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Abstract

The role of microbiome in disease onset and in equilibrium is being exposed by

a wealth of high-throughput omics methods. All key research directions, e.g.,

the study of gut microbiome dysbiosis in IBD/IBS, indicate the need for bioinfor-

matics methods that can model the complexity of the microbial communities ecol-

ogy and unravel its disease-associated perturbations. A most promising direction

is the “meta-omics” approach, that allows a profiling based on various biological

molecules at the metagenomic scale (e.g., metaproteomics, metametabolomics)

as well as different “microbial” omes (eukaryotes and viruses) within a system bi-

ology approach. This thesis introduces a bioinformatic framework for microbiota

datasets that combines predictive profiling, differential network analysis and meta-

omics integration. In detail, the framework identifies biomarkers discriminating

amongst clinical phenotypes, through machine learning techniques (Random For-

est or SVM) based on a complete Data Analysis Protocol derived by two initiatives

funded by FDA: the MicroArray Quality Control-II and Sequencing Quality Control

projects. The biomarkers are interpreted in terms of biological networks: the frame-

work provides a setup for networks inference, quantification of networks differences

based on the glocal Hamming and Ipsen-Mikhailov (HIM) distance and detection

of network communities. The differential analysis of networks allows the study of

microbiota structural organization as well as the evolving trajectories of microbial

communities associated to the dynamics of the target phenotypes. Moreover, the
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framework combines a novel similarity network fusion method and machine learn-

ing to identify biomarkers from the integration of multiple meta-omics data. The

framework implementation requires only standard open source computational biol-

ogy tools, as a combination of R/Bioconductor and Python functions. In particular,

full scripts for meta-omics integration are available in a GitHub repository to ease

reuse (https://github.com/AleZandona/INF). The pipeline has been vali-

dated on original data from three different clinical datasets. First, the predictive pro-

filing and the network differential analysis have been applied on a pediatric Inflam-

matory Bowel Disease (IBD) cohort (in faecal vs biopsy environments) and controls,

in collaboration with a multidisciplinary team at the Ospedale Pediatrico Bambino

Gesú (Rome, I). Then, the meta-omics integration has been tested on a paired

bacterial and fungal gut microbiota human IBD datasets from the Gastroenterol-

ogy Department of the Saint Antoine Hospital (Paris, F), thanks to the collaboration

with “Commensals and Probiotics-Host Interactions” team at INRA (Jouy-en-Josas,

F). Finally, the framework has been validated on a bacterial-fungal gut microbiota

dataset from children affected by Rett syndrome. The different nature of datasets

used for validation naturally supports the extension of the framework on different

omics datasets. Besides, clinical practice can take advantage of our framework,

given the reproducibility and robustness of results, ensured by the adopted Data

Analysis Protocol, as well as the biological relevance of the findings, confirmed

by the clinical collaborators. Specifically, the omics-based dysbiosis profiles and

the inferred biological networks can support the current diagnostic tools to reveal

disease-associated perturbations at a much prodromal earlier stage of disease and

may be used for disease prevention, diagnosis and prognosis.

https://github.com/AleZandona/INF


Chapter 1

Introduction

1.1 Background

Trillions of microbes inhabit human body and create complex, body-habitat-specific

ecosystems: the communities formed by this complement of cells is called the hu-

man microbiota, and its genomic content is defined as microbiome. Microbiota

contains almost ten times as many cells as are in the rest of the body and orders of

magnitude more genes than are included in the human genome [1, 2]. It is gener-

ally accepted that humans are born with eukaryotic human cells only, but over the

first years of life the oral cavity, the skin surface and gut are colonized by bacteria,

archaea, fungi, and viruses [3]. Among the epithelial surfaces colonized by mi-

crobes, the gastro-intestinal (GI) microbiota is one of the most diverse communities

consisting of hundreds of species which vary between individuals as well as across

space and time within the same individual [4, 5, 1]. The colonization of the GI tract

starts before birth with the fetus ingesting amniotic fluid containing microbes [6],

and continues with aerobic and facultative anaerobic colonization during the first

months of life, followed by obligate anaerobes and Bifidobacteria. The establish-

ment of the gut microbiota is recognized as a complex process influenced by factors
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at the level of the host and of the microbes themselves [7]. The bacterial commu-

nities inhabiting the gut compete for a limited quantity of diet-derived or mucus-

derived carbohydrate available for fermentation [8], with Clostridia and Bacteroidia

among the most dominant obligate anaerobes over Enterobacteriaceae. Indeed,

Clostridia and Bacteroidia use glycoside hydrolases (GHs) to degrade complex

carbohydrates, binding proteins to concentrate carbohydrate at their surface and

active transport systems to import substrates against a concentration gradient. By

contrast, a paucity of GHs make Enterobacteriaceae illequipped to degrade com-

plex carbohydrate, only relying on oligosaccharides passively transported across

barrier. This might partially explain the difficulty of Enterobacteriaceae to compete

with obligate anaerobic bacteria for high-energy nutrients to support their growth by

fermentation, with a disavantage in acquiring fermentable nutrients during anaero-

bic growth [9, 10]. This microbial community structure is characterized by a dynamic

steady-state undergoing changes due to genetic predispositions, external perturba-

tions (i.e., dietary input) and host-microbiota feedback interactions (i.e., host nutri-

ent requirements). As long as the host intestinal architecture and immune system

are in complementary homeostasis with the commensal microflora, the system is

considered as healthy. However, the baseline healthy homeostasis can be dis-

rupted by perturbations affecting the host (i.e., trauma, surgery, exposure to harsh

chemicals), the microbiota (i.e., the ingestion of toxins, drugs, tainted food) as well

as a combination of perturbations through diet, antibiotic regimens, chemotherapy

or radiation treatments. The disturbance of a balanced host-microbiota relationship

leading to a prolongation, exacerbation, or induction of a detrimental health effect

is defined as dysbiosis [11]. Several studies have associated a dysbiotic state of

microbiota with numerous diseases, including allergies, asthma, autism, diabetes,

multiple sclerosis, inflammatory bowel diseases and cancer [11, 12, 13, 14]. In

particular, the impact of the gut microbiota on gut and systemic immune homeosta-
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sis has gained tremendous research interest over the last few years. Indeed, the

intestinal epithelial barrier integrity is crucial for the maintenance of a correct in-

testinal absorption while shielding the body from the gut lumen content, including

dietary antigens and microbial products [15, 16]. It is already known that enteric

pathogens are able to strongly modify the intestinal permeability by affecting spe-

cific tight junction proteins [17, 18]; on the other hand, commensal and probiotic

bacteria are known to improve the intestinal barrier functioning [19, 20]. However,

the effects of the dysbiotic microbial community on cell permeability, junction com-

plexes and in general on human health are still unclear: an important approach to

investigate the microbiota and its interaction with the host is metagenomics.

Metagenomics is the study of the genomic DNA within a microbial community,

mainly based on high-throughput sequencing, which determines the precise order

of nucleotides within multiple DNA molecules in parallel, coupled with bioinformatic

analyses. In detail, two main methods are used in metagenomics to sequence

the microbiome: amplicon or targeted sequencing and shotgun or whole genome

sequencing (WGS). The first one uses pooled sequencing of the PCR product of

a specific marker gene (i.e., 16S and 18S ribosomal RNA) followed by mapping

the resulting uniquely identified sequences to a taxonomic database; on the other

hand, the WGS method sequences the whole metagenomic content in a sample.

Typically, the amplicon sequencing provides the composition of the sequenced mi-

crobial community, while WGS is commonly used to characterize the functional ca-

pability of the microbiota [21]. Some limitations of amplicon sequencing are: (1) lack

of specificity in the taxonomic resolution, so that only taxonomic categories at the

family or genus level can be well-characterized, (2) difficulties in cross-study com-

parisons, (3) reliance upon existing curated rRNA databases to align sequences

for taxonomic assignment. Despite its limitations, amplicon sequencing is popular

because it is cost-effective, it avoids non-bacterial contamination, it can potentially
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catch low abundance bacteria and mature analysis software are available. On the

other hand, WGS is more expensive, can miss the low abundant bacteria and the

resulting dataset is more challenging to process in terms of size. However, the

choice of WGS as sequencing method is motivated by its capability of profiling the

metabolic potential or virulence/antibiotic resistance, of surveying all domains of life

simultaneously and by its high taxonomic resolution. Sequencing the microbiome is

the initial step for metagenomics analysis, followed by a combination of data-driven

bioinformatics with knowledge-driven computational modeling. Data-driven bioin-

formatics refers to the ensemble of statistical, mathematical and algorithmic meth-

ods that aim to discover meaningful patterns from biological data, such as metage-

nomic sequences from HTS technologies. Knowledge-driven computational model-

ing simulates the cause and effect relationships of biological mechanisms encoding

knowledge about biological entities, processes and mechanisms into mathematical

objects. Bioinformatics extracts insights from experimental data and suggests new

hypotheses, but it is not capable of evaluating the causality behind these hypothe-

ses, which computational models can provide. On the other hand, computational

models design an abstraction of the real biological system and produce simulated

data similar to experimental data, which requires bioinformatics to properly analyze

[4].

In this thesis, bioinformatics and computational modeling are combined in order to

characterize (1) microbiota communities composition and structure, (2) microbe-

microbe and host-microbe interactions, and (3) model the dynamics of microbiota

perturbations leading to a disease status in human. More in detail, this thesis

adapts well-established machine learning and network analysis algorithms to pre-

dict phenotypes (e.g., microbiota-relate disease), perform classification (e.g., distin-

guish healthy from unhealthy microbiota), extract discriminative features and pro-

vide predictive dynamics of microbial communities. In this thesis such metage-
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nomic analyses, from DNA sequence processing to machine learning profiling and

differential network analysis, are implemented through Open Source Software tools

embedded into two bioinformatics framework: PreMONet (Predictive Meta-Omics

Networks) and its extended version I-PreMONet (Integrated Predictive Meta-Omics

Networks). A peculiarity of these frameworks is the predisposition to handle not

only microbiome data, but also other “meta-omics” data, intended as various biolog-

ical molecules at the metagenomic scale (e.g., metaproteomics, metametabolomics)

as well as different “microbial” omes (eukaryotes and viruses). In detail, PreMONet

provides a complete analysis of a specific meta-omics data type, while I-PreMONet

implements PreMONet analyses on multiple meta-omics data simultaneously. It is

clear that a comprehensive integrative modeling of “meta-omics” layers provides

a much rich characterization of the complementary aspects of microbial commu-

nities [22, 23, 24]. Conversely, several meta-omics pipelines have been currently

designed, but they are limited to a single meta-omics layer analysis. In particular,

current computational tools either provide the characterization of microbiome taxo-

nomic composition and functional potential (QIIME [25], UPARSE [26], MG-RAST

[27], MICCA [28]), or the analysis of the RNA transcript pool expressed by mi-

crobes (SortMeRNA [29], Trinity [30]) or the study of the whole protein complement

of microbiome (MetaProteomeAnalyzer [31], MASCOT [32]). Notably, I-PreMONet

collects computational tools in a modular and customizable manner, avoiding per-

forming these analyses separately, which usually requires the installation, integra-

tion, and tuning of multiple software packages, which is not always trivial even for

groups with extensive bioinformatics expertise.

In summary, a modular framework to find meta-omics features that distinguish

healthy from unhealthy microbial communities and modeling microbial environment

could aid in the diagnosis of microbiota-related diseases and could potentially pro-

vide new means to prevent disease onset or to improve prognosis.
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1.2 Publications

The central predictive profiling methods and differential networks analysis of micro-

biome data in this thesis have been implemented in PreMONet framework. The

framework, its core components and an application to 16S rRNA-Seq dataset from

gut microbiota of pediatric Inflammatory Bowel Disease (IBD) have been included

in a computational biology conference:

• Zandonà A., Chierici M., Jurman G., Furlanello C., Cucchiara S., Del Chierico

F., Putignani L. A metagenomic pipeline integrating predictive profiling

methods and complex networks for the analysis of NGS microbiome

data. NIPS Workshop - Machine Learning in Computational Biology, Mon-

treal, Canada. December 13, 2014.

Further, the PreMONet was extended with algorithms for meta-omics integration,

leading to a framework named I-PreMONet. The computational details and valida-

tion of I-PreMONet on a human IBD dataset (bacterial and fungal microbiota) are

described both in a conference contribution and in a full paper:

• Zandonà A., Trastulla L., Jurman G., Agostinelli C., Furlanello C., Lavie-Richard

M., Sokol H. Integrated meta-omics for models of gut inflammatory dis-

ease. NIPS Workshop - Machine Learning in Computational Biology, Barcelona,

Spain. December 10, 2016.

• Zandonà A., Trastulla L., Jurman G., Agostinelli C., Furlanello C., Lavie-Richard

M., Sokol H. Integrative Network Fusion of bacterial-fungal microbiota for

the identification of robust IBD biomarkers. Submitted to PLOS Compu-

tational Biology (2017).

Components of the idea were already made available in a collaborative paper and

in a conference contribution:
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• Del Chierico F., Nobili V., Vernocchi P., Russo A., De Stefanis C., Gnani D.,

Furlanello C., Zandonà A., Paci P., Capuani G., Dallapiccola B., Miccheli A.,

Alisi A., Putignani L. Gut microbiota profiling of pediatric NAFLD/obese

patients unveiled by an integrated meta-omics based approach. Hepa-

tology, 2016.

• Zandonà A. Complex networks for the analysis of microbiome structures.

Bringing Maths to Life (BMTL) Workshop, Naples, Italy. October 30, 2015.

The general machine learning setup for the identification of predictive biomarkers

has been presented at different conferences:

• Zandonà A. Choice of Training-Validation partitions impacts predictive

performances. 4th Italian Workshop on Machine Learning and Data Mining

(#AI4-MLDM), Ferrara, Italy. September 22, 2015.

• Zandonà A. A metagenomic pipeline integrating predictive profiling meth-

ods and complex networks for the analysis of NGS microbiome data. 3S

Biology Summer School, Center for Integrative Biology, University of Trento,

Italy. September 9, 2015.

• Zandonà A. From metagenomics to epigenetics: a bioinformatics pipeline.

KAUST-UCI Symposium-Epigenetics & Environment, King Abdullah Univer-

sity of Science and Technology, Thuwal, Saudi Arabia. Date TBE.

1.3 Thesis outline

This thesis describes PreMONet and its extended version I-PreMONet, their core

components (Chapters 2,3,4), their structure (Chapter 5) and their validation on

well-phenotyped clinical datasets (Chapter 6). Throughout the thesis, the term (I-

)PreMONet will be used to reference either of the frameworks.
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Chapter 2 introduces the (I-)PreMONet module that implements machine learn-

ing algorithms to discriminate host phenotypes (i.e., health conditions), based on

meta-omics abundance. In detail, Paragraph 2.1 focuses on the microbiota as a

tool for predicting host phenotypes, Paragraph 2.2 shows the mathematical details

of machine learning algorithms and Paragraph 2.3 describes the protocol adopted

to develop predictive models for meta-omics data.

Chapter 3 details the (I-)PreMONet component that models interactions among

meta-omics as well as microbiota structure and dynamics, in association with host

phenotype. Paragraph 3.1 describes the importance of ecological interactions within

microbiota for the host health, while Paragraphs 3.2, 3.3 and 3.4 show the ap-

proaches adopted to model microbial communities as networks and analyze their

perturbations associated to host phenotypes.

Chapter 4 focuses on I-PreMONet module, which offers a comprehensive integra-

tive modeling of multiple meta-omics layers. Paragraph 4.1 presents Similarity Net-

work Fusion (SNF), a state-of-the-art network-based method for meta-omics inte-

gration. Paragraph 4.2 introduces our rSNF extension, a feature ranking scheme

on integrative features that extends SNF. Finally, Paragraph 4.3 describes INF, our

framework combining a network fusion method with machine learning to identify

robust biomarkers from the integration of meta-omics data. Note that PreMONet

and I-PreMONet are equipped with the same modules for predictive modeling and

network analysis, except for INF, which is a component exclusively embedded into

I-PreMONet.

Chapter 5 is structured into two parts: a review of the bioinformatics frameworks

for meta-omics data that are popular in literature is followed by the description of

PreMONet and I-PreMONet design.

Chapter 6 reports the validation of our frameworks on three clinical metagenomic

datasets: gut microbiota composition of (1) children and (2) adults with Inflamma-
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tory Bowel Disease as well as (3) children affected by Rett syndrome. These case

studies are designed to identify meta-omics biomarkers discriminating amongst

clinical phenotypes and to study the dynamics of microbial communities associated

to the target phenotypes. In particular, dataset (1) provides the bacterial compo-

sition of gut microbiota, thus it is analyzed by PreMONet; conversely, datasets (2)

and (3) are analyzed by I-PreMONet, since both bacterial and fungal microbiota are

available.

General conclusions on (I-)PreMONet performance and biological significance, are

summarized in Chapter 7.
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Chapter 2

Predictive profiling

Early metagenomics studies on human microbiota mainly focused on its taxonomic

profiling, the characterization of microbial community composition and structure,

comparing samples from the same site among and between individuals [33, 2].

Subsequently, significant work has been devoted to reproducibly associate micro-

biome to specific diseases, such as inflammatory bowel disease [34, 23], diabetes

[35, 36] and cancer [37, 38]. One of the main challenges now is the develop-

ment of a microbiome-based diagnostic and possibly prognostic tool, able to es-

timate host phenotype for different illnesses or treatments, based on the current

state of the microbiota [39, 40]. Microbial biomarkers might potentially facilitate

more efficient and reliable clinical trials [39, 41] and confirm the diagnoses, as well

as predict treatment outcomes. However, a microbial predictive signature may be

complex: indeed, host phenotypes are commonly associated with changes in bac-

terial communities, not with a single specific biomarker. Machine learning offers

several promising tools to deal with such complex high-throughput data and predict

phenotypes, based on multivariate statistics, data mining and pattern recognition.
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2.1 Microbial biomarkers

Biomarkers have been defined by Perlis [41] as “the measurable characteristics

of an individual that may represent risk factors for a disease or outcome, or that

may be indicators of disease progression or of treatment-associated changes”. An

imbalance in the gut microbial community composition has been strongly related

to disease, thus each microbial taxa can be potentially referred to as a biomarker.

Thus, detecting microbial taxa that broadly distinguish healthy from “unhealthy” mi-

crobiomes or discriminate phenotypes could support the diagnosis of microbiome

related diseases and aid in disease onset prevention [11]. Basically, microbial

biomarkers discovery starts with the stratification of people on the basis of the mi-

crobiome, followed by the development of a predictive model that can then be used

to predict the phenotype associated with specific microbial communities. Impor-

tantly, the traits leading to disease can be commonly related to simultaneous over-

and under-representations of multiple taxa at multiple taxonomic levels and not lim-

ited to a single biomarker [42]. Owing to such a level of complexity, together with

the large amount of metagenomic data, the bioinformatics support for biomarker

discovery is crucial.

Several clinical studies and case reports have highlighted the potential benefits of

microbiome-based diagnostic tools, complementing or improving traditional “gold

standard” testing. For instance, Brown and colleagues [43] found that 63% of en-

cephalitis cases go undiagnosed despite extensive testing, while metagenomics al-

lowed the diagnosis of rare, novel, or atypical infectious etiologies for encephalitis,

including cases of infection by Leptospira [44], astrovirus [45], and bornavirus [46].

Besides, microbial biomarkers could contribute to different precision medicine ef-

forts, such as the deployment of prebiotics, probiotics, and targeted antibiotics. In

fact, a better understanding of the individual microbiota in a patient could improve

the effectiveness of treatment and avoid or mitigate adverse reactions. Another
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strength of microbiome-based assays is the ability to find many microorganisms

without neither additional individual testing nor a priori knowledge of the type of

pathogen.

Conversely, one of the major weaknesses of microbial biomarkers is that many

of the potential clinical applications are still undefined and subject to continuous

updating. For instance, the presence of a microorganism potentially pathogenic

in one microenvironment, such as cerebrospinal fluid, typically considered sterile,

may be normal in the mouth, skin or gut. Moreover, bacteria and viruses are con-

tinuously developing new resistance mechanisms, thus clinical laboratories should

keep reference databases constantly updated to include novel resistance mutations

and to avoid lowering the prediction effectiveness of microbiome-based diagnostic

tools. Such challenging issues will probably slow down the phenotypic confirmation

needed for systematic adoption in clinical practice.

In the next paragraphs, we will discuss the details of the predictive bioinformatics

pipeline for microbial biomarker discovery, including the machine learning approach

for associating individual features of the microbiome with phenotype.

2.2 Predictive models

Machine learning is the methodology of finding patterns and making predictions

from data, based on a combination of tools from multivariate statistics, data mining

and pattern recognition, with a focus on generalizing from given datasets to novel

cases. Predictive modeling exploits patterns observed in datasets in order to iden-

tify an optimal model from a hypothesis space and estimate future outcomes. The

main characteristic associated with a predictive model, and in general with Artificial

Intelligence (AI) based on machine learning, is that it can improve with experience,

by flexibly adapting to new domains and fine-tuning to the observed data. However,
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this flexibility requires an appropriate control of the risk of overfitting the available

data and warrant adequate accuracy on novel data. This is typically achieved by

introducing regularization mechanisms and adopting training schema that can bal-

ance bias and variance estimation.

Machine learning algorithms are often grouped into three categories: classification

and regression (the outcome is a categorical or numerical function to fit), clustering

(the aim is to optimally partition the input feature space in groups with respect to

a criterion), dimensionality reduction (to achieve a lower-dimensional representa-

tion of the input data). Alternatively, learning algorithms can be characterized as

supervised or unsupervised. Building a model from a set of labeled data points to

predict the correct category of unlabeled future example is the goal of a supervised

method, such as a classification or regression model. For instance, discriminating

phenotypical traits based on metagenomics samples composition is a supervised

problem. On the contrary, unsupervised methods do not aim to produce a labeled

response directly, but rather to find the hidden structure of the data: cluster analysis

and dimensionality reduction are the most common unsupervised methods. Here

they will be used to identify subtypes of interest in the normal and pathophysiologi-

cal conditions.

In this thesis, supervised methods will be used to associate subjects to phenotypes

(i.e., health status), based on features derived from the bioinformatics analysis of

DNA fragments from human microbiome. The process will involve identifying the

most discriminative variables, i.e., the microbial taxa harboring those patterns in

the microbiome that most contribute to the model accuracy. Basically, a dataset of

example pairs of microbial communities with known phenotype labels will be used

to train a learning algorithm, also selecting its optimal parameters for prediction of

the phenotype of other unseen data describing microbial communities from similar

datasets, in similar clinical setting. Notably, machine learning applied on metage-
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nomics is a fruitful approach to associate phenotypes with unculturable microbial

communities [47, 48].

