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Abstract

Wearable devices have emerged as the most innovative opportunity to en-

able acquisition and quantification of physiological signals in real-world in-

door or outdoor contexts. However, their use in research should be based

on a reproducible analytics process, ensuring that all the critical steps in

data collection and processing are managed in a reliable experimental setup.

The aim of this thesis is to investigate the actual value and technical lim-

itations of wearable devices for their use in a research context, such as

physiological monitoring of sleep and crying states in infants, of parenting

of typical or atypical children, synchrony in educational contexts, and of fa-

tigue patterns in outdoor sport activity, e.g. skiing. The thesis describes an

approach and solutions that aim to compensate the effects of such technical

limits. Besides providing a set of appropriate signal processing algorithms,

a real-life sensing architecture is designed and implemented enabling syn-

chronized acquisition from multiple subjects and multiple sensors, including

cardiac signals, electrodermal activity and inertial data streams. The sig-

nal processing pipeline and the real-life sensing architecture are merged in a

unique data analytics framework (Physiolitix). The framework is validated

on a fairly wide range of sensors, including medical quality multi-sensor

smartwatches and smart textile garments applied in diverse research con-

texts. In particular, a calibration dataset is developed to compare wearable

and clinical devices in an affective computing task. We found that wear-

ables can be employed as a valid substitute for medical quality devices with

the help of adequate signal processing and machine learning solutions.
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Chapter 1

Introduction

Physiological signals allow clinicians to diagnose or to monitor the health

status of patients, but they also provide an effective insight into the psycho-

physiological regulatory mechanisms that allow an individual to adapt to

environmental changes and to react to external stimuli [68, 70]. Born as

a tool-set belonging to medical sciences to screen the vital signs, thanks

to the development of wearable technologies [85, 25], the acquisition and

quantification of physiological signals is nowadays affordable in a much

wider range of contexts, from personal uses to industrial and scientific

research.

Indeed, wearable technologies represent a great opportunity for the sci-

entific community to deepen the study of human physiology and behavioral

responses by paving the way for a new generation of experiments in which

long-term monitoring and real-life ecological acquisitions are a key aspect.

In particular, a decrease in obtrusiveness on subject’s behavior and daily

activities is expected by adopting wearable technologies instead of clinical

devices [41].

A trade-off between the two options is however undeniable. Wearable

solutions have a lower cost and higher portability than medical-grade de-

vices, which enabled their diffusion for commercial applications [118]. In
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CHAPTER 1. INTRODUCTION

contrast, the data quality that can be achieved is lower, subject to artifacts

due to body movements and data losses [129].

Several attempts have been performed to adopt wearable sensing devices

for research, with substantial differences in the type of technical solution.

For instance, a number of studies is focused on creating and validating

novel ad-hoc device [8, 53, 27], others adopt medical-grade devices [40] or

sensor platforms [26, 99]. Although these solutions can be considered wear-

able, as the sensing unit is a miniaturized, battery-supplied board, they

still require an experimenter for setup (e.g. placement of electrodes, start

of acquisition). Further, only recent devices allow real-time streaming of

collected data. In addition, they require the presence of a supporting sys-

tem such as: a workstation with software available for download, decode

and export the data to files, software to set sensor parameters (e.g. sam-

pling frequency, full scale range), hardware components (e.g. electrodes,

sensors), communication module and protocol (e.g. Bluetooth). There-

fore, they are portable but limited to specific in-lab experiments and they

are not suitable for daily life applications. Instead, in this work we focus

on off-the-shelf devices designed for autonomous, continuous and real-life

monitoring of physiological signals which could be setup and activated by

the subject itself.

In contrast to growing market availability, broad adoption of these types

of wearable devices (WDs) in research [97, 108] is still limited as prevented

by two main facts:

1. Existence of different solutions: many manufacturers provide diverse

products which differs in terms of both technological specifications

and protocols to control the device and access the data. Lack of a

common standard and fragmentation of supporting tools represent

an issue to researchers who look for a unified framework where to

integrate multiple devices;

2



CHAPTER 1. INTRODUCTION

2. Unvalidated reproducibility: quality of acquired data is usually ver-

ified by the manufactures but seldom validation data is provided or

signals compared to medical-grade device. Thus, it often remains un-

verified whether WD are able to reproduce scientific studies based on

medical-grade devices;

The main aim of this work is to enable usage of WDs in research by

addressing such key limitations. Two objectives are pursued: first is to

develop a unified framework to support the acquisition and processing of

signals from Body Sensor networks (BSNs), second is to assess the repro-

ducibility of studies based on WDs, focusing in particular on an affective

computing task.

To deal with existence of different devices and protocols, we developed

a real-life sensing platform, composed of a software architecture to enable

and control Body Sensor Networks (Physiolitix) and a Python package for

signal processing (pyPhysio). By the use of these tools we were able to col-

lect the Wearable and Clinical Signals (WCS) dataset which can be used to

compare and to assess reproducibility of algorithms on signals from WDs.

The experiment reproduced the DEAP dataset [67] designed for emotion

recognition based on physiological signals. Based on the WCS dataset and

the processing pipelines appositely developed we were able to assess, in

a condition of limited movements, that WDs allow the reproducibility of

state-of-art results [67, 122].

Many scientific fields can benefit from the output of this work: for in-

stance, psycho-physiology and affective computing researchers can expand

the fields of application to real-life contexts and with increasing number of

participants. Clinicians and medical researcher also can rely on WDs to re-

lease home health care solutions with continuous monitoring protocols and

remote assistance. We applied this framework to heterogeneous studies

and scientific projects. In this work we mention in particular the detec-
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tion of fatigue in skiers by inertial data, analysis of physiological response

of parents to infant crying and physiological synchrony between therapist

and patient affected by Autism Spectrum Disorders (ASD) during a music-

therapy session.

In the following chapters we describe the technological and scientific re-

search we conducted to develop a unified framework for acquisition, analy-

sis and validation of signals from WDs. In particular, Chapter 2 is devoted

to give the technological and scientific background about real-life sens-

ing and describe the Physiolitix platform. In Chapter 3 we introduce the

Python package pyPhysio, developed for processing heterogeneous types

of physiological signals with both general purpose (e.g. filters) as well as

signal-specific algorithms (e.g. estimators for beat detection). The exper-

imental settings and design to create the WCS dataset are presented in

Chapter 4. Chapter 5 presents the methodological approach adopted to

validate WDs as able to reproduce a standard affective computing task

with results. In Chapter 6 we describe four case studies in which the pro-

posed framework has been adopted and in Chapter 7 we summarize and

conclude.
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Chapter 2

Introducing Physiolitix: a platform

for real-life acquisition of

physiological streams

from wearable devices

In a general sense, Wearable Devices (WDs) are portable, non-invasive de-

vices that allow the acquisition of physiological signals during daily life,

with no need of external equipment [11, 85]. It is interesting to note that

the application of WDs is boosted by their improved portability (increas-

ing miniaturization and battery life) [27], as well as on new materials and

layouts that improve the portability (e.g.: epidermal tattoos [8]) and de-

crease the invasiveness (e.g. wireless ring pulse oximeter [55]). Such new

design solutions support the concept of Body Sensor Network (BSN) and

the more general concept of “Body Computing” [2, 52]. The current im-

plementation of a BSN is that of a set of sensors, which send data to a

central device that manages data acquisition, synchronization and storing

[130, 83, 41] on a local file-system or on a cloud service.

Beside several advantages, WDs present also technical limitations which

need to be carefully considered before designing scientific experiments
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based on WDs. In this chapter we thoroughly describe and discuss main

technological aspects associated to WDs (see Section 2.1). We first present

a list of physiological signals of interest and associated sensing technol-

ogy currently embedded in commercial devices; then we analyze technical

limitations and consequent issues related to signal collection. Finally, in

Section 2.2 we present Physiolitix: the proposed solution to enable real-life

sensing from multiple WDs.

In this thesis, we adopt the following standard terms:

• Wearable device (WD): the technological support embedding one sen-

sor or more and meant to be worn (e.g. t-shirt, band, smartwatch);

• Sensor: the technological component that measures a physical quan-

tity and is embedded in a WD. When referring to an implementation

into a wearable device, this is indicated as Wearable Sensor (WS), to

distinguish from the general technological component (sensor);

• Multi-sensor WD: WD that embeds multiple sensors (e.g. a smart-

watch);

• Sensing architecture: the chain of components involved in the data

acquisition process, composed of: sensor, embedding support, trans-

mission/storage, control unit and cloud.

• Sensor network: a set of wearable devices used in the same data acqui-

sition. We will focus on the concept of Body Sensor Network (BSN),

to develop the main notions.

2.1 Wearable Devices for research

In this section we illustrate the key concepts needed to understand and

discuss usage of WDs for research. In particular, we start from the physio-
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Figure 2.1: Representation of a Body Sensor Network within a multi-modal experiment
setting with three wearable devices and two subjects. In general, a wearable device
embeds multiple sensors to acquire diverse physiological signals. The smartphone, which
also embeds additional sensors, serves as Body Central Unit thanks to functionalities
provided by a specific app (PhysioREC logo is shown here).

logical phenomena that are measured (Subsection 2.1.1) to introduce more

technical aspects associated to the sensing part (Subsection 2.1.2) and the

issues that are addressed in this work 2.1.3.

When multiple WDs are used simultaneously, they form a BSN (see

Figure 2.1). The standard BSN structure is a star network topology where

the star tips nodes are represented by the WDs, the central node, called

the Body Central Unit (BCU), is the device that works as a data gateway.

The edges between the tips and the hub are the connections which are

usually based on Bluetooth technology.

The BCU controls the nodes and receives sensor stream through the con-

nection, ensuring that data is consistently persisted and all WDs are work-

ing correctly. This coordination capacity is provided by the app present

on the BCU. In general, each WD embeds more than one sensor, thus
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being able to collect more than one signal. Eventually this configuration

can be replicated on multiple subjects, thus creating the more complex

and more general case of BSN with multi-modal (i.e. multiple signals) and

multi-subject configuration (see Figure 2.1).

2.1.1 Physiological signals and sensors

In this subsection we introduce the main physiological phenomena of in-

terest for this work. For each physiological phenomenon we give a brief

description of measured signal and main sensing solutions. For each signal

we also provide a list of recent scientific works to illustrate the main fields

of application.

Cardiac Activity

The cardiac muscular cells are controlled both by the branches of the Auto-

nomic Nervous System (ANS) the parasympathetic and by the sympathetic

systems. The first acts to decrease the Heart Rate (HR) and is the princi-

pal actor in resting and quiet conditions. In contrast, the complementary

sympathetic system increases the HR and acts to prepare the body to face

threatening situations. Heart Rate Variability (HRV) analysis is the study

of the variations of the Heart Rate (HR) [76]: due to the conjunct influence

of the parasympathetic and sympathetic systems, the analysis of HRV indi-

cators is then used to investigate human emotions from a physiological per-

spective [68]. Two sensing technologies are currently available to acquire a

cardiac signal with WDs: Electrocardiography-based (ECG-based) sensors

and Photoplethysmography-based (PPG-based) sensors. ECG-based sen-

sors detect the electrical potential generated during the contraction of the

cardiac muscular cells. The signal acquired with a ECG-based sensor is

called Electrocardiogram (ECG). This is a mature technology, but it lacks

convenient portability, because of the need of wearing a chest-band under
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the clothes. To overcome these problems, PPG-based sensors have been

recently introduced as embedded in wrist-band devices or smart watches.

These devices are equipped with pairs of Light Emitting Diodes (LEDs)

and photo-diodes to detect the variation of blood volume in vessels through

variations in absorbed light. As the blood volume varies due to heart con-

traction, it is possible to observe the heart activity. Wearing these devices

is much more comfortable than chest bands, but the acquired signal can

be more sensitive to moving artifacts [129]. The signal acquired with the

PPG-based sensor is called Blood Volume Pulse (BVP).

Several studies used HRV analysis to investigate autonomic response, for

instance to detect stress [30] and cognitive workload in different conditions

[78, 123]. Esposito et al. [40] studied the calming effects induced in infants

by being carried or held by the mother. Parasympathetic-related HRV

indicators were significantly higher during carrying than during holding,

suggesting that infants are more relaxed in the first condition. Joosen et

al. [60] analyzed how the HRV of adults is influenced by the crying of

infants showing that effectiveness of this influence is related to maternal

sensitivity.

Electrodermal Activity

The Electrodermal Activity (EDA) is the variation of skin conductance.

It depends on the activity of the sweat glands which are under the con-

trol of the Sympathetic Nervous System (SNS). During stressful situations

the SNS elicits the sweating activity which in turn increases the skin con-

ductance that originates the measured signal [14, 104]. EDA comprises

two components: the Tonic Skin Response (TSR) and the Phasic Skin Re-

sponse (PSR). The TSR component reflects the physiological changes in

the secretory activity of the sweat glands. The PSR component is associ-

ated to the activity of the SNS. When a subject is emotionally aroused, the
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waveform presents a peak due to the sweat gland activation, which overlaps

with the TSR component. The main signal processing approach to inves-

tigate EDA in association to ANS activation is possible by decomposing

the TSR and PSR components [13, 6, 4]. EDA is measured by applying

an electric potential between two electrodes which are in contact with the

skin. The measurement is highly sensitive to body movements, because a

subtle drift in the placement of sensors could expose a new area of the skin

to the contact with electrodes. The new skin can be considerably dryer

as it has not been previously in contact with electrodes. This could affect

the measurement of the EDA introducing sudden changes in the baseline

level. EDA sensors embedded in wristbands can be sensitive to this type

of noise. Clinical sensors use straps or other solutions to fix electrodes to

the fingers to be able to reduce sensor movements.

Being related to the sympathetic branch of the ANS, EDA has been

extensively used to investigate the psycho-physiological response to ex-

ternal stimuli. Hernandez at al. [54] used EDA analysis to investigate

the engagement of children during interactive playing session with adults.

Ruiz-Robledillo et al. [106] showed that caregivers of relatives with Autism

Spectrum Disorders (ASD) present lower EDA levels in response to stress-

ful events, suggesting the existence of an adaptation mechanism that allows

caregivers to habituate to stress. Also, EDA-derived features have been ex-

tracted and used to detect fatigue during driving [20] and to discriminate

stress from cognitive load in an office work related environment [111]. By

analyzing the EDA, Sano et al. were able to predict the onset of epileptic

seizures [89].

Brain activity

Brain activity is measured by detecting the electrical potential generated by

the ionic currents in neurons. Collected signal is called Electroencephalo-
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gram (EEG) and typically multiple electrodes are placed in different points

of the scalp to observe activation of specific areas of brain cortex. Each

electrode is referred to a specific brain area which is associated to a par-

ticular brain function, allowing the analysis of brain activity and response

under different stimuli and tasks. The EEG signal is processed to extract

features able to measure the brain activity, for instance power in the brain

wave bands, fractal measures and Event Related Potentials (ERPs). The

complexity of the sensing equipment needed to acquire good quality sig-

nals limits the number of possible scenarios in which the EEG can be used.

However, new portable EEG devices with limited number of electrodes are

being introduced and allow raw measurements of EEG in daily life [102, 7].

The analysis of the brain activity has been used to identify and classify

emotions. Frantzidis and colleagues [43] extracted the spectral components

of EEG and amplitude and delay of detected ERPs to classify four emo-

tional states elicited by different visual stimuli. A similar approach has

been used by Jiang et al. [59], which integrated also the acquisition of eye

activity and facial expressions. Liu et al. [74] used Fractal Dimension of

EEG to define a subject-specific framework to classify emotions in real-

time. Results of the emotion recognition from EEG data have supported

the use of EEG as a potential communication channel to interact with

machines and communicate emotions [45].

Physical activity

Activity monitors acquire inertial (acceleration) and spatial (rotation, po-

sition) signals to measure body movements and human physical activity,

and are called inertial monitoring units (IMUs). The sensing component

is based on microelectromechanical systems (MEMS) sensors, which pro-

vide highly miniaturized solutions with relatively low energy requirements.

Therefore, activity sensors are commonly embedded in smartphones and
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many other powered devices. IMUs have been extensively adopted in scien-

tific studies, in particular to analyze movement and the ambulatory process

[23]. They are also systematically considered to track the physical activity

of subjects in order to reach and maintain an active lifestyle [15]. Stereo-

typed motor movements [92] are investigated to provide an index of severity

of Autism Spectrum Disorders.

Other physiological phenomena

Those listed in the previous subsections are the main physiological phe-

nomena commonly measured by WDs. However, other phenomena of in-

terest can be measured, either by specific WDs or by applying appropriate

algorithms to derive new measurements from the collected signals. For in-

stance, advanced PPG sensors do also provide measurement of hemoglobin

saturation [55]. Breathing activity can be measured by acoustic sensors or

extracted with appropriate algorithms from the chest movements measured

by an IMU [69] or from cardiac signals, such as the BVP [75]. As respi-

ration patterns influence the cardiac activity and frequency of the heart

rate, adding the information regarding the breathing activity to the study

of HRV allows for a better insight into the autonomic regulation. For in-

stance, Valenza and colleagues [124] were able to improve the performance

of an emotion recognition quadratic discriminant classifier by embedding

cardio-respiratory coupling into the set of input features. WDs have also

been proposed to measure the muscular activity by Electromyographic

(EMG) sensors, for instance to recognize emotions from facial expression

[67] or hand gestures [62]. Further, recent trends in sensor technology and

research aim at integrating measurements of bio-chemical components on

the skin and physiological signals [57, 8].
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2.1.2 Technical aspects

Current technological research aims at increasing both miniaturization and

portability of sensors. On one side this enables easy-to-wear devices, signal

acquisition in ecological conditions and decreases obtrusiveness. As a major

drawback, miniaturization is a compromise in terms of signal efficiency,

thus of signal quality (signal noise ratio). In this subsection we consider

the main technical characteristics and constraints of WDs for physiological

signals and analyze their effects on the quality of the collected data.

Sampling frequency

All WDs are battery supplied. To increase autonomy, performances of

some sensor components are reduced to decrease battery consumption.

In particular, the sampling frequency is kept lower than medical-grade

devices, usually below 256 Hz. Also, performances of other components

are reduced, for instance LEDs light intensity in optical sensors and gain

of amplifiers.

The sampling frequency (fsamp) determines the maximal frequency com-

ponent that can be observed in the signal (also known as Nyquist fre-

quency). Further it also defines the minimum temporal resolution ∆t =

1/fsamp to discriminate events. For instance, for HRV analysis it is recom-

mended [76] to measure the distances between subsequent beats (or Inter

Beat Intervals, IBIs) with a resolution of milliseconds, hence requiring a

minimal sampling frequency of 1000 Hz, far more than what usual wear-

able sensors can provide. In some cases this limitation can be overcome

by over-sampling the signal at the processing stage. Figure 2.2 shows the

effect of lower sampling frequency on the computed IBI signal and HRV

indicators.
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Figure 2.2: Effects of sampling frequency on the estimated IBI series (top row), a frequency
domain HRV indicator (normalized HF, middle row) and a time domain HRV indicator
(RMSSD, bottom row). On the left: absolute values from the original signal (blue) and
from its down-sampled version (128 Hz, red); on the right: relative differences between
the two signals (note the different scale on the top plot)

.

14



CHAPTER 2. PHYSIOLITIX 2.1. WEARABLE DEVICES FOR RESEARCH

Embedding and sensor positioning

In order to favor wearability, some technical constraints are imposed, thus

WDs generate signals which have lower signal-noise ratio (SNR) than their

medical-grade counterpart. First, usually in WDs no aids are used to fix

the sensors to the body (e.g. adhesive ECG electrodes); instead they are

kept on position only by the elastic properties of the embedding support

(e.g. tissue of T-shirts, rubber band of bracelets).

However, minimal shifts of the sensors due to body movements that

can introduce noise on the acquired signal such as drops or sudden value

changes. Signal quality can also be influenced by a non optimal positioning

of the sensor: although some anatomical loci are more appropriate than

others for measuring the signal, the need of embedding the sensor in a

wearable and comfortable support might constrain the positioning to a

non-optimal locus where the signal magnitude might be lower, such as

the wrist instead of hand palm in the case of EDA [125]. Artifacts might

be generated by high or low dynamic body movements. High dynamic

movements (sudden movements and/or with high amplitude) may cause

the displacement of the sensors that are not strictly fixed to skin surface.

Artifacts appear as impulsive changes in the signal value that might cause

saturation or loss of signal In the case of low dynamic movements there is

no displacement of the sensor but the physiological measure is influenced

by inertial effects of body movements; in particular physiological blood

fluid dynamic is particularly sensitive to limb movements and changes in

body positions [87, 129, 126].

Autonomy

Capacity of internal memory should not affect the performances of a WD:

as a first solution as the signals can be sent to the BCU and not locally
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stored. However, some devices can also store data as a backup, thus would

need a large capacity for prolonged and high sampling frequency acquisi-

tions. More in general, lower energy requirements and battery capacity

directly affects the autonomy of the device and, consequently the dura-

tion of the acquisition. High capacity and rechargeable batteries would

represent the ideal solution, however their size is bigger and together with

recharging circuits they might increase substantially the dimension of the

WD. The choice of the streaming technology (e.g. by wireless connection)

determines further constraints to autonomy of the sensing architecture.

Bluetooth is the most common technology for WDs; only Bluetooth Low

Energy (BLE) allows significant reduction of battery consumption and ex-

tended the range. However, BLE is a quite recent technology and is not

extensively supported.

Signal quality characteristics

Technical characteristics account only partially in the evaluation of WDs.

Indeed, it is important to consider also the quality profile of signals ac-

quired with WDs. A first quality indicator is the signal stability, which

can be used as an overall estimate of the WD reliability. Several technical

causes (e.g. sensor disconnection, errors in the streaming protocol) can

contribute to affect the acquisition, which results in missing or incomplete

data. Second, it is fundamental to consider the sensitivity of the WD to

body movements and other causes that might reduce the SNR. A complete

evaluation of a WD should include testing for SNR in a typical experi-

ment. In summary, there are no general indicators for signal stability and

sensitivity able to quantify and compare performances of different WDs.

Instead, this evaluation should consider the specific needs of operating the

WD in different conditions where it is expected to be applied.
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2.1.3 Issues intrinsic to WD usage

Technical constraints described in the previous subsection (2.1.2) are in-

trinsic to physiological sensing based on WDs. Consequences of these lim-

itations can be partially addressed only by specific signal processing tech-

niques or adequate design and execution of the experiment. Further, in

this subsection we discuss three limiting factors that pertain to the usage

of WDs, independently of the type of sensor or technical characteristics:

1. Integration of different Data Streaming Protocols;

2. Signal synchronization;

3. Privacy and security.

Addressing and solving these three issues is the aim of the Physiolitix

platform proposed in Section 2.2.

Middle-/software characteristics

WDs are integrated in BSNs, up to fairly complex architectures, needed

when experiments involve multiple devices or more than one subject. Typ-

ically, each WD adopts a specific method to interface with the BCU or

other devices. We call this method Data Streaming Protocol (DSP) and

we intend the set of specifications that allow the BCU to communicate

with the WDs and interpret received messages.

The DSP can take different forms depending on the manufacturers of the

WDs, but in general it is often provided to allow researchers and developers

to build personalized software to be installed on the BCU to control the

WD. Alternatively, a proprietary app is usually provided with minimal

functions.

