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Abstract

Alpine rivers have been regulated to claim productive land in valley bot-
toms since the last two centuries. Width reduction and rectification of-
ten induced the development of regular scour-deposition sequences, called
alternate bars, with implications for flood protection, river navigation,
environmental integrity.

Understanding how alternate bars evolve in rivers and defining the
key aspects that influence the development of these regular deposits of
sediments represents a challenge that is not fully described. Most studies
on alternate bars are in fact based on mathematical theories, laboratory
experiments and since 1990s numerical simulations, but only few studies
on field cases have been performed so far.

The goals of this work are: i) to quantify the morphodynamics of
alternate bars in the Alpine Rhine River, with a particular emphasis on
bar migration; ii) to assess to what extent the predictions of analytical bar
theories are consistent with field observations and to explore how theories
may help interpret observed alternate bars dynamics; iii) to determine the
ability of a numerical model to simulate correctly the formation and the
length scale of alternate bars and the influence of different multi-decadal
inflow conditions.

The 42 km chosen reach is located along the border between Austria
and Switzerland, between the confluences of Landquart and Ill rivers. The
whole reach has been completely embanked starting from the 19th century,
so alternate bars have been present for more than a century. Moreover the
simplification of the cross section, together with the presence of only few
bends, puts the Alpine Rhine in the ideal position to be compared with
analytical theories of alternate bars in straight channels.

The goals are achieved by analyzing a dataset of freely available Land-
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sat imagery, which combine unprecedented temporal length (3 decades),
spatial length (more than 400 channel widths) and temporal resolution
(around 3 images per year).

Bars show a spatially selective behavior, with short bars occurring in
distinct straight reaches with respect to longer bars. The same evidence is
found in terms of bar migration, so that short bars are shown to migrate
more than longer bars, in agreement with theoretical predictions. A full
range of bar wavelengths and more complex patterns occur in reaches with
bends and ramps. Bar height, obtained from cross section monitoring, was
found to be much more uniform. The temporally long dataset, including
approximately 30 floods with different magnitude and duration, allowed
the investigation of bar migration as a function of discharge, showing that
bars migrate faster for intermediate floods.

Predicted values of linear theories for free and forced bars in straight
channels are in good general agreement with field observations, when con-
sidering conditions of bar formation and bar wavelength. Comparing the-
ories and observations suggests that theoretical outcomes may represent
the boundaries of the actual, wide range of bar behaviour, which likely
reflects non-linear interactions, flow unsteadiness, sediment size hetero-
geneity and finite length of straight reaches, which are not retained in
linear theories.

Non-linear interactions are investigated through the 2D numerical mor-
phodynamic model Basement, developed at the Swiss Federal Institute of
Technology of Zurich. Preliminary investigations focus on the role of the
transverse sediment transport, that behaves as a diffusive term. The nu-
merical diffusion can be indirectly evaluated starting from the calibration
of the coefficient of the diffusive term. A benchmark methodology to
evaluate the lateral and numerical diffusion is defined. The results are
used in the morphological calibration of the model. The spatial trend of
wavelengths is in general agreement with the field data, and the migra-
tion takes place mainly in correspondence to short bars, whereas long bars
tend to elongate with time. The choice of a constant discharge or a real
hydrograph influences the time scale of bar evolution.

The present analysis results in the longest spatial and temporal field
case study of river bars in channelized rivers with a temporal survey reso-
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lution that allows the investigation of the effect of individual flood events,
and provides new quantitative data on bar wavelength and migration.
The dataset provides useful information to assess the applicability of an-
alytical bar theories, so far mainly tested against flume experiments, and
following recent attempts in French and Dutch streams. Moreover, a novel
two-dimensional morphological benchmark to access the role of numerical
diffusion is proposed.
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Chapter 1

Introduction

1.1 Context

River morphology affects the dynamics of water and sediment, and is
also affected by them. This interaction, mostly investigated through a
Newtonian mechanics approach [Church and Ferguson, 2015], brought the
attention to the development of morphological patterns resulting from
such mutual feedbacks that are typically non-linear and characterised by
threshold behavior. In the evolution of river morphology such interaction
develops within unsteady flow regimes, variable sediment supply, local
effects of channel geometry, all being common characteristics of a complex
river system. Moreover, the riparian ecotone (vegetation, Gurnell et al.
2012; Camporeale et al. 2013; Solari et al. 2016 and fauna, Curran and
Hession 2013; Nagayama et al. 2015; Reid and Church 2015) interacts with
the abiotic components and further complicates the picture. Vegetation
interacts through (i) the abovegorund biomass that affects the flow field
and the sediment transport, (ii) the belowgorund biomass that modifies
the hydraulic and mechanical properties of the substrate [Gurnell , 2014,
2015]. Fauna is especially affected by the abiotic components [Hauer ,
2015].

Efforts to confine rivers using artificially stabilised banks to discour-
age bank erosion have been put in place in Europe since the Roman times
[Church and Ferguson, 2015] and have been continually practiced through
the medieval times [Brown, 1991], up to the present period [Nakamura
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et al., 2007; Mähr et al., 2014]. The increasing settlement of river flood-
plains, the increase of land value and the established conviction that soci-
ety has to be more and more protected by natural hazards are only some of
the recent anthropogenic constraints that brought rivers to be channelized
[Nienhuis and Leuven, 2001; Brinson and MalvÃąrez , 2002; Tockner and
Stanford , 2002; Palmer et al., 2009]. Such interventions often modify the
natural morphological dynamics of the river as well as the river ecosystem
[Lane and Richards , 1997; Whipple and Tucker , 2002; Surian and Rinaldi ,
2003; Lytle and Poff , 2004], determining profound alterations of riverine
landscapes and of their related hydro-morphological functioning. Such
transformations strongly affect sediment transport processes, potentially
modifying both the catchment scale sediment budget and altering the local
transport capacity and bedform formation. In particular, simplification
of the morphology and channelization affected the form and dynamics of
river bars, one of the fundamental fluvial patterns at the reach scale. In
many channelized streams regular patterns of alternate bars developed as
a consequence of river embankments and straightening (e.g. Ikeda 1984;
Chang 1985).

Alternate bars can be viewed as sediment waves with regular sequences
of scours and deposits, alternating along the left and right banks, with a
wavelength that scales with the channel width (generally in the range of
5-20 widths), and with height scaling with the channel depth. They have
been extensively studied for decades because of their huge implications for
bank erosion, navigation, flood risk, stability of built structures and the
quality of physical habitat for freshwater and terrestrial species.

The process of formation and the characteristic length scale of alter-
nate bars have been explored mainly by laboratory analysis started since
the 1970s [Schumm and Khan, 1972; Sukegawa, 1972] and the 1980s [Fu-
jita and Muramoto, 1982; Jäggi , 1984; Ikeda, 1984; Chang , 1985; Fujita
and Muramoto, 1985] and continued with subsequent works by Garcia and
Niño [1993]; Lanzoni [2000a,b]; Crosato et al. [2011, 2012]. On the op-
posite, field analyses are still rare [Lewin, 1976; Welford , 1994; Rodrigues
et al., 2012; Eekhout et al., 2013; Claude et al., 2014; Jaballah et al., 2015;
Rodrigues et al., 2015].

An indication of the properties of alternate bars (e.g. wavelength,

2
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migration speed, temporal growth rate and spatial damping rate) can
be obtained from linear stability analysis of the mathematical system of
equations that describe the flow and sediment dynamics [Hansen, 1967;
Callander , 1969; Blondeaux and Seminara, 1985; Struiksma et al., 1985];
indications on bar amplitude can be obtained from weakly non-linear anal-
ysis [Colombini et al., 1987; Schielen et al., 1993].

From the consistent theoretical framework developed by various sci-
entific schools in the last four decades, two distinct types of bars can
be theoretically found in straight channels: (i) free migrating bars, and
(ii) hybrid steady bars. These two types are generated by different types
of streamwise boundary conditions of the governing system of equations
and by the possible presence of external forcing conditions, and reflect
two distinct morphological responses of the river/channel configuration.
Such theoretical framework has received a strong support from laboratory
observations in scaled physical experiments, whereas the ability of these
theories to predict the alternate bar behavior in more complex situations
typical of real streams on the one hand, and to facilitate the interpreta-
tion of field observations on the other hand, have been explored only quite
recently [Welford , 1994; Eekhout et al., 2013; Adami et al., 2014; Jaballah
et al., 2015; Rodrigues et al., 2015], such integration representing still an
open research field.

A complementary approach to study the properties and the dynamics
of alternate bars is through numerical morphodynamic models. Morpho-
dynamic numerical models advanced in the last decades by developing,
with different numerical schemes, valuable tools to simulate geomorphic
changes in natural and artificial river channels [Struiksma et al., 1985]
(subsequent development and applications on the 1980s and 1990s [Lane
et al., 1999; Nicholas , 2013; Rousseau et al., 2016; Siviglia and Crosato,
2016]). Processes of formation and development of alternate bars have
been studied mainly through 2D morphological models (e.g. Takebayashi
and Egashira, 2001; Defina and Lanzoni , 2002; Federici and Colombini ,
2002; Defina, 2003; Bernini et al., 2009 and Crosato et al., 2011, 2012).
However, despite that both analytical and numerical models have their
roots in the same governing mathematical system, and ultimately provide
different solutions of that system with varying levels of approximations,

3
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the integration between the numerical and the theoretical analytical ap-
proaches has been achieved only rarely so far [Siviglia et al., 2013]. More-
over, a consistent standard practice on benchmark validation of morpho-
logical numerical models through analytical morphodynamic theories is
still a challenge [Siviglia et al., 2013].

The present work broadly aims at increasing our present understanding
on the morphodynamics of alternate bars in channelized river systems by
integrating an observational (remote sensing) approach on a representative
case study, an analytical/theoretical approach applied to the same case
study and the numerical modelling of alternate bar dynamics benchmarked
through analytical theories.

The work focuses on three distinct aspects of the study of alternate-
bar morphodynamics: (i) the long term analysis of the field case of the
Alpine Rhine river, which represents a classical, well known example of a
regulated river (see Fig. 1.1) composed by fixed levees, straight reaches
and regular bends in which alternate gravel bars spontaneously form and
migrate since more than a century; (ii) the analysis of the outcomes of
the application of analytical solutions of linear and weakly non-linear the-
ories to the field case of Alpine Rhine river, in terms of bar properties
(wavelength, celerity of migration and height) and theoretical thresholds
(critical and resonant behaviours); (iii) a numerical analysis of free and
forced alternate bar formation (through the freely available 2D morpho-
dynamic model Basement), which is applied to the field case of the Alpine
Rhine river, by means of different scenarios of analysis.

1.2 Research questions

The present PhD work has been developed along three main research ele-
ments, which are reported below together with the key research questions
that have been investigated:

1. Long term morphodynamics of alternate bars in a straightened river

• What are the key properties and processes related to the multi-
decadal evolution of a long straightened river with alternate
bars?

4
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Figure 1.1: A comparison between Fig. 1 of Jäggi [1984] in the left panel and
the satellite image of the Alpine Rhine river in the right panel (Source: "Alpine
Rhine": 47°2′3.92′′ N, 9°29′26.97′′ E. Google Earth. January 7, 2009. August
5, 2015).

• What is the role of fixed planform constraints (e.g. bends and
ramps) in the development of migrating or non-migrating bars?

2. Application of analytical bar theories to a real case

• Which approach can be proposed for the application of analyt-
ical theories to field cases, characterized by markedly different
settings?

• To which extent can fundamental theoretical behavior and char-
acteristics of free and forced bars be observed in real regulated

5
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rivers and how do they correspond to the theoretical settings?

• To which extent can analytical theories help interpreting field
data and explain observed behavior?

3. Numerical modelling the long term evolution of alternate bars

• To which extent is it possible to predict the observed alternate
bar properties and behavior in a real case at a multi-decadal
time scale through a numerical morphodynamic model?

• How can the mutual effects of the gravity affects on sediment
transport and of the numerical diffusion be quantified in nu-
merical studies of bars, benchmarked with analytical theories?

• What is the role of event-scale discharge variability on the
multi-decadal evolution of bar properties and behaviors?

1.3 Outline of the thesis

This thesis is outlined in six chapters.

• Chapter 2 reviews the state of the art of the theoretical framework
on alternate bars morphodynamics in straight channels.

• Chapter 3 describes the observed multi-decadal alternate bar dy-
namics of the Alpine Rhine river through the analysis of satellite
images.

• Chapter 4 presents and discusses the application of free and forced
theories of alternate bars to the field case of the Alpine Rhine.

• Chapter 5 describes the results of the numerical modelling of the
multi-decadal alternate bar dynamics of the Alpine Rhine river.

• Chapter 6 summarizes the key findings of the present work and the
suggestions for future investigations.

Two appendices complete the thesis:

6
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Appendix A presents the results of a sensitivity analysis of the closure
relation of the system of equations solved by free bar theory.

Appendix B shows the numerical simulations of migrating and non-
migrating alternate bars in straight domains.

7
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Chapter 2

Alternate bars in straight
channels: theoretical background

2.1 Introduction: types of alternate bars

Several mathematical theories have been proposed since the 1960s [Callan-
der , 1969] with the aim to evaluate and to predict the morphodynamics of
alternate bars in straight channels. These mathematical theories, typically
based on the two dimensional (depth averaged) Saint Venant - Exner shal-
low water system of equations [Tubino et al., 1999], solve analytically (or
semi-analytically) this mathematical representation of the physical sys-
tem. In these ’bar theories ’ analytical solutions in closed form are most
often obtained after introducing a series of simplifying hypotheses that
aim to keep the mathematical problem at the lowest level of complexity,
although maintaining the key physical ingredients for the analysed pro-
cesses. This analytical approach results in models that require an almost
negligible computational time. Their main strength is the possibility they
offer to easily evaluate the role of the most important governing param-
eters of the physical processes, together with the ability to estimate the
relevant spatial and temporal time scales of bar morphodynamics.
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Here a general summary is proposed of the existing theories on alter-
nate bars, which consider an infinitely long straight channel domain. Like
many other analytical models for river bars and meandering, these theo-
ries evaluate the main properties of alternate bars in the specific case of
constant values of flow discharge (Q∗), channel width (W ∗), reach longitu-
dinal slope (s) and mean sediment grain size (d∗50), that usually correspond
to their reach-averaged values.

Note that, within this work, several dimensional parameters are de-
noted with an asterisk (∗). This choice has been made to maintain con-
sistency with the Italian scientific literature on the subject.

Moreover, these models assume flow conditions in which the entire
cross section is actively transporting sediments, so that the channel width
corresponds to the morphologically active width [Ashmore et al., 2011;
Zolezzi et al., 2012].

Two distinct physical processes can theoretically trigger alternate bar
development in straight reaches with constant active width. The first
is a free instability mechanism of the riverbed under a uniform incom-
pressible flow (free bars: Blondeaux and Seminara, 1985; Colombini et al.,
1987; Seminara and Tubino, 1992; Schielen et al., 1993). Alternate bars
in straight channels can also be forced by local persistent perturbations of
the constant-width straight-channel planform, e.g. those associated with
the sharp transitions from bends to straight reaches or with localized nar-
rowing. Following the terminology proposed by DurÃš et al. [2015], local
bars arise from the presence of forcing (e.g bend, width variation) and
their size is proportional to the forcing. These bars are called forced bars.
Parker and Johannesson [1989] referred to these bars as ’curvature-driven’
bars, since the most common bars of this type are point bars. Hybrid bars
arise from morphodynamic instability, but they also need the presence
of forcing (hybrid bars: Olesen, 1984; Struiksma et al., 1985; Struiksma
and Crosato, 1989). Herein, both forced and hybrid bars are indicated as
forced, following the terminology of the stability analyses. Persistent local
perturbations can be represented by groynes, bridge piers, ramps or other
local river structures, as well as by any other relevant abrupt planform
change in space. A classical example is a transition between a straight
reach and a bend of constant radius [Struiksma et al., 1985], which causes
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a discontinuity in channel curvature.

In addition to the responsible physical mechanism, the distinction be-
tween free and forced bars reflects the mathematical type of the governing
differential system that is solved. In the case of free bars a homoge-
neous solution of the Shallow Water-Exner differential system of equations
(SWE) (e.g. Tubino et al. 1999) with periodical streamwise boundary con-
dition is obtained, while in the case of forced bars a non-vanishing forcing
term is present in the streamwise boundary conditions [Struiksma and
Crosato, 1989; Zolezzi and Seminara, 2001].

Linear and weakly non-linear theories consider bars as small-amplitude
perturbations (much smaller compared to the reach-averaged flow depth)
of the bed topography. Linear theories allow to predict conditions of
existence, bar wavelengths and migration properties of free and forced
bars. The amplitude of free alternate bars is predicted only by non-linear
theories [Colombini et al., 1987; Schielen et al., 1993], while the amplitude
of forced bars depends on both the geometry of the local perturbation
and on non-linear effects. In straight channels, linear theories predict free
alternate bars to migrate downstream and forced bars to be non-migrating;
moreover, free migrating bars are predicted to be nearly two times shorter
(L∗/W ∗ 6 ÷ 8) than forced steady bars (L∗/W ∗ 15 ÷ 20), where L∗

denotes the bar wavelength. Comparable length scales are predicted by
non-linear theories, whereas bar migration rate is largely overestimated
by linear theories [Colombini et al., 1987]. Furthermore, theories of free
bars assume indefinitely long straight reaches, while forced bar theories
refer to a reach of semi-finite or finite length.

These assumptions strongly simplify the real heterogeneity that distin-
guish natural rivers characterized by unsteady discharge, heterogeneous
grain size, varying width and slope. Tubino [1991] proposed an analytical
non-linear theory that explores the role of discharge unsteadiness in the
formation, wavelength and amplitude of free alternate bars. Such theo-
retical analysis describes the ratio between the temporal scale of floods in
comparison with the morphological scale of the bar development. Tubino
[1991] introduced the parameter U , defined as the ratio between these two
scales, suggesting that for U � 1 floods do not last long enough for the
riverbed configuration to reach morphological equilibrium, while in the
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opposite case, U � 1, the bar morphology can be considered in equilib-
rium with the flow conditions (e.g. for an application on this, see: Eekhout
et al., 2013). The effect of grain size hetereogenity has been addressed by
Lanzoni and Tubino [1999], who developed a linear theory for the case
of free bars with bi-modal sediments, while Repetto et al. [2002] extended
the bar theory to the linear case of (sinusoidally) varying width using two-
and three-dimensional linear mathematical models. Finally, linear theory
of free alternate bars under a dominant suspended load can be found in
[Tubino et al., 1999].

2.2 Governing dimensionless parameters

Bar theories are commonly based on a series of simplifying assumptions
with the aim of focussing on the fundamental morphodynamical processes,
while keeping the mathematical problem in a form that can be solved an-
alytically. In the literature of analytical solutions of alternate bars in
straight domains, it is often assumed that the channel is fed by a repre-
sentative (constant) value of the flow discharge, the channel width and
grain size are uniform, and the sediment transport mainly occurs as bed-
load at a rate that is in equilibrium with the stream transport capacity
(e.g. Colombini et al., 1987).

Once the above parameters are fixed, they define a reference uniform
flow condition, which is the one occurring over a flat bed with the given
discharge, channel slope, width and sediment diameter. For the sake of
achieving more generality, analytical morphodynamic theories, including
bar theories, are often formulated with reference to dimensionless equa-
tions, where every quantity is normalised by means of a corresponding
scale quantity that is representative of the reach averaged reference uni-
form flow conditions. For this reason, the outcomes of analytical theories
are often presented in terms of several dimensionless parameters that de-
fine a scale-independent set of reference uniform flow conditions. The key
dimensionless parameters are presented below.

Quantities that refer to uniform flow conditions are indicated with the
subscript ’0’. The first dimensionless parameter β is a measure of the

12
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channel width to depth ratio:

β =
W ∗

0

2D∗0
, (2.1)

where W ∗
0 and D∗0 are respectively the channel width and the water

depth of the reference uniform flow. The parameter β is usually called
’aspect ratio’ or ’width ratio’ and is equal to half of the real aspect ratio
of the channel cross-section.

The second dimensionless parameter is the Shields parameter θ, ex-
pressed as:

θ =
τ ∗

(ρs − ρw) gd∗50

, (2.2)

in which τ ∗ is the mean shear stress that the fluid exerts on the
riverbed, d∗50 is the median value of the bed surface grain size distribu-
tion, ρs and ρw are the mass density of the sediment and the mass density
of the fluid (water) respectively, while g ' 9.8 m s−2 is acceleration due
to gravity.

The third dimensionless parameter, ds, is the so called relative rough-
ness : the ratio between the mean sediment diameter and the reference
uniform water depth, expressed by:

ds =
d∗50

D∗0
, (2.3)

This means that the theory refers to rivers without ripples or dunes
(i.e. gravel-bed rivers).

2.3 Governing equations

Mathematical modelling of bar morphodynamics in single-thread chan-
nels is commonly achieved through approximate solutions of the depth-
averaged momentum equations and of the continuity equations for water
and sediment flows, along with appropriate closure relationships that re-
late sediment transport rate and friction to local flow properties.

Here the governing mathematical system of SWE used to solve the
general case of a single-thread straight channel is reported, expressed in

13
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x

y

W*

L*

0

Figure 2.1: Planform view of alternate bar morphology, with definition of
relevant geometric quantities.

dimensionless form and with reference to a classical Cartesian coordinate
system (x, y) (see Figure 2.1):

U
∂U

∂x
+ V

∂U

∂y
+

1

F 2
0

∂ (η +D)

∂x
+ β

τx
D

= 0 (2.4)

U
∂V

∂x
+ V

∂V

∂y
+

1

F 2
0

∂ (η +D)

∂y
+ β

τy
D

= 0 (2.5)

∂ (DU)

∂x
+
∂ (DV )

∂y
= 0 (2.6)

(1− p) ∂η
∂t

+

[
∂qs
∂x

+
∂qs
∂y

]
= 0. (2.7)

In (2.4 ÷ 2.7) each variable is dimensionless and has been obtained
from its dimensional correspondent through normalization with a rep-
resentative, reach-averaged uniform flow quantity. Namely, the channel
width W ∗

0 has been used for the stream wise and transversal coordinates
(x, y), the reach-averaged water depth D∗0 for the local water depth (D)
and the reach-averaged uniform flow velocity U∗0 for the depth-averaged
velocity field (U, V ). W ∗

0 is adopted as the normalizing factor for the
planform coordinates because alternate bar morphology displays relevant
horizontal variations at this scale (e.g. bar wavelength). Moreover p is the
sediment porosity and F0 is the Froude number of the reference uniform
flow.

Theories for free and forced bars in straight channels are based on per-
turbation solutions of the governing mathematical system. Linear theories
assume bar amplitude to remain "small" and address (i - free bars) the
stability of an initially flat bed and of the the imposed reference uniform

14
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flow with respect to bed perturbations of bar-type and (ii - forced bars)
the forced response of the flow field and riverbed to the presence of a fixed
obstacle in the straight domain (e.g. channel narrowing, bridge piers).

In the presented 2D(xy) system of four equations (2.4 ÷ 2.7) the un-
knowns are four, and precisely: D, U , V and η, where η represents the
bed elevation.

In order to close this mathematical problem, closure relations that
relate the shear stress τ and the sediment flow rate (qx, qy) to the flow
characteristics are needed. A frequently used option is to express the
former, τ , as function of the friction coefficient C, defined by:

τ = (τx, τy) = (U, V )
(
U2 + V 2

) 1
2 C , (2.8)

where the friction coefficient can be computed through a variety of
relations such as the Einstein [1950] formula:

C = 6 + 2.5 ln

(
D∗

2.5d∗50

)
, (2.9)

hence no ripples or dunes are considered.
The second closure, that relates the unit sediment transport rate with

the local values of the Shields parameter and water depth, is written often
assuming that the total sediment transport is due mainly to bed-load
and that the local bed slope mainly affects the direction of the bed-load
[Engelund , 1981]:

q∗ =
(
q∗x, q

∗
y

)
= (cos δ, sin δ) Φ , (2.10)

where Φ represents the mean sediment load function, as described by
Eqs. (2.18) and (2.19), while the angle δ, assumed small, is defined as:

sin δ = V ∗
(
U∗2 + V ∗2

)− 1
2 − r

β
√
θ

∂η∗

∂y∗
, (2.11)

in which r is a parameter that assumes values in the range 0.3 ÷ 0.6

[Engelund , 1981; Olesen, 1984; Talmon et al., 1995].
It is important to note that another implicit assumption of bar theories

is that sediment transport is assumed to occur at flow transport capacity,
i.e. it is supply âĂŞ unlimited.
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m > 2

m = 2

m = 1

Figure 2.2: Examples of bed configurations with different transverse bar
modes: from the case of alternate bars (corresponding to m = 1), to the case of
central or mid-channel bars (corresponding to m = 2), to the case with multiple
bars (m > 2).

2.4 Free bars in straight channels

2.4.1 Free-bar formation and linear stability

Free-bar formation is connected with an intrinsic instability of the channel
bed. In this section a short overview of free-bar theory, as proposed by
Colombini et al. [1987] is presented. We defined m as the transverse bar
mode, which implies m = 1 for alternate bars, m = 2 for central bars,
m > 2 for multiple bars (see also Figure 2.2). The system of equations
presented herein is focused on the specific case of alternate bars (m = 1).

The flow domain that is investigated is represented by a straight chan-
nel with rectangular cross sections and constant width. Imposing constant
water and solid discharge at the upstream (asymptotic) boundary, with
solid discharge at equilibrium (capacity) with flow rate, free bar stability is
studied through the governing equations (2.4 ÷ 2.7). The boundary condi-
tions in the transverse direction impose vanishing lateral flux of water and
of sediments between the channel and the lateral boundaries: V = qy = 0.

A trivial analytical solution of system (2.4 ÷ 2.7) is the reference uni-
form flow described in 2.3, which reads:

D = D0 = 1

U = U0 = 1

V = 0

η = η0 (x)

, (2.12)

where subscript ’0’ refers to uniform flow.
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System (2.4 ÷ 2.7) is solved studying the stability of a small (strictly
infinitesimal) perturbation, with amplitude ε, of the uniform flow solution
(2.12) that depends on time t and on (x, y), which reads:

D = D0 + εD1(x, y, t)

U = U0 + εU1(x, y, t)

V = 0 + εV1(x, y, t)

η = η0 (x) + εη1(x, y, t)

. (2.13)

The assumption of infinitely long channel allows to assume a periodical
structure of the perturbation in the streamwise direction. Therefore, fo-
cusing on the water depth D, but remembering that all four perturbations
have the same functional structure, D (x, y, t) reads:

D (x, y, t) = D0 + εe(Ωt+iωt+iλx) sin

(
2πy

W0

)
+ c.c. (2.14)

= D0 + εeΩt sin

(
2πy

W0

)
cos(λx− ωt) + c.c. (2.15)

where the exponential notation for complex numbers, together with
Euler’s rule (eiα = cosα + i sinα) are used in (2.15). This apparently
meaningless equivalence is presented here because many analytical bar
theories employ such notation, because it helps speeding up the long and
somehow tedious algebraic calculations that eventually lead to the ana-
lytical solution.

The dimensional bar wavenumber λ is easily derived from the wave-
length L∗ (Figure 2.1) and it relates with the dimensionless bar wave-
length, L∗/W ∗

0 , such that small wavenumbers correspond to long bars and
vice versa. It reads:

λ =
πW ∗

0

L∗
. (2.16)

In (2.15), ε is a small (strictly infinitesimal) coefficient that sets the
amplitude of the perturbation, Ω and ω are amplification rate and angu-
lar phase of the perturbation, respectively, and "c.c." stands for complex
conjugate.

Note that the solution of the algebraic system that results from sub-
stituting the perturbations (2.13) with functional structure (2.15) into the
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Figure 2.3: Amplification Ω and angular frequency ω of free alternate bars
(m = 1) versus wavenumber λ, with θ = 0.10, ds = 0.067 and β = 32.6.

governing system (2.4 ÷ 2.7) fundamentally consists of the possibility to
quantify how bar amplification rate Ω and the intensity of angular fre-
quency ω depend on the reference uniform flow parameters (θ0, β and ds),
on the bar wavenumber λ and on the transverse bar mode m. The angular
frequency ω quantifies bar migration in time and its direction (upstream
or downstream).

