivalent to the step
necessary to determine the parameter C of the original Johnson-Cook model when
the LYS calibration strategy is adopted. Indeed, the value of the parameter C; can
be obtained by considering experimental data at the lower yield stress reference
temperature. This fact implies the vanishing of the lower yield stress temperature
term. The parameter C,; can then be determined through the following equation
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At this point, the same issue already discussed for the original Johnson-Cook
LYS calibration strategy arises, i.e. it is possible to compute different values of the
parameter C,, by considering all the available hardening functions which refer to the
lower yield stress reference temperature and to the various tested equivalent plastic
strain rates which differ from the lower yield stress reference equivalent plastic
strain rates. Once again, if the material respects the natural logarithmic
dependence of the lower yield stress on the lower yield stress dimensionless
equivalent plastic strain rate, the same value of C; must be recovered for all the
available experimental data that cover the various tested equivalent plastic strain
rates. This may not be the case. In such a case, the value of C; is taken as an
average value of all the available values. Considerations similar to those already
stated for the determination of the parameter C through the original Johnson-Cook
LYS calibration strategy hold true.

The next step aims at the determination of the lower yield stress temperature
parameter, i.e. the parameter m;. This step is totally equivalent to the step
necessary to determine the parameter m of the original Johnson-Cook model when
the LYS calibration strategy is adopted. Indeed, the value of the parameter m; can
be obtained by considering experimental data at the lower yield stress reference
equivalent plastic strain rate. This fact implies the vanishing of the lower yield stress
equivalent plastic strain rate term. The parameter m; can then be determined
through the following equation

m, =t (79)

At this point, the same issue already outlined for the original Johnson-Cook LYS
calibration strategy arises, i.e. it is possible to compute different values of the
parameter my, by considering all the available hardening functions referring to the
lower yield stress reference equivalent plastic strain rate and to the various tested
temperatures differing from the lower yield stress reference temperatures. Once
again, if the material respects the power dependence of the lower yield stress on
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the lower yield stress homologous temperature, the same value of m; must be
recovered for all the available experimental data that cover the various tested
temperatures. This may not be the case. In such a case, the value of m, is taken as
an average value of all the available values. Considerations similar to those already
stated for the determination of the parameter m through the original Johnson-Cook
LYS calibration strategy hold true.

The next step regards the determination of the plastic flow reference equivalent
plastic strain rate and temperature, together with the plastic flow parameters B
and n. The plastic flow reference equivalent plastic strain rate is chosen as one of
the equivalent plastic strain rates at which the material is tested, and the plastic flow
reference temperature is chosen as the lowest temperature at which the material is
tested, in order to avoid the computation of negative plastic flow homologous
temperatures and thus the problematics related to impossibility to calculate such
power. Hence, this calibration strategy prescribes the plastic flow reference
temperature to be equal to the lower yield stress reference temperature, and the
two reference equivalent plastic strain rates may actually be equal as well.

The parameters B and n are to be determined next. This point makes use of
data obtained at the plastic flow reference equivalent plastic strain rate and
temperature. These data must be purified from structural effects through an inverse
analysis of the experimental tests, to be carried-out with FEM codes, since data
throughout the tested equivalent plastic strain range are considered. The fact that
the test is carried-out at the plastic flow equivalent plastic strain rate and
temperature reference values implies that the Split Johnson-Cook strength model
assumes the following form

£ T-1 ™
- _
S=AQ1+C -2 |f1-| — 2 | [+BE". (80)
el T,-T, b
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As a matter of fact, the lower yield stress strain rate and temperature terms may
vanish too if the lower yield stress and the plastic flow reference equivalent plastic
strain rates and temperatures are equal. It is possible to determine the parameters
B and n by fitting the experimental points of the hardening function at the reference
plastic flow equivalent plastic strain rate and temperature with the function shown in
Eqg. (80). A good strategy here is that of adopting a code that provides nonlinear
regression capabilities.

The next point is relative to the determination of the plastic flow strain rate
parameter C,. This step involves experimental tests conducted at the plastic flow
reference temperature and at equivalent plastic strain rates different from the plastic
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flow reference equivalent plastic strain, from the lowest one tested up to the highest
one. The value of the parameter C, can be obtained by noting that the plastic flow
temperature term becomes equal to 1 and the Split Johnson-Cook model assumes
the following form

my

_ B T-T, €
s=AD1+C,Ih— |J1-| ——=| |+BE [1+C,Ih—-|. (81)
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As a matter of fact, the lower yield stress temperature term may become equal
to 1 too if the lower yield stress and the plastic flow reference temperatures are
equal. It is then possible to determine the parameter C, through a regression of the
hardening function data at a given equivalent plastic strain rate, of course different
from the plastic flow reference equivalent plastic strain rate, by considering the
Johnson-Cook form presented in Eqg. (81), i.e. a regression in which the only
parameter to be determined is C,. The same considerations previously stated about
the necessity to carry-out an inverse analysis of the experimental data hold true.

