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Abstract: We present a novel phase generated carrier (PGC) demodulation technique for
homodyne interferometers which is robust to modulation depth variations and source intensity
fluctuations. By digitally mixing the waveform with a multitone synthetic function (a linear
combination of harmonics of the modulating signal), distortion can become negligible even
in presence of large variations of the modulation depth. The technique only requires two
mixers and can also provide the DC component of the phase in real time, without needing
any previously recorded data or ellipse-fitting algorithms. We validate the technique with
simulated waveforms and with experimental data from a wavelength metering experiment using
an integrated unbalanced interferometer on-chip, showing that the technique corrects distortion
without increasing the noise with respect to the standard PGC technique.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical interferometry is currently the most accurate technique to measure certain physical
magnitudes such as displacement, vibrations, and wavelength, among others. Interferometers
can detect the phase difference between two optical branches, and from this information one can
measure remarkably small displacements or wavelength variations.

In a homodyne interferometer, when the two optical beams with the same frequency recombine
after following different paths, the resulting signal is modulated by the cosine of their phase
difference, which can be used to extract the phase change. However, the problem with this
approach is that the slope of the cosine function, which determines the responsivity, varies
periodically with the phase itself, generating so-called responsivity fading. The point of maximum
slope is known as the quadrature point, and it is not straightforward to keep the interferometer
always in quadrature. Many techniques exist for solving this problem, such as the use of a 3 x 3
beam coupler at the output [1], which generates three signals dephased by 120°, allowing the
univocal extraction of the phase with no responsivity fading, but it requires monitoring three
signal ports per sensing point, and performing a previous calibration. Other techniques apply
active modulation of the interferometer, either to keep it in quadrature with a feedback loop [2] or
dithering it constantly and applying phase demodulation techniques such as pseudo-heterodyne
[3], serrodyne modulation with quadrature sampling [4] or phase-generated carrier (PGC)
modulation [5]. The latter method is the most popular, and consists in introducing a sinusoidal
modulation in the interferometer, and extracting the cosine (in-phase, I) and the sine (quadrature,
Q) components from the different harmonics (most typically the first and the second) of the
interferometric signal. Once the I and the Q are known, the phase can be calculated either by
applying an arc-tangent function [6] or a cross-difference multiplication algorithm (CDM) [5].

The cross-difference multiplication method has the main disadvantage that it calculates only
the derivative of the signal, which makes it more sensitive to low-frequency noise and prevents the
calculation of the absolute phase value. Furthermore, even though it is less prone to distortion than
the arc-tangent method, it is sensitive to light intensity fluctuations. In contrast, the arc-tangent
method allows the calculation of the absolute phase and is intrinsically robust to light intensity
fluctuations [6]. The main disadvantage of the arc-tan methods is the distortion generated when
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the modulation depth deviates from the nominal one, which deforms the IQ circumference into
an ellipse. Renormalizing the ellipse back into a circumference is possible, but in real systems
the modulation depth can drift, and in these cases, it is not straightforward to track and update
the correction algorithms.

Many different works about distortion correction in PGC algorithms have been published.
Some methods use correction factors to renormalize the In-phase and Quadrature signals [7-10].
However, these methods present numerical instabilities due to the possibility of division by
zero. In addition, they often require a phase variation in time to be effective. Other methods
monitor higher harmonics of the signal, like 3f [11-13] and sometimes up to 4f [14,15], but
they also generate divisions by zero when the phase is close to certain values. Other techniques
use ellipse-fitting algorithms to characterize the deviation from the nominal modulation depth
[16,17], but they require a calibration process every time the modulation depth changes, or the
use of a reference interferometer. They also require a variation of the signal along a certain range
for the calibration to take place. In [18], a sophisticated arc tan-based method is presented, which
is robust to modulation depth, light intensity noise and phase delay variations. However, that
method requires a complex signal analysis using 8 different mixers for every signal to demodulate.

In this paper, we present and demonstrate a new method for phase demodulation in a PGC
system which we call multitone mixing (MTM), since it involves mixing the signal with synthetic
multi-frequency reference waveforms. The method is robust to modulation depth variations
and light intensity noise and is also very simple to implement in a digital signal processing
system. The method only requires two mixers, and no calibration is required, which means
the correction can take place in real time with no previous data storage and without any signal
variation requirement.