The solution of the governing system yields an exponential growth of
bar amplitude A:

dA

dt
= ΩA =⇒ A(t) = eΩt . (2.17)

Solution (2.17) defines two well distinct regimes in terms of bar sta-
bility, depending on the sign of the amplification rate Ω. The initial bar
wave can be flattened if Ω < 0, stable regime, or grow in time if Ω > 0,
unstable regime.

For a given flow condition, i.e. given θ0, β and ds, the growth rate
Ω and angular frequncy ω can be plotted versus bar wavenumber λ, as
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Figure 2.4: Marginal curve of bar amplification, β versus wavenumber λ with
θ = 0.10 and ds = 0.01. Blue (Ω > 0) and white (Ω < 0) regions represent the
unstable and stable configuration of alternate bars respectively. In the former
(Ω > 0) a perturbation tends to grow in time, so alternate bars can form, in the
latter (Ω < 0) a perturbation tends to be damped in time.

shown in Fig. 2.3. Fixing θ and ds and varying the value of β, it is possible
to note that for low values of β the amplification rate is always negative,
while the amplification region widens for increasing β.

Changing the value of β and selecting wavenumbers with Ω = 0 and
also ω = 0, it is possible to plot a graph that sums up alternate bars
linear stability and migration properties in the form of neutral curves, i.e.
curves denoting bar configurations that are marginally stable (Ω = 0) or
not migrating (ω = 0) (Fig. 2.4 and Fig. 2.5).

In Fig. 2.4 and Fig. 2.5 these neutral curves are plotted for given val-
ues of θ and ds: the black dotted line represents the condition of vanishing
growth rate (Ω = 0), while the black continuous line corresponds to non-
migrating free bars (ω = 0). The blue region of Fig. 2.4 (Ω > 0) encloses
all states that express intrinsic instability of the system, corresponding to
free-bar amplification. On the other hand, the region below the marginal
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Figure 2.5: Marginal curve of bar migration, β versus wavenumber λ with
θ = 0.10 and ds = 0.01. Red (ω > 0) and yellow (ω < 0) regions correspond to
different directions of bar migration in time: in the red region a small-amplitude
bar perturbation tends to migrate upstream, in the yellow region a bar pertur-
bation tends to migrate downstream.

curve (Ω < 0) corresponds to states where bars are stable, invariably lead-
ing to a flat bed through the suppression of the linear perturbation. The
minimum value of β for bar formation is named "critical" and denoted
with βcr; and the corresponding wavenumber value is denoted with λcr.
The shape of the neutral curve in Figure 2.4 is particularly relevant be-
cause it suggests that the channel aspect ratio is a key parameter for bar
stability, because no free bars could form for relatively narrow and deep
channels, i.e. having β < βcr, regardless of the length of the bars. Start-
ing from a subcritical condition (flat bed) and increasing β, at the limit of
β = βcr bars with λ = λcr start to develop. Note that while βcr has a well
defined limit, λcr has a smooth limit and can be found into a range be-
tween 0.3 and 0.7, though mostly can be found in the range 0.4 ÷ 0.5, and
is often close to the wavenumber having the maximum linear amplification
rate, which is the wavenumber that is initially selected by the instability
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process. The result on free-bar stability is related to a delicate physical
balance between stabilizing and de-stabilizing effects. The key stabilizing
role is played by gravity, which poses a limitation to the local bed slope
associated with the development of bar forms. In the equations, the rela-
tive importance of this effect is associated with the parameter r, already
defined in Eq. (2.10), which then is fundamental in the computation of
the bar amplification rate Ω: if this value is set to r = 0, no stable regions
are present (Ω < 0 ∀ (λ, β) ∈ R2) and a small-amplitude bar perturbation
can only grow in time; if otherwise this parameter is set to a high value
(its experimental limit being in the range up to 0.5 ÷ 0.6) the opposite
configuration is described: the neutral curve is shifted to higher values of
β and bars tend to be invariably suppressed. Calibration of the value of
the parameter r is also influenced by the choice of the roughness and of
the bed-load formula.

In Fig. 2.5, the continuous line divides the (λ−β) plane into two main
regions: the left one, coloured in red, corresponds to positive values of
ω and it corresponds to the region in which small-amplitude, linear free
bars tend to migrate upstream; on the contrary, the larger region on the
right, coloured in yellow, corresponds to negative values of ω, physically
meaning that these bar wavenumbers tend to migrate downstream.

As shown in Fig. 2.5, the value of β that presents both Ω = 0 and ω = 0

identifies a second threshold aspect ratio for which free bars are theoreti-
cally non-migrating and non-amplifying. Such threshold is called resonant
threshold (βres) because it coincides with the theoretical resonance con-
dition of purely periodic river meanders [Blondeaux and Seminara, 1985].
Only for β > βres unstable small-amplitude free bars (growing in time)
can migrate upstream, while for β < βres only downstream migration oc-
curs. These considerations strictly apply for initial, small amplitude bar
perturbations, coherently with the linear approach under which they have
been derived.

These theoretical results have found strong support from experimental
observations on migrating bars. Laboratory experiments (e.g. Kinoshita,
1961; Jäggi , 1984; Lanzoni , 2000a; Lanzoni , 2000b and relatively few field
observations (e.g. Ferguson et al., 2011; Eekhout et al., 2013; Rodrigues
et al., 2015; Jaballah et al., 2015; Adami et al., 2016) indicate that the
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wavelength of migrating bars in straight reaches of mobile-bed channels
ranges between 7 and 9 times the channel width. This range corresponds,
in terms of wavenumber λ, to the interval 0.35 − 0.45, consistently with
theoretical predictions on the maximum linearly unstable wavenumber
range, which falls in the neighbourhood of critical conditions (β ' βcr).

The outcomes of the bar theories, such as values and limits of curves
shown in Fig. 2.3, Fig. 2.4 and 2.5 are sensitive to the chosen sedi-
ment transport formula; in the cases presented in this report, two bedload
formulas have been used. The classical Meyer-Peter and Müller [1948]
formula reads:

Φ = 8 (θ − θcr)
3
2 , (2.18)

where Φ expresses the mean sediment load function, and θcr is the
threshold of the bedload motion, fixed to the value of θcr = 0.047.

The framework of bar theories allows to adapt a variety of bed-load
predictors, such as the modified versions proposed by Wong and Parker
[2006]:

Φ = 3.97 (θ − θcr)
3
2 , (2.19)

where the exponent of the original formulation is maintained and θcr =

0.0495. The formula may also read:

Φ = 4.93 (θ − θcr)1.6 , (2.20)

where θcr = 0.047 is maintained and the exponent is adjusted.
Though strictly valid only for small-amplitude bar perturbations, the

outcomes of the linear theory for free bars provide useful information about
bar wavelength and condition of formation. Information on bar amplitude,
instead, can only be computed, on a theoretical basis, by accounting for
non-linear effects (see next Section).

2.4.2 Free-bar amplitude and non-linear growth

Field and laboratory observations suggest that migrating bars may reach
a rather uniform height in a given reach, which scales with water depth
(e.g. Ikeda [1984]; Knaapen et al. [2001]).

22



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 23 — #53

2.4. Free bars in straight channels

Within the linear theory for free bars, Eq. (2.17) predicts an expo-
nential growth of bar amplitude with time. Adopting a weakly non-linear
theory for bar instability, it is possible to obtain a modified version of the
amplitude equation that admits a theoretical equilibrium condition after
a transient growth [Colombini et al., 1987]:

dA

dt
= ΩA+ Ω1A|A2| . (2.21)

The non-linear amplitude equation (2.21) defines the time growth of
bar amplitude towards an equilibrium condition, where Ω and Ω1 are
functions of λ, θ, β and ds. The equilibrium bar amplitude corresponds to
the condition dA/dt = 0; it is then possible to write (2.21), substituting
the total derivative:

ΩA+ Ω1A|A2| = 0 , (2.22)

which gives two possible solutions, written as follows:

A1 = 0 ; A2 =

√
− Ω

Ω1

. (2.23)

Solution A1 remarks that a possible equilibrium condition is the refer-
ence uniform flow on a flat bed. The non trivial solution A2 shows how
term Ω1 must be negative for coherence of square root, remembering Ω is
a positive term in the amplification region. The parameter Ω1 represents
non-linear suppressing effects that limit exponential growth. Examples of
bar amplitude growth in time are plotted in Fig. 2.6.

Eq. (2.23) on free-bar equilibrium amplitude allows to derive a rel-
atively simple expression for bar height HBM , defined as the difference
between the maximum and the minimum of the bed oscillation along one
bar wavelength, [Colombini et al., 1987]:

H∗BM = D∗0

[
b1

(
β − βcr
βcr

)1/2

+ b2

(
β − βcr
βcr

)]
with β < 2βcr . (2.24)

In Eq. (2.24), D∗0 is uniform-flow depth of the undisturbed channel
while both b1 and b2 are functions of θ and ds; the dependence of b1 and
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Figure 2.6: Time development of bar amplitude A scaled with equilibrium
amplitude Aeq for different values of the initial amplitude A0 (plane bed, θ =

0.1,ds = 0.01, β = 15, λ = 0.2. Reprinted from Tubino et al. [1999].

b2 on these parameters being relatively smooth. In Fig. 2.7 and Fig. 2.8
the values of βcr, b1 and b2 are presented for different values of θ and ds,
allowing an easy estimate of the equilibrium bar amplitude HBM .

Relation (2.24) gives an important cue: the height of bars is not related
with the absolute value of β but with its difference with the critical limit
βcr. Moreover, the equilibrium bar height scales with the reference uniform
depth, as observed in the field.

This theoretical formulation can be compared with other empirical
formulations, e.g. the one proposed by Ikeda [1984]:

HBM = 0.18d0.45
s β1.45 (2.25)

Finally, a weakly non-linear analytical theory like the one of Colombini
et al. [1987] can also give a formulation for maximum scour ηM , defined
as the difference between mean bed elevation and minimum elevation of
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Figure 2.7: Curves of the critical aspect ratio βcr for free bar stability as
function of the Shields parameter θ for different values of ds.

bar oscillation:
ηM = 0.57HBM . (2.26)

Theoretical predictions on bar height have found satisfactory agree-
ment with existing laboratory observations.

2.5 Forced bars in straight channels

As introduced in Section 2.1, also forced steady bars can theoretically
be found in straight channels e.g. near a bend, a channel narrowing or
a hydraulic structure. Forced bars in straight channels have been often
named in different ways in the scientific literature. Other terms used to
denote them include "steady bars" and "spatial bars". [DurÃš et al., 2015]
make an end to the ambiguity of the different terms by distinguishing 3
types of bars: free, forced and hybrid.

On the basis of theoretical analysis (e.g. Olesen [1984]; Struiksma
et al. [1985]; Seminara and Tubino [1992]; Zolezzi and Seminara [2001])
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Figure 2.8: Coefficients b1 and b2 of the Eq. (2.24). In particular, b1 is plotted
as function of θ for different values of ds; b2 is plotted as function of ds for
different values of θ.

it is possible to recall some distinctive features of forced bars in straight
channels:

• forced bars are non-migrating: there is no migration of forced bars
in straight channels;

• forced bars are longer than free bars: their typical wavelength
range is about 15 ÷ 20 times the channel width W (nearly twice
compared to free bars);

• the amplitude of forced bars changes in space: it is damped
in the longitudinal direction when only linear effects are accounted
for and it also predicts growth in longitudinal direction [Mosselman
et al., 2006].

Based on the development of the related theories for straight channels,
free bars are bed-forms that migrate and grow in time, while forced bars
are steady bedforms with spatially varying amplitude [Olesen, 1984]. This
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concept is part of the general issue of morphodynamic influence, as it has
been stated theoretically by Struiksma et al. [1985]; Zolezzi and Seminara
[2001] and supported experimentally by Zolezzi et al. [2005].

The linear theory for forced steady bars in straight channels is for-
mulated with reference to the same system of governing equations (2.4 ÷
2.7) used to derive the linear free bars theory. The main differences are
that (i) steady solutions of the system are sought and (ii) non-periodic
boundary conditions are imposed in the streamwise direction, represent-
ing the "forcing" effect related to the local persistent perturbation of the
channel geometry (bend, local narrowing etc.). Steady conditions imply
to set ∂/∂t = 0 in the governing equations (2.4 ÷ 2.7), particularly in the
sediment continuity equation (2.7).

2.5.1 Linear theory of forced bars in straight channels

Using an approach similar to the one described in Section 2.4, a small
spatial bar perturbation is added to uniform flow solution. In particular,
considering the water depth, it takes the form:

D (x, y) = D0 + εD1 (x, y) , (2.27)

where D0 is the water depth of the reference uniform flow and D1 (x, y)

represents the functional structure of the first order spatial perturbation,
written as follows:

D1 (x, y) = e(λr+iλi)xsin

(
πy

W0

)
+ c.c. (2.28)

= eλrx sin

(
πy

W0

)
cos (λix) + c.c. (2.29)

In equation (2.27) ε is a small number, requested by linear approach,
while λr and λi are the spatial amplification rate and wavenumber of the
steady bars. Eq. (2.29) is written within the same system of coordinates
used for free bars (see Fig. 2.1).

It is useful to focus on the mathematical differences between the linear
solutions for free migrating bars and forced steady bars. When studying
free alternate bars, the most important parameters for bar stability and
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migration are Ω and ω (Eq. 2.15): they express how free-bar stability and
migration depend on the governing parameters θ, β, ds for a given λ and
transverse mode m. The solution of the linear differential system that is
obtained by substituting the linear expansion (2.27) into the steady form
of the governing equations (2.4, ÷ 2.7) yields, in the present case, the
dependence of λr and of λi on (β, θ, ds) and on the transverse bar mode
m. This makes it possible to compute values of λr and λi fixing θ and ds
and changing β. The solution of the perturbed system are four complex
numbers λ1−4 and an example of their variability with β is reported in
Fig. 2.9.

It is worth noting that several formulations for the steady-bar theory
have been proposed in the scientific literature. They are all based on
the same set of governing equations and mainly differ for the simplify-
ing hypothesis that have been made to solve them. The key outcomes
do not qualitatively differ among these theories [Olesen, 1983; Struiksma
and Crosato, 1989; Parker and Johannesson, 1989; Seminara and Tubino,
1992]. In some cases, two (instead of four) eigenvalues of the homogeneous
differential system are obtained, because of a larger number of terms that
is neglected in the equations, which results in a reduced order of the linear
differential problem. The two eigenvalues that are obtained within such
2nd order linear mathematical theories correspond to the complex eigen-
values λ3, λ4 of the 4th order model that is discussed further in the present
chapter and, more in general, that is used and applied in the present thesis.
It is worth noting that the additional eigenvalues of the 4th order model
with respect to the 2nd order model are always real numbers. The real
part λr of the complex eigenvalue (Fig. 2.9B) denotes spatial damping
rate of steady bars, while the imaginary part λi, reported in Figure 2.9C,
denotes its wavenumber, as defined in (2.16). More in detail, positive
values of the real part denote that bar amplitude decays in the upstream
direction, vice versa it decays in the downstream direction. The linear
solution of steady bar pattern is composed by the sum of four different
complex exponentials of the type e(λr+iλi)x. Each exponential contributes
to the steady bar solution as follows:

λ1 The first solution has a vanishing imaginary part and a real part
always positive: this means that this component of the bed eleva-
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tion is non-oscillating and rapidly decaying upstream (or growing
upstream).

λ2 It has the same configuration as λ1 but negative sign; it means that
this component is a non-oscillating signal and quickly decays down-
stream (or grows upstream).

λ3 It corresponds to a steady bar with wavelength (2π/λ3i) of about
10− 20 times channel width. The direction along which the ampli-
tude is damped is controlled by the real part of λ3: for small values
of β the amplitude is damped in the downstream direction, while
increasing β above the resonant threshold βR, implies an upstream
decaying bar amplitude (or a growth in the downstream direction).

λ4 It has the same real part as λ3 and the same absolute values for the
imaginary part: the bar "signal" coincides with the previous one
(λ3).

Because of the structure of such a linear solution, the sign of the real
part of the characteristic exponents (λ3, λ4 see Figure 2.9) control whether,
at a linear level, forced bars are expected to appear downstream or up-
stream the local geometrical perturbation (bend, narrowing,...).

Namely, when β < βres, λ3r = λ4r < 0, forced bars can only occur
downstream of the local perturbation and their amplitude is downstream
damped. An unbounded upstream growth would indeed lead to unrealistic
patterns and those solutions are discarded. This is called "2D downstream
morphodynamic influence" and linearly occurs under sub-resonant condi-
tions (i.e. β < βres). When β increases, the resonant condition is reached,
characterized by a theoretical zero-damping of the bar amplitude. Moving
in upper region, where β > βres, forced bars are damped in the upstream
directions. Following an analogous reasoning, this would imply that forced
steady bars, when β > βres, appear upstream the forcing discontinuity.
This is called "2D upstream morphodynamic influence" and occurs only
under super-resonant conditions (i.e. β > βres). In the linear solution,
the distance of β from the resonant condition also quantifies the longi-
tudinal distance over which the amplitude of the steady bar is damped.
The damping rate of the bar wave is indeed higher far from the resonant
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condition, while it is smaller when approaching the resonant condition.
The link between the outcomes of forced and free bars theories in straight
channels is shown in Fig. 2.9.

It is represented by the resonant point, which corresponds to both
marginally stable, non migrating free bars and to non amplifying and non
decaying forced steady bars in straight channels. A vertical line is drawn
connecting figure 2.9A and 2.9B to clarify such link graphically.

As a final remark, it must be noted that the two families of analytical
bar theories for free and forced bars in straight channels likely represent
end members of what is actually observed in a field situation, and even in
a laboratory flume setting, which is likely related to complex non-linear
interactions between these theoretical bar types. Nevertheless, especially
for representing purely free or purely forced bar behavior, the theories
reviewed in this chapter can be effectively used to benchmark numerical
simulations aiming at reproducing the fully non-linear dynamics of alter-
nate bars, e.g. [Siviglia et al., 2013].

2.5.2 Weakly non-linear theory of forced bars in straight
channels

Spatial behaviour of forced steady bars can be viewed through an anal-
ogy with free migrating bars with two main differences: substituting time
with the longitudinal coordinate and the critical parameters (βc,λc) with
resonant parameters [Seminara and Tubino, 1992]. The analogy is partic-
ularly relevant to illustrate the key outcomes of the non-linear theory of
steady bars, which exactly coincides with that of the corresponding theory
of migrating bars, provided time is replaced by space.

Referring to a semi-infinite straight reach with an upstream local per-
sistent perturbation (Fig. 2.11), under sub-resonant conditions an initial
amplitude of steady bars set by the presence of a local discontinuity, de-
cays exponentially downstream by a rate that is proportional to λ3r = λ4r.
After a certain length, which is a function of the hydraulic conditions
(β, θ, ds), the straight reach is characterized by absence of steady bars.
This behaviour is predicted by both linear and non-linear theories.

On the opposite, under super-resonant conditions, non-linear effects
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play a relevant role and modify the linear response. Linear theory pre-
dicts an indefinite downstream exponential growth of an initial steady bar
amplitude as shown in Fig. 2.12, while non-linear effects limit the growth
of bar amplitude towards and equilibrium value in space (Fig. 2.13). The
analogous behaviour of free-bar theory (Fig. 2.4.2) is given by the ampli-
tude of migrating bars that grows in time at a rate that is exponential in
the initial stages (dominant linear effects) and afterwards is damped by
non-linear effects, eventually tending towards an equilibrium amplitude.
In forced-bar theory the amplitude of forced bars evolves in the same way
when time is replaced by the longitudinal coordinate.

Non-linear analysis, performed by Seminara and Tubino [1992] in the
neighbourhood of the resonant condition, considers the basic flow proper-
ties and the fundamental and second harmonics of the expansion in powers
of ε1/2. The equilibrium amplitude in space presents the same structure
of the amplitude in time of the free bar theory and takes the expression
[Seminara and Tubino, 1992]:

|AEQ| =

√
−Re (αR1 )

Re (αR2 )
(2.30)

where the two parameters αR1 and αR2 are functions of (θ, ds) and can
be found in Seminara and Tubino [1992] in their Fig. 6 and Fig. 7 for the
case of a plane bed and a dune-covered bed, respectively. The weakly non-
linear analysis performed by Seminara and Tubino [1992] suggests that
under super-resonant conditions, the initial steady perturbation (say, A0)
develops asymptotically in space into a periodic equilibrium configuration
(say, AEQ) consisting of steady bars. The solution presented in Fig. 2.13
is a qualitative attempt to describe the behaviour of the non-linear effect
pointed out by Seminara and Tubino [1992]. In Fig. 2.13 the following
approximate expression has been used to plot the spatial variability of the
bed elevation near one of the banks:

η (x, y, t) = η0 +
A0e

λrx

1 + (eλrx − 1) A0

AEQ

sin

(
2πy

W0

)
cos(λix) . (2.31)

The solution of Seminara and Tubino, 1992 refers to the ideal case of a
straight channel with semi-infinite length in the direction of propagation
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of the steady perturbation. In summary, the weakly non-linear theory
for forced steady bars in straight channels [Seminara and Tubino, 1992]
is the analogous of the weakly non-linear theory for free migrating bars,
with the difference that the independent variable on which the non-linear
amplitude equation depends is space (the streamwise direction x) instead
of time, and the threshold βcr is replaced by the threshold βres. There-
fore, under sub-resonant conditions (β < βres), forced steady bars occur
only downstream the localized perturbation, with downstream decaying
amplitude, in analogy with the behaviour of free bars that decay in time
when β < βcr. Under super-resonant conditions (β > βres), instead, the
amplitude of forced bars varies in space and tends, both upstream and
downstream, to an equilibrium amplitude that can be computed by the
linear theory of Seminara and Tubino [1992]. All the above picture has
received experimental support [Struiksma et al., 1985; Zolezzi et al., 2005].

2.5.3 Illustration of steady bar patterns in straight
channel reaches with local planform perturba-
tions

A first example is shown in Figure 2.10 in which the case of three straight
reaches and two bends is presented. The Figure shows the analytical solu-
tion of the linearised system of equations presented before, with different
values of a steady flow discharge, uniform sediment diameter, constant
channel width and the Meyer Peter and Müller formula [Meyer-Peter and
Müller , 1948] as bed-load predictor. The channel geometry consists of
three straight reaches connected by two bends of constant radius. To save
space, the bed morphology in the bends is not plotted in the diagrams
of Fig. 2.10, and the bends are ideally located at x = 50 and x = 150

(numbers of channel width). Each bend is one channel width long and its
radius of curvature is 10 times the channel width (5.73 degrees).

At the interface between straight and curved sub-reaches, four condi-
tions have been imposed to match the upstream and downstream solutions
on both parts of the interface. In particular Figure 2.10 presents the plan-
form configuration of three single straight reaches in which the length of
the upstream and the downstream ones is equal to one half of the central
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one. Longitudinal and transverse lengths are nondimensional, in particu-
lar x = x∗/W ∗ and y = y∗/W ∗. Figure 2.10 shows the first three cases in
which β > βr and the last two cases in which β < βr. In fact, in channels
where channel width almost does not vary with flow discharge, the aspect
ratio β decreases with increasing discharge, while the opposite applies for
the resonant value βr. This is obtained changing the value of the dimen-
sional discharge, so changing the value of θ. Observations of the various
diagrams in Fig. 2.10 suggests different behavior:

• length of the influence is maximum when β−βr is nearly vanishing,
while it is shorter when β − βr is larger;

• in the linear case, we have only upstream influence in super-resonant
conditions and only downstream influence in sub-resonant condi-
tions;

• amplitude and wavelength of the alternate bars are proportional
with the length of the influence: a longer influence corresponds to
higher amplitude and bar wavelength;

Moreover, linear analysis is not able to capture the alternate bars
commonly present downstream of an obstacle like a bend, even under
sub-resonant conditions.

In view of the comparison with a field case (see Chapter 3), a second
example is presented considering reaches with finite length separated by
fixed perturbations (physically planform discontinuities e.g. bends) that
trigger the formation of steady bars in space. The geometrical configura-
tion of the channel is analogous to the one of Fig. 2.10. The effect of two
perturbations of the same type (e.g. two bends that generate the same
effect in terms of amplitude A0) is shown in Fig. 2.14 and 2.15 for the
sub-resonant case and for the super-resonant case respectively. The solu-
tions of the two perturbations are superimposed to obtain the combined
effect in the streamwise direction. The role of non-linearity is fundamen-
tal to analyse a reach with multiple discontinuities, because it corrects
the streamwise exponential growth, and determines the amplitude of bed
oscillations to achieve an equilibrium amplitude provided enough channel
length is available. In Figure 2.16 the linear and non-linear solution of
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the sub-resonant (upper and central) and super-resonant (lower) cases are
shown. In particular, the effect of the non-linearity is evident by compar-
ing plots in Fig. 2.16A,B where the linear super-resonant solution indef-
initely grows in the longitudinal coordinate, with the plot in Fig. 2.16C,
where non-linear effects cause the solution to tend to the equilibrium value
AEQ.
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Figure 2.9: (A) Marginal curves for free bar stability (Ω = 0, red line) and
migration (ω = 0, blue line). (B) Spatial damping rates (real part of λ1, ..., λ4)
of steady bars. (C) Dimensionless wavenumber (imaginary part of λ1, ..., λ4).
All diagrams refer to the same combination of parameters (θ = 0.1, ds = 0.02,
Parker bed-load formula, r = 0.3), therefore the value of βres is the same in
diagrams A and B. Courtesy of M. Redolfi.
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Figure 2.10: Theoretical case of three straight channels linked by two obstacles
(two bends: vertical dotted lines). Forced alternate bars formation is shown
in five different cases of flow discharge under constant channel width. The
first three cases describe the super-resonant regime in which steady bars form
upstream the obstacles, the last two cases describe the sub-resonant regime, in
which steady bars form downstream the obstacles.
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Figure 2.11: Sub-resonant case (λr < 0) of a fixed perturbation located at
x = 1000 that generates and amplitude A0 = 1. Real and imaginary wavelength
are respectively λr = −0.005 and λi = 0.05. Upper figure shows the bed
elevation η function of the longitudinal coordinate, downer figure shows the
planform evolution of the same case, with color-bar ranging η = [−1.5; 1.5].
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Figure 2.12: Super-resonant case (λr > 0) of a fixed perturbation located
at x = 1000 that generates and amplitude A0 = 0.1. Real and imaginary
wavelength are respectively λr = 0.0015 and λi = 0.09. Upper figure shows the
bed elevation η function of the longitudinal coordinate, downer figure shows the
planform evolution of the same case, with color-bar ranging η = [−1.5; 1.5].
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Figure 2.13: Super-resonant case (λr > 0) of a fixed perturbation located at
x = 1000 that generates and amplitude A0 = 0.1 in which the linear exponential
growth is substituted with a non-linear growth up to the equilibrium value
AEQ = 0.3. Real and imaginary wavelength are respectively λr = 0.0015 and
λi = 0.09. Upper figure shows the bed elevation η function of the longitudinal
coordinate, downer figure shows the planform evolution of the same case, with
color-bar ranging η = [−1.5; 1.5].
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Figure 2.14: Illustrative diagram of the linear solution of the dimensionless bed
elevation η corresponding to two fixed perturbations connecting three straight
reaches under sub-resonant conditions. Solutions of the single perturbations
(η1 and η2) are shown plots (A) and (B). Plot (C) shows the combined effect
(η1 + η2) of the perturbation in the finite length straight reach.
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Figure 2.15: Illustrative diagram of the linear solution of the dimensionless bed
elevation η corresponding to two fixed perturbations connecting three straight
reaches under super -resonant conditions. Solutions of the single perturbations
(η1 and η2) are shown plots (A) and (B). Plot (C) shows the combined effect
(η1 + η2) of the perturbation in the finite length straight reach.
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Figure 2.16: Illustrative comparison of the linear and non-linear solutions for
the dimensionless bed elevation η both sub-resonant (A,B) and super -resonant
conditions (C). Channel geometry is analogous to that of Fig. 2.14 and Fig.
2.15.
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Chapter 3

Multi-decadal alternate bar
dynamics of the Alpine Rhine
river

Based on the paper: Adami L., Bertoldi W., Zolezzi G., Multi-decadal
dynamics of alternate bars in the Alpine Rhine River. Water Resources
and Research, under review.