Depending on the commercial strategies the DSP is made available as

a Software Development Kit (SDK) or protocol documentation. A SDK is
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a set of tools for (i) development of software with a documented library to

manage the communication with the WD and (ii) development of a custom

interface to control the data acquisition. The protocol documentation,

instead, is the set of codes adopted in the streaming messages with the

corresponding meanings. It is provided to allow the development of middle-

layer software to correctly interpret the stream. Since every manufacturer

adopts different methods of delivering the data, a specific software solution

must be implemented for every protocol and SDK.

In summary, while on one side the DSP should facilitate access to sensor

data and control of acquisition, on the other side, the existence of numerous

solutions complicates the integration of the DSP, which is one of the major

issues for the development of a working sensing architecture for research

use.

Synchronization

Signals acquired simultaneously by the same BSN are likely going to be

analyzed together in order to contribute to the investigation of the same

phenomenon. This approach is usually called Data Fusion: for instance

accelerometer data are often used to improve the BVP signal quality by

canceling the noise caused by body movements [47, 119]. Results from

Data Fusion techniques might be dramatically affected by temporal mis-

alignment and it is thus fundamental that all acquired signals are time-

synchronized before any processing step. We call synchronization the pro-

cess of assigning to each sample in a signal a temporal reference called

’timestamp’. Hence, samples from different signals with the same times-

tamp can be assumes as they were generated simultaneously [16].

Again, the solution of the synchronization problem is complicated by

the existence of different technological implementations. Three main cases

can be identified:
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1. The WD embeds an internal clock which is used to provide an absolute

time reference and the clock can be set manually;

2. The WD embeds an internal clock which is used to provide an absolute

time reference but the manual set is not available;

3. No clock is embedded and the timestamp, if given, is represented by

a counter of generated samples, thus providing only a relative time

reference.

Except the third case, the synchronization would be possible by esti-

mating the time offset between each device. The time-offset between two

WDs might not be constant due to minimal variation in the clock pace; the

ratio between the pace of two clocks is called time-drift [112]. However, in

the case of short acquisitions this effect can be negligible and the time-drift

can be considered equal to 1.

A third technical element that prevents the correct synchronization is

the latency between the generation of the sample and the assignment of

the timestamp. Latency is affected by delays due to the initialization of

the sensor, to the communication mean or to the processing of the message

(both on the WD and BCU sides). Worst-case scenario is when the WD

does not embed a clock and the assignment of the timestamp takes place

on the BCU, as in such case all the causes contribute to increase latency.

Privacy and security

Physiological signals are sensitive personal data that require a specific

treatment in terms of data management and control of access. The use

of commercial applications provided by WD manufacturers represents a

serious threat to personal privacy as they allow no control on who has

access to the data. In particular, it is quite common that the acquired

signals are automatically sent to a third-party proprietary server where
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they are stored and no control is left to the researcher who often is only

able to download the data. At the same time there is no control on the

procedure of data encryption. This aspect poses a significant obstacle to

the use of WDs for research as the experimenter is not able to guarantee

the protection of personal data and security.

2.1.4 Existing platforms

Notwithstanding the importance of WDs for research, a clear solution to

integrate physiological devices into a unique platform is still missing. Cur-

rently, the research is focusing on the general problem of integrating mul-

tiple sources of data connected to the internet, which compose of what is

known as the Internet-of-Things (IoT). One of the main goals is to seam-

lessly connect the many resources to a cloud service, in order to allow

real-time data analytics to generate new valuable information. Hence, is

then used as a feedback or a decision trigger [96]; however, the lack of a

standard protocol for communication and the existence of diverse techno-

logical solutions is still a major issue [35, 79, 18].

The solutions currently available are mainly represented by commercial

products. Although different in terms of features and scopes, they all

share the same key strategy of providing API1 for each specific device

while exposing a common interface to the developer.

In the medical and health-care field, current state-of-art is still focusing

on the identification of optimal architectures or paradigms regarding im-

plementation, but a working solution is still missing [103, 50]. In [28] Chen

and colleagues define various guidelines for the next generation of WDs,

which is projected to be based mainly on smart garments. In particular,

they propose to structure the architecture into three layers: (a) the front-

end or User Interface, to monitor the acquisition and provide feedback, (b)

1see, for instance: reference.humanapi.co\newlinehttp://gethealth.io\newlinevalidic.com
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the communication mean, centred on a smartphone and (c) the backend

represented by the cloud solution.

These three layers are exactly the three blocks that compose Physiolitix,

our solution for the integration of multiple WDs for research. Physiolitix

set out to represent one of the first working open-source platforms that aim

at solving the issues intrinsic to the WDs usage presented in the previous

section.

2.2 Result: Physiolitix

Physiolitix is a cloud-based framework to acquire, store and manage phys-

iological signals from WDs. Its main characteristic is flexibility in terms of

input sensors and application.

The Physiolitix architecture is composed of two main sections (see Fig-

ure 2.3):

1. PhysioREC: Android app for real life data acquisition;

2. PhysioBackend: cloud resource for the storage, processing and web-

access of experimental metadata and sensor data.

Figure 2.3: Overview of Physiolitix architecture

The PhysioREC data acquisition section is organized as BCU to which

Bluetooth-enabled devices can send data. The generic BCU device can

be a smartphone or a tablet. PhysioREC is the Android application that
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manages the sensor data collection, synchronization and stream. It also

takes care of encrypting, compressing and sending data through a Wi-Fi or

3G/4G data connection to PhysioBackend. There, customizable pipelines

can be applied in real-time to data for downstream analysis, in particular

for extraction of physiological metrics and indicators. In the following

subsections we describe in detail the two components.

2.2.1 PhysioREC: real-life sensing

The PhysioREC Android app is the first element of Physiolitix architecture.

Its main goal is to provide a unified platform for sensor data acquisition

in multi-device experimental settings where two main issues arise: (a) the

existence of different data streaming protocols and (b) the synchronization

of signals from different sources. It also addresses the collateral problem

of (c) privacy of personal data and security of the data transmission.

Key components of PhysioREC are:

1. Input and output modules;

2. User interface;

3. A Core Flows-Management function.

Implemented Input and Output module

The Input and Output modules operate as interfaces to the variety of ex-

isting DSPs and WDs. An Input module is specifically developed for each

WD based on the existing method (SDK, protocol documentation) pro-

vided by the manufacturer to allow the connection between smartphone

and WD and the control of the data acquisition. The Input module trans-

lates the proprietary method into a set of predefined functions that are

then exposed to the Core Flows Management. Similarly, Output modules
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Figure 2.4: Overview of PhysioREC User Interface. From left to right: login screen with
authentication, activation of input and output modules, acquisition screen , real-time
plots of signals.

allow the stream of the acquired data to different destinations, such as a

database or a real-time processing cloud service.

The Input modules developed so far include:

• AndroidDevice: to record logs, performance data and inertial signals

from sensors embedded on the smartphone;

• EmpalinkDevice: allows the management of the Empatica E4 (con-

nection, interaction, setup and data collection). It is based on the

Empatica SDK Empalink v2.0;

• ComfTechDevice: allows the management of the ComfTech smart-

garments series, such as the HeartBand or the CozyBaby. It is based

on the documentation of the hexadecimal communication code pro-

vided by the manufacturer (ComfTech);

• ExlsDevice: allows the management of the IMU EXEL Exls3 board,

based on the documentation of the hexadecimal code provided by the

producer (EXEL);

• InteraxonMuseDevice: allows the management of the wearable EEG

Interaxon Muse. Based on the SDK provided by Interaxon;

23



2.2. RESULT: PHYSIOLITIX CHAPTER 2. PHYSIOLITIX

• NTPserver: to connect to an external server providing a time reference

signal through Network Time Protocol.

Available Output modules currently implemented are:

• PhysiolitixOutput: to connect and stream data to the Physiolitix

backend which is the main output of PhysioREC. This module imple-

ment methods for data chunking, compression and local caching. The

policies to regulate the data preprocessing and streaming are auto-

matically defined to optimize the battery consumption and utilization

of data connection.

• CSVOutput: allows saving the acquired data locally in human read-

able comma separated values (.csv) files.

User Interface

The PhysioREC User Interface (UI) is composed of three parts (see Figure

2.4):

1. Login screen to allow the user authentication and the selection of the

experiment associates to the acquired data;

2. Experimental setup: shows the list of Input and Output modules that

can be activated and allows the insertion of experimental metadata;

3. Acquisition progress: shows information during the acquisition (such

as: connection status, amount of data, errors). It also allows the

annotation of the sessions through a marker and the inspection of the

quality of the signals.

Core Flows Management

The Core Flows Management is the basic component of PhysioREC and it

is responsible for the coordination of the Input and Output modules, the
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signal preprocessing and the management of the acquisition. It is built on

top of SensorFlow [12], a Java Library for the advanced management of

data streams.

Through the Input modules, the Core Flows Management activates the

connection with the WDs and manages the start and stop of the acquisition

session. Collected data are synchronized by assignment of a unique time

reference, provided by an external source or by the smartphone clock; then

the preprocessed data are sent to the Output modules. A key feature of

the Core Flows Management is the persistence of the collected data: a

local database is used to temporary store the data which are deleted only

upon confirmation from all the Output modules that transmission to their

destinations is complete. In this way, PhysioREC is robust to loss of data

connection or errors due to sensor disconnections.

Advantages of PhysioREC

PhysioREC provides a solution to (a)(b)(c) issues identifies in multi-device

experiments with WDs. The existence of specific data streaming protocols

for each WD prevents the adoption of settings where different WDs are

used simultaneously, as this would require to run the proprietary app of

each device and separately control the acquisition. On the other hand, it

would not be feasible to develop a specific app for each experiment setup.

Due to the speed at which new WDs are released or the protocols updated,

this scenario would require a continuous effort to keep the pace with the

technological progress.

Instead, the modularity of PhysioREC in terms of inputs and outputs

allows high flexibility in supporting different types of WDs while main-

taining reliability and robustness of the basic functions of the Core Flows

Management. In fact, the workflow to integrate a new device is essentially

focused on the development of the appropriate Input module. This step
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Figure 2.5: Integration of WDs into PhysioREC. From left to right: each WD which pro-
vides a Data Streaming Protocol (DSP) can be integrated by developing the appropriate
Input module. The Input module works as an interface between the specific DSP and
SensorFlow by embedding the DSP into a set of defined functions, which can be used by
the Core Flow Manager to communicate with the WD through SensorFlow. Therefore,
when a new device is available, only its Input module needs to be developed to fully
exploit the other features and characteristics of the Core Flows Management.

(see Figure 2.5)aims at developing a middle-ware layer that translates the

functions provided by the DSP of the new device into the general functions

of SensorFlow, to allow the Core Flows Management to access the device

and collect its data.

In addition, the use of PhysioREC is not limited to the physiological

WDs considered in this analysis: it would indeed be possible to use Phys-

ioREC to acquire data from other sources in the Internet of Things (IoT),

for instance from environmental sensors. Similarly, with appropriate Out-

put modules the data can also be used to stream the data to a third-party

service, for instance for health monitoring.

Also, issues associated to the synchronization of the data flows are

solved, thanks to the structure of PhysioREC. In fact, the Core Flows
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Management works as unique data gathering hub and therefore it is pos-

sible to assign a unique time reference to each sample, corresponding to

when the sample is received. However, this solution is still ineffective in

dealing with errors due to latency and time drift. These problems cannot

be solved runtime and the optimal synchronization is performed during

signal processing.

PhysioREC affronts key concerns associated to the privacy of personal

data and security. In particular, we focused on the following issues to grant

the security of data streaming:

a Control of the data storage: data are not sent to third-party servers

(as it usually happens when using proprietary apps) but only to the

selected destination server or they are stored locally;

b Security of the data streaming: the https protocol2 is used to send the

data to the Physiolitix backend. In addition, on-going development

aims at enabling the encryption of the data before the streaming;

c Control of the access: authentication to the Physiolitix Backend for

data uploading and downloading is based on the OAuth2 standard3.

Regarding privacy, as the requirements depend on the type of subjects

and experimental design, the definition of rules and procedures for each

specific use-case is left to the researcher. As a general rule, to prevent the

identification of the user, the personal data are never stored by PhysioREC.

Additional features are currently being developed to further improve data

anonymization: the automatic removal of absolute timestamps from the

data and the random assignment of subject identifiers.

It is worth noting that the described restrictions and procedures have

been defined to enable an environment for research purposes: in case of

2https://en.wikipedia.org/wiki/HTTPS
3https://en.wikipedia.org/wiki/OAuth#OAuth_2.0
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commercial applications additional requirements should be met and specific

solutions should be implemented, for instance allowing users to control own

personal data.

2.2.2 PhysioBackend

While PhysioREC is the Physiolitix front-end, created to be used on-the-

field to collect the physiological signals, PhysioBackend is its server-side

(actually cloud) platform, responsible for the management of the experi-

ments and downstream analysis of the collected data. PhysioBackend has

been developed with the following aims: (i) having a centralized place

where data can be stored and accessed; (ii) granting security and privacy

by controlling the access to the data

The key elements to meet the two goals are:

1. Data indexing and web interface;

2. Authentication and user-based access control.

The implementation of PhysioBackend is currently based on standard

back-end platform composed of a PostgreSQL4 server as database manage-

ment system and Django5 for the web-interface and the control of auto-

matic data preprocessing routines.

Data indexing and web-interface

The data streams from the active PhysioREC instances are first tempo-

rally stacked in a transition table, then indexed and correctly stored by a

Django routine. The transition table is currently part of the PostgreSQL

server, but it could better be implemented in a non relational database

to improve scalability. Data are indexed in sessions and experiments: a

4https://www.postgresql.org/
5https://www.djangoproject.com/
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session is the set of data acquired during a single acquisition event, while

an experiment is associated to the study or aim for which the data are used

and is composed of multiple sessions. Each experiment is associated to a

list of users that are enabled to create new acquisition sessions.

A web interface based on Django allows accessing to the data (see Fig-

ure 2.6). Upon authentication, the web-interface shows the list of owned

experiments that can be downloaded or further inspected to see the list of

sessions belonging to the experiment. Each session can then be downloaded

separately, or further inspected to download the single signal. Metadata

information, such as the name of the user, date and time of the acquisition

start, type of signals acquired, is also shown and can be used to order and

search the list of the results. The method adopted to store and index the

data and the web-interface provide a direct and centralized access to the

experimental data, overcoming the need of collecting the data from the

different devices (local memory) or third-party web-services.

Authentication and user-based access control

Only authenticated users can access and stream data on PhysioBackend.

Authentication is provided through the PhysioREC Login interface or

through the web-interface and is based on a OAuth26 authentication server.

Two different types of users are conceived: the ’researcher’ and the ’exper-

imenter’; the ’researcher’ user can create new experiments and ’experi-

menter’ users, define specific owned users for the data acquisition for an

experiment and access its data. The ’experimenter’ can use PhysioREC

to collect the data: they will be able to authenticate onto PhysioBackend

to get a list of experiments for which they have been enabled and stream

new data from those experiments, but they will be unable to access the

collected data. With this hierarchical structure it is therefore possible to

6https://oauth.net/2/
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Figure 2.6: Web-interface showing a list of sessions for a single experiment (Drowsiness
Detection)

grant security and privacy while allowing the use of Physiolitix to multiple

researchers and different studies.

2.3 Discussion

WDs represent an opportunity for research as they enable the collection

of physiological signals in real-life context, thus facilitating the investiga-

tion of phenomena that hardly can be reproduced with laboratory settings.

However, before an extensive use for scientific purposes can be achieved,

some technical aspects need to be addressed and solved, in particular ap-

propriate technological platforms need to be created.

In this chapter we introduced the Physiolitix platform. The objective

of Physiolitix is to enable the adoption of reliable and robust multi-device

experimental settings in real-life contexts. PhysioREC, the front-end com-

ponent of Physiolitix, allows the synchronized acquisition of data from

multiple WDs. Input and Output modules mask the heterogeneity of data

streaming protocols and the Core Flows Management provides features

such as synchronization, fault tolerance and robust transmission. The
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PhysioBackend is built to centralize the streams and manage the acqui-

sitions, while exposing to researchers essential functions to plan the exper-

iments, download data and control the access to sensitive information.

Although being stable and already used in international research proj-

ects, Physiolitix can be improved. Further development is needed to in-

crease the number of compatible WDs and more functionalities are re-

quired, such as the remote creation of experimental settings and diagnostic

tools to inspect the signal quality. To this aim the source code of Physioli-

tix is made available to contributors upon request.

Assessing the technical feasibility and enabling the real-life sensing with

multiple signals is however not sufficient to grant adoption of WDs in re-

search. Signals acquired by WDs have specific characteristics associated

to technical limitations and constraints which need to be addressed with

appropriate signal processing techniques. In addition, WDs allow the si-

multaneous observation of different physiological phenomena: for instance,

Heart Rate Variability, Electrodermal Activity and Respiration. As for the

upstream part, also the downstream analysis requires a unified framework

for the extraction of information of interest from the collected signals. The

solution proposed in this work is the Python package pyPhysio, which is

introduced in Chapter 3.
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Chapter 3

pyPhysio: Physiological signal

processing with Python

The importance of physiological signals to decode the psychophysiological

state [68], combined with the emergence of wearable technologies which

ease the acquisition of physiological signals in real-life, are the main reasons

to require for new software resources to process heterogeneous physiological

signals. In general, available resources, both commercial and open-source,

focus only on a single type of signal, such as pyEEG [9] for electroen-

cephalographic (EEG) signals, pyHRV [17], gHRV [100] and KUBIOS [120]

for Heart Rate Variability (HRV) analysis; Ledalab [13], SCRalyze [5] and

cvxEDA [51] for electrodermal activity (EDA). A collection of available

functions for physiological signal processing is also provided by the Phy-

sioNet [49] website. Such fragmentation of solutions in multiple software

tools is one hurdle for reproducibility and comparison between studies, as

researchers usually have to develop custom code to include in a unique

study different types of signals. Such code is also of critical importance for

reproducibility.

Further, due to partial availability of open-source tools for physiologi-

cal signal processing, usually psycho-physiology researchers rely on com-

mercial software, which implements black-box algorithms, thus preventing
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Figure 3.1: Three steps of physiological signal processing (top) and an example on a
Blood Volume Pulse signal (bottom): original signal (left), after preprocessing (middle
left), result of beat detection (middle right) and computed physiological indicators of
Heart Rate Variability (right).

comparisons and reproducibility.

In this chapter we introduce pyPhysio, a python library to process phys-

iological signals, targeting multi-modal experimental settings and psycho-

physiological analysis. The remaining part of this chapter is organized as

follows: Section 3.1 presents few theoretical concepts about physiological

signal processing, Section 3.2 describes how these concepts have been im-

plemented in pyPhysio by providing the details of the library structure.

In Section 3.3 we consider each class of physiological signals for which

pyPhysio provide a specific pipeline. In Section 3.4 we summarize and

conclude, suggesting possible contributions and next steps.

3.1 Physiological Signal Processing

In this section we briefly introduce few general concepts about signal pro-

cessing that drove the development of pyPhysio and are useful to better

understand the structure and correct use of the library.

A standard signal processing procedure can be decomposed into the

following three stages (see Figure 3.1):
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1. Preprocessing;

2. Extraction of information;

3. Computation of physiological indicators.

Specific applications, such as network inference and deep learning, could

have a different final stage, for instance:

3b. Computation of similarity metrics between signals or convolution.

Preprocessing aims at increasing the Signal Noise Ratio (SNR): the

information content after preprocessing is the same as before, but undesired

components are attenuated. For instance, this stage includes operations

such as filtering out noise in high frequency bands, removing trends, spuri-

ous components and artifacts. The algorithms for preprocessing are usually

the same for different signal types, the parameters (for instance: cut off

frequency on pass-band filter) can be empirically tuned according to the

specific application (for instance: band of noise).

Extraction of information aims at extracting from the acquired and

preprocessed signal only the information of interest for the analysis. This

operation could change the nature of the signal which can result in a dif-

ferent type respect to the input. For instance, we gather in this group

algorithms like the extraction of Inter Beat Intervals (IBIs) from an Electro-

cardiogram (ECG), or the computation of the Phasic Skin Response (PSR)

from Electrodermal activity (EDA). Since different signals also carry dif-

ferent information, these operations are usually specific for a specific type

of signal.

Computation of physiological indicators aims at encoding key in-

formation from a signal into a set of scalar values. This stage is funda-

mental when diagnosing pathological states (for instance tachycardia can

be observed from computation of mean heart rate) or for complex analysis

35



3.2. STRUCTURE OF PYPHYSIO CHAPTER 3. PYPHYSIO

such as machine learning, when more than one metric (also called: feature)

is computed and combined into a mathematical model to predict pheno-

types. When interested in analyzing temporal variations, the indexes are

computed on consecutive, and possibly overlapping, portions of the signal.

This operation is known as windowing: windows used to segment the signal

can have a fixed size or change according to the experimental conditions.

Alternatively, to the computation of indexes, the processed signals can

be used as input to more complex analysis frameworks, such as Network

Physiology [10] or Convolutional Neural Networks [92]. Although these

analyses go beyond the purposes for which pyPhysio has been developed,

some functions are provided.

3.2 Structure of pyPhysio

pyPhysio has been developed on top of well-known Python libraries for

scientific analysis, in particular scipy1, numpy2 and spectrum3.

In the following subsection we present the structure of the library:

classes and their methods. In particular, we introduce the two novel classes:

Signal describes general time-referred data and the class Algorithm which

represents a processing procedure, with its subclasses Filter, Estimator

and Indicator.

3.2.1 class Signal

From the computational point of view, a signal is an ordered vector of

timestamp-value pairs, where the timestamp is the instant at which the

measured phenomenon has that value. Both the timestamp and the value

are approximates, due respectively to discrete nature of collected signals

1http://www.scipy.org/
2http://www.numpy.org/
3https://pypi.python.org/pypi/spectrum
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and quantization. In pyPhysio a signal is represented by the generic class

Signal, containing the values of the signal and the information needed to

reconstruct the temporal reference. An instance of Signal is associated to

the measured physiological phenomenon by the attribute type which can

be used to check whether signal-specific functions are erroneously applied.

Usually the signal is sampled with a fixed sampling frequency, therefore it

is sufficient to store the timestamp at which the acquisition started and

the sampling frequency to reconstruct the timestamp of each sample. This

type of signal is represented by the subclass EvenlySignal. An instance of

class EvenlySignal stores the starting time of acquisition (as Unix time4)

and the sampling frequency to recompute each sample timestamp when

needed.

Other types of signals, for instance triggers indicating occurrences of

heartbeats or events, are series of samples which are not equally temporally

spaced. Thus the sampling frequency is not fixed and it is necessary to store

the time reference of each sample. This type of signals is represented by

the subclass UnevenlySignal. An instance of class UnevenlySignal stores

the starting timestamp of acquisition (as Unix timestamp) and the vector

of time references as elapsed time from the acquisition start.

Class Signal exposes default methods for manipulation of attributes:

• get values and get times return the vectors of values and of the

timestamps of the signal respectively;

• get start time and set start time are used to get and set the

timestamp of start of acquisition, for instance to synchronize signals

acquired from different devices;

• resample is used to change the sampling frequency of the signal or to

obtain an EvenlySignal from an UnevenlySignal instance.

4https://en.wikipedia.org/wiki/Unix time
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Figure 3.2: Representation of a generic algorithm characterized by the computational
function F and its parameters p.

The class Signal extends the numpy.array class of the Numpy pack-

age which is among the most important packages for scientific analysis

in Python. Thus, each method developed in Numpy to work with a

numpy.array instance will work also on a Signal instance.

