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Chapter 1
Introduction

Noise, referred to as a random fluctuation of a physical quantity, is an
intrinsic and unavoidable aspect in physical phenomena. The reason lays
first of all in the very core of quantum mechanics, namely in theory of meas-
urement and indetermination principle. A second main source, within the
framework of statistical mechanics, is the fluctuation/dissipation theorem:
every measurement or detection process requires a transfer and a dissipation
of energy; this dissipation leads to an energy fluctuation and thus to a noise
contribution to the measurement. Typically, time-varying quantities are of
great interest. We refer to these quantities as “signals”.

The term “noise” is often given a negative connotation. However, the
presence of noise is not necessarily a detrimental aspect. For example,
the physical phenomenon occurring in nonlinear systems and known as
“stochastic resonance” [1, 2] is linked to the amplification of small signals
by means of an optimal level of noise.

Noise is also unavoidably present within neural systems. A main ques-
tion is whether it is simply a by-product of the communication processes
within these systems or, rather, whether it has a role in their operation. The
work described in this thesis is part of a project whose aim is the invest-
igation of possible correlations between the level of stochastic noise in the
brain and neurological pathologies and disorders like epilepsy, autism and
obsessive-compulsive disorder. With this goal in mind, the first main issue
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to tackle is the determination of the amount of stochastic noise within a
signal stemming from the brain.

The signals we consider in our project are electroencephalographic re-
cordings (EEG). Electroencephalography is a noninvasive technique inven-
ted in the second part of the nineteenth century. Since then, many techniques
have been developed to analyse EEG recordings. Typical sampling band-
width are of order 1 kHz. In a seminal paper in 1985, Babloyantz et al. [3]
demonstrated the presence of a deterministic chaotic component in EEG
recordings. Presently, nonlinear analysis is carried out on EEG recordings
to study the dynamics of the brain activity and its relation with to the cog-
nitive state and also with pathologies and disorders like epilepsy, autism,
Alzheimer’s and Parkinson’s disease [4].

The chaotic nature of the EEG signal and its apparent similarity to
stochastic noise prevent us from measuring the level of stochastic noise
by using traditional techniques. Thus, the second main issue concerns the
separation of the noisy component from the chaotic one within an EEG
recording. In 1997, Gao [5] proposed a method to separate these two com-
ponents within a sampled time series. This method relies on the possibility to
reconstruct the deterministic dynamics by means of the Takens embedding
theorem [6, 7], by using the so called embedding technique.

Takens embedding theorem is indeed of crucial importance to analyse
experimental signals: it proves that is not necessary to know all the com-
ponents of a multi-dimensional signal generated by a system in order to
determine the characteristic parameters of the system’s dynamics. Unfortu-
nately, Takens embedding theorem does not give any clue on how to identify
the optimal parameters that define the embedding. As a consequence, find-
ing a method to determine the optimal embedding becomes a crucial point
in the quest for a reliable method to assess the level of deterministic chaos
and of stochastic noise within a time series.

The scientific literature contains several proposals that tackle the issue
of optimal embedding; as a matter of fact, none of these methods relies
on an objective algorithm but, rather, require a “subjective” (i.e. made by
an observer) trimming and evaluation of key quantities. These methods
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are: Gao–Zheng method [8, 9, 10], the method of Schuster [11], the method
of characteristic length, the method of global false-nearest-neighbours and
autocorrelation function, the method of global false-nearest-neighbours and
mutual information [12, 13]. Another major issue with these optimal em-
bedding methods regards which one is the most reliable one. Cellucci et
al. [14] proposed a technique to assess the best optimal embedding method.
Given a method and a known dynamical system S, the idea consists in eval-
uating the maximum Lyapunov exponentMLES of the system by analysing
a time series generated by it and embedded according to the method. The
maximum Lyapunov exponent MLES is then compared with the reference
value χS calculated by means of the so-called standard method [15, 16], a
procedure that is independent from any embedding and relies on the integ-
ration of the system’s tangent map. The calculation of maximum Lyapunov
exponent MLES out of the time series is carried out by means of the diver-
gent rate method, i.e. a method that evaluates the local divergence rate of
nearby trajectories. According to Cellucci et al., the best optimal embedding
method is that one that, given a set of known dynamical systems, provides
the smallest differences between MLES and χS. This comparison method
can be used only with systems characterized by equations that allow for
the implementation of the standard method, like, for example, the Lorenz
attractor.

To sum up, the goal of assessing the amount of stochastic noise within an
EEG recording or, more in general, an experimental time series generated by
a chaotic dynamical system, relies on the solution of several issues: above
all, a reliable method to determine the optimal embedding, and a reliable
method to distinguish the entity of the stochastic noise component from the
deterministic chaos component in a time series.

In this work, two main results are presented. The first is a study of the
statistical properties of the finite-time maximum Lyapunov exponent de-
termined out of a time series by using the divergent rate method. To reach
this goal, we developed a new, completely automatic algorithm based on
the method developed by Gao and Zheng [8]. A main achievement of this
part of the work is the interpretation [17] of the uncertainty in the light



4 Introduction

of the work by Grassberger, Badii e Politi of 1988 [18] on the theoretical
distribution of maximum Lyapunov exponents. We showed that the ana-
lysis and identification of clusters in diagrams representing uncertainty vs.
maximum Lyapunov exponent can provide useful information about the
optimal choice of the embedding parameters. In addition, our results allow
for the identification of systems that can provide suitable benchmarks for
the comparison and ranking of different embedding methods.

The second main result concerns the development of a new method
for the assessment of the optimal embedding parameters. Our method is
based on two assumptions: a potential-like quantity is defined on the lattice
of points that characterize the embedding; the optimal embedding choice
coincides with local extrema (maxima or minima) of this potential.

Throughout the work, we used “synthetic” time series generated by nu-
merically integrating the difference and differential equations that describe
the following dynamical systems: the Hénon map, the Lorenz attractor, the
Rössler attractor and the Mackey–Glass attractor. These four systems are
widely used as references in the scientific literature.

In the last part of the work, we have started to examine EEG recordings
by using the techniques developed in the main part of the work. The EEG
recordings are sampled on healthy subjects in resting-state. These investig-
ations are still at a starting phase.

The present work is organized as follows.

Chapter 2 is devoted to a general description of dynamical systems and
chaotic dynamics. The most recurrent definitions of chaos in the sci-
entific literature are presented; in particular, we discuss the definition
of chaos proposed by Devaney. The second part of this chapter is de-
voted to examples of chaotic systems and the computational methods
to simulate them.

Chapter 3 deals with the embedding of a time series and presents the Takens
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embedding theorem. Besides a discussion on the main characteristics
and issues linked to this theorem, we introduce the concept of optimal
embedding.

Chapter 4 presents the main characteristics of a chaotic dynamical system.
A special attention is devoted to the Lyapunov characteristic expo-
nents, evaluated by using the standard method, and the maximum Lya-
punov exponent, evaluated by means of the divergent rate method. The
chapter contains also a review on other important tools for the analysis
of a dynamical system: the dimension of an attractor, the Kolmogorov
entropy and the mutual information. In this chapter we also present
our implementation of the divergent rate method to estimate the max-
imum Lyapunov exponent and its uncertainty.

Chapter 5 discusses the statistical properties of the maximum Lyapunov ex-
ponent and its uncertainty as a function of the embedding parameters.
A main achievement is the interpretation of the observed uncertainty
of the maximum Lyapunov exponent calculated via the divergent rate
method [17] in the light of the work by Grassberger, Badii e Politi of
1988 [18] on the theoretical distribution of the maximum Lyapunov
exponent.

Chapter 6 , upon a detailed presentation of two optimal embedding meth-
ods used in the scientific literature, discusses a new optimal embed-
ding method based on a Kolmogorov–Smirnov approach. The new
approach is “automatic”, in the sense that it does not require any sub-
jective interpretation (as it happens for the others).

Chapter 7 contains a review on electroencephalography and a discussion
on the chaotic behaviour of brain function.

Chapter 8 deals with final considerations and future perspectives of the
research project.





Chapter 2
Dynamical systems

Behold the rule we follow, and the only one we

can follow: when a phenomenon appears to us as

the cause of another, we regard it as anterior. It is

therefore by cause that we define time . . .

Henri Poincaré

This chapter deals with dynamical systems, the definition of chaotic
dynamics and the integration method to simulate a continuous dynamical
system. The chapter is organized as follows. Sec. 2.1 is an introduction to the
concept of dynamical system. In Sec. 2.2 the definition of a chaotic system is
presented. In Sec. 2.3 some examples of chaotic attractors are shown. Sec. 2.4
finally concerns the simulation of a chaotic attractor by using an integration
computer algorithm.

2.1 Introduction

The concept of dynamical system was born with Newton in the 17th cen-
tury. However, the father of the modern theory of dynamical systems is
Henri Poincaré. Poincaré was also the pioneer of simulating a differential
equation by means of a discrete-time system. Indeed, any computer simu-
lation as well as any experimental recording is based on this assumption.
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The concept of dynamical system is based on the fact that the time-
evolution of a system follows “deterministic” rules: the state of a system at
a given moment of time determines the state of this system for any future
time.

A dynamical system is a tuple S ≡ (T,M,Φ) where T is a monoid that
represents time, M is a manifold (i.e. the phase space) of the system, and Φ
is the evolution function:

Φ : T ×M→M. (2.1)

Dynamical systems can be classified in real dynamical systems, discrete
dynamical systems and cellular automata.

A real dynamical system, also known as continuous time dynamical sys-
tem, is a tuple (T,M,Φ), whereT ⊂ R,M is a manifold locally diffeomorphic
to a Banach space, and Φ is a continuous function. Often, for this kind of
systems, Φ corresponds to the integration of a differential equation:

dx
dt

= f(x) t ∈ R, x ∈ Rn , (2.2)

A discrete dynamical system is a tuple (T,M,Φ), with T ⊂ Z. This kind
of systems is often described by means of a set of difference – rather than
differential – equations:

x(t+ 1) = f(x(t)) t ∈ Z, x ∈ Rn .

A cellular automaton is a dynamical system made of “cells” and char-
acterized by a discrete time and a discrete state space. The evolution rule
assigns a new state of each cell as a function of the old state of this cell
and its neighbouring cells. The rule is the same for each cell. An example
of a cellular automaton is the game of life discussed by Martin Gardner in
1970 [19].

The numerical integration of a difference equation is relatively straight-
forward: starting from a state, the next state can be calculated by directly
applying the difference equation itself. On the other hand, the numerical
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integration of differential equations poses more difficulties; for example, we
must take care of the integration step dt and it is necessary to use specific
methods to reduce the integration errors. Possibly the most used method is
Runge–Kutta’s [20] one. The simulation of a continuous dynamical system
is discussed in Sec. 2.4.

The aim of the theory of dynamical systems is to understand the be-
haviour of the orbits (trajectories). An orbit can be fixed, periodic, quasi-
periodic and chaotic. The assessment of this characteristic is crucial to study
the evolution of a system. A system can have different types of orbits
depending on the initial conditions and/or the parameters that define the
evolution equations. A fixed orbit is a set of phase space points that does
not change when time changes. A periodic orbit is an orbit that can be
written in the form x(t + T) = x(t), where T is the period of the system. A
quasi-periodic orbit is an orbit that can be written as a finite sum of periodic
functions. The chaotic behaviour is presented in the following section.

2.2 Definition of a chaotic dynamical system

Despite chaos might be regarded as a well-known concept, its definition
is indeed not unique. The most remarkable attempts to define chaos [21, 22]
were provided by Li and Yorke [23], by Block and Coppel [24] and by
Devaney [25].

According to Li and Yorke [23, 22]:

Definition 2.1 (L/Y-chaos). A continuous map Φ : M → M on a compact
metric space (M,d) is said to be chaotic – in the sense of Li and Yorke, or L/Y-
chaotic – if there exists an uncountable subset S (referred to as a scrambled
set) ofM having the following properties:

(i.) lim supn→∞ d(Φn(x), Φn(y)) > 0 for all x, y ∈ S, x , y;

(ii.) lim infn→∞ d(Φn(x), Φn(y)) = 0 for all x, y ∈ S, x , y;

(iii.) lim supn→∞ d(Φn(x), Φn(p)) > 0 for all x ∈ S, x ∈M, p periodic.
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According to Block and Coppel [24, 22]:

Definition 2.2 (B/C-chaos). A continuous map Φ : M → M on a compact
metric space M is said to be chaotic – in the sense of Block and Coppel, or
B/C-chaotic – if there exists m ∈ N and a compact Φm-invariant subset Y of
M such thatΦm|Y is semi-conjugate to the shift on Σ or, equivalently, if there
exists a continuous surjection Ψ : Y → Σ satisfying

Ψ ◦Φm = σ ◦ Ψ on Y.

In this work we use the definition of chaos given by Devaney [25, 22, 26,
27] and based on the topological approach of the problem, as follows:

Definition 2.3 (D-chaos). Let M be a set and Φ :M →M a map on this set.
We say that Φ is chaotic – in sense of Devaney, D-chaos – onM if:

(a.) Φ has a sensitive dependence on initial conditions;

(b.) Φ is topologically transitive;

(c.) periodic points are dense inM.

It is worth noting that the sensitive dependence on initial conditions,
the topological transitiveness and the density of periodic points are not
independent; for example, for a metric space, topological transitivity and
denseness of periodic orbits imply sensitive dependence on initial condi-
tions [28].

Usually, in Physics and applied sciences, people focus on point (a.), thus
using the notion of chaos that describes sensitive dependence on initial
conditions. The commonest method for distinguishing between regular and
chaotic motion, and thus quantifying the sensitive dependence on initial
conditions, is the evaluation of the maximum Lyapunov exponent χ0: if
χ0 > 0 the orbit is chaotic [27].

2.2.1 Sensitive dependence on initial conditions

Sensitivity to initial conditions is popularly known as “the butterfly ef-
fect”, in the wake of a celebrated paper published by Edward Lorenz in 1972
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for the American Association for the Advancement of Science (Washington,
D.C., USA) and entitled “Predictability: Does the Flap of a Butterfly’s Wings
in Brazil set off a Tornado in Texas?” [29]. The flapping wing represents
a small change in the initial condition of the system, which nevertheless
causes a chain of events leading to large-scale phenomena. Had the butter-
fly not flapped its wings, the trajectory of the system might have been vastly
different.

The sensitive dependence on initial conditions can be defined as follow:

Definition 2.4 (Sensitive dependence on initial conditions). Φ :M→M has
sensitive dependence on initial conditions if there exists ε > 0 such that, for
any x ∈M and any neighbourhood∆ of x, there exists y ∈ ∆ andn > 0, such
that ‖Φn(x) −Φn(y)‖ > ε, where Φn denotes n successive applications of
Φ.

This definition implies that there exist points arbitrarily close to xwhich
eventually separate from x by at least ε under iterations of Φ. We point
out that not all points near x need eventually to move away from x under
iteration, but there must be at least one such point in every neighbourhood
of x. Consequently, the slightest error ε in any initial condition x can lead to
a macroscopic discrepancy∆ in the evolution of the dynamics of the system.

A consequence of the sensitivity to initial conditions is that, if we start
with a finite amount of information about the system (as it is usually the
case in practice), then, beyond a certain time, the system will no longer
be predictable. The possibly most familiar example of this behaviour is
weather, which is generally predictable only about a week ahead.

2.2.2 Topological transitivity

Topological transitivity (or topological mixing) is defined as the charac-
teristic of a chaotic system to evolve over time so that any given region or
open set of its phase space will eventually overlap with any other given
region.
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Definition 2.5. (Topological transitivity)Φ :M→M is said to be topologic-
ally transitive if for any pair of open sets U,W ⊂M there exists n > 0 such
that Φn(U) ∩W , ∅ .

This definition implies the existence of orbits that will eventually connect
any arbitrarily small neighbourhood to any other one. Consequently, a
dynamical system cannot be decomposed into two disjoint invariant, open
sets. This mathematical concept of “mixing” corresponds to the standard
intuition; mixing of coloured dyes or fluids is an example of a chaotic system.

Topological mixing is often omitted in papers on chaos, typically because
chaos is linked exclusively to the sensitivity to initial conditions. However,
sensitive dependence on initial conditions alone does not necessarily yield
chaos. For example, the simple dynamical system produced by repeatedly
doubling an initial value has a sensitive dependence on initial conditions,
since any pair of nearby points will eventually become widely separated.
However, such a dynamical system has no topological mixing (for example,
there is no orbit linking negative with positive numbers), and shows there-
fore no chaos.

2.2.3 Density of periodic orbits

Density of periodic orbits means that every point in the space is ap-
proached arbitrarily by close periodic orbits. Topologically mixing systems
not satisfying this condition may not display sensitivity to initial conditions,
and thus they may be not chaotic.

2.3 Prototypical chaotic dynamical systems

In this section, chaotic dynamical systems widely used in the scientific
literature are presented: Hénon map, logistic map, Ikeda map, Lorenz at-
tractor, Rössler attractor, Mackey–Glass attractor, Duffing attractor and Chua
circuit.