More in detail, two well known supervised techniques are used in this thesis: Sup-

port Vector Machines (SVM) and Random Forest (RF). Before formally defining

SVM and RF, the introduction of some basic concepts is required. In a typical su-

pervised learning scenario, predictive model is built on a matrix X , consisting of n

observations (i.e., subjects) of p different measurements (i.e., abundance of micro-

bial taxa). X is commonly defined as training dataset. Moreover, each observation

can be associated to a class (i.e., a clinical phenotype, such as health status), de-

noted by Y . A learning algorithm exploits the training dataset (X ,Y ) to learn how

to predict classes Ŷ of observed and previously unseen data, defined as valida-

tion dataset. In this context, commonly one part of the training dataset is used to

train the learning algorithm and develop a model, while another is used to test the

algorithm performance, defined as test dataset. As we will see, resampling mech-

anisms are also adopted to ensure that the training and test splits are chosen in a

way representative of the validation set or other novel data.

Support Vector Machines

Support vectors machines (SVM) are a set of supervised learning algorithms [49];

SVM searches for "optimal" hyperplane that linearly separates data, but can also

be extended to patterns that are not linearly separable by transformations of data

into a new space by appropriate maps [49].

To define SVM formally, the concept of optimal separating hyperplane is required.

Consider a (n× p) data matrix X that consists of n training observations in p-

dimensional space, X =(xT
1 ; . . . ;xT

n ) and that the observations belong to two classes,

coded as −1 and 1, i.e y1, . . . ,yn ∈ {−1,1}. Moreover, suppose to have p-vectors of

test observations. The optimal separating hyperplane divides the observations by

the two classes and maximizes the distance to the closest point from either class.
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Define an hyperplane H of Rp by

H = {x ∈ Rp : f (x) = β0 + xT
β = 0},

where β ∈ Rp and β0 ∈ R. Note that, for any two points x1 and x2 in H, β (x1−x2) = 0

hence β/‖β‖ is the unit vector normal to the surface of H. Moreover, x= xp+rx β

‖β‖ ,

since a vector x in Rp can be expressed by its projection on H plus its distance to H

times the unit vector in that direction. This implies

f (x) = β0 +

(
(xp)T + rx β T

‖β‖

)
β = f (xp)+ rx‖β‖= rx‖β‖ =⇒ rx =

f (x)
‖β‖ ,

hence, the signed distance from x to the hyperplane H is f (x)/‖β‖. In conclusion,

the classification rule induced by f is

G(x) = sign(β0 + xT
β ).

If the classes are linearly separable, then a function f (x) = β0+xT β can be found in

order to correctly classify each sample, i.e. yi f (xi)> 0 for each i = 1, . . . ,n. Hence,

it is possible to find the hyperplane that traces the biggest margin (M) between the

training points, through the optimization problem:

max
β0,β ,‖β‖=1

M

subject to yi(β0 + xT
i β )≥M for each i = 1, . . . ,N.

(2.1)

This set of conditions ensures that all the points are at least a signed distance M

from the decision boundary defined by β0 and β . We can get rid of the ‖β‖ = 1

constraint by replacing the condition with

1
‖β‖yi(β0 + xT

i β )≥M,
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(which redefines β0) or equivalently

yi(β0 + xT
i β )≥M‖β‖.

Since for any β and β0 satisfying these inequalities, any positively scaled multiple

satisfies them too, we can arbitrarily set ‖β‖= 1/M. Thus (2.1) is equivalent to

min
β0,β

1
2

β
T

β

subject to yi(β0 + xT
i β )≥ 1 for each i = 1, . . . ,n.

(2.2)

The constraints define an empty margin around the linear decision boundary of

thickness 1/‖β‖, to be maximized tuning β0 and β . (2.2) is a convex optimization

problem since it is composed of a quadratic criterion with linear inequality con-

straints, for further details on the optimization problem see [49].

Suppose now that the classes overlap in the given feature space. The maximiza-

tion of M is still possible, but some points will be placed on the wrong side of

the margin, thus requiring a “soft margin” solution [49]. Define the slack variables

ξ = (ξ1, . . . ,ξn). Consequently, the constraints are modified with

yi(β0 + xT
i β )≥ 1−ξi for each i = 1, . . . ,n

with ξi ≥ 0 for each i = 1, . . . ,n and ∑
n
i=1 ξi ≤ constant. Value ξi in the constraint is

proportional to the error of prediction f (xi). Hence by bounding ∑
n
i=1 ξi, we bound

the total proportional amount by which predictions fall on the wrong side of their

margin. Problem (2.2) can be written for the soft margin case in compact form as

min
β0,β

1
2

β
T

β +C
n

∑
i=1

ξi

subject to ξi ≥ 0, yi(β0 + xT
i β )≥ 1−ξi for each i = 1, . . . ,n;

(2.3)
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where C ≥ 0 is the regularization parameter and trades-off data fitting and the mar-

gin size.

Different choices on constraints type can be made, to further generalize, the prob-

lem can be expressed in the following form (see [50])

min
β ,β0

1
2

β
T

β +C
n

∑
i=1

ξ (β ,β0;xi,yi), (2.4)

where ξ is a loss function depending on β ,β0,xi and the respective label yi. Op-

timization problem (2.4) is known as L2-regularized support vector classification

problem, involving the squared L2 norm of β .

Although different types of loss function can be considered, common choices are

L1 loss : ξ (w;x j,y j) = (1− yi
(
xT

i β +β0
)
)+ (2.5)

L2 loss : ξ (w;x j,y j) = (1− yi
(
xT

i β +β0
)
)2
+. (2.6)

Use L1loss function in (2.4) is equivalent to solve (2.3). In this thesis, the SVM im-

plementation will be mostly based on the scikit-learn v.0.17.1 Python module [51].

Details on the specific models will be given when describing the specific metage-

nomic models.

Random Forest

Random Forest (RF) is an ensemble method in which tree-based classifiers or re-

gressors are combined after being developed over a resampling both over data and

over features. This method generalizes bagging, the basic technique for reduc-

ing the variance of an estimated prediction function [52] by averaging over models

each developed over bootstrap resampled versions of the data [49]. The basic

component of Random Forest models is the tree-based method, which hierarchi-

cally partitions the feature space into a set of rectangles and then fits the simplest
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model (i.e., a constant) in each one. Suppose that our data consist of p measure-

ments and n observations, each one belonging to a different class: that is (xi,yi),

i = 1, . . . ,n with xi = (xi1, . . . ,xip) and yi ∈ {1, . . . ,K} label class. The classification

tree algorithm needs to automatically decide on the splitting variables and on split

points, and on what topology the tree should have. To summarize, a classification

tree can be built through two steps, repeated until a stop criterion is met:

1. data are partitioned into M distinct and non-overlapping regions R1, . . . ,RM;

2. for every observation falling into the region Rm , we make the same prediction,

which is simply the mode of the response values for the training observations

in Rm.

Regions Rm are found by minimizing an error function. In a node m, representing a

region Rm with Nm = |{xi ∈ Rm}| observations, let

p̂mk =
1

Nm
∑

xi∈Rm

I(yi = k)

the proportion of class k observations in node m. The observations in node m are

associated to class k(m) = argmax
k

p̂mk, the majority class in node m. Classification

error rate can be defined in different ways, for example through misclassification

error function

Em =
1

Nm
∑

xi∈Rm

I(yi 6= k(m)) = 1− p̂mk(m) (2.7)

To find the best binary partition, a greedy algorithm is applied on the data. Consider

a splitting variable j and split point s, and define the pair of half-planes

R1( j,s) = {X |X j ≤ s} R2( j,s) = {X |X j > s}.
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The splitting variable j and the split point s that solve min
j,s

(E1( j,s)+E2( j,s)) identify

the best split. Once the solution has been found, data are partitioned into the two

resulting regions and the splitting process is repeated on both regions. Then the

process is repeated on all of the resulting regions.

Tree size is a tuning parameter ruling the model’s complexity and the optimal tree

size should be chosen depending on the data. One approach would be to split

tree nodes only if the decrease in misclassification error due to the split exceeds

some threshold. However, according to [49], the most common strategy is growing

a large tree T0 , stopping the splitting process only when some minimum node size

is reached. This procedure is strictly related to the concept of pruning. We define a

subtree T ⊂ T0 to be any tree that can be obtained by pruning T0 , that is, collapsing

any number of its internal (non-terminal) nodes. Let index the terminal nodes by m,

with node m representing region Rm . Besides, let |T | denote the number of terminal

nodes in T . The node impurity measure can be defined as

Qm(T ) =
1

Nm
∑

xi∈Rm

I(yi 6= k(m)) = 1− p̂mk(m),

while the cost complexity criterion can be defined as

Cα(T ) =
T

∑
m=1

NmQm(T )+α|T |.

For each α, it can be found the subtree Tα ⊂ T0 to minimize Cα(T ). The tuning

parameter α ≥ 0 represents the tradeoff between tree size and the goodness of

fitting the data. Large values of α result in smaller trees Tα and conversely for

smaller values of α. Note that, if α = 0 the solution is the full tree T0. For each α

it can be shown that there is a unique smallest subtree Tα minimizing Cα(T ) [49].

Estimation of α is achieved by five- or ten-fold cross-validation, choosing the value

α̂ that minimizes cross-validated Cα(T ). Tα̂ is the final tree.



Predictive models 23

Another measure of node impurity and classification error rate is the Gini index,

defined as

Gm = ∑
k 6=k′

p̂mk p̂mk′ =
K

∑
k=1

p̂mk(1− p̂mk), (2.8)

Differently from misclassification error, Gini index is differentiable, and hence more

amenable to numerical optimization. In addition, misclassification error is not suf-

ficiently sensitive for tree-growing ([49]). Interestingly, rather than classifying ob-

servations to the majority class in the node, they can be classified to class k with

probability p̂mk. Then the training error rate of this rule in the node is ∑k 6=k′ p̂mk p̂mk′ ,

i.e., Gm. Similarly, if each observation is coded as 1 for class k and 0 otherwise, the

variance over the node of this 0-1 response is p̂mk(1− p̂mk). Summing over classes

k, it results again the Gini index.

Notably, trees can be non-robust, meaning that a small change in the data can

cause a large change in the final estimated tree. However, by aggregating many

decision trees, as in Random Forest, the predictive performance of trees can be

substantially improved.

Thus, the same classification tree is fit many times to bootstrap-sampled versions

of the training data and the result is averaged. Bootstrap methods randomly draw

datasets with replacement from the original data, each sample same-sized as the

training set. This is repeated B times, producing B bootstrap datasets.

The basic Random Forest algorithm can be summarized as follows

1. For b = 1, . . . ,B:

• Draw a bootstrap sample Z∗ of size n from the training data.

• Grow a random-forest tree Tb to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, until the

minimum node size nmin is reached.
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– Select m variables at random from the p variables;

– Pick the best variable/split-point among the m;

– Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B
1 .

In order to classify a new point x, let Ĉb(x) be the class prediction of the bth Random

Forest tree; then ĈB
r f (x) = ma jority vote{Ĉb(x)}B

1 .

An average of B independent and identically distributed (i.i.d) random variables,

each with variance σ2, has variance 1
B σ2 . If the variables are simply i.d. (identically

distributed, but not necessarily independent) with positive pairwise correlation ρ,

the variance of the average is

ρσ
2 +

1−ρ

B
σ

2.

As B increases, the second term disappears, but the first remains and hence the

size of the correlation of pairs of trees limits the benefits of averaging [49]. The aim

of Random Forest is to improve the variance reduction of bagging by reducing the

correlation between the trees, without increasing the variance too much. Random

selection of the input variables in the tree-growing process allows to achieve this.

Specifically, when growing a tree on a bootstrapped dataset, before each split,

m≤ p of the input variables are selected at random as candidates for splitting. For

classification, the default value for m is b√pc and the minimum node size is one.

In this thesis, Random Forest will be used in the implementation of the scikit-learn

v.0.17.1 Python module [51]. Details on the specific models will be given when

describing the specific metagenomic models.
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2.3 Data Analysis Protocol

The development of predictive models can be affected by several sources of vari-

ability and bias effects, arising from choices hidden in modeling path. For instance,

a model can perform well on training data, but achieve a poor predictive perfor-

mance on unseen data (“overfitting”). This serious pitfall can be due to procedural

errors in the Data Analysis Plan, such as testing the model on part or all the train-

ing data. Besides, training and test datasets should be representative of a generic

sampling from a data population, i.e., training and test are assumed to be inde-

pendently and identically (iid) drawn from the same distribution. If this is not the

case, and no corrections are performed, predictive modeling is affected by “’se-

lection bias”. This is a key issue because predictive markers and, in general, the

conclusions drawn from predictive profiling should be reproducible across different

studies; this is crucial specifically for a valid clinical application of the biological

findings.

In order to overcome these potential issues, the U.S. FDA-led initiatives MAQC-II

[53] and SEQC [54] provided a set of guidelines for the development of predictive

models on microarray and Next-Generation Sequencing (NGS) data, respectively.

These projects established standardized steps in training, model selection and val-

idation on novel data [53], summarized inside a Data Analysis Protocol (DAP). In

this thesis, each predictive model is developed inside the FDA MAQC DAP, which is

detailed step by step in the next paragraphs; a schematic representation is reported

in Fig. 2.1.

2.3.1 DAP scheme

Consider a dataset composed of p variables (i.e., microbial abundances) measured

for n samples that can be associated to two classes, coded as label 0 (i.e., healthy
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subjects) and label 1 (i.e., diseased patients). The dataset is then split in Train-

ing data and Validation data, maintaining the same proportion of classes in each

partition. In our analyses, training and validation were 70% and 30% of the entire

dataset, respectively.

Stratified 10×5-fold Cross-Validation schema

1. First, the training data is split in 4/5 as internal training set (int_tr) and 1/5 as

internal validation set (int_val) using a stratified 5-fold Cross-Validation (CV),

this operation repeated 10 times. At the end, we will have 50 configurations of

int_tr and int_val set. In detail, int_tr sets are used for classifier development,

int_val sets are only used for classifier performance evaluation.

2. For each iteration, classifier parameters (i.e. hyperparameter C for SVM and

number of trees for RF) are tuned through the following procedure:

(a) for each possible parameter value to be tuned (the range is provided),

use 10 Monte Carlo CV cycles to split original int_tr into two partitions

(50%-50% tuning training-test proportions);

(b) after the split, training and test tuning data are scaled through normal-

ization;

(c) build model (i.e. SVM or RF) on training tuning data and evaluate it on

the test tuning data in terms of MCC (see Paragraph 2.3.3);

(d) choose the parameter(s) maximizing the average MCC on the test tuning

set (w.r.t. Monte Carlo CV cycles).

3. int_tr and int_val are scaled as in the tuning part.

4. The model (i.e. SVM or RF) is built on int_tr with the selected parameter(s)



Data Analysis Protocol 27

and features are ranked according to weights computed either by the model

or by other feature ranking methods such as Relief [55], ANOVA F-score,

extraTrees [56].

5. Once the ranked list of discriminant features has been built, increasing sets

of features are selected (feature steps: p = 1, 2, .., 10, 20, .., 100, 200, ..,

P_max), and for each set of features, a new model (i.e., RF or SVM) is devel-

oped (using the same parameter coming from the tuning part).

6. This model is tested on the int_val and different performance metrics are

computed (MCC, accuracy, specificity, sensitivity, etc.). In our analyses, we

will consider MCC (see [57]) as a measure to evaluate the predictive perfor-

mance of models.

7. At the end, for each metric, a matrix composed of 50 rows (from 510-CV

splits) and |Fs| (length of Fs) columns is produced. The mean w.r.t. rows

of these metric matrices is computed, together with the 95% bootstrap confi-

dence intervals; hence, for each metric the DAP provides an array of length

|Fs| corresponding to the mean value of that metric across the 50 set parti-

tions.

8. The optimal method parameter is the one that occurred most frequently in the

50 cycles of the CV. Furthermore, the optimal number of features (n_opt_feat)

is the one maximizing the mean MCC; the maximum MCC is denoted as

MCCint.

9. The rank of features over all CV cycles is computed through the Borda al-

gorithm (see Paragraph 2.3.4) using the ranking matrix as input, composed

of 50 rows (as many as the cycles of the 10× 5-fold CV) and p columns (as
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many as the features). In each row, the indexes of features inside int_tr are

reported, sorted according to the weights computed at point 4.

10. Finally, for each feature, sorted according to the ranking given by Borda, the

median value of that feature over all samples is computed, together with

its median value over samples of first class (med f _1) and over samples of

second class (med f _2). Besides, fold-change (ratio between med f _2 and

med f _1) and its log base 2 are listed.

11. The “best” model is built by using the optimal parameter(s) and that features

at the first n_opt_feat positions of the Borda list.

Validation schema

1. First, Training and Validation data are restricted considering only the “best”

n_opt_feat features.

2. The Training and Validation data are scaled (as in tuning).

3. The model is built on the restricted training dataset.

4. The model is tested on the restricted validation dataset.

5. MCC is computed for the Training as well as for the Validation data if labels

are available; MCC for the validation set is indicated with MCCval.

2.3.2 Check through randomization

In order to detect possible bias effects (i.e., overfitting, selection bias) of the predic-

tive model, two approaches are implemented inside the DAP.

1. Random ranking: The model is trained on features that are ranked randomly

rather than according to the model itself. Hence, consider mean MCC varying

across Fs: if the model is not overfitting data, it must result as a growing
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function with respect to Fs. Moreover, it must result that the best MCC, which

probably will be similar to the one of the not randomized process, must be

reached using all features.

2. Random labels: The associations between samples and their labels are ran-

domly shuffled. Hence, if the model is not overfitting data, mean MCC varying

across Fs must oscillate around zero, meaning that the prediction is actually

random.

DAP is implemented in Open Source Software: it combines a suite of machine

learning tools from the MLPY [58] and scikit-learn [51] Python libraries with in-

house Python and R scripts.

Training 
set

Ranked 
feature list

Prediction

Classification 
model

Classifier
Tuning

Training 
set

Ranked 
biomarkers

Internal
Valid. set

Performance 
evaluation

Best 
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Selected 
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Prediction
Selected 
features

Predicted 
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Random 
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Random 
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Figure 2.1. Data Analysis Protocol for predictive models development.
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2.3.3 Matthews correlation coefficient

MCC is a metric that summarizes the confusion matrix into a single value, used as

a reference performance measure on unbalanced data sets [57].

Let S = {si :1≤ i≤ S} the set of samples belonging to N classes {1, . . . ,N}. We

define the two functions

tc, pc : S→{1, . . . ,N}

indicating for each sample s its true class tc and its predicted class pc, respectively.

Moreover, let C ∈ NN×N the confusion matrix, so that each C element is defined as

Ci j = |{s ∈ S : tc(s) = i, pc(s) = j}|.

Let X ,Y ∈ F2
S×N two matrices defined as

Xsn =


1 if pc(s) = n

0 if pc(s) 6= n
, Ysn =


1 if tc(s) = n

0 if tc(s) 6= n
,

From the definition, it results

Ckk =
S

∑
s=1

XskYsk, Ckl = |{s ∈ S : Xsk = 1andYsl = 1}|

The covariance function between X and Y can be written as follows

Cov(X ,Y ) =
1
N

S

∑
s=1

N

∑
k=1

(Xsk− X̄k)(Ysk− Ȳk),

where X̄k,Ȳk are the means of the k−column, that is

X̄k =
1
S

S

∑
s=1

Xsk =
1
S

N

∑
l=1

Ckl, Ȳk =
1
S

S

∑
s=1

Ysk =
1
S

N

∑
l=1

Clk.
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Then, Matthews Correlation Coefficient can be written as

MCC =
Cov(X ,Y )√

Var(X)Var(Y )

=
∑

N
k,l,m=1 (CkkCml−ClkCkm)√

∑
N
k=1

[(
∑

N
l=1Clk

)(
∑

N
f ,g=1, f 6=k Cg f

)]√
∑

N
k=1

[(
∑

N
l=1Ckl

)(
∑

N
f ,g=1, f 6=k C f g

)] .

MCC ranges in [−1,1], where 1 means perfect classification, −1 is asymptotically

reached in extreme misclassification case (all zeros but in two symmetric entries),

0 when C is all zeros but for one column or when all entries are equal (random

classification).

Moreover,in case of binary classification, MCC can be written as

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
. (2.9)

The formula (2.9) is the one used in this thesis, since all classification problems

here considered are binary.

2.3.4 Borda algorithm

The Borda algorithm is a computational method for comparing sets of ranked biomarker

lists developed by [59] based on concepts from permutation group theory.

Let D the dataset composed of n samples described by a set F of p features ({F j} j

j = 1 . . . p). Let B the number of replicated experiments required by complete vali-

dation of profiling. They consist of instances of classification and feature ranking,

they are also called runs. At each replicate (i = 1 . . .B) the ranking process sorts the

features according to their importance in building the ith classifier and an ordered

list Li is produced. Let L = {Li}B
i=1 the set of all the ordered list produced. Let Lk

i

be its top-k list, i.e. the sublist consisting of the first k ranked elements from Li. Let

defined as τi( j) the rank (position) of feature Fj in Li, as τi = (τi( j))p
j=1 the dual list
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of Li.

For each feature Fj, we define its top-k extraction set

Ek( j) = {i = 1 . . .B : τi( j)≤ k}.

We define the extraction number of Fj as the number number of elements in Ek( j)

ek( j) = |Ek( j)|,

which indicates how many top-k lists include a feature.

For each feature Fj, we define the (average) position number as

ak( j) =
1

ek( j) ∑
i∈Ek( j)

τi( j).

For a given k, ek( j) and ak( j), induce a ranking of the features: high ek and low ak

indicate features extracted often in top positions.

The purpose is to encode the ranking information coming from all the lists in L

into a single optimal list. Then, for each k, consider the extraction number ek( j) in

decreasing order as the ranking criterion; if for some i 6= j it results ek( j) = ek(i),

then consider the position number ak( j) in increasing order. This criterion defines a

dual list τk
o called optimal top-k list of L . If k = p, the complete lists are considered,

hence ep( j) = B for all Fj and τo = τ
p
o is determined only by ap( j).

The optimal list definition is linked to the Borda count. Given a set of B ranked

lists on p candidates, the Borda count associates to each candidate Fj a score

s( j) given by the total number of candidates with higher position over all lists. The

Borda optimal list is then derived by ranking candidates with higher scores. Ranking

according the increasing order of ak( j) is equivalent to ranking for the decreasing
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order of s( j), indeed

s( j) =
B

∑
i=1
|{t : 1≤ t ≤ p τi(t)> τi( j)}|

=
B

∑
i=1

(p− τi( j)) = Bp−B
1
B

B

∑
i=1

τi( j)

= B(p−ap( j)).

Implementation

The DAP described in paragraphs 2.3.1, 2.3.2 and 2.3.4 has been implemented

through Python functions organized in a system of scripts. It has been described

in [53, 54] and originally directly implemented in MLPY [58]. In this thesis, the

author has contributed by a general revision of several main features of the MAQC

DAP. Specific adaptations for metagenomic are available for the paper “Integrative

Network Fusion of bacterial-fungal microbiota for the identification of robust IBD

biomarkers” (submitted 2017).
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Chapter 3

Network analysis

A microbiota is a collection of microorganisms that do not live in isolation, but in-

stead actively interact with one another and aggregate to form heterogeneous com-

munities [60, 61]. Interspecies relationships reflect the overall function of the mi-

crobial communities and can be modulated by ecological competition/cooperation

between the microbes [62, 60], direct secretion of substances such as bacteriocins

[63], or indirect interactions through immune system modulation [64]. Besides, sev-

eral studies found specific microbial interactions in healthy commensal microbiota

conferring resistance against pathogens, thus providing overall stability of com-

munities [65, 66, 67, 68]. Conversely, other microbial relationships, often due to

perturbation-induced shifts in the commensal ecological networks, were associ-

ated with impaired macroscopic functionality and ill-health [69, 12, 60, 70].