This chapter reports on a multi-decadal analysis of alternate bars dy-
namics in a 41.7 km reach of the Alpine Rhine River, which represents
an almost unique example of a regulated river composed by fixed levees,
straight reaches and regular bends in which alternate gravel bars spon-
taneously form and migrate since more than a century. The analysis
is based on freely available Landsat imagery, which provides an accu-
rate and frequent survey of the dynamics of alternate bar configuration
since 1984. Bars are characterized in terms of wavelength, migration, and
height. Longitudinal and temporal patterns are investigated as a func-
tion of flood occurrence and magnitude and in relation to the presence
of local planform discontinuities (bends and ramps) that may affect their
dynamics. The study shows spatially selective behavior of alternate bars,
with longer (about 13 channel widths) steady bars more common in the
upper reach and shorter (about 9 channel widths) migrating bars observed
in the downstream reach. Bar height is rather uniform along the reach,
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ranging between 3 m and 4 m. The observed relation between bar migra-
tion and wavelength is consistent with linear theories for free migrating
and steady forced bars in straight channels. Observed characteristics show
intermediate values between the theoretical boundaries of linear theories.
Overall, the analysis provides observations on the morphodynamics of
alternate bars in channelized river reaches at an unprecedented combina-
tion of length scale, time scale and time resolution. The outcome of the
analysis improves the present understanding of alternate bars behavior
in regulated rivers and provides a valuable dataset for comparison with
complementary approaches to the study of alternate bars, like analytical
theories and numerical morphodynamic modelling.

3.1 Introduction

Alternate bars have been documented in channelized river reaches since
nearly 3 centuries (e.g Engels [1914], Werth [2014]). They emerged as a
morphological response of the river bed to levee construction and chan-
nel straightening. Their widespread occurrence in wide enough, morpho-
logically regulated streams attracted the attention of hydraulic engineers
because of their undesired effects on bridges, embankments, intake struc-
tures and on river navigation [Jäggi , 1984]. Moreover the weakly, regular
periodic oscillations that alternate bars impose to the flow in a straight
channel initially provided an intriguing (though lately discarded for the
case of free bars) possible explanation to the origin of river meandering
[Parker , 1975; Lewin, 1976], thus stimulating the interest of fluvial geo-
morphologists.

In the 1960s, a consistent research effort to understand the causes and
controls on their formation, their geometrical properties (length, magni-
tude of scours and deposits), and migration was undertaken, through com-
plementary approaches, mainly including mathematical and physical scale
modeling. A remarkable bias towards modeling approaches is evident in
the alternate-bar literature, with limited availability of field observations
till recently, mainly because of the relatively long time and space scales
needed to properly describe their dynamics (e.g., Eekhout et al. [2013]).
Such bias limits our present understanding of and ability to predict the
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morpho-dynamic response of regulated rivers to hydromorphological pres-
sures, like those associated with changes in the flow and sediment supply
regime, in levee alignment, and with other river management or restora-
tion measures.

The observation gap is being increasingly addressed only very recently,
thanks to the development of in-situ monitoring technologies e.g., flow and
bathimetric survey, (Rodrigues et al. [2015]), as well as through remote
sensing and the use of satellite imagery (Henshaw et al. [2013]). Table
3.1 summarizes the main existing field studies with focus on alternate-bar
dynamics. Three studies out of eight (Welford [1994]; Eekhout et al. [2013];
Jaballah et al. [2015]) focus on a reach length of nearly 100 channel widths
or more, allowing the observation of a consistent number of alternate bar
units, which length is typically in the range of 6 to 30 channel widths.
However, only one of these three (Jaballah et al. [2015]) covers a multi-
decadal time scale, with the other two multi-decadal studies referring to
reaches with a more limited number of bars (Church and Rice [2009],
Ferguson et al. [2011]). Furthermore, the three multi-decadal analyses
have a relatively poor temporal resolution of surveys, with an average of
1 available survey every 3 to 5 years.

The present chapter focuses on a quantitative understanding of long-
term dynamics of alternate bars in the Alpine Rhine River. This is a
renowned example of a channelized stream where an impressively long
and regular sequence of alternate bars is observed since decades (Jäggi
[1984]). Moreover, it is believed to be one of the few examples of rivers
where migrating alternate bars can be observed (Crosato and Mosselman
[2009]).

The main goal of this chapter is to quantify the morphodynamics of al-
ternate bars in the Alpine Rhine River, with a particular emphasis on bar
migration; This goal is achieved by developing and analyzing a dataset of
freely available multitemporal Landsat imagery, which combine unprece-
dented temporal length (3 decades); spatial length (> 400 channel widths);
and temporal resolution (∼ 2 images per year).
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Figure 3.1: Overview of the study area with the catchment of the Rhine River
in light gray and the catchment of the Alpine Rhine highlighted in dark gray.
On the left panel there is a zoom on the study reach, reporting on the location
of bends and ramps.

3.2 Study site and methods

3.2.1 The Alpine Rhine River

The Rhine river is one of the largest rivers of Europe, with a basin of
1.85× 106 km2 and a length of 1326 km. The upper part of the basin,
between the confluence of Anterior Rhine and Posterior Rhine and the
lake of Constance is called Alpine Rhine. This sub-basin is located in
the eastern part of Switzerland, western Austria (the tributary Ill) and
the whole territory of Liechtenstein (see Figure 3.1). The Alpine Rhine is
93 km long and its catchment area is 6123 km2.

We focused the analysis on a reach that is 41.7 km long and is lo-
cated between the Landquart’s confluence (km 23.3 of the Alpine Rhine,
Landquart’s drainage area: 618 km2) and the confluence with the Ill river
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(km 65.0, Ill’s drainage area: 1281 km2). The whole reach was heavily
channelized in the 19th and 20th centuries, with the last levees built in
the 30s and 40s of the last century. These engineering works aimed at
an increased flood protection and drastically simplified the original dy-
namic multi-channel morphology. Nowadays, the reach is characterized
by a continuous sequence of alternate bars, which makes the Alpine Rhine
the perfect site to study this morphological pattern.

The hydrological regime is pluvio-nival, characterized by snow-melt in
spring and summer and by larger floods most probable in Autumn. The
river is strongly affected by hydro-power production, with water release
fluctuations superimposed along the whole year. Hydropeaking increases
the discharge on average by 70-80 m3s−1, with a regular daily (and weekly)
pattern. Since 2010, the pattern is much more irregular, due to new rules
of the energy production management.

There are several available hydrometric stations in this reach. We
used the daily data of the Austrian gauging stations in Bangs, Feldrik, and
Lustenau for the period 1951 - 2010, and of the Swiss station in Diepoldsau
for the period 1919 - 2012. For this last station, 10-min data were also
available for the period 1984-2013. The average discharge upstream of the
Ill’s confluence is 150 m3s−1 (dataset 1996-2010). The minimum flow is
40.3 m3s−1 and the maximum registered flood peak (1988) is 2650 m3s−1

(see Figure 3.2).

The cross-section of the channelized reach was designed with a classi-
cal trapezoidal shape, with a base width (W ) that increases from 85 m in
the upstream part up to 106 m downstream. No floodplain is present and
the levees (with a transverse slope of approximately 35◦) are composed
of boulders that prevent any planform changes. Bed material is primar-
ily composed of gravel, with a median grain size ranging between 60 mm

upstream and 20 mm downstream [Hunziker et al., 2001], with local vari-
ability caused by the alternate-bar grain sorting. Longitudinal bed slope
decreases along the reach, from 2.9 %� upstream, to 1.3 %� downstream.
Hunziker et al. [2001] suggested an annual sediment transport load in the
range 1.7× 104 m3year−1 to 6.5× 104 m3year−1. In order to take into ac-
count the downstream variation of the main morphological parameters,
the study reach was divided into three sub-reaches, each having rather
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homogeneous values of width, slope and median grain size (see Table 3.2).

3.2.2 Image database

The Landsat program started formally in 1972 with the launch of the
first satellite Landsat 1 and represents the world’s longest continuously
acquired collection of multi-spectral images of the earth surface. This
dataset provides an invaluable source of information for the study of sev-
eral earth-surface processes, including large rivers, for which the 30 m spa-
tial resolution (improved to 15 m in 1999 with Landsat 7) is often adequate
(Henshaw et al. [2013], Constantine et al. [2014]).

Landsat imagery is freely available from the USGS Earth Explorer
portal (http://earthexplorer.usgs.gov/). For this study, we used the avail-
able images acquired by Landsat 4-5 TM (30 m resolution), Landsat 7
ETM+ and Landsat 8 OLI (15 m resolution of the panchromatic band).
The dataset covers a period of around 30 years, starting from 1984, with
a partial interruption of the acquisition between 1991 and 1998. A total
number of 58 images out of 78 available were downloaded and used for
this study. Cloud cover and high discharge are the two main reasons for
the filtering.

Figure 3.2 shows the temporal sequence of the available images, super-
imposed on the discharge record. Emerged gravel bars are visible on the
Landsat images only for discharge values lower than 350 m3s−1. The full
dataset of 78 images covers a discharge range from 64 m3s−1 to 540 m3s−1.
Figure 3.3 shows three examples of Landsat images, taken at different dis-
charges. The mirror alignment problem that affected Landsat 7 ETM+
sensor after 2003 (and produced the black strips visible in Figure 3.3b)
did not affect our analysis in a significant way, as it was generally possible
to locate the front and tail of most of the bar units. Furthermore, a more
detailed aerial image (Google Maps ©) was used to accurately define the
embankment line and the low-flow channel width (W ).

3.2.3 Bed topography database

We used a complete cross-section dataset of the Alpine Rhine surveyed in
2005 by the IRR (International Rhine Regulation) to determine hydraulic
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Figure 3.2: Discharge record for the period 1984-2012. Circles represent acqui-
sition date and corresponding discharge value of the analyzed Landsat imagery.
Horizontal lines indicate the fully wet discharge QFW (continuous line); the
fully transporting discharge QFT (dashed line) and the critical discharge for
alternate bar formation following Colombini et al. [1987], Qcr (dotted line). See
Table 3.2 for further details.

variables of the study reach. The survey is composed of more than 200
cross sections with a longitudinal spacing of approximately 200 m. Reach-
averaged hydraulic conditions were determined for each of the three sub-
reaches, as reported in Table 3.2.

Uniform flow conditions were computed in each cross section, consider-
ing a Manning coefficient for roughness in the range 0.025 - 0.030 sm−1/3,
and the sub-reach averaged longitudinal slope. The analysis identified:
i) the value of discharge that submerges all the bar deposits (fully wet
discharge, QFW , equal to an average of 300 m3s−1); and ii) the discharge
at which the full cross section is expected to actively transport bed ma-
terial as bed load (fully transport discharge, QFT , equal to an average of
650 m3s−1). Transport conditions were evaluated considering a threshold
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a)

b)

c)

Figure 3.3: Three examples of Landsat images acquired at different flow stages.
a) March 04, 2002, Q = 53.5 m3/s; b) July 21, 2006, Q = 152.5 m3/s; c) May
01, 2000, Q = 313.0 m3/s;

on the dimensionless bed shear stress equal to 0.03 [Parker et al., 2007].

3.2.4 Monitoring of bar properties

The 41.7 km long reach includes a series of approximately 40 bar units.
Here we define bar unit as two consecutive bar deposits, one on the left
and one on the right side. Satellite images were imported into Quantum
GIS software (QGIS Development Team [2009]) and locations of bar fronts
and tails were monitored in each of the 58 available images as the most
downstream and upstream point of the emerged deposits. Figure 3.4 re-
ports an example of the resulting vector map of the alternate bars. From
this dataset of geographical coordinates, bar wavelength (L∗) and bar mi-
gration were computed. Bar wavelength is defined as the distance between
two consecutive fronts (or tails) on the left (or right) bank (length of the
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Table 3.2: Geometrical and hydraulic properties of the three sub-reaches of
the Alpine Rhine. W ∗ is channel width, d∗s a representative sediment diameter,
s longitudinal slope, QFW is the fully wet discharge, QFT the fully transporting
discharge, Qcr the critical discharge for bar formation, following Colombini et al.
[1987].

Position Geometry Discharge

from - to W ∗ d∗s s Q∗FW Q∗FT Qcr

Reach [km] [m] [mm] [%�] [m3 s−1]

Upstream 0.00 - 12.27 85 60 - 50 2.9 381 829 1845
Center 12.27 - 30.94 95 50 - 30 2.0 270 628 1942
Downstream 30.94 - 41.7 106 30 - 20 1.3 230 511 1880

bar unit). Bar migration is the temporal difference between the location
of the front (or tail) of the same bar unit. A parameter called bar elon-
gation was also computed as the wavelength difference of the same bar
unit between two different Landsat images. Reference Landsat data for
the difference in time are October 22, 1999 (Q= 149 m3s−1) and July 16,
2010 (Q= 154 m3s−1).

The high temporal resolution of the Landsat imagery ensured an easy
recognition of the same bar structures on the images. Bars migrated no
more than a few hundred meters (i.e. a few channel widths) even during
the largest floods and we never observed a complete rearrangement of the
bed topography, with disappearance of the bar structure and formation of
a new sequence.

In the case of images acquired with largely different discharge con-
ditions, locations of bar fronts and tails are affected by changes in the
exposed area. This implies that the front (or tail) of the bar may appear
to move upstream (or downstream) only because of a different water level.
In order to minimize this effect, we performed a spatial average, combining
front and tail results. A change in the water level is likely to determine an
opposite movement of fronts and tails, thus resulting in a minimal effect
on the bar average [Adami et al., 2014].
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Figure 3.4: Example of digitized bars of a short reach, pointing out location
and definition of bar fronts, bar tails, and bar wavelength. Dotted lines represent
digitized bars of LANDSAT L4-5 TM, March 28, 1984, Q= 127 m3s−1; solid lines
represent LANDSAT L7 ETM+, July 16, 2010, Q= 154 m3s−1.

Furthermore, we identified the presence of planform and bed eleva-
tion discontinuities, in the form of bends and ramps. Their location was
marked in the vector map (see Figure 3.1 and Figure 3.4), in order to
assess their potential impact on bar morphodynamics.

The cross-section dataset provided also information about bar ampli-
tude, which is defined for each bar unit as the difference between the
highest and the lowest bed elevation values over the entire unit. The rel-
atively coarse longitudinal spacing between consecutive cross-sections in
the available topographic survey (200 m) did not allow an exact computa-
tion of such parameter. For this reason, a parameter called "bar height"
was computed as the difference between the lowest and the highest values
of bed elevation in each cross-section. This bar height provides a reason-
able, though underestimate, estimate of the actual bar amplitude, as the
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highest and lowest bed elevation values over one entire bar unit may not
occur at the same cross-section.

3.3 Results

Results of the Landsat imagery analysis are presented here in terms of bar
wavelength, migration, and amplitude with focus on the longitudinal and
temporal variations.

3.3.1 Bar wavelength

Bar wavelengths along the whole 41.7 km reach of the Alpine Rhine river
are shown in Figure 3.5 for the period 1984-2013. Here, each point rep-
resents the wavelength of a single bar unit, as measured on one of the
Landsat images. The presence of fourteen bends (b1, . . . , b14) and two
ramps (r1, r2) along the reach is highlighted in Figure 3.5 by dashed and
continuous lines, respectively.

Overall bar wavelengths range in the interval 750 - 1700 m, which cor-
responds roughly to an interval 7 - 17 in terms of the wavelength nor-
malized with the average channel width. Based on bar wavelength values,
the study reach can be divided into two main sectors. In the upstream
sector, which extends down to km 16 (bend 4), bars tend to be longer,
with wavelengths in the interval 1200 - 1700 m (L/W = 12 - 17). Large
fluctuations of the locally averaged wavelength are present along this first
sector, with minimum values occurring close to the localized persistent
planform discontinuities, as bend b1 and b2, and the first ramp r1.

A sudden shortening is visible starting from bend 4, and shorter bars
occur throughout the sector, with wavelengths generally in the interval 700
- 1200 m (L/W = 7 - 12). The local bar wavelength shows a more uniform
spatial trend on average, but with a higher number of outliers, with bars
as short as 500 m and longer than 1700 m. Overall, the mean behavior
of the data cloud in Figure 3.5 appears to vary rather smoothly within
the straight sub-reaches, while the presence of ramps, individual sharp
bends, or sequences of nearly consecutive bends, is often associated with
discontinuities in the spatial trend, inducing local elongation/shortening
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Figure 3.5: Bar wavelength of each monitored bar unit on the complete Land-
sat imagery dataset (1984-2013). Vertical lines represent bends (dashed) and
ramps (continuous). The light grey area represents the theoretical wavelength
range of free bars, while the dark grey area represents the theoretical range of
forced bars.

of bars.
The local variability of alternate-bar wavelength in the 16 straight

reaches is illustrated by the box and whisker plots of Figure 3.6. The
whiskers have been computed as the limits of an interval extending ±2.7σ

from the median value of every sub-reach, with σ denoting the standard
deviation of the local distribution. Besides the difference in median wave-
length values that is evident also in Figure 3.5, the upstream and down-
stream sectors also show a different behavior between the 6 longer (1.9 -
5 km) and the 11 shorter straight reaches. Bar wavelength shows a much
higher local variability in the three longer sub-reaches located in the up-
stream sector compared both to the shorter sub-reaches located in the
same upstream sector and to the three longer sub-reaches located in the
downstream sector. The opposite behavior occurs in the downstream sec-
tor, where the highest variability in local bar wavelength is observed in the
short straight reaches located in between bends. Local wavelength vari-
ability in sub-reaches 2, 9, and 15 is the largest, with wavelengths that
may differ up to 500 m.
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Figure 3.6: Boxplot of bar wavelength, divided in the 16 sub-reaches defined
by bends (dashed lines) and ramps (continuous lines).
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(continuous).
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Cumulative values of bar elongation are reported in Figure 3.7, where
the difference between values in the period 1999 - 2010 is shown. We chose
to limit the analysis to this period, to avoid the long gap between 1990 and
1999, which hinders an accurate reconstruction of bar dynamics. During
this time interval, maximum elongation as well as maximum shortening
range around 200 - 250 m (approximately 2.5 - 3 times the river width).
Upstream of bend 4, bar wavelengths tend to remain fairly constant in
time, with total variations shorter than one river width. The larger vari-
ations are observed in the reach between bend 4 and bend 7, with bars
experiencing an elongation of more than 200 m just downstream of bend
4, followed by an almost linear transition to a shortening of more than
200 m before bend 7. Close to bend 8, bars suddenly shifted to elongation
(up to 150 m). Downstream of this, in the long straight sub-reach between
bend 10 and 11, bars showed little variations, with a tendency to shorten
towards the end of the reach. Also the longitudinal mean trend of bar
elongation shows abrupt shifts in correspondence of some bends, as it has
been observed in Figure 3.5 for bar wavelength.

3.3.2 Bar migration

The second parameter considered in the characterization of bar dynamics
is their migration. In Figure 3.8 the spatial trend of the cumulative bar mi-
gration over the period 1999-2010 is presented. In this case, migration was
computed as the longitudinal shift of each bar unit, averaged considering
both the front and the tail of the exposed deposit. Maximum downstream
migration is approximately 1000 m (about 9 - 10 river widths or one av-
erage bar wavelength in the case of the downstream part of the reach).
Many bars showed very low values of migration, with only 3 bars over
a total of 77 denoting a slight upstream migration (negative values). In
analogy with bar wavelength (Section 3.3.1), two rather different bar mi-
gration patterns characterize the same upstream and downstream sectors
of the study reach. Upstream of bend 4 bars are generally non-migrating
(or "steady"), with total migration values lower than one river width in
both straight and curved reaches. In a few km downstream of bend 4,
migration reaches its maximum, with values around 1000 m. Along this
second sector, bars tend to migrate downstream consistently, with several
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Figure 3.8: Cumulative bar migration in the period 1999-2010. Each point
represents the total migration of single bars. Vertical lines represent bends
(dashed) and ramps (continuous).

bar units moving downstream by 700 - 1000 m in most of the long straight
subreaches 7, 8 and 13 (see Figure 3.6). The slowing effect of bends and
ramps on alternate bars in the downstream sector is clearly visible. Close
to bends 7, 8, 9 and 12, 13, 14, bars migrated less than half of the distance
migrated by bars in the long straight sub-reaches. A few steady bars can
be observed at the inner bank of bends 5, 12, and 13, and also close to
the second ramp.

Bar migration is analyzed also at the time scale of the single flood
event, by computing bar movement between each consecutive Landsat
image. Two different sets of bars are presented in Figure 3.9, as represen-
tative of the different behavior of steady and migrating bars. A first set of
bars (bar 36 and bar 30, located at km 5 and 12, respectively) was chosen
to represent non-migrating bars (closed symbols in Figure 3.9). The sec-
ond set of bars (bar 23 and bar 09, located at km 22 and 35, respectively)
includes bars that are located sufficiently far from bends and ramps, so
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Figure 3.9: Four examples of bar migration as a function of time in the period
1999-2010. Open symbols refer to migrating bars, closed symbols refer to steady
bars.

that they freely migrate downstream (open symbols). The step-by-step
migration of these 4 bars shows that they move mainly during larger floods
(see Figure 3.2 for a comparison). Periods without significant events (e.g.,
in 2006-2007) are characterized by barely no migration, also in the case
of the migrating bars. Figure 3.9 shows also that steady bars (closed
symbols) slightly moved upstream and downstream in a narrow range of
about 2 river widths, and are not influenced by flood occurrence. These
fluctuations around a fixed position may also be due to changes in the
exposed area, as a consequence of the different discharges at which the
Landsat images were acquired. This effect may also explain the few neg-
ative migration values plotted in Figure 3.8. However, this effect is not
affecting the general pattern shown in Figure 3.9. Overall, the analysis on
bar migration suggests that a migration threshold of a few channel widths
(i.e., 200 m) can be used to discriminate between migrating and steady
bars by comparing it with the decadal (1999 - 2010) cumulative migration
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of each bar unit.
The effect of different floods on bar migration has been further an-

alyzed for the entire period 1984-2012 by focussing on the bars in sub-
reaches 7 and 13, which migrated the longest distance. Several floods
were singled out by consecutive Landsat images, covering a range from
780 m3s−1 to 2650 m3s−1. The value of 780 m3s−1 corresponds to the dis-
charge with a return interval equal to 2 years (Q2). This value was chosen
as a morphologically relevant threshold, because it corresponds to condi-
tions of fully transporting cross sections, and because no significant mi-
gration of bars was observed for floods with a lower peak discharge. The
effect of different floods is reported in Figure 3.10 as a function of three po-
tentially controlling factors on bar migration: i) the peak discharge value
(Figure 3.10a); ii) the duration of flood events in which the discharge was
higher than Q2 (Figure 3.10b); iii) the total flood volume above Q2 (Fig-
ure 3.10c). Overall, none of these considered flow parameters provide clear
explanatory trends for bar migration.
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Figure 3.10: Bar migration during single floods as function of: i) peak flood
discharge; ii) flood duration, considering a threshold equal to Q2; iii) flood flow
volume above the threshold discharge Q2.
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Figure 3.11: Cumulative bar migration in the period 1999-2010 as a function
of bar wavelength.

There is a tendency of bar migration to increase for higher flood du-
ration and flood volume, but the scatter of the data is high. Figure 3.10a
shows an interesting pattern, although the points scatter. An ideal en-
velope of the point cloud attains a maximum migration value at a peak
discharge up to roughly 1800 m3s−1, and then decreases again, reaching
values close to 0 for the larger floods on record. This behavior can be re-
lated with the application of linear bar theories (section 3.4) and is further
explored in the discussion.

The relationship between cumulative bar migration in the period 1999
- 2010 and bar wavelength is explicitly plotted in Figure 3.11. Differently
from Figure 3.5, the wavelength value is obtained for each point in the plot
as the average wavelength of the bar unit for which the comulative (1999
to 2010) migration has been computed. The migration threshold of 160 m

used to discriminate between steady and migrating bars is represented
through a horizontal dashed line. Several interesting information can be
highlighted. Average bar wavelengths fall into two markedly different clus-
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ters, resulting in a bar wavelength gap in the range 1090 m - 1190 m, where
no bars plot. This allows to distinguish between "long" (i.e., > 1190 m)
and "short" (i.e., < 1090 m) alternate bars. As already pointed out in
Section 3.3.1, long bars can be found only in the upstream sector (open
symbols), while short bars are found only in the downstream sector (closed
symbols). A rather close relation between bar wavelength and cumulative
migration appears: short bars are mostly migrating, whereas long bars
are mainly steady. More precisely, 75% of long bars are steady and 90%
of short bars migrate. Maximum migration of the shorter bars occurs
within a wavelength range of 900 ÷ 1000 m, though smaller migration val-
ues are possible in the same range. Only a few short bars show a different
behavior, with much lower values of migration (10% of the short bars).
These are generally bars close to bends or ramps, and their wavelength is
strongly affected by these obstacles.

3.3.3 Bar amplitude

Values of bar height are reported in Figure 3.12, as a function of the
longitudinal coordinate. They range between 2.5 m and 4 m and do not
show any particular spatial trend. These values of bar height correspond
to approximately 1 ÷ 1.5 times the reach averaged water depth calculated
with Q2=780 m3s−1. In contrast to bar wavelength and migration, bar
height is not significantly different for the upstream longer and steady
bars compared to the downstream shorter and migrating bars. Bar height
presents longitudinal fluctuations, often characterized by a minimum value
in correspondence to bends and ramps. In particular, the second ramp has
a strong effect, reducing bar height to 2 m.

3.4 Discussion

We discuss the results obtained in this study with reference to the main
research goals stated in the Introduction. First we focus on the relevance
of the developed dataset in comparison with existing ones, second we
compare the observed alternate bar morphodynamics with previous field
observations and finally we analyze to which extent analytical bar theories
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Figure 3.12: Bar height for each surveyed cross section as a function of the
longitudinal coordinate. Vertical lines represent bends (dashed) and ramps (con-
tinuous).

prove to be useful in predicting and interpreting field observations.

3.4.1 The Alpine Rhine alternate bar dataset

The availability of a remotely sensed dataset of a 41.7 km long reach of
the Alpine Rhine covering about 30 years allowed for a thorough investi-
gation of the morphology and dynamics of 40 bar units. This is a valuable
source of information to understand the controls on alternate bar forma-
tion and migration, which may greatly increase the possibility to evaluate
and predict the evolution of these bed forms. Landsat imagery proved
to be an excellent source of freely available data, in terms of number of
images per year and pixel resolution, confirming the findings reported by
Henshaw et al. [2013]. The possibility to choose among several images al-
lowed for combining a multi-decadal analysis, with details on the effect of
single floods. Such an approach can be replicated to study the dynamics
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of bars (not only alternate bars) on river reaches of the same or of larger
size worldwide.

The relevance of the developed dataset emerges in comparison to pre-
vious field studies, which generally considered a much smaller number of
bars and a much shorter time period. The present study is the only multi-
decadal study on alternate-bar dynamics in a river reach that includes
about 40 bar wavelengths and based on an average of nearly 2 available
surveys (i.e., Landsat images) per year. It has been possible to include
such a high number of bars in the study thanks to the alternate bars reach
being nearly 450 channel widths long. The reported results on the Alpine
Rhine show that bar morphology and dynamics are variable in time and
space. The effect of spatial discontinuities like bends, or temporal events
like floods (or their absence) can have an impact on bar wavelength and
migration on relatively long reaches. This has to be taken into account in
order to improve our general understanding of these bedforms. Spatially
and temporally long observations are even more relevant when the aim
is to quantify bar migration. Very few field data on bar migration are
available in the literature and this data set provides a valuable source of
information for testing physical, numerical, and mathematical models.