2. Principle

The concept comes from the fact that nowadays signal processing is mostly done in the digital
domain. This means that mixers can be implemented by digital multiplication, rather than mixing
two analog signals in a nonlinear medium. Thus, mixing with a sinusoidal waveform is typically
performed by digitally multiplying the input signal by the analytic sinusoidal function, either
extracted from a look-up table or from a trigonometric function calculation. As a result, mixing
with an arbitrary function different from a sinusoidal does not necessarily complicate the system,
as it only implies a different look-up table to generate the reference waveform to mix with. When
the reference signal is a linear combination of two frequencies, the dependence on the modulation
depth is determined by the equivalent linear combination of Bessel functions of the first kind. By
choosing the parameters of the linear combination to match the first and optionally the second
derivatives of the IQ components with respect to the modulation depth, we demonstrate that the
distortion can be dramatically reduced in presence of variations from the nominal value without
increasing the signal processing complexity.

To analytically describe the principle, we start with the output of a homodyne interferometer
when one of the branches is modulated with a sinusoidal function:

I = A + Beos [C cos(wt) + Ap(t)], (1)

where A and B are related to the mixing efficiency of the interferometer, C is the phase modulation
depth, w is the modulation angular frequency, which should be much higher than that of the
signal of interest, and Ap(?) is the phase difference between the branches, which is what we want
to measure.
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This signal can be expanded in terms of Bessel functions as [5]:

I:A+B{

Jo(C) +2 Z (=1 Jo1(C) cos 2kwt
k=1

cos Ag(t)

2

2 Z (=D Ja11(C) cos(2k + Nt
k=0

sin Ago(t)} ,

where J; represents the Bessel function of the first kind. This means that the In-phase component
of the signal, proportional to the cosine of the phase, can be extracted from the even frequency
components of the signal, while the Quadrature component can be extracted from the odd
frequency components. The standard PGC-arc tan scheme (PGC-std) uses the first two multiples
of w, hence the phase can be calculated as:

JI(C)Ia) ] , (3)

S (O,

where 1, and I,,, are the components of the signal in w and 2w, respectively. In the specific case
when C = (0.84, the Bessel functions coincide and the signals I, and I, fall into a circumference
when plotted in orthogonal axes. When C deviates from this value, they form an ellipse, which
can be easily renormalized by multiplying one of the signals by a correcting factor. However, in
real situations C may gradually change, or depend on some parameter like temperature. In these
situations, the phase estimation will present a distortion, and it can be approximated to the sum
of the signal of interest A¢(¢) plus a non-linear component [7], as:

AppGe-sia(t) = arctan [

sin 2Ap(t)
A¢pGe-lt) = Ag(r) +arctan | ——2 ="
UPGC‘—;'tcl_l - cos ZA(p(t) @)
g =1
~ Ag(r) + 29T Gin(2Ag(1)),

where vpgc_gq 1S the distortion coefficient introduced by the standard PGC method, given by:

1O cx0.84n
vpGe—sia = { 2© , )

1 C=0.84rn

and the approximation in (4) holds when vpgc_gq is close to 1. To have a quantitative idea, a 5%
variation of C from the nominal value of 0.84m generates a DC phase error of 3.6 degrees in
the worst case, which can be unacceptable when DC accuracy is important. Distortion can also
generate unwanted harmonics in the spectrum of the signal. The dependence of the amount of
distortion with variations of C is given by the derivative of J1(C)/J2(C).

The idea of the MTM method proposed here is to use a linear combination of the first few
harmonics in order to generate functions with a distortion parameter v with a zero derivative
with respect to C, so that distortion will be minimized for small variations of C.