However, studies have initially focused more on alterations in abundance of mi-

crobial species, rather than on changes in larger-scale interspecies relationships.

Only in recent years, several methods have been designed to investigate ecolog-

ical organization and functional relationships of microbial communities. A widely

used approach is to build mathematical models, graphs in particular, to evaluate

relationships among microbes (Paragraphs 3.1 and 3.2) and to assess changes
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inside microbial communities due to disease-linked perturbations (see Paragraphs

3.3 and 3.4). Modelling microbiota community organization and dynamics may be

a fruitful approach also for biomedical applications, allowing the simulation of the

treatment with pre- and probiotics and investigating their impact on microbiota and

host response [71, 72, 73].

3.1 Microbial networks

A microbiota is a complex ecosystem where species interact with one another [60],

establishing different types of relationships that are categorized by their effect on

the species involved, i.e., positive, negative or neutral. Macroecology in this context

defined by interactions as mutualism (positive-positive), commensalism (positive-

neutral), antagonism (positive-negative), competition (negative-negative), amensal-

ism (negative-neutral) and neutralism (neutral-neutral) [71].

Specifically, microbial mutualism is known to lead to biofilm development, increased

levels of antibiotic resistance and adaptation to the environment [74, 75]. These

synergic interactions are mediated by adhesins, which are membrane-bound struc-

tures recognizing specific receptors on microbial or host-associated surfaces [76];

microbiota components specialized in adhesin production are described as “bridg-

ing organisms” because they potentially aggregate community members that nor-

mally cannot bind to each other. A notable example is Fusobacterium nucleatum,

known to attach to many different members of the oral community leading to the

development of biofilms. These polymicrobial interactions during an infection result

in worsened disease compared to infections involving an individual pathogenic mi-

crobe alone [74]. For instance, bacterium Staphylococcus aureus and pathogenic

fungus Candida albicans, often co-isolated from both chronic and acute infections,

represent a well-known example of synergy in disease. Murray and colleagues
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studied a mouse tongue epithelium ex vivo model and showed that only C. albi-

cans could penetrate and colonize the subepithelium, while S. aureus was found

in the subepithelium only when aggregated to C. albicans. The direct interaction

between the bacterium and the fungus is mediated by Als3p, which is a specific C.

albicans protein [74]. Other common forms of mutualism are cross-feeding interac-

tions (also known as synthropy), in which nutrients excreted by some species are

absorbed and metabolised by other species in the community [77]. An example of

bi-directional cross-feeding interactions is provided by Moens and colleagues [78],

who studied commensalism between Faecalibacterium prausnitzii and Bifidobac-

teria. F. prausnitzii is a colon bacterium that has been linked to health-promoting

benefits for the host; this Clostridium cluster IV bacterium ferments complex car-

bohydrates, in particular oligofructose and inulin, with a consequent production of

butyrate, which has a protective role on colon epithelial cells inducing the differen-

tiation of regulatory T cells. On one hand, F. prausnitzii growth requires acetate

as a mandatory co-substrate, mainly provided by acetate-producing Bifidobaceria;

on the other hand, bifidobacterial strains need fructose as a substrate, but they are

not capable of degrading oligofructose. Thus, F. prausnitzii cross-feeds fructose to

Bifidobacteria, given its capacity of degrading oligofructose or performing a prefer-

ential degradation of short chain length fractions of oligofructose.

Antagonism is another common type of microbial interactions, which occurs when

some species can exist only in absence of others. Consider, for instance, micro-

biota of breast-fed infants: it is dominated by Bifidobacterium, the principal con-

sumer of human milk oligosaccharides (HMOs). Most strains of Bifidobacterium

first import and then degrade HMOs by intracellular glycoside hydrolases. Conse-

quently, the growth of competitor strains is limited by simple sequestration of avail-

able sugar substrates in the colon, protecting the neonate from possible pathogens

[79]. Other classical antagonistic interactions are predator-prey (i.e., ciliates feed-
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ing on bacteria) and host–parasite (i.e., between bacteria and their bacteriophages)

relationships [61].

Several studies have shown that specific ecological interactions within microbiota

are crucial for community stability in the healthy commensal microbiota [66, 67, 68],

while many others are involved in dysbiosis and disease [80, 81, 82]. Thus, a

paradigm shift is needed, from a reductionist approach that focuses on individual

microbes to more holistic approaches focusing on interactions among members of

microbiota. Traditionally, the study of microbial relationships required the use of lab-

oratory experiments such as growth and co-culture assays [83, 84], which could not

be extended to large-scale applications. Computational methods to model microbial

interactions alleviated this issue, by predicting candidates for experimental valida-

tion [85, 72]. Besides, computational approaches could provide knowledge-based

databases with experimentally verified interactions from published literature. One

of the most promising approach is network theory, which is specifically intended

to represent and model the complexity of microbiota with multifaceted interactions

between its members.

3.2 Networks inference

The construction of ecological network from presence-absence or abundance mi-

crobiome data is known as network inference; this method provides a ‘snapshot’ of

the microbial community status at a given time. At a highly abstract level, a net-

work is group of two or more objects (defined as nodes) connected to each other

by links, with each link representing the interactions between two components. The

nature of the interactions defines the network as directed or undirected. In directed

networks, interactions between nodes have a well-defined direction, which can be

used, for instance, to model direction of material flow from a substrate to a product
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in a metabolic reaction. In undirected networks, the links do not have an assigned

direction; for example, in protein interaction networks, undirected link represents a

mutual binding relationship [86].

Several methods have been proposed for network inference, depending on effi-

ciency, accuracy, speed, and computational requirements, as well as on the spe-

cific microbial community aspect of interest. A popular approach focuses on co-

occurrence or co-exclusion of species, modeling strong dependency (i.e., positive

interactions including mutualism and commensalism) or competition (i.e. negative

interactions including competition, antagonism and amensalism) among them (see

Paragraph 3.1). The detection of such patterns can be formulated into the compu-

tation of dependency measures among distributions of all species pairs. Commonly

used measures include similarity (e.g., mutual information), dissimilarity (e.g., Kull-

back–Leibler) and correlation (e.g., Pearson or Spearman).

In this thesis, co-occurence/co-exclusion networks are inferred by computing cor-

relation between the abundance profiles of species, that is a widely used approach

in literature [87, 88, 89]. Consider a table of microbial abundances, typical out-

put of Next-Generation Sequencing (NGS) data analysis pipeline. The data are

stored in a matrix W ∈ �n×p, where w j = [w j
1,w

j
2, ...,w

j
p] denotes the p-dimensional

row vector of microbial abundances from the jth sample, j = 1, ...,n,; � denotes the

set {0,1,2, ...} ∈ N or the set [0,1] ⊆ R, depending on the nature of abundances,

being absolute or compositional, respectively. The objective is to build a network

of pairwise associations, represented as an undirected graph G = (V,E), where the

node set V = {v1, . . . ,vp} represents the p microbial taxa and the edge set E ⊂V×V

the possible associations among them. The graph G is inferred starting from abun-

dances matrix W and computing the Pearson correlation coefficient (PCC) among

each pair of taxa, resulting in a matrix Cp×p. The PCC between two variables is

defined as the covariance of the two variables divided by their standard deviations
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and it captures linear dependencies. In more detail, PCC between taxa w j
i and w j

k

is:

PCC =
∑

n
j=1 w j

i w j
k−

(∑n
j=1 w j

i )(∑
n
j=1 w j

k)

n√
(∑n

j=1 (w
j
i )

2− (∑n
j=1 w j

i )
2

n )(∑n
j=1 (w

j
k)

2− (∑n
j=1 w j

k)
2

n )

, (3.1)

where n is the number of samples.

Notably, the use of Pearson correlation to detect dependencies between members

of a microbiome is common on absolute abundances, but it is sensitive to composi-

tionality [81, 90]. Indeed, if the abundances of all taxa are constrained by a constant

sum (e.g., one), an increase in the relative abundance of one taxon will lead to a

decrease in the abundance of all others, leading to spurious correlations. There-

fore, PCC on relative abundances can lead to negative correlations and thus false

interaction predictions; such a bias is known as the compositional effect [65, 91].

In order to successfully use correlations to infer interactions on compositional data,

this bias is corrected by an approach based on Aitchison’s centered log-ratio (clr)

transformation [91, 92]. In detail, a clr-transformation involves computing the log-

arithm of the ratio between the relative abundance and the geometric mean of all

relative abundances within sample j:

clr(w j) = [log(
w j

1
g(w j)

), log(
w j

2
g(w j)

), ..., log(
w j

p

g(w j)
)]T = G · log(w j) (3.2)

where: w j = [w j
1,w

j
2, ...,w

j
p]T is a column vector representing the relative abun-

dances of taxa in sample j; g(w j) = (∏
p
i=1 w j

i )
1
p ; G= Ip− 1

pJp; Ip is the p-dimensional

identity matrix; and Jp a p-dimensional matrix fill with 1s. Function in 3.2 removes

the unit-sum constraint of compositional data, transforming data from a constrained

space with p dimensions to a (p− 1)-dimensional Euclidean space. In this thesis,

CCLasso (Correlation inference for Compositional data through Lasso) is adopted

to infer correlation network from compositional data [93]. CCLasso uses least

squares with L1 penalty after a clr-transformation of raw compositional data to es-
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timate the correlation matrix C for all pairs of taxa. The graph G of taxon-taxon

associations is thus built from clr-transformed microbiome compositions Z ∈ Rn×p.

After co-occurrence/co-exclusion network has been inferred, microbial interactions

associated to highest correlation values are analyzed, corresponding to the most

ecologically informative associations. A null model for co-expression networks pro-

posed by Gobbi and Jurman [94] is adopted, in order to compute a correlation

threshold minimising the possible false positive links, paying a price in terms of

false negative detected edges. Specifically, this is an a priori model based on the

work of Fisher [95] and Bevington [96], that depends on the dimensions of the start-

ing data matrix, assuming the skewness of the data distribution is compatible with

the structure of abundances data.

In summary, network inference approach adopted in this thesis can be divided into

three steps:

1. Compute Pearson Correlation Coefficient or CCLasso on absolute or relative

microbiota abundances, respectively.

2. Select the taxa-taxa interactions with correlation higher than a threshold com-

puted by Gobbi and Jurman model [94].

3. Build a graph with microbial taxa as nodes, correlation over Gobbi’s threshold

as edges.

In this thesis, network inference provides a static model of the interactions within mi-

crobiota at a given time and for a group of samples with a common phenotype (i.e.,

health status). In order to study the microbial networks perturbations associated to

different phenotypes, further analyses are required such as network distances and

communities detection (see Paragraph 3.3 and 3.4, respectively).
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3.3 Networks distance

The aim of microbial network analysis is unravelling the interactions among species

that are either beneficial for the host or specifically linked to disease. To this pur-

pose first network inference and then differential network analysis (netDA) are con-

sidered. In summary, netDA consists in the comparison of networks corresponding

to different phenotypes or conditions. The best way to deal with similarity and dis-

similarity between networks is to define a distance; the two most relevant families

of graph distances are spectral measures and the edit distances. Edit distances

are based on functions of insertion and deletion of matching links between the

compared graph, evaluating the minimum cost of transformation of one graph into

another; spectral measures define a suitable similarity measure on the topology of

the underlying graphs, based on functions of the eigenvalues of one of the graph

connectivity matrices.

In this thesis, netDA is based on the Hamming-Ipsen-Mikhailov (HIM) distance

[97, 98], which linearly combines two distances, the Hamming [99, 100, 101] and

the Ipsen-Mikhailov [102]; the first is an edit distance, while the latter is a spec-

tral measure. The Hamming distance is the simplest member of the family of edit

distances and it focuses on the links as independent entities, disregarding the over-

all structure. Conversely, the Ipsen-Mikhailov is a more reliable and stable global

measure [97], evaluating the differences between the whole network structures, but

it cannot discriminate between isospectral non-identical graphs. Thus, HIM over-

comes the drawbacks of local (edit) and global (spectral) metrics when separately

considered.

The HIM family of distances

Let N1 and N2 be two simple networks on N nodes, inferred from the correspond-

ing adjacency matrices A(1) and A(2), with a(1)i j ,a
(2)
i j ∈F , where F=F2={0,1} for un-
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weighted networks (links are unweighted) and F=[0,1] for weighted graphs. Be-

sides, let IN be the N×N identity matrix, let 1N be the N×N unitary matrix with

all entries equal to one and let 0N be the N×N null matrix with all entries equal to

zero. Define then εN as the empty network with N nodes and no links (with adja-

cency matrix 0N) and FN as the clique (undirected full network) with N nodes and

all possible N(N1) links, whose adjacency matrix is 1N− IN .

The Hamming distance. The (normalized) Hamming distance is the (local) sim-

plest edit metric, counting the presence/absence of matching links on the two net-

works being compared:

H(N1,N2) =
Hamming(N1,N2)

Hamming(εN ,FN)
=

1
N(N−1) ∑

1≤i6= j≤N
|A(1)

i j −A(2)
i j |. (3.3)

H ranges in the interval [0,1], where the lower bound 0 is reached only for iden-

tical networks A(1) = A(2), while the upper is attained whenever the two networks

are complementary A(1)+A(2) = 1N − IN . Note that, for H, all links are equivalent

regardless of their position within the network.

The Ipsen-Mikhailov distance. The Ipsen-Mikhailov distance is the (global) L2

integrated difference of the Laplacian spectral densities:

IM(N1,N2) =

√∫
∞

0
[ρN1(ω,

−
γ )−ρN2(ω,

−
γ )]2dω (3.4)

where ρN1(ω,γ) and ρN2(ω,γ) are defined as spectral densities of nodes N1 and

N2, respectively [98]. By definition, IM too ranges between 0 and 1, with upper

bound reached only for {N1,N2}= {εN ,FN}. In fact, IM cannot distinguish isospec-

tral (non isomorphic) networks, since it is a spectral measure.

The Hamming-Ipsen-Mikhailov distance. The normalized Cartesian product of H
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and IM defines the Hamming-Ipsen-Mikhailov (HIM) distance:

HIMξ (N1,N2) =
1√

1+ξ

√
H2(N1,N2)+ξ · IM2(N1,N2), (3.5)

where 1√
1+ξ

is a normalizing factor, with ξ ∈ [0,+∞).

The normalization bounds the range of the HIM distance in the interval [0,1], with

lower bound reached for every couple of identical networks, and upper bound at-

tained only on the pair (εN ,FN). Moreover, for non-identical isomorphic/isospectral

graphs, all distances HIMξ will be nonzero.

Notably, network differential analysis based on HIM distance has been adopted in

metagenomics [103], liver high-throughput oncogenomics [104], oncoimmunology

[105], but also out of computational biology, e.g., socioeconomics [98] or even in

multiplex network theory [106].

The quantification of networks differences can associate shifts in microbial inter-

actions with phenotypic changes; moreover, coupling network distance with a de-

scription of microbial community organization provides even a more comprehensive

analysis. Indeed, microbiota is structured as a set of communities, so revealing the

modular structure of microbial networks will provide invaluable insights into biologi-

cally relevant clusters characteristic of specific phenotype.

In this thesis networks inference and distance are implemented by in-house R

scripts based on the nettools and igraph packages.

3.4 Community detection

Any graph can be decomposed into elementary units known as clusters (also de-

fined as modules), which are sets of highly inter-connected nodes [107]. The iden-

tification of clusters within networks from microbiota may be seen, for example,

as modeling groups of coexisting or coevolving microbes contributing towards a
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disease; besides, clusters detection unravels the local interaction patterns in the

network and their contribution to the overall structure, connectivity, and function of

the network. The key concept of community detection, which are clustering meth-

ods developed specifically for networks, is partitioning the graph into communities

of densely connected nodes, with the nodes belonging to different communities be-

ing only sparsely connected. [108]. In this thesis, the rationale behind community

detection is that clusters of co-occurring species are commonly distorted in dis-

ease and alterations are most prominent in clusters containing a predominance of

pathogenic organisms [109, 67, 12, 68].

Several types of community detection algorithms have been proposed in literature:

agglomerative algorithms merge similar nodes/communities recursively [110], di-

visive algorithms detect inter-community links and remove them from the network

[111, 112] and optimization methods are based on the maximisation of an objective

function [113, 114]. The performance of these methods is often measured by the

modularity of the partition: it is a scalar value in [−1,1] that measures the density

of links inside communities as compared to links between communities [111, 115].

In more detail, the modularity index Q is defined as [116]:

Q =
1

2m ∑
i, j
[Ai j−

kik j

2m
]δ (ci,c j), (3.6)

where Ai j is the weight of the edge between i and j, ki = ∑ j Ai j is the sum of the

weights of the edges attached to vertex i, ci is the community where vertex i is

included, the δ -function δ (u,v) is 1 if u = v and 0 otherwise and m = 1
2 ∑i j Ai j. In

this thesis, community detection is performed by Louvain method [108], which is a

greedy algorithm that finds partitions via modularity maximization (Equation 3.6).

The algorithm is divided in two phases that are repeated iteratively; a scheme with

the steps of the algorithm is shown in Fig. 3.1. Consider a weighted network of N

nodes; first, network is partitioned into as many communities as nodes. Then, con-
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sider one node i and its neighbours j: node i is removed from its community and

placed in the community of each j, in turn. For each assignment, the gain of mod-

ularity is evaluated and the node i is then placed in the community for which this

gain is maximum, but only if this gain is positive. No positive gain, no assignment

of i. This process is applied repeatedly and sequentially for all nodes, stopping

when no further improvement can be achieved: the first phase is then complete.

The communities found during the first phase are considered as the nodes of a

new network, which is built during the second phase. The links connecting the new

nodes are given by the sum of the weight of the links between nodes in the cor-

responding communities from the first phase. At the end of this second phase, it

is possible to apply again the first phase of the algorithm to the resulting weighted

network and to iterate. The algorithm is iterated until there are no more changes

and a maximum of modularity is achieved. Louvain algorithm has been chosen for

community detection because its steps are intuitive and easy to implement, and the

outcome is unsupervised. Besides, the algorithm is fast, i.e., the complexity is lin-

ear on typical and sparse data [108], since the number of communities decreases

drastically after just a few passes so that most of the working time is spent on the

first iterations. Moreover, the resolution limit problem of modularity (large network

size) is overcome by the intrinsic multi-level nature of Louvain algorithm.

In this thesis, community detection is implemented through community and net-

workx Python modules.

Collectively, network differential analysis and community detection offer a compre-

hensive view of the conserved and variable architectures present in healthy and dis-

eased microbiomes, such as complex polymicrobial interactions and co-occurrence

patterns. From a clinical perspective, it would interesting to adopt these mathemat-

ical models of microbial communities to gain insight into the possible effects of a
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Figure 3.1. Steps of Louvain algorithm. Each pass consists of two phases: one for mod-
ularity maximization by local changes of communities, one for communities aggregation in
order to build a new network. The passes are iterated until no more changes of modularity
is attained. Figure extracted from [108]: the weights of the links are shown on the network
after each phase.
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disease-linked perturbation or a broad-spectrum antibiotic use.



Chapter 4

Meta-omics integration

Recent advances in high-throughput DNA sequencing, mass spectrometry and

RNA-Seq methods, along with computational and algorithmic methods, have in-

creased the accessibility of highly multivariate and heterogeneous datasets (“meta-

omic” datasets) on biological systems. Meta-omics include various biological molecules

at the metagenomic scale (metaproteomics, metatranscriptomics, metametabolomics)

as well as different “microbial” omes (eukaryotes and viruses). Combining informa-

tion from different biological components aims at a system-level understanding of

microbiota-host ecosystem, unravelling complex processes involved in health and

microbiota-related disease. The integrated analyses of meta-omics data can be

performed through top-down or bottom-up approaches. Top-down modeling takes

advantage of high-throughput meta-omics datasets aiming to predict novel biolog-

ical hypotheses, which must be experimentally validated. Conversely, bottom-up

approaches are formulated at the molecular level based on detailed mechanistic

knowledge [117].

In this thesis, a top-down meta-omics data integration is adopted, as defined by

Ritchie and colleagues [118]: the combination of multiple meta-omics datasets to

develop classification models that are predictive of complex traits or phenotypes.
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First, concatenation-based integration is analyzed, since it is the simplest frame-

work for multi-omics data integration: it consists in the concatenation of normalized

measurements into one joint matrix, followed by the development of a predictive

model. Concatenation-based integration enables to identify multi-omics signatures

by borrowing discriminatory strength from all information from datasets, but it dilutes

the possibly low signal-to-noise ratio in each data type, affecting the understanding

of the biological interactions at omics levels. Consequently, an alternative state-of-

the-art integrative method is analyzed: Similarity Network Fusion (SNF, see Para-

graph 4.1) [119]. Our top-down integration approach considers the development

of predictive models on the integrated meta-omics: thus, a novel feature ranking

scheme is developed as an extension of SNF (see Paragraph 4.2). The combina-

tion of the two integration approaches results into Integrative Network Fusion (INF,

see Paragraph 4.3), a novel framework for the identification of robust meta-omics

biomarkers.

4.1 Similarity Network Fusion

In a comparative review of scientific literature, SNF [119] emerged as one of the

most reliable alternatives to concatenation-based integration. SNF is a non-Bayesian

network-based method that can be divided into two main steps: the first step builds

a sample-similarity network for each meta-omics data type (nodes as samples,

edges as similarity measure), while the second step integrates these networks into

a single similarity network, by using a nonlinear combination.

Consider L tables composed of different meta-omics (also defined as ’features’)

measured on the same n samples. Denote with Ml the lth (n× pl) data matrix with

l = 1, . . . ,L.

Before SNF-integration, tables are normalized with respect to features. In partic-
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ular, let Mhl
l the n-vector representing the hlth column of lth data table. Then, for

each l = 1, . . . ,L, a new (n× pl) matrix Xl is defined such that each column Xhl
l ,

representing a feature, is obtained through:

Xhl
l =

Mhl
l −E(Mhl

l )√
Var(Mhl

l )
, (4.1)

where E(Mhl
l ) and Var(Mhl

l ) represent the empirical mean and variance of Mhl
l , re-

spectively.

4.1.1 Similarity network inference

First, consider each meta-omics data table separately and indicate with xT
i =(xi,1, . . . ,xi,p)

T

for i = 1, . . . ,n the p-vector representing the ith row of the (n× p) data matrix X .