Table 3.1 lists the main field observations reported in the literature in
the last decades. Most of previous field studies are limited to short arti-
ficial channels (e.g., Lewin [1976]; Welford [1994]; Ferguson et al. [2011];
Eekhout et al. [2013]) or analyzed a relatively short time-scale (e.g., Ro-
drigues et al. [2012]; Zolezzi et al. [2012]; Rodrigues et al. [2015]). The
only comparable cases in terms of space and time scale are the studies
presented by Church and Rice [2009], Ferguson et al. [2011] and by Ja-
ballah et al. [2015]. Though all these studies refer to alternate bars, their
setting may slightly differ, suggesting that some care is required when
comparing observations. For example, in the Fraser River [Church and
Rice, 2009] channel width shows more pronounced spatial oscillations,
which likely provide an additional forcing effect, enhancing the formation
of steady bars [Repetto et al., 2002]. This occurs also in the Arc River
[Jaballah et al., 2015], though to a much smaller extent and only before
the engineering works that flattened the channel bed towards the middle
of the observation period. In other cases, as in Rodrigues et al. [2012]
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and Rodrigues et al. [2015], the relatively short reach length may pro-
duce significant local effects, imposed by the upstream and downstream
morphological conditions. Moreover, in both the Fraser and Arc rivers
vegetation is reported as a relevant factor that tends to affect bar dynam-
ics by stabilizing them, stopping their migration, as well as by changing
their wavelength and amplitude (Bertoldi et al. [2014]).

3.4.2 Observed bar morphodynamics: wavelength and
migration

In terms of observed bar wavelength (as a function of channel width), the
freely migrating bars of the downstream part of the Alpine Rhine show
comparable results to those reported in previous field studies, ranging
between the shorter bars monitored by Church and Rice [2009] (4 to 5
times the width) and the longer (9 to 10 widths) reported by Ferguson
et al. [2011]. This range is comparable also to laboratory findings (Ikeda
[1984], Jäggi [1984], Tubino et al. [1999]).

Few other studies report on data about bar migration. The Alpine
Rhine shows an average migration of the free bars located in the down-
stream reach that is of the order of 0.8 ÷ 0.9 times the average channel
width per year. Previous studies on the same river reach, though based
on a different methodology, indicate migration rates occurred in the 1960s
and 1970s ranging between 1.5 and 3 times the average channel width per
year (Zeller [1967] cited in Jäggi [1983], Jäggi [1983]). A close comparison
between our estimate and previous estimates on the same river reach is
barely possible because previous estimates were based on different obser-
vation time periods, and thus the discrepancy might be due to the effect
of a few relevant flood events and not reflect a decade-averaged behavior.

An analogous result, with a value of 0.7 times the channel width per
year, can be inferred from data presented by Rodrigues et al. [2012] on
the Loire river, which has sandy bed material. Bar migration is a com-
plex function of discharge (or sediment transport rate) and bar morphol-
ogy, and is also strongly affected by grain sorting (Lanzoni [2000b]) and
presence of obstacles. Therefore, it is difficult to compare bar migration
among different rivers, and between field observations and flume experi-
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ments, where the discharge is generally constant and the channel is per-
fectly regular and straight. Crosato et al. [2012] reported on long-term
experiments on alternate bar dynamics, showing that there is a strong
decreasing relationship between bar migration speed and bar wavelength,
with bar migration reducing to half when the wavelength increases from
5 to 7.5 times the channel width. Our observations on the Alpine Rhine
show a similar relation, although with a few differences. Figure 3.11 shows
an increase of bar migration up to a wavelength of about 9-10 times the
river width, whereas the much longer bars are steady, or migrate very
slowly.

Crosato et al. [2012] also reported on the formation of steady longer
bars (particularly in the upstream part of the flume), which are likely
to suppress the migrating bars. It is not clear whether the systematic
occurrence of steady bars in the upper reach of the Alpine Rhine may be
explained in these terms, or whether they are caused by the occurrence
of sharp bends which may induce the formation of forced bed forms (see
Zolezzi and Seminara [2001]; Zolezzi et al. [2005]. The recent extensive
study of Jaballah et al. [2015] on alternate bars dynamics in the Arc River,
France, showed the existence of migrating bars, along with steady, longer
bars affected by spatial constraints as a bend and a bridge. Similarly,
Ferguson et al. [2011] reported the coexistence of steady and migrating
bars in the Vedder Canal, though this was not the main focus of their
analysis. Jaballah et al. [2015] pointed out the relevance of including flow
unsteadiness, to better understand and predict river bar evolution. In
particular, flow conditions falling under the full-transport discharge may
be responsible for the creation of shorter mid-channel bars that contribute
to a more complex pattern.

3.5 Conclusions

This chapter reports on the morphological dynamics of alternate bars in
the Alpine Rhine, taking advantage of freely available Landsat imagery.
The analysis resulted in the longest spatial and temporal field case study
of river bars in channelized rivers with a temporal survey resolution al-
lowing to investigate the effect of individual flood events, and provided
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new quantitative data on bar wavelength and migration. Bars show a
spatially selective behavior, with short, migrating bars occurring in dis-
tinct straight reaches with respect to longer, steady bars. A full range of
bar wavelengths and more complex patterns occur in reaches with bends
and ramps. Bar height obtained from cross section monitoring was found
to be much more uniform. The temporally long dataset, including ap-
proximately 30 floods with different magnitude and duration, allowed the
investigation of bar migration as a function of discharge, showing that bars
migrate faster for intermediate floods, as larger discharges are probably
responsible for a slight flattening of the bed forms.
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Chapter 4

Application of analytical
morphodynamic theories to
observations on alternate bars in
the Alpine Rhine

Analytical theories of free and forced bars in straight channels (e.g. the
ones presented in Chapter 2) can provide useful information on alternate-
bar geometry and dynamics and can also help interpret the physical pro-
cesses at the basis of their occurrence. Studies that compare the outcomes
of analytical alternate bar theories in straight channels with field cases are
relatively few and recent (e.g. Welford , 1994; Eekhout et al., 2013; Ro-
drigues et al., 2015; Jaballah et al., 2015). The present chapter proposes
an application of linear and, to a lesser extent, weakly non-linear theories
for migrating and steady bars in straight channels to the case study of
the Alpine Rhine, for which alternate-bar dynamics have been extensively
examined in Chapter 3 by means of a multi-temporal analysis of satellite
images. The present chapter especially focuses on the comparison between
theoretical predictions of wavelength and migration properties of alternate
bars.

The main findings of the chapter can be summarized in two broad
points: (i) an approach to apply analytical theories of alternate bars to a
field case is proposed, which accounts for the differences in setting between
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theories and real rivers; (ii) outcomes of analytical theories help develop-
ing interpretations and explanations for observed behavior in the field.
Specifically, the application of the steady bar theory allows to interpret
the observed difference in alternate-bar properties between the upstream
and downstream sectors of the study reach. Remarkably, the interpre-
tation appearing as the most consistent among the three developed ones
suggests that such strong difference in behavior might be attributed to
the phenomenon of 2D upstream and downstream morphodynamic influ-
ence occurring under sub- and super-resonant conditions. This is relevant
because 2D morphodynamic influence was only validated through labo-
ratory observations, without any field observation so far indicating how
such phenomenon could manifest itself in real, albeit regulated, rivers.

The chapter is structured as follows.
In Section 4.1 the main differences in setting between analytical bar

theories and the typical field case of a channelized river are reviewed, and
an approach to apply analytical theories to a field case that copes with
such differences is proposed.

In Section 4.2 the field case of the Alpine Rhine is summarized, by fo-
cusing on the key information related to the subsequent application of the
analytical theories. A summary of the observed, consistent spatial vari-
ability of several bar properties is highlighted, which raises an important
question related to its possible explanations.

Section 4.3 presents the application of several bar theories (see re-
view in Chapter 2) to the field case, starting from the computation of the
input parameters, the theoretical thresholds and then moving to the pre-
dicted bar properties; the insights emerging from such an application are
immediately discussed. The analysis does not provide a straightforward
interpretation of the observed spatially selective behavior whereby longer,
steady bars essentially concentrate in the upstream sector while shorter,
migrating bars can be found only in the straight reaches of the central and
downstream sectors.

This particularly intriguing issue is dealt with in Section 4.4, where
possible interpretations are developed and discussed in the light of the
outcomes of the bar theories. The approach proposed in Section 4.2 pro-
vides support to such behavior being associated with a higher persistence
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of super-resonant conditions in the upstream sector compared to the other
ones, and to the corresponding bar dynamics being coherent with that of
a super-resonant straight channel.

4.1 An approach for the application of ana-
lytical bar theories to field cases

Analytical bar theories can be viewed as simplified deterministic models,
because they rely on a series of simplifying assumptions that aim to keep
the mathematical problem at the lowest meaningful level of complexity,
thus enabling to obtain mathematical solutions in closed analytical form.
Their main advantages are the requirement of almost negligible computa-
tional time, the possibility to easily detect the key controlling parameters
for the physical processes, and the ability to predict the related relevant
spatial and temporal scales.

It is useful here to briefly recall the main features and outcomes of
analytical bar theories that will be compared with the field observations
on the Alpine Rhine River. The planform of the study reach can be
viewed as a sequence of 16 straight longitudinal sections, connected by 14
short bends of constant curvature, and two ramps (see left panel of Figure
3.1). The most relevant bar theories for this case are therefore those for
straight river reaches, which account for 83% of the whole reach length.
As many other analytical models for river bars and meandering, most
of these theories predict properties of alternate bars for given constant
values of flow discharge, channel width, reach slope, and sediment grain
size. Moreover, the model assumes flow conditions where the entire cross
section is actively transporting sediments. This means that the channel
width corresponds to the active width (Ashmore et al. [2011]; Zolezzi et al.
[2012]).

Linear theories consider bars as small-amplitude perturbations of the
bed topography, i.e., much smaller compared to the reach-averaged flow
depth. They allow to predict the conditions of formation, wavelength, and
migration of bars. Non-linear theories (Colombini et al. [1987]; Schielen
et al. [1993]) are needed to predict the amplitude of bars although they
also assume small amplitudes a priori. In straight channels, linear theories
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predict free alternate bars to be downstream migrating and forced alter-
nate bars to be non-migrating. In the same setting, forced steady bars are
predicted to be about twice as long (L/W ∼ 15 ÷ 20) compared to free
migrating bars (L/W ∼ 6÷ 10). Comparable length scales are predicted
by non-linear theories, while migration speed is largely overestimated by
linear theories [Colombini et al., 1987].

This section describes in detail the hypotheses on which the free and
forced steady bars in straight channels are based (4.1.1) and how these
hypotheses differ from the real setting of a field case (4.1.2). The compu-
tation of theoretical parameters, like those defining critical and resonant
alternate bar conditions, in the setting of a typical field case for a regulated
river are dealt with in 4.1.3.

4.1.1 Theoretical setting

Aim of the analytical bar theories is to describe the formation and initial
development of alternate bars in straight channels with erodible beds. The
underlying approach seeks to find exact solutions of simplified mathemat-
ical problems in which only the main physical processes are retained in
the solved equations. Even a straightened regulated river reach presents a
higher level of complexity compared to the one accounted for in analytical
models. Such difference needs to be carefully accounted for when aiming
at using theoretical morphodynamic models for real cases. The present
section therefore starts by reviewing the most important hypotheses on
which the analytical bar models are based.

Depth-averaged mathematical models. The mathematical system solved
in most bar theories [Olesen, 1983; Struiksma et al., 1985; Colombini et al.,
1987; Tubino, 1991; Schielen et al., 1993; Tubino et al., 1999; Zolezzi and
Seminara, 2001; Crosato and Mosselman, 2009] is based on equations
averaged over the water depth, based on the assumption that the ratio
between the width and the depth is large enough to treat the flow as two-
dimensional. The linear free bar theory based on the three-dimensional
model presented by Tubino et al., 1999 shows that the 2D solution does
not differ substantially from the 3D solution in terms of the linear stability
of free bars, under bed-load-dominated conditions. Secondary flows play
in this process a minor role.
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Infinitely long channel. Theories for free and forced bars are written
for a sufficiently long straight channel (strictly speaking, infinitely long).
The role of streamwise boundary conditions in the solution is considered
only in the theory of steady bars, which amplitude can vary in space.
The steady bar theory often assumes a channel that is bounded on one
end, and that is infinitely long on the opposite end, i.e. it can be named
as "semi-infinite". On the contrary, streamwise boundary conditions are
periodical in the free bar theories, which is equivalent to assume an infinite
straight channel domain.

Quasi-steady flow field. Most theories for alternate bars assume a
constant discharge Q and also assume that the flow field can be considered
in equilibrium with a bed that slowly adapts in time. The role of flow
unsteadiness in influencing the alternate bar development is addressed in
Tubino [1991].

Uniform slope. A condition of constant longitudinal slope as well as of
initially horizontal transverse slope is considered.

Uniform width. As for longitudinal bed slope, the width of the channel
is set as constant in time and in space. The case of sinusoidally varying
width in space in straight channels is analysed by Repetto et al. [2002],
while Zen et al. [2014] investigate the role of width variability in time.

Rectangular cross section. The reference flow that is used as basic state
is the uniform flow occurring in the straight channel with a rectangular
cross section; as a consequence, when bar perturbations are infinitesimal,
for every value of the discharge Q > 0, the cross section can be considered
as fully wet.

Uniform grain size. The bed is modelled with uniform grain size.
Sediment porosity is also constant.

Dominant bed-load transport. Sediment transport is considered to oc-
cur mainly as bed load by most analytical bar theories. The role of sus-
pended transport, relevant for large values of the parameter θ, and in
sand-bed rivers has been investigated by Talmon [1992], Tubino et al.
[1999] and by Federici and Seminara [2006].

Fully transporting cross-section. Analytical bar theories assume a fully
transporting cross-section, i.e., that sediment transport occurs across the
whole considered channel width. Since the reference cross section is rect-
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angular and wall effects are neglected, using a bed-load transport formula
with a lower threshold for incipient motion (e.g. Meyer-Peter and Müller
[1948], Hunziker and Jäggi [2002], Wong and Parker [2006], Huang [2010])
implies that the following two cases can occur:

• partial or no transport: for low values of the discharge Q, the
Shields parameter θ remains below the critical threshold θC for sed-
iment motion in at least part of the cross section, with no solid
transport theoretically occurring in that part of the cross section;

• full transport: for higher values of Q, the condition θ > θC is satis-
fied in the whole cross section, which is fully transporting sediments,
thus fitting with the assumption of the theories.

It is important to note that for sediment transport to occur across the
whole cross section, the condition θ > θc might be too restrictive, because
sediment may be locally transported for short distances even when such
condition is not strictly satisfied.

Linear and weakly non-linear approach. Bar theories, like most mor-
phodynamic theories that investigate regular patterns, assume patterns to
be of "small" amplitude (ε) with respect to the magnitude of a basic state
that is typically a uniform flow occurring in the same straight channel.
Mathematically, this allows to seek approximate, asymptotic solutions of
the governing equations Linear solutions retain only terms up to order
O (ε) (e.g. 2D Blondeaux and Seminara [1985]; Zolezzi and Seminara
[2001], 3D Colombini and Stocchino [2012]), while weakly non-linear so-
lutions (e.g. Colombini et al. [1987]; Tubino [1991]; Seminara and Tubino
[1992]; Schielen et al. [1993]) solve the basic state and higher order of ap-
proximation, O

(
ε1/2
)
, O (ε), O

(
ε3/2
)
. Colombini et al. [1987] present the

weakly non-linear solution in the neighbourhood of the critical conditions
(Ω = 0, β = βC , λ = λC), Seminara and Tubino [1992] developed the
weakly nonlinear theory for steady bars in straight channels (also named
"spatial bars" therein), through a weakly non-linear perturbation expan-
sion in the neighbourhood of the resonant conditions (β = βR, λ = λR).

Effect of dunes and ripples. Effect of smaller-scale bed-forms like dunes
and ripples is included in bar theories in a parametrized way through
empirical formulae that account for their additional roughness. Dunes can
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coexist with alternate bars most commonly in sandy rivers. Colombini and
Stocchino [2012] using the 3D Reynolds-Averaged Navier Stokes equations
to study the stability of bars, dunes and ripples within the same unifying
theoretical framework, investigate the linear stability of a uniform flow
in an infinitely wide erodible channel with longitudinal and transversal
periodical disturbances at multiple spatial scales.

Role of riparian vegetation. Analytical theories mainly do not include
formation and development of vegetation, limiting the analysis to the in-
teraction between flow field and bed dynamics. A recent novel contribution
has been proposed by Bärenbold et al. [2016].

4.1.2 Corresponding setting in a field case

Here the hypotheses described in 4.1.1 are point by point discussed in
relation to a typical setting of a channelized, regulated river, with specific
reference to the field case of the Alpine Rhine river, widely described in
Chapter 3.

Depth-averaged mathematical model. The planform configuration of
the Alpine Rhine river, in the reach between Landquart and Ill conflu-
ences, is characterized by a trapezoidal cross section in which the width
is always much greater than the water depth, so the hypothesis of width
large enough for the flow to be modelled as two-dimensional is still valid.
Nevertheless, (i) along the reach, planform discontinuities like bends,
ramps and bridge piers influence locally the leading 2D regime, with three-
dimensional effects and (ii) presence of alternate bars in the whole reach
also influences the flow field generating vertical velocity components. For
the analysis at the bar scale, however, these issues do not pose relevant
limitations.

Infinitely long channel. The Alpine Rhine domain is composed by
a series of straight channels with finite lengths and bends with different
lengths and radius of curvature. The length of straight channels is variable
from a few times the river width to 40 ÷ 50 times the width, in which 4 ÷
5 free bar wavelengths or 2 ÷ 3 forced bar wavelength can be contained.
This assumption will always set a difference between theory and real cases,
that must be reflected in the interpretation of the results.

Quasi-steady flow field. The discharge of every regulated and un-
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regulated river reach, like the Alpine Rhine reach, is not constant in
time. For alpine rivers, the natural hydrograph follows two main regimes:
snow-melting in late spring and summer and floods especially in spring
and autumn. Hydro-power production is also present upstream the cho-
sen reach, influencing with hydropeaking the low-flow hydrograph of the
Alpine Rhine.

Uniform slope. Longitudinal slope varies locally in the whole reach
(Fig. 4.2). In particular the reach of the Alpine Rhine presents three
different average values of longitudinal slope, decreasing from upstream
to downstream. The control points of the different sectors are represented
by one bend (b4) and one unstructured ramp (r2) along the reach.

Uniform width. Even if the river has been straightened and the width
regularized, the value of the channel width is still slowly dependent on the
streamwise coordinate, ranging between 86 m and 106 m (Fig. 4.1).

Rectangular cross sections. The designed cross section of the Alpine
Rhine is trapezoidal, with fixed levees composed of boulders that prevent
planform changes, so the hypothesis of a rectangular cross section is nearly
respected. The actual cross section dataset shows riverbeds modified by
the presence of scours and deposits of alternate bars. This means also that,
with respect to flat rectangular sections, there is a threshold discharge for
which the cross section can be considered fully wet. Values of fully wet
discharges, reported also in Table 3.2, are in the range 230 ÷ 380 m3s−1.
Also, channel width almost does not change with flow discharge.

Uniform grain size. The riverbed is composed of heterogeneous sedi-
ment diameters, with local variability between thalweg and bar tops and
fining effect in the longitudinal direction. Average values range between
0.06 m in the upstream sector and 0.02 m in the downstream sector [Hun-
ziker et al., 2001].

Dominant bed-load transport. The field case of the Alpine Rhine river
is a case of a gravel bed river in which the value of the parameter θ, see
Figure 4.9, rarely exceeds values of about 0.20 for values of discharges
with a return interval of 100 years. This range of values is consistent with
the case of sediment transport due mainly to bed-load.

Fully transporting cross-section. As the alignment of rivers is rarely
straight, their beds are rarely flat. So a fully transporting section is
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Figure 4.1: Width of the Alpine Rhine. Dots represent the original data,
horizontal lines the sector averages, the red line the linear regression of the
data. Bends and ramps are also shown as vertical stripes. In particular bends
are reported in terms of their length (the width of the vertical band) and of
their radius of curvature (darker band means smaller radius).

reached for a greater discharge (QFT ) than the flat-bed section with the
same width. In figure 4.3 the partially and fully wet sections (the latter
corresponding to QFW ) and the fully transporting depth (corresponding
to QFT ) are shown.

Linear and weakly non-linear approach. This represents an intrinsic
limitation of the theories. Its role can be partially investigated by means
of numerical models (see Chapter 5).

Effect of dunes and ripples. The effect of dunes and ripples is thought
to have a very limited relevance in a gravel bed river.

Role of riparian vegetation. Most gravel bars in the Alpine Rhine reach
have no vegetation. The causes of this are still under investigation and
might be associated to the hydrological regime with snow-melting that
causes an increase of the water depth from late spring to late summer
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Figure 4.2: Slope of the Alpine Rhine. Dots represent the original data,
horizontal lines the sector averages, the red line the linear regression of the
data. Bends and ramps are also shown as vertical stripes. In particular bends
are reported in terms of their length (the width of the vertical band) and of
their radius of curvature (darker band means smaller radius).

that commonly covers the top of the deposits. Therefore, the role of the
vegetation in the development of alternate bars [Bertoldi et al., 2014] has
not been considered as relevant for the field case.

4.1.3 The proposed approach

Here the approach developed in the present chapter is briefly summarized
in a general fashion. Its application to the case study of the Alpine Rhine
river is further described in Section 4.2, and the results of this exercise are
described and commented in Section 4.3.

The first step is the analysis of the most relevant differences between
the theoretical setting and the setting in the field case of interest, following
the template presented in the previous section (4.1.2). In the case of the
Alpine Rhine and, probably, in analogous channelized and regulated river
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Figure 4.3: Scheme of the cross section with a cosine behaviour of the bed.
Three water levels are indicated: minimum flow (Q=24 m3/s), fully wet (cor-
responding to QFW ) and fully transporting (corresponding to QFT ).

reaches, the most relevant difference lies in the temporal variability of
the discharge, whereas most theories assume a constant, "bar-forming",
streamflow value. Other sources of differences are the spatial heterogeneity
in grain size, longitudinal slope and channel width. These differences
can be partially dealt with by partitioning the study reach of interest in
sub-reaches (or sectors, as they are called in the present thesis) where
such quantities can be considered sufficiently homogeneous. This does
not guarantee a full compliance between the theoretical and field settings,
but it should make them more closely comparable.

An important spatial heterogeneity is related to the grain size dis-
tribution of the river bed. Within the context of gravel-bed rivers, and
more in general of bedload-dominated rivers, analytical bar theories can-
not be considered to have been developed at an enough mature stage to
comprehensively examine the effect of this type of variability, though the
theory of Lanzoni and Tubino [1999] might provide useful indications in
this respect.

In the case of channelized rivers, moreover, it must be noted that the
channel width only displays a weak variability with river discharge and,
therefore, with flow stage, which allows, in most cases, to assume that
channel width is constant in a broad spectrum of representative discharge
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values for a given reach. In rivers that are laterally unconstrained, con-
versely, the computation of channel width has to take into account its
dependence from the flow discharge, when computing the input parame-
ters for the theory.

The differences described above are mainly reflected in the computa-
tion of the input parameters for the analytical theories.

For the reasons described above, discharge variability will therefore be
used as the main difference in setting between theories and the field case of
interest. Coping with this implies to address a fundamentally unanswered
question so far: is it possible to define or compute a discharge value that
is fully equivalent to the actual hydrograph in terms of the observed bar
properties of a river reach? The next steps of the presented approach
represent a workable option in this direction.

Another key difference, which will always characterize a field setting
with respect to analytical theories, is the length of the spatial domains
of interest, which are always finite in reality. Such difference is mainly
reflected in the interpretation that can be made of the results of the ap-
plication of the theory of free and forced bars in straight channels.

The second step of the presented approach consists of computing the
input parameters of the analytical theories. Those input parameters (Chap-
ter 2) theoretically consist of reach-averaged values of several hydraulic
characteristics of the reach, and should characterize a theoretical uniform
reference flow occurring in the same reach with a flat bed. A locally uni-
form flow approach can therefore be taken, using available topographic,
grain size and streamflow data for the homogeneous sub-reaches (sectors)
that have been identified in the previous step.

When discharge variability is identified as the most important differ-
ence between the theoretical and the field setting, the relevant dimen-
sionless input parameters of the analytical theories can be computed in
principle for every value of the flow discharge, thus resulting in a series
of "rating curves" whereby each of the parameters (β, θ, ds) is plotted as
function of the flow discharge.

The third step of the approach foresees to apply the theories of in-
terest for every streamflow value within the relevant discharge range for
the chosen reach. For every discharge value, and within each identified
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homogeneous river sector, this yields a series of theoretical parameters
like the critical and resonant aspect ratios (βC and βR), the corresponding
wavenumbers (λC and λR) and many other ones.

In channelized river reaches, where channel width does not relevantly
change with discharge, such exercise would typically yield a decreasing
behavior of the aspect ratio β with discharge, and an increasing trend of
both the Shields parameter θ and of the relative roughness ds, because of
the underlying uniform flow assumption. As a consequence of the typical
variability of the critical and resonant values of the channel aspect ratio
β, which increase with the Shields parameter θ and decrease with the
relative roughness ds, it is possible to define two key discharge values,
named QC , QR in the following, for which the relations β = βC and β =

βR hold, respectively. In addition to this, another key discharge value
can be quantified: it is the value corresponding to the conditions of a
fully sediment transporting cross-section, named QFT in the present work,
which sets the lower discharge limit of the applicability of the analytical
bar theories.

The last step of the approach is aimed at establishing in which region of
the theoretical parameters space the river reach of interest is dominantly
located, given the discharge variability that invariably characterizes it.
The following is a possible way to cope with the unanswered fundamental
question posed above, about the possible existence of an equivalent, repre-
sentative discharge value with which it is possible to predict the observed
bar properties of a given reach of a (channelized) river.

In Figure 4.4 the neutral curve in which the Ω = 0 and ω = 0 curves are
plotted along with three regions in which bars are theoretically expected
with different behavior. In Figure 4.5 the same regions are highlighted
with the same colours as a function of the discharge during a schematic
flood wave. The green stable region (Ω < 0, free bars are damped in
time) of Figure 4.4 corresponds to the peak of the discharge in Figure
4.5. The red and blue regions of Figure 4.4 correspond to the unstable
region (Ω > 0) in which free bars tend to increase their amplitude in time.
The red regions represent the sub-resonant, bar-unstable conditions (β <
βR), while the blue regions correspond to the super-resonant, unstable
conditions (β > βR). In terms of the width ratio β the three regions are
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Figure 4.4: Neutral curves (Ω = ω = 0) of linear theory of free alternate bars
in straight channels. The figure shows three different regions in which markedly
distinct bar properties are predicted: sub-critical (green, flat bed, no free bars),
super-critical and sub-resonant (red), super-critical and super-resonant (blue).

defined as:

1 - blue super-resonant and super-critical region: β > βR > βC . Free
bed perturbations tend to grow in time and 2D morphodynamic
influence, which displays itself in the form of forced steady bars, can
also occur upstream of localised planform discontinuities;

2 - red sub-resonant and super-critical regime: βR > β > βC . Free bed
perturbations tend to grow in time and 2D morphodynamic influ-
ence occurs only downstream of local persistent discontinuities and
vanishes in space after a few steady bar wavelengths.

3 - green sub-resonant and sub-critical configuration: βR > βC > β .
Free bed perturbations are damped in time, so free bars tend to be
flattened under this flow regime.
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Figure 4.5: Schematic flood wave in which the three regions of Figure 4.4 are
evidenced along a time axis. The super-resonant regime (in blue) opens and
closes the idealised wave, the sub-critical regime (in green) is present in corre-
spondence of the flood peak, while the sub-resonant regime (in red) connects
the other two.

The values of discharge corresponding to the critical (QC) and resonant
(QR) condition are shown in Figure 4.5 together with QFT . β decreases
when increasing Q, so that the super-resonant condition is ideally always
the starting and ending condition of a flood event, while the sub-resonant
case is the intermediate condition. This occurs if the condition QR >

QFT is met. Otherwise, the super-resonant condition would not occur
during the flood-wave. In case of flood peaks in which the conditions are
never above QC , floods have an exclusive destabilizing role in terms of free
alternate bar dynamics, while the greater the sub-critical green region is,
the greater should be the corresponding volume of sediment flushed from
bars towards a flat bed condition.