3.2.2 class Algorithm

A signal processing algorithm is a computational function F that operates

on input data (a signal) to produce a result. It is characterized by a set of

parameters p which regulate its behavior (see Figure 3.2).

In pyPhysio signal processing algorithms are represented by the new

class Algorithm. This class is extended to represent each specific process-

ing step by defining the computational function F and the set of parameters

p. To facilitate the creation of processing pipelines, in pyPhysio we kept

separated three categories of algorithms: Filters, Estimators and Indica-

tors, each one represented by its respective subclass. For a complete view

of currently implemented algorithms see Table 3.2.

Filter: this subclass collects all algorithms for preprocessing (see first

stage of the physiological signal processing pipeline, Figure 3.1). The type

of the output signal from a Filter is the same of input signal (i.e. the at-

tribute type is unchanged). Parameters can be set according to processing

needs and characteristic of the signal.

Estimator subclass collects all the algorithms aiming at inferring key

information from the input signal. As input signals are in general affected
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by noise, having a discrete nature and only approximated descriptions of

the real physiological phenomenon, we consider the extraction of informa-

tion of interest as a stochastic process and resulting values as estimates.

In addition, often the result can be strongly influenced by the value of al-

gorithm parameters of which true values are unknown and are usually set

by optimization or according to user expertise.

Indicator: this subclass collects the mathematical functions that com-

pute a metrics from the input signal. Unlike Filter and Estimator, which

return a signal, Indicator returns a single time-value pair, where the time

is the starting time of the input signal. It is important to note that when

the algorithm is executed within a windowing process the operation returns

a list of time-value pairs that can be represented by an instance of class

Signal. pyPhysio provides a collection of statistical, time- and frequency-

domain and non linear metrics which can be adapted by appropriately

choosing function parameters p to compute indicators for different types

of signals. For instance, the algorithm to compute the power in a frequency

band is the same for both EEG and HRV analysis, but the frequency bands

are different and should be set accordingly (e.g. 8-12 Hz for alpha band

of EEG, 0.14-0.4 Hz for High Frequency band of IBIs). pyPhysio provides

default lists of indicators with specific parameters for each type of signal

to compute main indicators proposed in literature (see Table 3.1).

3.3 Physiological signals

In the following paragraph we describe the main algorithms included in py-

Physio, grouped by type of physiological signal, emphasizing those aspects

having a direct implication on psycho-physiological studies.
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Signal Indicators

Inter Beat
Intervals

RRmean, RRSTD, RMSSD, pNN50, pNN25, pNN10, triang,
TINN, VLF, LF, HF, LF/HF, SD1, SD2, SD12, Sell, ApEn,

SampEn, DFAa1, DFAa2

Electrodermal
Activity
(PSR)

Mean, Range, Standard deviation, Mean peaks amplitude,
Maximal peak amplitude, Peak slope, Peak duration, Number

of peaks, AUC

Electroen-
cephalogram

Energy in: delta, theta, alpha, sigma, beta wave bands

Electromyogram
Maximum, Minimum, Average, Range, SD, AUC, Energy in

4-40 Hz band

Respiration
Energy Low (0-0.25 Hz band), Energy High (0.25-5 Hz band),

Energy Ratio, Breath Rate, Energy in 0-32 Hz bands

Activity
Maximum, Minimum, Average, Range, SD, AUC, Energy in

0-25 Hz bands

Table 3.1: Main physiological indicators provided by default in pyPhysio

Type Name

Filter
Infinite Impulse Response filter, Adaptive Threshold,

Matched filter, Convolutional filter

Estimator
ECG/BVP Beat detection, Beat correction (see Appendix A)

EDA
Optimization of Bateman parameters, Estimation of phasic

and tonic components (see Appendix B)

Tools

FFT-based deconvolution, Power Spectrum Density
estimation, Energy in band, Adaptive peak detection,

Envelope estimation, Detection of local maxima and minima,
Normalization methods, Matched filtering, Peak selection

Table 3.2: Algorithms provided in pyPhysio, grouped by type of signal
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3.3.1 Cardiac signals

pyPhysio allows the processing of cardiac signals to extract HRV indicators,

which are computed from the IBI signal. First step in the signal processing

is therefore the detection of beats in the cardiac signal. pyPhysio provides

two functions to estimate the position of beats in ECG and Blood Vol-

ume Pulse (BVP) signals respectively. The estimation of beat position in

BVP signals is performed by the novel DBD-RCO algorithm that has been

shown to improve the results in signals collected with WDs (introduced

in Appendix A). The IBI signal can then be used to compute 20 HRV

indicators.

3.3.2 Electrodermal Activity

pyPhysio provides two methods to decompose the EDA signal into its two

components: the Tonic Skin Response (TSR) and the Phasic Skin Re-

sponse (PSR). The first is the original algorithm proposed by Benedek

[13], which is based on deconvolution using a Bateman function as Impulse

Response Function. The second method is the peak-based algorithm intro-

duced in Appendix B which aims at improving the estimation of Bateman

parameters and identification of peaks. The estimated PSR signal is used

to compute 9 indicators aiming at quantifying the amount of sympathetic

activation.

3.3.3 Activity signals

pyPhysio provides algorithms to extract time and frequency indexes from

signals acquired with standard inertial measurement units: accelerometer,

gyroscope and magnetometer. As for other physiological signals these sig-

nals are first preprocessed in order to remove noise, then the indicators are

computed. Since the physical observation is described by a vector in the
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three-dimensional space, each sample is usually a tuple of three elements

and usually an intermediate step is used to compute vector module. In the

proposed pipeline, the derivative of each signal is also computed, then a

set of time-domain and frequency domain indicators is computed on each

signal and dimension.

3.4 Discussion

Designing experiments with multi-device settings is now a common practice

in psycho-physiological studies as observing multiple physiological signals

allows for better investigation of the activity of the autonomic nervous

system.

Nowadays the technological progress is able to offer several devices for

physiological data acquisition, from clinical instrumentation for in-lab set-

tings to portable devices for flexible indoor studies up to wearable devices

for real-life and in-the-wild applications. However, there is a gap between

the increased availability of physiological sensing capabilities and the signal

processing tools and software. This gap prevents research to fully exploit

the amount of physiological information available. Often the main solu-

tion is to rely on commercial software which allows no customization of the

algorithms and processing pipeline. As alternative solution the researcher

has to deal with different libraries and programming languages (python,

R, MATLAB) to be able to implement the desired analysis for each type

of signal.

pyPhysio aims at filling this gap by providing a unique framework to

work with different types of physiological signals. Beside implementing

two novel algorithms for the analysis of BVP and EDA signals (see Ap-

pendixes A and B), it also provides a set of functions and algorithms that

can be adapted to design processing pipelines for a broad set of physiolog-
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ical signals. It is designed to require minimal knowledge of Python and

programming skills: leveraging on the two main classes of the library, the

creation of signal processing scripts is facilitated, as each step is represented

by an object of the class Algorithm and all the over-head to manage and

process a physiological signal is carried by the class Signal. Two examples

are provided in Appendix ?? which demonstrate the usage of pyPhysio and

how an HRV analysis pipeline can be easily implemented.

In addition, it has been conceived to facilitate the integration of new

algorithms and the inclusion of more physiological signals such as Electro-

oculography (EOG) and Magneto-encephalography (MEG). Finally, po-

tential of pyPhysio can be fully exploited when integrated with other sci-

entific Python libraries for downstream analysis (e.g. machine learning,

scikit-learn, keras).

pyPhysio can be downloaded from https://sites.google.com/site/

pyhrvlib/ together with additional examples and tutorials.
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Chapter 4

WCS: a dataset of Wearable and

Clinical Signals for affective

computing and reproducibility

The measurement of physiological signals is a fundamental process for the

investigation of physiological phenomena and, from a psycho-physiological

point of view, observation of autonomic regulatory mechanisms [68]. Being

able to observe these phenomena in real-life and without constraints im-

posed by laboratory settings is a key reason for adopting WDs in scientific

research [41]. However, beside many advantages, WDs have also relevant

issues that affect the quality of acquired signals, including low sampling

frequency, non-optimal positioning of the sensors and increased sensitivity

to body movements (see Chapter 2).

Before WDs can be used in research, it is therefore fundamental to ver-

ify that results achieved are comparable with those obtained from signals

acquired by medical-grade devices. In particular, signal processing algo-

rithms are expected to give comparable results considering the required

level of precision according to the type and purpose of application. How-

ever, despite its importance, this comparison is often omitted or left to

manufacturers who rarely provide examples dataset for validation.
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Several datasets with physiological signals are available, such as DEAP

[67], MANHOB-HCI [114] and SEMAINE [77]. A rich archive of physiolog-

ical signals is also available through PhysioBank [49]. However, to validate

WDs we need a dataset comprising both types of devices: medical-grade to

provide reference signals and wearable for comparison. As none of the ex-

isting resources satisfies this requirement, we developed the Wearable and

Clinical Signals (WCS) dataset which is introduced in this Chapter. In

Section 4.1 we present the experimental settings and provide details about

the devices composing the sensing architecture. Section 4.2 is devoted to

describe the methodology adopted to synchronize the signals, while in Sec-

tion 4.3 we provide the details of the experimental design. Information

about the resulting dataset and discussion is presented in Section 4.4 and

4.5.

4.1 Devices and architecture

To be able to assess reproducibility of studies based on WDs, we need a

dataset including signals from both types of devices: medical- and wearable-

grade. In this section we present the experimental architecture adopted to

collect synchronized signals and create the Wearable and Clinical Signals

(WCS) dataset. We describe the types of signal acquired, sensing specifi-

cations and settings for each device.

4.1.1 Selection of WDs

The high number of WDs currently available would make unfeasible to

extensively validate all existing solutions, therefore we decided to start

focusing on high performance devices. Inadequate results obtained from

high performance WDs will consequently arise doubts about the possibility

of using WDs with even lower performance for reproducible studies.
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However, as the landscape of available WDs solutions is highly hetero-

geneous, some requirements need to be imposed to select the most appro-

priate devices for the investigation. In particular, we focused on identifying

the key characteristics of WDs to allow usage in everyday life. We defined

four criteria to identify the candidate WDs to be used in the experiment:

1. Wearability: the device should be easily worn by the subject with no

need of applying conductive gels, wired electrodes or similar prepa-

rations. In fact, in everyday applications the presence of an external

supervisor over-viewing the preparation (e.g. experimenter) is not

expected;

2. Streaming: the device should stream the data in real-time to an ex-

ternal collector through Bluetooth connection. The Data Streaming

Protocol (DSP) should be provided by the manufacturer. Stream-

ing capability through available DSP is a key feature which allows

real-time processing and feedback, for instance used in remote health

monitoring applications;

3. Availability: the device should be commercially available at the mo-

ment of testing (prototypes, proof-of-concepts or custom devices are

not considered). This requirement is imposed to restrict the selection

to state-of-art technologies, which could be accessed by researchers

with any technical and/or technological competences;

4. Performances: the final choice should favour the device with higher

sampling rate and higher number of sensors to select the most ad-

vanced technological solution.

After a preliminary phase in which a list of WDs (see Appendix C)

was considered to test compliance with defined criteria, we identified two

devices: the Empatica E4 and the Comftech HeartBand. Empatica E4 was
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chosen as a representative of wristband devices, while Comftech HeartBand

belongs to the smart-garments category.

4.1.2 The baseline: Thought Technology FlexComp

The clinical device we used as reference is the Thought Technology Flex-

Comp unit (commercial code: T7555M). It is a customizable acquisition

unit which provides up to 10 input slots that can be used to connect diverse

physiological sensors. Maximal sampling frequency is 2048 Hz, which is the

sampling frequency adopted for the experiment, with 14 bits of resolution

for each input. Signals acquired for the experiment are:

1. Electrocardiogram (ECG): using three electrodes placed over the left

and right coracoid processes and below the ribs on the left. The sig-

nal is pre-amplified and filtered by the EKG Sensor (T9306M) which

returns a single channel read in millivolts. UniGel electrodes (T3425)

are used as conductive mean between the sensor and the skin;

2. Electrodermal Activity (EDA): two finger bands with Ag-AgCl elec-

trodes (SA2659) are placed on the second and fourth finger of the left

hand and connected to the sensor (SA9309M). The skin conductance

is measured in microSiemens (µS);

3. Blood Volume Pulse (BVP): the sensor (SA9308M) is placed on the

third finger of the left hand. The relative amount of reflected infrared

light is measured;

4. Respiration (RESP): a band is worn on the chest to measures relative

volumetric expansion by elongation of an elastic patch (SA9311M);

5. Trigger (TRG): a handle with a button to generate electrical impulses

used to manually mark the experimental events.
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Setup with positioning of the sensors was supervised by a trained exper-

imenter to ensure high quality signals. The acquisition unit is connected

through USB to a personal computer (running Windows 10) where the

proprietary BioGraph Infinity Software Platform manages the acquisition

process and collects the signals.

4.1.3 Empatica E4

The Empatica E4 [44] is a multi-sensor wristband designed for real-life

acquisitions of physiological signals. It has streaming (through Bluetooth

Low Energy) and storing (internal flash memory) capacity; communication

with an Android smartphone is provided by EmpaLink SDK. Collected

signals are:

1. BVP: four Light Emitting Diodes (LEDs) are used to generate light at

two different wavelengths (Green and Red) and two photodiodes are

used to measure reflected light. Using two wavelengths and an appro-

priate proprietary algorithm to preprocess the signals should reduce

motion effects and sensitivity to external sources of light. Sensors are

placed on the bottom of the wristband case in firm contact to the skin;

signal is sampled at 64 Hz;

2. EDA: two stainless steel electrodes are placed on the band to allow po-

sitioning on the inner side of the wrist. Skin conductance is measured

in microSiemens at 4 Hz sampling rate;

3. Acceleration (ACC): three axes acceleration (range ±2g) is measured

at 32 Hz sampling frequency;

4. Skin Temperature (ST): measured by an infrared thermopile placed

on the back of the case, at 4 Hz sampling frequency.
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Placement of the wristband was supervised by the experimenter to en-

sure the device is not worn too tight (which would prevent physiological

blood flow) or too loose (which would prevent the smartwatch case to be in

contact with the skin) to guarantee optimal conditions for a correct BVP

signal acquisition. However, in line with the idea that WDs are to be used

in real-life context, where the presence of an experimenter is not expected,

each participant was allowed to minimally adjust the positioning to favor

comfort during the experiment.

4.1.4 ComfTech HeartBand

The Comftech HeartBand is an elastic band with embedded tissue elec-

trodes and an acquisition unit that is connected to the band through two

snaps. Streaming is based on Bluetooth 2.0 and the documentation to

decode the hexadecimal messages from the device was provided by the

manufacturer.

Collected signals are:

1. ECG: using two tissue electrodes placed over the chest and connected

to the acquisition unit where the signal is sampled (128 Hz), pre-

amplified and filtered to return a single channel read;

2. ACC: three axes acceleration is measured by a sensor embedded on

the acquisition unit; sampled at 200 Hz;

As for the Empatica E4, the participant was allowed to adjust the po-

sitioning of the band, after having received detailed instructions by the

experimenter. The quality of the acquired signals was checked by visual

inspection before starting the experiment, in particular verifying that the

ECG signal exhibits patterns associated to the QRS complex.
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Figure 4.1: Illustration showing the devices used for the acquisition of physiological sig-
nals. A: Thought Technology FlexComp (picture from www.thoughttechnology.com) with
four wired sensors: a) Electrodermal activity, b) Blood Volume Pulse, c) Electrocardio-
gram, d) Respiration; B: Empatica E4 (picture from www.empatica.com); C: ComfTech
HeartBand.

4.1.5 PhysioREC

The PhysioREC app (see 2.2.1) was installed on a Samsung Tab A run-

ning Android 5.1 to manage signal acquisition from the two WDs. Two

input plugins to communicate with the Empatica E4 and the ComfTech

HeartBand respectively were enabled; an additional input (MRK) signal

can be generated by a button on the PhysioREC User Interface to mark

experimental events. Before starting the experiment, the signals acquired

through the two WDs are visually inspected by activating the real-time

plotting function. Acquired signals are sent to Physiolitix database, where

an automatic process takes care of indexing and storing with correct meta-

data.
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4.2 Synchronization

Synchronization is crucial in multi-device experiment settings. In this case,

two flows of physiological signals can be identified: the medical-grade data,

from the FlexComp unit to the personal computer, and the wearable-grade

data, from the WDs to the tablet and then to the Physiolitix database.

Unfortunately, the two flows are independent both in terms of path of the

data, from generation to storage, and time reference. To synchronize, we

exploited the two manual inputs provided in both flows, the TRG signal

in the FlexComp and the MRK on the PhysioREC user interface. The

experimenter pressed both simultaneously at the beginning and end of the

experimental session, thus providing two manual reference points to allow

synchronization during the signal processing stage.

However, this methodology is not able to solve the synchronization issues

originated by latency in WDs. A more precise synchronization is then

performed by computing the cross correlation function between pairs of

Inter Beat Intervals (IBIs) signals.

We extracted the IBIs from the cardiac signal of each device (ECG for

FlexComp and HeartBand, BVP for Empatica) thus obtaining three IBIs:

the reference from FlexComp and the remaining IBIs (from E4 and from

HeartBand) to be synchronized by pair-wise comparison with the reference.

We randomly selected on the baseline portion 20 segments (length: 60 sec-

onds) and for each segment we computed the cross correlation function

between reference IBI and the desynchronized IBI (from the WD). Local

temporal offset was identified as the instant at which the cross correlation

function is maximal. The global temporal offset between each pair was esti-

mated by averaging the offsets across all segments and used to synchronize

the signals from each WD.
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Session Duration [mins]
Instructions and setup
Start of acquisition
Baseline 5
Pause 2
Stimulation 50
Pause 2
Moving 5
Stop of acquisition

Table 4.1: Sessions of the experiment to create the WCS dataset.

4.3 Experimental phases

The experiment comprises three phases: baseline, stimulation and moving.

Each phase has been conceived with specific goals which are described

in the following subsections. An overall description of the sequence of

experimental phases is presented in Table 4.1.

4.3.1 Baseline and moving

First and last phases are mainly focused on providing signals to test pro-

cessing algorithms.

During baseline the participants are asked to remain sit and still. Sig-

nal collected during this phase represent a reference for the maximal signal

quality that can be provided by WDs, as all external sources of noise that

could affect the signal quality (such as moving artifacts, sensor displace-

ment or detachment) are experimentally avoided. This condition is far

from the real-life context in which the WDs are expected to be used, but

it is needed to isolate effects of technical limitations and constraints from

other causes of errors.

Effects of body movements (and technical limitations and constraints)

can be evaluated on the moving phase which concludes the experiment.

During this phase the subject is asked to stand and simulate a walking
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on place, as the free movement was prevented by the wires connecting the

medical-grade sensors with the FlexComp unit. The experimenter sug-

gested moving naturally to replicate the intensity of usual walking. In

particular, special attention was paid to movements of the left hand as,

due to presence of sensors, participants tended to keep it still and near

to the body. This experimental phase is expected to be more similar to

real-life contexts and can be used to evaluate performances of algorithms

for every-day applications, such as health monitoring, fitness and stress

detection.

4.3.2 Stimulation

Affective computing is one of the main fields of research where acquisition

of physiological signals by WDs is expected to give a major contribution.

In fact the suggested use cases of commercial WDs are mostly stress mon-

itoring, relaxation, control of anxiety and other applications for the man-

agement of emotions. In addition, affective computing naturally benefits

from multi-modal experimental setups and thus allows to fully exploit the

potential of WDs with multiple sensors.

In particular, the possibility of monitoring emotions in real-life context

could enhance efficacy of therapy of Autism Spectrum Disorders [21, 34].

For this reason, in the stimulation phase we replicated the experimental

design proposed in [67] to create the DEAP dataset. In the original study

32 subjects watched 40 music-videos stimuli of 60 seconds. The compo-

sition of the list of stimuli was based on an on-line survey which initially

considered 120 videos from which the 40 with stronger emotional content

were finally selected. The selection of the 60 second length segment of each

video was performed automatically by application of an algorithm derived

from [113] which identifies the portions with higher emotional contents,

based on audio and video features.
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After each stimulus, participants rated the emotional content according

to five dimensions: valence, arousal, dominance, liking and familiarity on

a 1 to 9 continuous scale. This dataset is suited for application of algo-

rithms for affective computing where the physiological signals can be used

to predict the emotional content of the video.

The choice of replicating the DEAP experiment was driven by the fol-

lowing motivations:

1. The DEAP dataset is well known in the field of affective computing

and has been adopted in several emotion recognition studies. This

provides a rich state-of-the-art background to which our study about

reproducibility of WDs can compare;

2. The stimuli adopted in the DEAP dataset can be easily retrieved:

this aspect facilitated the preparation of the experiment but could

also motivate the replication of the same study with new WDs, thus

allowing the expansion of the dataset.

For the same reason, we decided to skip the rating of the videos such as

the software required to present the stimuli is simplified and corresponds

to JavaScript-based web-page that can be run by a simple browser without

need of further software. The web app retrieves the list of video files

contained in an input folder, randomize the order and presents the videos

with 15 seconds of pause between each video. At the end of the experiment

it generates a log file with the name, start and stop timestamps of each

video.

The DEAP dataset includes also information about the list of links to

YouTube videos used to create the stimuli, together with the instant at

which the 60 seconds segment begins. Based on this information we were

able to recreate the set of original stimuli. However, we were unable to re-

trieve 14 videos, as they have been removed from the YouTube archive. We
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substituted the missing videos with other videos following the indication

about the Artist and the name of the song. Videos have been retrieved

with the highest available video and audio quality and rescaled to fit an

800x600 pixel frame. Videos which had a different aspect ratio were forced

to have maximal width of 800 pixels, while automatically adjusting the

height to preserve the original aspect ratio.

All the data collection experiment was developed in collaboration with

researchers and students of the Affiliative Behaviour and Physiology (ABP)

Lab, University of Trento; recording took place in the ABP Lab in Rovereto

(Trento) from September to December 2016.

4.4 Results

A total of 18 participants were recruited for WCS; each participant signed

the informed consent and the experiment was conducted according to

the principles of the Declaration of Helsinki [128]. The data have been

anonymized; further we transformed the timestamps from absolute to rel-

ative, in order to prevent any possibility of recognizing the identity of

participants.

Signals have been preprocessed with the following pipeline:

1. Synchronization: alignment of the TRG and MRK position as first,

then precise synchronization by cross-correlation to correct latency;

2. Segmentation: each phase of experiment was segmented in order to

facilitate loading of data and remove pauses;

3. Re-sampling: signals were resampled to 1024 Hz. Oversampling was

performed by cubic-spline interpolation;

4. Saving: a table with all signals was created, compressed and saved.
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Figure 4.2: A 120 seconds length segment of WCS signals. Blue: signals collected with
medical-grade device (FlexComp); Red: signals collected with Empatica E4; Yellow: sig-
nals collected with ComfTech HeartBand. Note effects of body movements on the BVP
signal of Empatica E4 due to a sudden chest movement (probably a cough) observable in
the central part of the plot (respiration signal) and on the module of Acceleration from
Empatica E4.

The final size of the WCS dataset is approximately 2.8 Gb. An example

of acquired signals can be found in Figure 4.2.

4.5 Discussion

In this chapter we presented the WCS dataset we created to compare

medical-grade and wearable devices. Three phases have been conceived

in order to allow testing of algorithm for different purposes and contexts.