The procedure above allows for determining the value of the parameter C, at a
given tested equivalent plastic strain rate. The same procedure must be followed for
the other tested equivalent plastic strain rates, by considering the correspondent
hardening functions. At this point, if the material follows the natural logarithmic
dependence of the plastic flow on the plastic flow dimensionless equivalent plastic
strain rate, as assumed in the Split Johnson-Cook model, the same value of C,
must be recovered for all the available experimental data that cover the various
tested equivalent plastic strain rate. This may not be the case. In such a case, the
value of C, is taken as an average value of all the available values. Considerations
similar to those already stated for the determination of the parameter C through the
original Johnson-Cook EPS calibration strategy hold true.

The next point is relative to the determination of the plastic flow temperature
parameter m,. This step involves experimental tests conducted at the plastic flow
reference equivalent plastic strain and at temperatures different from the plastic flow
reference temperature, from the lowest one tested up to the highest one. The value
of the parameter m, can be obtained by noting that the plastic flow equivalent
plastic strain term becomes equal to 1 and the Split Johnson-Cook model assumes
the following form

_ £ T-T, | i T-T, |
— — 1 —_ 2
s=A 1+C1Dh€—0 1 ﬁ +BEP ﬁ . (82)
P, m 0, m 0,
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As a matter of fact, the lower yield stress strain rate term may become equal to 1
too if the lower yield stress and the plastic flow reference equivalent plastic strain
rates are equal. It is then possible to determine the parameter C, through a
regression of the hardening function data at a given temperature, of course different
from the plastic flow reference temperature, by considering the Johnson-Cook form
presented in Eq. (82), i.e. a regression in which the only parameter to be
determined is m,. The same considerations previously stated about the necessity to
carry-out an inverse analysis of the experimental data hold true.

The procedure above allows for determining the value of the parameter m, for a
given tested temperature. The same procedure must be followed for the other
tested temperatures, by considering the corresponding hardening functions. At this
stage, if the material follows the power dependence of the plastic flow on the plastic
flow homologous temperature, as assumed in the Split Johnson-Cook model, the
same value of m, must be recovered for all the available experimental data that
cover the various tested temperatures. This may not be the case. In such a case,
the value of m, is taken as an average value of all the available values.
Considerations similar to those already stated for the determination of the
parameter m through the original Johnson-Cook EPS calibration strategy hold true.

It is worthwhile to note that the STA calibration strategy of the Split Johnson-
Cook model can be carried-out by using the same experimental data necessary to
calibrate the original Johnson-Cook model with the LYS or EPS calibration
strategies. In the following, the STA calibration strategy is applied to the nine
experimental hardening functions extracted from Nemat-Nasser and Guo, 2003.

The melting temperature is taken equal to 1773 K. The lower yield stress
reference equivalent plastic strain rate is chosen as the lowest tested equivalent
plastic strain rate, i.e. 0.001 s™. The lower yield stress reference temperature is
chosen as the lowest tested temperature, i.e. 77 K. The parameter A is then equal
to 915.555 MPa. Regarding the parameter C,, it is obtained by using Eq. (78) with
data from the two equivalent plastic strain rates different from the lower yield stress
reference equivalent plastic strain rates, i.e. 0.1 s™ and 3000 s™, at the reference
temperature of 77 K. The computed values of C, are equal to 0.01399 and 0.01720,
for the equivalent plastic strain rates of 0.1 s and 3000 s™, respectively. Following
the procedure described above, the parameter C, is then set equal to their average
value, namely 0.01560. This step is totally equivalent to that previously made for
the determination of the parameter C for the original Johnson-Cook LYS calibration
strategy. In fact, the same value is recovered. Regarding the parameter m;, it is
obtained by using Eq. (79) with data from the two temperatures different from the
lower vyield stress reference temperature, i.e. 296 K and 800 K, at the reference
equivalent plastic strain rate of 0.001 s™*. The computed values are equal to
0.18022 and 0.27336, for the temperatures of 296 K and 800 K, respectively.
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Following the procedure described above, the parameter m; is then set equal to
their average value, namely 0.22679. This step is totally equal to that previously
made for the determination of the parameter m for the original Johnson-Cook LYS
calibration strategy. Thus, the same value is calculated.