The concept illustrated in Figure 4.5 represents a possible way to tackle
the unsolved "equivalence" question about the dominant positioning of a
river reach (characterized by variable discharge) in the theoretical param-
eters space (characterized mostly by constant discharge). The time length
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of the three regions can indeed be used as an indicator of "how long"
the study reach keeps within each of the three theoretical regimes, under
which theoretically different free and forced bars behavior can be expected
in straight channels.

4.2 The field case: Alpine Rhine river

Here the case of the Alpine Rhine river is presented with features of two
separate but adjacent individual reaches, the former with alternate bars,
the latter without.

4.2.1 Alpine Rhine river

The Alpine Rhine river has been completely straightened in the past two
centuries. Nowadays two main reaches can be described: the upstream
one is located between the confluence of the Landquart river and of the Ill
river and present a continuous sequence of alternate bars, as already shown
in Chapter3. The downstream reach is located between the confluence of
the Ill river and the lake of Constance. In this downstream reach, herein
called ’Downstream Ill’, channel width is smaller (average of 60 m), slope is
comparable with the downstream sector of the upstream reach (s=0.001),
as well as mean sediment size d∗50. The hydrograph of Downstream Ill
sums the contributions of the upstream reach and of the Ill basin. The
contribution of the Ill basin represents 28% of the total volume of water
entering into the Lake of Constance.

4.2.2 Data and methods

A complete dataset of cross sections of the Alpine Rhine between the
Landquart river and the lake of Constance surveyed in 2005 is used to
determine hydraulic variables of the reach. The survey covers almost
70 km, from km 23.3 (Landquart confluence, km 0 of the x-axis of Figure
4.6 and Figure 4.7) to km 93 (lake of Constance) in which cross sections are
taken on average with a longitudinal spacing of 200 m, for an approximate
total of 350 cross sections. Uniform flow conditions are computed in each
cross section, in a range of discharges between 50 m3s−1, and 3000 m3s−1.
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Figure 4.6: Alpine Rhine River, reach between Landquart River and Ill River.
The upper part shows the reach in 1961, before the rectification, and the present
situation. The lower part of the picture is the longitudinal centerline of the river
in which the bends and ramps are described. In particular, bends are reported
in terms of their length (the length of the vertical band) and of their radius of
curvature (darker is smaller).

An Engelund method is used to evaluate uniform flow conditions for
each cross section, considering a sediment diameter d50 linearly decreas-
ing from 0.06 m at the Landquart confluence to 0.02 m at and after the
Ill confluence. Width is calculated using data of the cross sections and
averaging with the Landsat images. Slope is considered constant per sec-
tor. The reach shown in Figure 4.6 is divided in three sectors, where the
bend b4 represents the end of the first sector, while ramp r2 represents the
limit of the second sector. The analysis allowed to determine the fully wet
discharge (QFW ) as the discharge that fully submerges all the bar crests
and the fully transporting discharge (QFT ) as the discharge at which the
cross section is expected to fully transport material as bed load.

Discharge values corresponding to βcritical = βC and βresonant = βR
have been calculated using the analytical solution of free bars in straight
channels of Colombini et al., 1987.
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4.2.3 Summary of the observed properties of alter-
nate bars and of the emerging research ques-
tions

The reach between the Landquart and Ill confluences includes approx-
imately 40 bar units and, through the high temporal and good spatial
resolution of the Landsat dataset, their recognition is unambiguously de-
termined (Chapter 3). In the case of images taken with different discharge
conditions, bar exposure is largely changing, up to the limit case of images
taken with complete coverage of water [Adami et al., 2014]. The presence
of ramps and bends along the reach plays a role in determining the bar
properties as presented in Figure 4.7.

Figure 4.7 shows three different properties of bars expressed in dimen-
sionless form, as a function of the longitudinal coordinate of the river
reach. In detail, Fig. 4.7a shows observed spatial variability of the dimen-
sionless bar wavelength L/W along the alternate bar reach. According to
the observed behavior of L/W , the reach can be divided mainly in two
sub-reaches, one upstream down to bends four and five, the second one
downstream these bends until the Ill confluence. In the upstream sub-
reach bar wavelength is larger (L/W = 12 ÷ 17, λ = 0.18 ÷ 0.26), with
some wavelength oscillations in correspondence to bends or ramps. Fig.
4.7a reports all the bar wavelengths of each image of the Landsat dataset
1984-2013 so that the vertical oscillation of the data can be referred to
the bar elongation or shortening in time as well as to the discharge effect
already mentioned. The central and downstream sectors are generally
characterized by a lower bar wavelength, with values in the range L/W =
6 ÷ 12 (λ = 0.26 ÷ 0.52).

Fig. 4.7b presents the ratio between the bar elongation and the river
width (∆L/W ) in the period 1999-2010. As for the previous case, ac-
cording to the observations on bar elongation, the reach can be divided in
two main sub-reaches with the same boundaries as above. The upstream
sub-reach is characterized by vanishing or small elongation, with relative
maxima and minima in correspondence to bend 3 and bend 4. The values
are almost always in the range -1 ÷ 1. In the central and downstream
sectors, greater elongation and shortening are present. In particular, af-
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Figure 4.7: Different alternate bar properties as a function of the longitudinal
coordinate of the Alpine Rhine reach shown in Figure 4.6. From up to down
are shown respectively the ratios of the bar wavelength over the width, the bar
elongation over the width and the bar migration over the width.

ter bend 5 maximum elongation is shown with values on the order of
∆L/W ≈ 2. For a channel length of approximately 8 km downstream a
nearly linearly decreasing trend of bar elongation is present until ramp
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2-bend 7 up to values of -2.
A sudden change is brought by a series of planform discontinuities lo-

cated immediately downstream ramp 2 (r2), after which elongation again
recovers values near 2 downstream bend 8. Further downstream, elonga-
tion shifts to values near zero. The last part of the downstream sub-reach
has again elongation values oscillating in the range -1 ÷ 1, with relative
maxima in correspondence to the last series of nearby bends.

Fig. 4.7c shows the longitudinal variation of the bar migration scaled
with the river width (∆x/W ) in the period 1999-2010. The main reach
can again be divided in two main sub-reaches, with bend 3 setting the
main divide between the upstream and downstream sub-reaches. In the
former, migration is nearly zero, with few outsiders. Downstream bend 3
migration rapidly grows, up to values ∆x/W = 10 ÷ 15. Downstream bar
migration is nearly homogeneous in space, in this downstream sub-reach,
apart from a slight local reduction that is observed in the neighbourhood
of river km 30 and 40, where two distinct sequences of nearby bends are
present and the straight reaches are relatively short.

4.3 Results: application of bar theories

4.3.1 Computation of theoretical parameters

Dimensionless parameters β, θ, ds have been calculated as a function of the
discharge in order to obtain the range of variability of each parameter with
the discharge. In particular β and ds are decreasing with discharge, while
the Shields parameter θ, expressing the shear stress, is proportional to the
value of discharge. In Figure 4.9 each parameter is shown in three different
sub-reaches of the Alpine Rhine river. Furthermore these parameters are
calculated on the base of the theoretical hypothesis.

Landsat images taken on different dates and with different stage flows
can be used as base to define a flow rate curve per point. The available
dataset allows to distinguish sections partially wet from sections fully wet,
as it is reported in Figure 4.10. This analysis can provide a first esti-
mate of wet width, directly from image analysis, and of bar amplitude,
indirectly as described in the following sections. Once the amplitude is
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Figure 4.8: Two different reaches with alternate bars in the Alpine Rhine
river. The upper one shows alternate bars of the upstream reach of Figure
4.6 (Source: "Alpine Rhine":, 47Âř1’58.75”N, 9Âř29’32.43”E. Google Earth.
February 04, 2012. January 7,2016) the lower one refers to the central part
of the reach (Source: "Alpine Rhine":, 47Âř7’10.92”N, 9Âř30’54.28”E. Google
Earth. February 04, 2012. January 7,2016). Different bar wavelengths and
different shapes are visible from the aerial images. Water flows from left to
right, width of the river is around 95 m in both the images.

estimated, the corresponding fully transporting discharge is obtained. In
Figure 4.10 the role of the real cross sections in determining a region of
partial transport is shown. With respect to rectangular sections, in which
we are always in fully wet conditions„ there is a first stage in which only
a partially wet section is present. The fully wet stage (QFW ) corresponds
to a partially transporting section. Fully transporting section is defined
as the section in which more than 90% of the wet section is transporting
material as bed-load. The threshold of fully wet and fully transporting
section is different assuming rectangular or real cross sections. Herein, the
threshold of the fully transporting discharge refers to the case of real cross
sections, in particular the QFW and QFT thresholds are lower for the case
of rectangular cross sections. To calculate this value, a partition method,
or Engelund/Lotter method [Lotter , 1933] is adopted. The Meyer-Peter
and Müller formula [1948] has been used as a reference for the threshold
value of θcr, the critical Shields parameter.

89



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 90 — #120

4.3. Results: application of bar theories

0 500 1000 1500 2000 2500 3000
0

10

20

30

β
[

]

upstream

central

downstream

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

θ
[

]

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

Discharge [m
3

s
1
]

d
s

[
]

Figure 4.9: The three theoretical parameters β, θ, ds as a function of the
discharge. Each plot contains three curves, respectively representing the repre-
sentative values of the upstream, central, and downstream sectors of the Alpine
Rhine study reach.

Critical and resonant values (shown in Figure 4.11) of wavenumber λ
and width ratio β have been evaluated for each sector described in Table
3.2. Different discharges have been used, starting from the fully wet one
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Figure 4.10: Comparison of Landsat images taken at different discharges.
Image (0) is the minimum discharge of the Landsat dataset (L5 1990 Gen 14
Q=27 m3/s). Image (1) to (4) present respectively Q=101 m3/s (L7 2005 Oct
10), Q= 190 m3/s (L7 2006 Jul 05), Q=287 m3/s (L7 2000 Jun 02), Q=461
m3/s (L7 2000 May 17).

(QFW ) to the 2-year flow (Q2). Critical and resonant values are then
calculated up to the 100-year flow (Q100=2160 m3s−1). Increasing values
of discharge, critical values of λ increase from 0.32 and 0.40 (Q = QFW ),
respectively in the upstream and central-downstream sectors, to 0.45 (Q =

Q2). In the interval Q2 ÷ Q100, λC shows a relative maximum near 0.46.
The difference between two successive critical points ((λcr, βcr)(Qi+1) −
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Figure 4.11: Analysis of the behaviour of the critical and resonant values of
wavenumber λ and aspect ratio β for the three cases described in Table 3.2
for different discharges. Dashed lines represent the interval of discharges from
the fully wet case (Q=450 m3s−1) to the formative case (Q=905 m3s−1, T= 2
years). Continuous lines represent the interval of discharges from T=2 years to
T=100 years (Q=2159 m3s−1). Blue lines represent the Rhine Upstream, red
lines the Rhine Central, green lines the Rhine downstream.

(λcr, βcr)(Qi)) decreases with increasing Q of a same quantity ∆Q.
Similar results are shown for the case of resonant values of λ and

β. Increasing discharge, resonant values of λ increase from 0.05 (Rhine
upstream and Rhine central) and 0.08 (Rhine downstream) for the fully
wet discharge to around 0.10 (all the cases) for the 2-year case In the
interval from 2- to 100-year discharge, λ shows a relative maximum around
0.11.

The domain of β is double for the resonant case compared with the
critical one so that the sub-resonant region βres > β > βcr tends to increase
with increasing discharge.

4.3.2 Application of bar theories

The following bar theories were applied to predict bar properties and to
support interpretation of the field observations: the linear theories for free
migrating bars, and for forced steady bars, in the versions proposed by
Colombini et al. [1987] and by Zolezzi and Seminara [2001]; the non-linear
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theories for free migrating bars of Colombini et al. [1987] and of Tubino
[1991].

First of all, the reach-averaged lower discharge limit for fully trans-
porting cross-sections was computed to establish the meaningful discharge
range for theory application. The fully transporting discharge QFT ranges
between 500 m3s−1 and 800 m3s−1 in the different sub-reaches (Table 3.2).

The linear theory for free migrating bars is applied to predict the con-
ditions of free bar occurrence and their wavelength. This theory predicts
free bar instability whenever the width to depth ratio β is higher than
a critical threshold βc, which depends on the shear stress and the aver-
age grain size roughness, and which generally ranges between 10 and 20.
We computed the discharge value Qcr that determines critical conditions
(β = βc), for each of the three reaches. According to the theory, discharge
values below this threshold are likely to induce bar formation. Values
range between 1850 m3s−1 and 1950 m3s−1 ( see Table 3.2). This is the
second relevant discharge threshold that sets the flow conditions under
which alternate bar formation is expected. These two thresholds (QFT

and Qcr) are depicted in Figure 3.2, considering the values for the center
sector. The figure shows that almost every flood is characterized by a peak
value that falls in the area where alternate bars should form, according to
Colombini et al. [1987]. During the considered time interval of 30 years,
only two floods peaked above the critical threshold Qcr. Overall, for 99.9%
of the time when discharge exceeded the fully transporting threshold, the
study reach was in a condition of free-bar instability (β > βcr).

Results from the linear theory show that the most unstable wavelength
for free migrating bars is approximately 750 m and remains almost con-
stant along the study reach, despite varying sediment size and slope. Such
predicted value is slightly shorter than the measured wavelengths of the
alternate bars that were observed to migrate, which range from 750 to
1000 m. On the other hand, the computed wavelength of forced steady
bars ranges between 2000 and 3200 m, i.e. almost twice as much as the
observed wavelength (1200 to 1500 m) of the bars that have been classified
as non-migrating in our analysis, which mostly occurred in the straight
reaches of the upstream sector.

Values of bar height presented in Figure 3.12 were compared to the val-
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ues of the free migrating bar equilibrium amplitude predicted by Colom-
bini et al. [1987] and also by the empirical formulation proposed by Ikeda
[1984], which estimates bar height as a function of sediment diameter and
the width to depth ratio. In the Colombini et al. [1987] weakly non-linear
theory with steady flow conditions, bar height is a function of flow and
sediment characteristics, and of the distance from the critical conditions
for free bar instability (β−βcr). The two formulations give similar results,
with bar height decreasing from upstream to downstream (ranging from
6.2 m to 4.8 m for Q = Q2), and decreasing for higher discharges until
disappearing when Q approaches Qcr. Overall, the predicted range shows
a fairly good agreement with the bar height values computed from the
cross-sectional survey.

Finally, an application of Tubino’s (1991) theory for free bar evolution
under unsteady flow conditions was attempted. The predicted bar ampli-
tude values by the Colombini et al. [1987] model assume that an equilib-
rium condition in time is reached. In a real river bars develop under a
sequence of floods. Therefore, we assessed to which extent flow unsteadi-
ness can affect the results of bar theories. The analytical non-linear model
of Tubino [1991] allows the comparison of the relevant time scales of the
morphological evolution and of the flood duration, through the dimension-
less parameter U . The value of U computed for several floods occurred in
the last 30 years in the Alpine Rhine is approximately 20, therefore falling
in the case U � 1. This means that floods are short with respect to the
time needed by free bars to grow to their equilibrium height. Moreover,
this result suggests that the two floods (in 1987 and 2005) that peaked
at a discharge larger than Qcr did not have enough time to flatten the
riverbed, resetting the bar configuration. This confirms our observations,
which exclude the possibility that the alternate bars were flattened during
the 2005 flood, as the bar configuration before and after the flood was
remarkably similar, with most bars only slightly moving downstream (see
also Figure 3.10a).

From the theory of Struiksma et al. [1985], Crosato and Mosselman
[2009] derived a predictor for the bar mode m that describes the number
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of bars per cross-section. The predictor reads:

m =
β

π

√
(b− 3) f (θ0)Cf , (4.1)

where b is the degree of non-linearity in the relation between sediment
transport and depth averaged flow velocity. Crosato and Mosselman [2009]
suggest that the nearest integer of bar mode m indicates the most prob-
able number of bars per cross-section. The case of alternate bars is then
predicted for values of m in the range 0.5 ÷ 1.5. In the case of gravel
bed rivers Crosato and Mosselman [2009] suggest b = 10. Using value of
discharge in the neighbourhood of Q2 = 780 m3s−1, the predictor results in
the range 0.89 ÷ 0.94, respectively in the downstream and upstream sec-
tors, matching well the case of alternate bar presence. A further analysis is
performed for the sector downstream the confluence of the Ill river, where
no bars are present. Using the same data of slope and d50 of the down-
stream sector with W = 60 m, the value of predictor m is 0.34, correctly
out of the range of the existence of alternate bars.

To evaluate the length over which forced steady bars are linearly
damped, or non-linearly under sub-resonant conditions, we apply the solu-
tion of Zolezzi and Seminara [2001] and derive linearly the damping ratio
between the amplitude (A(0)) at the section of the permanent perturba-
tion (x = 0) and the amplitude (A(L)) at x = L.

A(x) = A0e
λrx,

A(0) = A0,

A(L) = A0e
λrL,

(4.2)

where λr is the real part of the eigenvalues λ3 and λ4.
The number of theoretical bar wavelengths (2π/λi), denoted with NL

in Eq. (4.3) over which the initial amplitude A(0) is reduced to a fraction
δA (with 0 < δA < 1) can be computed as:

NL = log δA
λi

2πλr
,

δA =
A(L)

A(0)
.

(4.3)

95



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 96 — #126

4.3. Results: application of bar theories

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

A(L)/A(0)

N
L

Q
FT

Q
2

Q
5

Q
100

Figure 4.12: Length of the damping rate in number of wavelengths for different
values of discharges.

where λi is the imaginary part of the eigenvalue λ4. Fig. 4.12 shows the
behaviour of the damping length in terms of the number of wavelengths
NL for different values of discharge (from Q = QFT to Q = Q100). Values
of λr and λi are calculated using geometrical values of the central sector
of the Alpine Rhine. The number of wavelengths is not changing much in
the range QFT ÷ Q5. Ratio A(L)/A(0) = 1 means no damping rate, while
values of the ratio A(L)/A(0) < 1 correspond to NL > 0 in the streamwise
direction. A damping rate of 0.5A0 corresponds to nearly one theoretical
steady bar wavelength, while a damping rate of 0.9A0 corresponds to 2 ÷
3 wavelengths. A comparison with field data is taken downstream bend b4,
where conditions shift from non-migrating to migrating and from longer
to shorter bars. A damping rate of 0.9A0, nearly 3 wavelengths, with the
data of the Alpine Rhine, corresponds to nearly 5 km.
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4.3.3 Insights emerging from the application of the
bar theories

The results of the present work show that several bar properties occurring
over a 3-decade period in a long (> 400 channel widths) reach of the
Alpine Rhine are correctly predicted by analytical bar theories. Four main
findings can be highlighted in this respect: (i) alternate bars are always
found in straight reaches where linear theories predict both free migrating
and forced steady bars to occur; (ii) there is a quite clear distinction
between a nearby group of "long" bars always occurring in the upstream
sector and other nearby groups of "short" bars, occurring in the longest
straight reaches of the downstream sector. The long bars are steady, while
the short bars migrate (see Figure 3.11), in agreement with linear theories
for both free and forced bars in straight channels; (iii) the wavelength
of migrating bars is well predicted by the linear theory for free bars in
straight channels; (iv) the observed bar amplitude is consistent with the
prediction of the weakly non-linear free bar theory.

At the same time, discrepancies between observations and predictions
can be highlighted. These may help understand to which extent sim-
plifying assumptions used in theories may limit their predictive ability.
According to linear theories both free migrating and forced steady bars
can occur in the upstream and in the downstream sectors of the study
reach, while observations suggest a spatially selective behavior, whereby
long steady bars occur upstream and short migrating bars only down-
stream. Moreover, the observed length of steady bars in the upstream
straight reaches is shorter compared to the predictions of the linear the-
ory for forced steady bars. We suggest that such discrepancy may be
related to the effects of some of the assumptions on which the theories are
built, which simplify the actual complexity of the real systems and allow
focusing on "key" physical effects supposed to act as major controls on
bar morphodynamics. Clarifying what theories can and what they cannot
predict is important to better illustrate how they effectively can be used
to interpret field observations. In the following we focus on: (i) the un-
steadiness of the flow; (ii) the finite length of straight reaches and (iii) the
heterogeneity of the grain size.

Flow unsteadiness. Application of Tubino [1991] non-linear theory for
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free migrating bars in straight channels indicates that the time scale of
flow unsteadiness is much shorter compared to the morphological time
scale needed for free bars to reach their equilibrium amplitude. This un-
derpins the possibility to use the assumption of steady flow. Under this
hypothesis, the linear free bar theory correctly predicts the wavelength of
migrating bars, which is also known to be almost unaffected by non-linear
effects (Colombini et al. [1987]), and does not show significant changes
during the 30 years of observation. Therefore, despite the observed al-
ternate bar configuration was generated by the action of a long lasting
(> 150 years) sequence of unsteady flows, the present analysis strongly
suggests the validity of assuming a constant, rather a narrow range of
bar-forming values of discharge to predict the condition of occurrence and
the wavelength of migrating bars. On the other side, floods with the same
intensity and duration can determine different migration properties of the
same bar units: flow unsteadiness might then be relevant at shorter time
scales (i.e. flood event), in locally reshaping and moving individual bars.

Finite reach length. The linear theory for free migrating bars is ob-
tained referring to an infinite channel length, where a periodical analytical
solution is derived in the streamwise direction. An analogous assumption
characterizes the linear theory for forced steady bars, where the chan-
nel length is assumed infinite only in one direction, with an upstream
(or downstream) boundary where a local persistent perturbation of the
straight, equiwidth channel geometry is present. The reported observa-
tions may help define a minimum reach length that can satisfy the (semi)
infinite length condition. Our study site included a total of six straight
reaches (three in each main sector) longer than approximately 2 km, i.e. 3
times the predicted free bar wavelength. Every straight reach is bounded
upstream and downstream by local planform perturbations consisting of
bends, ramps, confluences, which force steady bars in the nearby straight
reaches. Only in some of the straight reaches, namely the three ones lo-
cated in the downstream sector, migrating bars can be observed. Jaballah
et al. [2015] observed migrating bars in a 2.3 km long (∼ 45 channel widths,
or ∼ 4 times the longest bar wavelength) straight reach of the Arc River in
France, bounded by an upstream bend and by a downstream asymmetrical
bridge pier. In their study, the number of migrating bars decreased with
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time. The migrating bars observed by Eekhout et al. [2013] occurred in a
longer straight reach (in terms of bar wavelengths), while the secondary
channel of the Loire River where alternate bar migration was observed by
Rodrigues et al. [2015] is not longer than 2 bar wavelengths. The above
observations suggest that a straight reach length of several times the free
migrating bar wavelength might be a necessary though not a sufficient
condition for migrating bars to occur.

Sediment size heterogeneity. Another simplifying assumption in the
examined theories is the uniformity of grain size. The mathematical mod-
elling and experimental works by Lanzoni and Tubino [1999] and Lanzoni
[2000a] showed that graded sediments cause migrating-bar elongation, as
well as a decrease of the migration speed. Indeed, we observed also a much
slower migration rate than that predicted by linear theories. In addition
to the previous points, bar migration is affected also by non linear effects
caused by bar amplitude. As a result, bar migration cannot be accurately
predicted by linear theories, and weakly non-linear theories or numerical
models are needed.

The awareness of how much the simplifying hypotheses of the theories
may limit their applicability allows a more critical use of theories to inter-
pret field observations. All of the observed bar wavelengths fall within the
two limits set by linear theories for free migrating and forced steady bars
in straight reaches. The range of variability of these limits is relatively
narrow, when considering meaningful ranges for discharge, grain size, and
channel slope (Adami et al. [2014]). Such analytically derived limits may
therefore be viewed as the lower and upper boundaries of what can be ac-
tually observed in the corresponding real setting of straight river reaches.
The alternate bars observed in the Alpine Rhine are likely to be the re-
sult of a non-linear interaction between the two types of bars (free and
forced) predicted by the theories. This is in agreement with the experimen-
tal and numerical results of Crosato and Mosselman [2009] and Crosato
et al. [2011] and with the analytical studies referring to weakly meander-
ing channels with constant width (Kinoshita and Miwa [1967], Tubino and
Seminara [1990]) and to straight channels with spatially oscillating width
Repetto and Tubino [2001]. We argue that the result of such non-linear in-
teraction would eventually result into bars with wavelengths falling within
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the limits predicted by linear theories. Interestingly, in the Alpine Rhine
the observed migrating and steady bar lengths are closer to the computed
limits for free and forced bars, respectively, which further supports this
hypothesis. While the broad tendency can be therefore attributed to the
physical processes already retained in the linear theories, further develop-
ments on the non-linear free-forced bars interaction in straight channels
are needed to provide a complete picture of the controlling parameters
and of the dominant effects.

4.4 Steady and migrating bars in the Alpine
Rhine: why a spatially selective behav-
ior?

4.4.1 Synthesis of observations

Figure 4.7 shows a markedly different behaviour between the upstream
sector and the central and downstream sectors in terms of bar wavelength,
migration and elongation. The spatial trends of these parameters also
point out the role of bends and ramps, which can be viewed as persistent
local perturbations connecting relatively long straight reaches.

In the long straight reaches (s4 ÷ s6) of the central and downstream
sectors, bars migrate downstream (4.7c), change their length over time
(4.7b) and their wavelength (4.7a) remains consistently shorter compared
to the upstream sector, where bars are fundamentally steady, because they
neither migrate nor modify their wavelength.

Planform discontinuities, especially bends, also seem to have different
effects in the three sectors on the spatial trends plotted in Figure 4.7.
The three bends of the upstream sector do not seem to affect much the
observed bar migration and elongation, despite that some local scatter
can be observed in the data. The local mean value of bar wavelength
displays some spatial oscillations in the upstream sector but local min-
ima and maxima almost never coincide with the presence of bends. Only
the second minimum is located in correspondence of ramp r1, which is
high enough to literally separate subsequent bar units. In the central and
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downstream sectors, after a localized reduction immediately downstream
of bends b4 and b5, the mean bar wavelength remains almost constant. In
correspondence of the two groups of nearby bends located upstream and
downstream the (sixth) long straight reach, the spatial variability of the
bar wavelength locally increases (4.7a). The same two groups of bends are
also associated with a local reduction of bar migration (4.7c). Also bar
elongation shows a similar trend in the central and downstream sectors:
bars tend to elongate immediately downstream of a significantly numerous
group of nearby bends (like bends 4-5 and 6 ÷ 9); such elongation grad-
ually reduces along straight reaches and eventually turns into shortening
(e.g. long straight reach 5). This trend is interrupted at the end of the
long straight reaches.

4.4.2 Development of possible interpretations

We now develop possible explanations for the observed differences in bar
morphodynamics between the upstream and the central-downstream sec-
tors.

The study site is characterised by rather homogeneous conditions in
the streamflow and sediment supply regimes and no differences are evident
in terms of river bed and sediment management along the study reach in
the considered 30 years. This suggests to look for possible explanations
in terms of predictions of analytical theories for river bars, which allow to
estimate the variability of bar properties under different hydraulic condi-
tions.

Free and forced bars theoretically develop in long straight reaches in
which the bed is at least locally transporting sediment (as bed-load). A
further condition for the development of free bars is that the width ratio is
larger than the threshold value βC . This fix as the lower (QFT ) and upper
(QC) limits of the water discharge within which free bars can develop
(see Fig. 4.5 for an ideal case and Fig. 4.13 for the case of the Alpine
Rhine in two distinct regions: upstream and downstream the confluence
of the Ill river). Forced bars need a further ingredient determined by the
presence of a fixed obstacle in the straight reach. Long straight reaches
(say L/W > 20) are present in all the three sectors, as well as fixed
obstacles like ramps (see Fig. 4.7a,b). From the outcomes of the bar
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theories presented in Section 4.3.2, it appears that both types of bars can
theoretically be present in every sector.

As already described in Ch. 3, the relations between bar migration
and wavelength in the upstream and central-downstream sectors are in
general agreement with the predictions of the linear theories for migrating
and steady bars in straight channels. On the opposite, from the analysis
of the field data, the upstream sector seems to be characterized by forced
steady bars, and central-downstream sectors by free migrating bars. How
can this be explained, if they both can exist in all sectors?