A patient similarity network is represented by a graph G = (V,E) [120], where

V = {x1, . . . ,xn} is the set of vertices corresponding to samples, while E is the set

of edges modeling the similarity between patients. Thus, edge weights are rep-

resented by a (n× n) matrix W such that W (i, j) indicates the similarity between

samples xi and x j. In particular, similarity is defined as a scaled exponential dis-

tance kernel:

W (i, j) = exp
(
−d2(xi,x j)

αεi, j

)
, (4.2)

where d(xi,x j) =
√

∑
p
h=1(xi,h− x j,h)2 is the Euclidean distance between samples xi

and x j; α is a hyperparameter ranging in [0.3,0.8] as suggested in [119], which is

tuned through a 5-fold cross validation repeated 10 times in our SNF implemen-

tation. Moreover, parameter εi, j is set to eliminate the scaling problem and it is
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defined as follow:

εi, j =

1
K ∑k∈NK

i
d2(xi,xk)+

1
K ∑m∈NK

j
d2(x j,xm)+d2(x j,x j)

3
, (4.3)

where NK
i is the set of indexes of K nearest neighbors (KNN) samples of xi with

respect to the Euclidean distance d. Hence, NK
i represents a set of K nearest

neighbors for xi, including xi itself in G.

Once similarity networks are inferred, define a full and a sparse kernel, P and S

respectively, on the vertex set V ; P and S are necessary in the process that fuses

together the similarity networks from multiple meta-omics. First, define a diagonal

(n×n) matrix D such that D(i, i) = ∑
n
j=1W (i, j). Then, the full kernel is a normalized

weight matrix

P = D−1W (4.4)

so that ∑
n
j=1 P(i, j) = 1.

On the other hand, S represents the local affinity of a graph G, measured by K

nearest neighbors. Let Ni represent a set of xi’s neighbors including xi in G; S is

represented by a sparse (n×n) matrix such that:

S(i, j) =


W (i, j)

∑l∈NK
i

W (i, l)
, j ∈ NK

i ;

0, j 6∈ NK
i .

(4.5)

K is a hyperparameter, set to 20 by Wang and colleagues [119]. The local affinity

sets the similarities between non-neighboring points, in terms of the pairwise simi-

larity values, to zero. Hence, it is assumed that local similarities with high values are

more reliable than remote ones, as expected. Following the assumption adopted

by other manifold learning algorithms, similarities to non-neighbors are assigned

through graph diffusion on the network.
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In summary, matrix P encodes the full information about the similarity of each sam-

ple to all others, whereas matrix S only accounts for the similarity to the K most

similar samples for each sample.

The algorithm proposed in [119] for the fusion part considers P as initial status and

uses S as the kernel matrix in the fusion process, both for the capacity of capturing

local structure graphs and computational efficiency.

In our study a tuning procedure is implemented for parameters α and K from Equa-

tions (4.2) and (4.5), respectively (see Paragraph 4.2).

4.1.2 Similarity network fusion

Consider now the L meta-omics data tables; similarity matrices W (l), status matrices

P(l) and local affinity matrices S(l) can be built for each l = 1, . . . ,L, through the

equations (4.2), (4.4) and (4.5), respectively.

First, suppose L = 2. From two input similarity matrices, status matrices P(1) and

P(2) are computed as in (4.4), and kernel matrices S(1) and S(2) as in (4.5).

Let P(1)
0 = P(1) and P(2)

0 = P(2) represent the initial two status matrices at t = 0. SNF

iteratively updates status matrix corresponding to each of the data tables as:

P(1)
t+1 = S(1) ·P(2)

t ·
(

S(1)
)T

, (4.6)

P(2)
t+1 = S(2) ·P(1)

t ·
(

S(2)
)T

, (4.7)

where matrix P(l)
t+1 is the status matrix of the lth data table (l = 1,2) after t iteration.

This procedure updates the status matrices each time generating two parallel inter-

changing diffusion processes. After T steps the overall status matrix is computed

as

P(c) =
P(1)

T +P(2)
T

2
. (4.8)
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Wang and colleagues [119] observed empirically that T = 20 leads to a SNF fast

convergence. In detail, they kept track of the relative change in consecutive rounds

for status matrices defined as

E(l)
t =

‖P(l)
t+1−P(l)

t ‖
‖P(l)

t ‖
l = 1, . . . ,L

and set tol= 10−6 as threshold: if the relative change was lower than the threshold

for each l = 1, . . . ,L, they stopped the iteration. Hence, they noticed that T = 20 is

enough to converge.

Besides, Wang and colleagues observed that SNF is robust to the noise in similarity

measures due to KNN method used to compute S, which can reduce noise between

instances. It can be observed from an equal formulation of (4.6):

P(1)
t+1(i, j) = ∑

k∈Ni

∑
m∈N j

S(1)(i,k)S(1)( j,m)P(2)
t (k,m), (4.9)

similar for P(2)
t . Note NK

i is the neighborhood of xi composed of K elements; hence,

it is possible to observe from (4.9) that the similarity information is only propagated

through the common neighborhood and this makes SNF robust to noise. Note that,

if xi and x j have common neighbors in both similarity matrices, then they likely

belong to the same cluster. Moreover, even if xi and x j are not very similar in one

meta-omics table, their similarity can be expressed in another meta-omics type and

this information can be propagated through fusion steps.

After each iteration, each P(l)
t+1 (l = 1,2) undergoes the following transformation:

P(l)
t+1 = P(l)

t+1 + In (4.10)

This transformation ensures that, throughout SNF iterations, a sample is always

more similar to himself than other patients; moreover, (4.10) makes the final net-
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work full rank, which is a crucial requirement for further analyses, such as clustering

(see Paragraph 4.2). Wang and colleagues showed that this transformation leads

to a quicker convergence of SNF.

The extension to the case L > 2 can be obtained substituting equation (4.6) and

(4.7) with:

P(l)
t+1 = S(l) · ∑k 6=l P(l)

t

L−1
·
(

S(l)
)T

l = 1, . . . ,L (4.11)

and after T iterations the overall status matrix is computed as

P(c) =
1
L

L

∑
l=1

P(l)
T (4.12)

In this thesis, the extension of Similarity Network Fusion starts from the overall

status matrix P(c) (see Paragraph 4.2).

4.1.3 SNF algorithm

Similarity Network Fusion can be summarized into three steps: data preprocess-

ing, networks inference and networks fusion. The detailed procedure is reported in

Algorithm 1.

4.2 A network-based feature ranking scheme: rSNF

Similarity Network Fusion integrates multiple meta-omics datasets into a single

comprehensive network in the space of samples rather than measurements (e.g.,

bacterial DNA abundances). However, this thesis proposes meta-omics integra-

tion as an approach to identify robust biomarkers of samples phenotypes (e.g.,

microbiota-related disease); consequently, it is necessary to extract measurements

information from the SNF-fused network of samples. In our study, rSNF (ranked
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Algorithm 1 SNF algorithm

1. Normalization w.r.t features
For each l = 1, . . . ,L define a new (n× pl) matrix Xl such that each column Xhl

l ,
representing a feature, is obtained through Eq. (4.1).

2. Similarity network inference
For each l = 1, . . . ,L:
Define xi,l the pl-vector representing meta-omics variables for sample xi in the
lth normalized data table.

(a) Infer the (n× n) similarity matrix Wl as defined in Eq. (4.2), supposed
parameters α (scale coefficient for variance) and K (number of neighbors
for each sample) fixed. α and K are tuned through a 10×5-fold cross-
validation (see Algorithm 2)

(b) Build the (n×n) full kernel matrix Pl using Eq. (4.4), which is normalized
with respect to meta-omics variables.

(c) Build the local affinity matrix Sl, which also depends on K as in Eq. (4.5).

3. Similarity networks fusion:
For each l = 1, . . . ,L:

(a) define the initial status matrices P(l)
0 = Pl;

(b) for t = 1, . . . ,20 update P(l)
t+1 through Eq. (4.11), followed by the transfor-

mation P(l)
t+1 = P(l)

t+1 + In.

Compute the overall status matrices P(c) through Eq. (4.12).
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SNF) is thus designed: it is a feature ranking scheme, based on clustering per-

formed on the fused similarity network.

4.2.1 Network Clustering

Suppose that samples modelled through the fused network can be grouped into

C clusters, corresponding for example to known phenotypes. Each sample xi, i =

1, . . . ,n can be associated to a label indicator vector yi ∈ {0,1}C, such that yi(k) = 1

if sample xi belongs to the kth cluster, otherwise yi(k) = 0. Then, a (n×C) partition

matrix Y = (yT
1 ; . . . ;yT

n ) can be adopted to represent the clustering scheme. Let P(c)

the fused graph matrix obtained by SNF as in Paragraph 4.1, then different types

of clustering algorithm can be used to partition samples.

Spectral clustering is used in [119]. In general, spectral method aims to minimize

the RatioCut, which is an objective function combining minimum cut of a graph and

equipartitioning (see [121]), by solving the following optimization problem:


min

Q∈Rn×C
tr(QT L+Q),

QT Q = IC,

(4.13)

where Q = Y
(
Y TY

)− 1
2 is a scaled partition matrix and L+ denotes the normalized

Laplacian matrix

L+ = In−D−
1
2 P(c)D−

1
2 . (4.14)

D is a network degree (n× n) matrix with degrees of each node from matrix P(c)

on the diagonal (D(i, i) = ∑
n
j=1 P(c)(i, j)) and off-diagonal elements set to 0. Prob-

lem (4.13) can be solved using different algorithms, but in this thesis the choice is

the one proposed in [122]. In particular, suppose samples can be partitioned in C

clusters and define L+ as in (4.14). Indicate with λ1, . . . ,λC the C highest eigenval-

ues of L+ and with u1, . . . ,uC the corresponding eiegenvectors and form the matrix
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U = [u1| . . . |uC]. Rows of matrix U are then renormalized to have unit length yielding

(n×C) matrix Ũ such that

Ũ(i, j) =
U(i, j)√

∑
C
j=1U(i, j)2

. (4.15)

Moreover, a rotation (C×C) matrix R is built, such that Z = ŨR and for every row

in Z there is at most one non-zero entry, i.e., if Z(i, j) = 1, then sample i belongs to

cluster j (see [122] for more details).

Estimated number of clusters
The number of samples clusters C can be known a priori or inferred from the sim-

ilarity diffusion matrix P(c). In order to find the optimal number of cluster when it is

unknown, [119] reports two main approaches.

1. The first method relies on eigengap, i.e., the difference between subsequent

ordered eigenvalues, to decide the best number of clusters based on the con-

nectivity of the network. In particular, this is defined as follows:

eigengap : Rn→ R such that eigengap(i) = λi+1−λi (4.16)

where λi is the i-th eigenvalue of the matrix L+, defined in (4.14), sorted in

ascending order (λ1 ≤ ·· · ≤ λn). The best number of clusters C∗ is

C∗ = max
1<i≤n

eigengap(i). (4.17)

2. Another approach exploits the structure of eigenvector of L+, as suggested

in [122]. Assume U = [u1| . . . |uC] is the orthogonal eigenvectors of L+ corre-

sponding to the eigenvalue λ1, . . . ,λC, renormalize it through (4.15) and build
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(n×C) matrix Z = UR describing the clustering. Denote with Mi = max
1≤ j≤C

Zi j

with i = 1, . . . ,n; the optimal number of cluster C is the solution of the following

problem

min
C∈N

n

∑
i=1

C

∑
j=1

Z2
i j

M2
i
. (4.18)

A gradient descend method to solve this optimization problem is shown in

[122].

Evaluation Metric
Several metrics can be adopted to evaluate the clustering performance, but Nor-

malized Mutual Information (NMI) [123] emerged as the most reliable from a set of

simulations performed by Wang and colleagues [119]. NMI has a crucial role in our

feature ranking scheme (rSNF).

Let S be a set of n samples and define a clustering F on S as a way of parti-

tioning S into non-overlap subsets {F1, . . . ,FR}, where ∪R
j=1Fj = S and Fj ∩ Fi = /0

for i 6= j. The information on the overlap between two clustering F = {F1, . . . ,FR}

and G = {G1, . . . ,GC} can be summarized in form of a R×C contingency table

N = (ni j)i=1,...,R; j=1,...,C where ni j denotes the number of objects that are common

to clusters Fi and G j. The outline of contingency table is illustrated in Table 4.1.

Table 4.1. Contingency Table N, ni j = |Fi∩G j|

F \G G1 G2 · · · GC Sums
F1 n11 n12 · · · n1C a1
F2 n21 n22 · · · n2C a2
...

...
...

. . .
...

...
FR nR1 nR2 . . . nRC aR

Sums b1 b2 · · · bC ∑
R
i=1 ∑

C
j=1 ni j = n

Define ai = ∑
C
j=1 ni j for i = 1, . . . ,R the number of element in Fi and b j = ∑

R
i=1 ni j for

j = 1, . . . ,C the number of element in G j.

Given two clusterings F and G, their entropies and mutual information (MI) are
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defined naturally via the marginal and joint distributions of data items in F and G

respectively as

H(F) =−
R

∑
i=1

ai

n
log

ai

N
, (4.19)

H(G) =−
C

∑
j=1

b j

n
log

b j

n
, (4.20)

I(F,G) =−
R

∑
i=1

C

∑
j=1

ni j

n
log

ni j/n
aib j/n2 . (4.21)

The MI, a concept derived from information theory [124], measures the information

that F and G share: basically, how much knowing one of these clusterings reduces

the uncertainty about the other. The higher the MI, the more the information in F

supports the prediction of cluster labels in G and viceversa.

Hence, NMI is defined as

NMI(F,G) =
I(F,G)√

H(F)H(G)
. (4.22)

NMI ranges in [0,1] and measures the concordance of two clustering results: the

higher NMI the more similar the clusters.

Network clustering is a central step both for our novel feature ranking scheme (see

Paragraph 4.2.2) as well as for tuning the parameters of Similarity Network infer-

ence (see Paragraph 4.1.1). A summary of parameters tuning procedure designed

in this thesis is reported in Algorithm 2.

4.2.2 rSNF algorithm

rSNF is designed to rank key meta-omics variables for the identification of sam-

ples clustering (e.g., phenotypes). Our feature ranking procedure is inspired by
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Algorithm 2 Parameters Tuning Algorithm
:

1. Normalization w.r.t features
Compute Step 1 of Algorithm 1

2. For each possible combination of (K,α) ∈ {10,11, . . . ,30}×{0.3,0.35, . . . ,0.8}

(a) Compute Step 2 of Algorithm 1, which builds a similarity matrix W (K,α)
l , a

full kernel matrix P(K,α)
l and the local affinity S(K,α)

l for each data table.

(b) Compute Step 3 of Algorithm 1, which builds the overall status matrix
P(K,α).

(c) Randomly group samples (columns or rows of P(K,α)) into 5 roughly
equal-sized groups stratifying per classes and repeat this operation 10
times. Hence, for each N = 1, . . . ,10, submatrices of P(K,α) of dimension
(dn/5e×dn/5e) are obtained, denoted as P(K,α)

1,N , . . . ,P(K,α)
5,N .

(d) For each N = 1, . . . ,10:

i. for each m = 1, . . . ,5, perform Step 4 of Algorithm 1 on P(K,α)
m,N to ob-

tain the sample clustering, denoted with F(K,α)
m,N , and evaluate it with

respect to the known clustering for that subset of samples (Gm,N),
through Step 5 of Algorithm 1. Then, it is computed NMI(K,α)

m,N :=

NMI(F(K,α)
m,N ,Gm,N);

ii. compute the median of NMI(K,α)
m,N with respect to m = 1, . . . ,5 which is

indicated with NMI(K,α)
N .

(e) Compute the median of NMI(K,α)
N with respect to N = 1, . . . ,10 and denote

it with NMI(K,α).

3. the optimal couple values of hyperparameters (K,α) is the one solving

max
(K,α)

NMI(K,α)
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Wang and colleagues [119] and it is based on network clustering as described in

Paragraph 4.2.1. Suppose a set of normalized data tables Xl of dimension (n× pl),

l = 1, . . . ,L are integrated by SNF (see Paragraph 4.1.3), into a fused network ex-

pressed through the matrix P. rSNF steps are summarized in Algorithm 3.

Algorithm 3 rSNF Algorithm

1. Fused network clustering:
perform spectral clustering on fused network P, as described in Paragraph
4.2.1. In this thesis, a non a priori approach is adopted as suggested in [119],
thus the number of clusters is not specified. The clustering of samples (e.g.,
representing clinical phenotypes) is denoted with F .

2. Feature ranking scheme:
For each feature fhl ,l with l = 1, . . . ,L and hl = 1, . . . , pl:

(a) Build a sample network Phl ,l based on fhl ,l alone

(b) Perform spectral clustering on Phl ,l to identify subtypes Fhl ,l

(c) Measure the consistency between fhl ,l and the whole network P as
cshl ,l = NMI(Fhl ,l,F). Hence, if cshl ,l = 1, the network of samples based
on fhl ,l leads to the same clusters as the fused network, therefore feature
fhl ,l is determinant in the construction of sample network. On the other
hand, if cshl ,l = 0, there is no real correspondence between the feature
and the fused network. In conclusion, the higher is cshl ,l = 0, the more
important is the fhl ,l to the fused network structure, allowing to rank all
the features with respect to their importance for the fused network con-
struction.

Clearly, rSNF is based on Similarity Network Fusion and network clustering (and

consequently on NMI score). The motivation of the specific rSNF design is that

it naturally extends a popular state-of-the-art method as SNF, which has inspired

several studies in the recent scientific literature, specifically in cancer genomics

[125, 126], in metagenomics [127, 128], as well as in precision medicine [129, 130].

rSNF exploits two main SNF advantages: integration of heterogeneous data and

sample networks clustering. The main peculiarity of SNF integrative procedure is

its robustness to noise [119], because weak similarities among samples (low-weight
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edges) disappear, except for low-weight edges supported by all networks that are

conserved depending on how tightly connected their neighborhoods are across net-

works. Moreover, Wang and colleagues showed the advantage of combining SNF

and network clustering: they performed spectral clustering on SNF-integrated data

(DNA methylation, mRNA and miRNA expression) by identifying subtypes across a

wide spectrum of cancers; best performance was found by evaluating the silhouette

score [131], which is a measure of cluster coherence.

4.3 Integrative Network Fusion

This thesis introduces Integrative Network Fusion (INF), a bioinformatics framework

for the identification of integrated meta-omics biomarkers. The framework is based

on the predictive profiling of meta-omics data abundances (i.e., bacterial and fungal

DNA abundances) with a novel approach to their integration. In summary, INF

implements and compares a standard naive and a novel integration approach: first,

the standard method is considered by concatenating meta-omics data and training

Random Forest (RF) or Support Vector Machine (SVM) classifiers on the combined

dataset, finally obtaining a ranked list of biomarkers. This approach is referred as to

ml-J. Secondly, meta-omics data are integrated by Similarity Network Fusion (see

Paragraph 4.1); again, RF or SVM models are developed on the integrated dataset

for the SNF-ranked list of meta-omics variables (see Paragraph 4.2). This approach

is referred as to ml-rSNF. Finally, RF or SVM are trained on the dataset restricted on

the intersection of the biomarkers lists from ml-J and ml-rSNF. Notably, predictive

models are developed inside the Data Analysis Protocol described in Paragraph

2.3, ensuring reproducibility and avoiding overfitting or selection bias.

INF is structured as in Figure 4.1.
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Figure 4.1. INF workflow. The ml-J (classifier on juxtaposed datasets) and ml-rSNF (clas-
sifier on combined datasets with rSNF-ranked variables) are run in parallel. Integrated
meta-omics signature is computed by training a classifier on the datasets restricted on the
intersection of ml-J and ml-rSNF biomarkers.

The implementation requires only standard open source computational biology tools,

as a combination of R/Bioconductor and Python functions: SNF and rSNF are im-

plemented by in-house R scripts, extending R functions provided by Wang and

colleagues [119]; predictive profiling combines in-house Python (for classifiers de-

velopment) and R scripts (for graphical output). The code implementing INF and

a clinical dataset for INF validation are available in the GitHub repository (https:

//github.com/AleZandona/INF).

https://github.com/AleZandona/INF
https://github.com/AleZandona/INF


Chapter 5

Bioinformatics workflows

Sequencing technologies have been rapidly improving, as well as the computa-

tional infrastructure needed to analyze the resulting volume of the data being gen-

erated. Indeed, computational tools have a central role in several meta-omics anal-

yses, i.e., the identification of associations between the microbiome and specific

diseases, the deconstruction of the host-microbe-microbiome interactions as well

as the integrative analysis of multiple meta-omics data. Diverse software appli-

cations have been designed to address these challenges, but performing these

analyses separately usually requires the installation, integration, and tuning of mul-

tiple software packages, which is not always trivial even for groups with extensive

bioinformatics expertise. Consequently, most studies rely on modular frameworks

that collect computational tools in a modular and customizable manner, making it

easier to reproduce or extend analysis results and encouraging collaboration. One

of the most popular workflows for metagenomic data analysis is QIIME [25], which

integrates several tools in a single framework: from the taxonomic classification of

the DNA sequences (abundance of microbial taxa within microbiota) to the anal-

ysis of functional capacity of microbiome, including also the possibility to display

the results in a graphical form. In particular, one of the software tools included
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in QIIME is mothur [132], which is a popular pipeline for amplicon metagenomic

data integrating tools for sequence screening based on quality, Operational Taxo-

nomic Units (OTUs) definition and estimation of ecological parameters (i.e., α and

β diversity). The UPARSE pipeline [26] is an alternative to QIIME and mothur:

first, metagenomics sequences are cleaned, quality filtered and dereplicated, then

reads are ordered according to their abundances considering that high abundance

sequences are more likely to be correct before OTUs assignment. MG-RAST [27]

is a webserver performing taxonomic analysis, functional profiling and gene calling

using stat-of-the-art tools such as UCLUST [133] and custom protein databases

(M5nr [134]) as well as M5rna (a combination of SILVA [135], GreenGenes [136]

and RDP [137]) for rRNA analysis. The recently introduced MICCA pipeline [28]

implements the processing of targeted metagenomic datasets combining quality

filtering, chimera identification, taxonomic assignment, diversity analysis and phy-

logenetic tree inference.

This thesis introduces two modular and flexible bioinformatics frameworks, built

around a collection of publicly available and in-house metagenomic analysis tools

that can be tailored and extended to meet specific analysis needs.

5.1 PreMONet framework

Predictive Meta-Omics Networks (PreMONet) is a computational framework includ-

ing a chain of tools for a complete quantitative analysis of meta-omics data. Pre-

MONet is outlined in Fig. 5.1, both as conceptual workflow for metagenomics data

and as its implementation for 16S and WGS data analysis. The application of Pre-

MONet on other meta-omics data is out of the scope of this thesis, but can be

achieved by the adaptation of modules A-C (see Fig. 5.1).
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Figure 5.1. PreMONet framework for metagenomics data. Conceptual workflow and im-
plementation for both 16S and WGS data.