Let us start by defining two general functions to be used as a reference for the mixing:

f1(t) = ay cos wt + az cos 3wt, (6.a)

f2(t) = a cos 2wt + a4 cos dwt. (6.b)

Since these functions are synthetic, we have the freedom to choose the parameters a;_4 to satisfy
the necessary conditions in order to minimize distortion. Considering that a global multiplicative
number will not affect the quotient fi/f,, we can make a; = 1, so the only significant parameters
become a, 4. On the other hand, we also have the freedom to decide whether to use the 4™
harmonic or not. In this first analysis, we will only consider the first three harmonics, which
means that we will force aq =0. Later, we will consider the case including the 4% harmonic.
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2.1. MTM up to 3w

In the next section we will show that when the modulation depth is lower than 7, keeping the
fourth harmonic can increase the noise significantly. Therefore, we first study the case setting
a4 =0, which means using the harmonics up to 3w. In this case, by mixing (1) with the multitone
signal f(f) =cos wt+ a3z cos 3wt, and the single carrier signal f,(f) =a, cos 2wt, and then
low-pass filtering at the baseband, we obtain two signals that are proportional to sin A¢(f) and
cos Ap(t):

1® fi = [J1(C) — a3J3(C)] sin Ap(t) = S1(C) sin Ag(1), (7.a)

I ®fr = apJ2(C) cos Ap(t) = S2(C) cos Ap(t), (7.b)

where we have defined the new parameters S1(C) and S»>(C) which will determine the distortion
of the phase through the arctan method. Now, to minimize distortion at a nominal modulation
depth C we apply the following constraints to these parameters:

$1(C) = $2(0), (8.2)

51°(€) = $,'(C). (8.b)

The constraint (8.a) imposes no distortion at the nominal C, and the constraint (8.b) keeps
distortion to the minimum for small variations around C. Applying the constraints (8.a) and (8.b)
to the relations (7.a) and (7.b) one can obtain the following matrix equation:

J3(C) J2(0) as | _ Ji(C) ©)
1 5o )\ o J/(C)

Therefore, in order to minimize distortion, we only need to solve (9) at the nominal modulation
depth C. The derivatives of the Bessel functions can be calculated analytically using the recursive
relationship [19]:

J(C) = 5iA(€) = I (O] (10)

For the nominal modulation depth of C=0.84m, the solution of (9) is a;=2.5806 and
az=-3.0339, but the equation can be solved for other nominal modulation depths as well. In
Fig. 1 we show the profiles of functions S; (C) and S, (C), together with the Bessel functions. It
is clear that at the nominal C, S; and S, not only are equal but also are their slopes, as imposed
by (8.b).

Now, we can calculate the phase from the ratio of the mixing with functions f; and f>:

I®fi ) _ aretan ( S1(C) sin Ag(1) )
I19f) S2(C)cos Ap(t) |

Ay (t) = arctan ( (11

The signal from (11) can also be approximated to the sum of the signal of interest and a
non-linear component, as in (4), except in this case the distortion coeflicient, now called vy,
will be determined by the variation of the quotient S1/S> as:

L©O-asl5(C)  ~ 4 ) 84r
UMM = @2(0) (12
C=0.84rn

This coefficient will undergo a much smaller variation when C deviates from the nominal
value, because its first derivative with respect to C is imposed to be zero, as can be seen in Fig. 1.
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Fig. 1. First four Bessel functions of the first kind and coefficients S; and S, versus the
normalized modulation depth C/rt for the case up to 3w, and the nominal modulation depth
C=0.84m. J; and J; have the same the value but not the same slope, while S| and S, have
the same value and slope.

2.2. MTM up to 4w

It is possible to make the PGC-MTM algorithm even more insensitive to the value of the
modulation depth by considering f7(f) = a> cos 2wt + a4 cos 4wt, with as # 0. After mixing and
low-pass filtering, the following signals are obtained:

I ®f1 = [a1J1(C) — azJ3(C)] sin Ap(t) = S1(C) sin Ag(t), (13.a)
I ® f> = [axJ2(C) — agJ4(C)] cos Ap(t) = S2(C) cos Agp(t), (13.b)

In this case, having an extra parameter allows us to apply a third condition; therefore, besides
making the functions and their first derivatives equal in C, we will force the second derivative to
be the same too, which will increase the distortion-free range even further. The conditions are
mathematically described below:

S1 = 85:(0), (14.a)
S’ =8,(C), (14.b)
81"(C) = $"(0), (14.0)

these three equations, when written in matrix form, considering a; = 1, become:

J3(C)  J(C)  —J4(C) as J1(C)
5o o - || e = 1o | (15)
70 e - N\a |\ 7o

Solving (15) for the nominal case C =0.84s, we find the solutions a; =4.1936, a3 =—-9.7109
and a4 =—9.8913. In this case we have a distortion parameter vy equal to:
J1(C)-a3J5(C)
ahO-aio C* 084 (16)
1 C=0.84r

UMTM =

Figure 2 shows the variation of the distortion parameter v versus variations of the modulation
depth with respect to the nominal value, when the standard PGC and the MTM approach up
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to 3w and up to 4w are applied. It is clear that both MTM methods are much more robust to
modulation depth variations; in particular, the case up to 4w has an even wider range, as expected,
due to the extra condition cancelling the second derivative v”’(C).

1.8¢ T i 1
D - - -PGC-std
16~~~ | PGC-MTM up to 3w
AN PGC-MTM up to 4w
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Normalized modulation depth C/x

Fig. 2. Plot of the distortion parameter v versus the normalized modulation depth C/x for
standard PGC (PGC-std), PGC-MTM up to 3w and PGC-MTM up to 4w.
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Fig. 3. Interferometer with PGC active phase demodulation using three techniques: (a)
Standard PGC, (b) MTM up to 3w, (c) MTM up to 4w. (b) and (c) are the schemes
proposed in this work. The waveforms shown are the solutions for the nominal modulation
depth C =0.84n. MTM: Multitone mixing, PM: Phase modulator, PD: photodiode, ADC:
analog-to-digital converter, LPF: low-pass filter, AL: path length difference between the
interferometer arms.
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Figure 3 shows a system consisting of an interferometer with active phase demodulation using
three different PGC schemes: the standard PGC (Fig. 3(a)), the MTM up to 3w (Fig. 3(b)) and up
to 4w (Fig. 3(c)). The waveforms shown correspond to the specific solutions for the a; coefficients
at the nominal modulation depth C =0.84m. Particularly, this figure shows a Mach-Zehnder
interferometer, but the method can be applied to other types of interferometers, such as the
Michelson.

3. Performance analysis

In order to test the method and quantitatively calculate the performance in terms of distortion
and noise, we apply the method to a simulated interferometer signal with a sinusoidal waveform
in presence of Gaussian noise. The signal on the sensing branch of the interferometer is:

Ag(t) = D cos 2ntfpt + o, (17)

with frequency f, =120 Hz, amplitude D = 5rad, and initial phase ¢o =n/4. A strong signal
amplitude was selected to better appreciate the distortion effect, since this would be negligible
for a small signal. The phase ¢y was centered at n/4 because at this position the noise in the
in-phase and quadrature components have an equal contribution. Considering this input, we
simulated the following intensity signal detected by the photodiode:

I =A+ Bcos [Cmod COS(27Tfm0dt) +D COS(Zﬂfpt) + <P0] + Luoises (18)

where we assumed A = B=1/2, f;,0a =10 kHz, and in [,,;;c we introduced a white noise with
standard deviation opeise = 0.01. The resulting signal was processed as explained in the previous
section, mixing with multiples of f,,,4 and low-pass-filtered with a bandwidth of 4kHz.

To measure and compare the performance of the PGC algorithms we calculated the total
harmonic distortion (THD), defined as the ratio between the equivalent root-mean-square
amplitude of all the harmonics and the amplitude of the fundamental frequency of the demodulated

signal, expressed as [20]:
VL VL

THD = ———, (19)
1

where V| is the amplitude of the fundamental harmonic and Vi is the amplitude of the kth
harmonic. We also compare the performance in terms of the signal-to-noise and distortion
ratio (SINAD), defined as the ratio between the power of the fundamental frequency, Ps, and
the sum of the power of the additive noise, Py, and distortion components (harmonics) of the
demodulated signal, Pp, expressed as [21]:

Ps

SINAD = ————.
Py + Pp

(20)

While THD quantifies the effect of the modulation depth deviation on the distortion of the
demodulated signal, SINAD not only measures the effect of the distortion, but also considers the
effect of the presence of noise in the demodulated signal.