The plastic flow reference equivalent plastic strain rate and temperature are
taken as equal to the lower yield stress reference values, i.e. 0.001 s™ and 77 K.
The parameters B and n are obtained by evaluating the experimental hardening
function at these reference values, through a fitting carried-out within Wolfram
Mathematica 7, by considering Eq. (80). The obtained parameters B and n become
equal to 760.782 MPa and 0.60101, respectively. This step is equivalent to the one
relative to the determination of the quasi-static parameters A, B and n in the original
Johnson-Cook LYS, OPTLYS, EPS and OPTEPS calibration strategies, with the
only difference that the parameter A in this case has already been determined.
Indeed, the same values are recovered. Among other things, this fact is due to
having chosen the plastic flow reference parameters equal to the lower yield stress
reference parameters.

The parameter C, is determined next. It is obtained by carrying-out a regression
of experimental data through Eq. (81). Both hardening functions that refer to the two
equivalent plastic strain rates different from the plastic flow reference equivalent
plastic strain rates, i.e. 0.1 s™ and 3000 s, at the reference temperature of 77 K,
are considered. The code Wolfram Mathematica 7 has been used to achieve such
task. The computed values of C, are equal to -0.06181 and -0.06166, for the
equivalent plastic strain rates of 0.1 s™* and 3000 s™, respectively. The two obtained
values are very similar, thus proving that the material follows quite well the natural
logarithm dependence of the plastic flow on the plastic flow dimensionless
equivalent plastic strain rate. Following the procedure described above, the
parameter C, is set equal to their average value, namely -0.06174.

Regarding the parameter m,, it is obtained by carrying-out a regression of the
experimental data through Eq. (82). Both hardening functions that refer to the two
temperatures different from the plastic flow reference temperature, i.e. 296 K and
800 K, at the reference equivalent plastic strain rate of 0.001 s™, are considered.
The code Wolfram Mathematica 7 has been used to achieve such task. The
computed values of m, are equal to 1.42221 and 4.25422, for the temperatures of
296 K and 800 K, respectively. The two obtained values are quite different, thus
proving that the material does not respect quite well the power dependence of the
plastic flow on the plastic flow homologous temperature. Following the procedure
described above, the parameter m; is set equal to their average value, namely
2.83816.

The 12 Split Johnson-Cook parameters obtained through the STA calibration
strategy are summarized in following Table 20.
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A 915.555 MPa n 0.60101

Ci 0.01560 C, -0.06174

m; 0.22679 m, 2.83816

g 0.001 s g 0.001 s

To, 77K To, 77K

B 760.782 MPa To 1773 K
Table 20

Split Johnson-Cook parameters for the DH-36 structural steel calculated through
the STA calibration strategy.

Following Figs. 46 to 48 show the hardening functions predicted by the Split
Johnson-Cook model calibrated with the STA calibration strategy. As expected, the
curves of the model follow in the best possible way the first yielding of the
experimental hardening curves but this time their fittings throughout the equivalent
plastic strain ranges are much improved by comparing to the original Johnson-Cook
model calibrated with the LYS strategy.
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Figure 46. STA calibrated Split Johnson-Cook fitting to DH-36 structural steel data
at temperature of 77 K and at three different equivalent plastic strain rates.
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Hardening Functions, Temperature 296 K
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Figure 47. STA calibrated Split Johnson-Cook fitting to DH-36 structural steel data
at temperature of 296 K and at three different equivalent plastic strain rates.
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Figure 48. STA calibrated Split Johnson-Cook fitting to DH-36 structural steel data
at temperature of 800 K and at three different equivalent plastic strain rates.
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Following Figs. 49 to 51 show the same results but the yield stress is visualized
by surface plots as a function of the equivalent plastic strain and the base 10
logarithm of the equivalent plastic strain rate. Experimental data are reported with
black dots whilst the predictions of the Split Johnson-Cook model are presented
with red surfaces.
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Figure 49. STA calibrated SJC model fitting to DH-36 steel data at temperature of 77 K.
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Hardening Function, 296 K
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Figure 50. STA calibrated SJC model fitting to DH-36 steel data at temperature of 296 K.