Hénon map, Logistic map and Ikeda map are discrete-time dynamical
systems and are governed by difference equations. These systems are com-
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monly used and studied because their integration is simpler and computa-
tionally less expensive than in case of continuous systems.

Lorenz attractor, Rössler attractor, Mackey–Glass attractor, Duffing at-
tractor and Chua circuit are continuous dynamical systems; they are simu-
lated by integrating the corresponding differential equations via a Runge–
Kutta method (see Sec. 2.4 for more details). These systems are used to
model many phenomena like weather, sun’s activity, electric circuits, chem-
ical reactions, acoustics, celestial mechanics and lasers [30].

It is worth noting that, while equations describing a chaotic behaviour
might be often surprisingly simple [30], their solutions cannot be expressed
analytically. In addition, trajectories are neither steady nor periodic and
indeed appear to be very complex: when these motions are considered,
adjectives like “wild”, “turbulent”, and “random” often occur.

2.3.1 Hénon map

In 1976, Michel Hénon [31] introduced the map – thereupon named after
him – as a simplified model of the Poincaré section of the Lorenz model.
This map is a discrete-time dynamical system and one of the most studied
examples of dynamical systems that exhibit chaotic behaviour [32, 33, 34, 35].
Hénon map is governed by the following system of equations:

xn+1 = 1− ax2n + yn ,

yn+1 = bxn , (2.3)

where a and b are two constant parameters. The values of these parameters
that are most used in the scientific literature and such that the Hénon map
is chaotic are a = 1.4, b = 0.3. Depending on the values of a and b, the map
can be chaotic, intermittent, or even converge to a periodic orbit. Fig. 2.1
shows a simulation of the Hénon map.
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Figure 2.1: Simulation of Hénon map generated by meand of Eq. (2.3) and setting a = 1.4,
b = 0.3; the starting point is (1, 0). In this picture two zoom of the map are
shown to highlight the chaotic behaviour and the fractal characteristic of this
system.

2.3.2 Logistic Map

The logistic map was popularized in 1976 by the biologist Robert May [36]:
his paper, entitled “Simple mathematical models with very complicated dy-
namics”, discusses a discrete-time demographic model similar to the logistic
equation first created by Pierre François Verhulst [37]. The logistic map was
devised as a simple idealized ecological model for the yearly variations in
the population of insects [30]. The map is a polynomial mapping of degree
two, described by the following difference equation:

xn+1 = rxn(1− xn) ,
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r value periodic point
r > 0 0

r > 1 (r−1)
r

r > 4 are dense in [0, 1]

Table 2.1: Periodic points of logistic map as a function of the parameter r.

where xn ∈ [0, 1] ∈ R represents the ratio of existing population to the
maximum possible population at year n (for example, x0 represents the
initial ratio of population to the maximum population at year 0), whereas r
is a positive number that represents a combined rate for reproduction and
starvation.

The logistic map exhibits periodicity for various values of the parameter
r (see Tab. 2.1). For r > 4 the map has a chaotic behaviour.

The logistic map can be used to generate random numbers [38, 39]; Pareek
et al. [40] used this map to develop cryptosystems and to encrypt images [41].

2.3.3 Ikeda map

The Ikeda map was first proposed by Ikeda et al. to model the dynamics
of light in the ring cavity containing a nonlinear dielectric medium [42, 43].
It is modelled by the following equation:

zn+1 = p+ µzn exp
[
iκ−

iα

|zn|2 + 1

]
, (2.4)

where p, µ, κ and α are the parameters of the equation and zn is a complex
number. In the model, zn stands for the electric field inside the resonator at
then-th step of rotation in the resonator; p and κ are parameters that indicate
the amount of light injected from the outside and the linear phase across the
resonator, respectively. The parameter µ 6 1 is referred to as dissipation
parameter and characterizes the resonator loss.

The Ikeda map is also used to describe a large number of systems of
different nature [44, 45].

Fig. 2.2 shows an example of Ikeda map, obtained by using Eq. (2.4) a
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Figure 2.2: Simulation of the Ikeda map generated by Eq. (2.4) with using the parameter
values p = 1.0, µ = 0.9, κ = 0.4, and α = 6.0 [46]. For the n-th point, the
abscissa and the ordinate correspond to the real and the imaginary part of zn.

setting the parameters as following: p = 1.0, µ = 0.9, κ = 0.4, and α = 6.0.
A chaotic behaviour is clearly exhibited.

2.3.4 Lorenz attractor

The Lorenz attractor was introduced by, and thereupon named after,
Edward Lorenz in 1963 [47], who derived it from the simplified equations
of convection rolls arising in the equations of the atmosphere. In addition
to its interest to the field of nonlinear mathematics, the Lorenz model has
important implications for climate and weather forecast as well in simplified
models for lasers [48, 49], dynamos [50, 51], thermosyphons [52], brushless
DC motors [53], electric circuits [54], chemical reactions [55] and forward
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osmosis [56].

Like other maps and attractors, the Lorenz system has chaotic solutions
for certain parameter values and initial conditions; when plotted, it re-
sembles a butterfly or figure “eight” (see Fig. 2.3). The Lorenz attractor is
governed by the following system of equations [47]:

dx

dt
= σ(y− x) ,

dy

dt
= x(ρ− z) − y , (2.5)

dz

dt
= xy− βz ,

where (x, y, z) ∈ R3 is the system state, σ is the so-called Prandtl number and
ρ the so-called Rayleigh number. The parameters β, ρ, σ must be positive;
widely-used values areβ = 8

3
,σ = 10. The system exhibits chaotic behaviour

for ρ = 28 but displays knotted periodic orbits for other values of ρ. In the
original paper by Lorenz x, y and z are not space coordinates:

• x is proportional to the intensity of convective motion;

• y is proportional to the difference in temperature between the ascend-
ing and descending currents and denotes that warm fluid is rising and
cold fluid is descending;

• z is proportional to the distortion of vertical temperature profile from
linearity, a positive value indicating that the strongest gradients occur
near the boundaries.

2.3.5 Rössler attractor

The Rössler attractor was proposed by Otto E. Rössler in 1976 [57]. Its
behaviour is similar to the Lorenz attractor (see Sec. 2.3.4). The Rössler
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Figure 2.3: Simulation of the Lorenz attractor obtained by integrating Eq. (2.5) with σ = 10,
r = 45.92, b = 8/3 and a sampling interval δt equal to 0.01.

attractor is governed by the following system of equations [57]:

dx

dt
= −y− z ,

dy

dt
= x+ ay , (2.6)

dz

dt
= b+ z(x− c) ,

where (x, y, z) ∈ R3 are again dynamical variables defining the phase space
and (a, b, c) ∈ R3 are constant parameters.

Fig. 2.4 shows the integration of the system of equations (2.6). The orbit
follows an outward spiral close to the x, y-plane and turning around an
unstable fixed point; when the radius of the spirals becomes large enough,
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a second fixed point influences the orbit, causing a rise and twist in the z-
dimension. Fig. 2.5 shows the plots of x, y and z in the time domain: clearly,
the variables x and y are “chaotically” oscillating within a fixed range of
values.

−10
−5

 0
 5

 10
 15 −15

−10

−5

 0

 5

 10

 0

 10

 20

 30

Figure 2.4: Simulation of Rössler attractor obtained by integrating Eq. (2.6) with a = 0.15,
b = 0.2, c = 10 and a sampling interval δt equal to 0.125.

2.3.6 Mackey–Glass attractor

The Mackey–Glass attractor is a feedback system that models the concen-
tration of electrolytes, oxygen, glucose, and blood cells in the blood, as well
as blood pressure within the brain and other organs. Possibly the simplest
differential equation representing a feedback system is

dx

dt
= λ− γx , (2.7)
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Figure 2.5: Time evolution of the components of the Rössler attractor shown in Fig. 2.4.

where λ and γ are positive constants and x is the variable of interest: λ and
γx respectively correspond to the rate at which x is produced and destroyed.
It is well known that the evolution of the solution of Eq. (2.7) for t → ∞ is
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given by x→ λ
γ

, independently from the initial conditions. Thus, the related
system has a stable fixed point.

In real feedback systems, however, there is a time lag between the sensing
of the value of x and the feedback response. The Mackey–Glass equation
allows for the modelization of real feedback systems. It is governed by the
following equation [58]:

dx(t)

dt
= a

x(t− τ)

1+ [x(t− τ)]
c − bx(t), a, b, c > 0 , (2.8)

where a, b, c and τ are constant parameters. In particular, τ is non-negative
and represents a time delay.
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Figure 2.6: Simulation of the Mackey–Glass attractor obtained by integrating Eq. (2.8) with
a = 0.2, b = 0.1, c = 10, τ = 30 and a sampling interval δt equal to 1.5. On
the left side, the system variable x is plotted as a function of time. On the right
side, “delay” plot is reported.

Fig. 2.6 shows the result of an integration of Eq. (2.8). The chaotic beha-
viour is evident. Here it is worth citing the work by Namajunas et al. [59]
developed an electric circuit to simulate the Mackey–Glass attractor.

2.3.7 Duffing attractor

In 1918, Georg Duffing, a German electrical engineer, introduced the
original model of the oscillator named after him. Since then, the related
equation has become, along with Van der Pol’s equation, one of the most
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common examples of nonlinear oscillation in textbooks and research art-
icles. Duffing oscillator is an example of a periodically forced oscillator with
a nonlinear elasticity, described by the following nonlinear second-order
differential equation:

ẍ+ δẋ+ βx+ αx3 = γ cos(ωt) , (2.9)

where α, β, δ, γ andω are real parameters.
Besides the modelling of electrical and mechanical systems [60], the Duff-

ing attractor is used to model biological systems [61], in the detection of weak
signals [62] and to investigate in the framework of control and synchroniza-
tion of dynamical systems [63, 64, 65, 66]. The integration of Eq. (2.9) occurs
upon rewriting it as a system of first-order differential equations:

dx

dt
= y ,

dy

dt
= −δy− βx− αx3 + γ cos(ϕ) ,

dϕ

dt
= ω. (2.10)

In Fig. 2.7 a simulation of Duffing attractor is shown.

2.3.8 Chua circuit

The most famous chaotic electronic circuits is possibly Chua’s circuit [67],
whose scheme is reported in Fig. 2.8. The circuital element crucial to the pro-
duction of chaos is Chua’s diode, a device with nonlinear current vs. voltage
characteristics typically represented by the following piecewise linear equa-
tion (see also the rightmost plot of Fig. 2.8):

id(x) = m0x+
1

2
(m1 −m0)(|x+ Bp|− |x− Bp|) ,

where m0, m1 and Bp are parameters. Chua’s circuit has been widely
studied due to its easy experimental implementation, robustness, and re-
producibility of results. For these reasons, this circuit is also used as a test
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Figure 2.7: Simulation of the Duffing attractor obtained by integrating Eq. (2.10) with
α = 1.0, β = −1.0, γ = 7.5, δ = 0.05 andω = 1.

platform for chaos control [68, 69, 70], synchronization [71, 72, 69], secure
communications [73, 74] and signal encryption [75].

The differential equations governing the circuit are derived from Kirch-
hoff’s laws: if x(t), y(t), and z(t) represent the voltage across the capacitors
C1, the voltage across the capacitors C2, and the electric current in the in-
ductor L, respectively, the system of differential equations is [76]:

dx

dt
=

y− x

RC1
−
id(x)

C1
,

dy

dt
=

x− y

RC2
−
z

C2
, (2.11)

dz

dt
= −

y

L
− z

rL

L
,
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Figure 2.8: A standard Chua circuit (left side). The dynamical variables of Eq. (2.11)
(x, y, z) correspond to the voltage across the capacitorC1, the voltage across the
capacitor C1 and the current that flows through the inductor L, respectively.
The characteristics of the Chua’s diode is also plotted (right side).
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Figure 2.9: Simulation of Chua’s circuit by integrating Eq. (2.11) with R = 1, C1 = 1,
C2 = 0.064, L = 0.04, Bp = 1,m0 = −5/7 andm1 = −8/7.
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where R, C1, C2 and L are passive linear elements and rL is the inductor
resistance. In Fig. 2.9 a simulation of Chua’s attractor is shown.

2.4 Simulation of chaotic attractors

As mentioned above, the simulation of a discrete-time dynamical system
is implemented by directly applying the difference equations that govern
the system. On the other hand, to simulate a continuous-time dynamical
system we must integrate the differential equation(s) over time. This process
is subject to the discretization error, due to the finite time step of integration.
In the simulation of a chaotic dynamical system, this kind of error make
up a major issue, because of the sensitive dependence on initial conditions
(see Sec. 2.2.1). In the scientific literature, the most used method to integrate
chaotic dynamical systems is the 4th-order Runge–Kutta method [77, 78, 79,
80].

In this work, to integrate differential equations we used an 8th-order
Runge–Kutta algorithm. In particular, we used the implementation available
in the GNU Scientific Library (GSL) [81], and developed in 1981 by Dormand
and Prince [82]. The Dormand–Prince algorithm is an adaptive stepsize
integration algorithm (routine name: gsl_odeiv2_step_rk8pd). In the book
“Solving Ordinary Differential Equation I: Nonstiff problems” [83, pp. 171-
172] a comparison between different integration methods is discussed: the
8th-order [81] – an evolution of Dormand–Prince 5th-order [84] method –
performs better than the others. The Dormand–Prince method is exposed in
details in the book by Hairer, Nørsett, Wanner [83, p. 181].

Fig. 2.10 shows the integration of the Lorenz attractor, Eq. (2.5), by us-
ing a 4th-order Runge–Kutta method and the 8th-order Runge–Kutta method
(Dormand–Prince algorithm). By assuming the latter to make up the refer-
ence solution, it is clear that the integration error increases during time [85].
Fig. 2.11 shows the logarithmic plot of the difference of the two solutions:
the difference exponentially increases in the region 0 6 t 6 22. Interest-
ingly, the plot is very similar to the divergent exponent used to calculate
the Lyapunov exponent via embedding, as explained in Sec. 4.1.2 (see also
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Figure 2.10: Evolution of the x-component of the Lorenz attractor using the Eq. (2.5) with
σ = 10, β = 8

3
and ρ = 45.92; the red line is integrated using a 4th-order

Runge–Kutta, the black line is integrated using an 8th-order Runge–Kutta
method developed by Dormand and Prince [82]

Fig. 4.4). In particular, the slopes of the growing sections of the plots are
almost coincident: 1.22(1) for the present plot, to be compared with 1.23, a
value that corresponds to the maximum Lyapunov exponent for the Lorenz
attractor ( given the parameters used in this work).

2.5 Reference systems

In following chapters, four systems are used as references:

• Hénon map, Eq. (2.3), with a = 1.4 and b = 0.3;

• Lorenz attractor, Eq. (2.5), with σ = 10, β = 8
3

and ρ = 45.92 and time
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Figure 2.11: Logarithmic plot of the distance between the numerical integrations of the
Lorenz attractor carried out by a 4th-order and a 8th-order Runge–Kutta
method. An exponential dependence of the distance over time is highlighted
by means of the red line.

step δt = 0.03;

• Rössler attractor, Eq. (2.6) with a = 0.15, b = 0.2, c = 10 and time step
δt = 0.125;

• Mackey–Glass attractor, Eq. (2.8) with a = 0.2, b = 0.1, c = 10, τ = 30
and δt = 1.5.

So, for example, the Lorenz attractor with the parameters set as above is
henceforth referred to as the “reference Lorenz attractor”.





Chapter 3
Embedding of time series

This chapter deals with the recording of experimental time series, the
delay embedding and the Takens embedding theorem.

In Sec. 3.1 the sampling of a continuous-dynamical system is described
and the delay embedding is defined. Sec. 3.2 is devoted to the Takens
embedding theorem and its generalization. Finally, a discussion about the
optimal embedding parameters is the topic of Sec. 3.3.

3.1 Basic concepts

Experiments are characterized by continuous dynamical systems that can
be modelled by means of differential equations. At any time, the state of a
system is described by a point x lying on a d-dimensional manifoldM ⊂ Rd.
The time evolution of the system is described by a tuple S ≡ (R,M,Φ) (see
Sec. 2.1); fixing the initial condition at time t = 0, a state x(t) at time t is
evaluated as

x(t) = Φt [x(0)] .

During an experiment, the state x is typically sampled at integer multiples
of a time interval (sampling time) δt; the measuring process discretizes Φt,
by creating a time series {Φn·δt [x(0)]} where n = 0, 1, 2, . . . , n ∈ N. We can
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set xn ≡ x(n · δt) so that the previous expression becomes

xn = Φn·δt(x0) . (3.1)

An example of this measurement process applied to a continuous dynamical
system with d = 1 is represented in Fig. 3.1.

The measurement process corresponds to a map ϕ : M → Y, where
Y ⊂ M. Typically, we do not have access to all components of the state
x, but, rather, we can only observe a projection of the state on a lower-
dimensional space. The most extreme situation occurs when a single scalar
component of the dynamical system is observed; in this case ϕ : M → R
and the recorded time series is {ϕ(xn)}. Henceforth we set ϕn ≡ ϕ(xn).