Overall, the whole procedure can be split in three main modules, namely data

preprocessing, machine learning profiling (see Chapter 2) and differential network

analysis (see Chapter 3). The preprocessing step (module A, Fig. 5.1) implements

quality filtering of metagenomics sequences (either in SFF or FASTQ/FASTA for-

mat) by Mothur [132]: removal of short sequences, reads with ambiguous bases,

sequences with either low entropy or low Phred quality score. Reads are then

aligned against a reference database (module B), which depends on the type of

metagenomics data to analyze: it is a collection of NCBI annotated whole genome

sequences in case of WGS data or Greengenes 16S rRNA gene database in case

of 16S data. WGS reads are aligned by BWA-MEM [138], while amplicon reads

undergo a different process implemented by QIIME. Sequences with a similar-

ity level of 97% are clustered into Operational Taxonomic Units (OTUs) by Py-

NAST [139]. OTUs are commonly intended to represent some degree of taxo-

nomic relatedness, depending on the sequence similarity; resulting clusters from

a 97% threshold are typically considered of as representing a species. Each OTU

may group many related sequences, thus a representative sequence from each

OTU is picked (the OTU centroid sequence) by UCLUST [133] and aligned by

PyNAST against Greengenes v. 13.8 database. After reads mapping, each or-

ganism matched in the metagenomic reference is taxonomically assigned (mod-
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ule C) at different taxonomic levels (Phylum, Genus, Species) by either EMBOSS

(http://emboss.sourceforge.net), using the corresponding NCBI taxonomy

ID, or UCLUST, if data are WGS or 16S, respectively. Taxonomy assigment is fol-

lowed by quantification module (module D), which computes microbial reads abun-

dance. Whilst 16S data are quantified by QIIME, WGS reads abundance is inferred

by the Python module HTSeq, counting reads overlapping more than one specified

genomic region (either the whole genomic sequences or coding sequences as well

as structural RNA).

In summary, PreMONet preprocessing modules provide an abundance profile of

the sequenced metagenomic reads, resulting in a sample-by-abundances count

matrix, which is derived at each taxonomic level of interest. Count data can also

be normalized in terms of the Trimmed Mean of M-values (TMM) normalization, im-

plemented by the edgeR Bioconductor package, while compositional data are not

normalized. Moreover, abundances matrix can be further processed, so that low

abundant reads (present in less than a user-defined fraction of samples) are op-

tionally filtered out before generating predictive models.

Machine learning profiling (module E) and network analysis (module F) are de-

scribed in detail in Chapters 2 and 3, respectively.

5.2 I-PreMONet framework

PreMONet is equipped with additional functionality to implement a comprehen-

sive integrative modeling of multiple meta-omics layers. Specifically, the integra-

tive framework detailed in Paragraph 4.3 is embedded into PreMONet, right after

the preprocessing step and before the machine learning profiling module. This

extended version of PreMONet is referred as to Integrated Predictive Meta-Omics

Networks, briefly as to I-PreMONet. The framework is structured as in Fig. 5.2.

http://emboss.sourceforge.net
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Figure 5.2. I-PreMONet framework for metagenomics data. Conceptual workflow and
implementation for 16S and ITS2 data.

Notably, the implementation of both our frameworks requires only standard open

source computational biology tools, as a combination of in-house scripts based

on a suite of R/Bioconductor and Python functions. The code implementing (I-

)PreMONet is thus accessible and customizable, making our frameworks easy-

reusable also for researchers without bioinformatics expertise. Moreover, the mod-

ular design and open-source licensing model allow the extension of (I-)PreMONet

to new applications beyond our initial focus on meta-omics data. Indeed, parame-

ters (input, output, parameters either for classifiers training or networks inference)

may be changed via the Bash command line; besides, users may directly edit the

code of each (I-)PreMONet module to implement extensive changes to the pipeline,

if required.

As validation, (I-)PreMONet have been tested on clinical metagenomics datasets;

results are reported in detail in Chapter 6.
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Chapter 6

Biological applications

In this Chapter we validate PreMONet (see Paragraph 5.1) and its extended ver-

sion I-PreMONet (see Paragraph 5.2) on clinical datasets. The final objective is

the prediction of disease phenotypes by the characterization and modeling of hu-

man microbiota, considering either metagenomic or multiple meta-omics data. In

Sec. 6.1, we present an example of PreMONet application to a clinical context: the

analysis of structural change of networks from bacterial communities to predict In-

flammatory Bowel Disease (IBD) outcome and evolution in children. Sections 6.2

and 6.3 report the combined analysis of bacterial and fungal microbiota performed

by INF (the core module of I-PreMONet), so to predict IBD outcome prediction in

adulthood (see Sec. 6.2) as well as to relate gut microbiota composition to Rett syn-

drome (see Sec. 6.3), respectively. Our workflow aims at setting a new resource for

predictive analysis that progressively exploits complex network methods, inspired

to the general network medicine framework [140].
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6.1 Pediatric Inflammatory Bowel Disease: P_IBD

Inflammatory Bowel Disease (IBD) is a broad term describing a set of complex

chronic intestinal inflammatory disorders, Ulcerative colitis (UC) and Crohn’s dis-

ease (CD) as the best known syndromes [141, 142]. Chronic diseases of the intes-

tine, including IBDs, are a leading cause of morbidity and mortality in the developed

world, i.e., affecting approximately 1.4 million Americans, with a peak onset in peo-

ple 15 to 30 years of age. CD is characterized by patchy and transmural inflamma-

tion that may affect any part of the gastrointestinal tract, including wall thickening,

duct stricture, fistulas (abnormal passages between two organs, or between an or-

gan and the outside of your body), abscesses and ulcers. UC is a chronic periodic

inflammatory condition that involves only the large bowel at the mucosa level, lead-

ing to the loss of haustra (colon small pouches), rectal bleeding, pseudo-polyps

formation and damage of mucosal lining. Although CD and UC are different disor-

ders, both may manifest any of the following symptoms: abdominal pain, vomiting,

diarrhea, rectal bleeding, severe internal cramps/muscle spasms in the region of

the pelvis and weight loss. CD and UC may present extra-intestinal manifesta-

tions (i.e., liver problems, arthritis, skin manifestations and eye problems, anemia,

pyoderma gangrenosum, primary sclerosing cholangitis, and non-thyroidal illness

syndrome) in different proportions [143, 144]. Diagnosis is generally achieved as-

sessing blood as well as fecal inflammatory markers, followed by colonoscopy with

biopsy of pathological lesions. The course of the disease is unpredictable, being

characterized by periods of remission and recurrent active inflammation; moreover,

IBD etiology has not been completely unraveled yet.

Accumulating evidence suggests that IBD involves dysregulation in the normally

symbiotic relationship between mucosal immune system and intestinal commen-

sal microbes, modulated by the genetic susceptibility of the host [145, 146, 147].

Studies profiling the gut microbiota in patients with IBD compared to controls have



Pediatric Inflammatory Bowel Disease: P_IBD 73

consistently shown changes in microbiota composition as well as reduction in over-

all biodiversity. The largest study to date in a treatment-naïve cohort of paediatric

patients with CD [148], in whom analysis of mucosal and lumen-associated mi-

crobiota was performed, confirms that inflammation is strongly associated with an

overall drop in species diversity and alterations in the abundance of several taxa.

Moreover, the relative balance of beneficial vs. aggressive commensal enteric mi-

croflora has been advocated to determine mucosal homeostasis vs. inflammation

[149]. This inflammation can determine tissue damage, cell proliferation and infil-

tration, potentially changing the metabolism between normal and diseased tissues.

Besides, several pieces of evidence suggest that luminal commensal bacteria pro-

vide an antigenic stimulus, inducing immune response (dysregulation) and trigger-

ing the inflammation associated to IBD onset, in genetically susceptible individuals.

IBD has a well-established genetic component and genome-wide association stud-

ies (GWAS) have been highly successful in identifying genes that contribute to the

disease risk, underlining that characteristics of host defenses and their interplay

with the enteric content are crucial in initiating the pathogenesis of IBD. GWAS

have also identified a number of immune system pathways that are mutated in sus-

ceptible hosts, some of which are activated by infection-mediated syndromes [150]

or by altered cellular responses [151]. A recent theory has shed light onto the

gut ecology, which exerts concerted actions and synergic commensal responses to

pathogens [152]. The gut microbiota is clearly the proximate environmental influ-

ence on the risk of IBD, even though it is unclear whether tissue damage results

from an abnormal immune response to a normal microbiota or from a normal im-

mune response against abnormal microbiota.

PreMONet contributes to the identification of new microbial biomarkers of dysbiosis

predicting IBD outcome and, possibly, allowing targeted prevention.
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6.1.1 Dataset

PreMONet was validated on the P_IBD dataset, generated by the Bambino Gesù

Children’s Hospital (Rome, Italy). P_IBD consists in bacterial composition of gut

microbiota of 45 children with IBD and 47 healthy children (Tab. 6.1), determined

using 16rRNA from Roche 454 platform. Microbiota was collected both from fecal

samples and colon biopsies; in detail:

• 57 fecal samples: 27 healthy and 30 IBD children

• 15 biopsies from colon: matched normal/inflamed tissue

• 20 biopsies from healthy donors

Phenotype Age: Year (mean ± SD)

Fecal healthy 10.6±1.8

Biopsy healthy 12.0±5.4

Biopsy IBD 13.2±4.4

Fecal IBD 12.9±4.5

Table 6.1. Age of subjects in P_IBD dataset.

Fecal samples were collected from either IBD and healthy subjects at visit (Pedi-

atric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy). More-

over, from one to two mucosal biopsies (1×2 mm/each), taken from the distal colon

just above the rectosigmoid junction, were collected from IBD (two macroscopi-

cally inflamed and not inflamed tissue regions) and from healthy subjects (one not

inflamed tissue). All biopsies were managed in the operating room according to

standardized protocols for the preservation of nucleic acids.
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Genomic DNA extraction from fecal samples. Stools were resuspended into

1.5 ml PBS, homogenized by vortexing for 2 min and centrifuged at 20,800×g. After

supernatant removal, pellet was resuspended into 500 µl of PBS added by 500 µl

of Beads/PBS (1 mg/µl,w/v) (Glass Beads, acid-washed SigmaAldrich). The 1 : 1

mixture was homogenized by vortexing 2 min and centrifuged at 5200×g for 1 min.

The supernatant was collected, and treated for one freeze-thaw cycle (-20°C/70°C)

for 20 min each step. After centrifugation at 5200×g for 5 min, the supernatant was

subjected to QIAamp DNA Stool Mini Kit (Qiagen, Germany) extraction, according

to manufacturer’s instructions. DNA was eluted into 50 µl purified H2O (Genedia,

Italy) and its yield quantified using a NanoDrop ND-1000 spectrophotometer (Nan-

oDrop Technologies, Wilmington, DE). DNA was adjusted to 10 ng/µl concentration

and used as template for successful 16S Metagenomic 454 Sequencing Analyses.

Genomic DNA extraction from biopsy samples. Biopsies were incubated for

1 h in 190 µl Buffer G2 (Qiagen) (ensuring that the tissue sections are fully sub-

merged in Buffer G2), incubated for 5 min at 75°C, with vigorous mixing. Sample

were cooled to 56°C and 10 µl proteinase K solution (600 mAU/ml) were added,

mixed and incubated for 1 h at 56°C with continuous vigorous mixing. DNA ex-

traction was performed by EZ1 automated procedures according manufacturer’s

procedures. DNA was eluted in 100 µl.

Amplicon library preparation and pyrosequencing. The gut microbiome was

investigated by barcoded pyrosequencing V1-V3 regions of the 16S rRNA gene

(amplicon size 520 bp), on a GS Junior platform (Roche 454 Life Sciences, Bran-

ford, USA), according to the pipeline described in [153].

Taxonomic analysis
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Figure 6.1. PreMONet applied on P_IBD dataset.

Pyrosequencing reads provided in SFF files were first processed via Mothur v. 1.33.3

[132] by module A of PreMONet (Fig. 6.1), filtering out reads with:

• Length less than 200 bp

• Homopolymers longer than 8 bp

• Ambiguous bases

• Average Phred quality score < 35, over windows of 50 bp each

After quality control process, the remaining reads were analyzed in the Quanti-

tative Insights into Microbial Ecology (QIIME) v. 1.8.0 [25]. First, genomic reads

from all samples with a sequence similarity level of 97% were clustered into Oper-

ational Taxonomic Units (OTUs) by PyNAST [139]. OTUs are commonly intended

to represent some degree of taxonomic relatedness, depending on the sequence

similarity; resulting clusters from a 97% threshold are typically considered of as

representing a species. Each OTU may group many related sequences, thus a

representative sequence from each OTU was picked (the OTU centroid sequence)

by UCLUST [133] and aligned by PyNAST against Greengenes v. 13.8 database

(module B in Fig. 6.1). Taxonomy was assigned to each representative sequence

with the UCLUST consensus taxonomy assigner (module C in Fig. 6.1); a six-level

taxonomy (from kingdom to species) was provided and both the unassigned OTUs

and the unspecified levels were considered. Lastly, module D produced a table of

OTU abundances in each sample with taxonomic identifiers for each OTU; the table

was filtered by discarding unassigned OTUs and keeping taxa at genus level only.
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A downstream filter was applied to the OTU table, keeping only that OTUs present

in at least 20% of the samples; the resulting taxonomic units tables defined the

classification problems associated to the dataset.

Statistical analysis

In order to discriminate dysbiotic microbial profiles associated with IBD from the

normal ones, microbiota both from different environments (fecal samples vs. colon

biopsies) as well as clinical phenotypes (healthy vs. IBD) was analyzed. In detail,

five classification tasks were performed:

• 30 IBD vs. 27 healthy subjects, fecal samples (FEC_H_IBD)

• 27 fecal samples from healthy individuals vs. 15 not inflamed tissue biopsies

from IBD patients (FEC_H_B_NORM)

• 30 fecal samples from IBD patients vs. 15 inflamed tissue biopsies (FEC_B_IBD)

• 15 not inflamed vs. 15 inflamed tissue biopsies (B_NORM_IBD)

• 20 healthy vs. 15 inflamed IBD subjects, tissue biopsies (B_H_IBD)

Microbial biomarkers for each classification task were identified by machine learn-

ing methods, implemented in module E of the PreMONet pipeline (Fig. 6.1): Sup-

port Vector Machines and Random Forest classifiers were trained adhering to the

Data Analysis Protocol presented in Sec. 2.3, so to ensure results reproducibility.

6.1.2 Network analysis

The PreMONet pipeline provided also the setup for quantitative analysis of micro-

bial communities in terms of quantification of networks differences and evolution of

microbial communities versus the dynamics of the target phenotypes (module F in
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Fig. 6.1).

Co-occurence networks

Starting from predictive biomarkers, co-abundance undirected weighted networks

were built using top-features as nodes from cohorts corresponding to patients phe-

notypes in terms of the (thresholded) absolute Pearson Correlation Coefficient (PCC).

This approach aimed to highlight changes in links between OTUs, depending on ei-

ther the health status (IBDs vs. controls) or the environment (fecal content vs. colon

biopsies). Finally, the structures of the obtained microbiome networks were com-

pared by quantifying network distances using the glocal HIM distance [98, 154].

The closer to zero the HIM distance, the more similar the compared networks.

Graphical layout of networks was produced with CIRCOS [155], with genera being

represented as arches of outer ring and PCC between genera represented as links

connecting arches.

Network trajectories

Samples, regardless of the phenotype, were grouped by increasing level of cal-

protectin (range 10-370 mg/kg), which is commonly used in clinical settings as a

non-invasive marker to assess the activity of IBD. The number of samples across

sets were balanced and the co-occurrence networks were inferred on top-ranked

genera for each sample subset. In order to measure changes in microbial com-

munities structure in association to calprotectin levels, HIM distance was computed

between the network corresponding to the lowest calprotectin range and the net-

works corresponding to increasing calprotectin levels.

Network communities

For each network, a community detection analysis was performed by the Louvain
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method [108], a quantitative technique for grouping nodes according to the net-

work modularity, i.e., the density of links inside communities as compared to links

between communities.

6.1.3 Results

Analyses were performed at genus taxonomic level, thus the 3,510 OTUs table built

by QIIME in the preprocessing steps was reduced to a 168 genera table; subse-

quently, one table for each classification task was built and low abundant genera

were filtered out (Tab. 6.2).

Task # samples # genera

FEC_H_IBD 57 40

FEC_H_B_NORM 42 35

B_NORM_IBD 30 33

FEC_B_IBD 45 36

B_H_IBD 35 37

Table 6.2. P_IBD datasets dimension: number of samples and genera for each classifica-
tion task.

For each classification task, main results are reported in Fig. 6.2 in terms of aver-

age MCC with 97.5% Student bootstrap (1000× resampling) confidence intervals

(MCCmin, MCCmax), number of top-ranked features (N f ), and Canberra stability indi-

cator (S). Top classification performance was achieved for FEC_H_B_NORM with

MCC = 0.81 and N f = 30 genera, and for FEC_B_IBD with MCC = 0.74 and N f = 36

genera. IBD status in fecal samples (FEC_H_IBD) was predicted with MCC = 0.61

and 4 genera. A good classification performance was achieved also in biopsies

from healthy donors and IBD patients (B_H_IBD) with MCC = 0.61 and N f = 9. Re-

markably, IBD status could not be predicted in matched biopsies (B_NORM_IBD),
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as the best model yielded MCC = 0.01 with 3 genera.

Fecal IBD
(30)

Fecal healthy
(27)

Biopsy normal

Biopsy IBD
Biopsy healthy

(20)

FEC H IBD
MCC 0.61 (0.52-0.68)

4 genera, S 0.64

FEC H B NORM
MCC 0.81 (0.76-0.86)

30 genera, S 0.56

B NORM IBD
MCC 0.01 (0.00-0.02)

3 genera, S 0.04

FEC B IBD
MCC 0.74 (0.68-0.79)

36 genera, S 0.52

B H IBD
MCC 0.61 (0.54-0.68)

9 genera, S 0.56
15 ×

2
paired

Figure 6.2. Best predictive performance for the five classification tasks.

Mean MCC values achieved by classifiers at increasing feature set sizes are shown

in Fig. 6.3. As described in Sec. 2.3, first the classifier identified a list of genera

ranked by their importance in the specific classification problem, then increasing

sets of genera (referred as to “feature steps”) from the ranked list were used to

build predictive model on training partition.

Classifiers did not overfit data: MCC curve resulting from random ranking experi-

ment (ml-rr) increased with the feature steps, reaching the maximum by using the

entire set of genera. Indeed along random ranking procedure, predictive power

of genera for the specific classification problem was not considered (ranking was

shuffled); thus, the classifier performance was expected to increase with genera

set size, since the number of discriminant genera included in classifier training also

increased.

Selection bias was also avoided, with evidence from ml-rl curve, which oscillated

around zero. Thus, the prediction of models developed along random labels proce-

dure was actually random, as the association between samples and phenotypes.

As a first naïve evaluation of microbial communities structure, Pearson Correlation

coefficient (PCC) was computed among the top-ranked genera of each classifica-
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Figure 6.3. MCC plots for the 5 classification tasks. Solid curves in black indicate MCC,
with corresponding 95% bootstrap confidence intervals, at increasing genera set sizes
(STEP). MCCint highlighted with (∗). Random labels (RL) and random ranking (RR) ex-
periments are indicated respectively in green and in blue (see text).



82 Biological applications

tion task; microbial interactions was modeled by networks, with nodes as genera

and edges as correlation among them. CIRCOS plots in Fig. 6.4-6.6 were chosen

as graphical layout for networks, arches on ring as genera and ribbons as correla-

tion links over threshold, which was computed by the model proposed in [94].

In details, Fig. 6.4 reports the co-abundance networks on top-ranked genera in

B_H_IBD task (task E). In biopsy from healthy subjects (green edges), Oscillospira

was linked with Ruminococcus, while in biopsy from inflamed tissue (red edges)

Ruminococcus was linked with Dialister and Odoribacter, which, in turn, was linked

to Coprococcus.

Figure 6.4. CIRCOS co-abundance networks on top-ranked genera (B_H_IBD). Red
edges: links conserved in IBD only; green edges: links conserved in H only. Edge’s color in-
tensity is proportional to the absolute value of Pearson correlation coefficient (PCC). Edges
are thresholded at PCC = 0.67.
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Analyzing the co-abundance network for task FEC_B_IBD (task C), reported in

Fig. 6.5, the following links amongst OTUs were found only in feces from IBD sub-

jects: Streptococcus to Haemophilus; Prevotella, Oscillospira, Ruminococcus and

Phascolarctobacterium to Clostridiales; Bacteroidales to Phascolarctobacterium;

Sutterella to Akkermansia; Lachnospiraceae to Clostridium; Ruminococcus to Os-

cillospira. In Biopsy inflamed samples, Streptococcus was linked to Ruminococ-

cus; Parabacteroides to Veillonella; Barnesiellaceae to Clostridiales and Blautia;

Lachnospira to Lachnospiraceae; Prevotella, Fusobacterium and Bacteroidales to

Akkermansia; Bacteroidales to Fusobacterium; Enterococcus to Veillonella; Blautia

to Clostridiales; Clostridiaceae to Haemophilus.
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Figure 6.5. CIRCOS co-abundance networks on top-ranked features (FEC_B_IBD). Red
edges: links conserved in FEC only; green edges: links conserved in B only. Edge color
intensity thickness is proportional to the absolute value of Pearson correlation coefficient
(PCC). Edges are thresholded at PCC = 0.8.

The results from the co-abundance networks in FEC_H_B_NORM task (task B) are

reported in Fig. 6.6. In fecal healthy samples, only one edge was found between

Anaerostipes and Erysipelotrichaceae. In biopsy from inflamed samples, 22 links

were found. In particular, Bacteroides was linked to Lachnospiraceae and Lach-

nospira; Anaerostipes to Blautia and Roseburia; Clostridium and Ruminococcus

to Lachnospiraceae; Lachnospira to Dialister, Lachnospiraceae, Ruminococcus;

Odoribacter to Clostridiales; Rikenellaceae to Oscillospira; Erysipelotrichaceae to

Veillonella, Parabacteroides, Ruminococcaceae; Ruminococcaceae to Veillonella
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and Parabacteroides; Prevotella to Akkermansia and Ruminococcaceae; finally,

Ruminococcaceae to Akkermansia.

Figure 6.6. CIRCOS co-abundance networks on top-ranked features (FEC_H_B_NORM).
Red edges: links conserved in B_NORM only; green edges: links conserved in FEC_H
only. Edge’s color intensity is proportional to the absolute value of Pearson correlation
coefficient (PCC). Edges are thresholded at PCC = 0.75.

Furthermore, analyses focused on network trajectories as a function of fecal calpro-

tectin (Cp) concentration, which is one of the most popular non-invasive markers of

IBD. It is commonly established that samples with Cp < 50 mg/kg can be regarded
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as healthy [156]. Calprotectin is a 36 kDa Calcium and Zinc binding protein ex-

pressed by neutrophils: neutrophil aggregation in the mucosa on inflamed intestine

led to an increase of Cp concentration. Besides, it correlates well with fecal ex-

cretion of indium111-labelled neutrophil granulocytes, the gold standard measure of

gut inflammation [157]. The specificity of Cp for detecting IBD could be improved

by considering another well-established risk factor of IBD, namely the gut micro-

biota. In detail, the structural changes of networks modeling interactions of gut

microbial communities were analyzed in association to the levels of Cp. Thus, the

B_H_IBD task was considered, given its best predictive performance in terms of

MCC and stability of top discriminant genera list. First, Cp levels were divided into

5 consecutive ranges (5− 20,10− 24,20− 34,25− 113,124− 370 mg/kg) grouping

samples accordingly. Co-occurrence networks were inferred from each group of

samples, so to compare microorganisms co-occurrence in relation to different cal-

protectin levels. The tendency of link number to increase proportionally to dysbiosis

is evident (Fig. 6.7); it was noteworthy that for samples with Cp > 50 mg/kg correla-

tion between bacteria was stronger than for samples with lower levels of dysbiosis.