The length of straight reaches plays an important role for both free
and forced bars: the shorter the reach is, the less the probability to find
free bars and, on the opposite, the higher the likelihood to see forced bars
in both sub- and super-resonant conditions. Also hydraulic conditions
(β, θ, ds) must play a role because both free and forced bar properties de-
pend on them: they set the limit of bed-load transport and the thresholds
for sub- and super-critical and sub- and super-resonant conditions). Since
we are always in super-critical conditions for free bars (see the limit be-
tween the green and red band of Fig. 4.13a,b), the most important limit
appears to be that on the properties of forced bars, because this theoreti-
cally sets two markedly different morphodynamic regimes that characterise
the channel behavior under sub- and super-resonant conditions.

On the basis of this, we formulate 3 hypotheses as possible explana-
tions:

1. differences in channel geometry. The presence of forced bars
in straight channels is related to the presence of local persistent
perturbations that alters the planform flow pattern. Bends with
different curvature and length are present with similar character-
istics in the three sectors. If lengths of straight reaches would be
much different among the sectors, this could result in different mor-
phological behavior: free bars theoretically develop sufficiently far
from a persistent perturbation and a single wavelength is nearly 7
÷ 10 times the channel width. The minimum length that therefore
allows the presence of a complete free bar wavelength for the case
of the Alpine Rhine is then between 0.7 km ÷ 1.0 km. The length
of straight reaches depends on the position of bends, but both in
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Figure 4.13: Sub-critical, sub- and super- resonant regions, respectively in
green, red and blue, as function of the real hydrograph of the Alpine Rhine in
three different cases: upstream sector (a), central sector (b) and downstream
the confluence of Ill river (c).
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the upstream, central and downstream sectors, the existing straight
reaches have similar length, the longest being around km 3, km 20
and km 35. In particular, in the 42 km studied reach, we focus
the attention on 6 straight reaches, defined in Fig. 4.7a. Following
this line of reasoning, this hypothesis does not seem to provide a
consistent explanation of the observed spatially selective behavior of
bars.

2. differences in properties of free bars. The computed properties
of free bars are rather homogeneous along the three sectors. From
the results of the linear theory of free alternate bars, the most unsta-
ble wavenumber (relative maximum of growth rate Ω in Fig. 2.3), is
nearly 0.4 ÷ 0.5 for the three analysed sectors of the Alpine Rhine.
It corresponds to downstream migration (ω > 0) in the whole reach.
Analysis of field data reflect scorrectly this behaviour only down-
stream bend b5 in which the mean of the ratio L/W is nearly 10 and
migration, in terms of the ratio downstream movement over width
per year, is nearly 1 in the straight reaches s4, s5, s6. Migration and
wavelength of the reach upstream b5 are respectively near zero and
in the interval 13 ÷ 17. Despite similar, theoretically predicted, free
bar properties, therefore, bars display different migration properties
in the upstream sector compared to the downstream and central sec-
tors. The spatially selective behavior does not seem to be coherent
with differences in free-bar properties among the reaches.

3. differences in properties of forced bars. The main parameter
for a change in behaviour of forced bars is associated with the reso-
nant conditions. Here two different cases are considered: the first one
describes the streamwise behaviour of the parameter (β − βR)/βR)

for different values of discharge; the second one considers an anal-
ysis of the temporal persistence of each sector under the following
conditions: sub-critical, sub-resonant and super-resonant.

The former analysis, see Fig. 4.16, describes the behaviour of the
parameter (β − βR) /βR, that gives a magnitude of the length of
spatial influence (in the streamwise direction) of a permanent per-
turbation. The influence can be thought to be higher when such ra-
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Figure 4.14: Histograms of the persistence under sub-critical conditions (Q >

QC , in green), sub-resonant conditions (Q > QR, in red) and super-resonant
conditions (Q < QR, in blue). Time is scaled with total active time of the 30
years hydrograph.

tio approaches zero (strictly infinite), while a perturbation decades
rapidly for values of (β − βR) /βR far from zero. In Fig. 4.16 the
parameter is plotted for different discharge values. QFT and Q5 pro-
duce values of the parameter respectively super- and sub-resonant
in the whole domain, but without changing much between different
sectors. The same behaviour is evident when a discharge near the
resonant condition is chosen. This approach does not seem to be
enough informative for the purpose of the analysis.

The second analysis aims to evaluate the cumulative temporal per-
sistence of each sector under sub-critical, sub- and super-resonant
conditions in the considered timeframe (1984-2013). In Fig. 4.14
and Fig. 4.15 such temporal duration (i.e., cumulative persistence) is
scaled with the morphological time scale that comes from the Exner
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Figure 4.15: Proportions of the persistence under of sub-critical conditions
(Q > QC , in green), sub-resonant conditions (Q > QR, in red) and super-
resonant conditions (Q < QR, in blue). Time is scaled with total active time of
the 30y hydrograph.

equation at the instantaneous flood discharge value, (Eq. 4.4). Tem-
poral persistence under sub-resonant conditions (red) increases from
upstream to downstream, while super-resonant temporal persistence
(blue) decreases in the downstream direction. Sub-critical persis-
tence (green) is almost negligible for the three sectors. This trend
appears to be coherent with the observed bar behaviour in the field,
in which the upstream sector presents steady bars with an amplitude
and a wavelength close to those theoretically expected under super-
resonant conditions, while central and downstream sectors present
a behaviour coherent to what could be theoretically expected under
sub-resonant conditions. In fact, sub-resonant conditions imply a
streamwise downstream decay of the amplitude imposed by the per-
sistent geometrical perturbation generated by bends. While super-
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Figure 4.16: Behaviour of the parameter (β − βR) /βR for 3 different values
of discharge: QFT , QR, Q5 in the Alpine Rhine reach. Red and blue regions
represent respectively sub- and super-resonant conditions.

resonant conditions would imply a tendency towards an equilibrium
amplitude of steady bars in space, ’forced’ in the same straight reach
by bends located both at its upstream and downstream end. This
overall should ’fix’ the whole bar geometry of the straight reach,
which therefore would be subject to a steady bar behavior along
the whole of its length, differently from its downstream straight
reaches, where longer lasting sub-resonant conditions would deter-
mine shorter channel length along which the (downstream only) in-
fluence of upstream local perturbations is felt in the form of steady
bars, thus leaving more space to the migrating bars that are actu-
ally observed. This behaviour is evident looking at the wavelength
of bend b4, streamwise decreasing up to wavelengths typical of free
bars.

The total time for which θ > θC (that corresponds to Q > QFT ) has
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Figure 4.17: Histograms of the active time for the considered sectors and
downstream Ill’s confluence.

been calculated as:

Time active = Ta =
∑
i

ti (Q > QFT ) (4.4)

Ta scales the three times plotted in Fig. 4.14, that sum to unity.
Moreover, it is interesting to observe that another different behaviour is
evident for the reach ’Downstream Ill’, in which the three times have a
comparable duration, in particular sub-critical time is much larger than
the reach upstream the Ill river. This is coherent with the observed absence
of alternate bars in that reach. Moreover, Ta is sector dependent (see Fig.
4.17 in which Ta is scaled with the value of the Downstream Ill reach). In
particular, the downstream sector is more active in terms of bed-load than
the upstream and central sectors and Ta of the reach downstream the Ill’s
confluence is one order of magnitude more active than the previous reach.
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Figure 4.18: Histograms of the persistence under sub-critical conditions (Q >

QC , in green), sub-resonant conditions (Q > QR, in red) and super-resonant
conditions (Q < QR, in blue). Time is scaled with total active time of the 30
years hydrograph.

Fig. 4.18 and 4.19 illustrates the sensitivity of the previous result to
the choice of the QFT value that is used to set the lower discharge limit of
the applicability of analytical theories. They show the ratio between sub-
and super-resonant times and sub-critical times. These different behaviors
are presented modifying the fully transporting threshold, 0.9 times QFT in
the former case and 0.8 times QFT in the latter case. From the comparison
of the results with the ones of Fig. 4.14, the relative percentage of sub-
and super- resonant times clearly emerges. In the case of QFT/QFT0 = 1.0

the sub-resonant conditions prevail, while in the case of QFT/QFT0 = 0.8

the super-resonant conditions prevail. The streamwise trend from super-
resonant to sub-resonant conditions is not influenced by the choice of QFT ,
thus corroborating this third explanation to the qualitatively observed bar
dynamics

109



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 110 — #140

4.5. Discussion and conclusions

Upstream Central Downstream Downstream Ill
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e
/T

im
e

 a
c
ti
v
e

Q
FT

/Q
FT

0

=0.8

Sub−cr

Sub−res

Super−res

Figure 4.19: Histograms of the persistence under sub-critical conditions (Q >

QC , in green), sub-resonant conditions (Q > QR, in red) and super-resonant
conditions (Q < QR, in blue). Time is scaled with total active time of the 30
years hydrograph.

4.5 Discussion and conclusions

This chapter proposes an approach for the application of linear and weakly
non-linear theories of free and forced alternate bars to field observations
of field cases of straight channels (here the field case is represented by the
Alpine Rhine reach).

The field case of the Alpine Rhine river, extensively reported in Chap-
ter 3, is first taken as a comparison to evaluate the validity of analytical
hypotheses. In particular, the behavior of the resonant and critical con-
ditions is evaluated in terms of unsteady discharge, using the real hydro-
graph that considers a period of 30 years. Together with the two main
conditions of the analytical models (critical and resonant) the threshold
of the fully transporting discharge is considered. Fully transporting dis-
charge is calculated starting from a theoretical rectangular section and
from the cross sections of the field case, in which the same width is used.
The difference between the two thresholds is evident: a theoretical value
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Figure 4.20: Behaviour of the imaginary part of the four eigenvalues as func-
tion of the discharge. Solid lines represent upstream sector, dotted lines repre-
sent downstream sector. Resonant conditions corresponds to λi = 0.

of 135 m3s−1 corresponds to a field value of 511 m3s−1 (downstream sec-
tor). Over the fully transporting discharge, the bed profile is considered
active (i.e. fully transporting sediments), so the relevance in terms of the
calculation of the time for which a sector is active is evident.

Based on the analysis of the application of analytical morphodynamic
theories to observations on alternate bars in rectified rivers, the following
synthetic conclusions can be drawn:

First, the main factor of variability in channelised rivers with alter-
nate bars is chosen to be represented by the discharge Q = Q (t), since
other factors as width, slope, grain size are slowly varying in the longi-
tudinal direction. The present approach introduces a new method that
shows how to deal with varying discharge (i) in comparison with theoret-
ical thresholds, i.e. fully transporting, critical and resonant conditions,
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and (ii) introducing a new indicator, i.e. the ratio between the cumulate
time percentage and the total active time. The issue remains open of the
possible existence of a single, representative discharge value of the "mor-
phodynamic signature" of the whole hydrograph- This issue is also dealt
with in the next Chapter.

Second, comparing theories with observations highlights the key role
of theories to aid interpretation of observations, giving the opportunity to
better understand the morphodynamic processes controlling bar formation
and dynamics. Moreover, it allows discussing how limiting are some of the
simplifying hypotheses on which the theories are based.

Third, the study presents an apparently novel observation of alternate
bar behavior in the upstream sector of the field case, followed by a behav-
ior that is more coherent with the sub-resonant bar regime in the central
and downtream sectors. This is coherent with the computed difference in
the temporal persistence of the two sectors in the super- and sub-resonant
regime, respectively. Such finding seems particularly interesting because
very little evidence of differences in morphodynamic behavior under sub-
and super-resonant regimes has been reported so far in real, albeit regu-
lated, river systems.

Overall, the above result provides additional understanding of bar dy-
namics in channelized river reaches as they add new elements to the ex-
isting analyses that compare analytical theories with field observations,
for which only few cases are actually present (e.g. Welford 1994; Zolezzi
et al. 2012; Eekhout et al. 2013; Jaballah et al. 2015). These cases analyse
only some aspects of the theories of free and forced bars. Welford [1994]
quantitatively assesses the physically based non-linear mathematical the-
ory of alternate bar formation under unsteady natural flow conditions in
a straight alluvial stream, comparing his outcomes with the theoretical
outcomes of Tubino [1991], in particular the bar amplitude and the ra-
tio between the time scale of the flood and the morphology, through the
parameter U . Eekhout et al. [2013] applied the models of Tubino [1991],
Struiksma et al. [1985] and Crosato and Mosselman [2009] respectively to
test the potential to predict the occurrence of bars in a field case of a
600 m straight channel of the Netherlands and to estimate the predictor
m proposed by Crosato and Mosselman [2009] for the estimation of the

112



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 113 — #143

4.6. Conclusions

number of bars in a cross-section of the channel. Jaballah et al. [2015]
applied the models of Tubino [1991], Struiksma et al. [1985] and Crosato
and Mosselman [2009] with a sensitivity analysis of the two parameters
Ip and b, respectively representing the interaction parameter between the
adaptation length of the bed and the adaptation length of the flow, and
the degree of non-linearity. Jaballah et al. [2015] presented in Fig. 9 the
behavior of these parameters as function of the discharge for m = 1 and
m = 2. They showed also that the length of decay for m = 2 is nearly
1/3 with respect to m = 1. Moreover, the analysed stream (Arc river)
seems to reflect a super-resonant regime in its formative conditions, but
the correspondence with bar behavior is not analysed in detail, though
signs of 2D upstream morphodynamic influence seem to appear upstream
of the downstream end section of their study reach.

4.6 Conclusions

The dataset provided also useful information to assess the applicability of
analytical bar theories, so far mainly tested against flume experiments, and
following recent attempts in French and Dutch streams. Predicted values
with linear theories for free and forced bars in straight channels are in good
general agreement with field observations, when considering conditions of
bar formation and bar wavelength. Comparing theories and observations
suggests that theoretical outcomes may represent the boundaries of the
actual, intermediate behavior of bars, which likely reflects non-linear in-
teractions, flow unsteadiness, sediment size heterogeneity and finite length
of straight reaches, which are not retained in linear theories. The com-
parison demonstrates the value of theories for the interpretation of field
observations: for instance, the difference in the migration-wavelength re-
lation may suggest the long, steady bars to be forced by local planform
discontinuities and the short migrating bars to result from a free instability
of the riverbed. Flow unsteadiness seems to have a minor role here while
grain size sorting might affect bar wavelength and migration. Together
with analytical theories set up to separately investigate both effects, a
numerical analysis might also help to study bar dynamics subject to real
flood sequences.
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Despite the above limits, the work shows that bar theories not only
provide information on bar geometry and dynamics, but they can also
help interpret the physical processes at the basis of their occurrence, i.e.,
set a suitable framework to differentiate between free migrating or forced
steady bars.
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Chapter 5

Reproducing free and forced
alternate bars with numerical
models

This chapter is partly based on the monograph: "Alternate bars in straight
domains", Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss
Federal Institute of Technology of Zurich.

5.1 Introduction

Morphodynamic numerical models represent a powerful scientific tool to
enhance our understanding of river systems. Morphodynamic models are
increasingly being used for different purposes, from managing river en-
gineering problems to answering basic research questions. The research
on involved topics is an important and socially relevant undertaking re-
garding our environment [Siviglia and Crosato, 2016]. Due to increasing
computer power and the development of advanced numerical techniques,
morphodynamic models are nowadays more and more used to predict the
bed pattern evolution for a broad spectrum of spatial and temporal scales.

Several different numerical models have been tested to correctly repro-
duce the formation and development of alternate bars in straight channels
(e.g. [Takebayashi and Egashira, 2001; Defina and Lanzoni , 2002; Federici
and Colombini , 2002; Defina, 2003; Bernini et al., 2009; Crosato et al.,
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2011, 2012; Siviglia et al., 2013]), but a benchmark analysis of the un-
certainties and the comparison with the theoretical findings are still rare
[Siviglia et al., 2013].

Takebayashi and Egashira [2001] studied numerically the influence of
multiple sediment size on alternate-bar formation and development. They
found that non-uniform sediment forms bars with shorter wavelength,
greater migration celerity and smaller height with respect to the uniform
sediment case. Defina and Lanzoni [2002] analysed the stability of a train
of bars under a periodic boundary condition. They found that the tempo-
ral variability of bar amplitude provides an indication of the equilibrium or
non equilibrium state of the system. Federici and Colombini [2002] showed
that bed perturbations generate a train of bars that behave as waves that
migrate downstream increasing their amplitude in time as theoretically
predicted by Colombini et al. [1987]. Defina [2003] investigated the in-
fluence of a local bed perturbation on the formation and development of
alternate bars. The perturbation was either a single bump, periodic bumps
in time or multiple bumps in space. In the case of periodic bumps in time,
bar celerity was shown to depend on the frequency of the perturbation.
On the contrary, values of bar celerity, bar wavelength and bar height are
connected to one another, independently of the type of the initial pertur-
bation. Bernini et al. [2009] focused on the role of the Froude number,
analysing sub- and super-critical flow conditions as well as trans-critical
conditions in the formation and evolution of alternate bars. They also
investigated the role of gravity on sediment transport across bars and how
this influences the dynamics of bars. Crosato et al. [2011, 2012] assessed
the long-term evolution of alternate bars in straight channels, proposing
a comparison between numerical simulation and a long-duration flume
experiment. They found that migrating bars tend to become gradually
longer and higher, then rapidly shorter and lower. Steady bars, generated
from the upstream boundary, gradually developed in the streamwise direc-
tion suppressing the migrating bars. Siviglia et al. [2013] proposed a set
of benchmark simulations used to test the capability of a numerical model
to reproduce the main outcomes of the analytical theories, including free
and forced bars. Van Der Meer et al. [2011] performed numerical simula-
tions of upstream and downstream overdeepening in a ’U shaped’ domain
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as in the experiments of Zolezzi et al. [2005]. The morphological model
Delft3D successfully predicted the overdeepening effect, although (i) the
threshold between sub- and super-resonant condition was higher in the nu-
merical simulation than predicted by Zolezzi and Seminara [2001] and (ii)
at very high witdh to depth ratios the computed non-migrating bars are
shorter than predicted by linear theory. Mosselman and Le [2015] describe
the importance of a correct calibration of the deviation of the sediment
transport direction from the depth-averaged flow direction to correctly
represent the morphological evolution of the river bed with a numerical
model. This effect has been explained in terms of linear stability analysis
in A.3.

The aims of this chapter are (i) to test a new series of benchmark simu-
lations for the calibration of the coefficient of transversal slope r proposed
by Ikeda [1982] and (ii) to present one of the first cases of comparisons
between multi-decadal field data of the Alpine Rhine river, presented in
Ch. 3, and numerical data of the same reach, in simplified geometrical
conditions, with a further analysis of different flow discharge conditions.

5.2 Shallow-water-Exner model: numerical vs
analytical solutions

5.2.1 The numerical model Basement

We simulated the alternate bar formation in straight and curved domains
using the fully non-linear, time-dependent, physically based numerical
model for morphodynamic processes Basement [Vetsch et al., 2016a]. The
2D module of the numerical model solves separately the hydrodynamics
and the bed evolution. The hydrodynamics is based on the depth averaged
mass and momentum conservation equations of the Raynolds-averaged 3D
Navier-Stokes equations. The evolution of the bed topography is based on
the 2D Exner equation that solves the sediment mass balance in stream-
wise and transverse coordinates.

The system of governing equations is solved through a finite-volume
method on an unstructured triangular mesh. Different Riemann solvers
are implemented, i.e. the exact Riemann solver, and two approximate
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solvers (HLL and HLLC). In the simulations presented in this chapter the
exact Riemann solver is used. Time discretisation is based on the explicit
Euler first-order method, while spatial discretisation is carried out by the
finite-volume method. The hydraulic time step is determined according
to the restriction based on the Courant number. In the case of the 2D
model, the condition Courant ≤ 1 is satisfied by choosing Courant= 0.95.

5.2.2 Numerical vs analytical solution: link between
the two sets of governing equations and closure
relationships

To directly compare the results obtained from the analytical theories with
the numerical simulations, we make the following assumptions:

• viscous and turbulent stresses, as well as momentum dispersion
terms are not considered in the system of equations proposed by
Colombini et al. [1987] and Zolezzi and Seminara [2001];

• terms due to viscosity, turbulent stresses and dispersion are then
neglected in the momentum equations;

• terms due to sediment material (sg) and the source term in the Exner
equation are neglected;

• the grain size distribution is considered uniform, so that only one
class of sediments is considered.

The simplified formulation of the four governing equations is written
along the longitudinal and transverse coordinates (x, y) as follows:

∂h

∂t
+
∂ (uh)

∂x
+
∂ (vh)

∂y
= 0, (5.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
+ g

∂zB
∂x

+
1

ρh
τBx = 0, (5.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
+ g

∂zB
∂y

+
1

ρh
τBy = 0, (5.3)
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(1− p) ∂zB
∂t

+

(
∂qB
∂x

+
∂qB
∂y

)
= 0. (5.4)

where:

h is the water depth;

g is the acceleration due to gravity;

u, v are the depth averaged velocities respectively in x and y directions;

zB is the bed elevation;

τBx, τBy are the bed shear stresses in x and y directions;

p is the material porosity;

qB is the specific bed load flux.

Eqs. 5.1 ÷ 5.4 are compared with Eqs. 2.4 ÷ 2.7 proposed by Colom-
bini et al. [1987]. The numerical model solves the unsteady regime through
the presence of time derivatives in the continuity and momentum equa-
tions. These terms are neglected in the linear solutions proposed by
Colombini et al. [1987] and Zolezzi and Seminara [2001], on the hypothesis
that the flow field is always in equilibrium with a bed that slowly varies
in time. The base of this ’quasi-steady assumption’ lies in the difference
on characteristic time-scales of bed and flow development (see e.g. Vriend
[1981]).

The roughness parameter is computed by the model using the same
closure of Chezy:

Cf = 5.75 log

(
12R

ks

)
, (5.5)

where the hydraulic radius R is approximated with the water depth
and ks = 3d90.

In the test-runs two different bed-load formulas have been used: Meyer-
Peter and Müller formula [1948] and Wong and Parker [2006].

The numerical model corrects the direction of the sediment transport
through a modification in the direction of the shear stress. The analytical
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solution does the same. The formulation implemented in Basement [Vetsch
et al., 2016b] is written for the cases in which a transverse bed slope exists.
The gravitationally induced lateral transport correction, for the case of a
single grain class, is modelled using the approach proposed by Ikeda [1982]
as presented by Van Rijn [1993]:

qB,lateral
qB

= β

(
τBcr

τ ′B

)γ
Stransverse, (5.6)

where qBlateral
and qB are respectively the lateral transport component

and specific bed load; β is a lateral transport factor (default value, up
to version 3.5, is 2.05); γ is a lateral transport exponent (default value:
0.5). τBcr is the critical shear stress of the individual grain class, τ ′B is the
effective shear stress and Stransverse is the bed slope in transverse direction.

This correction is compared with the formulation used by Colombini
et al. [1987] (see Eq. A.10) and based on the analysis of Engelund [1981].
We obtain that factor β can be converted as follows:

β
√
τBcr = r (5.7)

Then, setting r = 0.3 (e.g. [Olesen, 1984]) and τBcr = 0.0495, the
corresponding value of β to be used in Basement, in the GUI input in-
terface of the software named lateral_transport_factor in the
BEDLOAD-PARAMETER block, is 1.3484.

Transverse velocity and transverse bed-load transport at the lateral
boundaries are set to zero. Wall friction at the boundary is neglected,
too.

5.2.3 Correction of local longitudinal slope

Basement implements per default in the calculations the corrections due
to the longitudinal and transverse local slopes, that are not considered in
the solutions of Colombini et al. [1987] and Zolezzi and Seminara [2001],
but already introduced in the review proposed by Tubino et al. [1999] to
be added to the critical value of the shear stress θC and written as:

θ′c =

(
θc +

r1

β

∂η

∂s

)√
1− (∂η/∂n)2

tan2 φ
, (5.8)
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where φ is the angle of repose of the bed material and coefficient r1

ranges between 0.1 ÷ 0.2. A full analysis of this subject is proposed by
Kovacs and Parker [1994].

The role of local slope is implemented in Basement using a similar
formulation:

θ′c = θcξxξy, (5.9)

where ξx represents the correction due to the local longitudinal slope
∂η/∂x and is defined as:

ξx =
sin
(
γ − ∂η

∂x

)
sin γ

, (5.10)

while ξy refers to the correction due to the local transverse slope ∂η/∂y
and is defined as:

ξy = cos
∂η

∂y

√√√√
1−

tan2
(
∂η
∂y

)
tan2 γ

. (5.11)

γ is the angle of repose of the bed material. We analysed terms of Eqs.
5.10 and 5.11 expanding the slope in Taylor series, to evaluate their order
of approximation. The local longitudinal slope results to be in the form
ε + O (ε3), while the local transverse slope results to be in the form 1 −
ε2 +O (ε4). Since Colombini et al. [1987] and Zolezzi and Seminara [2001]
solve the 2D system of equations up to the order ε in the linear case and
ε3/2 in the weakly non-linear case, the only correction that can be taken
into account for the comparison is the one due to the local longitudinal
slope.

The local longitudinal slope correction modifies the coefficients of the
system of equations 2.4 ÷ 2.7, in particular adding a new term to coeffi-
cient a44 of the homogeneous algebraic system of Colombini et al. [1987].
In particular, the coefficient with the corrections reads:

a44 = Q0

(
Φ0

r

β
√
θ
m2π

2

4
+ Φs

Φ0

s

λ2

β

)
− Ωc (5.12)
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Figure 5.1: Effect of local longitudinal slope on the stability analysis of the
solution of Colombini et al. [1987]. Corrected solution (solid blue lines) differs
from the basic solution for high values of wavenumbers λ. (Q = 2000 m3s−1,
d50 = 0.04 m, s = 0.002 m/m, W = 100 m; Roughness: Einstein [1950], Bed-
load: Meyer-Peter and Müller [1948], r=0.3.)

where Φs is defined similarly to ΦD and Φθ as:

Φs = −Φθ
θc
θ
θcs (5.13)

In Fig. 5.1 the comparison between the solution of Colombini et al.
[1987] without the local longitudinal slope correction and with the cor-
rection (solid blue line) is presented. Dimensional data are the same as
in Fig. A.3. The effect of the correction is evident for high values of
wavenumber λ, or rather short bars. The typical plateau of the solution
proposed by Colombini et al. [1987] is partially modified, while the crit-
ical and resonant values of the width ratio β remain almost unchanged.
Finally, the role of the local longitudinal slope affects only the shape of
the growth ratio Ω, while the angular frequency ω does not change.
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Figure 5.2: Formation of free bars in straight channels. Threshold curves for
growth rate (Ω = 0) and migration (ω = 0) resulting from the linear analy-
sis of Colombini et al. [1987] (black line) and with the correction of the local
longitudinal slope (blue lines) are superimposed on the benchmark runs of the
numerical simulations of Basement. Reference values of the parameters and clo-
sures: θ = 0.1, ds = 0.061, r = 0.3, ∆ = 1.65, soil porosity p = 0.4, roughness:
Einstein [1950], bed-load: Wong and Parker [2006]. Colours of the runs are
explained in detail in the text.

5.3 Benchmark simulations on alternate bar
stability

To evaluate the capability of the numerical model Basement to correctly
estimate the process of free-bar stability, the series of benchmark sim-
ulations proposed by Siviglia et al. [2013] is applied. This benchmark
consists of 13 2D mobile-bed numerical simulations run at fixed values of
parameters θ, ds, coefficient r, relative density, soil porosity, roughness and
bed-load formulae, but at different values of the parameters λ, β (see Tab.
5.1). Threshold curves for growth rate (Ω = 0) and migration (ω = 0)
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resulting from the linear stability analysis of Colombini et al. [1987] set
the base for the choice of λ, β combinations, in order to cover theoretical
stability and instability cases (respectively at Ω < 0 and Ω > 0) as well as
upstream and downstream migration (respectively at ω > 0 and ω < 0).