Baseline phase should provide a benchmark to test reproducibility of ex-

isting algorithms on signals from WDs in the ideal case, while the moving

phase is more oriented to provide a realistic data for real-life applications.

The stimulation part aims at reproducing the DEAP dataset which is a

well known dataset in the field of affective computing, thus allowing testing

57



4.5. DISCUSSION CHAPTER 4. WCS DATASET

reproducibility of emotion recognition experiments using WDs.

As testing a broad number of WDs would be unfeasible, we decided to

focus on high performance WDs: Empatica E4 and ComfTech HeartBand,

to represent the classes of wristband devices and smart garments respec-

tively, which can be considered as the gold-standard of WDs. However,

the experimental design was kept as simple as possible to encourage con-

tributions from other researchers to expand the dataset with novel WDs.

As we discussed in Chapter 2, many experimental factors and technical

differences can contribute to change considerably the final quality of signals

acquired with WDs. So far, each study presented its own results based

on a custom dataset appositely created. Instead, to allow comparison

between different studies and test reproducibility, we propose the adoption

of the WCS dataset as a standard benchmark to which the validation of

new algorithms for signals from WDs should refer. Beside, we expect

manufacturers to refer to the WCS dataset and its experimental design to

show improvements of new technologies.
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Assessing reproducibility

of wearable devices

One of the main fields in which WDs are expected to add a major contribu-

tion is the automatic recognition of affective states by physiological signals,

also defined by Rosalind Picard, a pioneer in this field, “affective comput-

ing” [88]. Solving this task would be relevant in many diverse disciplines

areas, such as the development of Human Computer Interfaces (HCI) [43],

the treatment of psychological pathologies [91] and the development of new

technologies to train parents to deal with children with special needs [106].

Experimental settings with multiple signal are adopted in several psycho-

physiological studies aimed at investigating the regulation by the ANS. In

particular, a multi-modal analysis has been adopted to understand how

the human body adapts to different psycho-cognitive states [80] or when

exposed to external stimuli or stress [86, 107].

Affective computing from physiological signals is now gaining interest,

due to the increasing availability of WDs, which would allow a more exten-

sive acquisition of physiological signals also in real-life applications. This

aspect paves the way to two key improvements in affective computing: (a)

the possibility of designing experiments in ecological setups, for instance

domestic contexts, where human behaviour and physiology is expected to
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be more natural; (b) the application of emotion recognition techniques

for therapeutic purposes, for instance to treat psychological and cogni-

tive disorders. Affective computing experiments are commonly based on

a multi-modal setup, which is naturally provided by the WDs that embed

multiple sensors such as the Empatica E4. Finally, the affective computing

field is supported by a solid background of scientific research which gives

the possibility for validation of experiments. These are the main reasons

we chose the affective computing field to assess whether WDs are able to

reproduce state-of-art results obtained with medical-grade devices.

In particular, we focus on the DEAP dataset and on the stimulation

part of the WCS dataset (see Chapter 4) to compare results on an emotion

recognition task. However, before investigating the performance of the

emotion recognition task, the reliability and reproducibility of the algo-

rithms adopted in the physiological signal processing pipelines (see 5.1.2)

have been evaluated. Results are presented in the Appendixes A and B,

for the analysis of cardiac signals and EDA respectively.

It is worth noting that classification of emotions based on the DEAP

dataset is a difficult task as demonstrated by previous studies (see a sum-

mary Table 5.1). These studies will be used as references to test and val-

idate the proposed approach. Koelstra and colleagues [67] focused on the

classification of high and low levels of arousal, valence and liking. Three

different subject-dependent classifiers were defined (one for each dimen-

sion). The labeling of the samples was performed by thresholding the

subject’s ratings (threshold value is the middle of the 1 to 9 rating range).

106 features were extracted from the 7 peripheral signals and a naive-bayes

classifier with a leave-one-out cross validation scheme was adopted. The

average accuracy over all subjects was: 57% for arousal, 62.7% for valence,

59.1% for liking. Note that expected accuracy in case all samples were as-

signed to the more represented class in the dataset, would be respectively:
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Reference
Type of
classifier

Subject
dependent

Type of
validation

Signals Arousal Valence

Koelstra
2012 [67]

Naive-
Bayes

yes
Leave-one-
out

BVP,
EDA,
RESP, ST,
EMGz,
EMGt

57.0 62.7

Chung
2012 [31]

Bayesian yes
Not avail-
able

EEG 66.4 66.6

Torres
2014 [122]

HMM no 10x5
BVP,
EDA,
RESP, ST

55.0 57.5

Table 5.1: Summary of main state-of-art accuracies for the recognition of arousal and
valence based on the DEAP dataset. BVP: Blood volume pulse; EDA: Electrodermal ac-
tivity; RESP: Respiration; ST: Skin temperature; EMG: Electromyogram, EMGz: EMG
of the Zygomaticus muscle, EMGt: EMG of the Trapezius muscle; EEG: Electroen-
cephalogram; HMM: Hidden Markov Model

64.4%, 58.6%, 67.0%. Chung and colleagues [31] focused on the classifica-

tion of high and low levels of arousal and valence (labeled as in [67] consid-

ering the EEG signal from which 392 spectral features were extracted. A

subject-dependent bayesian classifier was adopted. Resulting average accu-

racies across all subjects were 66.4% for arousal and 66.6% for valence. An

additional multi-class test was performed assigning the labels to the class

high (subject rating greater or equal than 6), low (subject rating less than

4) or to medium (the remainders). Average accuracies across all subjects

for the second test were 53.4% for arousal and 51% for valence. Torres

and colleagues [122] proposed to develop a subject-independent classifier

for arousal and valence based on Hidden Markov Model with a 10x5 cross

validation scheme. Samples were assigned to the class high or low class

as in Koelstra et al. [67]. Different datasets were obtained by differently

combining the features from different physiological signals. The accuracies

when considering only the features extracted from the BVP, EDA, skin

temperature and respiration were 55% for arousal and 57.5% for valence.
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In this Chapter we first present the methodology adopted for valida-

tion (Section 5.1), in particular: signal processing and machine learning

pipelines and classification metrics, then presents results (Section 5.2) of

comparisons between different datasets and pipelines. In Section 5.3 we

summarize and comment the findings.

5.1 Modeling and validation

The main goal of this analysis is to assess whether WDs are able to pro-

vide results comparable with experimental settings based on medical-grade

devices. To this aim we focused on a typical affective computing task: rec-

ognizing the emotional content of a stimulus based on indicators computed

from physiological signals.

Two dataset were considered: the DEAP dataset, which is the state-of-

art reference and the WCS which reproduces the experimental setup of the

DEAP dataset also including signals from WDs (see Chapter 4). In both

cases the objective was to recognize the emotional content of music videos

used as stimuli.

In summary, the analysis was performed on the following sets of signals:

1. Signals provided in the DEAP dataset (DEAP), comprising: BVP,

EDA;

2. Signals collected by the medical-grade device FlexComp (WCS-Medi-

cal), comprising: ECG, BVP, EDA;

3. Signals collected by the WD Empatica E4 (WCS-E4), comprising:

PPG, EDA;

4. Signals collected by the WD ComfTech HeartBand (WCS-HB), com-

prising: ECG.
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The DEAP dataset was first used as reference to validate the algorithms

proposed for signal processing, then to assess whether our experimental

design reproduces original design proposed to create the DEAP dataset.

Based on the WCS-Medical we will validate the two WDs used to compose

the WCS-E4 (Empatica E4) and the WCS-HB (ComfTech HeartBand).

In the following subsections we provide details of the methodological

approaches adopted for validation.

5.1.1 Definition of problem

Final goal of the analysis is to use machine learning (ML) predictive mod-

els to recognize the emotional content of each music video stimulus based

on indicators computed from the physiological signals acquired with the

medical-grade and wearable devices. In the DEAP dataset, together with

the physiological signals, subjective ratings for each stimulus were also pro-

vided, collected by the participants and by an on-line survey. Ratings were

given according to four emotional dimensions: Arousal, Valence, Liking

and Dominance.

In order to compare results from the DEAP and the WCS dataset,

which does not include subjective ratings, we trained the ML models using

labels obtained from the on-line ratings of the DEAP dataset, focusing on

Arousal and Valence dimensions. Each stimulus is labeled as belonging to

the high or low class of each dimension depending on whether the on-line

rating is above or below 5, which is the middle value of the 1-9 likert scale

used for rating.

5.1.2 Signal processing pipelines

In the analysis we concentrated on cardiac signals (ECG and BVP) and

EDA only, as only these signals are available in both versions: from medi-

63



5.1. MODELING AND VALIDATION CHAPTER 5. REPRODUCIBILITY

cal-grade and wearable devices. Adopted processing pipelines differ for

each signal:

• BVP signals: we compared our novel DBD-RCO algorithm (DBD)

(see Appendix A) with the algorithm proposed by Aboy and colleagues

[1] (ABOY);

• ECG signals: we adopted a standard algorithm based on adaptive

peak detection (APK);

• EDA signals: we compared our novel algorithms for optimization

of Bateman parameters and estimation of the Phasic Skin Response

(PSR) component (see Appendix B) (PKB) with original algorithms

from Benedek and colleagues (BEN) [13].

It is worth noting that the quality of EDA signal obtained from the

Empatica E4 was poor in this setup and thus we were unable to perform

analysis. In addition, Subject 14 had a sensor disconnection during the

stimulation part and therefore it was thus dropped out.

A signal processing pipeline was applied to compute a vector of indica-

tors to be used as input features of the following ML pipeline. In details,

the signal is segmented into 40 portions corresponding to the 40 music-

video stimuli; each segment is used to extract the physiological indicators

associated to the signal and labeled according to the emotional content of

the stimulus. Heart Rate Variability (HRV) indicators have been computed

from cardiac signals and tonic and PSR metrics from EDA signals.

An overall view of the results of the signal processing pipeline on each

set is provided in Table 5.2. Signal processing was performed with custom

Python scripts based on pyPhysio (see Chapter 3).
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Source Signals Algorithms Number of subjects

DEAP
BVP

ABOY 32
DBD 32

BVP+EDA
ABOY+BEN 32
DBD+PKB 32

WCS-Medical
BVP

ABOY 17
DBD 17

BVP+EDA
ABOY+BEN 17
DBD+PKB 17

WCS-E4 BVP
ABOY 17
DBD 17

WCS-HB ECG APK 17

Table 5.2: Source datasets, physiological signals and processing pipe-
line applied: ABOY [1], DBD (see Appendix A), BEN [13], PKB (see
Appendix B), APK: adaptaive peak detection

5.1.3 Machine Learning pipeline

Regarding the ML pipeline, we adopted a Support Vector Machine (SVM)

model with linear kernel as classification model and the MAQC-III/SEQC

data analysis pipeline [110] for unbiased feature selection and classification

(see Figure 5.1). The pipeline was initially proposed to develop predictive

models from gene expression data [32] and was selected as it represents a

validated reference for reproducible and reliable machine learning studies.

The SVM model was selected to reproduce the framework proposed in the

reference work of Torres and colleagues [122].

In its general form, the ML pipeline is composed of three nested cycles.

The first cycle corresponds to the Cross Validation (CV) in which the

dataset is split into two parts according to chosen scheme: one (training

set) is used to train the predictive model, the other (validation set) to

validate the trained model and obtain classification performance. The

procedure is iterated over all parts and usually is repeated ten times (see
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Figure 5.1, step a).

The second internal cycle tunes model parameters. The training set is

split in half: its first part is used to tune the regularization parameter C

and the second is used to test performances with that value. The procedure

is repeated ten times (10x2) in order to select optimal value (see Figure

5.1, step b).

The third step implements a feature selection procedure: features are

sorted (see Figure 5.1, step c) according to a given rank (computed inter-

nally or manually defined) then starting from top-ranked features a new

model is defined, with increasing number of features (see Figure 5.1, step

d). This procedure attempts to improve the classification results by au-

tomatically identifying the optimal set of features and rejecting those less

discriminant and, possibly, noisy.

Overall performance is then computed over the different models (one for

each subject), i.e. the classification metrics are averaged across all subjects

Two different ML pipelines have been derived depending on the CV

scheme and method to rank features.

ML pipeline 1: LOO CV ML pipeline

First we reproduced the same scheme proposed in [67], which uses a Leave-

One-sample-Out (LOO) CV. In this scheme the train-test cycle is iterated

40 times for each subject: each time a different sample is left out from the

training set to compose the validation set. Features are ranked internally

using the weights of the SVM model. Classification performances are com-

puted at the end of 40th cycle when all samples have been predicted in the

validation.

However, this ML pipeline is not appropriate to compare different datasets

and pipelines for two key reasons:

1. The LOO CV scheme is prone over-fitting and thus it would provide
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a biased evaluation of classification performance [24];

2. As the feature selection procedure is internal to the modeling pipeline,

the feature ranking will depend on the signal quality and processing

pipeline of each dataset, thus providing biased results.

ML pipeline 2: 10x5 CV with fixed feature ranking

To solve these problems, we defined a ML pipeline adopting a different

CV scheme and a fixed feature ranking. We choose a 10x5 CV scheme,

where the dataset is split into 5 parts. Each part is iteratively selected

to compose the validation dataset, while remaining parts are used to train

the model. The whole procedure is repeated 10 times, each time randomly

shuffling the samples composing each part.

To obtain the fixed feature ranking we adopted the following procedure.

First, we trained a predictive model for each subject of the DEAP dataset

(DBD-PKB pipeline) using a 10x5 CV scheme with internal feature rank-

ing based on SVM weights, thus obtaining the feature ranking for each

subject. Then we computed the unified feature ranking by merging all

feature rankings using the Borda algorithm [65, 63]. Resulting list is used

as the fixed feature ranking which is provided to the ML pipeline. A fixed

feature ranking was obtained for both dimensions: Arousal and Valence.

5.1.4 Classification performances

To validate the processing pipelines and assess whether WDs reproduce re-

sults of medical-grade devices we compared the classification performances

of models from the different datasets. Three metrics are reported: the

Matthews Correlation Coefficient (MCC) [64], F1-score (F1) and Accu-

racy (ACC). The first has been chosen to better describe the results of

the classification, the second to compare with the results reported in [67],
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Figure 5.1: The ML pipeline for unbiased classification proposed within the
SEQC/MAQC-III consortium [110]. In (a) the input dataset is split into 5 subsets (folds),
maintaining the class stratification. A fold is kept for test, the remaining are used to train
the model in the following steps. In b) a first predictor is used to optimize the parameters
of the model by grid-search. An internal CV (e.g. 10x2-CV) is used to avoid overfitting.
The tuned classifier is used to estimate the feature ranking (c). A second predictive model
is defined (d), taking in input a reduced set of features (selected by previous ranking). Its
performance is evaluated on the test set (e). The step is iterated considering an increasing
number of features. The whole procedure is performed over all the folds and repeated 10
times to evaluate the overall performance of the model (e.g. MCC, Accuracy), the overall
feature ranking and its stability over the iterations.
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while Accuracy is the most adopted metrics to report classification results.

For each model, classification metrics are obtained from the feature step

where the MCC is maximal. In case of 10x5 CV pipeline, bootstrapped

95% confidence intervals (CI) are also computed from the empirical boot-

strap distribution of the average MCC. As models are defined for each

subject, overall classification performances were computed as average and

bootstrapped 95% CI across all subjects. All software was implemented in

Python using custom scripts based on scikit-learn and mlpy packages for

ML.

5.2 Results

In this section we compare the classification performance between the dif-

ferent datasets and the adopted pipelines to assess whether WDs can be

used to reproduce scientific results in emotion recognition (see Figure 5.2).

We first validated the methodological approach (signal processing pipe-

line and ML pipeline), then the WCS dataset and, finally, the two WDs:

Empatica E4 and ComfTech HeartBand.

5.2.1 Comparison with background studies

As first, we assessed whether our methodology is able to provide results

which are comparable with background studies proposed in literature.

When using the LOO CV scheme (ML pipeline 1), we improved the re-

sults achieved in [67], for both Arousal and Valence dimensions (see Table

5.3).

Further, to tackle the issues with the LOO CV pipeline described in

the original paper from Koelstra and colleagues [67], we consider the re-

sults from the second ML pipeline: with 10x5 CV scheme and fixed feature

ranking. In this case we compare our results with those presented in the
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Figure 5.2: Overall accuracy on all datasets. 95% Confidence intervals computed by
Student’s bootstrapping.

Arousal

Koelstra2012[67] ABOY DBD ABOY-BEN DBD-PKB

MCC Not available
0.576 0.672 0.576 0.752

(0.470-0.673) (0.585-0.770) (0.494-0.660) (0.657-0.844)

F1 0.533
0.778 0.84 0.769 0.877

(0.717-0.833) (0.797-0.886) (0.720-0.815) (0.826-0.925)

ACC 0.570
0.783 0.834 0.781 0.873

(0.728-0.832) (0.790-0.883) (0.741-0.823) (0.826-0.920)

Valence

Koelstra2012[67] ABOY DBD ABOY-BEN DBD-PKB

MCC Not available
0.626 0.606 0.709 0.615

(0.509-0.735) (0.503-0.705) (0.616-0.798) (0.507-0.716)

F1 0.608
0.808 0.793 0.855 0.799

(0.747-0.863) (0.739-0.846) (0.812-0.900) (0.745-0.851)

ACC 0.627
0.809 0.799 0.852 0.805

(0.749-0.864) (0.747-0.849) (0.805-0.896) (0.751-0.855)

Table 5.3: Classification performances achieved on the DEAP dataset with LOO CV scheme
according to different pipelines.
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Arousal

Torres2014[122] ABOY DBD ABOY-BEN DBD-PKB

MCC N. A.
0.155 0.165 0.177 0.173

(0.108-0.203) (0.114-0.215) (0.135-0.218) (0.132-0.216)

F1 N. A.
0.581 0.569 0.576 0.572

(0.561-0.602) (0.542-0.596) (0.559-0.594) (0.548-0.595)

ACC
0.55 0.571 0.574 0.581 0.579
±0.039 (0.549-0.593) (0.551-0.598) (0.562-0.600) (0.561-0.600)

Valence

Torres2014[122] ABOY DBD ABOY-BEN DBD-PKB

MCC N. A.
0.124 0.192 0.16 0.187

(0.072-0.174) (0.132-0.248) (0.109-0.208) (0.129-0.246)

F1 N. A.
0.556 0.587 0.582 0.597

(0.531-0.578) (0.555-0.616) (0.555-0.607) (0.570-0.622)

ACC
0.575 0.556 0.588 0.571 0.584
±0.039 (0.532-0.579) (0.562-0.614) (0.547-0.594) (0.558-0.612)

Table 5.4: Classification performances achieved on the DEAP dataset with 10x5 CV
scheme according to different pipelines.

study of Torres and colleagues [122] which also uses a 10x5 CV scheme with

Hidden Markov Model for classification (see Table 5.4). As expected, in

this case the overall performance decreases. However, in case of Arousal,

all pipelines appear to improve results from Torres and colleagues [122]

with no evident difference between the pipelines. Datasets composed of

indicators of HRV and of tonic and phasic skin response (ABOY-BEN and

DBD-PKB) achieve a slightly better performance. In case of Valence, only

pipelines based on the novel algorithms appear to achieve, and fairly im-

prove, results from Torres and colleagues [122]. It is worth mentioning that

they used two more sources as input signals (Respiration and Skin tem-

perature) which have not been considered in this work. This preliminary

analysis confirms that proposed methodology is in line with state-of-art of

emotion recognition/affective computing.
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Arousal

ABOY DBD ABOY-BNDK DBD-PKB

MCC
0.138 0.177 0.068 0.159

(0.080-0.203) (0.093-0.253) (0.012-0.124) (0.096-0.223)

F1
0.557 0.583 0.527 0.578

(0.522-0.588) (0.546-0.614) (0.501-0.549) (0.548-0.611)

ACC
0.563 0.582 0.528 0.574

(0.537-0.593) (0.543-0.617) (0.504-0.555) (0.544-0.603)

Valence

ABOY DBD ABOY-BNDK DBD-PKB

MCC
0.102 0.153 0.115 0.149

(0.037-0.166) (0.082-0.232) (0.053-0.172) (0.074-0.238)

F1
0.558 0.588 0.565 0.567

(0.527-0.593) (0.552-0.623) (0.528-0.598) (0.541-0.600)

ACC
0.548 0.57 0.552 0.569

(0.519-0.577) (0.538-0.606) (0.524-0.579) (0.535-0.610)

Table 5.5: Classification performances of four different pipelines for the
WCS-Medical subset 10x5 CV scheme.

5.2.2 Performances on WCS-Medical

As a second step, accuracy for the WCS-Medical was computed with differ-

ent pipelines. Comparable performance was found between the new dataset

and DEAP (see Table 5.5). However, state-of-art algorithms (i.e. ABOY

and BEN) perform slightly worse on WCS-Medical dataset.

5.2.3 Performances on WCS-WDs

Finally, we investigate classification performance between the medical-

grade and WD subsets (see Table 5.6 for overall performances).

For Arousal, the performances of the ABOY and DBD algorithms on

the WCS-E4 subset are comparable, and similar to state-of-art results.

For Valence, on the WCS-E4 subset the ABOY algorithm provides slightly

better performances than DBD, differently from Arousal. In both cases no
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Arousal

(E4) ABOY (E4) DBD (HB) ADPK

MCC
0.118 0.129 0.193

(0.071-0.178) (0.062-0.214) (0.138-0.248)

F1
0.555 0.563 0.596

(0.527-0.589) (0.535-0.598) (0.568-0.623)

ACC
0.554 0.559 0.59

(0.531-0.584) (0.527-0.598) (0.563-0.616)

Valence

(E4) ABOY (E4) DBD (HB) ADPK

MCC
0.158 0.127 0.136

(0.086-0.248) (0.046-0.220) (0.079-0.198)

F1
0.594 0.562 0.561

(0.566-0.623) (0.523-0.607) (0.530-0.590)

ACC
0.57 0.559 0.561

(0.538-0.610) (0.521-0.603) (0.535-0.589)

Table 5.6: Classification performances achieved on the
WCS-E4 and WCS-HB subsets with 10x5 CV scheme
according to different pipelines.

significant differences have been found between the two datasets (WCS-

Medical and WCS-E4) or between the two pipelines (DBD and ABOY).

Regarding the WCS-HB subset, similar results have been found: per-

formances for both Arousal and Valence are not statistically different from

those found on the WCS-Medical subset; notably, the Comftech HeartBand

device achieved the best performance in the detection of Arousal.

5.3 Discussion

The validation study presented shows that the results obtained from WDs

and medical-grade devices are comparable. However, it is worth highlight-

ing that high performance WDs have been used, thus this result might not

hold for lower level devices.
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Moreover, participants were required to stay still during the experiment,

in order to avoid the artifacts caused by body movements, and provide

golden-standard quality for signals acquired by WDs. Before adopting

WDs for applications in real-life scenarios, validation of WDs should also

consider effects of body movements. This aspect has been partially ad-

dressed in the validation of the DBD algorithm (see Appendix A), but

additional investigation is required.

With the only exception of the detection of Valence with the Empatica

E4, in the general case, the application of our novel algorithms provides

better results. However, to determine whether improvements are significant

or not, a statistical analysis should be performed on a larger sample size.