The observed measurement ϕn is one-dimensional, whereas Φn·δt lies
in Rd, with d generally larger than unity. At first, it might thus appear that
{ϕn} contains relatively little information about the behaviour ofΦ. In other
words, the question is to which extent {ϕn} can provide information on the
original continuous dynamical system.

Many statistical approaches and techniques, like the discrete Fourier
transform ot the Wavelet transform, can be used to extract information from
an experimental sequence {ϕn}. Unfortunately, most methods are not useful
if the time series has a chaotic behaviour. On the other hand, Takens em-
bedding theorem [6, 86, 87] gives us a technique to reconstruct Φ from the
observed time series {ϕn}.

The importance of Takens embedding theorem can be highlighted by
looking at the number of publications per year that cite the original paper
by Takens [6]. Fig. 3.2 shows the plot of the yearly citation rate. In the last
fifteen year, the paper gets about 140 citations per year.

Takens embedding theorem provides the theoretical foundation for the
analysis of time series generated by nonlinear deterministic dynamical sys-
tems as well as for the majority of numerical methods used [88, 89]. The
success of this theorem is related to the simplicity of the technique proposed:
the delay embedding can be indeed applied to any experimental time series.
The delay embedding is implemented in many computational libraries. A
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Figure 3.1: On the top, the real continuous signal is plotted with a red line. In the middle,
the sampling process is represented; on the bottom the time series recorded is
plotted with blue dots.
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Figure 3.2: Plot of the citation of Takens embedding theorem [6] per year; this data come
from the Web of Science databases.

complete software tool on this topic is, for example, TISEAN, developed by
Hegger, Kantz and Schreiber [90].

A comprehensive review about Takens embedding theorem is contained
in a work by Stark et al. [7]. These authors explained how to apply the
theorem to experimental data, starting from an ideal situation where only the
chaotic dynamics is present, to a real experimental situation in which forced
dynamics and stochastic noise are added to the signal of interest [91, 92]. In
the following sections we introduce Takens embedding theorem and discuss
the major experimental issues linked to this technique.

3.2 Takens embedding theorem

Let m and L (both natural numbers) be the embedding dimension and
lag respectively. The delay embedding mapΨΦ,ϕ :M→ Rm is then defined
as

ΨΦ,ϕ(x) ≡ (ϕ(x), ϕ(ΦLδt(x)), . . . , ϕ(Φ(m−1)Lδt(x))) =

= (ϕ(x), ϕ(xL), . . . , ϕ(x(m−1)L)) . (3.2)
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Figure 3.3: Example of embedding (m, L) = (2, 4) of time series in Fig. 3.1.
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Upon this definition, Takens embedding theorem can be stated as fol-
lows [6, 87, 7]:

Theorem 3.2.1. Let M be a compact d-dimensional manifold. If m > 2d + 1,
the set of (Φ,ϕ), for which the map ΨΦ,ϕ is an embedding, is open and dense
in Dr(M) × Cr(M,R) for r > 1, where Dr(M) and Cr(M,R) are the set of Cr

diffeomorphisms ofM and the set of observation functions onM, respectively.

To lighten the notation, we henceforth set Ψ ≡ ΨΦ,ϕ.

The standard Takens theorem implies that, knowing the dimension of
the manifold d, for typical Φ and ϕ, the image Ψ(M) is equivalent to the
original manifold M, modulo a smooth invertible coordinate change given
by the embedding Ψ. Furthermore, a function Θ : Rm → Rm can be defined
as Θ ≡ Ψ ◦Φ ◦ Ψ−1, as explained in the following scheme:

M M M
Φ−−−→ M

≡ Ψ−1

x yΨ
Rm −−−→

Θ
Rm Rm Rm

In other words, Θ and Φ have the same dynamical properties. A cru-
cial corollary is that the system’s invariants are the same, no matter which
representation is used to describe or to infer them. The set of invariants
includes the numbers and topological types of fixed points, periodic orbits,
the correlation dimension and the Lyapunov exponents. So, for example,
we can measure the maximum Lyapunov exponents ofΘ and be certain that
these are the same as the original system description Φ.

One might argue that achieving a complete knowledge of Θ is by no
means easier than achieving a complete knowledge of Φ. However, Θ can
be estimated by observing finite sequences of the time series {ϕn}. So,
according to the standard Takens theorem, studying these sequences can
lead to an assessment of the invariants of the dynamical system.
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3.2.1 Time evolution of the delay embedded time series

Let zn ∈ Rm be an delay embedding point at timen: zn = (ϕn, . . . , ϕn+m−1).
We have:

zn = (ϕ(Φn(x0)), . . . , ϕ(Φn+m−1(x0)))

= (ϕ(xn), ϕ(Φ(xn)), . . . , ϕ(Φm−1(xn)))

= Ψ(xn)

By applying Θ to zn we obtain:

Θ(zn) = Ψ ◦Φ ◦ Ψ−1(zn)

= Ψ ◦Φ ◦ Ψ−1(Ψ(xn))

= Ψ ◦Φ(xn)

= Ψ(xn+1)

= zn+1 (3.3)

Thus
Θ(ϕn, . . . , ϕn+m−1) = (ϕn+1, . . . , ϕn+m) .

According to this last expression, the dynamics ofΘ consists of “shifting”
by one time step along the ordered dimensions of the m-dimensional em-
bedding space a numberm of successive elements of the time series {ϕn}. It
is worth noting that, while the original dynamics is possibly unobservable,
the dynamics in terms of Θ and zn is expressible in terms of the observed
time series {ϕn}.

Eq. (3.3) implies that the time series {ϕn} is deterministic: by iterating Θ
a number k of times, the future value ϕn+k can be predicted starting from
ϕn. If Φ, and hence Θ, is chaotic or noisy there is an upper limit on how
precisely and far into the future we can predict.

Thus, Takens embedding theorem allows us to reconstruct the unknown
dynamical system by simply recording a sequence and constructing a new
state space by suitably combining – i.e. embedding – successive observations
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of the system. Putting this procedure into operation requires the overcoming
of many issues. A major one is the fact that the theorem does not provide
any information about the embedding dimension m that we should use if
we do not know the dimension of the manifold d. Another problem is the
choice of the sampling time δt (and consequently of the lag L), which can
significantly affect the performance of the techniques used to reconstruct the
dynamics.

In addition, Takens embedding theorem requires a deterministic and
autonomous dynamics (a system is said to be autonomous if it is isolated with
respect to other systems). Both these requirements are not satisfied in many
experimental systems. Therefore, it is important to study the generalizations
of Takens embedding theorem applicable to forced systems and to stochastic
ones [7, 93, 94]. In the following section, we introduce the generalization of
Takens embedding theorem in the case of deterministic forcing systems and
in the case of stochastic systems.

3.2.2 Deterministically forced system

Stark [93] generalized the Takens embedding theorem to dynamical sys-
tem forced by a deterministic system; this new theorem is called Forced Takens
Theorem. This generalization is very important to reduce the gap between
the ideal, mathematical world and the experimental applications.

Besides the dynamical system described by a state xi and the discrete
time evolution given by Eq. (3.1), let us consider an additional, “forcing”
deterministic system

Υ : N→ N ,

whereN ⊂ Rk is the manifold of the forcing dynamics. Similarly to Eq. (3.1),
the discrete evolution of a state yi is given by

yi+1 = Υ(yi) .

Assuming now a “feeding” (one-way coupling) of the second dynamics into
the first one, we get a so-called deterministically forced system. The overall
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dynamics, which occurs within a new phase space contained in Rd ×Rk is
given by:

xi+1 = Φ(xi, yi) ,

yi+1 = Υ(yi) . (3.4)

The Forced Takens Theorem allows us to reconstruct the joint dynamics
of a forcing and a forced system from a time series of an observable of the
forced system alone. This theorem is applicable to cases in which the forcing
dynamics is unknown; such cases correspond to many practical applications.

On the other hand, if the forcing dynamics is known – ex. gr. in many
experimental situations, the experimenter has an independent knowledge
of the state of the forcing system – it is not necessary to reconstruct it out of
measurements carried out on the forced system. Consequently, it is possible
to simplify the reconstruction of the dynamical system without wasting the
resources necessary to reconstruct also the forcing dynamics Υ.

The Forced Takens Theorem provides the justification for the majority of
numerical methods used in experimental systems and gives a theoretical
background to popular techniques like the lock-in amplifier. The theorem
can be for example used to analyse signals stemming from plasma discharge
experiments and electroencephalographic (EEG) recordings: in plasma dis-
charge the gas system is stimulated by using a “known dynamics” made
of pulses or other pre-set waveforms; in EEG recordings, forcing dynamics
can be represented by neural signals arising from the cardiac system, from
the eye movements and, more generally, from other voluntary/involuntary
sources of artefacts.

3.2.3 Stochastically forced system

Stark et al. [7, 94] generalized the Takens embedding theorem also for
the situation in which the dynamics is forced by a stochastic systems. This
formulation of Takens Theorem is referred to as Takens theorem for stochastic
systems. The framework is typical of all real systems: the noise is everywhere



38 Embedding of time series

and typically influences the dynamics of a system. Similarly to Eq. (3.4), the
discrete time evolution of a dynamical system forced by a stochastic system
can be written as follows:

xi+1 = Φ(xi,ωi) ,

where xi ∈ Rd and ωi is the noise component at step i. This formalism
includes also the case of a deterministic system Φ subject to “dynamical”
noise, namely Φ = f(xi) +ωi.

The Takens theorem for stochastic systems states that ΨΦ,ϕ,ω is an em-
bedding. Consequently, the dynamics of the original system can be recon-
structed, or better estimated, with a degree of uncertainty given by the size
ofω.

Stark et al. [94] generalized the Takens theorem for stochastic systems
also when the noise is of “additive” kind, a situation that typically occurs in
a measurement process. Therefore, the embedding delay technique can be
used in any experimental situation.

3.3 Optimal embedding parameters

The main drawback of Takens embedding theorem is the fact that it gives
no clues on how to choose the embedding parameterm and L for a “experi-
mental” time series. Because the choice of the embedding parameters is cru-
cial to the subsequent analysis, many embedding methods were developed
to tackle the issue of determining the optimal embedding parameters. The
most used and cited methods are: Gao–Zheng’s method [8, 9, 10] (Sec. 6.1),
Schuster’s method [11] (see Sec. 6.2), the method of characteristic length, the
method of global false-nearest-neighbours and autocorrelation function, the
method of global false-nearest-neighbours and mutual information [12, 13].
Each motivates the choice of (m, L) by addressing one or more particular
features of the dynamics of the system. A review of these methods is given
by Cellucci et al. [14].

To compare embedding methods we must define a measure of the quality
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of the embedding parameter. In 1992, Buzug et al. [95] proposed to use the
deviation of the estimation of the correlation dimension of the reconstructed
manifold from the correlation dimension of the original manifold. Cellucci
et al. [14] compared delay embedding methods by analysing two dynamical
properties: the maximum Lyapunov exponent (MLE) and the robustness
to noise. Robustness to noise is determined in terms of impact on the
cumulative distribution of interpoint distances in the embedding space.
However, the embedding parameters (m, L) are found to vary when noise
is added to the time series and it is not clear whether a wrong embedding
choice produces a lesser degree of robustness.

The determination of the MLE provides a more decisive way to rank the
quality of different embedding methods. As discussed in the next chapter
(Sec. 4.1), the maximum Lyapunov exponent of a dynamical system S can
be evaluated independently from the embedding parameters, by using the
so-called standard method [15, 16] χS. Given an (m,L)-embedded time series,
i.e., embedded by using a particular parameter pair (m,L), the MLE can be
estimated by determining the local divergence rate of nearby trajectories [8,
96, 97], ΓS(m,L). So, according to Cellucci et al., methodA is considered to be
superior to method B if ΓS(mA, LA), calculated by using the embedding pair
assessed via A, approaches χS better than ΓS(mB, LB), calculated by using
the embedding pair assessed via B [17].

In Chapter 5 we discuss the comparison method proposed by Cellucci et
al. by analysing the statistical error of ΓS(m,L) [17]. We will point out that
not all the chaotic dynamical systems provide good benchmarks to assess
the reliability of different embedding methods [98, 17].





Chapter 4
Characteristics of a chaotic
dynamical system

In this chapter we introduce the main tools to study a chaotic dynamical
system. Sec. 4.1 deals with the Lyapunov characteristic exponents of a dy-
namical system; in addition, the standard method used to calculate the expo-
nents and the divergent rate method used to calculate the maximum Lyapunov
exponent out of a time series are discussed. In Sec. 4.1.2 we present our im-
plementation of the divergent rate method to automatize the procedure and to
calculate not only the maximum Lyapunov exponent but also its standard
error. The dimension of an attractor is presented in Sec. 4.2; four methods to
estimate it are presented, namely the box counting, the information dimen-
sion, the correlation dimension and the Kaplan–Yorke conjecture. Another
important characteristic of a chaotic attractor is entropy, which is the topic
of Sec. 4.3; this section also contains a discussion on the relation between the
Lyapunov characteristic exponents and the Kolmogorov entropy.

4.1 Lyapunov characteristic exponents

The Russian mathematician Alexandr Lyapunov, in his PhD Thesis in
1892, introduced the concept of Lyapunov exponents [99] to measure the
stability of a dynamical system by averaging the rate of growth of small
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perturbations to the orbits.

The Lyapunov characteristic exponents (LCEs) provides a quantitative
characterization of the dynamics: for a d-dimensional dynamical system,
there are d Lyapunov exponents. They measures the average rate at which
a volume element in the phase space expands or contracts along its tra-
jectory. A positive maximum Lyapunov exponent (MLE) characterizes an
exponentially-growing divergence of orbits, and is linked to chaotic dynam-
ics; a negative MLE characterizes a stable motion, because nearby trajectories
converge.

Let us consider the evolution of two states x, y of a scalar continuous
dynamical system. According to Eq. (2.2) and considering the divergence
∆ ≡ y− x it follows:

∆(dt) = ∆(0)

(
1+

f[y(0)] − f[x(0)]

∆(0)
dt

)
.

By iterating the expression above for a time t = n·dt, assuming the coefficient
of dt to have a slower evolution than x, y, and averaging, we get

∆(t) ≈ ∆(0)eλt ,

where λ is a time-independent constant.

This argument can be expanded to systems whose evolution occurs in
multidimensional spaces. So, heuristically, two trajectories in phase space
with initial separation δZ(0) diverge as (see also Fig. 4.1):

|δZ(t)| ≈ eλt |δZ(0))| .

The constant λ is referred to as the maximum Lyapunov exponent (MLE).

More precisely, the MLE is defined as follows:

λmax = lim
t→∞ lim

δZ(0)→0

〈
1

t
ln

|δZ(t)|

|δZ(0)|

〉
,

where the average is taken on the set of pairs of initially nearby trajectories,
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Figure 4.1: Evolution of two initially nearby orbits.

whose separation is, in the limit, vanishing.

The MLE is a measure linked to the sensitive dependence to initial con-
ditions. It was introduced by Hénon and Heiles [100] and was further used
by several authors (ex. gr. , [101, 102]). In the study by Hénon and Heiles,
two initial points were chosen “very close” to each other, so that their phase
space separation was about 10−7–10−6. They found that, in the case of a
chaotic system, the distance exhibits an exponential increase in time.

As an example, Fig. 4.2 shows the evolution of the distance between two
nearby trajectories of the reference Lorenz attractor. This system is described
by Eq. (2.5), with the set of parameters expressed in Sec. 2.5. The trajectories
start at the points

a = (5.84613084500473, 11.2335817205288, 25.7823621037852) ,

b = (5.84613084500472, 11.2335817205288, 25.7823621037852) ;

the difference only regards the last digit of the x-coordinate and is equal
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to 10−14. For t 6 22 the distance increases exponentially (linearly in the
logarithmic plot). The angular coefficient of the straight line fitting the points
– a quantity related to the MLE – is in this example 1.22(1). This value
coincides, within the uncertainty, with the MLE for the reference Lorenz
attractor, namely 1.2346(6) (see also Tab. 4.1).
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Figure 4.2: Evolution of the distance between two nearby trajectories generated by using
Eq. (2.5) with σ = 10, β = 8

3
and ρ = 45.92. The two trajectories start from

points that differ by 1 · 10−14 on the x direction. The slope of the linear red line
(t 6 22), is equal to 1.22(1).

A dynamical system “living” in a d-dimensional manifold is character-
ized by a set of d Lyapunov exponents. To assess these exponents, several
methods have been developed: the standard method [15, 16], the singular
value decomposition and the QR decomposition procedures [27].

In the experimental analysis, the most important exponent is the MLE
because it represents the main behaviour of dynamical systems. Starting
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from a time series, the MLE can be evaluated by means of the divergent rate
method [8, 96, 97]. A comprehensive review on this method is contained in
the work by Kantz et al. [103].