Hardening Function, 800 K

600

Yield Stress, 400
[MPa] 0.0

200

0.2

Equivalent

log10 Strain 0 Plastic

Rate Strain
[log10 1/s]

Figure 51. STA calibrated SJC model fitting to DH-36 steel data at temperature of 800 K.
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As shown in Figs. 46 to 51, the fit to the lower yield stress is very good for the
hardening functions in which at least one reference conditions is present, i.e. an
equivalent plastic strain rate of 0.001 s™ or a temperature of 77 K. Actually, this
fitting is the same as that obtained with the original Johnson-Cook model calibrated
with the LYS strategy. Following Table 21 reports a comparison between the STA
calibrated Split Johnson-Cook model predictions of the lower yield stresses, which
are equal to those of the LYS calibrated Johnson-Cook model, and their
experimental counterparts.

Experimental Values STA SJC Values

0.001s™, 77 K 915.555 MPa 915.555 MPa

01st, 77K 974.565 MPa 981.323 MPa
3000s™, 77 K 1150.46 MPa 1128.545 MPa
0.001s™, 296 K 282.455 MPa 340.015 MPa
0.1s™, 296 K 305.455 MPa 364.439 MPa
3000 s, 296 K 630.137 MPa 419.115 MPa
0.001s™, 800 K 190.345 MPa 160.967 MPa
0.1s™, 800K 200.213 MPa 172.533 MPa
3000 s, 800 K 305.345 MPa 198.417 MPa

Table 21

Comparison between experimental lower yield stresses and correspondent predicted
lower yield stresses from the Split Johnson-Cook model calibrated with the STA strategy.

Comparing to the LYS calibrated Johnson-Cook model, the fitting throughout the
equivalent plastic strain ranges is significantly improved when the model fits data
which refer to at least one reference condition. On the other hand, when the model
fits the four hardening functions that do not refer to at least one reference condition,
i.e. 0.1 s* and 296 K, 3000 s™ and 296 K, 0.1 s™ and 800 K, and 3000 s™ and
800 K, large errors may be introduced, as clearly visible in Figs. 46 to 51. This fact
is due to having calculated the parameters C,;, m;, C, and m, by considering
reference temperature and equivalent plastic strain rate conditions only. As a matter
of fact, the four hardening functions that do not refer to at least one reference
condition are never used when the STA calibration strategy is adopted, as for the
LYS and EPS original Johnson-Cook calibration strategies. In particular, fitting
incoherencies arise for the two hardening functions at 3000 st and 296 K, and at
3000 s and 800 K, due to the fact that the parameter C, is calibrated by
considering only data at 77 K, which present a material softening for the case
relative to the equivalent plastic strain rate of 3000 s™. Therefore, the calibration of
the parameter C, tries to fit this softening trend, which is however completely
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different for the two hardening functions at 3000 s™ and 296 K, and at 3000 s™ and
800 K. Hence, considerable mismatches arise in these cases.

These aspects are actually analogous to those that arose for the original
Johnson-Cook LYS and EPS calibration strategies. As for those cases, assessing
the model predictions only against the hardening functions which refer to at least
one reference condition may lead to considerable discrepancies. Rather, the model
should be checked even against hardening functions which do not refer to at least
one reference condition, in order to assess the possible introduction of heavy
calibration problematics. Following Table 22 reports both the yield stress and the
percentage yield stress root mean square errors for each of the nine considered
hardening functions, together with their algebraic mean value, i.e. their sum divided
by 9. Important errors are introduced, most of all due to the fitting problematics of
the two hardening functions at 3000 s™ and 296 K, and at 3000 s™ and 800 K, while
the other cases are actually much more coherent.

§err g%err

0.001s™, 77K 19.5893 MPa 1.784%
01s™, 77K 43.9967 MPa 3.530%
3000s™, 77 K 57.9250 MPa 4.976%
0.001s™, 296 K 51.7883 MPa 8.728%
0.1s7, 296 K 111.359 MPa 15.74%
3000 s™, 296 K 440. 5960 MPa 49.01%
0.001 s, 800 K 97.0358 MPa 21.55%
0.1s7, 800K 176.6159 MPa 32.44%
3000 s™, 800 K 383.025 MPa 62.07%
Average 153.548 MPa 22.20%

Table 22
Yield stress (central column) and percentage yield stress (right column) root mean
square errors for the STA calibrated Split Johnson-Cook model yield stress predictions.

3.3.2. OPT Calibration Strategy

The OPT (OPTimized) calibration strategy aims at improving the STA calibration
strategy by optimizing the value of the parameters C;, C,, m; and m,. In order to
achieve such target, this strategy introduces in the calibration procedure
experimental data relative to the hardening functions which do not refer to at least
one reference condition, trying to obtain values of the parameters C4, C,, m; and m,
capable to provide the actual best fit for all the made available hardening functions.
The optimized calibration strategy has the same role played by the OPTLYS and
the OPTEPS original Johnson-Cook calibration strategies, i.e. it offers an
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improvement of the STA calibration strategy by considering all the experimental
data for the aim of determining the parameters C;, C,, m; and m,.