These findings do not only assess the possibility of using WDs to re-

produce affective computing results, they also provide a proof-of-concept

for real-life emotion recognition applications, for instance in psychological

therapy. However, additional evaluations are required to ensure an ade-

quate performance of the whole signal acquisition and processing chain in

a real-life use case, for instance in terms of latency between the generation

of the data and the feedback, computation load and processing time. The

outcome is expected to provide key indications also to drive the imple-

mentation of the system, for instance whether to move part or the whole

processing phase from the server to the local device (e.g. tablet) or sensor.

Despite that accuracy was found comparable with published results on

DEAP, the overall performance in terms of automatic emotion recognition

is not yet satisfying for real use applications. Music-video stimuli might

well not elicit a strong emotional state and, consequently, a clear physiolog-

ical response; in addition, variability in the musical tastes of participants

and mood might also contribute to the overall performance. Therefore,

further research is needed before such emotion recognition task could be

applied to real-life use cases, considering also that the noise of the signals
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is expected to increase when the subject is allowed to move freely.

However, the signal processing algorithms adopted to extract the phys-

iological features deserve a separate consideration. Their validity and reli-

ability have been evaluated separately (see Appendices A and B) proving

that they can be applied to investigate the psycho-physiological response

in the diverse real-life experimental scenarios, as described in the four use

cases presented in Chapter 6.

In summary, due to the difficulty of the task, the WCS dataset can be

an appropriate benchmark dataset to demonstrate the efficiency of new

algorithms. Different machine learning models can be tested; in particu-

lar, deep learning methods are expected to improve the overall results, as

already demonstrated in different fields.

It is worth noting that we fully exploited data analytics techniques (e.g.

signal processing, machine learning) and technological resources (e.g. Phys-

ioREC, Physiolitix, pyPhysio) in the developed framework to validate the

usage of WDs in research.

In Chapter 6 we indeed present two research studies that motivated

the development of such framework, which are focused differently on the

methodological and technological aspects. Further, we describe other two

recent studies that are based on the results on the novel data resource

presented in this Chapter and employ WDs to investigate physiological

response: in parenting and music-therapy.
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Chapter 6

Case studies and applications

In this Chapter we discuss four studies which highlight the interest of Wear-

able Devices (WDs) in research. The first study (Section 6.1) is focused on

HRV analysis, and addresses the need of a customizable signal processing

tool which could be integrated in more complex pipelines. The results are

based on the pyHRV Python package, which is a key solution available with

pyPhysio, and thus in Physiolyze, the web-interface for signal processing

used as a main building block for the Physiolitix project.

Physiolitix has been applied for the first time for outdoor acquisition

to detect fatigued states in skiers, presented in Section 6.2. The third

and fourth studies discussed in this Chapter make use of WDs to collect

physiological signals in a therapeutic context, where the usage of medical-

grade devices is not feasible. Specifically, the third study (Section 6.3)

aims at evaluating the physiological response of parents to different types

of crying of children affected by Autism Spectrum Disorders (ASD). The

fourth study (Section 6.4) is an ongoing project that aims to identify in-

terpersonal synchrony between a therapist and a child with ASD during a

music-therapy session.
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6.1 Heart Rate Variability pipeline to investigate re-

sponse to maternal care

Previous studies (e.g. [40]) showed that the psycho-physiological state of

the newborn adapts to maternal care, in both humans and mice, which

has a calming effect in terms of crying episodes and body movements.

Moreover, an effect on autonomic regulation was also hypothesized as the

researchers observed a significant difference in the average IBIs.

To investigate this aspect, we propose a tool to perform Heart Rate

Variability analysis. In this section we illustrate and validate pyHRV and

Physiolize [17] to obtain an Heart Rate Variability analysis integrated into

a machine learning pipeline. These results have been instrumentals in the

development of pyPhysio and Physiolitix (see Chapters 2 and 3).

This work has been conducted in collaboration with the RIKEN Brain

Science Institute (Tokyo, Japan), and presented at the 8th Conference of

the European Study Group on Cardiovascular Oscillations. An improved

version of Physiolize with additional real-time processing features has been

presented at the 2014 Galaxy Community Conference.

6.1.1 Aim of the study

The goal of the study is to explore the possibility to integrate HRV analysis

into a machine learning (ML) pipeline. Existing tools for HRV analysis

can be grouped in open-source libraries (PhysioToolkit [49], RHRV [101])

and offline platforms (KubiosHRV [120], gHRV [100]). None of the existing

solutions allowed the integration in more complex pipelines while featuring

ease of use also for non-experts.

To this aim, we first designed a tool that integrates HRV analysis into

a comprehensive ML pipeline without requiring advanced data science and

programming skills. The pipeline is then validated on a dataset of IBI series
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of infant data to investigate autonomic regulation in different behavioral

states.

6.1.2 Materials and methods

ECG signals from 25 infants were collected with a Light WP Holter ECG

recorder (GE Healthcare) as described in [40]. IBIs were automatically

computed by this device. Three behavioral states were annotated: sleep

(SL), awake and calm (CM), awake and crying (CY). The analysis here is

restricted to a complete set of data from 7 subjects, for which all behavioral

states are available in the same experimental session.

To allow user-friendly HRV analysis and predictive modeling we devel-

oped Physiolyze, which is a composed by two modules:

1. the Python package pyHRV, which implements the core algorithms

used for the HRV analysis;

2. a Galaxy-based [48] user interface to allow pipeline customization and

execution.

The Python library pyHRV provides algorithms for extracting about

40 up-to-date HRV indexes built on top of aforementioned tools further

evolved to cover non-linear and entropy-based indexes [3, 90].

Physiolyze fully exploits Galaxy [48] features, in particular its workflow

editor, and the support for reproducible ML experiments (see Figure 6.1),

adding specialized functions for extraction of HRV indicators provided by

pyHRV.

IBI signals are segmented by windowing (length of window: 40 s, shift

between consecutive windows: 10 s) and 24 indicators (time and frequency

domain and non-linear metrics) were extracted for each segment. Based

on original annotations of infant behavioral state, each window is then

assigned to one of the target classes, namely S, CM and CY. Windows
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Figure 6.1: An HRV analysis pipeline available through the Physiolyze web interface.
Three processing steps (preprocessing, HRV index extraction, predictive modeling) are
linked together to form the workflow in the central panel. Panel on the right allows
setting module parameters: parameters for HRV index extraction are shown here.

overlapping different states are rejected. As a result of the HRV Index

Extraction step (see Figure 6.1), a dataset has been produced in which

each sample derives from a segment of the original IBI signal, the features

are the 24 HRV indicators and the label is the class to which the segment

belongs.

This dataset has been used as input to the following machine learning

step. In this specific case, the selected predictive model is a Random Forest

[19], implemented with the randomForest R library, as it allows to deal

with multi-class problems. The goal was to predict infant behavioral state

from the HRV indicators. This study also prompted the development of a

working example of integration of tools for physiological signal processing

and machine learning with a user-friendly platform.

6.1.3 Results

Results from classification of HRV states show good applicability of pyHRV

for extracting state-of-art HRV indicators. A total of 1178 samples are
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Predicted
Label #samples SP CM CY Class Error [%]

SP 367 295 72 0 19.6
CM 604 48 531 25 12.1
CY 207 2 50 155 25.1

Table 6.1: Confusion matrix from internal Out-Of-Bag of RandomForest classification of
infant behavioural states.

extracted from IBI signals of 7 infants and merged in the same dataset

after subject-wise normalization. Classes are not balanced; most samples

are from the CM class (604 samples) which represents more than half of the

dataset. Remaining samples are divided into SP class (367 samples) and

CY class (207). Based on the HRV indicators we have been able to predict

behavioral states with 83.3% of accuracy (see Table 6.1) demonstrating

potential of HRV analysis to highlight psycho-physiological variations in

infants.

6.1.4 Conclusions

In this study we introduce pyHRV and Physiolyze, two resources we devel-

oped to enable the integration of HRV analysis into articulated processing

pipelines. The development paradigm we adopted fosters the use of open-

source and user-friendly tools to allow researchers with limited program-

ming skills to develop their own pipelines. The whole framework has been

successfully tested on a classification task aiming at predicting the infant

behavioral states.

In particular, this study ignited the development of pyPhysio and Phys-

iolitix as complementary components of the same framework: the first

featuring algorithms for analysis of multi-modal datasets, the second as a

technological platform to allow application of these capabilities to experi-

mental use cases in real world scenarios.
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6.2 Detection of fatigue in skiers from inertial signals

Skiing is a potentially risky sport and the safety of skiers is a very impor-

tant matter. As a general prevention strategy, several studies proposed to

stop skiing before fatigue could negatively affect the physical capabilities

and increase the risk of injuries [56, 66], however the role of fatigue in

ski accidents has been only partially investigated. In particular, the rela-

tionship between fatigue and injuries has been analyzed only for specific

injuries (e.g. Anterior Cruciate Ligament injuries [105]), but it remains in

general unclear the critical level of fatigue that could be used as indicator

to prevent accidents.

Thanks to an existing project based on the SicurSkiWeb platform1, close

to 15000 events involving injuries have been collected to investigate the

temporal and spatial distribution of ski accidents on Trentino ski areas.

The study showed that ski accidents are more likely to occur in specific

times of the day and locations in the ski-areas. In particular, late morning

hours (pre-lunch and lunch hours) showed the higher number of accidents.

In this section, we present a preliminary study aiming at investigat-

ing effects of fatigue on movement patterns, which was presented in the

21st International Conference of the International Society for Skiing Safety

(2015).

6.2.1 Aim of the study

In downhill skiing, fatigue is expected to affect muscular reactivity and

control, thus altering rapid response trajectories. The hypothesis is that

an high number of accidents is caused by fatigue states that skiers ex-

perience after some hours of skiing, which affects physical and cognitive

performances and responsiveness.

1https://sicurskiweb.fbk.eu/
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Figure 6.2: Setup of the Body Sensor Network composed of 3 Inertial Measurement Units:
on the back, right thigh and right leg. Left: orientation of sensors; right: positioning
during a pilot test.

In this study we aimed at exploring the usage of WDs to provide early

indicators of fatigue, in particular by defining a predictive model of fatigue

based on inertial data and position on-the-field.

6.2.2 Materials and methods

Collection of inertial data was based on a body sensor network composed

by three Inertial Measurement Units (IMUs) EXEL Exls3 and an Android

smartphone as Body Central Unit.

Each IMU embeds a triaxial accelerometer with selectable full-scale

range set to ±16g, a triaxial gyroscope (range set to: ±2000dps) and a

triaxial magnetometer. Sampling frequency was set to 100 Hz. Signals

are sent via Bluetooth 2.0 to the BCU where the PhysioREC app verifies

missing-data events, synchronizes, and stores data flows on the smart-

phone. Position data from smartphone embedded GPS sensor (sampling
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frequency 1 Hz) were also collected. IMUs were worn by the skier by

means of elastic bands positioned at lower back, right tight and right leg

(see Figure 6.2.

Five skiers with varying skiing experience (from 2 to >15 years) were

involved in the data acquisition in the Monte Bondone ski area, Trento,

Italy. During the first run skiers were free to choose an easy or intermedi-

ate slope to warm up. Inertial data were collected during second and last

run which was mandatorily on the same track for all subjects. Otherwise,

skiers were free to ski in the whole ski area, with GPS tracks automati-

cally annotated. The duration of total experimental session was about 180

minutes. As connectivity to the internet was not available on the whole

ski area, data were stored on the smartphone and on the Exls3 internal

memory as a backup.

We focused on the data collected by the IMU positioned on the thigh,

as it resulted as the most stable during all the acquisition sessions. Col-

lected data were preprocessed with a custom pipeline based on pyPhysio

(a summary can be found in Table 6.2):

1. Selection of ski segments: we distinguished data associated to ski from

other activities (ski-lift, resting). Skiers were asked to hit the ground

with the foot three times immediately before and after the run. Hits

are well recognizable from the acceleration signal and were used to

identify ski portions;

2. Low pass filtering, with an Infinite Impulse Response filter, cut-off

frequency set at 25 Hz;

3. Computation of the module for each sensor as additional signal;

4. Derivative based on 1st, 2nd, 5th and 10th order differences;

5. Segmentation by windowing: length of the window: 15 s, shift between
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Name Type Number

IMU Thigh 1
Sensors Accelerometer, Gyroscope, Magnetometer 3
Signals 3 axis and module 4

Processed signals Original, 1-2-5-10th order differences 5
Inertial features Time domain and Frequency domain 28

Table 6.2: Summary of input data for the detection of fatigued states from inertial signals.

Name NF F Total

Subject 01 14 11 25
Subject 02 20 24 44
Subject 03 43 35 78
Subject 04 16 14 30
Subject 05 22 19 41

Table 6.3: Number of samples for each subject and class.

consecutive windows: 5 s. Each segment was labeled as Non-Fatigued

state (NF) or Fatigued state (F) depending on whether the signal was

acquired during second or last run;

6. Computation of inertial features (8 time-domain and 20 frequency

domain) for each preprocessed signal for a total of 1680 features for

each segment.

A total of 218 segments were obtained: 115 belonged to NF class, 103

to F class; the number of samples for each subjects is shown in Table 6.3.

The objective of the analysis was to develop a predictive model able to

classify the state of each segment based on the 1680 features.

The Machine Learning (ML) pipeline was based on Support Vector Ma-

chines (SVM) models and composed of three nested randomization cy-

cles (see Figure 5.1): first cycle corresponds to the Cross Validation (CV)

scheme, second to the tuning of model parameter C, finally the feature se-

lection cycle. Features were ranked internally based on SVM weights. We
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used the Matthew Correlation Coefficient (MCC) as metrics of classifica-

tion performance, 95% confidence intervals (CI) were computed by Student

t-test bootstrapping of MCC performances from each cross-validation cy-

cle. Maximal average MCC of all feature selection steps is reported as

performance index of each model.

6.2.3 Results

In the first experiment, samples from all subjects were merged in the same

dataset and a 10x5 CV scheme was adopted. Maximal average MCC of

0.895 (95% CI: 0.878 - 0.911) was reached with 900 features, however 90

features were enough to obtain an average MCC of 0.823 (95% CI: 0.806 -

0.840).

In the second experiment we tested whether the predictive model can be

transferred and applied to new subjects, using a Leave-One-Subject-Out

test scheme (LOSO experiment). To simulate the application of the model

to new data (e.g. a new subject participating in the study or a new ski

session), all samples belonging to a subject were removed from the input

dataset. The remaining samples (from 4 subjects) were used to build a new

predictive model applying the same pipeline as in the first experiment. The

resulting model was used to predict fatigued state on the samples of the

subject left out. The procedure was then repeated for each subject.

We observed a drop in prediction performances of left-out subjects (see

Table 6.4), showing that the model can be easily biased, possibly by over-

fitting the input dataset and thus losing generalizability.

Therefore, we computed the intersection of the top 500 features for

each LOSO experiment, obtaining a list of 117 features which were used

to create a reduced dataset. New LOSO experiment based on the reduced

dataset dramatically improved the classification performances (see Table

6.4 demonstrating that it would be feasible to apply the predictive model
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MCC
Left-out subject Complete dataset Reduced dataset

Subject 01 -0.103 0.541
Subject 02 0.431 0.797
Subject 03 0.182 0.617
Subject 04 0.092 0.782
Subject 05 0.488 0.910

Average 0.218 0.730

Table 6.4: Summary of input data for the detection of fatigued states from inertial signals.

also to new subjects. To check for a possible selection bias in the model

design, the same experiment was repeated using randomly shuffled sample

labels, obtaining average MCC values around 0, thus proving that the

obtained models were not biased.

6.2.4 Conclusions

Results of this preliminary study demonstrate feasibility of identification of

early indicators of fatigue on skiers by detecting changes in movement pat-

terns. Predictive models appeared more efficient when specifically tuned

on each subjects, however we also tested generalizability showing that by

accurately selecting input features it is possible to reach good classification

performance even on data from new subjects. This work could then rep-

resent a valid methodological approach for preventing accidents in real-life

applications, but before adoption on large-scale trials new studies should

be performed with a larger sample size, possibly accounting for diverse

ages and skill levels and adopting an objective measure of fatigue. In fact,

it is likely that fatigue affects each subject differently, according also to

conditioning, experience and other physical characteristics. Our general

assumption is that the fatigue level during the last run was greater than in

the second run; however, according to [121, 127], an alternative measure

of fatigue could be the blood lactate concentration, which is expected to
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be a more reliable physiological indicator.

In addition, the same approach should be tested on inertial data from

the smartphone which would allow the adoption in real-world applications.

Smartphones would represent an optimal solution as they provide both

sensing and computational capabilities which would allow real-time pro-

cessing and a simplified sensing architecture, with any need of external

IMUs. However, it should be first verified whether lower signal quality

prevents the appropriate accuracy in the detection of the different motor

patterns. For a real-world application based on a smartphone, both as

sensing and as computational resource, the number of computed features

might be decreased, for instance focusing on the top 117 features resulting

from the LOSO experiment. This would potentially reduce the computa-

tional load and battery consumption.

In fact the computation and time limitations can strongly influence

the applicability of the system to real use cases, but in this work these

aspects have not been considered due to the preliminary nature of the

study. As additional solution, part of the preprocessing can be moved

from the smartphone to the IMU device in case this is equipped with an

onboard architecture with a Computational Processing Unit. For instance,

as proposed in [22] a context-aware module can be implemented to optimize

the battery consumption by enabling the sensor only during skiing.

Finally, a complete investigation should now consider the adoption of

deep learning models which have been demonstrated to outperform state-

of-art results obtained from standard ML models (e.g [92, 82]. In particu-

lar, subject-based models or transfer learning techniques might be able to

model better the individual characteristics and thus further improve the

results.

Beside results on fatigue detection, this study also validated the use of

PhysioREC for on-the-field acquisition of multi-sensor data. In particular,
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with PhysioREC it was possible to simultaneously activate all sensors and

synchronize the signals, managing also experimental metadata (such as:

ID of the subject, ID of the run) and integrative position information.

Real-time upload on the Physiolitix back-end was not implemented in the

version used for this study, due to lack of data connection on the entire

experimental area.

It is worth mentioning that the experimental contexts were dramatically

different from standard in-lab settings: acquisition sessions were performed

during night-time public opening hours, without use of any supporting aid

(e.g.: mobile lab, deposit, heated rooms). In addition, setting and control

of the experiment was up to the skiers who were instructed after a short

briefing before each session. This demonstrate reliability of PhysioREC as

a flexible tool for real-life sensing even in critical outdoor contexts.

6.3 Parental response to infant crying

Crying is one of first means of communication in humans [39]. During

early development of infants, parents learn how to interpret crying to in-

tervene and assist the child [72]. However, the correct interpretation of

crying might be prevented, because of inadequate capacity of the parent

or because of atypical acoustic patterns in crying. When this happens it

could originate issues in the child-parent relationship [38].

This is frequent in case of children affected by Autism Spectrum Dis-

orders (ASD): atypical patterns of distress vocalization are evident even

before ASD are diagnosed [37]. Crying of children affected by ASD (ASD

crying) elicits more negative emotions which might prevent the correct

parent response and feedback.

Several studies focus on perceived emotions of parents hearing typical

and atypical (e.g. ASD) crying but few is known about the physiological
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and autonomic response, which is the object of investigation of this study.

This work2 has been submitted to the Journal of Autism Spectrum

Disorders.

6.3.1 Aim of the study

In this study we focused on the physiological response of parents to crying,

considering two dimensions:

1. Type of parents: parents of children affected by ASD (pASD) and

parents of typically developing children (pTD);

2. Type of crying: crying of children affected by ASD (ASDc) and of

typically developing children (TDc).

In particular, we investigated: (a) whether ASDc and TDc elicit differ-

ent physiological responses on parents, and (b) whether pASD and pTD

perception of two types of crying differs.

6.3.2 Materials and methods

Participants were grouped in pTD (30 participants: 15 mothers and 15

fathers) and pASD (19 participants: 11 mothers and 8 fathers). Crying

stimuli (duration 6 seconds) were extracted from home videos of infants of

similar age to compose a set of 8 ASDc and 7 TDc were obtained. Further-

more, two questionnaires (the Parenting Stress Index-Short Form and the

Weinstein Noise Sensitivity Scale) were administered to examine possible

correlations between parents responses to crying and their parenting stress

or noise sensitivity. No correlation was found.

2Yagmur Ozturk, Andrea Bizzego, Gianluca Esposito, Cesare Furlanello, and Paola
Venuti, Response to infant cry: Self-report and physiological measures from parents of children with
Autism Spectrum Disorder. Under review
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The experiment comprised two parts: the first was designed to acquire

physiological signals, the second to collect behavioral data.

In the first part, 32 crying stimuli (16 ASDc and 16 TDc) were ran-

domly sampled from the set of 8 ASDc and 7 TDc and randomly ordered.

Each 6 seconds stimulus was followed by 10 seconds of pause. Participants

were asked to stay still during the experiment to avoid moving artifacts.

Empatica E4 was used as the device to acquire physiological signals. We

chose the WD as we needed flexibility in terms of experiment setup, since

parents of children affected by ASD could participate to the experiment

only during the therapeutic sessions of their own child and the structure

was not equipped with medical grade devices.

Inter Beat Intervals (IBIs) were extracted from the Blood Volume Pulse

(BVP) signal acquired from the Empatica E4 through the DBD algorithm

(see Appendix A). Average IBI (IBImean) was then computed on each

segment corresponding to a crying stimulus. We also computed the baseline

IBImean during the 30 seconds portion before the start of the first stimulus,

which was used to normalize stimuli IBImean values.

During the second part of the experiment each stimulus was presented

once and the participant was asked to rate the perceived emotion according

to three dimensions: Stress, Arousal and Valence.

6.3.3 Results

No significant differences were found in self-reported emotion between the

type of parents when listening to ASDc or TDc. Instead, considering the

same parent category significant differences have been found between the

type of crying. In particular, for both categories of parents, ASDc has been

reported as more stressful, more arousing and less pleasant than TDc.

Opposite to results from self-reports, significant (p¡0.05) differences in

IBImean were found within the same type of crying: for both categories
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Figure 6.3: Differences in IBImean between types of parents.

(ASDc and TDc), pASD showed higher IBImean than pTD (see Figure

6.3).

6.3.4 Conclusions

Although no difference was found in self-reported emotion between types

of parents, analysis of physiological indicators evidenced a different re-

sponse in terms of heart rate. This result demonstrates the importance of

considering both the emotional and physiological aspects as they can give

complementary information. In particular, future studies should clarify

whether physiological variations are also associated to differences in terms

of autonomic regulation.

Beside shading new light on the understanding of parent response to

infant crying, this study also proved that WDs can be reliably used as

a flexible tool to collect physiological signals when contextual constraints

limit the use of medical-grade devices. In addition, it validates the use

of pyPhysio as signal processing tool for the extraction of physiological

indicators.

We also demonstrated potential of complementary physiological moni-

toring to expand comprehension of human behavior. In combination with

WDs, this approach paves the way for new applications in treatment of

psychological pathologies and training of therapists which is the objective
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of the research project presented in next section.

6.4 Synchrony in music-therapy of children

with ASD

Music-therapy has been widely adopted to help children affected by Autism

Spectrum Disorders (ASD) to improve social interaction and communica-

tion skills, and emotional reciprocity [46]. Music-therapy aims at building

and maintaining a relationship between the therapist, however the admin-

istration of the treatment and choice of techniques are still based on the

subjective evaluation of the therapist. Few studies aimed at investigating

music-therapy to provide quantitative indicators to identify most appro-

priate techniques to improve efficiency of the treatment [115, 116].

In this research project, conducted in collaboration with ODFLab of

University of Trento, we aim at quantifying the level of interaction be-

tween the therapist and the child following a recent approach based on

physiological synchrony [81].