4.1.1 The standard method

The standard method was developed by Benettin et al. [15, 16, 104] in 1980
and it is considered a mainstay of the LCEs computation [105, 106, 14, 27].

Considering a continuous-time dynamical system, whose evolution is
described by Eq. (2.2), the corresponding evolution of a deviation vector s
(also often referred to as δx) is given by its tangent map:

ds
dt

= J , (4.1)

where J is the Jacobian matrix Jij = ∂fi
∂xj

.

As an example, in the case of the Lorenz attractor (see Eq. (2.5)), we have:

dsx

dt
= σ(sy − sx) ,

dsy

dt
= sx(ρ− z) − xsz − sy ,

dsz

dt
= sxy+ xsy − βsz . (4.2)

At time t1, let us consider a p-dimensional parallelepiped whose edges
are given by p linearly independent deviation vectors, namely s1(t1), s2(t1),
. . . , sp(t1). Let volp(t1) be volume of this parallelepiped. Furthermore,
let si(t2) be the i-th deviation vector (i = 1, . . . , p) that results from the
evolution till time t2 of the vector si(t1). The vector si(t2) can be evaluated
by (numerically) integrating Eq. (4.1). Let volp(t2) be the volume of the new
parallelepiped.

Besides the definitions above, it is worth introducing three additional,
important definitions. First, let the expansion η(t1 → t2) be defined as

η(t1 → t2) ≡
volp(t2)

volp(t1)
.
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Second, let Xp(t) be defined as

Xp(t) ≡
1

t
lnη(0→ t) . (4.3)

Third, given the p greater Lyapunov exponents χ1 (i.e. the MLE), χ2, . . . ,
χp, let p-MLE be their sum:

p-MLE ≡
p∑
i=1

χi .

A crucial theorem proved by Benettin, Galgani, Giorgilli, and Strelcyn in
1980 [15] states that

p-MLE = lim
t→∞Xp(t) . (4.4)

This theorem can be exploited to iteratively compute the LCEs: setting
p = 1 directly provides the MLE; the second largest Lyapunov exponent is
then evaluated by i) setting p = 2, ii) assessing 2-MLE, and iii) subtracting
the MLE; and so on. However, as shown below, the computation can be
considerably, and “free of charge”, shortened.

The volume volp of a parallelepiped whose edges are s1, . . . , sp, can
be computed by exploiting the Gram–Schmidt orthonormalization method.
Starting from the set s1, . . . , sp, a new set of orthonormal vectors ŝ1, . . . , ŝp
is constructed as follows:

u1 = s1,

γ1 = ‖u1‖,

ŝ1 =
u1
γ1
,

uk = sk −
k−1∑
j=1

〈sk, ŝj〉 ŝj ,

γki = ‖uk‖ ,

ŝk =
uk
γk
, (4.5)

for 1 < k 6 p. In the previous expressions, 〈a,b〉 is the scalar product of the
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vectors a and b. The volume volp of the parallelepiped is then equal to the
volume of the new, p-dimensional box having the vectors uj as edges. This
last volume is simply given by the product of the norms of the vectors that
represent the new edges:

volp =

p∏
i=1

γi .

By means of this last expression and by taking the starting set s1(0),
s2(0), . . . , sp(0) to be orthonormal, Xp(t) (see Eq. (4.3)) can be re-written as
follows:

Xp(t) =
1

t

p∑
i=1

lnγi . (4.6)

In principle, the next step should consist in taking the limit t → ∞ – i.e.,
from the computational point of view, taking the number of Runge-Kutta
integration steps k = t/δt sufficiently large – and then applying Eq. (4.4).
However, if the system under study is chaotic, there are two main issues to
cope with:

• the norm of the deviation vectors ‖si(t)‖ increases exponentially with
time t, leading to numerical overflow;

• when at least two deviation vectors are considered, the angles between
their directions become too small to numerically compute.

These difficulties can be overcome by a powerful lemma [16]: the expansion
of any p-dimensional parallelepiped under the action of a linear map (as it
is the case of the tangent map, Eq. (4.1); see, for example, Eq. (4.2)) does not
depend on the initial volume.

Consequently, let the evolution from step 0 to step t be partitioned in
cycles of length τ, henceforth referred to as “renormalization period”, and
ending with a Gram-Schmidt orthonormalization. Because of the lemma,
Eq. (4.3) can be rewritten as:

Xp(t) =
1

t

t/τ∑
n=1

lnη [(n− 1)τ→ nτ] . (4.7)
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However, because the starting set of deviation vectors is supposed to be
orthonormal and the Gram-Schmidt orthonormalization delivers, at each
cycle, an orthonormal set, the expansion η [(n− 1)τ→ nτ] at the n-th cycle
can be evaluated by means of Eq. (4.6), as follows:

η [(n− 1)τ→ nτ] =

p∏
i=1

γn, i . (4.8)

The period τ has to be large enough to observe the effects of time evol-
ution – namely, a “distortion” of the starting parallelepiped – but small
enough so that the two numerical issues expressed above do not occur.
Typically, τ ≈ 100 δt, i.e., every τ/δt ≈ 100 Runge-Kutta steps, the Gram-
Schmidt orthonormalization is carried out and the related expansion eval-
uated. Again, the resulting orthonormal set of vectors serves as a starting
point for a new run of τ/δt ≈ 100 Runge-Kutta steps, and so on for typically
t/τ ≈ 105 cycles.

By merging Eq. (4.7) and Eq. (4.8), we get:

Xp(t) =
1

t

t/τ∑
n=1

p∑
i=1

lnγn, i =
1

t

p∑
i=1

t/τ∑
n=1

lnγn, i .

Thus, the theorem of Eq. (4.4) becomes:

p∑
i=1

χi = lim
t→∞

1

t

t/τ∑
n=1

p∑
i=1

lnγn, i =
p∑
i=1

 lim
t→∞

1

t

t/τ∑
n=1

lnγn, i

 ,
so that,

χp =

(
p∑
i=1

χi

)
−

(
p−1∑
i=1

χi

)
= lim
t→∞

1

t

t/τ∑
n=1

lnγn,p . (4.9)

The Lyapunov exponents calculated using the standard method satisfy
the inequalitiesχ1 > χ2 > · · · > χp. Thus, the MLE corresponds toχ1. Fig. 4.3
illustrates the computing of the two largest LCEs χ1, χ2 according to the
standard method and by means of the Gram–Schmidt orthonormalization
method.
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Figure 4.3: Computation of the two largest LCEs χ1, χ2 according to the standard method.
The deviation vectors s1(0), s2(0) are evolved according to Eq. (4.1) for a time
τ. The evolved vectors s1(τ) and s2(τ) undergo a Gram–Schmidt procedure
yielding a set of orthonormal vectors ŝ1(τ) and ŝ2(τ). These last vectors are
again evolved and the same procedure is iteratively applied. For each cycle,
the quantities γ1 = ‖u1‖, γ2 = ‖u2‖ are computed and χ1, χ2 are estimated
from 4.9. Source: [27].

Implementation

We implemented the standard method to calculate the LCEs by using
a code written in C++. In this section we report part of the developed
code, both to further illustrate how Benettin’s method works and to provide
an example of the extensive programming activity that was carried out in
this thesis work. To integrate the differential equations that describe the
evolution of the dynamical system and the deviation vectors, we use the
8th-order Runge–Kutta algorithm discussed in Sec. 2.4. The steps to perform
the calculation of the LCEs are:

1. The renormalization period τ and the number of renormalizations
N = t/τ are set.
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2. The dynamical system x(0) and the deviation vectors s1(0), . . . , sp(0)
are initialized. The initial state x(0) is randomly set. The deviation
vectors are set according to the rule sk, i(0) = δki (the Kronecker delta);
so, for example, if p = 3, s1(0) = (1, 0, 0), s2(0) = (0, 1, 0) and s3(0) =
(0, 0, 1).

3. The following steps 4. and 5. are repeated N-times.

4. The dynamical system and the deviation vectors are evolved for a
renormalization period τ. In the following box we reported the differ-
ential equations for the Lorenz attractor and its tangent map; lines 9
to 11 contain the implementation of Eq. (2.5); lines 14 to 18 contain the
implementation of Eq. (4.2).

1 int lorenz (double t, const double r[], double f[], void *params) {

static int i, Dim, dim;

mackeyGlassParameters* mgpPtr = (mackeyGlassParameters*) params;

vector<double> a;

Dim = mgpPtr->rowDim;

6 dim = mgpPtr->colDim;

a.clear();

a = mgpPtr->a;

f[X] = a[0] * (r[Y] - r[X]) + a[4]; // dx/dt = sigma(y-x) a[0] = sigma

11 f[Y] = r[X] * (a[2] - r[Z]) - r[Y] + a[5]; // dy/dt = x*(rho-z)-y a[2] = rho

f[Z] = r[X] * r[Y] - a[1] * r[Z] + a[6]; // dz/dt = x*y-beta*z a[1] = beta

for (i = 1; i < Dim; i++) {

f[SX] = a[0] * (r[SY] - r[SX]); // dsx/dt = sigma(sy-sx)

16 f[SY] = r[SX] * (a[2] - r[Z]) - r[X] * r[SZ] - r[SY]; // dsy/dt = sx*(rho-z)-x*sz-sy

f[SZ] = r[SX] * r[Y] + r[X] * r[SY] - a[1] * r[SZ]; // dsz/dt = sx*y+x*sy-beta*sz

}

return GSL_SUCCESS;

} �
5. The Gram–Schmidt orthonormalization (see Eq. (4.5)) is performed:

the deviation vectors fed to this procedure are replaced with the new
orthonormal set; the factors γn,p are stored for further processing. The
code used to implement the Gram–Schmidt orthonormalization is the
following:

void gram_schmidt(vector< vector<double> >&r, vector<double>&lyap) {

int i, j;
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double x;

for(i = 1; i <= lyap.size(); i++) {

5 for(j = 1 ; j < i; j++) {

x = inner_product(r[i].begin(), r[i].end(), r[j].begin(), 0.0);

substract_vector(r[i].begin(), r[i].end(), r[j].begin(), x);

}

x = sqrt(inner_product(r[i].begin(), r[i].end(), r[i].begin(), 0.0));

10 normalize(r[i].begin(), r[i].end(), x);

lyap[i-1] += log(x);

}

} �
6. The values of the Lyapunov exponents are obtained by using Eq. (4.9).

Given a system S, we assume the MLE calculated by means of the stand-
ard method to be the reference value – henceforth referred to as χS – for the
maximum Lyapunov exponent of that system. The values of χS for the four
reference dynamical systems described in Sec. 2.5 are reported in Tab. 4.1.
Each value corresponds to the sample mean and the sample standard devi-
ation of the results of 10 runs, each made of 107 integration steps.

Table 4.1: Standard value χS of the MLE, calculated for each of the four dynamical sys-
tems of Sec. 2.5 by means of the standard method. The digit in parentheses
corresponds to the uncertainty σχ,S on the least significant digit.

Dynamical χS
system (S)

Hénon 0.41924(9)
Lorenz 1.2346(6)
Rössler 0.08889(9)

Mackey–Glass 0.00742(2)

4.1.2 Divergent rate method

In 1993-1994, Gao and Zheng [8], Rosenstein et al. [96], and Kantz et
al. [97] independently proposed the same method to evaluate the MLE from
an experimental time series. The method is referred to as divergent rate
method [103] and is based on the embedding of the time series. In this
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section, we present the method and its implementation as discussed in the
paper “Statistical properties of the maximum Lyapunov exponent calculated
via divergence rate method” [17], published by our research group.

Given a sample time sequence {xn} of a scalar, real variable x, we con-
sider the m-dimensional embedding Xi ≡ Ψ(xi) as defined in Sec. 3.2 (see
Eq. (3.2)); the embedding lag is L. We then consider a set of N randomly-
selected (without replacement) pairs Xi, Xj. Each Xi, Xj pair must satisfy
the two following conditions [14]:

i. ‖Xi − Xj‖ 6 r, with r corresponding to a given percentile p of the
distribution of all Euclidean distances ‖Xi − Xj‖;

ii. |i− j| > co, where co is a constraint linked to the autocorrelation func-
tion.

In the literature, the constraint co is set in different way: Theiler [107, 108]
suggests to take co equal to the autocorrelation time, whereas Gao and
Zheng [8] suggest to take co = (m− 1)L. We decide to merge these two sug-
gestions and set co to the first zero of the autocorrelation function multiplied
timesm(L+ 1).

The time-dependent divergence exponent Λ(k) is then defined as

Λ(k) ≡
〈

ln
‖Xi+k − Xj+k‖
‖Xi − Xj‖

〉
, (4.10)

where k is an non-negative, integer delay and the average 〈. . . 〉 is taken
on the N-dimensional set of Xi, Xj pairs. From the definition it follows
Λ(0) = 0.

An important step in our algorithm is that, rather than considering a
single calculation for each value of k, we determined each point ofΛ(k) and
the respective uncertainty σΛ(k) as the point-wise sample mean and sample
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standard deviation of a set ofM different calculations, respectively:

Λ(k) ≡ 1

M

M∑
i=1

Λi(k) , (4.11a)

σΛ(k) ≡
1

M− 1

M∑
i=1

[Λi(k) −Λ(k)]
2
. (4.11b)
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Figure 4.4: Time-dependent divergence exponent Λ(k) for the reference Lorenz attractor,
obtained by using the embedding pair (3, 3). The different plots correspond to
eight different values of p: 0.01%, 0.03%, 0.1%, 0.3%, 1%, 3%, 10%, 30%. For the
sake of clarity, only one point every five is plotted.

Fig. 4.4 shows the time-dependent divergence exponent Λ(k) for the
reference Lorenz attractor and different values of the valuep. Typically, there
is a k-range within which the dependence of Λ on k turns out to be linearly
growing and independent of the boundary conditions. The corresponding
value of the MLE is then given by the slope ofΛ(k) divided by δt (δt = 1 for
maps). The slopes of Λ(k) tend to increase for progressively smaller p. The
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reason is that the smaller p, the smaller the probability that two close points
belong to trajectories that are still approaching to each other.

Finally, to determine the MLE ΓS(m,L) of the system S with embedding
(m, L), we implement the following automatic procedure:

1. if k→∞,Λ(k) tends to a constant value that is estimated by averaging
the 10 largest available k values; kslope is then determined as the lowest
k such that Λ(k) > 0.9Λ∞;

2. given the growing section of Λ = Λ(k) | k 6 kslope, we determine the
point P of abscissa kP that allows for the longest straight-line segment,
centered on P, that fits the data with a reduced χ2 not larger than
1+

√
8/(2`− 1), where 2` is the length of the segment (in other words,

a fit is assumed to be valid if the corresponding χ2 does not exceed its
expected value by twice its standard deviation);

3. if more adjacent points satisfy the requirement of step 2., point P is
selected by considering the minimum χ2;

4. to increase accuracy, a final straight-line fit is carried out; the fitting
segment is centered in P and has a length equal to 2`′, where `′ ≡ d`/2e;
the fit result is taken to be valid if `′ 6 2, i. e. if the new length is at least
4;

5. ΓS(m,L) is set to the straight-line slope divided by the time step δt of
the sample time sequence; accordingly, the uncertainty σΓ,S(m,L) on
ΓS(m,L) is set as the error on the slope divided by δt:

ΓS(m,L) =
1

δt

kΛ(k) − k ·Λ(k)
k2 − k · k

, (4.12a)

σΓ,S(m,L) =
1

δt

[(
k2 − k · k

)
·
kP+`

′∑
k=kP−`′

1

σ2Λ(k)

]−1/2
, (4.12b)
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where, for a generic f(k),

f(k) ≡

[
kP+`

′∑
k=kP−`′

f(k)

σ2Λ(k)

]
·

[
kP+`

′∑
k=kP−`′

1

σ2Λ(k)

]−1
. (4.13)

4.1.3 Divergent rate method applied to a stochastic time

series

By applying the divergent rate method to a stochastic time series, gen-
erated by white noise (σ = 1), we obtain the time-dependent divergence
exponent Λ(k) represented in Fig. 4.5. In this example the embedding pair
used is (10, 1).

We note that the function Λ = Λ(k) shows no linear increasing slope.
However, as in the case of the Lorenz attractor discussed in the previous
section, the “plateau” value, i. e. the constant valueΛpl taken on byΛ(k) for
k > m = 10, depends on the percentile p of the distribution of the Euclidean
distances (see Sec. 4.1.2).

The behaviour ofΛ(k) in Fig. 4.5 for k < m = 10 can be easily explained:
given k, and because L = 1, a number of (m − k) components of the vector
Xi+k coincide with the same number of components of the vector Xi; the
same occurs for Xj+k and Xj. For this reason, the lower k the more similar
are, on average, the numerator and the denominator of the ratio of Eq. (4.10).
Consequently, the average ratio tends to one and its average logarithmΛ(k)

drops to zero as k decreases fromm to 0.