Figure 4 shows the results for a nominal modulation depth of Cy,on, = 0.845t, which is the typical
value in the standard PGC. For the THD results, the first thing we can see in Fig. 4(a) is that when
Ciod = 0.84m the THD is zero, meaning there is no distortion for any of the algorithms, since in
this case the value of v in (4) is one, cancelling the non-linear term. When the deviation of Cpoq
from the nominal value increases, so does the THD for all the PGC methods; however, since the
variation of v with respect to Cpoq is much larger for PGC-std than for the proposed algorithms
(see Fig. 2), its THD is also higher compared to PGC-MTM up to 3w and PGC-MTM up to 4w,
therefore the proposed algorithms are more robust to modulation depth deviations. Regarding
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the SINAD, we can see in Fig. 4(b) that for the ideal case in which Cyom= Cpod = 0.847 the
value is slightly higher for PGC-std, at 107.1 dB, than for PGC-MTM up to 3w, however as the
deviation of the modulation depth from the nominal value increases, the SINAD for PGD-std
rapidly decreases, whereas for PGC-MTM up to 3w it remains at ~106 dB for Cy,oq between
~0.82m and ~0.85m, therefore in this range this algorithm is less noisy than PGC-MTM up to 4w,
with a SINAD of ~102 dB. The reason why the SINAD is almost flat for PGC-MTM up to 3w in
this range is that the SINAD considers both noise and distortion, hence close to the nominal point
(Crom = 0.841), noise, which is a constant value, dominates, thus the flat top. At a certain point,
distortion starts to dominate, since, as it can be seen in Fig. 4(a), the total harmonic distortion
increases rapidly as the modulation depth deviates from the nominal value, causing a sharp drop
in the SINAD, which is then lower than for PGC-MTM up to 4w, hence for cases in which the
modulation depth deviation is small, it is better to use PGC-MTM up to 3w, since it is more
robust to noise effects than PGC-MTM up to 4w, and it has a lower THD than PGC-std outside
the nominal case.

(a) i (b) 110 —
—PGC-std / m :
——PGC-MTM up to 3w / 100 T _‘_\
PGC-MTM up to 4w
08 plote/ 90 / 108
06 / ) n / ™ 1
3 y = 70 / “ \
o a 1
£ / S e / ‘:
0.4 5 A 102 1
50 / 0.82 084 086
40 — T~
02 ——PGC-std
/ 30 / —PGC-MTMupto3w | 4
2 PGC-MTM up to 4w T
0 S " 20! —
0.6 0.7 0.8 0.9 1 1.1 0.6 0.7 0.8 0.9 1 1.1
Normalized Modulation Depth (me/x) Normalized Modulation Depth (Cmod/:)

Fig. 4. (a) Total harmonic distortion when C deviates from the nominal value Cp, = 0.847,
extracted from the simulated data, for the three described demodulation techniques: standard
(blue), MTM up to 3w (orange), and MTM up to 4w (yellow). (b) Signal to noise and
distortion ratio under the same conditions, introducing an artificial noise in the detected
signal with 6=0.01.

To further illustrate how distortion and noise affect the acquired signal, in Fig. 5 we show the
power spectral density of the demodulated signals at different modulation depths. For Cpom=
Cinod = 0.84m there is no distortion for any of the PGC algorithms and we can see that the SINAD
is better for PGC-std, followed by PGC-MTM up to 3w, as can be seen in Fig. 5(a). However,
a deviation of ~1.2% from the nominal value of the modulation depth (Cpog = 0.857) causes
visible distortion in PGC-std, as can be seen in Fig. 5(b), resulting in a THD = -48.88 dB and
SINAD = 48.88 dB, whereas there is still no distortion for the PGC-MTM algorithms. Figure 5(b)
also shows that in this case the SINAD is higher for PGC-MTM up to 3w than for PGC-MTM up
to 4w, hence the former has a better performance.