For what it concerns the calibration of the melting temperature, the lower yield
stress reference equivalent plastic strain rate and temperature, the lower vyield
stress parameter A, the plastic flow reference equivalent plastic strain rate and
temperature and the parameters B and n, the procedure is exactly the same as
what exposed for the STA calibration strategy. Differences arise just for the
determination of the four parameters C4, C,, m; and m,.

The first step regards the determination of the lower yield stress parameters C;
and m;. In order to introduce all the lower yield stress data provided by all the
available hardening functions, the Split Johnson-Cook model, Eq. (71), is recalled a
number of times equal to the number of available hardening functions which do not
refer to lower yield stress reference conditions, for both the equivalent plastic strain
rate and the temperature, i.e. all the available hardening functions except the one
which refers to the lower yield stress reference conditions for both the equivalent
plastic strain rate and the temperature. This approach leads to the construction of
an overdetermined system of nonlinear equations, in which the unknowns are the
parameters C; and m;. Of course, the equivalent plastic strain is always set equal to
zero, because only the lower yield stress is considered. Therefore, the plastic flow
term vanishes. Such system is reported as follows

— gp. Ti_TO ™
s =AQ1+C, Ih-2 |f1-| ——2 | |, (83)
i 1 0 T -T
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In these equations, the subscript i refers to the values relative to the i-th hardening
function. This system is totally analogous to the one that arises for the calibration of
the original Johnson-Cook model when the OPTLYS calibration strategy is adopted.
As previously said, a system of this kind can be solved through a nonlinear least
square method.

The second step regards the determination of the plastic flow parameters C,
and m,. In order to introduce all the data provided by all the available hardening
functions, the Split Johnson-Cook model, Eq. (71), is recalled a number of times
equal to the number of available experimental observations, intended in terms of
couples of vyield stress and corresponding equivalent plastic strain values,
throughout the experimentally investigated equivalent plastic strain ranges. These
data refer to all the available hardening functions which do not refer to plastic flow
reference conditions for both the equivalent plastic strain rate and the temperature,
i.e. all the available hardening functions except for the one which refers to plastic
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flow reference conditions for both the equivalent plastic strain rate and the
temperature. This approach leads to the construction of a large overdetermined
system of nonlinear equations, in which the unknowns are the plastic flow
parameters C, and m, and the number of equations is equal to the number of
available couples of yield stress and corresponding equivalent plastic strain values,
which depends on the number of made available experimental hardening functions
and on the sampling frequency adopted for the experimental measurements. In
order to avoid to set-up too large systems, it is possible to consider data at a
sampling inferior than the one used for the experimental measurements, as
previously said for the original Johnson-Cook model OPTEPS calibration strategy.
Such system is reported as follows
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In these equations, the subscript i refers to the i-th couple of yield stress and
corresponding equivalent plastic strain values, at a given equivalent plastic strain
rate and temperature. As said for some of the original Johnson-Cook calibration
strategies, a system of this kind can be solved through a nonlinear least square
method.

Regarding the experimental data necessary in order to carry-out the optimized
calibration strategy, these are exactly the same required for the original Johnson-
Cook OPTLYS or OPTEPS calibration strategies. In the following, the optimized
calibration strategy is applied to the nine experimental hardening functions
extracted from Nemat-Nasser and Guo, 2003.

Regarding the lower yield stress parameters, a system of 8 nonlinear equations
in 2 unknowns is set-up. It has been numerically solved with a nonlinear least
squares trust-region-reflective algorithm within MathWorks MatLab 2010b, with a
tolerance of 10®. The obtained values for the parameters C, and m; are equal to
0.01906 and 0.67222, respectively, showing that the material does not respect very
well the natural logarithm dependence of the lower yield stress on the lower yield
stress reference equivalent plastic strain. For what it concerns the plastic flow
parameters, C, and m,, couples of yield stress and corresponding equivalent plastic
strain values are taken with the same sampling of the experimental ones, i.e. for
each digitalized couple of yield stress and corresponding equivalent plastic strain.
Following this approach, a large overdetermined system of 664 nonlinear equations
and 2 unknowns is created, and it has been numerically solved with the same
MathWorks MatLab 2010b nonlinear least squares trust-region-reflective algorithm,
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with a tolerance of 10®. The obtained values for