For a stochastic time series, it is possible – and interesting – to estimate the
plateau value Λpl. The distance ‖Xi − Xj‖ can be approximated as follows:

‖Xi − Xj‖ =

[
m−1∑
l=0

(xi+lL − xj+lL)
2

] 1
2

≈
[
2 χ2m

] 1
2 .

For this approximation we assume, first, xi+lL, xj+lL to be independent. In
addition we exploit the fact that the difference of two independent, standard
normal random variables is normal with variance equal to 2 (the white noise
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Figure 4.5: Time-dependent divergence exponent Λ(k) for a purely noisy time series; the
embedding pair is (10, 1). The different plots correspond to eight different
values of the percentile p: 0.01%, 0.03%, 0.1%, 0.3%, 1%, 3%, 10%, 30%.

– and thus each xi – is assumed to have unitary variance), and the fact that
the sum ofm independent, standard normal random variables is distributed
as χ2m.

The link between the percentile p and the maximum length r can be
assessed by noting that ‖Xi − Xj‖ 6 r implies χ2m ≈ 1

2
‖Xi − Xj‖2 6 r2

2
and

writing: ∫ r2
2

0

fm
(
χ2m
)
dχ2m ≈ p , (4.14)

where fm
(
χ2m
)

is the probability density function of χ2 with m degrees of
freedom.

The average 〈ln ‖Xi − Xj‖〉 can be evaluated by taking into account the
probability density function of the squared distance, namely aχ2 distribution
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truncated at r2/2 and suitably re-normalized by a factor p−1:

〈ln ‖Xi − Xj‖〉 ≈
1

2 p

∫ r2
2

0

fm
(
χ2m
)

ln(2χ2m)dχ
2
m . (4.15)

The average 〈ln ‖Xi+k − Xj+k‖〉 can be evaluated in similar way:

〈ln ‖Xi+k − Xj+k‖〉 ≈
1

2

∫∞
0

fm
(
χ2m
)

ln(2χ2m)dχ
2
m . (4.16)

In the previous expression the upper integration limit is ∞ as the k-step-
evolution “removes” from the pair Xi+k, Xj+k the effects of the constraint on
the starting vectors Xi, Xj (and no re-normalization is required).

The plateau valueΛpl is given by the difference of Eq. (4.16) and Eq. (4.15):

Λpl(m, p) ≈
1

2

∫∞
0

fm
(
χ2m
)

ln(2χ2m)dχ
2
m −

1

2p

∫ r2
2

0

fm
(
χ2m
)

ln(2χ2m)dχ
2
m .

(4.17)

By knowing that, for a positive x,

fm (x) =
1

2
k
2 Γ
(
k
2

)e− x
2x

k
2−1 , (4.18)

and integrating by parts, we get the following expression for the leftmost
integral of Eq. (4.17):

Lm ≡
∫∞
0

fm
(
χ2m
)

ln(2χ2m)dχ
2
m ,

⇓

Lm =
1

m− 2
+ Lm−2 =

1

m− 2
+

1

m− 4
+ · · ·+

13 + 1+ L1 if n is odd
1
4
+ 1
2
+ L2 if n is even

,

where

L1 = −
γ

2
,

L2 = −
γ

2
+ log 2 ,
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and γ = 0. 57721 56649 . . . is the Eulero Mascheroni constant given by

γ ≡ lim
n→∞

[(
n∑
k=1

1

k

)
− log(n)

]
.

By using the definition of n-th harmonic number,

Hn ≡
n∑
k=1

1

k
,

the previous expressions for the integral Lm become (form > 1):

L2m+1 = H2m −
1

2
Hm −

γ

2
,

L2m =
1

2
Hm−1 −

γ

2
+ log 2 .

Finally, by using the approximation Hn ' γ+ log(n), it is easy to show that

Lm '
1

2
log 2 (m− 1) .

If p� 1, Eq. (4.14) can be easily integrated by setting the exponential to
1 in Eq. (4.18), yielding:

r2

2
≈ 2

[
pΓ
(m
2

+ 1
)] 2

m

.

By using the same approximation (exponential set to 1), the rightmost integ-
ral of Eq. (4.17) becomes

−
1

2p

∫ r2
2

0

fm
(
χ2m
)

ln(2χ2m)dχ
2
m ≈ − log 2+

1

m

{
1− log

[
pΓ
(m
2

+ 1
)]}

.

By adding the two integrals, we finally get the following approximation
to Eq. (4.17):

Λpl(m, p) ≈
1

2
log

m− 1

2
+
1

m

{
1− log

[
pΓ
(m
2

+ 1
)]}

. (4.19)
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Fig. 4.6 shows the goodness of the argument exposed above in explaining
the plateau value in the case of a stochastic time series.
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Λpl

p

Figure 4.6: Plateau value Λpl of the divergence exponent as a function of the percentile
p for a noise time series. The embedding pair used is (10, 1). The abscissa
of each point – and the related colour – corresponds to one of the percentile
values reported in Fig. 4.5; the ordinate of each point, and the related errorbar,
corresponds to the rightmost point (k = 30), with the respective errorbar, in
Fig. 4.5. The blue line corresponds to Eq. (4.17), the dashed line to Eq. (4.19).

4.1.4 Distinguishing stochastic noise from other kinds of

dynamics in a time series

Fig. 4.7 shows the plateau value Λpl of the divergence exponent as a
function of the percentile p for the reference Lorenz attractor. The diagram
refers to the same data as those used in Fig. 4.4. The behaviour is completely
different from that one shown in Fig. 4.6. In particular, each point lays
well above the blue line (and the dashed line) corresponding to the plateau
behaviour in case of a Gaussian time series.
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Figure 4.7: Plateau valueΛpl of the divergence exponent as a function of the percentilep for
the reference Lorenz attractor. The embedding pair used is (3, 3). The abscissa
of each point – and the related colour – corresponds to one of the percentile
values reported in Fig. 4.4; the ordinate of each point, and the related errorbar,
corresponds to the rightmost point (k = 30), with the respective errorbar, in
Fig. 4.4. The blue line corresponds to Eq. (4.17), the dashed line to Eq. (4.19).

This observation, along with the discussion of the previous section, sug-
gests that looking at the plateau valueΛpl makes up a new tool to tackle the
problem of distingushing stochastic noise from other kinds of dynamics in
a time series (see Chapter 1), or at least to find evidence of a non-stochastic
behaviour.

A further evidence of the last statement is the following. If a purely
deterministic chaotic system is contaminated by a progressively growing
amount of stochastic noise, one should observe a progressive shift from
the non-stochastic behaviour of Λpl as in Fig. 4.7 to a stochastic one as in
Fig. 4.6. To test this prediction, rather than simply adding a Gaussian term
to the solution of the noiseless equation, we dynamically fed Gaussian noise
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into the evolution of the Lorenz attractor, by modifying Eq. (2.5) as follows:

dx

dt
= σ(y− x) + α · ηx/

√
3 ,

dy

dt
= x(ρ− z) − y+ α · ηy/

√
3 ,

dz

dt
= xy− βz+ α · ηz/

√
3 ,

where ηx, ηy, ηz, are three standard normal random variables and α is
the noise amplitude (instantaneous standard deviation). Fig. 4.8 shows the
results, that are in agreement with the prediction.
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Figure 4.8: Dependence of the plateau value Λpl of the divergence exponent on the amp-
litude α of the dynamical noise added to the evolution of the reference Lorenz
attractor. The embedding pair used is (4, 4) and the percentile p is set to 0.01 %.
The red line corresponds to the value Λpl(4, 10−4) provided by Eq. (4.17).
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4.2 Fractal dimension

The concept of dimension of a dynamical system is linked to the number
of coordinates needed to specify a state. From the geometric point of view,
the dimension is linked with how volumes scale as a function of length:

V ∝ rD (4.20)

where V is the volume, r is a length and D is the dimension. Eq. (4.20) can
be used to define the dimension D as follows:

D ≡ lim
r→0

lnV
ln r

.

For example,D is equal to 2 for planar areas, and 3 for volumes in real space.
In contrast to linear systems, which always have an integer dimension,

chaotic attractors have a fractal dimension. This last quantity can be used to
detect chaotic dynamics and to distinguish chaos from noise. A large number
of reviews on dimension and its estimation are available [109, 108, 12].

In this section, we shortly discuss four procedures used to estimate the
dimension of an attractor: the box counting, the information dimension, the
correlation dimension and the Kaplan–Yorke conjecture.

4.2.1 Box counting dimension

Let us consider an attractor “living” in a space Rn. Given a length ε
we consider the number N(ε) of hypercubes of edge ε needed to cover the
attractor. The box counting dimension is then defined as:

D� ≡ lim
ε→0

lnN(ε)

ln
(
1
ε

) .
As an example, let us assume an attractor that densely covers a hypercube
of edge L. The volume of the hypercube is Ln; the volume of the hypercubes
of edge ε is εn, so that N(ε) = (L/ε)

n. It is straightforward to show that in
this case D� = n.
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4.2.2 Information dimension

Again, we consider an attractor “living” in a spaceRn and, given a length
ε, we partition the space in hypercubes of edge ε. Let Pi(ε) is the probability
that the i-th hypercube is “populated”, i.e. that a state of the system lays
within it. The normalization condition holds:∑

∀i

Pi(ε) = 1 .

Let S be the Shannon information (entropy) [110] linked to the probability
distribution Pi(ε):

S(ε) = −
∑
∀i

Pi(ε) lnPi(ε) .

The information dimension is then defined as follows [109]:

σ ≡ lim
ε→0

S(ε)

ln
(
1
ε

) .
If, again, the attractor densely covers a hypercube of edge L, we have

Pi(ε) = 1
N(ε)

, with N(ε) defined as in Sec. 4.2.1. It is straightforward to
show that in this case σ = n = D�. From arguments linked to entropy it
follows: σ 6 D�.

4.2.3 Correlation dimension

In 1983, Grassberger and Procaccia [111, 112] introduced the concept of
correlation dimension. Given a scalar time series

Given a sample time sequence {xn} of a scalar, real variable x, as in
Sec. 4.1.2 we consider an m-dimensional embedding with lag L, yielding a
set of m-dimensional vectors Xi. Let the correlation integral [111] C(r) be
defined as:

C(r) ≡ lim
N→∞

2

N(N− 1)

∑
∀(i, j)

θ(r− |Xi − Xj|) ,

where θ is the Heaviside step function.
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Remarkably, for small r, C(r) behaves as a power of r:

C(r) ∝ rν . (4.21)

The exponent ν is the so-called correlation dimension. If the time series
is given by Gaussian noise with variance α2, the correlation dimension ν
can be evaluated by noting that Eq. (4.21) corresponds to the cumulative
distribution of distances. Thus, by exploiting Eq. (4.14) and Eq. (4.18), we
can write

C(r) = p(r) =

∫ r2

2α2

0

fm
(
χ2m
)
dχ2m

≈ 1

2mαmΓ
(
m
2
+ 1
)rm if r→ 0 .

Consequently, the correlation dimension is equal to the embedding di-
mension, i.e. ν = m. On the other hand, if the system is deterministic
(ex.gr. chaotic), the behaviour given by Eq. (4.21) is embedding-independent
provided that m > ν. The correlation dimension can be indeed used to dis-
tinguish between chaotic and stochastic behaviour [112]. It can be shown
that ν 6 σ 6 D [111].

4.2.4 Kaplan–Yorke dimension

As shown in Sec. 4.1.1, once the evolution laws of a dynamical system are
known, the Lyapunov exponents can be calculated via the standard method.
In 1979, Kaplan and Yorke introduced the dimension DKY in terms of the
χi’s [113]:

DKY = k+

k∑
i=1

χi

|χk+1|
,

where k is the maximum integer such that the sum of the k largest expo-
nents is non-negative. In the scientific literature the dimensionDKY is often
referred to as Lyapunov dimension. It can be shown that DKY makes up an
upper bound for the information dimension σ of the system. According to
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dynamical system k Sano and Sawada [114] present work
Hénon 1 1.26 1.26

Lorenz 2 2.06 2.08

Rössler 2 2.1 2.009

Mackey–Glass 3 3.58 3.55

Table 4.2: Kaplan–Yorke dimensionDKY for the reference dynamical systems (see Sec. 2.5).
Our values are compared with those provided by Sano and Sawada [114].

the so-called Kaplan-Yorke conjecture, D = DKY .

Tab. 4.2 reports the values of DKY obtained for the reference dynamical
systems of Sec. 2.5.

4.3 Kolmogorov entropy

In this section we briefly mention, for the sake of completion, another
important measure to analyse dynamical systems, namely Kolmogorov en-
tropy [115], which is a measure of how rapidly we loose the ability to predict
the evolution of a dynamical system [116].

As above, we consider an attractor “living” in a space Rn and, given a
length ε, we partition the space in hypercubes of edge ε. Let us consider
n+ 1 of these cells and label them i0, i1, . . . , in. Taking into account an orbit
x = x(t) from time 0 to time nτ, let Pi0, i1, ..., in be the probability that x(0)
lies in the i0-th cell, x(kτ) in the ik-th cell, . . . , x(nτ) in the in-th cell. Let Kn
be defined as follows:

Kn ≡ −
∑

{i0,...,in}

Pi0,...,in lnPi0,...,in ,

where the sum is taken on all possible n-tuplets of cells.

The difference Kn+1−Kn is linked to the additional information required
to specify which cell will be occupied by x(nτ + τ), i.e. the amount of
information that is lost from nτ to (n + 1)τ. The Kolmogorov K-entropy is
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then defined as [116]:

K ≡ lim
ε→0

lim
τ→0

lim
N→∞

1

Nτ

N−1∑
n=0

(Kn+1 − Kn) =

= − lim
τ→0

lim
ε→0

lim
N→∞

1

Nτ

∑
i0,...,iN

Pi0,...,iN lnPi0,...,iN .

The Kolmogorov K-entropy is useful for distinguishing regular from
chaotic behaviour as well as deterministic chaos from stochastic noise [117].
A linear system has K = 0 because there is no loss of information during
the time evolution. For chaotic systems K > 0: on average, initially nearby
points separate exponentially, and thus joint probabilities for cell occupa-
tions decrease exponentially with time. For a stochastic system, initially
nearby points will spread independently and with vanishing correlation
time all over the allowed volume, so that K→∞ for pure randomness.

Intuitively, the growth of uncertainty is due to the sensitive dependence
on initial conditions, and it is therefore linked to the divergence of nearby
trajectories. A relation between the Kolmogorov entropy and the Lyapunov
exponents can be expected. This relation was first discussed by Presin [118],
and later by Ruelle [119] who showed that K is bounded by the sum of
positive Lyapunov exponents:

K 6
∑
∀i |χi>0

χi .



Chapter 5
Determination of the maximum
Lyapunov exponent and its
dependence on the embedding

This chapter deals with the maximum Lyapunov exponent (MLE) and
its uncertainty, both evaluated by means of the divergent rate method (see
Sec. 4.1.2).

In Sec. 3.3 the major issue of Takens embedding theorem is mentioned:
despite its power, the theorem gives no clue on how to set the embedding
dimension m and lag L for an experimental time series. As discussed in
the next chapter, several methods have been developed to tackle this issue.
Unfortunately, none of these methods has been yet proven to be superior to
the others. Cellucci et al. [14] proposed a technique to rank the embedding
methods based on the evaluation of the MLE.

A main point of the proposed ranking technique lays in the possibility of
determining the MLE χS of a dynamical system S independently from the
embedding parameters, by using the standard method [15, 16] described in
Sec. 4.1.1. As discussed in the previous chapter, given an (m,L)-embedded
time series, i.e., embedded by using a particular parameter pair (m,L),
the MLE can be estimated out of a time series by means of the divergent
rate method, i.e. by determining the local divergence rate ΓS(m,L) of nearby
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trajectories [8, 96, 97]. So, according to Cellucci et al., methodA is considered
to be superior to methodB if ΓS(mA, LA), calculated by using the embedding
pair assessed via A, approaches χS better than ΓS(mB, LB), calculated by
using the embedding pair assessed via B [17].

In this chapter, we address the validity of the method proposed by Cel-
lucci et al.; we show that the crucial parameter is the uncertainty σΓ,S(m,L)
of the MLE ΓS(m,L). In particular, if different embedding points provide
ΓS(m,L) values that differ less than σΓ,S(m,L), then the dynamical system
turns out to be unsuitable for the sake of comparing different embedding
methods. Grassberger, Badii and Politi [18] discussed the origin of the stat-
istical uncertainty, or noise, that affects finite time MLE evaluations by using
an argument based on the central limit theorem. They showed that, for
attractors with short correlation time, the noise is normally distributed and
its amplitude depends on the number of time steps used to evaluate the
MLE. Prasad and Ramaswamy [120] showed that, in the case of intermittent
attractors, the noise distribution has a positive skewness due to exponential
tails.