For instance, PCC < 0.3 between Oscillospira and Odoribacter for all groups with

lower (Cp < 113 mg/kg) levels of calprotectin, while PCC > 0.7 for samples with the

highest inflammation (Cp > 124 mg/kg). Correlation between Odoribacter and Co-

prococcus shows a similar trend, increasing with the raise in calprotectin levels; in

particular, PCC = 1 in the range 124− 370 mg/kg. On the contrary, links between

Erysipelotrichaceae and Dorea, as well as Erysipelotrichaceae and Coprococcus

tend to weaken with the increase of dysbiosis.
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(a) 5−20 mg/kg (b) 10−24 mg/kg (c) 20−34 mg/kg

(d) 25−113 mg/kg (e) 124−370 mg/kg

Figure 6.7. Networks for groups of samples with increasing ranges of calprotectin. CIR-
COS plots of networks built on top ranked features from B_H_IBD task, considering sam-
ples grouped by increasing levels of calprotectin. Edge’s color intensity is proportional
to the absolute value of Pearson correlation coefficient (PCC). Edges are thresholded at
PCC = 0.65.

Pairwise HIM distances were computed between the network on samples with the

lowest Cp range (5−20mg/kg) and the networks for increasing Cp levels. Note that

inflammation intensifies as the network distance increases, suggesting an impact

of dysbiosis on both global and local structure of microbial communities (Fig. 6.8)
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Figure 6.8. HIM distance between networks on samples with lowest vs networks on sam-
ples with increasing levels of calprotectin.

Community detection by Louvain method (Sec. 3.4) on the five networks highlighted

that the number of communities decreases as inflammation intensifies (Fig. 6.9).

Furthermore, we investigated how the composition of microbial communities change

along Cp levels. In detail, we found that increasing dysbiosis breaks subcommunity

Ruminococcus-Oscillospira, while Odoribacter-Lachnospiraceae is present for all

calprotectin ranges but the lowest one.
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(a) 5−20 mg/kg (b) 10−24 mg/kg (c) 20−34 mg/kg

(d) 25−113 mg/kg (e) 124−370 mg/kg

Figure 6.9. Community detection on networks for groups of samples with increasing ranges
of calprotectin. CIRCOS plot of networks on groups of samples with increasing levels of
calprotectin, highlighting communities detected by Louvain method. Nodes with same color
belong to the same community. Edge color intensity is proportional to the absolute value of
Pearson correlation coefficient (PCC). Edges are thresholded at PCC = 0.65.

6.1.4 Discussion

PreMONet identified the set of genera discriminating at best healthy children from

IBD patients; this set includes Lachnospira, Streptococcus, Dialister, Oscillospira,

Ruminococcus and genera belonging to Rikenellaceae and Erysipelotrichaceae.
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Lachnospira, known to be butyrate-producing organism that can ferment dietary

polysaccharides, was more abundant in healthy children, in accordance with [158],

that proved its association with remission.

Besides, Streptococcus abundance was increased in IBD patients, evidence sup-

ported by Keshavarzian and colleagues [159]. Indeed, they showed an increase

in glutathione transport and metabolism genes abundance in IBD; glutathione is a

tripeptide of cysteine and glutamate, synthesized by a few streptococci and ente-

rococci [160], which exerts an homeostatic function for bacteria during oxidative or

acid stress. Notably, chronic inflammations lead to elevated oxygen levels in the in-

testine through increased blood flow and immunological responses associated with

production of reactive oxygen and nitrogen metabolites. Thus, an increase in Strep-

tococcus, the consequent increase in glutathione synthesis and metabolism may

reflect a mechanism by which microbiome addresses the oxidative stress caused

by inflammation [161]. The inflammation-related increase of oxygen levels leads to

a perturbation of microbial composition by selecting subdominant facultative anaer-

obes and disrupting obligate anaerobic communities [162, 163]: interestingly, an

anaerobic Gram-positive bacteria, Ruminococcus, was selected by PreMONet as

one of the top discriminant biomarkers, decreased in IBD children.

Furthermore, Erysipelotrichaceae were identified as biomarkers of IBD both from

fecal and biopsies samples, with an increased abundance in diseased children, in

line with [164, 165, 166]. Indeed, specific taxa within Erysipelotrichaceae have

been associated to inflammation [166], while others have been identified as highly

immunogenic [165]. More in detail, Palm and colleagues [165] found that Im-

munoglobulin A (IgA)-coated members of intestinal microbiota conferred strong

susceptibility to colitis in germ-free mice and showed that Erysipelotrichaceae are

the highly coated by IgA relative to other bacteria. IgA is the predominant antibody

isotype produced at mucosal surfaces, thus the recognition of enteric pathogens
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by the intestinal immune system results in the production of pathogen-specific IgA.

The antibody exerts protection against infection by “coating” pathogens, which are

neutralized and excluded. A dysbiotic microbiota can strongly influence IgA levels,

as shown by Moon and colleagues [167] who found that Sutterella can degrade

the secretory component of IgA, leading to reduced IgA levels. Interestingly, in our

study Sutterella was more abundant in IBD children with respect to healthy sub-

jects.

Furthermore, comparing healthy and IBD subjects, both from feces and biopsies

(FEC_H_IBD and B_H_IBD tasks), Roseburia and Phascolarctobacterium were

significantly reduced in IBD, as shown in [168, 161]; they are butyrate and pro-

pionate producers, respectively. Interestingly, it was proved that short-chain fatty

acids (SCFAs) including butyrate and propionate play a protective role on epithelial

cells and stimulate fluid absorption; butyrate is the major energy source for the ep-

ithelium, induces the differentiation of regulatory T cells (Tregs) and is important in

the resolution of inflammation by signaling through G protein-coupled receptor 43

[162, 169, 170].

Another SCFA producer, Odoribacter, was selected by PreMONet as one of the

top discriminant biomarkers in B_H_IBD task and it was found to colonize more

healthy children than IBD ones. This is in accordance with [161], where Odorib-

acter splanchus was found to be reduced in patients with pancolitis and in pa-

tients with ileal CD. Although not a top discriminant IBD biomarker, our study high-

lighted an higher abundance of Enterobacteriaceae in IBD children, in line with

[171]. Knights and colleagues found increased Enterobacteriaceae in subjects with

higher NOD2 risk allele dosage. Interestingly, NOD2 was the first identified sus-

ceptibility gene for IBD [172, 173]. This gene codes for proteins sensing bacterial

peptidoglycans (PGNs), which are essential components of bacteria cell wall; since

they are not found in the host, they are recognized by specific host proteins called
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pattern recognition molecules, stimulating an immune response. Thus, an impaired

function of NOD2 may cause an increase in bacteria producing PGNs or other

pathogen-associated molecular patterns like bacterial lipopolysaccharides.

However, microbiota consists in diverse species interacting with one another, since

microorganisms do not exist in isolation; the host health and well-being is criti-

cally influenced by the stability of microbial symbiotic relationships, rather than by

individual species [174, 175]. Thus, the shifts in community composition should

be analyzed together with the changes in microbial interactions, in order to bet-

ter associate host illness to dysbiosis. In our PreMONet, microbial relationships

were modeled by co-occurence networks in relation to calprotectin levels, which are

commonly used in clinical settings to assess the activity of IBD. Consequently, our

network analysis could be considered as a possible enhancement of calprotectin-

based risk stratification tools.

In detail, severe inflammation (with consequent highest levels of calprotectin) was

associated to some specific interactions between species. The strongest co-occurence

was observed for Odoribacter and Coprococcus. Since they both are decreased in

abundance in IBD children with respect to healthy ones, the host can not benefit of

their anti-inflammatory activity, exerted by SCFA production. This is a consequence

of cooperative metabolism between some species [7, 176], that commonly leads to

system destabilization because the decrease in abundance of one species will tend

to pull others down with it. The disruption of cooperative metabolism could be also

observed from network communities analysis: Ruminococcus and Oscillospira be-

long to the same community only in healthy children.

Besides, Coprococcus and Ruminococcus were strongly correlated during inflam-

mation, in accordance with Perez and colleagues [177], who performed a Bayesian

network of microbial composition in Ulcerative Colitis, finding positive associations

between Lachnospiraceae and Ruminococcaceae.



Dataset A_IBD 93

In conclusion, our study provides both a list of highly predictive biomarkers of IBD

as well as an insight into the structure of microbial communities and its shifts from

healthy to disease status. Certainly, a bigger cohort of samples and longitudinal

dataset (microbiota composition and calprotectin levels of same samples along

time) would confer even more robustness to our results.

6.2 Dataset A_IBD

IBD affects both adults and in children of all ages, with the peak age of onset be-

fore the age of 20 for 25%-30% of patients with Crohn’s Disease (CD) and 20% of

patients with Ulcerative Colitis (UC). The clinical course of disease differs between

pediatric and adult patients, while the etiology may be similar, except for the effect of

genetic factors. Adult patients show a positive family history for IBD less commonly

than patients diagnosed before the age of 20; thus, risk factors for adults are mainly

the environmental, such as smoking or enteric commensal bacteria [178, 179].

Since endogenous and external determinants modulate the child gut microbiota

in a complex way, a recently adopted hypothesis is that the synergic meta-omics or

systems biology approach could provide a comprehensive understanding of micro-

bial communities perturbations in early IBD. A comprehensive integrative modeling

of multiple meta-omics layers is thus required in disease-specific descriptions of

the gut microbial community and its patho-physiologic evolution [22, 23, 24]. In

this context, a clinical objective of integrative analysis is the discovery of multi-omic

biomarkers to predict a phenotype of interest or drive the development of interven-

tion protocols.

In particular, our I-PreMONet (see Chapter 5) provides INF (Integrative Network

Fusion), which is a computational framework implementing the integration of bac-

terial and fungal datasets to identify an inter-kingdom biomarkers signature pre-
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dictive of IBD phenotypes. Thus, I-PreMONet contributes to address two needs:

developing a integrative meta-omics computational framework as well as inves-

tigating the role of fungi in IBD. Indeed, several human studies on the bacterial

microbiota have observed imbalances of the gut microbiota in IBD patients, con-

versely only few studies have focused on the association between mycobiota and

IBD [180, 181, 182]. Alterations in fungal biodiversity and composition in disease-

specific gut environment have been reported, i.e., modifying the Ascomycota to

Basidiomycota ratio; furthermore, the existence of disease-specific inter-kingdom

alterations has been suggested but not clarified yet.

6.2.1 Dataset

The dataset A_IBD was kindly provided by AVENIR Team “Gut Microbiota and Im-

munity” lab (MICALIS, Paris, France); all patients were recruited at the Gastroen-

terology Department of the Saint Antoine Hospital (Paris, France). A diagnosis of

IBD was provided based on clinical, radiological, endoscopic and histological crite-

ria. Only subjects that had not taken antibiotics or used colon-cleansing products

for at least two months prior to enrolment were included in the study. Criteria to

participate in the study included Crohn’s Disease (CD), ileal CD (iCD) or Ulcerative

Colitis (UC), either in flare (f) or remission (r). Patient characteristics are presented

Tab. 6.3.

Fecal samples were collected from 235 patients with IBD and 38 healthy (HS) indi-

viduals. Whole stools were collected in sterile boxes and immediately homogenised,

and 0.2 g aliquots were frozen at -80°C for further analysis [180].

Patients affected by Pouchitis or with ileostomy have been subsequently excluded

from the analyses, thus the study involved 222 IBD patients (60 CDf, 77 CDr, 41

UCf, 44 UCr, 44 iCDf, 59 iCDr) and 38 healthy subjects.
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IBD (n = 235) HS (n = 38)

Age: Year (mean ± SD) 40.4±14.6 35.8±13.2

Male: n(%) 94(40.0%) 17(44.7%)

Flare/remission 106(45.1%)/129(54.9%) NA

Table 6.3. A_IBD population characteristics

DNA extraction protocol and sequence data processing are reported in detail in

[180], briefly described in the following paragraphs.

Genomic DNA extraction from fecal samples. Nucleic acids were precipitated by

isopropanol for 10 minutes at room temperature, followed by incubation for 15 min-

utes on ice, and centrifugation for 30 minutes at 15,000 g and 4°C. After the RNase

treatment and DNA precipitation, nucleic acids were recovered by centrifugation at

15,000 g and 4°C for 30 minutes. The DNA pellet was finally suspended in 100 µL

of TE buffer.

Amplicon library preparation and sequencing. The sequence region of the 16S

rRNA gene spanning the variable regions V3-V5 was amplified, subsequently a bidi-

rectional library was prepared using the OneTouch2 Template Kit and sequenced

on PGM Ion Torrent, using the Ion PGM Sequencing Kit (Life Technologies, Carls-

bad, CA). Fungal diversity was determined for each sample via 454 pyrosequencing

of Internal Transcribed Spacer 2 (ITS2), on a GS FLX Titanium Sequencing System

(Roche Life Science Mannheim, Germany).

Taxonomic analysis

Sequences processing and quality control were performed in the Quantitative In-

sights into Microbial Ecology (QIIME) version 1.8.0 [25]. After barcodes and PCR
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primers were removed, reads were filtered to discard:

• 16S sequences shorter than 200 bp

• ITS2 sequences shorter than 150 bp

• reads with a base quality threshold < 25

• reads with homopolymers longer than 7 bp

Operational taxonomic units (OTUs) were binned at a sequence similarity level of

97% by using UCLUST algorithm [133]; their taxonomic assignments were ob-

tained by mapping OTUs representative sequences against a reference database.

Sequences were classified with UCLUST on Greengenes database [183] on 16S

rDNA data, and against UNITE ITS database (v. 12.11) [184] on ITS2 data. In order

to compare the OTUs abundances across samples, rarefaction analysis was per-

formed (2,041-83,162 reads/sample for 16S and 540-5,648 reads/sample for ITS2)

and samples with sequence depth lower than 10,000 sequences per sample for

16S data and 1,000 sequences per sample for ITS2 data were discarded.

Statistical analysis

In order to find biomarkers discriminating healthy subjects from IBD patients, six

classification tasks were considered, comparing controls group with each IBD phe-

notype. Besides, UC and CD patients were compared. In summary:

• for healthy (HS) vs. all IBD subphenotypes: HS vs. CDf (HS_CDf , for short),

HS_CDr, HS_UCf , HS_UCr, HS_iCDf and HS_iCDr

• for CD vs. UC comparison: CDf vs. UCf (CDf_UCf , for short) and CDr_UCr

For each task, Random Forest and Support Vector Machines were developed on

70% of the datasets (training partition) composed of bacterial and fungal genera
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Figure 6.10. I-PreMONet applied on A_IBD dataset. Data not processed by grey modules.

from healthy individuals and patients belonging to one of the IBD phenotypes. The

30% of the datasets were used as blind validation set, testing the performance of

trained models on unseen data. Integration of bacterial and fungal abundances and

their predictive profiling were performed in module E (INF) of I-PreMONet pipeline

(Fig. 6.10).

6.2.2 Meta-omics integration

The innovative core of I-PreMONet is the predictive profiling of bacterial and fun-

gal DNA abundances with a novel approach to their integration (modules E defined

as INF, Fig. 6.10). Omics data integration has been defined by Ritchie and col-

leagues [118] as the combination of multiple omics datasets so to develop clas-

sification models that are predictive of complex traits or phenotypes. INF mod-

ule of I-PreMONet contributed both to datasets combination and predictive mod-

els, combining an improved version of a state-of-the-art integration technique [119]

(Sec. 4.1) with predictive models developed inside a gold-standard Data Analysis

Protocol [53] (see Sec. 2.3) for machine learning. In summary, in INF three inte-

grative approaches were implemented and compared. First, the standard method

was considered by concatenating bacterial and fungal features and training Ran-

dom Forest (RF) classifiers on the combined dataset, finally obtaining a ranked list

of biomarkers for the IBD tasks. This approach is referred as to ml-J. Secondly,

bacteria and fungi were integrated by Similarity Network Fusion (SNF) [119], a
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non-Bayesian network-based method that computes a samples’ similarity network

for each data type and fuses them into one network. SNF technique was extended

by adding a feature ranking procedure that sorts bacteria and fungi according to

their contribution to the fused network structure (see Sec. 4.2). Again, RF models

were developed on the integrated dataset for the SNF-ranked list of meta-omics

variables. This approach is referred as to ml-rSNF. Finally, a compact model (INF)

trained on the intersection of features from direct concatenation and rSNF features

was derived. The details of integrative module are also summarized in Fig. 6.11.

Compared to the state-of-the-art method ml-J, INF not only achieved comparable

or better predictive performance, but also identified a compact list of inter-kingdoms

biomarkers.

Figure 6.11. INF module of I-PreMONet on the A_IBD dataset. The methods ml-J (RF on
juxtaposed datasets) and ml-rSNF (RF on combined datasets with rSNF-ranked variables)
were run in parallel. Integrated meta-omics signature was computed by RF on the datasets
restricted on the intersection of ml-J and ml-rSNF biomarkers.
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6.2.3 Results

Sequence processing and quality control led to 11,099,768 reads for 16S rDNA

data and 755,350 for ITS2 data. For our further analyses the 16S and ITS2 OTUs

tables (rows as taxonomically classified OTUs and columns as samples) were col-

lapsed to the genus level, combining OTUs belonging to the same genus. In detail,

matrixes with 308 16S and 187 ITS2 genera frequencies for each sample (rows as

samples and columns as genera) were built. Samples were grouped according to

the classification tasks (see Sec. 6.2.1), leading to eight tables, whose dimensions

are detailed in Tab. 6.4.

Task # samples

HS_CDf 98

HS_CDr 115

HS_UCf 79

HS_UCr 82

HS_iCDf 82

HS_iCDr 97

CDf_UCf 101

CDr_UCr 121

Table 6.4. A_IBD datasets dimension: number of samples for each classification task.

Predictive performance of the three integrative approaches in INF module (ml-J, ml-

rSNF and INF) are reported in terms of best average MCC on training set (MCCint)

with 95% Student bootstrap (1000×resampling) confidence intervals (MCCmin , MCCmax),

MCC on validation set (MCCval), number of features (N f ) leading to MCCint . Both

RF and SVM were developed, but in the main text only RF results will be reported

(SVM results in Appendix C).
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ml-J performance
The first approach to find inter-kingdoms IBD biomarkers consisted in concate-

nating bacterial and fungal datasets, and training predictive models on the joint

dataset. Random Forest predictive results for each IBD classification task are re-

ported in Tab. 6.5.

ml-J

MCCint (MCCmin, MCCmax) MCCval N f

HS_CDf 0.82 (0.78, 0.85) 0.70 80

HS_CDr 0.60 (0.55, 0.65) 0.50 30

HS_UCf 0.81 (0.77, 0.86) 0.74 80

HS_UCr 0.72 (0.67, 0.78) 0.51 10

HS_iCDf 0.86 (0.82, 0.89) 0.66 100

HS_iCDr 0.66 (0.60, 0.71) 0.54 400

CDf_UCf 0.52 (0.48, 0.57) 0.14 20

CDr_UCr 0.33 (0.27, 0.39) 0.50 60

Table 6.5. Synopsis of RF accuracy for each classification task, on juxtaposed 16S and
ITS2 datasets. (MCCmin, MCCmax): 95% bootstrap confidence interval. MCCint : best mean
MCC on training set; MCCval : MCC on validation set; N f : number of genera leading to
MCCint .

First, observe that remission cases and healthy subjects were more difficult to dis-

criminate, as expected, since they are expected to have closer metagenomic pro-

files; on the contrary, flare conditions were more predictable. In detail, best per-

formance balancing MCCint , MCCval and number of top discriminant features was

achieved by comparing healthy subjects (HS) and patients with Ulcerative Colitis

in flare (UCf). As expected, the comparison between CD and UC in remission,

led to the worst predictive performances; indeed, CDr and UCr subjects usually

have similar metagenomics profiles, since their microbiota tends to evolve towards
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a “healthier” composition. Moreover, by evaluating mean MCC values achieved by

classifiers at increasing genera set sizes (shown in Fig. 6.12, 6.13), RF clearly did

not overfit data: ml-rr curve increased with the feature steps, reaching the maximum

by using the entire set of genera. The random ranking (ranking by shuffling) proce-

dure does not select genera for prediction; thus, the classifier accuracy increases

with the genera set size but much slower of the ranking methods, eventually reach-

ing them once a number of discriminant genera is eventually included. Selection

bias was also avoided; the ml-rl curve oscillated around MCC = 0, the expected

accuracy of models trained with by a random labelling procedure disrupting the

association between samples and phenotypes.
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(a) HS_CDf (b) HS_CDr

(c) HS_UCf (d) HS_UCr

(e) HS_iCDf (f) HS_iCDr

Figure 6.12. MCC plots for the healthy vs. IBD classification tasks. Solid curves in black
indicate MCC, with corresponding 95% bootstrap confidence intervals, at increasing gen-
era set sizes (# GENERA). MCCint highlighted with (∗). Random labels (RL) and random
ranking (RR) experiments are indicated respectively in green and in blue (see text).
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(a) CDf_UCf (b) CDr_UCr

Figure 6.13. MCC plots for the CD vs UC classification tasks. Solid curves in black indicate
MCC, with corresponding 95% bootstrap confidence intervals, at increasing genera set
sizes (# GENERA). MCCint highlighted with (∗). Random labels (RL) and random ranking
(RR) experiments are indicated respectively in green and in blue (see text).

ml-rSNF performance
Datasets juxtaposition is the most naive integration technique, but it dilutes the pos-

sibly low signal-to-noise ratio in each data type, affecting the understanding of the

biological interactions at omics levels. The refined SNF method (rSNF) accounts

for common and correlated information between 16S and ITS2 data, producing a

ranked list of features for each classification task. The machine learning DAP (see

Sec. 2.3) was then applied on juxtaposed datasets, but biomarkers lists were built

by using features weights from rSNF and not from RF classifiers.

MCCint , MCCval and N f for each classification task are listed in Tab. 6.6.
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ml-rSNF

MCCint (MCCmin, MCCmax) MCCval N f

HS_CDf 0.83 (0.79, 0.87) 0.70 40

HS_CDr 0.60 (0.54, 0.65) 0.50 200

HS_UCf 0.81 (0.76, 0.85) 0.74 495

HS_UCr 0.67 (0.62, 0.73) 0.32 300

HS_iCDf 0.86 (0.83, 0.90) 0.75 100

HS_iCDr 0.65 (0.59, 0.70) 0.54 100

CDf_UCf 0.43 (0.39, 0.48) 0.28 300

CDr_UCr 0.27 (0.20, 0.33) 0.29 495

Table 6.6. Summarized best predictive performances of RF classifiers for each classifica-
tion task, on juxtaposed 16S and ITS2 datasets, by using rSNF weights to rank features.
(MCCmin, MCCmax): 95% bootstrap confidence interval. MCCint : best mean MCC on training
set; MCCval : MCC on validation set; N f : number of genera leading to MCCint .