Up until this point, we have evaluated the performance of the PGC-MTM algorithms for a
nominal modulation depth of Cyo, = 0.845, but we can calculate the coefficients of the mixing
signals f1 and f> for other nominal values (see sections 2.1 and 2.2). Evaluating the SINAD for
different nominal modulation depths we found that for a value around Cyom = 1.115 the SINAD
for PGC-MTM up to 3w and PGC-MTM up to 4w is approximately the same, as can be seen in
Fig. 5(c), and if we further increase Cp,,q We can reach a scenario in which the SINAD for the
method using up to 4w is better than for up to 3w, as can be seen in Fig. 5(d), showing that in
applications when the phase modulator can reach these high modulation depth values, we can
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Fig. 5. Comparison of the spectrum between PGC-MTM up to 3w and PGC-MTM up to 4w
for: (a) Crom=C0q=0.84m and (b) Cyp;,=0.84w, Cy,pq = 0.867, and between PGC-MTM
up to 3w and PGC-MTM up to 4w for:(¢c) Cpom= Cioq = 1.11m, and (d) Crom= Cpyoq = 1.3m.

obtain a better performance with PGC-MTM up to 4w, that is comparable to the one obtained
with PGC-std with Cpom = 0.847.

In conclusion, these results show that at a nominal modulation depth of 0.84s, which is the
one used in the standard PGC, the noise penalty of the MTM method up to 3w with respect
to the standard method is almost negligible (~1dB), while the MTM up to 4w has a higher
penalty (~5dB), which means that the MTM up 3w is best suited for this modulation depth.
However, if our modulator allows applying a higher modulation depth (between 1.11x and 1.3m),
the noise penalty of the MTM up to 4w becomes negligible, making it the best method in terms
of distortion and noise.

4. Experiments and results

In this section we will show experimental results of the proposed MTM technique compared to
the standard PGC scheme. The MTM method can be applied to a variety of interferometers in
which the phase can be modulated externally. For instance, the phase can be modulated in one of
the arms using a piezoelectric actuator, like in the case of some fiber-optic based interferometers
(FOIs) [7], or through thermo-optic effect [22], carrier injection/depletion or other phase shifting
mechanisms in photonic integrated circuit-based interferometers. The method can also be applied
modulating the wavelength of the optical source [23], but in this case the interferometer must be
unbalanced, so that wavelength changes are converted into phase variations.

4.1. Integrated interferometer design

The homodyne interferometer used for the experimental demonstration of the PGC-MTM
technique was an integrated unbalanced Mach-Zehnder interferometer (MZI) on silicon-on-
insulator (see Fig. 6). The device, fabricated at CEA-Leti with deep-UV lithography, consists of
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two MZlIs, one with path length difference AL = 118.6 um and FSR of 4.8 nm (600 GHz), so-called
coarse, and another with AL =948.7um and FSR of 595 pm (75 GHz), so-called fine, which
share the same input vertical grating coupler through a 2-by-2 multimode interference (MMI)
coupler. The shorter arm of each MZI included a phase modulator based on the thermo-optic
effect, consisting of a metal Ti/TiN heater track with length of 86 um and width of 1.43 pm,
characterized by a V., of 3.69 V, and a 1/e time constant of 7 us. Each MZI has an output grating
coupler for coupling to external photoreceivers. For the experiments we only used the fine MZI
since it provides a higher resolution than the coarse [22].

Electric Pads

Fine MZI
Input GC

Coarse MZI Output GCs

Fig. 6. Optical microscope image of the integrated unbalanced MZI. The total footprint is
1430umx400um. The fine MZI, which is the one used in this paper, is located at the top,
while the coarse MZI is at the bottom. GC: grating coupler.

4.2. Experimental setup

The schematic of the experimental setup is shown in Fig. 7. In this configuration the integrated
unbalanced MZI is employed as a wavemeter to measure a wavelength shift generated using a
tunable external cavity laser model EXFO T100S-HP (output power set to 10mW). In order to
apply the PGC algorithms the phase modulator of the MZI was driven using the square-root
of a sinusoidal signal at 1 kHz, since the power on the thermal phase shifter is proportional
to the square of the applied voltage. The output of the interferometer was coupled to an
external InGaAs-based amplified photoreceiver with a responsivity of ~5-10* V/W and a 775
kHz bandwidth. The traces were collected with a 16-bit data acquisition card model MCDAQ
USB-1608FS at 100kS/s. Additionally, we compared the measurements with the commercial
wavemeter model I-MON 512 USB from Ibsen Photonics A/S.
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Fig. 7. General PGC schematic for demodulating the output of an integrated MZI. TLS:
tunable laser; PM: phase modulator; PD: photodetector; ADC: analog-to-digital converter;
LPF: low-pass filter.