As a consequence of the Takens embedding theorem (see Sec. 3.2), if
the embedding choice is correct, the intrinsic noise behaviour predicted by
Grassberger, Badii and Politi should be reflected in the distribution of the
MLE ΓS(m,L) estimated via the divergence rate method. Consequently, the
mean of distributions corresponding to different, correct embedding choices
have necessarily to approach the same value χS. For the same reason, the
uncertaintyσΓ,S(m,L) corresponding to different, correct embedding choices
have to tend to the same value.

This chapter is organized as follows. Sec. 5.1 presents the notation and
the procedure used to analyse the four reference dynamical systems under
study. In Sec. 5.2 the relation between ΓS(m,L) and σΓ,S(m,L) is discussed.
The distribution of the MLE uncertainty is the topic of Sec. 5.3. In Sec. 5.4
we present a way to visualize MLE as a function of the embedding point
(m, L) as well as embedding pairs of the (m, L) lattice that can be deemed
to be “good”.
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5.1 Notation and MLE analysis

The four reference dynamical system studied in this chapter, namely
Hénon map, Lorenz attractor, Rössler attractor and Mackey–Glass attractor,
are described in Sec. 2.5. The MLEs used as reference values, obtained by
the standard method (see Sec. 4.1.1), are reported in Tab. 4.1; we remind
that each of these values corresponds to the sample mean and the sample
standard deviation of the results of 10 runs, each made of 107 integration
steps.

For each reference dynamical system S, the MLE ΓS(m,L) and the related
uncertainty σΓ,S(m,L) are evaluated by means of the divergent rate method
discussed in Sec. 4.1.2. The MLE was calculated on the lattice 26m610,
16L610. The maximum value of the delay k taken into account for the
evaluation ofΛ = Λ(k) is 100 for the Hénon map, 200 for the Lorenz attractor,
and 400 for both the Mackey–Glass and the Rössler attractors. The radius
r is set so as to correspond to the percentile p = 0.01%. For each system
and embedding pair, a number M = 50 (see Eq. (4.11)) of calculations was
carried out.

Upon evaluation, the value ΓS(m,L) and its uncertainty σΓ,S(m,L) are
normalized to the related standard value χS, namely:

µS(m,L) ≡
ΓS(m,L)

χS
,

σS(m,L) ≡
1

χS

[
σ2Γ,S(m,L) +

Γ2S (m,L)σ
2
χ,S

χ2S

]1/2
, (5.1)

where σχ,S is the uncertainty on χS.

5.2 Uncertainty vs. MLE

The results of the evaluation of µS and σS are shown in Fig. 5.1. For
each dynamical system, the diagram contains the scatter plot of the points
(µS, σS) each corresponding to an embedding pair of the lattice 26m610,
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16L610. In addition, the uncertainty is normalized to a value uS, whose
meaning is discussed below. Points are clearly not uniformly distributed;
they form, rather, clusters; in particular, points for which µS(m,L) ≈ 1 (or
equivalently, ΓS(m, L) ≈ χS), are characterized by a lower uncertainty. The
investigation of this correlation is the topic of the following section.
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Figure 5.1: Diagram of the uncertainty σS(m,L) (normalized to the respective uS; see
Sec. 5.3), vs. normalized MLE µS(m,L). Each point corresponds to an embed-
ding pair. Black lines correspond to σ = uS. Points below (above) the black
lines are represented with dots (crosses). Ordinate axis are logarithmically
scaled.

5.3 Distribution of uncertainty

Because σ2Γ,S(m,L) � σ2χ,S, the statistical properties of σS(m,L) are
mainly linked to σΓ,S(m,L) (see Eq. (5.1)).

The ΓS(m,L) is calculated by means of a straight-line fit (see Eq. (4.12a)).
The squared uncertainty is essentially due to the sum of contributions stem-
ming from the variances of the points belonging to the time-dependent
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divergence exponent Λ(k) (see Eq. (4.12b)). In the case of Lorenz, Mackey–
Glass, and Rössler attractor, the number of degrees of freedom ν is of order
of the length of the segment ` & 50. Consequently, for each embedding pair
(m,L), the squared uncertainty is expected to follow a normal distribution
as a consequence of the central limit theorem. The normal approximation
should also work satisfactorily with regard to the Hénon map, for which
` . 10. If one assumes homoscedasticity with respect to k in Eqs. (4.12),
(4.13), so that σΛ(k) = σΛ for the k-values belonging to the Λ(k) slope, the
mean value of the uncertainty can be estimated as follows:

σΓ,S(m,L) ≈
σΛ

∆

√
12

`
, (5.2)

where ∆ ≡ `δt is the length of the time interval on which the linear fit is
carried out.

As discussed in the introduction to this chapter, the distribution of a
finite-time MLE is approximately normal. Consequently, its squared uncer-
tainty is expected to be χ2 distributed. Let us consider the embedding pairs
where Λ(k) plots deliver MLE values close to the standard one: in this case
the MLE values are expected to follow the same distribution, independently
of the values ofm and L; the same occurs for the corresponding squared un-
certainties. This happens because the Λ(k) plots that deliver “good” MLE
values approximately have the same slope and the same length ∆. This
observation leads to the fact that, once observational conditions are fixed
(ex. gr. the sampling time δt), a dynamical system is characterized by a typ-
ical MLE distribution as well as by a typical uncertainty distribution, and
thus by a typical average uncertainty. The following discussion concerns
the verification of this assumption.

Given the system S and a positive number u2S, let VS(uS) be the set
of the sample variances (the squared uncertainties) that do not exceed u2S:
VS(uS) ≡ {σ2S(m,L) | σ2S(m,L) 6 u

2
S}. By exploiting the Shapiro–Wilk nor-

mality test [121] and using a significance threshold α = 0.01, we can determ-
ine the maximum value u2S, if any, such that the set VS(uS) is compatible
with a normal distribution. The value of uS for each of the four dynamical
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systems is reported in Tab. 5.1 along with the root-mean-square value ΣS of
the uncertainties belonging to VS(uS). The same values are also reported in
Fig. 5.1.

Table 5.1: The central column reports, for each dynamical system, the maximum value
uS such that the set VS(uS) of the squared uncertainties that do not exceed
u2S is compatible with a normal distribution. The compatibility is assessed via
Shapiro–Wilk test (p − value > 0.01). The rightmost column reports, again
for each dynamical system, the root-mean-square value ΣS of the uncertainties
belonging to VS(uS).

Dynamical uS ΣS

system (S)
Hénon 0.033 0.023
Lorenz 0.017 0.015
Rössler 0.0064 0.0057

Mackey–Glass 0.016 0.013

The root-mean-squareΣS depends on the observational conditions, namely
the values of the parameters that concur to define the dynamical system; for
example, in the case of the Lorenz attractor, the parameters σ, β, ρ (see
Sec. 2.5). However, the root-mean-square ΣS does not depend on the em-
bedding choice. Thus, it turns out to be a parameter typical of the dynamical
system S: it describes the uncertainty with which the MLE can be estimated
by means of the divergence rate method.

The distribution of the variance for each of the four dynamical systems
is shown in Fig. 5.2. As predicted, the red-coloured histograms, which
correspond to the sets VS(uS), are bell-shaped.

Fig. 5.3 shows the distribution of the normalized MLE µS for each dy-
namical system. The histograms marked in red corresponds to embedding
pairs for which σS(m,L) 6 uS; these values tend to cluster around 1 or in
regions nearby. In the case of Hénon map, there is an additional red cluster
at µS(m,L) ≈ 0.1. This second cluster can be explained by noting that the
Hénon map is a discrete-time dynamical system with low correlation time;
while the optimal embedding pairs have L > 2, increasing the lag parameter
(L > 3) generates aliasing, i.e. the embedding “samples” a trajectory too
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Figure 5.2: Distribution of variance for each of the four dynamical systems. Red-coloured
bins refer to σS(m,L) values that do not exceed the respective threshold uS,
whereas yellow-coloured bins refer toσS(m,L)values that exceed the respective
threshold uS. For the sake of clarity, only data corresponding to σ2S(m,L)/u

2
S 6

4 are shown.

slowly, in fact observing a different system.

Fig. 5.3 also shows how potentially “good” points – namely embedding
points such that µS(m,L) ≈ 1 – are distributed in comparison with the typ-
ical uncertainty ΣS (see Tab. 5.1). For example, in the case of the Rössler
attractor, potentially “good” MLE values have a peak around 0.87 and a
standard deviation of 0.005. The normalized MLE µ of the Rössler attractor
is clearly slightly underestimated, probably because of the intermittency, i.e.
the extremely long correlation time, of this attractor. More importantly, the
width (standard deviation) of the distribution is very close to the ΣS value
for the Rössler dynamical system (see Tab. 5.1), and therefore well within the
corresponding 99% non-rejection region, given by 5.15 · ΣS. Consequently,
the Rössler attractor is not useful to compare different embedding methods
by using the MLE calculation as a gauge: different embedding choices es-
sentially yield the same result. On the other hand, the other three dynamical
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Figure 5.3: Distributions of the normalized MLE for each of the four dynamical systems:
each yellow-coloured histogram refers to all available data; the superimposed,
red-coloured histogram refers to normalized MLE values whose corresponding
σS does not exceed the respective threshold uS (i.e. σ2S(m,L) ∈ VS(uS)). Each
horizontal errorbar corresponds to 5.15 · ΣS, i.e. the width of the two-tailed
99% non-rejection region (level of significance equal to 0.01). The errorbars are
centered around the mean values of the red histograms.

systems – and especially the Mackey–Glass attractor – appear to be more
appropriate to be used as test benches.

Identifying normally-distributed clusters of MLE and its uncertainty is
thus an additional method to investigate an unknown dynamical system by
analysing time sequences generated by the system itself. In particular, the
identification of normally-distributed clusters of MLE and its uncertainty
can provide a valuable tool to optimally choose the embedding pair.

Finally, it is worth noting that the statistical properties of the finite-time
MLE evaluated by means of our algorithm complies with the theory dis-
cussed by Grassberger, Badii and Politi [18]. In the case of continuous
systems with short correlation times, if the sampling frequency δt−1 is suf-
ficiently high, the time interval ∆ = `δt is independent from the sampling
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time δt and therefore from the number of points ` (for the definition of `
see Sec. 4.1.2). Consequently, according to Eq. (5.2), the uncertainty scales
as `−1/2, in agreement with the results of these authors. On the other hand,
in the case of intermittent systems, where correlations are long-living, the
length ∆ is expected to be dependent on the sampling frequency, and there-
fore on `. Thus, the power-law scaling of uncertainty σS(m,L) ∼ `−p is mod-
ified, so that the exponent p departs from the standard value 0.5 [120, 122].

5.4 MLE on the embedding lattice: a graphical

analysis

In this section, each one of Figs. 5.4, 5.5, 5.6, 5.7 shows two diagrams:
in the top one, the reference MLE value is given – as in the rest of the
chapter – by the standard method; in the bottom one, the reference value
MLE is set to be equal to the average of the µS(m, L) values of the points for
which σS 6 uS. Although the MLE is defined on a discrete lattice, for the
sake of clarity a bilinear interpolation is used in each diagram to generate
a continuous map. The dark-green shade represents µS(m, L) values that
differ from unity (the ideal value) by less than 2.576ΣS; the (m, L)-pairs
contained in this area can be considered to be “good” embedding choices.
Shade colours correspond to different values of |µS−1| (see palette), whereas
the contour lines are: µ = 0.8↔ dashed orange; µ = 0.9↔ orange; µ = 1.1

↔ cyan; µ = 1.2↔ dashed cyan.

With regard to the points, the type depends on whether the variance
σ2S does (does not) belong to VS(uS). The point size refers to how close
the normalized MLE µS(m,L) is to its ideal value, i.e. unity. If the point
type is a circle and if µS(m,L) differs from unity by less than 2.576ΣS (p −

value > 0.01) then the circle is coloured in red; given the values in Tab. 5.1,
the maximum value of 2.576ΣS occurs for the Hénon map and is equal to
2.576 × 0.023 ' 0.06. Red points can be considered to represent “good”
embedding choices. A summary of this point code is contained in Tab. 5.2.

Finally, in each figure additional symbols, namely triangles, squares,
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diamonds, correspond to the embedding pairs proposed in the scientific
literature by using different methods to find an optimal embedding. In
addition, a violet pentagon is shown, which corresponds to our estimate of
optimal embedding pair. This pair is assessed by using the method discussed
in Chapter 6.

Table 5.2: Point code used in Figs. 5.4, 5.5, 5.6, 5.7.

circles • • σ2S ∈ VS(uS)
crosses × σ2S < VS(uS)

• × 0.2 < |µS(m,L) − 1|
• × 0.1 < |µS(m,L) − 1| 6 0.2
• × |µS(m,L) − 1| 6 0.1
• |µS(m,L) − 1| 6 2.576ΣS

The top part of Fig. 5.4 shows, in the case of the Hénon map, that some
low variance points (circles) are located in the brown area, corresponding to
a relatively large difference of µS from 1; these points belong to the spurious
cluster located at low MLE value (µS ≈ 0.1) in Fig. 5.3; the origin of this
spurious effect is discussed in Sec. 5.3.

Because all the dynamical systems discussed here show a great number of
“good” (m, L) pairs, we can conclude that the method proposed by Cellucci
et al. [14] to rank the embedding methods does not provide valuable inform-
ation if it is combined with these reference dynamical systems. Moreover,
the methods to find an optimal embedding point discussed in the scientific
literature provide “good” result for the Hénon map, the Lorenz attractor and
the Mackey–Glass attractor. However, in the case of the Rössler attractor,
two methods provide (3, 8) and (3, 9) as optimal embedding pairs; both
these points cannot be deemed to be “good”. On the other hand, for each
system, the optimal embedding pair provided by our method corresponds
to a “good” embedding point.
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Figure 5.4: Normalized MLE µS(m,L) for the Hénon map. The type, colour and size of
the points, as well as the colour of contour lines and shades, are explained in
Table 5.2 and in the main text.
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Figure 5.5: Normalized MLE µS(m,L) for the Lorenz attractor. The type, colour and size
of the points, as well as the colour of contour lines and shades, are explained
in Table 5.2 and in the main text.
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Figure 5.6: Normalized MLE µS(m,L) for the Mackey–Glass attractor. The type, colour
and size of the points, as well as the colour of contour lines and shades, are
explained in Table 5.2 and in the main text.
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Figure 5.7: Normalized MLE µS(m,L) for the Rössler attractor. The type, colour and size
of the points, as well as the colour of contour lines and shades, are explained
in Table 5.2 and in the main text.



Chapter 6
A Kolmogorov–Smirnov approach
to calculate the optimum
embedding dimension and lag

The major issue of the Takens embedding theorem is the fact that it gives
no clue to identify the correct embedding pair (m, L). To tackle this issue,
several methods to have been developed. The most used and cited methods
are: Gao–Zheng method [8, 9, 10], method of Schuster [11], the method
of characteristic length, the method of global false-nearest-neighbours and
autocorrelation function, the method of global false-nearest-neighbours and
mutual information [12, 13].

In this chapter we analyse in detail two of these methods, as they were
a starting point for the development of a new one, which is the topic of the
second part of the chapter. A general review of the other available methods
is reported in the paper by Cellucci et al. [14].

Sec. 6.1 and Sec. 6.2 present the Gao–Zheng method and the method of
Schuster, respectively. In Sec. 6.3 we discuss a new embedding method that
relies on a Kolmogorov–Smirnov approach. The results are discussed in
Sec. 6.4.
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6.1 Gao–Zheng method

In 1993, Gao and Zheng [8, 9, 10] proposed a method to find the optimal
embedding pair. The method is based on the assumption that a good embed-
ding point minimizes the number of false-nearest-neighbours, i.e. vectors of
the phase space that appear to be close to each other, although their apparent
proximity is actually due to crossing orbits.

Given a scalar time series {xn}, let Xi be an embedding vector inRm with
a lag L. To verify the real nearest-neighbourhood of two embedding vectors
Xi and Xi inRm, Gao and Zheng assumed that, if Xi is a neighbour of Xj then,
for a “small” k, Xi+k must be a neighbour of Xj+k. Gao and Zheng proposed
to fix k equal to the autocorrelation time, defined as the time required for
the autocorrelation function to drop to 1/e of its initial value.

The two authors constructed the following measure

Λ(m, L; k) ≡
〈

ln
‖Xi+k − Xj+k‖
‖Xi − Xj‖

〉
,

where 〈· · · 〉 denotes the average on all i, j pairs that satisfy the following
two requirements:

• |j − i| > w, where w is set equal to the first minimum of the autocor-
relation function;

• the distance between the starting embedding vectors must satisfy ‖Xi−
Xj‖ 6 r.

Given k, the measure Λ(m, L; k) depends on the embedding pair (m, L).
According to Gao and Zheng, the larger Λ(m, L; k), the larger the number
of false-nearest-neighbours. Based on this argument, they concluded that
an embedding is deemed to be successful if the value ofΛ does not “signific-
antly” decrease when the embedding dimensionm is increased; the optimal
lag L corresponds to the value that, once givenm, minimizesΛ(m, L; k). An
example is shown in Fig. 6.1: by using the Gao–Zheng method, we obtain as
an optimal embedding point (4, 8) for the reference Rössler attractor. For the
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same attractor, Gao and Zheng reported an optimal embedding pair equal
to (3, 8).
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Figure 6.1: Λ(m, L; k) as a function of the embedding pair (m, L) for the reference Rössler
attractor (see Eq. (2.6) and Sec. 2.2).