The original threshold curves of Siviglia et al. [2013] are modified,
adding the correction due to the local longitudinal slope described in 5.2.3.
The new thresholds are shown in Fig. 5.2, in which the original 13 runs are
superimposed. Runs with red diamonds refer to cases of bar suppression,
runs with blue triangles refer to cases of bar growth and downstream
migration, runs with light blue circles refer to cases of bar growth and
upstream migration. The main difference between the present analysis
and the one proposed by Siviglia et al. [2013] is the expected behaviour of
run 7, that originally was in the unstable region (Ω > 0), while now it is
in the region of bar suppression (Ω < 0).

The set-up of numerical simulations consists of straight channels with
initially a sinusoidally perturbed bed in the form:

η (x, y, t = 0) = A (t = 0) sin

(
2πy

W

)
cos

(
2πx

Lb

)
, (5.14)

where A (t = 0) = A0 is the initial bar amplitude, set as 1% of the ref-
erence uniform flow depth, Lb is the given bar length, an inverse function
of λ of Tab. 5.1. Constant flow discharge and solid discharge at a rate that
is in equilibrium with the stream transport capacity are imposed as up-
stream boundary conditions, a uniform flow depth as downstream bound-
ary condition. Banks are considered solid boundaries without roughness
(slip walls). Numerical runs are carried out in a straight rectangular do-
main, 300 m long and 1 m wide. The computational domain has been
discretized with 85990 triangular cells.

The hypothesis of linear growth rate and migration of the analytical
solution is reproduced in the numerical model by setting a very short
duration of the runs (trun = 100 s), so that intrinsic non-linearities can
not become relevant.

In Fig. 5.3 the left longitudinal profile of run 12 is shown. The red
line represents the initial condition of the bed elevation (t = 0 s), set with
the spatial structure of Eq. 5.14, while the blue line is the bed elevation
configuration at t = 100 s. Bar growth in time and downstream migration
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Figure 5.3: Example of benchmark run 12 for which theoretical growth in time
and downstream migration are expected. The x-axis shows the central part of
the domain, to avoid possible boundary effects.

are present. The theoretical scenario is here correctly reproduced. In Tab.
5.1 the comparison between the theoretical (subscripts ’CST ’) and numeri-
cal scenarios (subscripts ’BM ’) of the 13 runs in terms of temporal growth
or decay (Ω > 0 and Ω < 0 respectively) and upstream or downstream
migration (ω > 0 and ω < 0 respectively) are shown. Upstream and
downstream migration are correctly estimated by the numerical model,
while runs 5 and run 11 present behavior in disagreement with the free
linear theory in terms of growth rate Ω. This suggests that the numerical
growth rate threshold Ω = 0 differs from the theoretical one: in Fig. 5.4
an hypothesis of the numerical threshold curve Ω = 0 is shown and super-
imposed to the set-up presented by Siviglia et al. [2013]. This hypothesis
implies a different critical condition for the appearance of alternate bars:
βCBM

> βCCST
.
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Table 5.1: Comparison between theoretical and numerical linear behaviour of
benchmark simulations. Conditions Ω > 0 and ω > 0 are described with a ’+’,
conditions Ω < 0 and ω < 0 are described with a ’-’. In bold discrepancies are
underlined.

Run n. λ β ΩCST ΩBM ωCST ωBM

1 0.05 16.3 - - - -
2 0.15 16.3 + + - -
3 0.30 16.3 + + + +
4 0.08 10.1 - + - +
5 0.40 7.9 + - + +
6 0.60 5.6 - - + +
7 0.80 8.4 - - + +
8 1.00 11.2 - - + +
9 0.20 6.0 - - + +
10 0.50 16.3 + + + +
11 0.90 16.3 + - + +
12 0.40 23.0 + + + +
13 0.15 23.0 + + - -

The result of the numerical runs presented in Fig. 5.4 shows that
the resulting threshold curve can be represented by the theoretical one
together with an extra effect, whose nature is diffusive (i.e. tends to
damp local bed perturbations).

In order to calibrate the numerical model to correctly reproduce the
theoretical marginal curves, a new benchmark analysis is proposed for the
coefficient r of lateral transport.
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Figure 5.4: Comparison between theoretical and numerical marginal curves.

5.4 The role of the coefficient of lateral trans-
port r

A series of benchmark simulations is here proposed to numerically inves-
tigate the effect of the transverse bed slope component on the bed-load
transport direction (see also Mosselman and Le [2015]). This effect con-
trols the balance between the gravitational effects acting in the transverse
direction and the convective acceleration. Numerical simulations on al-
ternate bars are sensitive to a change in the ’r’ of Ikeda [1982] [Defina,
2003]: high values of r result in a smoothed topography while low values
of r result in a steeper topography.

Benchmark simulations for the calibration of the coefficient of lateral
transport r consist of a new series of simulations based on the same princi-
ple as the benchmark simulations of free bars in straight channels proposed
by Siviglia et al. [2013], in which a refinement of the runs is added near
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Figure 5.5: Set of benchmark simulations for the calibration of the effect of
the transverse bed slope component on the bed-load transport direction, varying
parameter r.

the plateau of the threshold growth rate curve (Ω = 0) and for high values
of λ, where the theoretical and numerical curves much differ.

In Fig. 5.5 three different sets of simulations are shown: a first set
(empty circles) represents the basic procedure by Siviglia et al. [2013]; a
second set (light grey circles) tests the vertical shift of the critical condi-
tions (λ = 0.5, different values of β) and the unstable behavior at high
values of lambda (β = 16.3, different values of λ); a third set (dark grey
circles) is proposed to correctly estimate the shape of the plateau of the
threshold Ω = 0 condition (β respectively 9.2, 10.8 and 12.5, λ ranging in
the interval 0.1-0.8).

Moreover, with respect to the runs presented in Siviglia et al. [2013] in
which r is set as constant, here the value of the coefficient r ranges in the
interval 0.0-0.9, with ∆r = 0.1, so that each simulation of Fig. 5.5 is run
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Table 5.2: Map of comparison between the theoretical behaviour of the 13
benchmark runs of Siviglia et al. [2013] with r = 0.3 and the numerical runs
with different values of r.

Coefficient r

Run 0.0 0.1 0.2 0.3

1
2
3
4
5
6
7
8
9
10
11
12
13

10 times. The lower limit r = 0.0 is tested to evaluate the capability of the
numerical model to correctly predict the theoretical complete instability
(and only the unstable region Ω > 0 exists), the upper limit r = 0.9 is
chosen as three times the ’standard’ value of the parameter r = 0.3.

Each simulation is compared with the corresponding theoretical be-
haviour, so that a map of correspondence as the one presented in Tab. 5.1
is built.

In Tab. 5.2 the result-map of the benchmark simulations proposed by
Siviglia et al. [2013] for different values of r is shown. The three different
colours refer to different situations: green if the result of the run coincides
with the theoretical behavior, yellow if the numerical behavior coincides
with the threshold conditions (Ω = 0), red if the theoretical and the

129



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 130 — #160

5.4. The role of the coefficient of lateral transport r

0.0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
BM

r T
O

T

Figure 5.6: rBM and rTOT . The following values of the parameters have been
employed: θ = 0.1, ds = 0.061, roughness formula: Einstein [1950], bed-load
formula: Wong and Parker [2006].

numerical behavior differ. Run 11 presents always suppression, even with
r = 0.0, run 9 only for the case of r = 0.0. Run 5 shows a not correct
behaviour for r = 0.2 − 0.3, while for lower values of r the behaviour is
correct or near the threshold. The condition r = 0 provides an indication
of the residual diffusion of the numerical model. Some indications and
hypotheses are described in 5.6. The residual numerical diffusion (rN) is
summed to the diffusion generated by the coefficient of lateral transport
r (rBM) to obtain a ’total’ diffusion (rTOT ) that can be written as follow:

rTOT = rN + rBM (5.15)

In Fig. 5.6 the value of rTOT of Eq. 5.15 is plotted as a function
of the initial coefficient rBM of Basement (blue part of the bars). The
residual diffusion (yellow part of the bars) is estimated to be nearly 0.2
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for rBM = 0.0 up to nearly 0.6 for rBM = 0.4, with a linear growth in
between.

5.5 Numerical simulations of the Alpine Rhine
river

Numerical simulations of the Alpine Rhine river have been performed in
order to test the capability of the numerical model to correctly estimate the
morphology of the field case and the main properties of the bed-forms thus
obtained. Numerical results are compared with the field data presented
in Ch. 3.

5.5.1 Numerical simulations

The chosen reach of the Alpine Rhine river is approximately 41 km long.
The total length of the reach has been described using three distinct nu-
merical domains, corresponding to the sectors presented in Ch. 3 and Ch.
4. The numerical domain of the entire reach covers the interval between
the Landquart and Ill tributaries. The two unstructured ramps along the
reach of Fig. 4.6 represent the control points for the division in sectors.
Banks of the domains are digitized through the available cross sections of
the Alpine Rhine. Some simplifications have been adopted for the choice
of slope and sediment diameter: both are considered uniform per sector.
Chosen values are the same as in Tab. 3.2. The initial bed configuration
is flat and no artificial bed perturbations are added during the numer-
ical simulations. For the computational domain, triangular meshes are
adopted and discretised with 14884 (upstream), 23834 (central), 27216
(downstream) cells respectively. The total area of the three sectors is
4.234 km2 and the total length is 41 km.

The Meyer-Peter and Müller [1948] formula is adopted for the bed-
load transport, the Strickler formula is adopted for the roughness. With
high values of the coefficient of lateral transport r bars tend not to grow in
time. Moreover the analysis performed in Section 5.2.3 indicates a lower
value of r in order to have a total equivalent r = 0.3. Thus calibration of
parameter r is set 0.05.
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Figure 5.7: Example of the simplified computational mesh used in the free bar
simulations presented in B in which the longitudinal section are superimposed.

Two different tests are performed. In the first test, constant dis-
charges are used and two different constant discharges are chosen (QC2 =

780 m3s−1 and QC5 = 1000 m3s−1, where the subscript ’C ’ stands for con-
stant). In the second test real hydrographs are used, and three different
thresholds for minimum discharge are chosen: QR2, QFT and QFW , where
the subscript ’R’ stands for real.

At the beginning of the simulations, the mobile bed is assumed to be
in equilibrium with the uniform flow conditions. The upstream bound-
ary conditions are flow discharges and bed-load transport in equilibrium
with the local upstream hydrodynamic conditions. Uniform flow depth is
imposed downstream. The hydraulic conditions of all the simulations are
sub-critical (Froude number Fr < 1).

5.5.1.1 Results for the constant discharge case

In the present section, results of the central sector are shown in terms
of time evolution of the bed elevation of the left and right longitudinal
sections, of the bar wavenumber and of the longitudinal position of bar
tops in time.

In Fig. 5.8 and 5.9 the time evolution of the bed elevation of the
right (blue lines) and left (red lines) longitudinal sections are shown. The
uniform longitudinal slope is filtered out. In both figures, the width of the
vertical grey strips represents the length of the bends, while the filling color
is proportional with the radius of curvature (larger is lighter). Both the
figures present the time evolution in the first 480 h of the run, with ∆t =

48 h. Fig. 5.8 shows the case with constant discharge QC2 = 780 m3s−1,
while Fig. 5.9 shows the case with QC5 = 1000 m3s−1.
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Figure 5.8: Case QC2, central sector. Time evolution of the longitudinal
bed profiles of the left and right banks, respectively with red and blue lines.
Longitudinal slope is filtered out. Vertical grey strips indicate Alpine Rhine
bends.
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Figure 5.9: Case QC5, central sector. Time evolution of the longitudinal
bed profiles of the left and right banks, respectively with red and blue lines.
Longitudinal slope is filtered out. Vertical grey strips indicate Alpine Rhine
bends.
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Alternate bars form in the entire sector. In particular bars start to
form in correspondence to the upstream boundary condition and to the
three bends with the lower radius of curvature (sharp bend). Alternate
bars start to grow in time and to migrate downstream. The appearance
of alternate bars in the whole reach is visible since t=192 h, while the
equilibrium amplitude near the bends is reached after nearly 336 h.

Fig. 5.10 shows the time evolution of the bar wavenumber in the two
cases QC2 and QC5. Starting the analysis of the bar wavenumber from
t=196 h, in correspondence with the complete presence of alternate bars
in the domain, the bar wavenumber initially presents values nearly 0.35-
0.40, then decreases in time down to an equilibrium value of 0.25-0.30.
The equilibrium value is reached nearly after 500 h for the QC2 case and
after 600 h for the QC5 case.

Fig. 5.11 and Fig. 5.12 show the time evolution of the tops of alternate
bars in correspondence to the left and right banks, indicated respectively
with red and blue dots. As for previous figures, the width of the vertical
grey strips represents the length of the bends, while the filling color is
proportional with the radius of curvature (larger is lighter). Alternate
bars in the domain present a relatively different behaviour in time. Up to
500 h alternate bars that form in the straight reaches migrate downstream,
while alternate bars that form in the neighbourhood of the bends tend to
migrate much less. Starting from 500 h alternate bars are non-migrating
in the whole domain. A similar behavior is also shown in the preliminary
run of super-resonant conditions in a straight channel with a permanent
local narrowing presented in Appendix 1.

5.5.1.2 Results for the real hydrograph case

In the following section, results of the central sector are presented in
terms of time evolution of the bar wavenumber. Real hydrographs are
used as inflow boundary condition, with three different thresholds for the
minimum discharge derived from the analysis presented in the previous
chapters: fully wet discharge (QFW = 230 m3s−1), fully transporting dis-
charge (QFT = 510 m3s−1) and discharge with a return period of 2 years
(QR2 = 780 m3s−1).

The temporal evolution of the bar wavenumber is shown in Fig. 5.13 for
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Figure 5.10: Cases QC2 and QC5, central sector. Evolution in time of the bar
wavenumber.

the three different cases. The choice of the minimum threshold influences
the celerity of the wavenumber evolution: the lower case (Qmin = QR2)
is the faster of the three analysed. In this case, the formation of alter-
nate bars in the whole domain, defined as the time needed to have the

136



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 137 — #167

5.5. Numerical simulations of the Alpine Rhine river

Figure 5.11: Case QC2, central sector. Evolution in time of the alternate bars
tops along the left and right banks, respectively indicated with red and blue
dots.

longitudinal coordinate fully covered with alternate bars, is completed in
nearly 200 h, equivalent to the case of constant discharge Qmin = QC2.
The range of variability of the wavenumber is greater in QR2 with respect
to QC2 and to the cases in which Qmin is QFT and QFW . For the case QFT

bar formation is completed in nearly 250 h, while the range of variability
of bar wavelength at fixed time is clearly lower. The overall trend is com-
parable with the case QR2: after the maximum wavenumber a trend of
bar elongation occurs up to the end of the run in which the bar wavenum-
ber is nearly 0.25-0.30. The case in which Qmin = QFW considers also
the interval of discharges in which the river bed is not fully transporting
sediments. This latter case shows a complete alternate bars formation at
a longer time, nearly 800-900 h, and a range of wavenumber variability at
fixed time comparable with the case of QFT . The the simulation has been
stopped after 1200 h, in which the decreasing trend of the bar wavelength
was beginning.
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Figure 5.12: Case QC5, central sector. Evolution in time of the alternate bars
tops along the left and right banks, respectively indicated with red and blue
dots.

5.6 Discussion and conclusions

The capability of the morphological model Basement to correctly repro-
duce the theoretical growth rate and migration rate is tested through the
application of a series of benchmark simulations proposed by Siviglia et al.
[2013]. The numerical set-up includes a straight channel in which as initial
condition bed elevation is sinusoidally perturbed. The solution of Colom-
bini et al. [1987] is improved by adding the local effect of the longitudinal
slope in the form suggested by Van Rijn [1989] and implemented in the
numerical model. The main difference with the test cases of Siviglia et al.
[2013] is run 7, originally in the unstable region of bar growth, now in
the stable region of bar decay. Results of the benchmark tests show the
correct behavior between theoretical analysis and numerical simulations
for 11 cases out of the total 13. Cases 5 and 11, theoretically in the region
of bar growth (Ω > 0), show numerically bars that tend to be damped in
time. This suggests a modification of the threshold conditions in the nu-
merical model, due to a diffusive effect (see alsoMosselman and Le [2015]).
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The role of diffusion in the numerical model, excluding turbulence that is
not considered in the analysis, is studied through an analysis of the cor-
rection on the direction of the bed-load transport due to the lateral slope.
This effect, written in the form suggested by Ikeda [1982] and modified by
Van Rijn [1993], counterbalances the effect due to gravity and is the main
ingredient of the appearance of the stable region (Ω < 0) in the analysis
of Colombini et al. [1987]. A new benchmark test is presented with two
main aims: (i) to evaluate the numerical threshold conditions in terms of
growth rate and migration rate for a given value of r and (ii) to calibrate
the coefficient r for a correct comparison with the theoretical threshold
conditions. The set-up of the benchmark test allows to correctly calibrate
the coefficient r and to evaluate the total effect due to diffusion. Changing
the value of the coefficient r, the curve of total diffusion is presented for
a case in which values of the parameters θ and ds are fixed, showing an
increasing total diffusion, as r is increased.

The second part of the chapter presents the numerical simulations of
the Alpine Rhine reach. The first aim of the simulations is to evaluate the
capability of the morphological model Basement to correctly reproduce (i)
the continuous alternate bar morphology starting from flat bed conditions
and (ii) the bar wavelength and migration of the field case. The second aim
is to evaluate the role of different inflow conditions in the development of
alternate bar properties. Each simulation is run with initial constant longi-
tudinal slope, single grain size and with the real planimetric embankments
and flat bed conditions. No artificial bed perturbation is added during
the numerical simulations. This set-up allows to account for the presence
along each sector of bends with different radius of curvature and different
lengths that separate straight reaches with variable length. As for the
case of sub- and super-resonant simulations, alternate bars start forming
in correspondence to fixed planform constraints, in this case represented
by bends. Moreover, the bar wavenumber λ tends to shorten in time,
down to values of 0.25-0.30, between the theoretical migrating wavenum-
ber λ = 0.35 and the non-migrating wavenumber λ = 0.15. Bar migration
is also influenced by the presence of fixed bends, that tend to slow down
the downstream migration (see e.g.Zolezzi et al. 2005 for an experimental
example). The role of formative discharge is finally tested: both inflow
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constant and variable tests are conducted. In the former, two different
constant discharges, Q2 = 780 m3s−1 and Q5 = 1000 m3s−1, are consid-
ered. In the latter the real hydrograph is used with three different lower
limits for the minimum discharge: fully wet discharge QFW = 230 m3s−1,
fully transporting discharge QFW = 510 m3s−1 and 2 year time of return
Q2 = 780 m3s−1. Similar behavior is shown in terms of temporal evolu-
tion of the bar wavenumber for the two cases of constant discharge, as
well as the cases of the real hydrographs, in which the temporal scale of
morphological evolution is much larger using the fully wet threshold.

Moreover, the trend of bar wavelength and migration of the application
to the Alpine Rhine river is in good general agreement with the field data.
Further improvements will include the presence of graded sediments and
a comparison between cases in which the initial bed elevation is already
composed by alternate bars, using the available topographical surveys
taken in a time interval in which hydrological data are also present.
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Figure 5.13: Cases QFT , QFW and QR2, central sector. Evolution in time of
the bar wavenumber.
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Chapter 6

Conclusions

In this final chapter, a summary of the most relevant conclusions of each
previous chapter is given. Such a descriptive summary provides answers to
the research questions formulated in the introductory chapter. Finally, a
discussion of some open issues on further research and guidelines to follow
is presented.

6.1 Summary of chapter conclusions

Long term morphodynamics of alternate bars in a straightened river. From
the analysis of 30 years of freely available Landsat images, alternate-bar
morphodynamics of a 42 km long reach of the Alpine Rhine river are de-
scribed in terms of bar migration, bar wavelength, bar elongation and bar
amplitude. This analysis resulted in one of the longest spatial and tem-
poral field studies, with a resolution able to catch the effect of single flood
events and the multi-decadal dynamics. Bars showed a spatially selective
behavior, with long and non-migrating bars in the first sector of the reach
and short and migrating bars in the second and third sectors. Bar elonga-
tion is absent in the upstream sector, while in the central and downstream
sectors bars tend to shortening in long straight reaches. The role of bends
in limiting the bar migration and in increasing the bar wavelength is also
shown. The temporally long dataset allowed the investigation of bar mi-
gration as a function of the discharge, showing that bars migrate faster
for intermediate floods. The dataset provides also useful information to
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assess the applicability of analytical bar theories, so far mainly tested
against flume experiments, and following recent attempts in French and
Dutch streams.

Application of analytical bar theories to a real case. The hypotheses of
the analytical theories are described and compared with the field config-
uration of the Alpine Rhine river. An approach is proposed to apply bar
theories accounting for the difference in setting with the field case. Differ-
ent roughness formulas, bed-load formulas and values of the gravitational
transport coefficient are evaluated to investigate the sensitivity of these
parameters. Critical and resonant conditions are shown as a function of
the wavenumber λ and the width ratio β, showing their variability in the
range of discharge between the fully transporting conditions and the dis-
charge with 100 years time of return. The effect of unsteady discharge is
compared with the theoretical findings of Tubino [1991]. The hydrograph
is characterized referring to critical and resonant conditions. The wave-
length of migrating bars is in good agreement with linear theory of free
bars of Colombini et al. [1987], while the bar migration is overestimated.
The wavelength of non-migrating bars is double with respect to that of
migrating bars, but slightly lower with respect to that predicted for reso-
nant conditions [Colombini et al., 1987]. Estimation of the transverse bar
mode as proposed by Crosato and Mosselman [2009] is tested with good
agreement in two cases: in the reach with bars (between Landquart and
Ill) and in the reach without bars (between Ill and Lake of Constance).
The theoretical damping length derived from Zolezzi and Seminara [2001]
showed also good agreement with the field data. The markedly different
behaviour between the upstream sector with long non-migrating bars and
the central and downstream sectors with short migrating bars is discussed
in terms of differences in channel geometry, in properties of free bars and in
properties of forced bars. In particular for the latter, the analysis showed
that a good parameter to differentiate between the two different behav-
iors is the amount of time during which the discharge is high enough to
determine sub resonant conditions, with respect to the amount of time
for which there are super-resonant conditions. Such differences depend
on the flood hydrograph, but also on the channel geometry and sediment
properties. Comparing theories and observations suggests that theoretical
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outcomes may represent the boundaries of the actual, intermediate behav-
ior of bars, which likely reflects non-linear interactions, flow unsteadiness,
sediment size heterogeneity and finite length of straight reaches, which are
not retained in linear theories. The comparison demonstrates the value of
theories for the interpretation of field observations: for instance, the dif-
ference in the migration-wavelength relation may suggest the long, steady
bars to be forced by local planform discontinuities and the short migrating
bars to result from a free instability of the riverbed. Flow unsteadiness
seems to have a minor role here while grain size sorting might affect bar
wavelength and migration. Despite the simplifying theoretical assump-
tions, the work shows that bar theories not only provide information on
bar geometry and dynamics, but they can also help interpret the physical
processes at the basis of their occurrence, i.e., set a suitable framework to
differentiate between free migrating or forced steady bars.

Numerical modelling the long term evolution of alternate bars. The
morphodynamic model Basement is tested to reproduce several morpho-
logical processes: (i) the formation and development of free migrating
alternate bars in straight reaches; (ii) the formation and development of
forced non-migrating alternate bars in straight reaches with fixed plan-
form constraints. Moreover, (iii) the benchmark simulations of free bars
as proposed by Siviglia et al. [2013] are used to test the capability of the
software to correctly reproduce the theoretical growth rate and migration
of free alternate bars; (iv) a new benchmark simulation is proposed and
tested for the calibration of the coefficient r of lateral transport; (v) the
long term evolution of the sectors of the Alpine Rhine reach using dif-
ferent inflow discharges is analysed. The model (i) correctly reproduced
the formation of free migrating alternate bars and also (ii) correctly re-
produced the sub- and super-resonant conditions of non-migrating bars
forced by a fixed planform perturbation. Basement passed 11 of the 13
benchmark tests for free migrating bars proposed by Siviglia et al. [2013]
and the analysis of the two failures is discussed in terms of numerical dif-
fusion. A new benchmark set of simulation is developed and performed in
order to correctly calibrate the coefficient r of lateral transport to obtain
an equivalent diffusive effect for the comparison with the critical condi-
tions resulting from the linear stability analysis of Colombini et al. [1987].
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Moreover, (v) a series of simulations of the three different sectors of the
Alpine Rhine reach showed the role of the discharge in the formation of
alternate bars with different wavelengths, migration and heights. Finally,
the numerical runs show that the migration rate of alternate bars in cor-
respondence to constraints like bends is lower than the migration rate in
straight reaches.

6.2 Open issues

There are four main aspects to be taken into account in order to deepen
the work:

In the considered period the role of the vegetation is negligible since al-
most none of the alternate bars is covered by vegetation due to the
typical snow-melting hydrological regime that maintains the top of
the bars submerged in the vegetative period. Since 2010, the hydro-
logical regime, influenced also by the presence of hydropower plants
upstream the confluence of the Landquart river, is much more ir-
regular and one single bar, located in the upstream sector, partially
started to become vegetated. Since the whole upstream sector is
composed by non-migrating bars, further attention can be focused
on the causes and on the consequences of the vegetation in the mor-
phodynamics of alternate bars of the whole reach.

Morphological model Basement and the existing theoretical framework
can be used to help evaluating the morphological evolution of dif-
ferent widening configurations, introducing a 2D support to design
projects. A test case can be the Alpine Rhine river, downstream the
confluence of the Ill river [Mähr et al., 2014]. In this reach, presently
with no bars, an ongoing restoration project (www.rhesi.ch) aims to
widen the existent embankments to lower the flood risk of the Rhine
valley and to increase the morphological complexity of the river.

The diffusive effect of the correction of lateral slope on the bed-load
transport direction focused the attention on a possible way to de-
termine the role of diffusion in a morphological model. To better
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describe this effect, a broader range of simulations has to be run,
with a range of values of the width ratio, of the relative roughness
and of the average size of the cells of the numerical mesh.

The effect of the choice of different hydro-morphological closures (e.g.
roughness formula, bed-load formula, coefficient r of lateral slope)
influence the threshold conditions of bar formation and bar migra-
tion. The effect of local longitudinal slope treated in Chapter 5 is an
example that shows how linear solutions can be improved in order
(i) to achieve a more detailed understanding of the conditions of bar
formation and (ii) to provide a theoretical basis for a benchmark
calibration of morphological models.
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Appendix A

Sensitivity of theoretical results
to roughness and bed-load
closure relations and the effect
of transverse bed slopes on
sediment transport direction

The qualitative outcomes of linear stability analysis for free bars, and also
of the theories of forced bars, shows some dependance on the choice of:

• roughness formula;

• bed-load formula;

• coefficient r, quantifying the role of local transverse bed slope ∂η/∂n
on the direction of sediment transport.

The above items represent empirical closures of the governing mathe-
matical problem. Nevertheless, changing roughness and bed-load formula,
as well as the empirical value of the r coefficient, the resonant and critical
parameter change. Here the comparison between different formulations of
roughness, bed-load and and the effect of r in the linear solution for free
bars instability is analysed.
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A.1. Roughness formula

It must be remarked that the quantitative differences that emerge in
the present Appendix are thought not to affect significantly the key out-
comes of the analysis presented in Chapter 4 of the thesis. The sensitivity
to the roughness, bed-load formulae and to the empirical r coefficient be-
come quantitatively relevant when aiming to compare analytical theories
with numerical simulations of bar morphodynamics in the same case, or
when benchmarking the latter with the former.

A.1 Roughness formula

Two different bed roughness formula are compared in order to evaluate
their role in determining different critical and resonantthreshold conditions
in terms of critical and resonant values of the parameter β. Bed roughness
are here written in terms of the Chezy roughness, and in dimensionless
form. The first one, reported also in 2.9, refers to Einstein [1950]:

C = 6 + 2.5 ln

(
D

2.5ds

)
, (A.1)

while the second is from Van Rijn [1984]:

C =
18

√
g ln 10

ln

(
12D

3ds

)
, (A.2)

where the d90 is put equal to d50 and expressed as ds = d50/D0.
In Figure A.1 an example of the comparison of the two different formu-

lation is reported using the same dimensional parameters (Q, d50, s,W ).
In terms of growth rate Ω, the Van Rijn [1984] formula sets a larger critical
parameter βC and considers a broader unstable region for large wavenum-
bers. In terms of migration rate ω, the threshold curve ω = 0 is less steep,
so that the resonant value is smaller respect to the case of Einstein [1950]
formula. The sub-resonant region βC < β < βR is then smaller.