Higher performances were achieved when healthy subjects were compared to flare

cases than remission cases, as for the most naive integration technique. Coherently

with the underlying biology, discrimination between CDr and UCr samples led still

to the lowest predictive performances. In general, as regards to MCCint , predictive

models using feature weights from rSNF obtained slightly better or comparable re-

sults (inside the confidence intervals) to models developed on juxtaposed datasets.

However, N f depends on the specific classification task: indeed, for CDr, UCf and

UCr cases, ml-rSNF needed an higher number of features to obtain the best mean

MCC score.

INF performance
For each classification task, the top discriminant feature lists found by ml-J (DAP

on juxtaposed datasets) were intersected with the ones from ml-rSNF (DAP on jux-
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taposed datasets, rSNF as feature ranking method). The DAP was run on datasets

reduced to the 16S and ITS2 genera common to ml-J and ml-rSNF, obtaining mod-

els denoted as INF.

Table 6.7 and Figure 6.14 report predictive performances of ml-J, ml-rSNF and INF

in both a tabular and graphical representation.

ml-J ml-rSNF INF

MCCint

(MCCmin, MCCmax)
MCCval N f

MCCint

(MCCmin, MCCmax)
MCCval N f

MCCint

(MCCmin, MCCmax)
MCCval N f

HS_CDf 0.82 (0.78, 0.85) 0.70 80 0.83 (0.79, 0.87) 0.70 40 0.84 (0.80, 0.87) 0.62 30

HS_CDr 0.60 (0.55, 0.65) 0.50 30 0.60 (0.54, 0.65) 0.50 200 0.65 (0.60, 0.69) 0.50 29

HS_UCf 0.81 (0.77, 0.86) 0.74 80 0.81 (0.76, 0.85) 0.74 495 0.81 (0.76, 0.86) 0.74 60

HS_UCr 0.72 (0.67, 0.78) 0.51 10 0.67 (0.62, 0.73) 0.32 300 0.75 (0.69, 0.79) 0.51 7

HS_iCDf 0.86 (0.82, 0.89) 0.66 100 0.86 (0.83, 0.90) 0.75 100 0.85 (0.80, 0.88) 0.84 20

HS_iCDr 0.66 (0.60, 0.71) 0.54 400 0.65 (0.59, 0.70) 0.54 100 0.65 (0.59, 0.70) 0.54 80

CDf_UCf 0.52 (0.48, 0.57) 0.14 20 0.43 (0.39, 0.48) 0.28 300 0.65 (0.60, 0.69) 0.14 20

CDr_UCr 0.33 (0.27, 0.39) 0.50 60 0.27 (0.20, 0.33) 0.29 495 0.37 (0.31, 0.43) 0.38 60

Table 6.7. RF predictive performances for ml-J, ml-rSNF and INF. MCCint : best mean MCC
on training set; (MCCmin, MCCmax): MCCint 95% bootstrap confidence interval; MCCval : MCC
on validation set; N f : number of genera leading to MCCint .

Notably, INF obtained higher or comparable results in terms of MCCint than ml-J

or ml-rSNF, but with a significant reduction in number of top discriminant genera.

Besides, INF results in terms of MCCval were better or equal compared to ml-J or

ml-rSNF, with the only exception of HS_CDf. In summary, the intersection of top

discriminant features from ml-J and ml-rSNF led to a significant improvement in

predictive performance. The best predictive performance as well as the best im-

provement of INF with respect to ml-J were achieved for HS_iCDf.

Remarkably, INF did not reduce N f only for tasks comparing CD and UC samples,

i.e., is when the two IBD classes represent subjects with the same phenotype con-

dition (either flare or remission) and samples were supposed to carry similar gut

microbiota due to similar phenotypes.
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Random labels and random ranking experiments ensured that the predictive mod-

els were not affected by selection bias or overfitting issues (Fig. 6.15).

The biological relevance of biomarkers from the different approaches was also as-

sessed, comparing the top discriminant features lists with other studies in literature

[148, 161, 180]. Detailed lists of biomarkers and their abundance are reported in

Appendix B.
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Figure 6.14. MCC on training and validation sets for ml-J, ml-rSNF and INF. Best average
MCC on training set (MCCint ) vs MCC on validation set (MCCval) for ml-J, ml-rSNF and INF
by RF; horizontal bars correspond to 95% bootstrap confidence intervals of MCC values on
training sets.
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Figure 6.15. MCC plots for the healthy vs. IBD classification tasks. Solid curves in black
indicate MCC, with corresponding 95% bootstrap confidence intervals, at increasing gen-
era set sizes (# GENERA). MCCint highlighted with (∗). Random labels (RL) and random
ranking (RR) experiments are indicated respectively in green and in blue (see text).
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Full scripts and datasets are available in a GitHub repository to ease reuse (https:

//github.com/AleZandona/INF).

Furthermore, microbial communities structure were analyzed, by computing Pear-

son Correlation Coefficient (PCC) among the top-ranked genera of the classifi-

cation tasks with the best performance. As in 6.1, CIRCOS plots were used as

graphical layout for networks. In details, analyzing the co-abundance network for

task HS_iCDf (Figure 6.16), healthy subjects showed a strong link between gen-

era Holdemania and Dehalobacterium and family Christensenellaceae, while the

strongest links found in iCDf patients only were: Ruminococcaceae to Coriobac-

teriaceae, Holdemania to Ruminococcaceae and Coriobacteriaceae to Parapre-

votella.

Besides, Fig. 6.17 reports the co-abundance networks on top-ranked genera in

HS_UCf task. In healthy individuals (green edges), Pasteurellaceae was linked to

Odoribacter and Sutterella; in UCf patients, only two links were found: Actinobacil-

lus was linked to both Veillonella and Paraprevotella.

As a further analysis, community detection was performed by Louvain method

(Sec. 3.4); in detail, Fig. 6.18 and Fig. 6.19 compare the microbial communities in

healthy individuals and in iCDf or UCf patients, respectively. In particular, we found

that in iCDf subjects the number of communities decreases with respect to healthy

individuals, and that the dysbiosis breaks the subcommunities Ruminococcaceae-

Ruminococcus and Streptococcus-Coriobacteriaceae. Fig. 6.19 highlights that Ul-

cerative Colitis induces perturbation in communities structure; for instance, dys-

biosis breaks some communities (Coriobacteriaceae-Dehalobacterium-Roseburia

and Parvimonas-Proteus-Firmicutes), but also induces some others (Roseburia-

Phascolarctobacterium-Paraprevotella and Lactococcus-Aggregatibacter -Lactobacillus).

https://github.com/AleZandona/INF
https://github.com/AleZandona/INF
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Figure 6.16. CIRCOS co-abundance networks on top-ranked genera (HS_iCDf). Pink
edges: links conserved in iCDf only; green edges: links conserved in HS only. Edge’s
color intensity is proportional to the absolute value of Pearson correlation coefficient (PCC).
Edges are thresholded at PCC = 0.7.
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Figure 6.17. CIRCOS co-abundance networks on top-ranked genera (HS_UCf). Red
edges: links conserved in UCf only; green edges: links conserved in HS only. Edge’s
color intensity is proportional to the absolute value of Pearson correlation coefficient (PCC).
Edges are thresholded at PCC = 0.6.
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(a) HS (b) iCDf

Figure 6.18. Community detection on networks on top-ranked genera (HS_iCDf). CIRCOS
plot of networks on healthy (a) vs. iCDf (b) samples, highlighting communities detected by
Louvain method. Nodes with same color belong to the same community. Edge color inten-
sity is proportional to the absolute value of Pearson correlation coefficient (PCC). Edges
are thresholded at PCC = 0.7.

(a) HS (b) UCf

Figure 6.19. Community detection on networks on top-ranked genera (HS_UCf). CIRCOS
plot of networks on healthy (a) vs. UCf (b) samples, highlighting communities detected
by Louvain method. Nodes with same color belong to the same community. Edge color
intensity is proportional to the absolute value of PCC. Edges are thresholded at PCC = 0.6.
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Core biomarkers

From the previous analyses, lists of 16S and ITS2 genera discriminating between

healthy subjects and each IBD phenotype (CD, UC, iCD) were identified. Further-

more, intersection of biomarkers lists was performed, in order to find sets of genera

discriminating between healthy condition and more than one phenotype. First, INF

discriminant biomarkers from three pairs of classification tasks were intersected:

HS_CDf and HS_CDr, HS_UCf and HS_UCr, as well as HS_iCDf and HS_iCDr.

The three sets of biomarkers could be associated to genera discriminating between

healthy and CD, UC and iCD subjects respectively, independently from the flare or

remission conditions (Tables 6.8, 6.9, 6.10).

HS vs CD biomarkers, INF

f__[Barnesiellaceae];g__ g__Anaerostipes g__Ruminococcus

f__Ruminococcaceae;Other g__Faecalibacterium g__Dehalobacterium

f__Christensenellaceae;g__ f__Ruminococcaceae;g__ o__Clostridiales;f__;g__

o__Clostridiales;Other;Other o__RF39;f__;g__ g__Lachnobacterium

g__Clostridium g__[Eubacterium] f__Coriobacteriaceae;g__

g__Paraprevotella f__[Mogibacteriaceae];g__ f__Erysipelotrichaceae;g__cc_115

g__Holdemania g__Desulfovibrio

f__Rikenellaceae;g__ g__Oscillospira

Table 6.8. Bacterial genera discriminating healthy subjects from Crohn’s patients both in
flare or remission. Median of relative abundance of all biomarkers is higher in HS than in
CD.
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HS vs UC biomarkers, INF

g__Coprococcus

f__Ruminococcaceae;Other

o__RF39;f__;g__

g__Dehalobacterium

o__Clostridiales;f__;g__

f__[Mogibacteriaceae];g__

g__Desulfovibrio

Table 6.9. Bacterial genera discriminating healthy subjects from Ulcerative Colitis patients
both in flare or remission. Median of relative abundance of all biomarkers is higher in HS
than in UC.

HS vs iCD biomarkers, INF

g__Anaerostipes g__Dehalobacterium

g__Lachnospira o__Clostridiales;f__;g__

f__Ruminococcaceae;g__ f__[Mogibacteriaceae];g__

g__Coprococcus f__Rikenellaceae;g__

f__Ruminococcaceae;Other g__Desulfovibrio

g__Ruminococcus g__Holdemania

f__Christensenellaceae;g__ f__Erysipelotrichaceae;g__cc_115

Table 6.10. Bacterial genera discriminating healthy subjects from ileal Crohn’s patients
both in flare or remission. Median of relative abundance of all biomarkers is higher in HS
than in iCD.

Furthermore, biomarkers from CDf_UCf and CDr_UCr were intersected, in order

to find potential bacteria and fungi discriminating CD patients from UC. Table 6.11

reports the intersection result.
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CD vs UC biomarkers, INF

(B) g__Bacteroides (B) g__Faecalibacterium (B) f__Enterobacteriaceae;g__

(B) f__[Barnesiellaceae];g__ (B) g__Oscillospira (B) g__Escherichia

(B) g__Parabacteroides (B) g__Catenibacterium (B) k__Bacteria;Unassigned

(B) g__Lactococcus (B) f__Erysipelotrichaceae;g__cc_115 (F) g__Debaryomyces

(B) g__[Ruminococcus] (B) g__Clostridium

(B) f__Ruminococcaceae;g__ (B) g__Sutterella

Table 6.11. Bacterial (B) or fungal (F) genera discriminating CD patients from UC. Bold:
median of relative abundance is higher in CD than in UC. For other biomarkers, median of
relative abundance is higher in UC than in CD.

Finally, the biomarkers potentially associated with IBD occurrence were identified

by the intersection among INF top discriminant genera from all six classification

tasks (Table 6.12) involving healthy subjects.

HS vs IBD, INF

o__Clostridiales;f__;g__

f__Ruminococcaceae;Other

g__Desulfovibrio

f__[Mogibacteriaceae];g__

g__Dehalobacterium

Table 6.12. Bacterial genera discriminating healthy subjects from IBD patients. Median of
relative abundance of all biomarkers is higher in HS than in IBD.

6.2.4 Discussion

Disease-specific dysbiosis in fungal microbiota has been recently observed, as well

as the interactions between bacteria and fungi, in the context of IBD. However, the

associations between bacterial microbiota or mycobiota and disease phenotypes

have always been investigated with separate analyses on bacteria and fungi. More-

over, inter-kingdom alterations have been studied by correlation analyses, but the
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prognostic power of these interactions has still to be unraveled. Our study was the

first attempt to build a framework for IBD prognosis (referred as to INF), exploiting

the interactions within and between kingdoms in the gut microbiota. Shared and

complementary information from bacteria and fungi are first integrated, building a

joint-model accounting for how informative each inter-kingdom interaction is to IBD

phenotypes. Furthermore, classification algorithms are developed on bacterial and

fungal abundances, taking into account the information combined in the first step.

Hence, our framework results into a panel of inter-kingdom biomarkers correlated

with IBD occurrence. The performance of INF could be assessed both in terms of

statistical properties as well as biological interest. As regards the statistical aspect,

INF was compared with predictive models developed on the concatenated bacterial

and fungal datasets (ml-J technique). This framework commonly outperforms pre-

dictive performances of other techniques, since it exploits all the information from

the combined datasets, although it dilutes the possibly low signal-to-noise ratio in

each data type, affecting the understanding of the biological interactions at omics

levels. Notably, for INF, less biomarkers were systematically needed to obtain com-

parable or even higher performance results both in classifying samples according to

known phenotypes, as well as in predicting phenotypic groups in new test samples.

Clearly, this is an added value for INF, since biomarkers need to be biologically vali-

dated before entering the clinical practice, thus an increased number of biomarkers

is currently a limit. This result was mainly due to our rSNF, which increased the

signal-to-noise ratio from the combined datasets, by prioritizing the most discrimi-

native biomarkers prior to develop predictive models on them. Furthermore, com-

pared to ml-J, INF identified biomarkers with more biologically plausible association

with phenotypes. Indeed, INF produced panels of biomarkers with a higher ratio of

biologically significant variables over total number of top discriminant features than

ml-J.



116 Biological applications

As a summary: inter-kingdom biomarkers identified by INF are known in liter-

ature [180, 148, 161, 185]; concerning bacterial microbiota, genera Coprococ-

cus, Ruminococcus, Blautia, Anaerostipes and genera from families Gemellaceae

and Coriobacteriaceae were decreased in IBD. Conversely, Streptococcus was in-

creased in IBD flare, while UC flare showed an increased abundance of Fusobac-

terium, Aggregatibacter, Actinobacillus, Enterococcus, Peptoniphilus, Anaerococ-

cus, Sutterella and Bacteroides.

In particular, in ileal CD, the abundance of members of the family Ruminococ-

caceae, in particular Faecalibacterium, was decreased compared to healthy individ-

uals, as reported in [34, 186, 161]. Faecalibacterium prausnitizii is a major producer

of the SCFA butyrate, with anti-inflammatory effects in a colitis setting [187] and

provides the first step in microbiome-linked carbohydrate metabolism by degrading

dietary polysaccharides [188]. This bacterium elicits high levels of IL-10 production,

enhancing ovalbumin-specific T cell proliferation, and reducing interferon gamma-

positive T cells [189]. Besides, higher risk of postoperative recurrence of ileal CD

[187] have been associated to the reduction in F. prausnitizii abundance [187], sup-

ported by the evidence that administration of F. prausnitizii reduces inflammation in

mouse models.

Roseburia is reduced in all IBD subgroups, as shown also in [161], and it is con-

nected to the family Ruminococcaceae as it relies on its members to produce ac-

etate, which it uses to produce butyrate.

Another biomarker of inflammation found was Fusobacteria, with increased abun-

dance in IBD, as confirmed by [190]. It is a phylum of adherent and invasive bac-

teria, inducing inflammatory responses through its unique FadA adhesin, which

binds to E-cadherin and activates β -catenin signalling [191]. Potential mechanisms

of function of Fusobacterium in IBD have not been described, but the invasive abil-

ity of Fusobacterium has been positively correlated with the IBD status of the host
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[192]. Fusobacterium provides a potential theoretical link given the increased risk

of CRC associated with IBD.

The association of mycobiome with IBD is a relatively unexplored area of research,

but some studies confirmed our findings in terms of fungal microbiota [182, 34, 37];

in detail, Basidiomycota was increased in A_IBD UC flare samples, while Ascomy-

cota (Saccharomycetaceae) was decreased in disease (see Appendix B). Several

studies [193, 194, 195] detected a strong association between Crohn’s disease and

anti-Saccharomyces cerevisiae antibodies (ASCA) against yeast mannan; however

the high prevalence of Saccharomyces in the fungal data can be due also to the

ingestion of yeast-containing foods such as bread and beer. In addition, Saccha-

romycetaceae has been negatively correlated with total saturated fatty acid lev-

els. Interestingly, among biomarkers discriminating CD from UC samples a slightly

larger fungal component was found with respect to tasks discriminating healthy

and IBD phenotypes (see Appendix B): Debaryomyces was increased in CD, Sac-

charomyces was increased in UCr with respect to CDr, Malasseziales were more

abundant in UCf than in CDf.

To our knowledge, INF is the first method integrating bacteria and fungi interactions

to build a panel of biomarkers predictive of IBD phenotypes. After a necessary

biological validation, INF could be enter the clinical practice to track dysbiosis sta-

tus before overt clinical disease, when healthy individuals can still benefit from a

prevention strategy, or when the patient in remission can avoid further flare-ups.

6.3 Rett syndrome: RTT

I-PreMONet has been validated on a second dataset, with variables similar to

A_IBD (bacterial and fungal microbiota abundances) but samples with different



118 Biological applications

phenotype: Rett syndrome. The dataset was published by Strati and colleagues

in 2016 [196].

This is a postnatal progressive neurological disorder, affecting almost exclusively

females with an incidence of 1:10,000 live births [197]. For about 7 to 18 months

after birth, infants with Rett syndrome develop normally, although before 6 months

they can be affected by acquired microencephaly and low muscle tone. The dis-

ease is characterized by the loss of previously acquired skills (developmental re-

gression), while, in some cases, development may continue but at a delayed rate.

For example, an infant may learn to sit upright, but not to crawl. Affected children

commonly develop autistic-like behaviours, such as panic attacks, teeth grinding

(bruxism), purposeful hand movements and the ability to communicate, in addition

to other abnormalities, including impaired control of voluntary movements (ataxia),

forced expulsion of air and saliva, breathing problems and gastrointestinal (GI) is-

sues. In particular, it has been shown that GI and nutritional dysfunctions occur

frequently throughout life in Rett subjects [198, 199].

Approximately 90-95% of Rett syndrome cases are caused by random mutations

(more than 200 identified) in X-linked methyl-CpG binding protein 2 gene (MECP2)

on the X chromosome; the course and severity of Rett syndrome is determined

by the location, type and severity of the MECP2 mutation. Recently, Wahba and

colleagues showed that MeCP2 is expressed throughout the GI tract, exclusively

within the enteric nervous system (ENS) of the GI tract, suggesting that GI dis-

motility observed in Rett may be mediated through ENS dysfunction secondary to

MeCP2 mutation [200]. Interestingly, microbiota is known both to modulate cen-

tral nervous system activities and to be stricly related to GI dysfunctions; thus, the

relationship between gut microbiota dysbiosis and Rett is not a remote hypothesis

[196]. As a matter of fact, several studies have suggested a disturbance in the gut
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microbiota as a potential contributor to pathogenesis of autism spectrum disorders

(ASDs) [201, 202, 203].

6.3.1 Dataset

The dataset is publicly available [196] and includes bacterial and fungal gut micro-

biota abundances from healthy controls (HC) and Rett (RTT) syndrome subjects. In

detail, stool samples were collected from 50 female subjects with RTT (average age

12±7.3) and 29 age-matched healthy subjects (average age 17±9.6). RTT individ-

uals were genotyped for MECP2 and CDKL5 gene mutations, and both gastroin-

testinal symptoms (i.e. constipation) and intestinal inflammation were assessed.

Only subjects that had not taken antibiotics, probiotics or prebiotics for at least

three months prior to enrollment were included in the study. Whole fecal samples

were collected, aliquoted as it us and stored at -80°C.

DNA extraction protocol and sequence data processing are reported in detail in

[196], but briefly described in the following paragraphs.

Genomic DNA extraction from fecal samples. FastDNA™SPIN Kit for Feces

(MP Biomedicals, Santa Ana, CA, USA) was used for total DNA extraction from

fecal samples (200 mg, wet weight). A check of DNA integrity and quality was per-

formed on 1% agarose gel and quantified with spectrophotometry.

Amplicon library preparation and pyrosequencing. Variable regions V3-V5 of

the 16S rRNA gene and ITS1 were amplified in bacteria and fungi, respectively.

Amplicon libraries were build using the FastStart High Fidelity PCR system (Roche,

Basel, Switzerland) and the PCR products were pyrosequenced on the GS FLX+

system using the XL+ chemistry following the manufacturer’s recommendations

(Roche, Basel, Switzerland).
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Taxonomic analysis

First, raw 454 files were demultiplexed using the Roche’s GS Run Processor soft-

ware, subsequently reads were pre-processed with the MICCA pipeline [28]. In

detail, preprocessing included forward and reverse primer trimming and quality fil-

tering, de novo sequence clustering, chimera filtering and taxonomy assignment.

Sequences with a threshold of 97% pairwise identity were clustered into Opera-

tional taxonomic units (OTUs), and their representative sequences were classified

using the RDP classifier version 2.7 on 16S rDNA data and using the RDP classifier

version 2.8 [204] against the UNITE fungal ITS database [184] on ITS1 data. Bac-

terial sequences were aligned against the multiple alignment of Greengenes [136]

(release 13_05) through Template-guided multiple sequence alignment (MSA); on

the other hand, de novo MSA was performed by T-Coffee [205]. Fungal taxonomy

assignments were also manually curated using BLASTn against the GenBank’s

database for accuracy.

Statistical analysis

Our analyses started from OTU tables as provided by Strati and colleagues [196].

Tables with bacterial and fungal abundances were normalized in terms of the Trimmed

Mean of M-values (TMM) normalization, implemented by the DESeq Bioconductor

R package. OTUs with zero counts on all subjects were filtered out. Random Forest

and Support Vector Machines were developed on 70% of the dataset (training par-

tition) composed of bacterial and fungal genera from healthy individuals and Rett

patients. The 30% of the datasets were used as blind validation set, testing the

performance of trained models on unseen data. Integration of bacterial and fungal

abundances, as well as the development of predictive models on integrated data

were performed with I-PreMONet (see Sec. 5 and 6.2).
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6.3.2 Results

Filtering low abundant OTUs led to a table with 1,155 bacterial and 251 fungal abso-

lute abundances (rows as samples and columns as OTUs). Predictive performance

of the three integrative techniques of INF module, ml-J, ml-rSNF and INF (see

Sec. 6.2), are reported in terms of best average MCC on training set (MCCint) with

95% Student bootstrap (1000×resampling) confidence intervals (MCCmin , MCCmax),

number of features (N f ) leading to MCCint . Differently from results in Sec. 6.2.3,

MCC on validation set is not computed, since number of subjects did not allow a reli-

able classifier validation. As reported in Sec. 6.2.2, ml-J consisted in concatenating

bacterial and fungal datasets, and training predictive models on the joint dataset;

ml-rSNF developed predictive models on juxtaposed datasets, but biomarkers lists

were built by using features weights from rSNF (see Sec. 4.2) and not from RF clas-

sifiers. Finally, classifiers were trained on the dataset restricted on the intersection

of the biomarkers lists from ml-J and ml-rSNF: this approach was referred to as INF.