The Gao–Zheng procedure suffers from two main drawbacks:

• it is strongly dependent on the delay k;

• there is no quantitative parameter to evaluate what “significantly”
means (see above).

6.2 Method of Schuster

In 1991, Liebert, Pawelzik and Schuster proposed a procedure for estim-
ating an optimal embedding dimension based on the examination of the
relation between sets of nearest-neighbours in successive embeddings [11].
This procedure is referred to as method of Schuster in the scientific literature.
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Given a scalar time series {xn}, let Xi be an embedding vector inRm with
a lag L. Let Xi,1, Xi,2, . . ., Xi,N, be the firstN nearest neighbours of Xi so that
the distance ‖Xi,k − Xi‖ increases with k. The method of Schuster considers
the impact of increasingm tom+ 1 on the set of the nearest neighbours.

Let X′i ∈ Rm+1 be given by X′i ≡ (Xi, xi+mL); X′i ∈ Rm+1 is said to
correspond to Xi ∈ Rm.

Let X′i,k ∈ Rm+1 correspond to Xi,k in Rm.

Let Y′i,k denote the k-th nearest neighbour of X′i, where the nearest neigh-
bours are ordered in the same way as before. Consequently, the vector Y′i,k
is linked to X′i and it does not necessarily correspond to Xi,k.

Liebert, Pawelzik and Schuster hypothesized that in the case of an op-
timal embedding, the nearest neighbours are preserved, i. e. Y′i,k = X′i,k,
∀i, k. They proposed a metric to quantify the extent at which this ideal
relation fails to be true.

In the case of an ideal embedding, Y′i,k = X′i,k, the following equation
holds:

‖X′i − X′i,1‖
‖X′i − Y′i,1‖

= 1 .

If Y′i,1 , X′i,1, this ratio is greater that 1, because Y′i,1 is the closest neighbour
of X′i. The product

F ≡
N∏
k=1

‖X′i − X′i,k‖
‖X′i − Y′i,k‖

is a measure of the degree of correspondence between the sets Y′i,k and X′i,k.
A large value of F indicates a breaking of the nearest neighbour relation
Y′i,k = X′i,k, which is possibly due to an unsuitable value ofm.

By considering the projection of Y′i,k back into the original Rm space, so
that Yi,k indicates the firstm-component of the vector Y′i,k, the product B is
defined:

B ≡
N∏
k=1

‖Xi − Xi,k‖
‖Xi − Yi,k‖

.
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The product F ·B, defined as

Wi(m, L) ≡ F ·B =

N∏
k=1

(
‖Xi − Xi,k‖
‖Xi − Yi,k‖

)(
‖X′i − Z′i,k‖
‖X′i − X′i,k‖

)
,

is “typical” of vector Xi. By randomly selecting a set of vectors in the Rm

embedding space and averaging the related values Wi(m, L), the measure
W(m, L) is obtained:

W(m, L) ≡ 〈lnWi(m, L)〉 ,

where 〈. . . 〉 indicates the averaging process.
Citing Cellucci et al. [14], “The best choice of embedding corresponds to the

smallest value ofm that produces the limiting behaviour ofW(m, L)”.
The method of Schuster suffers from a main drawback:

• there is no quantitative parameter to define “the limiting behaviour”.

6.3 A Kolmogorv–Smirnov approach

The common drawback of the two optimal embedding methods dis-
cussed above is the lack of clear quantitative parameters that define the
optimal choice. This drawback also affects the other methods described in
the paper by Cellucci et al. [14]. Citing from this paper:

• with regard to the method of characteristic length, “Further increases in
m do not, however, result in further increases C(m,L)” (p. 7, left column);

• with regard to the method of global false-nearest-neighbours and auto-
correlation function, “The value ofm is increased until false nearest neigh-
bours are no longer observed or until the frequency of false nearest neighbours
is below an acceptable value.” (p. 7, right column);

• with regard to the method of global false-nearest-neighbours and mu-
tual information, the problem is the same as in the previous method



86 A Kolmogorov–Smirnov approach to calculate the optimum embedding pair

because“This procedure differs from the immediately preceding method in
the criterion used to determine the lag” (p. 7, right column).

In other words, all these methods require a human adjusting.
In this section, we describe a new optimal embedding method that eval-

uates the optimal (m, L)-pair by finding extrema of a potential-like quantity
defined on the (m, L) lattice. The potential-like quantity – or, simply, the
potential – is determined by evaluating, for each (m, L) pair, the distribution
of the Euclidean distances between all pairs of embedding vectors Xi, Xj,
and by using a metrics based on the Kolmogorov–Smirnov test.

6.3.1 Hypothesis

The method of Schuster (see Sec. 6.2) takes into account the relation
between sets of nearest neighbours in successive embeddings, ex. gr. (m, L)
and (m + 1, L). Our approach considers not only the relation between
embeddings that differ by one step inm, but also embeddings that differ by
one step in L: (m, L), (m, L+ 1).

The method is based on two assumptions:

• a potential-like quantity Pm,L is defined on a plain lattice of points
(m, L) that are characterized by the embedding dimension m and the
lag L;

• optimal embedding points coincide with local extrema (maxima or
minima) of Pm,L.

To define Pm,L, a Kolmogorov–Smirnov approach is used, as follows.
Given a scalar time series {xn}, let Xi be an embedding vector in Rm

with a lag L. Given two vectors Xi, Xj, let d be their Euclidean distance
normalized to

√
m:

di,j =
1√
m
‖Xi − Xj‖, i , j .

By considering a suitable number of vectors, the cumulative distribution
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F(m,L)(d) of the distance d between pairs of distinct vectors Xi, Xj can be
estimated.

Given two embedding points (m1, L1), (m2, L2), let us consider the
Kolmogorov–Smirnov (KS) distance D between the two related cumulat-
ive distributions Fm1, L1(d), Fm2, L2(d) (see Fig. 6.2):

D(m1, L1)↔(m2, L2) = sup
{d}

|Fm1, L1(d) − Fm2, L2(d)| .
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Figure 6.2: Kolmogorov–Smirnov distance between two cumulative distributions.

We assume the KS distanceD to correspond to the potential gap between
the two embedding points:

|Pm1, L1 − Pm2, L2 | ≈ D(m1, L1)↔(m2, L2) .

The approximation symbol is used because the cumulative distributions
Fm1, L1(d), Fm2, L2(d), and consequently the KS distance D(m1, L1)↔(m2, L2),
are sample estimates rather that population-like entities.

Unfortunately, the KS distance only measures the modulus of the poten-
tial gap between the two embeddings. The reconstruction of the potential–
like surface Pm,L is therefore similar to the problem of mapping the altitude
of an area by using an altimeter that only provides the modulus of the
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difference of altitude between two points of a grid.

Before proceeding with the reconstruction algorithm, it is proper to justify
the chosen approach: first, the fact that an optimal embedding is identified
by a minimum variation of a measure when adjacent points are considered,
is a common trait of all methods proposed in the scientific literature; second,
the measure must depend on the whole time series available; third, the
measure should be linked to false-nearest-neighbours (as it is the case of
Gao–Zheng method and the method of Schuster) and thus take into account
distances.

6.3.2 Reconstruction

To reconstruct the potential on the lattice of Fig. 6.3, we first set the
potential value at the corner point (1, 0) to zero: P1,0 = 0.

(1,0) (2,0) (3,0)

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

m

L

(m, L-1)

(m-1, L) (m, L)

Figure 6.3: Lattice of embedding points (m, L), where m, L represent the embedding di-
mension and lag, respectively. The red line corresponds to the equipotential
line with P = 0. The value Pm,L is calculated from Pm,L−1, Pm−1,L and the two
KS distances D(m,L)↔(m,L−1), D(m,L)↔(m−1,L).

It is easy to show that the cumulative distribution F(m,0)(d) for em-
bedding vectors with lag L = 0 coincides with the cumulative distribution
F(1,0)(d) as all the elements of an embedding vector of any dimensionm but
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with zero lag are equal. Consequently, Pm,0 = P1,0, ∀m. In addition, since
in an one-dimensional embedding the lag has no effect, we have P1,L = P1,0,
∀L. The bottom and left boundaries of the lattice are then equipotential lines
for P, with P = 0 (see Fig. 6.3).

Starting from the point (2, 1), the potential Pm,L is iteratively evaluated
from Pm,L−1, Pm−1,L, as follows. There are two possible estimates of Pm,L:

P′m,L ≈ Pm−1,L + smD(m,L)↔(m−1,L) ,

P′′m,L ≈ Pm,L−1 + sLD(m,L)↔(m,L−1) ,

where sm, sL are two signs, equal to either +1 or −1. The two signs are
determined by choosing the combination that minimizes |P′m,L−P

′′
m,L|. Once

the values of sm, sL are given, the potential of Pm,L is set to [P′m,L + P
′′
m,L] /2.

The algorithm relies on a sort of Stokes’ theorem, as represented in Fig. 6.4.

(m+1, L+1)(m, L+1)

(m+1, L)(m,L)

Figure 6.4: Similarly to Stokes’ theorem, differences of the potential have to add up to zero
in case of a closed loop.

For the very first point, namely (2, 1), there are two possible values for
the potential P2,1, i.e. ± [P′m,L + P

′′
m,L] /2. However, since we are interested

in the extrema of P, we can exploit this degree of freedom by setting the
potential of the point (2, 1) to be positive.

The final ingredient of the algorithm regards the multiplicity of maxima
and minima and thus the choice of the optimal extremum. The crucial point
is again the fact that the cumulative distributions of distances, and thus the
KS distances, are estimates, and therefore uncertainty-affected. This uncer-
tainty cumulates and affects the reconstructed value Pm,L proportionally the
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number of steps necessary to reach the point (m, L) from the point (1, 0),
namelym+L−1. For this reason, it appears reasonable to choose the optimal
extremum as the closest one – in terms of the L1, or city-block, distance – to
the starting point (1, 0).

We note that other algorithms could have been chosen to determine the
potential P. For example, one could have taken triangles instead of unitary
squares as basic mesh elements to iteratively evaluate P. However, the
choice is the only one that implies the evaluation of distances D between
adjacent embeddings.

Fig. 6.5 and Fig. 6.6 show the potential P reconstructed out of a sequence
of 105 real numbers obtained by integrating the reference Mackey–Glass
attractor Eq. (2.8) (see Sec. 2.5). According to our algorithm, the lattice point
(4, 5) is deemed to be the optimal embedding point for the attractor under
study.

6.4 Results

Our Kolmogorov–Smirnov approach was applied to each of the four ref-
erence dynamical systems (see Sec. 2.5. The results are reported in Tab. 6.1.
The embedding points generated by our approach are “good” in the sense
discussed in the previous chapter. However, again as discussed in that
chapter, the success of the MLE evaluation cannot be considered conclusive
with regard to the issue of finding the best method to assess the optimal
embedding. Nevertheless, our approach does not require any human inter-
pretation, and seems therefore to be more reliable than the other methods
described in the scientific literature.

Possible ways to improve our method are taking into account the dis-
tribution of the KS distance D, and implementing a reconstruction method
that acts globally rather than locally, as it is presently the case.
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Table 6.1: MLE, expressed in terms of µS and its uncertainty σS (see Sec. 5.1), for each
of the four reference dynamical systems (see Sec. 2.5). Data are taken from
the works available in the scientific literature, or computed by means of the
techniques developed in this work. In particular, our data, highlighted in bold,
were evaluated from a time series by using the divergent rate method (Sec. 4.1.2).
MLE values taken from other works could not be verified; remarkably, in a case,
the same authors (Gao and Zheng, with regard to the Rössler attractor) provides
two different values. The time series sequence was embedded by using the
parameters (m, L)deemed to be optimal by the different methods. Finally, “Gao–
Zheng” corresponds to Gao–Zheng method, “Schuster” to method of Schuster,
“CL” to the method of characteristic length, “GFNN-A” to the method of global
false- nearest-neighbours and autocorrelation function, and “GFNN-MI” to the
method of global false-nearest-neighbours and mutual information.

optimal embedding optimal MLE
method (m, L) µS (σS)

original ref. our calculation

Hénon
Gao–Zheng [10] (2, 1) 1.00(1) 1.00(2)

ours (5, 1) 1.00(2)

Lorenz
Gao–Zheng [10] (3, 3) 1.20(2) 0.94(1)

ours (5, 5) 0.92(1)

Rössler
Gao–Zheng [10] (3, 8) 0.75(7) 0.840(7)
Gao–Zheng [14] (3, 8) 1.001 0.840(7)

Schuster [14] (3, 9) 1.057 0.833(6)
CL [14] (3, 8) 1.001 0.840(7)

GFNN-A [14] (4, 9) 0.967 0.858(6)
GFNN-MI [14] (4, 12) 0.979 not evaluated

ours (5, 5) 0.866(6)

Mackey–Glass
Gao–Zheng [10] (4, 5) 0.97(8) 1.21(1)

Schuster [10] (4, 5) 0.957 1.21(1)
ours (4, 5) 1.21(1)
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Figure 6.5: Reconstruction of the potential for a Mackey–Glass attractor (see Sec. 2.5). The
embedding point (4, 5) is the local extremum that is “L1-closest” to the starting
point 1, 0. As such, according to our method, it corresponds to the optimal
embedding point.
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Figure 6.6: 3-D view of the reconstructed potential for the reference Mackey–Glass attractor
of Fig. 6.5.





Chapter 7
A review of
electroencephalography.
Preliminary investigations on real
EEG signals

This chapter deals with electroencephalographic (EEG) recordings and
their analysis, with a focus on the chaotic behaviour of brain signals. The
final part of the chapter describes the preliminary results obtained by apply-
ing the techniques presented in Chapters 4 and 5 to EEG signals recorded in
a resting-state condition.

This chapter is organized as follows. In Sec. 7.1 the basic concepts as well
as a historical overview of electroencephalography are presented. Sampling
and clinical classification of EEG rhythms are the topic of Sec. 7.2. Sec. 7.3
presents pre-processing methods to remove artefacts from signals. Sec. 7.4 is
an overview of nonlinear analysis applied to the EEG signals. Finally, Sec. 7.4
shows the first applications of the techniques developed in this work to the
nonlinear analysis of EEG recordings.
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7.1 Introduction

The brain is composed by glial cells and neurons that build up a network
of connections; each neuron is connected to about 7000 other neurons, thus
forming a highly complex system. The communication between two neurons
is carried out by an ion current that flows from the axon of one cell to the
dendrites of the other cell. In the last decade an enormous amount of
resource and energy has been devoted to projects aimed at understanding
brain functions and activities, and to find new ways to treat, cure, and
prevent brain disorders. The current major projects are: the Human brain
project, and the BRAIN Initiative. These two projects have been launched
in 2013 and are located in Europe and in the United States, respectively.
The objective of Human brain project is to simulate the brain and its activity
by using a supercomputer [123]. BRAIN Initiative is a collaborative research
initiative with the goal of mapping the activity of every neuron in the human
brain [124].

Different techniques are used to collect data from the brain – for example
EEG, magnetoencephalography (MEG) and functional magnetic resonance
imaging (f-MRI). EEG and MEG are direct measurement of the current flow-
ing in the brain mapped by using the secondary current and the magnetic
field, respectively. f-MRI is an indirect measure based on the correlation
between brain activity and blood flow: a neural activity leads to an increase
of the blood flow to the area where the neural activity occurs; f-MRI looks
at the variation of the oxygen concentration linked to the varying blood
flow. The most used technique to analyse nonlinear dynamics in brain is
electroencephalography. This is due to two main reasons: first, EEG has
a temporal resolution of order 1 ms; second, it is less expensive and more
“patient-friendly” than other techniques; the comfort of patients during the
recordings is crucial to avoid stress to neural and cognitive functions and,
consequently, to maintain the neural dynamics unchanged.