A.2 Bed-load formula

Bed-load transport formulae are based on the idea that a relations between
hydraulic conditions, bed surface layer and sediment transport rate exists
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Figure A.1: Comparison between neutral curves Ω = 0 and ω = 0 using
different roughness formula. The blue lines refer to the case of Einstein [1950]
formula, while blue lines refer to Van Rijn [1984] formula (Q = 2000 m3s−1,
d50 = 0.04 m, s = 0.002 m/m, W = 100 m).

(see e.g. Gomez and Church, 1989). Different approaches have been used
to obtain the existing bed-load transport formulae (e.g. Talukdar et al.,
2012), based on shear stress (e.g. Shields , 1936; Ribberink , 1998; Wong
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A.2. Bed-load formula

and Parker , 2006, energy slope, discharge, regression (e.g. Yalin, 1963;
Engelund and Hansen, 1967; Camenen et al., 2006, equal mobility and
probability approach(e.g. Einstein, 1950). Extensive analysis has been
performed by Recking [2006], but the choice of the ’correct’ bed-load for-
mula remains an open issue.

In this comparison, 7 different bed-load formulae have been tested.

1. Meyer-Peter and Müller , 1948:

Φ = 8 (θ − θcr)
3
2 , (A.3)

where θc = 0.047.

2. Wong and Parker , 2006:

Φ = 3.97 (θ − θcr)
3
2 , (A.4)

where θc = 0.0495.

3. Hunziker and Jäggi , 2002:

Φ = 5 (θ − θcr)
3
2 , (A.5)

where θc = 0.05.

4. Huang , 2010:
Φ = 6 (θ − θcr)

5
3 , (A.6)

where θc = 0.047.

5. Engelund and Hansen, 1967:

Φ = 0.05
θ

5
2

C0

, (A.7)

6. Van Rijn, 1984:

Φ = 0.053
tsp2.1

d0.3
∗

, (A.8)

where tsp = (u ∗2 −u∗2
c) /u∗2

c represent the transport stage param-
eter, d∗ = d50 (∆g/k2

visc)
1/3 is the dimensionless particle diameter

with the kinematic viscosity kvisc = 1× 10−6 m2s−1.
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A.3. Coefficient of lateral transport r

7. Parker , 1990:
φ = φ0 5474

(
1− 0.853

θ′

) 9
2 , if θ′ > 1.588

φ = φ0 e
14.2(θ′−1)−9.28(θ′−1)2 if 1 < θ′ ≤ 1.588,

φ = φ0 θ
′14.2 if 1 ≥ θ′.

(A.9)

where φ0 = 0.00218 θ3/2 and θ′ = θ/θc, with θc = 0.0386.

In Figure A.2 and Figure A.3 marginal curves Ω = 0 and ω = 0 are
shown in two different cases. The former is the case of parameter near the
conditions of incipient motion (θ ≈ θc), while the latter shows the case of
fully established bed-load transport (θ � θc). The critical conditions for
the case of Figure A.2 is defined in a broader interval of β compared with
the case of Figure A.3, with βC ranging in the interval 5÷ 20 in the first
case and 9 ÷ 12 in the second case. The two formulations that present
the greater difference respect the average Ω = 0 curve are Engelund and
Hansen [1967] and Van Rijn [1984]. Engelund and Hansen [1967] is also
the only one that differs respect to the average behaviour in terms of
marginal ω = 0 for the case of incipient motion.

A.3 Coefficient of lateral transport r

The analysis on the deviation of average particle trajectories respect to the
direction of the average shear stress under the effect of gravity performed
by Engelund [1981] (see also e.g. Parker , 1984, Blondeaux and Seminara,
1985) introduce a correction in which the coefficient r is present in the
term:

− r

β
√
θ

∂η

∂n
(A.10)

of Equation 2.11. This lateral deviation of the direction of the particle
trajectories is the fundamental process that introduce the instability (Ω >

0) in the solution, otherwise unconditionally stable. Very few studies
(e.g. Hasegawa, 1981; Ikeda, 1982; Olesen, 1983; Parker , 1984; Sekine
and Parker , 1992) account for the role of this term, even if it is broadly
used.
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Figure A.2: Comparison between neutral curves Ω = 0 and ω = 0 using differ-
ent bed-load formulae, near the condition of incipient motion. (Q = 500 m3s−1,
d50 = 0.04 m, s = 0.002 m/m, W = 100 m).
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Figure A.3: Comparison between neutral curves Ω = 0 and ω = 0 using
different bed-load formulae, far from the condition of incipient motion. (Q =

2000 m3s−1, d50 = 0.04 m, s = 0.002 m/m, W = 100 m).
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develop in time.
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Appendix B

Numerical simulations of
alternate bar formation with the
morphological model Basement

This chapter is partly based on the monograph: "Alternate bars in straight
domains", Laboratory of Hydraulics, Hydrology and Glaciology of the Swiss
Federal Institute of Technology of Zurich.

B.1 Introduction

Aims of this Chapter are to test the capability of the numerical model
Basement (i) to simulate conditions of formation and development of al-
ternate bars in a straight channels and (ii) to correctly reproduce theoret-
ical critical [Colombini et al., 1987] and resonant [Seminara and Tubino,
1992; Zolezzi and Seminara, 2001] conditions.

B.2 Numerical model: Basement

Main characteristics of Basement model are compared with two 2D numer-
ical models used to evaluate alternate bar formation and development: GI-
AMT2D [Siviglia et al., 2013] and DELFT3D [Lesser et al., 2004; van der
Wegen and Roelvink , 2008]
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B.3. Test runs of free and forced bars in straight domains

B.3 Test runs of free and forced bars in straight
domains

A first set of simulations are completed to test the capability of the numer-
ical model Basement to correctly simulate the formation and development
of alternate bars in a straight domain. These runs focus on the formation
of free migrating bars and forced steady bars testing different boundary
conditions and different set-ups of the numerical model. This section par-
tially follows the existing analysis of Defina [2003]; Bernini et al. [2009];
Siviglia et al. [2013] to allow a direct comparison of the methods.

B.3.1 Setting up the numerical simulations

Numerical model is tested to correctly reproduce free and forced bar gen-
eration and bar growth under the conditions proposed by Siviglia et al.
[2013]. For the case of free bars, some further preliminary analysis are
performed in order to evaluate the role of boundary conditions in the for-
mation of alternate bars (e.g. Defina 2003). Next section starts form this
last case.

B.3.2 Free bars

A first set of simulation is run to evaluate to which extent Basement can
reproduce free bars in a straight domain. The geometrical and hydraulic
properties of the runs follow the hypothesis of the analytical solution of
Colombini et al. [1987]: rectangular cross section, constant inflow dis-
charge and solid discharge and uniform grain size.

Two different scenarios are described, starting from the rectangular
cross section in which the bed elevation can be left free to evolve in time
or randomly perturbed. Cases tested are in super-critical conditions (β >
βC) and in sub-resonant conditions (β < βR)

Case A flat bed condition, constant inflow discharge;

Case B flat bed condition, constant inflow discharge, random perturba-
tion of the bottom in time;
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B.3. Test runs of free and forced bars in straight domains

Table B.2: Summary of the parameters used in the Cases A and B.

Description V alue Unit

Mesh Length 6000 m
Mesh Width 60 m
N. of cells 31117 −
Discharge 500 m3/s
Slope 0.011 m/m

Mean diameter 40 mm
Total run time 259200 s
Initial bed Flat

θ 0.266 −
ds 0.025 −
β 18.80 −
βC 8.75 −
βR 33.2 −

Cases A and B are tested with the same initial and boundary condi-
tions, reported in Table B.2. The difference between the cases is due to
the random perturbation of the bottom artificially added to the numerical
solution of Case B. Total run time of Cases A and B is 72 h.

Results are presented in terms of variation of the bed elevation in time
respect the initial bed elevation conditions:

∆z = z (t)− z (t = 0) (B.1)

Case A

Fig. B.1 shows a zoom of the computational straight domain in which
left and right longitudinal sections have been plotted in Fig. B.2. Lx
and Rx represent the two points of intersection of a cross section at fixed
longitudinal coordinate x and the two longitudinal sections plotted in time
in Fig. B.3. In Fig. B.2 the time evolution of the longitudinal bed profiles
in the first 16 h is shown in correspondence of the right and left banks
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B.3. Test runs of free and forced bars in straight domains

Width

Flow

LEFT

RIGHT

Cross section

at xed x Longitudinal sectionsLx

Rx

Figure B.1: Example of computational mesh used in the free bar simulations.
The mesh grid is superimposed to the value of the bed elevation, in order to
evaluate the cell size in comparison with the size of a single bar.

(respectively blue and red lines). Time t = 0.0 h corresponds to the initial
flat bed conditions, in which the bed variation ∆z is zero in the whole
domain. Starting form t = 15.0 h a first appearance of alternate bars is
present in the second half of the domain. First half of the domain remains
flat during the whole run. A train of bars starts to form and to migrate
downstream, as in the experiments of Fujita and Muramoto [1985] and in
the numerical runs of Defina [2003]. Only one single train of bars arises,
this suggesting a convective nature of the instability of free alternate bars.

In Fig. B.3 the temporal evolution of the bed elevation in three dif-
ferent couples of points Lx, Rx is shown. At x = 2000 m apparently no
bars arise in the whole run; at x = 4000 m only one complete wavelength
is present; finally, at x = 6000 m a total of 5 wavelength is shown. These
bars show the typical shape of free bars, with a steep front and a mild tail.
Fig. B.3c shows the steep increase up to a local maximum (the crest of the
bar) and a mild decreasing part. Wave celerity decreases increasing time:
the first two wavelengths pass in nearly 4 h, while the last wavelength pass
in nearly 5 h. This lower celerity of migration corresponds with a lower
wavenumber.

In Fig. B.4 the time evolution of the wavelength is presented in the
time interval 0 h ÷ 16 h. Initial bar wavelength remains to values of 0.74
÷ 0.76, representative of the wavenumber of maximum amplification for
mode m = 2. From theoretical analysis, β = 18.8 also corresponds to
βC(m = 2). After the first 6 h, bar wavenumber decreases near values of
0.6. Final equilibrium is not completely reached when the last bars pass
through the downstream section.

Bar height evolution in time is shown in Fig. B.5. Bar height evo-
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Figure B.2: Case A. Time evolution of the longitudinal bed profiles of the
two longitudinal sections showed in Fig. B.1 (left in red, right in blue). Base
longitudinal slope is filtered out.

lution is evaluated in different cross sections, starting from x = 3500 m

up to x = 3500 m. In the cases x = 3500 m and x = 4000 m bar height
never reach the value of 0.5 m. From x = 4500 m to x = 5500 m a peak
of bar height is present, respectively for t = 6 h, t = 11 h and t = 16 h.
Height evolution presents two distinct behaviour in time: in a first region
(up to t = 5 h) present a linear growth, a second region (starting from
t = 5 h) presents a growth that tends to an equilibrium. The final part
of the height evolution present a sudden decrease due to the lack of dis-
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Figure B.3: Case A. Time evolution of the bed elevation in three different
longitudinal coordinates: one third (x=2000 m), two thirds (x=4000 m) of the
domain and at the downstream cross section (x=6000 m). Colours follow the
scheme of Fig. B.1.

turbance to continue the free bar presence. Furthermore, in Fig. B.5 the
theoretical value of equilibrium bar height of Colombini et al. [1987] is
reported together with the empirical value calculated with the empirical
formulation of Ikeda [1984].
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Figure B.4: Case A. Time evolution of the average value of the wavenumber
λ = 2πW/L. Bars with ∆η > 0.1 m are considered in the average.
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Figure B.5: Case A. Height evolution in time for different cross section in the
interval x = 3500 m ÷ x = 5500 m. Two thresholds refers to theoretical value of
equilibrium bar height of Colombini et al. [1987] (continuous line) and empirical
formulation by Ikeda [1984] (dotted line).
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B.3. Test runs of free and forced bars in straight domains

Case B

Respect to Case A, Case B has the same geometrical and hydrological
configuration; moreover the same initial and boundary conditions are con-
sidered. On the opposite, a random bed perturbation is added to all the
cells of the mesh. Random perturbation, actually added to Basement ver.
2.6, considers two parameters that must be defined by the user: the first
one consists in the maximum height of the perturbation, the second one
is the time interval of two consecutive perturbation. The height of the
perturbation in each cell has a probability normally distributed between
zero and the maximum height parameter defined by the user. In the run
of Case B, max height is set equal to 1% of the uniform flow depth, while
time interval between two consecutive perturbation is set equal to 300 s.

In Fig. B.6 the longitudinal evolution of the bed elevation is shown
in the time interval t = 0.0 h-t = 16.0 h. Contrarily respect to Case
A in which only one train of bars appeared, here the effect of random
bed perturbation is to continue triggering the free bar formation in time.
Bars are downstream migrating and their appearance is similar to Case
A: no alternate bars are present in the first half of the domain, due to an
upstream boundary effect. Free migrating bars constantly appear from
the second half of the domain, between x = 3000 m and x = 4000 m.

Fig. B.7 shows the time evolution of the bar wavenumber λ. Mean
value of λ is 0.7, almost twice respect the wavenumber corresponding to
the theoretical maximum amplification (λΩmax = 0.35) of the critical con-
ditions. In the interval 9-14 h there is a sudden temporary bar elongation,
down to λ 0.55-0.6, after which the wavenumber is again nearly 0.7.

Fig. B.8 shows the time evolution of bar height in different cross
sections of the second half of the domain. Cross sections x = 3000 m and
x = 3500 m are still affected from the upstream boundary condition and
show a non-equilibrium height. On the contrary, sections x = 5000 m and
x = 5500 m shows an initial linear growth of the bar height, as presented
in Case A, up to a relative maximum at 3.5 m. Starting from t = 15 h a
pseudo-equilibrium value of the bar height is reached (nearly 3.0 m) and
remains constant for the rest of the run. This pseudo-equilibrium value
is slightly greater respect the theoretical equilibrium value proposed by
Colombini et al. [1987] (Eq. 2.24) and the empirical one by Ikeda [1984]
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Figure B.6: Case B. Time evolution of the left and right longitudinal sections.
Base longitudinal slope is filtered out.

(Eq. 2.25).

B.3.3 Forced bars

A second set of simulations is run to evaluate to which extent Basement
can reproduce forced bars in a straight domain in sub- and super-resonant
conditions. The geometrical and hydraulic properties of the runs follow the
hypothesis of the analytical solution of Colombini et al. [1987]; Zolezzi and
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Figure B.7: Case B. Time evolution of the average value of the wavenumber
λ = 2πW/L. Bars with ∆η > 0.1 m are considered in the average.
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Figure B.8: Case B. Height evolution in time for different cross section in the
interval x = 3500 m ÷ x = 5500 m. Two thresholds refers to theoretical value of
equilibrium bar height of Colombini et al. [1987] (continuous line) and empirical
formulation by Ikeda [1984] (dotted line).
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Table B.3: Summary of the parameters used in the Cases Sub-Resonant and
Super-Resonant.

Description V alue Unit

Mesh Length 12000 m
Mesh Width 60 m
N. of cells 31247 −
Discharge 783.5 (sub-R); 482.1 (super-R) m3/s
Slope 0.011 m/m

Total run time 259200 s
Initial bed Flat

θ 0.100 −
ds 0.067 −
β 12 (sub-R); 17 (super-R) −
βC 8.06 −
βR 13.28 −

W

Wobs=W/2Flow

Figure B.9: Example of computational mesh used in the forced bar simulations
in the neighbourhood of the local narrowing.

Seminara [2001]: rectangular cross sections, constant inflow discharge and
solid discharge and uniform grain size distribution. A planform obstacle
is placed at half of streamwise length. Obstacle has the form of a local
narrowing of the channel, with Wobs = W/2. In Fig. B.9 the sketch of the
mesh in the neighbourhood of the obstacle is shown.
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B.3. Test runs of free and forced bars in straight domains

Two different scenarios are described, starting from the rectangular
cross section in which the bed elevation can be left free to evolve in time,
without random perturbations as described in the previous case B. Cases
tested are in sub-resonant conditions (β < βR) and in super-resonant
conditions (β > βR):

Case Sub-Resonant flat bed conditions, constant inflow discharge, βC <
β < βR;

Case Super-Resonant flat bed conditions, constant inflow discharge,
βC < βR < β;

These cases follow the benchmark runs proposed by Siviglia et al. [2013]
and based on the experiments of Struiksma and Crosato [1989], where a
fix obstacle located at x = L/2 is add to the case of a straight domain.

Case Sub-Resonant

In Fig. B.10 the left and right longitudinal are shown at different times.
The role of the local narrowing at x = 6000 m is evident starting from
the second time-step: a fixed scour starts forming at the right bank and
a correspondent deposit is present at the left bank, immediately after the
narrowing. This fixed obstacle triggers the formation of two distinct kinds
of bars: a first train of free bars start forming downstream the obstacle
and travels downstream like in the free bar Cases A and B; a second
train of bars also starts forming right after the narrowing. These bars,
forced by the obstacle, are twice longer than free bars and non-migrating.
Free bar amplitude grows in time and space, up to a pseudo-equilibrium
value, while forced bar amplitude is rapidly dumped in the streamwise
direction: in one single bar wavenumebr the amplitude decreases by 90%.
Moreover, upstream the obstacles the initial flat bed condition does not
change in time. Only a 1D effect is present upstream the obstacle, due to
the backwater effect induced by the narrowing. In the analysed case, the
top of the deposits newer overcome the water surface elevation, so that in
the whole run the bars can be considered submerged.

Fig. B.11 shows the time evolution of the average wavenumber λ.
Wavenumber tends to decrease in time from values of 0.35 to values near

187



“Adami_rev_EM” — 2016/5/13 — 22:19 — page 188 — #218

B.3. Test runs of free and forced bars in straight domains

−2
2

∆z
 [m

]

t= 0.0 h

−2
2

∆z
 [m

]

t= 5.0 h

−2
2

∆z
 [m

]

t= 10.0 h

−2
2

∆z
 [m

]

t= 15.0 h

−2
2

∆z
 [m

]

t= 20.0 h

−2
2

∆z
 [m

]

t= 25.0 h

−2
2

∆z
 [m

]

t= 30.0 h

−2
2

∆z
 [m

]

t= 35.0 h

0 2000 4000 6000 8000 10000 12000
−2

2

∆z
 [m

]

t= 40.0 h

Longitudinal coordinate [m]

Figure B.10: Case Sub-Resonant. Time evolution of the longitudinal bed
profiles of the left and right banks, respectively with red and blue lines, of the
entire domain. Base longitudinal slope is filtered out.

0.2. These values can be compared with the theoretical value of λC = 0.43

and λR = 0.13. The run shows a shift from conditions of migrating bars
to conditions near to non-migrating bars, even if the steady condition is
not reached.

Fig. B.12 present the time evolution of bar height in different control
sections with a ∆x = 1 km downstream the local narrowing. Curves of bar
height present a bell form as Case A. This run in fact present again a train
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Figure B.11: Case Sub-Resonant. Time evolution of the average value of the
wavenumber λ = πW/L. Only bars with ∆η > 0.1 m are considered.

of free bars that migrate downstream leaving a flat bed condition after the
passage as in the case described for Case A. The relative maximum can
be compared with the theoretical and empirical values of Colombini et al.
[1987] and Ikeda [1984] respectively, even if these value are derived from
free bars cases.

Case Super-Resonant

Fig. B.13 shows the longitudinal bed profiles of the left and right banks,
respectively red and blue lines, at different times. Initial flat bed condition
are evident at t = 0.0 h, while the role of the local narrowing at x = 6000 m

is evident starting from the second time-step as in the Case Sub-Resonant:
a fix scour starts forming at the right bank and a correspondent deposit is
present at the left bank, immediately after the narrowing. Again, the fix
obstacle triggers the formation of two distinct kinds of bars: a first train of
free bars start forming downstream the obstacle and travels downstream
like in the free bar Cases A and B; also the second kind of bars starts
forming right after the narrowing. Respect to free bars, these latter are
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Figure B.12: Case Sub-Resonant. Time evolution of bar height for different
cross sections in the interval x = 7000 m x = 11 000 m. Two thresholds refers to
theoretical equilibrium height of Colombini et al. [1987] (continuous line) and
empirical formulation by Ikeda [1984] (dotted line).

forced by the local narrowing, two times longer and non-migrating. These
two different effects evolve with the same time scale, so that there is a
mild shift from longer to shorter wavelength in the streamwise direction.

Moreover, upstream the obstacle the initial flat bed condition is af-
fected by the appearance of a group of free migrating bars (e.g. see at
t = 20 h of Fig. B.13) and, as in the previous case, by the 1D effect due
to the backwater effect induced by the narrowing.

Contrary to the theoretical behavior predicted by Zolezzi and Semi-
nara [2001] and to the numerical findings of Siviglia et al. [2013], upstream
of the obstacle non migrating bars forced by the obstacle do not form.
Moreover, the top of the deposits overcomes the water surface elevation.
This can be seen by the milled behaviour of the longitudinal sections.
Milled behaviour of the bed elevation does not reflect the real smooth be-
haviour of emerging bars, due to, maybe, the way in which the wet and
dry scheme is solved by the model.

Fig. B.14 shows the time evolution of the average wavenumber λ.
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Figure B.13: Case Super-Resonant. Time evolution of the longitudinal bed
profiles of the left and right banks, respectively with red and blue lines, of the
entire domain. Base longitudinal slope is filtered out.

Wavenumber tends to decrease in time from values of 0.35 to values near
0.25. These values can be compared with the theoretical value of λC = 0.43

and λR = 0.13. The run shows a shift from conditions typical of migrating
bars to condition in which the angular frequency ω of Colombini et al.
[1987] is smaller (i.e. lower migration), even if the steady condition λ = λR
is not reached.

Results of both Cases Sub- and Super-Resonant are in agreement with
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Figure B.14: Case Super-Resonant. Time evolution of the average value of
the wavenumber λ = πW/L. Only bars with ∆η > 0.1 m are considered.

the findings of Siviglia et al. [2013], stating that the steady bars wave-
lengths are larger for the sub-resonant case respect to the super-resonant
case.

Fig. B.15 presents the time evolution of bar height in different control
sections downstream the local narrowing with a ∆x = 1 km. After a rapid
increase of bar height, the value reach a relative relative maximum near
the theoretical and empirical equilibrium value of Colombini et al. [1987]
and Ikeda [1984] respectively.

B.4 Discussion and conclusions

In this Chapter, the ability of the morphodynamic numerical model Base-
ment to correctly reproduce the theoretical alternate free and forced bars
properties and behaviour is tested.

Flume experiments (e.g. Fujita and Muramoto 1985; Lanzoni 2000a,b;
Takebayashi and Egashira 2001), theoretical studies [Colombini et al.,
1987; Stevens , 1989; Tubino et al., 1999] and numerical runs (e.g. Federici
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Figure B.15: Case Super-Resonant. Time evolution of bar height for different
cross sections in the interval x = 7000 m x = 4000 m. Two thresholds refers to
theoretical equilibrium height of Colombini et al. [1987] (continuous line) and
empirical formulation by Ikeda [1984] (dotted line).

and Colombini 2002; Defina and Lanzoni 2002; Defina 2003; Bernini et al.
2009) showed that free bars in straight channels, after an initial phase of
development, evolve towards an equilibrium configuration in which the
main bar properties reach stable values. Cases A and B show clearly
the initial development of free migrating bars in terms of bar wavelength
and height. The equilibrium configuration is reached only in terms of bar
height, with values in good agreement with the empirical formulation of
Ikeda [1984] and the theoretical formulation of Colombini et al. [1987],
while bar wavenumber was still evolving at the end of the numerical tests.
An upstream boundary effect is evident and prevents the formation of
alternate bars in an interval of nearly 100 times the width of the numeri-
cal domain. The initial configuration triggers the formation of a train of
free bars that migrate downstream as showed numerically e.g. by Bernini
et al. [2009].

Bar wavelength is calculated as the longitudinal distance between two
consecutive crests in the same bank side. The associated longitudinal
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Figure B.16: Case A. Evolution in time of the alternate bars tops along left
and right longitudinal sections, respectively indicated with red and blue dots.

frequency of the crests, named bar wavenumber, is calculated as λ =

πW/L. Both Cases A and B showed values initially decreasing in time
from 0.4 to 0.30-0.35. The analysis of free bar theory by Colombini et al.
[1987] shows that the most probable value of bar wavenumber (i.e. the
one associated with the maximum growth rate) is 0.35, in good agreement
with the numerical outcomes.

Bar celerity of Cases A and B is estimated by tracking the longitudinal
position of the bar crests over time. The value of the celerity of a single
deposit is given by the slope of its corresponding curve (see Fig. B.16 and
fig. B.17 for Case A and Case B respectively), similarly to what showed
by Defina [2003]; Bernini et al. [2009]. Mean celerity of the Case A is
approximately 2.9 cms−1, while of the Case B is nearly 3.2 cms−1.

Cases Sub-Resonant and Super-Resonant reproduce with morphody-
namic model Basement the occurrence of steady alternate bars forced by
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Figure B.17: Case B. Evolution in time of the alternate bars tops along left
and right longitudinal sections, respectively indicated with red and blue dots.

a fixed constraint of the channel geometry [Siviglia et al., 2013]. As shown
experimentally e.g. by Struiksma et al. [1985]; Zolezzi et al. [2005]; Crosato
et al. [2011, 2012] bars forced by a fixed constraint are longer than free
bars and much less migrating. Moreover, Zolezzi and Seminara [2001]
analytically defined the role of resonance in the development of alternate
bars upstream or downstream the constraint and their spatial growth or
damping.

Fig. B.18 and Fig. B.19 summarize these different aspects showing the
longitudinal position in time of bar tops of left and right banks (respec-
tively in red and blue). Fig. B.18 shows the initial evolution of migrating
bars downstream the local narrowing at x=6000 m. Numerical model cor-
rectly reproduce non migrating alternate bars downstream the constraint.
After 10 h a single wavelength reached the equilibrium amplitude, while
celerity decreased to zero. In the remaining part downstream the local
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Figure B.18: Case Sub-resonant. Evolution in time of the alternate bars tops
along left and right longitudinal sections, respectively indicated with red and
blue dots.

narrowing a train of free bars start developing with a similar behaviour
of Cases A and B. Equilibrium bar wavenumber is nearly 0.25, greater
than the theoretical resonant conditions for non-migrating bars [Colom-
bini et al., 1987] and at the same time lower than the wavenumber of free
migrating bars. Furthermore, a series of non-migrating bars also form
upstream the obstacle, with a wavenumber nearly 0.35.

Fig. B.19 shows the evolution in time of the bar crests in the super-
resonant case. In good accordance with the results of Siviglia et al. [2013],
alternate bars form upstream and downstream the local narrowing. The
former are migrating bars, contrary with the numerical results of Siviglia
et al. [2013] and the theoretical super-resonant behavior; downstream the
constraint, as in the sub-resonant case a train of downstream migrating
bars form starting from the constraint itself, but in this case slowly evolves
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Figure B.19: Case Super-resonant. Evolution in time of the alternate bars
tops along left and right longitudinal sections, respectively indicated with red
and blue dots.

in non-migrating bars. Accordingly with Siviglia et al. [2013], bar wave-
lengths result larger for the sub-resonant case (around 22 times the width,
λ = 0.14) respect the super-resonant case (around 16 times the width,
λ = 0.19), with values more than 30% larger than the ones found by
Siviglia et al. [2013], and nearer the theorerical resonant (non-migrating)
conditions of Colombini et al. [1987].

In the version used in the present work (2.5.1), Basement does not
include a module modules for lateral bank erosion neither for spiral flow
parametrisation, similarly with model GIAMT2D [Siviglia et al., 2013].
On the contrary, Delft3D include these modules (see e.g. Schuurman
et al. [2013] for a recent application). Although the morphodynamic model
Basement is still in a development phase, the tested version is already ca-
pable to correctly reproduce the main morphological processes of alternate
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