6.4.1 Materials and methods

Electrocardiogram (ECG) signal is acquired during therapy sessions from

both the therapist and the child using the ComfTech HeartBand device

within a multi-subject body sensor network managed by PhysioREC and

Physiolitix. During the therapy, the therapist communicates (by mean

of an appropriate body sign) to an external observer the instants when an

high level of interaction is perceived, which are annotated using the marker

button on the PhysioREC user interface. Adoption of WDs in treatment

of ASD has been already proposed in other studies [34, 21] to support

patient deficits in recognizing and expressing emotions, by identification

of autonomic states through physiological indicators, though recognizing
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synchrony during music-therapy corresponds to approaching this aspect

from a social perspective and it is complicated by the dynamic context of

the therapy.

From the ECG signal of each subject we will compute the IBIs, then

HRV indicators will be computed on subsequent portions of the IBI signal

extracted by windowing (window length: 60 s, shift between consecutive

windows: 15 s). Physiological synchrony will be quantified estimating the

similarity between IBI signals from the therapist and the child along the

therapy session. HRV indicators will also be considered, though accounting

for lower reliability of frequency domain indicators. To this aim, the simi-

larity between the two IBI signals will first be computed for each segment

extracted by windowing (window length: 60 s, shift between consecutive

windows: 15 s). Diverse metrics will be adopted to assess similarity be-

tween time series, for instance: Maximal Information Criterion [98], Dy-

namic Time Warping (DTW) [29], Recurrence Plot analysis [81].

6.4.2 Initial and expected results

The hypothesis of this research is that social and behavioral interaction

between teh therapist and the child is associated to synchrony of the phys-

iological patterns mediated by the autonomic response. Thus, we expect to

find higher similarity between IBI signals in correspondence of annotated

instants of perceived high level of interaction. To validate findings we will

statistically compare similarity metrics during baseline (for instance, start

of the therapy) and during instants of perceived interaction.

A pilot study was conducted with two therapy sessions, involving a

therapist and two children simultaneously. Physiological synchrony was

computed by mean of DTW distance for each dyad: Therapist-Child1,

Therapist-Child2, Child1-Child2 (see Figure 6.4). A preliminary analysis of

the therapy and resulting synchrony metrics showed that specific activities
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Figure 6.4: A frame of the video of the music-therapy session, showing two children with
ASD (left and right) and the therapist (middle) while playing drums. Graphs on the left-
bottom of the figure show the average IBI (RR mean) for each subject: therapist (blue),
child on the right (green) and child on the left (red) during the entire session. The instant
corresponding to the showed frame is identified by the vertical red line. Vertical bars on
the bottom-right show current levels of synchrony: between Therapist and Child1 (left),
between Therapist and Child2 (middle) and between the two children (right). Here an high
level of physiological synchrony is found between the two children who are coordinated in
playing drums together.

(e.g. playing drums) which facilitate the behavioral synchrony appear also

associated to a higher level of physiological synchrony.

Our results from this study should provide a first insight on the phys-

iological contribution to therapeutic outcome and provide indications to

develop a biofeedback system that notifies the therapist when the level of

interaction is optimal. Applications are not limited to music-therapy as

monitoring the level of interaction would also benefit child carers, parents

first but also teachers and relatives.
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Chapter 7

Conclusions

WDs represent an opportunity for research, as they pave the way for acqui-

sition of physiological signals in new experimental contexts. Moreover, the

application of WDs would allow for real-life continuous monitoring, and en-

able acquisition of physiological signals even when usually the adoption of

a complete laboratory settings is unfeasible. Beside the several advantages

introduced by the technological progress (such as miniaturization, porta-

bility, increasing autonomy), there are indeed limitations and constrains

imposed by low quality sensors, low signal noise ratio and sensitivity to ar-

tifacts due to body movements. Furthermore, the variability in protocols

to access the data and to control the different devices prevents the inte-

gration of heterogeneous WDs into the same sensing architecture. These

aspects prevented the adoption of WDs in research, despite the growing

and growing interests of commercial applications.

In this thesis, we concentrated on two main aspects: feasibility of phys-

iological signal acquisition for research based on WDs and assessment of

capability of reproducing state-of-art results.

The first result discussed is a platform for real-life sensing named Physi-

olitix, which is composed by PhysioREC, an Android app to manage Body

Sensor Networks, and a back-end which centralizes and provide access to
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the data collected from sensors. Thanks to its modular structure, Phys-

ioREC is potentially capable of collecting data from all types of WDs for

which manufacturers provide the data streaming protocol documentation

or a corresponding SDK. Moreover, as streams from WDs are simulta-

neously collected, PhysioREC is capable of synchronizing the signals and

control the whole Body Sensor Network. Complementary to PhysioREC,

Physiolitix back-end is where streams are stored, useful for researchers to

retrieve from a single place all experimental data.

Thanks to Physiolitix we were able to create the Wearable and Clin-

ical Signal (WCS) dataset to validate the WDs. The WCS dataset re-

produces the experimental setup adopted to create the DEAP dataset,

using WDs as additional sources of physiological signals, thus allowing a

direct comparison of results from this study with the scientific background.

The WCS dataset is the first example of dataset where physiological sig-

nals from wearable and medical-grade devices are collected simultaneously.

The WCS dataset can be adopted by manufacturers and researchers as a

benchmark to validate new devices or algorithms.

Based on the WCS dataset, we finally investigated whether WDs are

able to reproduce scientific results achieved with medical-grade devices.

The validation focuses on an affective computing task in which the emo-

tional content of music-video stimuli are recognized from physiological in-

dicators. The study involves the comparison of classification performances

of different predictive models.

Results suggest that it is possible to replicate state-of-art results using

signals from WDs by applying proper signal processing methods. In par-

ticular, we focused on BVP and EDA signals and on the case in which

artifacts from body movements are experimentally avoided. We also re-

port that the proposed algorithms for signal processing can improve the

classification and that the WCS dataset reproduces the original DEAP
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dataset. The signal processing was based on pyPhysio, developed to allow

the analysis of heterogeneous types of physiological signals within a unique

framework.

Several research fields might benefit from the outcome of this work.

We present an application in an outdoor context, in which Physiolitix was

used to collect inertial data from skiers and predict fatigued states. We

also describe an application of WDs adopted in less extreme contexts, to

substitute medical-grade devices when they are not available or cannot be

used. In this context, we used a WD to investigate physiological response

of parents to infant crying in terms of Heart Rate Variability. An ongoing

research project aims at identifying physiological indicators of synchrony

between a therapist and a patient during a music-therapy session.

WDs are expected to become a pervasive technology in the future. This

work provides both a technological framework and a methodological contri-

bution to allow exploiting the potential of WDs for reproducible science.
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Appendix A

DBD: Derivative Based Detection

of heart beats

In this Chapter we introduce and validate a pipeline for Heart Rate Vari-

ability (HRV) analysis on signals acquired with Wearable Devices (WDs).

Currently two main sensing technologies are available to acquire the cardiac

activity with WDs: electrocardiography or photoplethysmography (PPG)

sensors. The former is used to acquire the electrocardiogram (ECG), while

the PPG sensors detect the Blood Volume Pulse (BVP); see 2.1.1 for a

description of sensing technologies for cardiac signals.

A typical HRV analysis pipeline (see Figure 3.1) is composed of three

stages [76]: (a) preprocessing; (b) beat detection and (c) computation

of indicators, Typically applied on ECG signals. However BVP signals

can also be used [109]: from the signal processing point of view the main

difference is in the second stage, where, due to the different waveform of

BVP compared to ECG, specific algorithms have been defined to correctly

estimate the beat position.

Preprocessing

The preprocessing part aims at increasing the signal-noise ratio (SNR) by

filtering, detrending and removal of undesired components. In particular,
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several algorithms and technical solutions have been adopted to deal with

moving artifacts (see, for instance [42, 94, 95, 126, 129] for a review), but

complete removal is still an open issue due to the impulsive and time-

dependency characteristic of body movements.

As an alternative, it has been proposed to estimate the amount of noise

and reject those portions where this is too high [126, 84, 71]. However, in

this chapter we prefer do not discuss the denoising, focusing instead on the

second stage of the pipeline: detection of heart beats and then computation

of Inter Beat Intervals (IBIs).

Beat detection

The detection of the beat position in an ECG signal corresponds to the

identification of the R peak, which is usually well recognizable due to its

higher amplitude and characteristic impulsive shape. Peaks can be iden-

tified using different algorithms (see for instance [61]) also for real-time

processing (see [33]); however identification accuracy is weakened by high

frequency noise and trends that should have been removed in the prepro-

cessing stage.

A BVP signal does not provide a wave portion corresponding to the R

peak of the ECG signal; in addition, beat detection is made difficult also

by the variability due to posture or even individual physiological charac-

teristics [109]. Indeed, a different family of algorithms is used to identify

the correct beat position from PPG [1, 117, 93]. In general, it emerges that

a reliable and general method is still missing.

Mostly, such algorithms are usually proposed for use in diagnostics and

health care; in the latter case, the interest is a continuous HR monitoring

and thus a rougher measure is adopted compared to HRV analysis (heart

rate in beats per minutes vs measuring distance between beats at higher

resolution of milliseconds). Further, only few algorithms have been pro-
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posed appositely for analysis of signals acquired with WDs. They present

usually even higher variability in terms of waveform shape and thus algo-

rithms need to be robust to time-variant characteristics of the signal and

variations of amplitude with these sensors.

Computation of HRV indicators

The first step in order to compute HRV indicators, is detecting heart beats

from the cardiac signal, then derive the distance between consecutive beats

(IBI). HRV indicators are used to describe a particular aspect of the heart

physiology or activity of the autonomic system (for a complete review see

[76]).

Here we propose a signal processing pipeline suited for signals acquired with

WDs, which could serve as a reference methodology for future papers and

comparison of new algorithms (Section A.1). In particular, we describe the

Derivative Based Detection (DBD) algorithm for beat detection on BVP

signals and the Reverse Combinatorial Optimization (RCO) for correction

of misdetection errors. We compare the DBD with the automatic beat

detection algorithm [1] showing that DBD is more robust and appropriate

for signals acquired with WDs and correction by RCO further improves

the results. Section A.2 describes the two datasets we used to test the

pipeline: a) the Fantasia dataset [58] and b) our WCS dataset, designed to

compare signals from clinical (Thought Technology FlexComp Infinity) and

wearable devices (Empatica E4 and ComfTech HeartBand). We present

and discuss the result in terms of beat detection errors and differences in

the computed HRV indicators (Section A.3 and A.4).
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A.1 Beat detection pipeline

In this section we present the pipeline for beat detection on cardiac signals

to extract the IBI signal. The pipeline addresses the issues originated

by use of acquired wearable technologies, however it can be applied on

signals from medical-grade devices, where it is expected to give even better

performances (see Section 5).

In particular, we present the DBD algorithm for estimation of beat po-

sition in BVP signals and the RCO algorithm for errors detection and

correction. The interest of the DBD algorithm is that most of WDs embed

a PPG sensor to acquire cardiac signals. We omit to discuss the prepro-

cessing step (for instance band-pass filtering to remove trends and high

frequency noise) as already extensively discussed in literature.

A.1.1 Oversampling

Effects of lower sampling frequency on the HRV indicators can be mitigated

by signal interpolation [36]. The first step in the pipeline is therefore an

oversampling to decrease the error in the estimation of the beat position.

We apply a cubic spline interpolation, with an output sampling frequency of

at least 1000 Hz to estimate distances between beats with 1 ms resolution.

A.1.2 Energy estimation

Several methods have been proposed to deal with artifacts associated to

body movements but in case of high dynamic movements or severe signal

corruption (for instance due to electrodes disconnection or displacement)

they might be ineffective [126]. Further, the presence of artifacts in the

signal will always impact on the error of estimation of the beat position.

For this reason, beside addressing the removal of artifacts, it is important to

obtain a measure of reliability of the estimates. This becomes fundamental

124



APPENDIX A. DBD ALGORITHM A.1. BEAT DETECTION PIPELINE

in online applications (e.g. when short-term or real-time indicator triggers

a decision logic), or when processing large amounts of streaming flows

which would make practically unfeasible to manually check the results of

beat position estimation.

To this aim we propose to use the Energy of the Signal Derivative:

en =

∑N
n=2(xn − xn−1)2

N − 1
(A.1)

where xk is the value of k-th sample of the signal and N is the total number

of samples.

To consider for local variations of the noise the energy (A.1) should be

iteratively computed within a windowing process that runs along the whole

signal:

yk = f(xkws
, ..., xkws+wl]

) (A.2)

where k is the current windowing iteration ws is the number of samples

the window shifts at each iteration and wl is the number of samples of the

window.

In absence of artifacts, en depends only on the dynamic of the signal

which can be considered approximately time invariant. When artifacts

corrupt the signal their contribution will increase the value of en which

can therefore be used to estimate the presence and magnitude of artifacts

A threshold value should be defined to identify the noisy portion of sig-

nals that would provide an unreliable estimation of the beat position and,

consequently, of the computed HRV indicator.

Note that, when the wearable devices embeds also an accelerometer, en

can be computed from the acceleration signal to provide a more reliable

quantification of artifacts due to body movement.
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Figure A.1: Overview of the DBD algorithm with the four processing stages.

A.1.3 The DBD algorithm

The DBD algorithm estimates the position of the percussion peak in signals

acquired with an optical sensor and it is designed to be robust when applied

on signals from WDs which present high variability of waveform shapes and

amplitudes.

As for other algorithms proposed in literature (e.g. [1, 93]),the DBD

algorithm adopts a sequence of processing steps. We use three main stages,

with an additional stage for the automatic identification of detection errors

(RCO). An overview of the DBD procedure is presented in Figure A.1.

The algorithm is regulated by the parameter fmax which is the expected

maximal heartbeat frequency. We empirically set fmax to 2 Hz, correspond-

ing to 120 beats per minute). However, the parameter can be changed

accordingly to physiological condition (e.g. sleep) or age of individual (e.g.

infant, newborn). In the following subsections a detailed description for

each stage of the algorithm is given.

DBD Stage 1: Signal filtering

The first stage aims at filtering the original signal to extract the approxi-

mate beat positions. This information will be used in the following steps

to target the detection of the percussion peak. We use a low pass infinite

impulse response filter (fpass = 1.2fmax, fstop = 3fmax) to filter out high

frequency components of the signal.
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DBD Stage 2: Identification of candidate beat position

On the filtered signal from stage 1 we identify the candidate beats by

adaptive peak detection. First the local range of the signal is estimated

by windowing (window width: 1.5(fsamp)/fmax, window shift: fsamp/fmax)

and evaluating the range for each window, then interpolating according to

the original sampling frequency of the signal. The local range of the signal

is used to modulate the peak detection: a local maximum xpi is considered

valid if the difference with the following local minimum is greater than half

of the range of the signal at the local minimum.

DBD Stage 3: Identification of percussion peak position

For each peak instant detected in stage 2 (tpi) we extract the 250 ms before

(x[tpi − 0.25, tpi]) which is the candidate portion (Cpi(t)) where to locate

the percussion peak. We compute the derivative of the candidate portion

C′pi(t) where we detect the maximum tmi
corresponding to the steepest

instant of the rising part of the pulse and the instant t0i following tmi
,

corresponding to the first local minimum of |C′pi(t)|.
C′pi(t0i) is expected to be equal to 0 and is considered the instant of

the percussion peak. Figure A.2 shows the steps to identify t0i on a beat

pulse. The IBI signal is then computed as difference between consecutive

percussion instants.

A.1.4 The RCO algorithm

The RCO algorithm aims at identifying and correcting errors in the IBI

signal in particular when the correct beat position is not detected because

of a false peak before the true peak. It depends only on the IBI signal and

thus it can be employed also to correct beats detected on ECG signals.
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Figure A.2: Steps of stage 3 to identify t0i . From top to bottom: a) identification of the
maximum tpi and tpi − 0.25 on the filtered signal xf (t) ; b) identification of the maximum
of the derivative of the signal xn−xn−1 in the interval tpi−0.25, tpi ; c) identification of the
local minimum of |ds(t)/dt| in the interval [tmi

, tpi ], corresponding to t0i , the percussion
peak in the original signal (d).
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Adaptive Outlier Detection

The basic algorithm of the RCO is the Adaptive Outlier Detection (AOD).

The AOD uses a fixed size cache vector IBIc = (ibi1, ibi2, ..., ibik) to store

the last k valid IBI values, in order to adapt to IBI variability. The size

k is empirically set to 5 and the cache is initialized with the median value

of the IBI signal. Outliers detection is also regulated by the sensitivity

parameter φ, which is empirically set to 0.25. However, smaller values of

φ and greater values of k improve precision.

A detected beat is considered valid if its corresponding IBI value is

within the interval [(1-φ)ibimedian, (1+φ)ibimedian], where ibimedian is the

median of the values in IBIc. When a new valid beat is detected, its IBI

value is used to update IBIc using the First-In-First-Out rule. IBIc is

re-initialized when k consecutive non valid beats are detected.

RCO Stage 1: Detection of questionable beats

The first step of the RCO is the application of AOD on the IBI in both

forward and backward direction: those beats that are detected as false

positives in both the directions are rejected and those that are detected as

true positives in both directions are validated. Each remaining detected

beat from backward direction is paired to the nearest detected beat from

forward direction. When the distance is less than 250 ms, the pair is set

to be checked with the combinatorial optimization.

RCO Stage 2: Combinatorial correction

Segments are generated for each sequence of one or more consecutive pairs,

by concatenating the last valid beat before the sequence and the first valid

beat after the sequence. Then all the combinations of beats are generated

by selecting alternatively the beat from the forward or from the backward
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direction. For each combination we compute the variability index, defined

as follows:

V =
N∑
2

|IBIn − IBIn−1| (A.3)

Then the combination with the minimum value of V is selected as the

best estimate of beats in the sequence. In the final RCO step, the AOD

algorithm is run forward on the corrected IBI to identify possible outliers

on IBI series that might have not been corrected.

A.2 Materials and methods

To validate the proposed pipeline we first aimed at testing the performances

of the DBD algorithm on a reference database. As Physionet1 [49] does

not provide a dataset of BVP signals with beats annotations, we selected

the Fantasia dataset [58] which contains the ECG and Blood Pressure

(BP) signals (sampling rate: 250 Hz) of twenty subjects (10 young, mean

age=27yr and 10 elderly, mean age=74yr) together with beat annotations.

Note, however, that BP is a different physiological measure than BVP,

though similar. The signals were acquired while the subjects were watching

the movie “Fantasia” (Disney, 1940) laying supine and maintaining an

inactive state. The heartbeats were first automatically annotated on the

ECG and then verified by visual inspection to provide the reference beats

series of the Fantasia dataset.

In order to validate the pipeline on signals from WDs, we tested the

whole pipeline on the WCS dataset (see Chapter 4). In particular, we

applied the pipeline to the BVP signals from the Empatica E4 and from

the FlexComp to compare results between a wearable and a medical-grade

device.

1http://www.physionet.org

130



APPENDIX A. DBD ALGORITHM A.2. MATERIALS AND METHODS

A.2.1 Metrics

We defined two different groups of metrics to quantify performance of the

beat detection step and to assess reliability of HRV indicators. The first

group compares the results of the beat detection step, the second compares

the values of HRV indicators. Four algorithms for beat detection are used:

DBD, DBD+RCO, the algorithm for beat detection proposed in [1] with

(ABOY+CORR) and without (ABOY) the beat correction procedure.

Beat detection metrics

The results of the beat detection step are validated on the reference beat

series first by counting the number of true positives (TPs), false positives

(FPs) and false negatives (FNs). To compute the number of TPs, we first

try to pair each beat bdet of the detected beat series to a beat bref of the

reference beats series. The pairing is considered valid when the distance

between bdet and bref is below 0.5 s. The remaining unpaired detected

beats are considered as FPs and the remaining unpaired reference beats

are considered as FNs. Then we counted the number of TPs (nTP ), the

number of FPs (nFP ) and the number of FNs ((nFN)) to compute the

overall recall ((nTP )/(nTP + nFN)) and precision ((nTP )/(nTP + nFP )).

We also compared the reference IBI series IBIref computed from the

reference beats series with IBI values resulting from the detected beats

IBIest. We consider the overall root mean square error (rmse) between

the interpolated version of IBIest and IBIref . Both the IBI series are

interpolated with cubic spline at 4 Hz.

HRV reliability metrics

The second category analyses the reliability of computed HRV indicators.

Ten 30-seconds portions of the IBI series are selected and 4 HRV indi-
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cators are computed for each portion. Two indicators are chosen from

the time-domain category: mean of IBI (RRmean), root mean square of

the differences of subsequent IBI (RMSSD), and two from the frequency-

domain category: power in the low frequency band [0.04-0.15 Hz] (LF),

power in the high frequency band [0.15-0.4 Hz] (HF). The HRV values

obtained from the IBIref and from the IBIest are compared using the

Bland-Altman (BA) ratio as proposed in [109].

Metrics estimation

The computation of metrics is performed by windowing (length: 30 s, shift:

10 s) along the whole signal, to obtain the distribution of values of each

metric for each subject. Beat detection metrics are averaged to obtain the

mean value for each subject, while the HRV values are used to compute

the BA ratio:

rBA =
ICd

meanm
(A.4)

where ICd is the 95% confidence interval of the difference between the

reference and estimated indicator value (d = (xrefi −xi)), and meanm is the

mean of the average between the reference and estimated indicator value

(m = (xrefi + xi)/2). BA ratio is used to evaluate similarity between two

sets of measurements. In general, it is used to compare a novel method of

measurement with a reference. Two methods are considered as coincident

when the BA ratio is below 0.1. A value between 0.1 and 0.2 corresponds

to a fair similarity; when the BA ratio is above 0.2, the novel method is

considered unreliable.

A.3 Results

In the following subsections we discuss the results on the Fantasia dataset

and the comparison between wearable and clinical devices.
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Figure A.3: Performances of IBI detection on the Fantasia dataset.

A.3.1 Results on Fantasia dataset

For each subject we selected a 1000 s length portion of the BP signal

which showed no sensor disconnections. Performance of IBI detection (see

Figure A.3 appears similar for the DBD and the DBD-RCO pipelines.

Performance of ABOY and ABOY-CORR is lower, both in terms of Recall

and rmse. Similar results are found also for the Bland-Altman ratios of

HRV indicators: DBD and DBD+RCO provide similar results, ABOY and

ABOY-CORR are also comparable but value of ratios is higher. However,

in general the distribution of the BA values is mostly above the 0.2 value;

only for RRmean the ratio is below 0.1 for DBD and DBD-RCO and around

0.2 for ABOY and ABOY-CORR.

A.3.2 Results on WCS dataset

For each subject we considered both baseline and movement portions to

tackle the effect of artifacts. We applied the proposed pipeline to the three

cardiac signals acquired during the experiment: (a) BVP signal from the
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Figure A.4: BA ratio of HRV indicators on the Fantasia dataset.

FlexComp, (b) BVP signal from the Empatica E4 and c) the ECG signal

from the Comftech HeartBand.

The ECG signal from the FlexComp is used to provide the ground truth:

IBI were automatically detected and manually corrected by visual inspec-

tion to remove wrong detected peaks and add missing beats.

As with the Fantasia dataset, for the BVP signal (see Figure A.5) with

the FlexComp and E4 on the baseline the proposed algorithms (DBD

and DBD-RCO) perform better than the reference algorithms (ABOY and

ABOY-CORR). In general presence of moving artifacts causes an increase

in the rmse and decrease of Recall, with more evident effects on the E4.