In 19th century, Carlo Matteucci and Emil Du Bois-Reymond registered
the electrical signal emitted from muscle nerves, establishing the concept
of neurophysiology. In 1875, the first recording of the brain activity was
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carried out by Caton [125]. Until 1970, EEG interpretation was principally
heuristic and qualitative [126, 127, 128], i.e. basically relying on the subjective
interpretation of recordings. 1985 is a crucial year for the brain study, because
of the publication of two seminal papers analysing EEG signals by means
of nonlinear algorithms. Rapp et al. [129] described their results by using
the words “chaos analysis” of spontaneous neural activity in the motor
cortex of a monkey. Babloyantz et al. [3] reported the first observations
of the correlation dimension in EEGs sampled during human sleep. These
pioneering works were not only made possible by virtue of the availability of
computers, but also because of the progress in the physics and mathematics
of nonlinear dynamical systems [4]. Since then, a great number of clinical
issues have been investigated using EEG signal analysis [130, 131]:

• monitoring alertness, coma, and brain death;

• locating areas of damage following head injury, stroke, and tumour;

• monitoring cognitive engagement;

• producing biofeedback situations;

• controlling anaesthesia depth;

• investigating epilepsy and locating seizure origin;

• testing epilepsy drug effects;

• assisting in experimental cortical excision of epileptic focus;

• monitoring the brain development;

• testing drugs for convulsive effects;

• investigating sleep disorders and physiology;

• investigating mental disorders;

• providing a hybrid data recording system together with other imaging
modalities.
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Studying the chaotic behaviour in EEG is supposed to be of help in identi-
fying disorders [132] like epilepsy [133, 134], autism [135, 136, 137], schizo-
phrenia, insomnia, dementia and in monitoring of anaesthesia depth. It
is also considered a tool to understand the brain functions and to develop
instrumentation that can be mind-controlled.

7.2 Sampling and clinical classification

An EEG signal is a time-domain measurement of the currents that flow
during synaptic excitations of the dendrites of many pyramidal neurons in
the cerebral cortex. When neurons are activated, the synaptic currents are
produced within the dendrites. This current generates a secondary electrical
field over the scalp measurable by EEG systems [131].

7.2.1 Tools to sample EEG signals

EEG recording systems consist of a number of electrodes, a set of differ-
ential amplifiers followed by filters, and a recording system. All these parts
are crucial to minimize signal distortion. Presently, the signals are digital-
ized to further suppress noise and to perform data computational analysis
and storage. The digitalization process is carried out by analogue-to-digital
converters (ADC). Conventional setups can acquire signals with sampling
frequencies up to 5 kHz. In order to maintain diagnostic information, the
ADC resolution of EEG signals is at least 16 bit.

Electrodes make up a crucial part of the sampling setup. The most
common types of electrodes are [131]:

• disposable (gel-less, and pre-gelled types);

• reusable disc electrodes (gold, silver, stainless steel, or tin);

• headbands and electrode caps;

• saline-based electrodes;

• needle electrodes.
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Figure 7.1: A scheme of 10-20 electrode settings for 75 electrodes including the reference
electrodes. Source: [131].
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The International Federation of Societies for Electroencephalography
and Clinical Neurophysiology recommends a conventional electrode setting
(also called 10-20) for 21 electrodes plus two reference electrodes connected
to the earlobes. The 10-20 system considers the nasion and the inion posi-
tions as reference points and then uses 10 % or 20 % of the distance between
these two points as the distance between the electrodes (see Fig. 7.1). The
odd-labelled electrodes are on the left side of the scalp, whereas the even-
labelled ones are located on the right side. If a larger number of electrodes
is to be set, in compliance with the above conventional system the rest of the
electrodes have to be placed between the previously allocated electrodes, in
equidistant positions from them (see Fig. 7.1).

7.2.2 Classification of brain rhythms

Commonly, clinicians classify EEG waveforms into five classes or “waves”:
delta (0−4Hz), theta (4−8Hz), alpha (8−12Hz), beta (13−30Hz), and gamma
(30 − 60 Hz). A plot of these waves is reported in Figure 7.2. Delta waves
are associated with deep sleep and are present in waking state. Theta waves
are linked to unconscious material, creative inspiration and deep medita-
tion. Alpha waves indicate a relaxed awareness without any attention or
concentration. Beta waves are linked to active attention, thinking, focus on
the outside world and solving concrete problems. Gamma waves are linked
to brain diseases and synchronization of the brain.

7.3 Pre-processing analysis

Pre-processing of an EEG signal is a crucial step for successive analysis.
This step consists in a series of analysis carried out to remove the artefacts
from the recordings. Typical artefacts are eyes movement, eyes blinking,
neck muscles contraction, movements of the head, environmental noise and
perturbations and variations in the electrical contact between scalp and
electrodes [138]. The most simplest method to detect artefacts is a threshold
method that is applied both in the time domain and in the frequency domain



7.3 Pre-processing analysis 101

Figure 7.2: Typical dominant brain normal rhythms (“waves”), from high to low frequen-
cies. Source: [131].

to detect bad electrodes and filter out environmental components, respect-
ively. Another method to clean the signal is the parametric modelling [139],
that is based on the assumption that the signal can be simulated by means
of a mathematical model. Software tools to pre-process EEG signals are
available. For example, EEGLAB [140] is an open-source MATLAB plug-in
that collects a set of methods to remove artefacts.

One of the most used method to pre-processing EEG signals is the inde-
pendent component analysis (ICA) [141, 140, 142, 138]. ICA assumes that a
multi-dimensional EEG recording can be decomposed in independent com-
ponents localized on the scalp. The localization gives us the possibility to
filter out artefacts: for example, eyes movements can be removed by deleting
the components located in the frontal part of the scalp. Because the location
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plays a crucial role in separating and denoising signals, other methods to
localize the sources of EEG recordings were developed; two examples are
multiple signal classification [143, 144] and low resolution electromagnetic
tomography algorithm [131].

In the last decade, techniques based on machine learning were used
to carry out real time EEG analysis. Goals are real time decoding of the
brain activity, development of brain-computer interfaces [145], and dia-
gnosis [146].

7.4 Chaotic behaviour in brain

Nonlinear EEG analysis started in 1985 with Babloyantz et al. [3] and
Rapp et al. [129]. In the analysis of EEG data, different chaotic measures
are used in the scientific literature: fractal dimension, correlation dimen-
sion, Kolmogorov entropy, approximate entropy and maximum Lyapunov
exponent (see Chapter 4).

In the first period of nonlinear EEG analysis, there was a premature en-
thusiasm for chaos underlying normal EEGs [147, 148, 149, 4]; it was only
after some years that scientists realized that filtered noise can mimic low-
dimensional chaos, so that those early claims were critically re-examined [150,
4]. Surrogate data testing methods were decisive to identify wrong inter-
pretations. These methods rely of the generation of new data by randomly
reshuffling the original ones. By applying the same analytical techniques to
original data and to surrogate data and comparing the results, it is possible
to assess whether the techniques can give information about the dynamics
of the analysed systems.

Nonlinear approaches are a key ingredient for clinical assessments con-
cerning brain functions, and particular epileptic brain states.

In the following, we report a summary of facts regarding EEG analysis
and brain states.
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7.4.1 Resting-state of healthy subjects

The analysis of this type of signal shows that there is no evidence of
low-dimensional chaos in EEG [150]; however, at the same time, it is clear
that EEG signals reflect a weak but significant nonlinear activity [151, 152,
153, 154].

7.4.2 Sleep

In 2014, Motamedi-Fakhr et al. [155] published a comprehensive review
on signal processing techniques – both linear and nonlinear – applied to EEG
recordings that were sampled in human sleep.

The first paper that studies the chaotic behaviour in EEG sleep recordings
was published by Babloyantz et al. [3] in 1985. In 1994, Achermann et al. [156]
analysed all night sleep recordings, finding evidence for a weak nonlinear
structure. These results were confirmed by Fell et al. [157] two years later.

In 2002, Ferri et al. [158, 159] analysed sleep EEG signals of adults and
young infants. They found that a nonlinear structure is present in the first
class of subjects while it only sporadically occurs in the second one. This
difference hints at the effect of ageing on the brain connections and un-
derlines the crucial role of nonlinear analysis in understanding the brain
functionality [4].

7.4.3 Anaesthesia, coma and vegetative state

Important results were obtained also for anaesthesia, coma and vegetat-
ive state. Nan and Jinghua [160] were the first to suggest a relation between
changes in consciousness and the correlation dimension of EEG signals.
Nonlinear methods can be used to measure and monitor the anaesthetic
depth and coma [161]. Sarà and Pistoia [162, 163] studied the vegetative
state and showed a complexity loss in EEG recordings of patients in veget-
ative state.
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7.4.4 Epilepsy

Epilepsy is probably the most important application of nonlinear EEG
analysis [4]. The first descriptions of nonlinear analysis applied to clin-
ical epilepsy are the works by Iasemidis et al. [164, 165, 166]. They based
the research on the assumption that a seizure represents a transition of the
epileptic brain from a chaotic state to a more ordered one; therefore, dynam-
ical properties are linked to the clinical state. By studying the maximum
Lyapunov exponent for patients with temporal lobe epilepsy, they showed
that the EEG activity becomes progressively less chaotic as the seizure ap-
proaches [164]. Since these pioneering studies, nonlinear methods have
been used to quantify the changes in the brain dynamics before the onset of
seizures, providing evidence to the hypothesis of a route to seizure. Lehnertz
et al. [167] published a method to predict the seizures by using nonlinear
analysis. Adeli et al. [168] proposed a method based on a wavelet-chaos
methodology to detect epilepsy. In 2012, Acharya et al. [169, 170] described
an automated method for the detection of epileptic subjects; the method
relies on the assessment of entropy.

7.4.5 Normal cognition

Nonlinear EEG analysis is also applied to investigate the role of brain
dynamics in cognitive processing. Several studies report an increase in
the correlation dimension during cognitive tasks [171, 172, 173]; this phe-
nomenon occurs in silent reading [174] and also in arithmetic tasks [173]. In
1998, Jeong et al. [175] showed that listening music induces changes in the
brain dynamics: so, while the white noise increases brain complexity, the
so-called 1/f-noise type music decreases complexity. The fact that various
cognitive tasks induce changes in the brain complexity and that the extent
of these changes is linked to the task difficulty and the type of thinking
involved raises the question whether EEG complexity might be related to
intelligence [4].
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7.4.6 Dementia

Jeong [176, 177] published an extensive review of nonlinear EEG analysis
in dementia. In 1991, Pritchard et al. [178] showed that the increase in cor-
relation dimension accompanying eye opening in non-demented subjects
was diminished in Alzheimer patients; this behaviour was interpreted as
a “lack of dynamical responsivity”. Several studies dealing with correla-
tions between nonlinear EEG measures and performance on neuropsycho-
logical tests [179] support the hypothesis of “complexity loss” that underlies
cognitive dysfunctions in dementia. A chaotic dynamics is also present
in Parkinson patients. Studies show that the maximum Lyapunov expo-
nent measured on EEG recordings is higher in Parkinson patients than in
Alzheimer patients [180, 181].

7.5 Analysis of an EEG signal

In this section, we apply the techniques developed in Chapters 4 and 5
to real EEG signals. The EEG recordings were sampled on healthy subjects
in normal resting-state. The used sampling frequency is 5 kHz; for the
following analysis we used the signal recorded from the electrode in position
Cz (see Fig. 7.1).

We also analysed surrogate data sequences generated by randomly re-
shuffling the order of the EEG time series. Surrogate sequences have there-
fore the same average and the same amplitude of the original EEG signals.
Fig. 7.3 shows the plateau value Λpl, obtained by using an embedding pair
(10, 4) (see Sec. 4.1.2), both for an EEG signal and its surrogate sequence. We
can see that the plateau values for the EEG signal (circles) are larger than the
respective values for the surrogate signal (crosses); these last are compatible
with the behaviour predicted for a stochastic time series, as described in
Sec. 4.1.2. Thus, we can conclude that there is a nonlinear dynamics in the
EEG signal analysed.

We also carried out the finite-time MLE analysis presented in Chapter 5.
Fig. 7.4 shows the diagram σS(m, L) vs. ΓS(m, L). In this case the reference
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Figure 7.3: Λpl as a function of the percentile p: the circles are the plateau values Λpl
obtained by analysing an EEG signal made of 3 · 106 samples. The crosses are
the plateau values obtained by analysing the surrogate sequence. In both cases,
the embedding pair is (10, 4). The red line corresponds to Λpl(10, p) given by
Eq. (4.17).

maximum Lyapunov exponent is unknown; consequently, the ΓS(m, L) val-
ues cannot be normalized and no “good” values close to unity are given a
priori. Fig. 7.4 shows a cluster for low ΓS(m, L) values. The sample mean
and sample standard deviation of the ΓS values of the points belonging to
this cluster are 0.026 and 0.010, respectively. The last value corresponds to
ΣS. By using a level of significance equal to 0.01, we can conclude that ΓS is
compatible with 0. In other words, although we observe a nonlinearity in
the analysed EEG signal by virtue of theΛpl analysis, we do not observe any
low-dimensional chaotic dynamics, in agreement with the work by Theiler
and Rapp [150] cited above (see Sec. 7.4.1).

Finally, we qualitatively compare our EEG signals with the signals used
by Babloyantz et al. [3]. Fig. 7.5 shows a two-dimensional “phase portrait” –
namely the two-dimensional plot of the vector (x(t), x(t+ τ)) – obtained by
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Figure 7.4: Diagram of the uncertainty σS(m,L) (normalized to the respective uS; see
Sec. 5.3) vs. the MLE ΓS(m,L). Each point corresponds to an embedding pair.
Black lines correspond to σ = uS. Points below (above) the black lines are
represented with dots (crosses). Ordinate axis are logarithmically scaled.

using the same delay shift τ as that one described in the work by Babloyantz
et al.. In our case τ = 500δt = 0.1 s, where δt = 0.2 ms is the sampling time;
in the other work, τ = 10δt = 0.1 s, where the declared sampling frequency
is 100 Hz. Our phase portrait, Fig. 7.5, has a close resemblance to the phase
portrait reported in Fig. 7.6(a) and obtained by Babloyantz et al. [3] under
similar conditions.
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Figure 7.5: Two-dimensional phase portrait derived from an EEG signal by using a delay
shift of 0.1 s.

Figure 7.6: Two-dimensional phase portraits derived from EEGs of (a) an awake subject,
(b) a sleep stage, (c) another sleep stage, (d) a REM sleep. The value of the delay
shift is 0.1 s. Source: [3].



Chapter 8
Conclusion

In this PhD thesis, upon a discussion of the state of the art of the chaotic
time series analysis based on the Takens embedding theorem, we have
presented our three major results in this research field:

• a protocol based on the divergent rate method to calculate, from a
time series, the finite-time maximum Lyapunov exponent and its un-
certainty; other than previous methods, our approach is completely
automatic;

• a statistical analysis of the finite-time maximum Lyapunov exponent,
and its link to the existing theory [18];

• a new method based on a Kolmogorov–Smirnov approach to assess
the optimal embedding pair.

In the work we have emphasized, and possibly better understood, the
role of two measures: the uncertainty ΣS with which the maximum Lya-
punov exponent ΓS can be estimated out of a time series by means of the
divergence rate method (see Sec. 5.3), and the “plateau” value Λpl of the
divergence exponent (see Sec. 4.1.2). These two measures turn out to be
invariants of a dynamical system. Thus, they can be used to analyse and
characterize its behaviour. The first measure is of help in identifying optimal
embedding choices, or in excluding bad ones. The second measure allows
to identify a purely stochastic behaviour behind a time series.
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As stated in the Introduction, this work was motivated by the attempt
to answer the question on whether noise within a neural system – and in
particular the brain – has a functional role. This issue might be tackled by
considering electroencephalographic (EEG) recordings: besides its robust-
ness, a major motivation for the choice of this technique is its noninvasive-
ness and the easiness of data collection. Although most of this work was
devoted to synthetic time series, in its last phase, as described in Chapter 7,
we have started applying the developed methods to analyse real EEG re-
cordings. The analytical techniques presented in this study, along with
traditional ones like correlation dimension, maximum Lyapunov exponent
and Kolmogorov entropy, could open new perspectives and insights in the
investigation of the brain dynamics and, possibly, help tackling unsolved
functional and diagnostic issues in disorders and diseases like autism, epi-
lepsy, obsessive-compulsive disorder as well as vegetative state.

This line of action coincides with that one indicated one decade ago by
Stam [4] who asserted that the future of nonlinear EEG analysis depends on
the progress in three main directions: development of better tools for nonlin-
ear time series analysis, a better theoretical understanding of the dynamics
of normal and pathological brain states, and clinical application of nonlin-
ear analysis to problems like seizure anticipation and detection/diagnosis of
psychiatric and neurological disorders. We believe our work is a contribu-
tion to the quest of understanding the intimate operation of complex neural
systems.

Another perspective of the work presented in this thesis regards the is-
sue of disentangling noise from chaos. A first step consists in studying the
dependence of measures like ΓS, ΣS, Λpl on dynamical or additive noise,
i.e. a noise added at the level of the differential equations that describe a
chaotic system or, respectively, in the integral ones. Besides making up a
very interesting topic in the field of nonlinear and complex systems, the
development of a reliable approach to efficiently disentangle deterministic
components from stochastic ones could be of great interest in the under-
standing of neural dynamics.
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A final, more applicative perspective regards the implementation of non-
linear techniques and algorithms in embedded systems with high speed and
performance. In this way, real time analysis could be carried out, thus re-
moving the gap between theory and its application. For example, the real
time implementation of the new method based on a Kolmogorov–Smirnov
approach to calculate the optimal embedding pair could make up an im-
portant tool to perform real time analysis of experimental time series.
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