In ml-J, RF built on 200 OTUs predicted Rett outcome with MCC=0.63 (C.I. 0.57−

0.69), performance slightly improved in ml-rSNF, that led to an MCC=0.65 (C.I.

0.60− 0.69) with 200 OTUs. Notably, for INF only 36 OTUs were needed to ob-

tain an MCC=0.66 (C.I. 0.62−0.71). MCC values along increasing sets of OTUs for

ml-J and INF are reported in Figure 6.20, together with random labels and random

ranking experiments performance.

Interestingly, as for the analysis of A_IBD dataset (see Sec. 6.2.3), INF obtained

higher MCCint than ml-J or ml-rSNF, but with a significant reduction in number of top

discriminant OTUs. Thus, improvements introduced by INF over ml-J are confirmed

to be independent from the biological problem considered.

OTUs selected as top discriminant biomarkers between healthy and Rett patients

mostly belong to bacterial families Ruminococcaceae and Lachnospiraceae, as well

as to fungal phyla Basidiomycota and Ascomycota.
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Figure 6.20. MCC plots for the healthy vs. RTT classification tasks. Solid curves in black
indicate MCC, with corresponding 95% bootstrap confidence intervals, at increasing OTUs
set sizes (# OTUs). MCCint highlighted with (∗). Random labels (RL) experiments are
indicated in green, random ranking (RR) experiments in blue (see text).

6.3.3 Discussion

Strati and colleagues discussed for the first time that RTT is characterized by a

dysbiotic bacterial and fungal microbiota, thus literature lacks of reference studies

to compare our results with. However, studies on ASD and microbiome can be

considered as possible candidates, given the similarities between Rett and ASD

phenotypes.

Biomarkers identified by our INF were in line with the ones found by Strati and

colleagues [196]; in detail, the common biomarkers were 28 out of 30 bacteria

and 4 out of 6 fungi. Bifidobacterium was found among the predictive biomarkers,

increased in abundance in healthy individuals; several studies evidenced its health-

promoting role [206] with potential probiotic properties [207].

Besides, one of the top discriminant biomarkers found by INF was Bacteroides

genera, more abundant in healthy children than in Rett patients. This result is in

accordance with Hsiao and colleagues [12], who studied microbiota alterations in



Rett syndrome: RTT 123

the maternal immune activation (MIA) mouse model displaying features of ASD and

investigated how these abnormalities impact ASD-related GI and/or behavioral al-

terations in MIA offspring. Interestingly, many of the adverse effects induced by MIA

could be corrected by the Bacteroides fragilis treatment, lowering the concentration

of potentially pathogenic metabolites and decreasing intestinal barrier permeability.

Note that increased intestinal permeability is commonly associated with an altered

immune response, given to leakage of gut-derived metabolites into the bloodstream

[16, 208, 209]. Furthermore, several taxa belonging to Clostridia were selected

by INF as predictive bacteria, according to other studies on ASD, showing an in-

creased incidence of this bacteria [202, 210]. Yano and colleagues [211] highlighted

that Clostridia, exerting high 7-dehydroxylation activity, increase the production of

deoxycholate from cholate [212, 213], leading to an increase in the biosynthesis of

colon serotonin (5-hydroxytryptamine [5-HT]). Mainly, the serotonin is a brain neu-

rotransmitter, but it is also an important regulatory factor in the gastrointestinal (GI)

tract and other organ systems. Thus, microbiota-mediated changes in colonic 5-HT

promote GI motility and hemostasis in the host, by activation of enteric neurons.

Moreover, Ruminococcaceae and Roseburia genus, notable SCFAs producers [214],

were identified by INF as the top two most discriminant biomarkers between healthy

and Rett children. SCFAs could affect immune regulation and CNS function [215,

216], by translocating from intestinal mucosa to the systemic circulation. In detail,

Erny and colleagues [215] found that SCFAs modulate maturation, morphology and

function of microglia, the tissue resident macrophages of the brain and spinal cord,

in germ-free mice. These results may support our finding of Ruminococcaceae and

Roseburia as predictive biomarkers, given their contribution to microglia-mediated

diseases of the CNS.

The results on RETT dataset confirmed that INF led to a compact list of highly pre-

dictive biomarkers not only on IBD clinical dataset, thus the extension of INF on
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different omics datasets is naturally supported.



Chapter 7

Conclusion

This thesis introduces two modeling frameworks (PreMONet and I-PreMONet) for

the analysis of meta-omics data and their application on original clinical data of

significant biomedical interest. The aim of these frameworks is to provide an inte-

grated environment for predictive profiling and differential network analysis of meta-

omics data, combined with a novel network-based approach to their integration.

PreMONet and I-PreMONet rely on both existing and novel algorithms and Open

Source software tools. In particular, I-PreMONet offers a first original algorithm

(INF) combining a network fusion method with machine learning to solve the prob-

lem of heterogeneous integration of meta-omics data, obtaining shorter biomarker

lists than those found by standard concatenation. Results on clinical metagenomics

datasets demonstrate that our frameworks can provide an accurate characteriza-

tion of microbiota composition and structural change of networks from microbiome

communities associated to disease trajectories. Specifically, results highlighted the

potential clinical role of PreMONet: it can model the specific interactions between

species within microbiota that are associated with severe inflammation and the lev-

els of calprotectin in chronic gut inflammation. Thus, PreMONet can be used as

a possible enhancement of the calprotectin-based risk stratification tools, which is
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currently the most popular diagnostic approach. In addition, validation on clinical

datasets demonstrated that I-PreMONet can integrate meta-omics datasets mea-

sured on the same set of samples and classify them according to known phenotypic

traits; besides, I-PreMONet provides the identification of a small but robust multi-

omics signature that can predict phenotypic groups in new test samples. Notably,

to our knowledge, I-PreMONet is the first framework identifying inter-kingdom pre-

dictive biomarkers of Inflammatory Bowel Disease, by network-based integration of

fungal and bacterial datasets.

It is also important to stress that clinical practice could take advantage of biomark-

ers identified by our frameworks. Indeed, clinical information is commonly sufficient

to initiate a therapy, but biomarkers can assist the physicians to tailor subsequent

therapy and decide on its duration. Moreover, meta-omics biomarkers can help

tracking dysbiosis status before overt clinical disease, so that healthy individuals

can benefit from a prevention strategy, or the patient in remission can avoid further

flare-ups.

In addition to the possible biological and clinical impacts of both PreMONet and

I-PreMONet, the modularity and open-source licensing can carry other several ad-

vantages. To researchers without bioinformatics expertise, our frameworks provide

an accurate and reproducible solution for meta-omics analysis; to bioinformaticians,

PreMONet and I-PreMONet provide a set of tools that can be adapted to meet spe-

cific analysis needs. Finally, the flexibility of our pipelines should encourage re-

searchers to contribute their own analysis modules into a reproducible framework.

The availability of our frameworks should reduce duplication of efforts and quicken

developments in this field by encouraging scientists to focus on individual compo-

nents without re-implementing all the modules of a meta-omics pipeline.

As a further development, the integrative technique implemented in I-PreMONet

could be improved in order to handle data measurements with some samples miss-
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ing a percentage of meta-omics features. Basically, the framework should enable

integrative models to ‘reconstruct’ the missing information on some samples, based

on the integrated knowledge acquired on other samples.
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Appendix A

Additional results on P_IBD

A.1 Biomarkers of P_IBD dataset

For each classification task, Figures A.1-A.5 report heatmaps with median abun-

dance of predictive biomarkers stratified by phenotypes. Figures A.6-A.10 show

the fold change of biomarkers abundance between phenotypes. Biomarkers are

sorted in descending order according to their importance in discriminating pheno-

types; the most discriminant feature on the top. Tables A.1-A.5 report the p-values

of Wilcoxon test on biomarkers abundance, for each classification task.
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Figure A.1. Heatmap of median abundance of biomarkers for healthy biopsies vs. IBD
biopsies.
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Figure A.2. Heatmap of median abundance of biomarkers for IBD feces vs. IBD biopsies.
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Figure A.3. Heatmap of median abundance of biomarkers for healthy feces vs. IBD biop-
sies, not inlamed tissue.
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Figure A.4. Heatmap of median abundance of biomarkers for healthy feces vs. IBD feces.
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Figure A.5. Heatmap of median abundance of biomarkers for matched IBD biopsies, nor-
mal vs. inflamed tissue.
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Figure A.6. Log base 2 of [median abundance in organisms increased in IBD biopsies]
over [median abundance of organisms increased in healthy biopsies].
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Figure A.7. Log base 2 of [median abundance of organisms increased in IBD feces] over
[median abundance in organisms increased in IBD biopsies.
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Figure A.8. Log base 2 of [median abundance of organisms increased in healthy feces]
over [median abundance in organisms increased in IBD biopsies, not inflamed tissue].
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Figure A.9. Log base 2 of [median abundance in organisms increased in IBD feces] over
[median abundance of organisms increased in healthy feces].
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Figure A.10. Log base 2 of [median abundance in organisms increased in IBD biopsies,
inflamed tissue] over [median abundance of organisms increased in IBD biopsies, not in-
flamed tissue].
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B_H_IBD

Top biomarkers Wilcoxon p-values

f__Erysipelotrichaceae;g__ 1.77881E-02

g__Dialister 2.61558E-01

g__Oscillospira 9.55575E-02

g__[Ruminococcus] 2.17119E-02

g__Odoribacter 4.18383E-01

f__Lachnospiraceae;g__ 7.96954E-02

g__Ruminococcus 2.93979E-03

g__Coprococcus 6.25527E-02

g__Dorea 4.25594E-02

Table A.1. P-values of Wilcoxon test on biomarkers abundance for healthy biopsies vs.
IBD biopsies.

FEC_H_IBD

Top biomarkers Wilcoxon p-values

g__Lachnospira 1.71376E-03

f__Rikenellaceae;g__ 1.38976E-07

f__Erysipelotrichaceae;g__ 4.26684E-04

g__Streptococcus 2.05802E-04

Table A.4. P-values of Wilcoxon test on biomarkers abundance for healthy feces vs. IBD
feces.
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FEC_B_IBD
Top biomarkers Wilcoxon p-values
g__Bacteroides 4.80859E-04

g__Streptococcus 4.61166E-04
g__Parabacteroides 7.9805E-03

f__Enterobacteriaceae;g__ 4.49528E-01
f__Rikenellaceae;g__ 6.75826E-02

f__[Barnesiellaceae];g__ 1.05914E-02
g__Dialister 2.6979E-02

g__Lachnospira 1.04275E-01
g__Prevotella 9.28555E-01

f__Ruminococcaceae;g__ 2.66239E-01
o__Bacteroidales;Other;Other 8.25216E-02

g__Kaistobacter 5.62926E-03
f__Ruminococcaceae;Other 8.30254E-01

g__Sutterella 3.31742E-02
g__Phascolarctobacterium 9.88294E-01

g__Faecalibacterium 6.46956E-01
g__Holdemania 5.85148E-01

g__Enterococcus 8.92591E-02
f__Lachnospiraceae;Other 2.1441E-02

g__Fusobacterium 1.30504E-02
f__Erysipelotrichaceae;g__ 6.12137E-01

g__Blautia 5.70265E-02
f__Lachnospiraceae;g__ 9.61383E-01

g__Ruminococcus 2.28666E-02
g__[Ruminococcus] 9.64892E-01

f__Clostridiaceae;g__ 2.50455E-01
g__Akkermansia 2.40207E-01
g__Oscillospira 1.41452E-01
g__Turicibacter 1.37116E-02
g__Veillonella 5.13455E-01
g__Roseburia 6.43443E-01

o__Clostridiales;Other;Other 4.3209E-01
o__Clostridiales;f__;g__ 8.9458E-01

g__Haemophilus 2.83861E-01
g__[Eubacterium] 4.22703E-01

g__Clostridium 1.17965E-01

Table A.2. P-values of Wilcoxon test on biomarkers abundance for IBD feces vs. IBD
biopsies.
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FEC_H_B_NORM
Top biomarkers Wilcoxon p-values
g__Bacteroides 2.76595E-03
g__Sutterella 3.71264E-05

g__Anaerostipes 9.44149E-05
f__Enterobacteriaceae;g__ 1.88115E-03

g__Clostridium 1.95763E-02
g__Lachnospira 3.98538E-03

g__Ruminococcus 1.02281E-04
f__[Mogibacteriaceae];g__ 5.38087E-03

g__Odoribacter 5.38541E-01
f__Rikenellaceae;g__ 1.00361E-02
g__[Ruminococcus] 9.62147E-06

f__Erysipelotrichaceae;g__ 1.52362E-01
f__Ruminococcaceae;g__ 2.59742E-04
f__[Barnesiellaceae];g__ 1.10526E-02

g__Streptococcus 2.16156E-01
g__Fusobacterium 1.65858E-03

o__Clostridiales;f__;g__ 5.16186E-03
g__Roseburia 5.34096E-01
g__Dialister 1.01919E-02

g__Haemophilus 3.3895E-02
g__Prevotella 2.61541E-01

g__Parabacteroides 7.89102E-01
g__Oscillospira 4.62267E-01
g__Veillonella 9.08573E-01

f__Ruminococcaceae;Other 7.31038E-03
g__Blautia 5.11699E-02

f__Lachnospiraceae;Other 8.08641E-02
g__Butyricimonas 8.98006E-01
g__Akkermansia 6.77637E-02

g__Phascolarctobacterium 3.27037E-01

Table A.3. P-values of Wilcoxon test on biomarkers abundance for healthy feces vs. IBD
biopsies, not inflamed tissue.
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B_NORM_IBD

Top biomarkers Wilcoxon p-values

g__Haemophilus 8.33087E-01

g__Blautia 1.98723E-01

g__Bacteroides 7.3991E-01

Table A.5. P-values of Wilcoxon test on biomarkers abundance for matched IBD biopsies,
normal vs. inflamed tissue.
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Appendix B

Additional RF results on A_IBD

B.1 RF biomarkers of A_IBD dataset

For each classification task, Figures B.1-B.8 report heatmaps with median abun-

dance of predictive biomarkers stratified by phenotypes. Figures B.9-B.16 show the

fold change of biomarkers abundance between phenotypes.Biomarkers are sorted

in descending order according to their importance in discriminating phenotypes; the

most discriminant feature on the top.
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Figure B.1. Heatmap of median abundance of biomarkers for healthy vs. Crohn’s disease
patients in flare.
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Figure B.2. Heatmap of median abundance of biomarkers for healthy vs. Crohn’s disease
patients in remission.
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Figure B.3. Heatmap of median abundance of biomarkers for healthy vs. Ulcerative Colitis
patients in flare. Black: bacteria; purple: fungi.
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Figure B.4. Heatmap of median abundance of biomarkers for healthy vs. Ulcerative Colitis
patients in remission.
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Figure B.5. Heatmap of median abundance of biomarkers for healthy vs. ileal Crohn’s
disease patients in flare.
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Figure B.6. Heatmap of median abundance of biomarkers for healthy vs. ileal Crohn’s
disease patients in remission. Black: bacteria; purple: fungi.
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Figure B.7. Heatmap of median abundance of biomarkers for Crohn vs. Ulcerative Colitis
patients in flare. Black: bacteria; purple: fungi.
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Figure B.8. Heatmap of median abundance of biomarkers for Crohn vs. Ulcerative Colitis
patients in remission.
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Figure B.9. Log base 2 of [median abundance in organisms increased in Crohn’s disease
patients in flare] over [median abundance of organisms increased in healthy subjects].
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Figure B.10. Log base 2 of [median abundance in organisms increased in Crohn’s disease
patients in remission] over [median abundance of organisms increased in healthy subjects].
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Figure B.11. Log base 2 of [median abundance in organisms increased in Ulcerative Colitis
patients in flare] over [median abundance of organisms increased in healthy subjects].
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Figure B.12. Log base 2 of [median abundance in organisms increased in Ulcerative Colitis
patients in remission] over [median abundance of organisms increased in healthy subjects].
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Figure B.13. Log base 2 of [median abundance in organisms increased in ileal Crohn’s
disease patients in flare] over [median abundance of organisms increased in healthy sub-
jects].
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Figure B.14. Log base 2 of [median abundance in organisms increased in ileal Crohn’s
disease patients in remission] over [median abundance of organisms increased in healthy
subjects].
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Figure B.15. Log base 2 of [median abundance in organisms increased in Ulcerative Col-
itis patients in flare] over [median abundance of organisms increased in Crohn’s disease
patients in flare].
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Figure B.16. Log base 2 of [median abundance in organisms increased in Ulcerative Colitis
patients in remission] over [median abundance of organisms increased in Crohn’s disease
patients in remission].
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Appendix C

SVM results on A_IBD

C.1 SVM predictive performance on A_IBD dataset

Predictive performance of SVM in INF module are reported in Table C.1 in terms of

best average MCC on training set (MCCint) with 95% Student bootstrap (1000×resampling)

confidence intervals(MCCmin , MCCmax), MCC on validation set (MCCval), number of

features (Nf) leading to MCCint .
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ml-J INF

MCCint

(MCCmin, MCCmax)
MCCval Nf

MCCint

(MCCmin, MCCmax)
MCCval Nf

HS_CDf 0.73 (0.69, 0.76) 0.57 5 0.79 (0.75, 0.82) 0.55 2

HS_CDr 0.49 (0.43, 0.55) 0.59 20 0.78 (0.74, 0.82) 0.59 20

HS_UCf 0.78 (0.73, 0.83) 0.48 60 0.83 (0.78, 0.87) 0.48 6

HS_UCr 0.58 (0.52, 0.65) 0.43 10 0.78 (0.73, 0.83) 0.24 6

HS_iCDf 0.72 (0.68, 0.77) 0.58 7 0.80 (0.76, 0.85) 0.66 1

HS_iCDr 0.56 (0.50, 0.62) 0.47 40 0.79 (0.74, 0.83) 0.47 33

CDf_UCf 0.31 (0.24, 0.38) 0.16 50 0.66 (0.61, 0.70) 0.25 38

CDr_UCr 0.40 (0.32, 0.46) 0.17 20 0.74 (0.70, 0.79) 0.13 19

Table C.1. SVM predictive performances for ml-J and INF. MCCint : best mean MCC on
training set; (MCCmin, MCCmax): MCCint 95% bootstrap confidence interval; MC_val: MCC
on validation set; Nf: number of genera leading to MCCint .

C.2 SVM biomarkers of A_IBD dataset

For each classification task, Figures C.1-C.8 report heatmaps with median abun-

dance of predictive biomarkers stratified by phenotypes. Figures C.9-C.16 show the

fold change of biomarkers abundance between phenotypes. Biomarkers are sorted

in descending order according to their importance in discriminating phenotypes; the

most discriminant feature on the top.
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Figure C.1. Heatmap of median abundance of biomarkers for healthy vs. Crohn’s disease
patients in flare.
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Figure C.2. Heatmap of median abundance of biomarkers for healthy vs. Crohn’s disease
patients in remission. Black: bacteria; purple: fungi.
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Figure C.3. Heatmap of median abundance of biomarkers for healthy vs. ileal Crohn’s
disease patients in flare.



202 SVM results on A_IBD

o__Clostridiales;Other;Other

g__Catenibacterium

g__Mrakia

f__Streptococcaceae;Other

c__Mollicutes;o__RF39;f__;g__

f__Leuconostocaceae;g__

k__Bacteria;Other;Other;Other;Other;Other

f__Coriobacteriaceae;g__

g__Faecalibacterium

f__Streptococcaceae;g__

f__Pasteurellaceae;g__

g__Malassezia

g__Holdemania

p__Tenericutes;c__RF3;o__ML615J−28;f__;g__

f__Christensenellaceae;g__

f__Pasteurellaceae;Other

g__Akkermansia

f__Ruminococcaceae;g__

g__Torulaspora

o__Bacteroidales;f__S24−7;g__

g__Burkholderia

g__Desulfovibrio

g__Dehalobacterium

g__[Eubacterium]

f__Clostridiaceae;g__02d06

f__Ruminococcaceae;Other

f__[Mogibacteriaceae];g__

g__Coprococcus

g__Paraprevotella

o__Gemellales;f__;g__

o__Clostridiales;f__;g__

g__Christensenella

g__Ruminococcus

H
S

iC
D

r

Phenotype

B
io

m
ar

ke
rs

0.00

0.03

0.06

0.09

Median_abundance

Median abundance of biomarkers

Figure C.4. Heatmap of median abundance of biomarkers for healthy vs. ileal Crohn’s
disease patients in remission. Black: bacteria; purple: fungi.
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Figure C.5. Heatmap of median abundance of biomarkers for healthy vs. Ulcerative Colitis
patients in flare.
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Figure C.6. Heatmap of median abundance of biomarkers for healthy vs. Ulcerative Colitis
patients in remission. Black: bacteria; purple: fungi.
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Figure C.7. Heatmap of median abundance of biomarkers for Crohn vs. Ulcerative Colitis
patients in flare. Black: bacteria; purple: fungi.
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Figure C.8. Heatmap of median abundance of biomarkers for Crohn vs. Ulcerative Colitis
patients in remission. Black: bacteria; purple: fungi.
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Figure C.9. Log base 2 of [median abundance in organisms increased in Crohn’s disease
patients in flare] over [median abundance of organisms increased in healthy subjects].
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Figure C.10. Log base 2 of [median abundance in organisms increased in Crohn’s disease
patients in remission] over [median abundance of organisms increased in healthy subjects].
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Figure C.11. Log base 2 of [median abundance in organisms increased in Ulcerative Colitis
patients in flare] over [median abundance of organisms increased in healthy subjects].
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Figure C.12. Log base 2 of [median abundance in organisms increased in Ulcerative Colitis
patients in remission] over [median abundance of organisms increased in healthy subjects].
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Figure C.13. Log base 2 of [median abundance in organisms increased in ileal Crohn’s
disease patients in flare] over [median abundance of organisms increased in healthy sub-
jects].
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Figure C.14. Log base 2 of [median abundance in organisms increased in ileal Crohn’s
disease patients in remission] over [median abundance of organisms increased in healthy
subjects].
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Figure C.15. Log base 2 of [median abundance in organisms increased in Ulcerative Col-
itis patients in flare] over [median abundance of organisms increased in Crohn’s disease
patients in flare].
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Figure C.16. Log base 2 of [median abundance in organisms increased in Ulcerative Colitis
patients in remission] over [median abundance of organisms increased in Crohn’s disease
patients in remission].
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