Reliability indexes of HRV indicators (see Figure A.6) extracted from

the FlexComp BVP are similar to what found for the Fantasia dataset:

better performances of DBD and DBD-RCO algorithms but only RRmean

with distribution of BA ratios under 0.2 (around 0 for DBD and DBD-

RCO). Results on the BVP from E4 are comparable, although perfor-

mances of DBD and DBD-RCO are lower.

Body movements cause all the ratios to increase. Again, RRmean from

FlexCom appears a reliable indicator, although only the DBD-RCO al-

gorithm presents values below 0.1. For the E4, instead, BA ratio of the
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Figure A.5: Performances of IBI detection on the BVP from the FlexComp (left) and E4
(right) during baseline (top) and move (bottom) portions.

Figure A.6: BA ratio of HRV indicators on the BVP from the FlexComp (left) and E4
(right) during baseline (top) and move (bottom) portions. Vertical scale is limited to the
interval [0,2] for clarity.
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RRmean is around 0.2 for all algorithms.

A.4 Discussion

In this chapter we proposed the DBD and the RCO a pipeline for detection

and processing of cardiac signals from WDs, in particular for beat detec-

tion on signals from PPG sensors which represent a common embedded

technology to monitor cardiac activity. We compared the proposed algo-

rithm to a reference algorithm [1] in terms of beat detection, differences

in the IBI series and HRV indicators, using an existing dataset of clinical

signals and a dataset appositely created to assess performances on signals

from WDs.

Performances of DBD+RCO improved respect to the reference algo-

rithm in terms of beat detection and derived IBI values for both the types

of devices (clinical and wearable) and both the experimental conditions

(baseline and movement). The RCO also improves the results of the beat

detection on the ECG signal from the WD Comftech HeartBand.

Performance of DBD+RCO improved with respect to the reference al-

gorithm in terms of beat detection and derived IBI values for both the

types of devices (clinical and wearable) and both the experimental condi-

tions (baseline and movement). The RCO also improves the results of the

beat detection on the ECG signal from the WD Comftech HeartBand.

In absence of body movements the three signals provided similar results

in terms of beat detection and IBI series. Regarding HRV indicators the

results confirmed that the BVP signals provide unreliable estimates, in

particular for frequency domain indicators, as found in other studies [109].

The indicators computed on the Comftech HeartBand ECG signal showed

high accuracy in terms of Bland-Altman ratio, however frequency domain

indicators presented higher value, but still below the threshold value of 0.2.
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During the movements portion the BVP signals from both the Flex-

Comp and the Empatica E4 resulted highly affected by moving artifacts,

with slightly better performances for the clinical version (FlexComp). All

the HRV indicators, except the RRmean, presented high BA ratio, showing

low reliability. Instead, the Comftech HeartBand showed good results in

terms of beat detection and IBI series, while, among HRV indicators, only

RRmean showed good accordance with the reference.

In summary, the proposed pipeline for processing of cardiac data im-

proves the detection of beats on BVP. In general, cardiac signals acquired

with WDs result appropriate to estimate IBI and RRmean, but the errors

introduced by the technological constraints of these devices allow no accu-

rate analysis of other HRV indicators. This study highlights also that in

presence of body movements an electrocardiography-based device should

be used instead of PPG sensors (both clinical and wearable) as it provides

a signal which is less sensitive to moving artifacts.
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Appendix B

Peak based estimation of Bateman

parameters and of phasic skin

response

The analysis of Electrodermal Activity (EDA) is used to investigate the

psycho-physiological response in several research fields such as autism [106],

sleep [73], and epilepsy [89].

The EDA signal originates by the variation of skin conductivity due to

presence of sweat and it can be measured, for instance, by application of a

constant voltage or current between two electrodes that are applied to the

skin [104].

Two components contribute to the EDA signal: the Phasic Skin Re-

sponse (PSR) and the Tonic Skin Response (TSR), which represent two

different physiological phenomena [104]. The first depends on the trigger-

ing activity of the Sympathetic Nervous System (SNS) which sends a series

impulses to the sweating glands through the sudomotor nerve. Each im-

pulse causes an immediate and temporary increasing in the sweating level.

Then, if no more impulses are sent, the sweat level decreases due to the

diffusion on the skin. This physiological phenomenon is observed in the

EDA signal as a sudden peak in the conductivity and slow recovery to the
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baseline level. The PSR component is composed of the series of the peaks

originated from the triggering of the SNS and their subsequent recovery.

The PSR component is overlapped to the TSR component which repre-

sents the long-term variations in the sweat level due to other physiological

regulations: for instance thermoregulation and perspiration [14]. Thus,

the importance of EDA to study the Autonomic Nervous System (ANS)

activity is mainly associated to the analysis of the PSR component which

needs to be discriminated by application of appropriate signal processing

techniques.

The main goal is the identification of the peaks, as often subsequent

peaks are masked by the slow recovering phase of the previous ones. Several

approaches have been proposed, mainly based on deconvolution with a

parametrized function [14, 4, 6]. In this study we refer to the approach

of Benedek and colleagues [13]: they model the SNS triggering activity

with a series of delta impulses and the sweating activity of the glands

as a convolutional filter characterized by a Bateman function as Impulse

Response Function (IRF). The reconstruction of the SNS triggering activity

is performed in two stages: (a) the deconvolution of the EDA signal using

the Bateman function as IRF and (b) the identification of inter peaks

periods to identify the TSR and subsequently the PSR.

However, due to inter-subject variability the two parameters regulating

the Bateman function can not be known a-priori and need to be estimated.

To this aim, Benedek and colleagues proposed an optimization procedure

based on a loss function which takes into account the amount of negative

portions and average width of the delta impulses in the PSR.

In this work we present a novel pipeline which aims at improving the dis-

crimination of PSR and TSR components by two key steps: (a) stochastic

optimization of a peak-based loss function to estimate the Bateman pa-

rameters (Section B.1); (b) identification of inter-peak intervals based on
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Figure B.1: Flow charts of the two novel algorithms introduced in this paper: A) peak
based loss function and B) derivative-based phasic estimation.

signal derivative to estimate the PSR B.2 (see Figure B.1)

We validated the pipeline on two datasets: the DEAP dataset [67] and

the WCS dataset (see Chapter 4). The methodology is described in Section

B.3 and results are presented and discussed in Section B.4 and B.5.

B.0.1 Notation

Physiological digital signals are a sampled version of a continuous variable

s(t). When the sampling rate, or sampling frequency, (fsamp) is fixed, they
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Symbol Meaning Symbol Meaning

Ḋ
Ideal driver

function
D

Estimated driver
function

Ri
Recovery portion

of the peak i
Rdt

i

Detrended recovery
portion of the peak

i

Pi

4-seconds portion
centered on the

peak i
Ddp

De-peaked version
of the estimated
driver function

Φ
Estimated phasic

component
T

Estimated tonic
component

Table B.1: Symbols used to indicate the main signals or signal components computed in
the pipeline.

can be seen as a numerical series and indicated as s[n]. However, to ease

the notation, when not explicitly required we omit the [n]; in addition, we

use capital letters to indicate the signals (or portions of signals); see Table

B.1 for a summary of main symbols used to indicate the signals components

computed in the pipelines.

B.1 Loss function

Following the model proposed by Benedek and colleagues [13], the first step

in the estimation of the triggering activity of the SNS is the computation

of the driver function Ḋ, which is performed by deconvolution.

In particular, we use the discrete version of the Bateman function as

IRF:

B[n] = e
−n
N1 − e

−n
N2 (B.1)

where N1 = τ1fsamp and N2 = τ2fsamp. The two temporal constants τ1 and

τ2 depend on physiological characteristics of the individuals and need to
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be estimated.

In the ideal case, Ḋ is a series of discrete delta impulses representing

the triggering activity of the SNS (the PSR component) overlapped to the

TSR component which derives from long-term physiological variations. In

the real case the estimated driving function D is affected by errors due

to: (a) existing noise in the acquired signal; (b) the deconvolution process

which tends to amplify the noise; (c) the approximations due to the model.

For this reason, the optimization procedure aims at identifying the op-

timal parameters τ1 and τ2 to obtain a driving function similar to the ideal

case. The optimization procedure is performed by minimization of a loss

function which should represent the errors introduced in the deconvolution

process. To identify an optimal loss function to be minimized we performed

a test to investigate the effects of wrong estimates of τ1 and τ2 on the shape

of the resulting deconvolved signal (see Figure B.2). We generated a surro-

gate EDA signal (fsamp = 8 Hz) by convolution of a discrete delta impulse

with a Bateman function (τ1 = 0.45s, τ2 = 1.75s). Then we deconvolved

the surrogate signal using a set of Bateman functions with different values

of τ1 and τ2. We observed that wrong values of τ1 and τ2 alter the shape

of the driving function after the peak instant: in particular we observe a

longer recovery portion. In addition, the magnitude of the peak is also

influenced. Based on these observations, we propose a novel loss function

which estimates the energy of these alterations that is minimized by the

optimization procedure.

The algorithm to compute the loss is regulated by the parameter δ which

is the expected amplitude of the minimum peak in the EDA signal. In lit-

erature this value varies between 0.01 and 0.05 µS. In this study we set

δ = 0.02µS, however this value can be changed according to the experi-

mental settings (e.g. device sensitivity, signal noise ratio). The parameter

δ is used as threshold value to discriminate between peaks associated to
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Figure B.2: Effects of wrong estimates of τ1 and τ2 on the recovery part of the resulting
deconvolved signal. Top row: effects of smaller (left) and greater (right) values of τ1;
bottom row: effects of smaller (left) and greater (right) values of τ2. Signals have been
normalized to have a maximum amplitude of 1.

SNS activity and peaks due to noise.

The loss function (see Figure B.1A) operates locally to compute the

amount of scattered energy for each peak in D; then the global loss is

computed as average over all the peaks, as described in the following para-

graphs.

It is worth noting that, differently from [13], the proposed loss function

is computed directly on the estimated driver function D̂ and not on the

PSR component. Thus, the optimization procedure depends only on the

deconvolution process and not also on the method adopted to compute the

TSR/PSR components.

B.1.1 Stage 1: Identification of peaks

The first stage aims at identifying the peak instants pi in D; only peaks

having amplitude greater than δ are considered. The peak instants pi are

144



APPENDIX B. PHASIC ESTIMATION B.1. LOSS FUNCTION

used to segment the recovery portion of each peak (Ri): the portion of D

in the interval [pi, pi +W ], being W the number of samples corresponding

to 10 seconds of signal. The recovery portion Ri will then be used in the

following detrending procedure.

Note that it can occur that the distance between a peak instant pi and

the following pi+1 is less than 10s. We propose two different approaches to

deal with this case. The first is to skip the peak i: this approach allows

for a more precise detrending which would not be affected by the presence

of overlapping peaks; however it would not be sustainable when analyzing

signals with high density of peaks.

The second approach is to keep the peak i: this approach is prone to

be less stable due to the effects of overlapping peaks, but it can be always

applied. However, in the ideal case when optimal Bateman parameters are

chosen, the effect of overlapping peaks is expected to be minimal.

B.1.2 Stage 2: Detrending

The second stage aims at subtracting the linear support of Ri which rep-

resents the contribution of the TSR component. Two approaches are pro-

posed, depending on the strategy adopted in the first stage to deal with

overlapping peaks.

When overlapping peaks are skipped and only isolated peaks are con-

sidered the estimation of the linear support is based on the last 5 seconds

portion of Ri that is used to fit a linear model. Figure B.3A exemplifies

the procedure. The estimated linear support is then subtracted from Ri to

obtain the detrended portion of the driving function corresponding to the

peak i: Rdt
i .

This method is not applicable in case of overlapping peaks as a peak

in last 5 seconds portion would affect the estimation of the linear model.

In this case the linear model is estimated using the minima in the portion
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Figure B.3: Detrending in case of non overlapping (A) and overlapping (B) peaks.

(see Figure B.3B) and then subtracted from Ri to obtain Rdt
i .

B.1.3 Stage 3: Computation of energy

To estimate the alteration in the driving function introduced by non-

optimal Bateman parameters we compute the amount of energy after the

peak in the detrended portion Rdt
i , normalized to account for the amplitude

of the peak:

Ei =

√∑W
k=1(R

dt
i [k])2

Rdt
i [1]

(B.2)

The global loss is then computed as the averaged energy over all the

peaks: E =
∑

iEi

N , where N is the number of peaks used to compute the

loss.

B.2 Estimation of PSR component

The method here proposed (see Figure B.1B) aims at improving the iden-

tification of inter peak intervals in D by analyzing its derivative: D′. The

identification of inter peak intervals is a fundamental step to discriminate

the PSR and TSR components. As for the loss function, the algorithm

to estimate the PSR component is regulated by the parameter δ with the
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same meaning. A detailed explanation of the algorithm is given in the next

paragraphs.

B.2.1 Stage 1: Identification of candidate peaks

As in the first stage of the computation of the loss function, the algorithm

operates first locally on each peak. The first step is the identification of

peak instants in D associated to SNS activity. Then for each peak i the 4

seconds length portion centered on the peak (Pi) is considered.

B.2.2 Stage 2: Identification of onset and termination instants

The derivative Pi
′ is computed in order to find the onset instant noi and

the termination instant nti of each peak i, as those instants immediately

before and after pi such as Pi
′[k] = 0, k = noi , n

t
i. Each detected peak in

D is then substituted by a linear interpolation between each noi and nti to

generate a de-peaked driver function Ddp.

B.2.3 Stage 3: Interpolation

Ddp is used to generate a 1 second-spaced grid to estimate the TSR com-

ponent T by spline interpolation, as in [13]. Then the PSR component is

computed as Φ = D − T .

B.3 Materials and Methods

We first tested the pipeline on the DEAP dataset [67]. The DEAP dataset

contains physiological signals acquired with medical-grade device (fsamp=512

Hz) collected from 32 subjects while watching 40 music videos (duration

of stimuli: 60 seconds).
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In addition, we tested the proposed pipeline on the stimuli portions of

the WCS dataset (see Chapter 4) that has been appositely created in order

to compare the performance on signals from wearable and clinical-grade

devices.

B.3.1 Metrics

As proposed in [13], we used the negativity index (ν) and the average

width of the peaks (ψ) to evaluate the performance of the pipeline. Both

indexes are computed after optimization of the parameters τ1 and τ2 and

estimation of the PSR component (Φ). The two metrics, ν and ψ, aim at

quantifying the distance of the computed Φ from the ideal series of discrete

delta impulses, therefore lower values indicate a better performance.

The negativity index ν is computed as:

ν = −
∑

k Φν[k]

N
(B.3)

where Φν[k] = Φ[k] if Φ[k] < 0,Φν[k] = 0 otherwise and N is the number

of samples in the signal.

The average width index ψ is computed as:

ψ =

∑
k Φψ[k]

np
(B.4)

where Φψ[k] = 1 if Φ[k] > δ
20 ,Φ

ψ[k] = 0 otherwise, and np is the number of

detected peaks.

B.3.2 Processing procedure

The EDA signal is first down sampled to 4 Hz then filtered to remove high

frequency noise (infinite impulse response filter, fpass = 0.8 Hz, fstop = 1.1

Hz).
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The optimization of the Bateman parameters to find the candidate τ c1

and τ c2 is performed using the Basin-Hopping stochastic algorithm (as im-

plemented in the Python package scipy version 0.18.1), using τ c1 = 0.75

and τ c2 = 2 for initialization. Boundaries on the values of the parameters

are set to: τ1 ∈ [0.1, 0.99], τ2 ∈ [1.5, 5], the maximum number of iterations

is set to 100 with option to terminate the optimization when the result is

stable for 10 subsequent iterations.

The procedure is repeated on consecutive segments of the EDA sig-

nal extracted by windowing (length of the window: 180 s, shift between

consecutive windows: 10 s) to generate multiple estimates of Bateman pa-

rameters for each subject. Then the average values τ̂1 and τ̂2 are used to

generate the Bateman function to deconvolve the EDA signal and obtain

the driving function. Finally, PSR component Φ is estimated and metrics

are computed.

In this work we compare three pipelines:

1. BEN: loss function to estimate Bateman parameters and PSR estima-

tion algorithm as in [13];

2. P10: loss function based on the energy after the peak and rejection of

peaks distant less than 10 seconds; PSR estimation algorithm based

on the derivative of the driver function;

3. PKB: loss function based on the energy after the peak computed on

all peaks and PSR estimation algorithm based on the derivative of the

driver function.

All the computations have been performed in Python using pyPhysio

(see Chapter 3) and scipy (version 0.18.1) packages.
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Figure B.4: Performances of the three pipeline on the DEAP dataset. By subject (left)
and overall distribution (right).

Figure B.5: Performances of the three pipelines on the WCS dataset. By subject (left)
and overall distribution (right).

B.4 Results

The two novel pipelines (P10 and PKB) provided a better performance

than the state-of-art procedure (BEN) on both datasets, both in terms of

negativity and mean width of peaks (see Figures B.4 and B.5).

Further, although values of estimated Bateman parameters differ (see

Tables B.2 and B.3), P10 and PKB exhibit comparable performances. This

suggests that for a good estimation of the PSR component the correct iden-

tification of the inter-peak intervals in the driver function is more important

than the correct estimation of the Bateman parameters.

Regarding the analysis on the WCS dataset, we decided to focus on the

EDA signals collected with the professional device (Infinity FlexComp),

as EDA signals collected with Empatica E4 have a very poor quality and
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τ1 τ2

Subject ID P10 PKB BEN P10 PKB BEN

1 0.56 0.67 0.59 2.19 2.56 2.16
2 0.7 0.85 0.76 2.3 2.54 2.02
3 0.47 0.78 0.69 2.1 2.56 2.08
4 0.82 0.83 0.76 2.17 2.85 2.14
5 0.69 0.71 0.78 2.23 2.77 2.13
6 0.63 0.73 0.51 2.05 2.59 2.26
7 0.72 0.86 0.75 2.28 3.29 2
8 0.78 0.72 0.82 2.43 3.15 2.18
9 0.78 0.82 0.8 2.07 3.96 2.2
10 0.79 0.68 0.76 2.35 3.35 2.3
11 0.8 0.8 0.77 2.38 3.46 2.15
12 0.63 0.81 0.79 2.36 2.94 1.98
13 0.78 0.87 0.81 2.18 2.84 2.24
14 0.73 0.79 0.74 2.1 2.94 2.4
15 0.51 0.68 0.52 2.02 2.57 2.45
16 0.52 0.75 0.64 2.09 2.58 2.35
17 0.46 0.65 0.7 2.01 2.24 2.04
18 0.67 0.67 0.68 2.04 3.3 2.19
19 0.63 0.61 0.79 2.17 2.98 2.35
20 0.83 0.75 0.8 2.09 2.98 2.31
21 0.62 0.61 0.7 2.29 2.92 2.39
22 0.77 0.85 0.67 2.42 3.28 2.45
23 0.68 0.58 0.57 2.04 2.34 2.11
24 0.46 0.69 0.46 2.07 2.76 2.43
25 0.53 0.79 0.39 2.09 2.5 2.05
26 0.7 0.52 0.75 2.04 2.07 2.06
27 0.59 0.71 0.77 2.22 2.51 2.06
28 0.6 0.74 0.59 1.93 2.72 2.45
29 0.34 0.59 0.59 2.06 2.3 2.03
30 0.71 0.68 0.63 1.94 2.55 2.46
31 0.58 0.77 0.55 1.88 2.62 2.3
32 0.61 0.84 0.62 2.45 2.49 2.09

Table B.2: Values of estimated Bateman parameters for the subjects in the DEAP dataset,
according to different pipelines
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τ1 τ2

Subject ID P10 PKB BEN P10 PKB BEN

1 0.71 0.62 0.62 2.04 2.77 2.36
2 0.57 0.68 0.73 2.08 2.5 2.28
3 0.64 0.8 0.62 2.43 2.55 2.12
4 0.73 0.75 0.66 2.08 2.32 2.11
5 0.69 0.52 0.73 2.19 2.57 2.42
6 0.69 0.73 0.8 2.29 2.66 2.05
7 0.5 0.82 0.72 2.11 2.38 2.15
8 0.36 0.74 0.53 1.95 2.14 2.42
9 0.75 0.71 0.64 1.99 2.8 2.59
10 0.74 0.73 0.68 1.98 2.78 2.21
11 0.86 0.72 0.87 2.1 2.54 2.53
12 0.44 0.73 0.63 1.89 2.77 2.34
13 0.61 0.69 0.71 2.24 3.16 1.98
14 0.57 0.65 0.66 1.89 2.22 2.48
15 0.55 0.73 0.63 2.24 3.02 2.24
16 0.76 0.7 0.73 2.4 2.64 2.33
17 0.81 0.77 0.77 2.6 3.09 2.19
18 0.77 0.8 0.82 2.43 2.77 2.39

Table B.3: Values of estimated Bateman parameters for the subjects in the WCS-Medical
dataset, according to the three pipelines

it was not possible to perform the identification of the peaks. Results on

the WCS dataset confirm that both P10 and PKB improve performances:

both the negativity index and the mean width of the peaks are lower than

those provided by the BEN pipeline.

B.5 Discussion

According to the defined metrics, the P10 and PKB pipelines allowed better

estimations of the PSR component, although it remains unclear whether

the correct estimation of the Bateman parameters represents a fundamental

step in the pipeline. In fact, the choice of the loss function adopted to

optimize the Bateman parameters seemed not to significantly influence the
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results; instead, it is probably the estimation of the PSR component of

the driving function that provides the key improvement. However, the loss

functions here proposed distinguish from the original one from Benedek

and colleagues in the mathematical formulation and in the fact that they

are computed on the driving function and not on the PSR component, thus

being not dependent on the method adopted to isolate the TSR component.

An objective evaluation it is not possible due to the lack of a ground

truth signal with known Bateman parameters. A better insight would be

possible by performing additional simulated studies to be able to control

the true value of the Bateman parameters.

Unfortunately, we were not able to investigate the performance of the

proposed pipeline on EDA signal acquired with a wearable device as the

signal obtained from the Empatica E4 had a very poor quality. Further

investigation in this sense is therefore needed, possibly using a different

device.
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Appendix C

Wearable Devices

In this chapter we list a set of commercially available WDs that have been

considered and tested in this work.

C.1 Empatica E4

The Empatica E4 wristband (see Figure C.1A) embeds 4 sensors for: Blood

Volume Pulse (BVP) for monitoring of cardiac activity [64 Hz], Electro-

dermal Activity (EDA) [4 Hz], Skin Temperature [4 Hz] and Acceleration

[32 Hz]. Its main operational mode is online streaming, in which collected

data are sent to a smartphone through Bluetooth Low Energy (BLE). It

also features an offline acquisition mode in which data are saved on the

local memory. In this case, to access data the device needs to be first con-

nected to a computer where the Empatica Manager application takes care

of uploading data to the Empatica server from where the user can then

download them through the Empatica Dashboard web-interface. Auton-

omy of battery is about 24 hours. A Software Development Kit is provided

to develop custom applications for data acquisition on Android. Other-

wise, it is also possible to use the proprietary application, Empatica RT,

which sends the data to the proprietary server from where the data can be

downloaded. The device embeds a clock that automatically synchronizes
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Figure C.1: Wearable devices tested in this work. A: Empatica E4 (picture from
www.empatica.com); B: Mio Alpha (picture from www.mioglobal.com); C: ComfTech
smart garments: t-shirt with acquisition unit; D: Interaxon Muse (picture from
www.choosemuse.com); E: Emotiv Epoch (picture from www.emotiv.com); F: EXEL
Exls3 (picture from www.exelmicroel.com).

with the computer clock once connected through the Empatica Manager

application.

C.2 Mio Alpha 2/Link

The Mio Alpha wristwatch (see Figure C.1B) embeds a sensor for BVP and

a three axes accelerometer. Raw data are not accessible and are internally

processed to return an indication of the Heart Rate in beats per minute.

Local memory allows the storage of approximately 24 hours of data when

the BLE streaming is not active; battery life is about 24 hours. Access to

processed data and control of the device is available and custom applica-

tions for data acquisition can be developed. However, only HR reads are

available, raw data can not be accessed.
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C.3 ComfTech smart garments

This category includes a group of sensorized garments (see Figure C.1C)

produced by Comftech which embed textile electrodes connected to a small-

size external removable electronic unit for acquisition of the electrocar-

diogram (ECG). The electronic unit also embeds a sensor for measuring

acceleration. Sampling frequency can be set up to 200 Hz and data can

only be streamed through Bluetooth as a local memory is not provided.

Battery life has been empirically measured of about 5 hours. The design

of garments is optimized and can be further customized according to the

expected usage. In particular, the displacement of chest electrodes is mini-

mized and the acquired signal is therefore less sensitive to moving artifacts.

Access to raw data and control of the device is available through by the

proprietary communication protocol, which is provided with the devices.

C.4 Interaxon Muse

The Interaxon Muse headband (see Figure C.1D) acquires a 4 channels

electroencephalogram (ECG) at 500 Hz sampling frequency. The com-

mercial purpose is to improve meditation, however it can also be used for

real-life monitoring of brain activity. The main feature is the adoption

of dry electrodes, without any need of skin preparation. Communication

is through BLE and no local memory is provided. An SDK is available

to develop custom applications for data acquisition. However, this device

has been only partially tested and an assessment of the signal quality and

validity for scientific purposes is required.
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C.5 Emotiv Epoc/+

The Emotiv Epoc headset (see Figure C.1E) acquires a 14 channels EEG

signal [256 Hz]. Unlike Interaxon Muse, Epoch+ employs wet electrodes,

which limit usability but are expected to improve the quality of the sig-

nal. It communicates via BLE, battery life is about 12 hours and no local

memory is provided. Raw data are accessible only through an SDK sold

separately. The device has been only partially tested, stability of signal

appeared to be discrete but accurate information about signal quality is

not available.

C.6 EXEL Exls3

The EXEL Exls3 device (see Figure C.1F) is an Inertial Measurement Unit

(IMU) which embeds a tri-axial accelerometer, tri-axial gyroscope and tri-

axial magnetometer for complete monitoring of activity and positioning.

Sampling frequency can be set up to 300 Hz and data can be stored on

the local memory (1 Gb) and/or streamed through Bluetooth. Battery

autonomy is of about 2 hours. Access to raw data and control of the device

is enabled by the proprietary communication protocol, which is provided

with the devices.
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pyPhysio tutorial

In this tutorial we first describe the usage of the two main classes in

pyPhysio: Signal and Algorithm, then we provide two examples of signal

processing pipelines for Heart Rate Variability (HRV) and Electrodermal

Activity (EDA) analysis.

D.1 Signals in pyPhysio

A signal is an ordered vector of timestamp-value pairs, where the times-

tamp is the instant at which the measured phenomenon had that value.

In pyPhysio a signal is represented by the class Signal which extends the

numpy.ndarray class. In this first section we will see the different types of

signals that can be defined and their properties.

pyPhysio provides two subclasses of Signal to represent the physio-

logical signals that can be collected during an experiment: EvenlySignal

and UnevenlySIgnal. In the following code we import both, together with

additional libraries used in these examples:

## import libraries

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt
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# import the Signal classes

from pyphysio import EvenlySignal , UnevenlySignal

Listing D.1: Import libraries and Signal classes

D.1.1 EvenlySignal

When the signal is sampled with a fixed sampling frequency it is sufficient

to know the timestamp at which the acquisition started and the sampling

frequency to reconstruct the timestamp of each sample. This type of signal

is represented by the class EvenlySignal.

Therefore, to create an instance of EvenlySignal these are the input

attributes needed:

• values : values of the signal;

• sampling freq : sampling frequency;

• start time : temporal reference of the start of the signal. This is

optional, if omitted it will be set to 0;

• signal nature : identifier of the type of the signal. This information

can be used to check the appropriateness of the algorithms applied to

the signal. Now it is optional and if omitted it will be set to ‘’.

In the following code we generate an EvenlySignal using as values some

randomly generated numbers:

## create fake data

np.random.seed (4)

signal_values = np.random.uniform(0, 1, size = 1000)

## set the sampling frequency

fsamp = 100 # Hz

## set the starting time
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tstart = 100 # s

## create the Evenly signal

s_fake = EvenlySignal(values = signal_values ,

sampling_freq = fsamp ,

start_time = tstart ,

signal_nature = ’fake’

)

## plot

s_fake.plot()

Listing D.2: Create an EvenlySignal

Figure D.1: Plot of the EvenlySignal created in Listing D.2

Class methods are provided to facilitate the management and processing

of the signals:

• get ...() type functions can be used to check signal attributes;

• plot() will plot the signal using the matplotlib library;

• segment time(t start, t stop) and

• segment idx(idx start, idx stop) can be used to extract a portion

of the signal;
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• resample(fout) can be used to change the sampling frequency.

In the following code we use the get ...() type functions to check the

attributes of the created EvenlySignal:

# chech signal properties

print(’Sampling freq .:{}’.format( s_fake.get_sampling_freq () ))

print(’Start time: {}’.format( s_fake.get_start_time () ))

print(’End time: {}’.format( s_fake.get_end_time () ))

print(’Duration: {}’.format( s_fake.get_duration () ))

print(’Nature: {}’.format( s_fake.get_signal_nature () ))

pyPhysio provides also some sample phyiological signals that can be

used for tests. In the following code we import the Electrocardiography

(ECG) and EDA signals and create two EvenlySignal instances:

# import data from included examples

from pyphysio import TestData

ecg_data = TestData.ecg()

eda_data = TestData.eda()

# create two signals

fsamp = 2048

tstart_ecg = 15

tstart_eda = 5

ecg = EvenlySignal(values = ecg_data ,

sampling_freq = fsamp ,

signal_nature = ’ecg’,

start_time = tstart_ecg)

eda = EvenlySignal(values = eda_data ,

sampling_freq = fsamp ,

signal_nature = ’eda’,

start_time = tstart_eda)

# plot

ax1 = plt.subplot (211)
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ecg.plot()

plt.subplot (212, sharex=ax1)

eda.plot()

Listing D.3: Import sample data provided in pyPhysio

Figure D.2: Plot resulting from Listing D.3. Note the different starting time of the two
signals.

D.1.2 UnevenlySignal

Other types of signals, for instance triggers indicating occurrences of heart-

beats or events, are series of samples which are not equally temporally

spaced. Thus, the sampling frequency is not fixed and it is necessary to

store the timestamp of each sample. This type of signals is represented by

the class UnevenlySignal.

Therefore to create an instance of UnevenlySignal these are these ad-

ditional input attributes are needed:

• x values : information about the temporal position of each sample.

Should be of the same size of values;

• x type : ’instants’ or ’indices’ indicates what type of x values

has been used.
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Two ways are allowed to define the temporal information when creating

an UnevenlySignal:

1. by defining the indexes (x type=’indices’): x values are indices

of an array and the instants are automatically computed using the

information from the sampling frequency and the start time;

2. by defining the instants (x type=’instants’): x values are instants

and the indices are automatically computed using the information

from the sampling frequency and the start time.

As a general rule, the start time is always associated to the index 0.

In the following code we define two instances of an UnevenlySignal using

both methods:

## create fake data

signal_values = np.arange (100)

## create fake indices

idx = np.arange (100)

idx[-1] = 125

## set the sampling frequency

fsamp = 10 # Hz

## set the starting time

tstart = 10 # s

## create an Unevenly signal defining the indices

x_values_idx = idx

s_fake_idx = UnevenlySignal(values = signal_values ,

sampling_freq = fsamp ,

signal_nature = ’fake’,

start_time = tstart ,

x_values = x_values_idx ,

x_type = ’indices ’)
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## create an Unevenly signal defining the indices

x_values_time = idx/fsamp + 10

## set the starting time

tstart = 0

s_fake_time = UnevenlySignal(values = signal_values ,

sampling_freq = fsamp ,

signal_nature = ’fake’,

start_time = tstart ,

x_values = x_values_time ,

x_type = ’instants ’)

Listing D.4: Creation of UnevenlySignal instances

D.1.3 Segmentation of signals

Two general class functions are provided to segment a signal:

1. segment time(t start, t stop) is used to extract a portion of the

signal between the instants t start and t stop;

2. segment idx(idx start, idx stop) is used to extract a portion of

the signal between the indices idx start and idx stop.

The output signal will inherit sampling freq and signal nature but

the start time will be set to t start or to the instant corresponding to

idx start accordingly to the method used:

## segmentation of EvenlySignal

ecg_segment = ecg.segment_time (45, 54)

eda_segment = eda.segment_time (45, 54)

## plot

ax1 = plt.subplot (211)

ecg.plot()

ecg_segment.plot(’r’)
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plt.subplot (212, sharex=ax1)

eda.plot()

eda_segment.plot(’r’)

Listing D.5: Segmentation of signals

Figure D.3: Plot resulting from Listing D.5

D.2 Algorithms in pyPhysio

A signal processing step is a computational function F that operates on an

input signal to produce a result. It is characterized by a set of parameters

p that regulate its behavior (se Figure 3.2).

In pyPhysio each processing step is represented by an instance of a

class derived from the generic class Algorithm. The type of function or

algorithm is given by the Class name (e.g. BeatFromECG extracts the heart-

beats from an ECG signal, PeakDetection detects the peaks in the input

signal). The parameters of the function/algorithm are the attributes of the

created instance.

Therefore, a processing step is defined by creating a new instance of the

class, which is initialized with the given parameters:

processing_step = ph.BeatFromECG(parameters)

Listing D.6: Create a generic processing step
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To execute the processing step we need to give as input an instance of

the class Signal:

output = processing_step(input)

Listing D.7: Execute a generic processing step

Algorithms in pyPhysio are grouped in four classes:

1. Filters : deterministic algorithms that modify the values of the input

signal without changing its nature;

2. Estimators : algorithms that aim at extracting information from the

input signal which is given in output as a signal with a different nature;

3. Indicators : algorithms that operate on the signal to provide a scalar

value (or metrics);

4. Tools : algorithms that can be useful for the signal processing and

return as output one or more numpy arrays or scalars.

D.2.1 Filters

Filters return a signal which has the same signal nature of the input

signal. The name Filters recalls the aim of these algorithms which is in

general to increase the Signal/Noise ratio by filtering out the unwanted

components in a signal (e.g.: high frequency noise). In the following snip-

pet we create an Infinite Impulse Response (IIR) filter to cut the frequencies

above 50 Hz:

import pyphysio.filters.Filters as flt

## create an IIRFilter

lowpass_50 = flt.IIRFilter(fp=50, fs=75, ftype=’ellip ’)

## check parameters

print(lowpass_50)
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## OR

lowpass_50.get()

## apply the IIRFilter

ecg_filtered = lowpass_50(ecg)

## plot

ecg.plot()

ecg_filtered.plot()

Listing D.8: Create and apply a Filter

Figure D.4: Plot resulting from Listing D.8

D.2.2 Estimators

Estimators are algorithms that aim at extracting the information of interest

from the input signal, thus returning a new signal which has a different

signal nature.

The name Estimators recalls the fact that the information extraction

depends on the value of the algorithm parameters which might not be

known a-priori. Thus, the result should be considered as an estimate of

the real content of information of the input signal.

import pyphysio.estimators.Estimators as est
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## create a step to estimate the heart -beats

## position in the ECG signal

ibi_ecg = est.BeatFromECG ()

## check parameters

ibi_ecg

## apply the estimator

ibi = ibi_ecg(ecg_filtered)

## plot

ax1 = plt.subplot (211)

ecg.plot()

plt.subplot (212, sharex=ax1)

ibi.plot()

Listing D.9: Create and apply an Esimator

Figure D.5: Plot resulting from Listing D.9

D.2.3 Indicators

Indicators are algorithms that extract a metrics (scalar value) from the

input signal, for instance a statistic (e.g. average).

Three types of indicators are provided in pyPhysio:
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1. Time domain indicators: comprising simple statistical indicators and

other metrics that can be computed on the signal values;

2. Frequency domain indicators: metrics that are computed on the Power

Spectrum Density (PSD) of the signal;

3. Non-linear indicators: complex indicators that are computed on the

signal values (e.g. Entropy).

import pyphysio.indicators.TimeDomain as td_ind

import pyphysio.indicators.FrequencyDomain as fd_ind

## create the Root -mean -square of subsequent differences (RMSSD)

indicator

rmssd = td_ind.RMSSD()

## create the High Frequency band (HF) indicator

HF = fd_ind.PowerInBand(interp_freq =4, method = ’welch’,

freq_min =0.15 , freq_max =0.4)

## check parameters

print(rmssd)

print(HF)

## apply an Indicator

rmssd_ = rmssd(ibi)

HF_ = HF(ibi)

## print computed values

print(rmssd_)

print(HF_)

Listing D.10: Create and apply an Indicator

D.2.4 Tools

This is a collection of useful algorithms that can be used for signal process-

ing. These algorithms might return scalar values or numpy arrays. In the
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following snippet we create a step to compute the Power Spectrum Density

of the signal and plot the result:

import pyphysio.tools.Tools as tll

## create a step to extract the Power Spectrum Density

compute_psd = tll.PSD(method=’welch ’, interp_freq = 4)

## check parameters

compute_psd

## apply a Tool

frequencies , power = compute_psd(ibi)

## plot

plt.plot(frequencies , power)

plt.show()

Listing D.11: Create and apply a Tools

Figure D.6: Plot resulting from Listing D.11

D.3 Pipelines in pyPhysio

In this section we describe two pipelines for the processing of ECG and

EDA signals respectively.
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We assume that the physiological signals are acquired during a multi-

modal experiment composed of two sessions. The subject watches two

images with different emotional content to elicit low and high arousal re-

spectively. The objective of the experiment is to observe the physiological

response associated to the different elicited emotional states. The exper-

iment lasts 2 minutes, with 30 seconds of baseline at the beginning and

30 seconds of pause between the two images. In the following example

we will artificially create an additional signal, called label, to store the

information about the experimental timeline, i.e. which image is shown to

the subject. The label signal will be used to assign a label to the indica-

tors extracted during the windowing procedure to be able to compare the

distributions of the values under the different stimuli.

We divide the pipelines into three separate steps, according to the cat-

egorization proposed in Chapter 3 (see Figure 3.1):

1. Filtering and Preprocessing: this step includes all the procedures aim-

ing at increasing the signal/noise ratio, typically band-pass filtering,

smoothing, removal of artifacts. The output of this step is a new ver-

sion of the input signal with improved signal quality (reduced noise);

2. Information Extraction: this step aims at extracting the information

of interest from the physiological signal. The output is a new signal

containing only the information extracted and thus it has a different

signal nature;

3. Physiological Indicators: this steps produces a list of scalar values able

to describe the characteristics of the input signal. This step is usually

performed on small segments of the input signals which are extracted

using a sliding window on the whole length of the signal.

In the following examples we will also use the shortened syntax to apply

a signal processing step:
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## standard sintax: creation + execution

## creation of the processing step

filter_iir = ph.IIRFilter(fp=45, fs = 50, ftype=’ellip ’)

## execution on the input signal

ecg_out = filter_iir(ecg)

## shortened sintax: creation(execution)

ecg_out = ph.IIRFilter(fp=45, fs = 50, ftype=’ellip’)(ecg)

Listing D.12: Explicit and shortened syntax for Algorithms

D.3.1 ECG processing pipeline

In this pipeline we will process an ECG signal to estimate the Inter Beat

Interval (IBI) signal and compute few time-domain HRV indicators from

segments of the signal extracted by windowing (fixed size windows).

ECG Pipeline - Step 0: Import libraries and data

The starting point is importing pyPhysio and the other libraries required

for the analysis, together with the provided sample data:

## import libraries

from __future__ import division

import numpy as np

import matplotlib.pyplot as plt

## import all pyphysio classes and methods

import pyphysio as ph

## import data and creating a signal

ecg_data = ph.TestData.ecg()

fsamp = 2048

ecg = ph.EvenlySignal(values = ecg_data , sampling_freq = fsamp ,

signal_nature = ’ecg’)

Listing D.13: ECG Pipeline - Step 0: Import libraries and create the signal
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ECG Pipeline - Step 1: Filtering and preprocessing

In this step we aim at increasing the signal/noise ratio of the signal by

removing high-frequency noise. Then we normalize and over-sample the

signal to improve the detection of heart beats:

## IIR filtering : remove high frequency noise

ecg = ph.IIRFilter(fp=45, fs=50, ftype=’ellip’)(ecg)

## normalization : normalize data

ecg = ph.Normalize(norm_method=’standard ’)(ecg)

## resampling : increase the sampling frequency by cubic

interpolation

ecg = ecg.resample(fout =4096 , kind=’cubic’)

fsamp = 4096

Listing D.14: ECG Pipeline - Step 1: Filtering and Preprocessing

ECG Pipeline - Step 2: Information Extraction

The information we want to extract from the ECG signal is the position

of the heartbeats and then the IBI signal:

ibi = ph.BeatFromECG ()(ecg)

## check results so far

ax1 = plt.subplot (211)

ecg.plot()

plt.vlines(ibi.get_times (), np.min(ecg), np.max(ecg))

plt.subplot (212, sharex = ax1)

ibi.plot(’o-’)

plt.vlines(ibi.get_times (), np.min(ibi), np.max(ibi))

plt.show()

Listing D.15: ECG Pipeline - Step 2: Information Extraction
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Figure D.7: Plot resulting from Listing D.15

ECG Pipeline - Step 3: Physiological Indicators

Physiological indicators are computed over segments of the signal extracted

by a windowing function, to track the time-variant characteristics of the

Autonomic regulation.

The label signal is used to account for the experimental timeline and

encodes the information about the different stimuli:

## create fake label

label = np.zeros (1200)

label [300:600] = 1 # watching image 1

label [900:1200] = 2 # watching image 2

label = ph.EvenlySignal(label , sampling_freq = 10,

signal_nature = ’label’)

## plot

ax1 = plt.subplot (211)

ibi.plot(’.-’)

plt.subplot (212, sharex = ax1)

label.plot(’.-’)

plt.show()

Listing D.16: Creation of the label signal

In the following code we compute three time-domain HRV indicators
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Figure D.8: Plot resulting from Listing D.16

using a windowing function which generates fixed-length and overlapping

segments (length=10 s, step = 5 s). A Box and Whisker plot is generated

to compare the distribution of the RRmean indicator under the two stimuli:

## define a list of indicators we want to compute

hrv_indicators = [ph.Mean(name=’RRmean ’),

ph.StDev(name=’RRstd’),

ph.RMSSD(name=’rmsSD’)]

## fixed length windowing

fix_length = ph.FixedSegments(step = 5,

width = 10,

labels = label)

## computation of physiological indicators

hrv_ind , col_names = ph.fmap(fix_length , hrv_indicators , ibi)

## Box -Whisker plot

## extract the column with the label of each window

label_w = hrv_ind[:, np.where(col_names == ’label’)[0]]

## extract the column with the RRmean values

## computed on each window

rrmean_w = hrv_ind[:, np.where(col_names == ’RRmean ’)[0]]
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rrmean_image1 = rrmean_w[np.where(label_w ==1) [0]]

rrmean_image2 = rrmean_w[np.where(label_w ==2) [0]]

## create a box and whisker plot

## to compare the distibution of the RRmean indicator

plt.boxplot ([ rrmean_image1 , rrmean_image2],

labels =[’image1 ’, ’image2 ’])

plt.show()

Listing D.17: ECG Pipeline - Step 3: Physiological indicators

Figure D.9: Plot resulting from Listing D.17

Additional windowing methods are available: LabelSegments generates

a segment for each continuous portion of the label signal having the same

values; CustomSegments allows to manually define the start and stop in-

stants of the segments:

## label -based windowing

label_based = ph.LabelSegments(labels = label)

## custom windowing

custom_based = ph.CustomSegments(begins = [0, 30, 60, 90],

ends = [30, 60, 90,

label.get_duration ()])

Listing D.18: Additional windowing methods
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D.3.2 EDA processing pipeline

In this subsection we illustrate a pipeline for the analysis of an EDA signal:

eda_data = ph.TestData.eda()

eda = ph.EvenlySignal(values = eda_data ,

sampling_freq = fsamp ,

signal_nature = ’eda’)

Listing D.19: EDA Pipeline - Step 0: Create the signal

In the preprocessing step we reduce the sampling frequency and filter

out the high-frequency noise:

# decrease the sampling frequency by cubic interpolation

eda = eda.resample(fout=8, kind=’cubic’)

# remove high frequency noise

eda = ph.IIRFilter(fp=0.8, fs=1.1, ftype=’ellip’)(eda)

Listing D.20: EDA Pipeline - Step 1: Filtering and preprocessing

The information we want to extract from the EDA signal is the phasic

component associated to the sympathetic activity:

## estimate the driver function

driver = ph.DriverEstim ()(eda)

## compute the tonic and phasic components

phasic , tonic , tmp_ = ph.PhasicEstim(delta =0.02)(driver)

## check results so far

ax1 = plt.subplot (211)

eda.plot()

plt.subplot (212, sharex = ax1)

driver.plot()

phasic.plot()

tonic.plot()

plt.legend ([’driver ’, ’phasic ’, ’tonic’])

plt.show()

Listing D.21: EDA Pipeline - Step 2: Information Extraction
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Figure D.10: Plot resulting from Listing D.21

Finally, we compute some time-domain indicators on the signal and on

the characteristics of the peaks, then we visualize the results on a Box and

Whisker plot. Note that we re-use the windowing function used to process

the IBI signal to allow extracting the physiological indicators corresponding

to the same segments:

## define a list of indicators we want to compute

indicators_eda = [ph.Mean(name=’PhaMean ’),

ph.StDev(name=’StDev’),

ph.AUC(name=’AUC’),

ph.PeaksMean(name=’PksMean ’, delta =0.02) ,

ph.DurationMean(name=’DurMean ’, delta =0.02)]

## compute the indicators on the phasic signal

pha_ind , col_names = ph.fmap(fix_length , indicators_eda , phasic)

## Box -Whisker plot

## extract column with the labels for each window

label_w = pha_ind[:, np.where(col_names == ’label’)[0]]

## extract column with the PksMean values

## computed from each window

pksmean_w = pha_ind[:, np.where(col_names == ’PksMean ’)[0]]

pksmean_image1 = pksmean_w[np.where(label_w ==1) [0]]
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pksmean_image2 = pksmean_w[np.where(label_w ==2) [0]]

## create a box and whisker plot

## to compate the distibution of the RRmean indicator

plt.boxplot ([ pksmean_image1 , pksmean_image2],

labels =[’image1 ’, ’image2 ’])

plt.show()

Listing D.22: EDA Pipeline - Step 3: Physiological indicators

Figure D.11: Plot resulting from Listing D.22
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