4.3. Results

To compare the performance of the different PGC algorithms when the modulation depth deviates
from the nominal case of Cyom =0.84m, we measured a wavelength shift from ~1560 nm to
~1547 nm while applying a modulation depth of Cpoqg =0.97x to the phase shifter in one of the
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arms of the MZI. Figure 8(a) shows the demodulated traces in the whole measuring range and
Fig. 8(b) shows a zoom of the measurement. In the latter it can be appreciated that the PGC-std
algorithm has visible non-linearities in the form of an undulation that occurs every /2 shift, or
every quarter of the free spectral range of the MZI, whereas for PGC-MTM up to 3w and up to
4w there are no visible non-linearities when compared to the trace obtained with the commercial
wavemeter, demonstrating the robustness of the PGC-MTM algorithms to modulation depth

deviations.
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Fig. 8. Comparison of the results of the wavelength shift measurement between PGC-std, the
proposed PGC-MTM algorithms and a commercial wavemeter (Ibsen) when Cpp, = 0.847
and C,,4=0.977. (a) View of the whole wavelength sweep. (b) Zoom of the measurement
where it can be appreciated the non-linearity in the result of the PGC-std, which is absent in
the traces obtained using the PGC-MTM algorithms and the commercial wavemeter.

In order to compare the noise levels for the different demodulation schemes, we measured the
standard deviation of the signal when the wavelength was fixed. In Figs. 9(a)-(c) we show the
noise traces for the standard, MTM up to 3w, and MTM up to 4w techniques respectively, for
the case in which Cpom = Cnodq = 0.84m, which yielded the minimum noise for PGC-std. From
these figures, the standard deviation of the standard and MTM up to 3w are very similar, 0.1175
pm and 0.1198 pm, respectively, while the MTM up to 4w yielded a higher noise of 0.1277
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Fig. 9. Comparison of the noise level of the demodulated signals with a 400 Hz bandwidth
for Com=C04=0.84m with (a) PGC-std, (b) PGC-MTM up to 3w and (¢) PGC-MTM up to
4w, and for Cypm=C,ppq=1.317 with (d) PGC-MTM up to 3w and (¢) PGC-MTM up to 4w.
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pm. An increase in noise with the MTM up to 4w at this modulation depth was predicted in the
previous section. However, the amount of the increase of noise is lower in the experiment than
in the simulation (Fig. 4(b) shows ~5dB noise penalty); we attribute this to the contribution of
wavelength noise of the source itself, which was not considered in the simulation.

On the other hand, Figs. 9(d) and (e) show the experimental noise levels when the nominal
modulation depth is increased to Cpom = Cimoa = 1.3 15T, showing that the noise of the MTM up to
4w technique is reduced again (down to 0.1002 pm), as predicted from the simulation results
shown in Fig. 5(d).

These results provide experimental evidence of the fact that distortion can be strongly reduced
with the MTM technique, and that the noise does not increase significantly for the MTM up to
3w with respect to the standard PGC technique, at Cpom = 0.84m, and neither for the even more
robust MTM up to 4w when a higher modulation depth is applied.

5. Conclusion

We proposed and demonstrated a novel active phase demodulation technique for optical inter-
ferometers which strongly reduces distortion under deviations of the modulation depth. The
technique, called multitone mixing, consists of mixing the output waveform with linear combi-
nations of even and odd harmonics of the modulating frequency, and choosing the coefficients
to cancel the first and optionally the successive derivatives of the distortion parameter v. The
technique has several advantages with respect to previously proposed solutions, in particular, it
provides the DC component of the phase, and it does not require signal variations, ellipse fitting
algorithms, or recording previous data to correct distortion. We showed through simulations
that when the nominal modulation depth is 0.84, a deviation of ~1.2% from this value causes
visible distortion in PGC-std, resulting in a total harmonic distortion of —48.88 dB and SINAD
of 48.88 dB, whereas the PGC-MTM algorithms did not show distortion. The calculated SINAD
for PGC-MTM up to 3w was 105.86 dB, whereas for PGC-MTM up to 4w was 102.55 dB, hence
the former has a better performance for this nominal modulation depth. However, for modulation
depths higher than ~1.11t MTM up to 4w has a higher SINAD than MTM up to 3w, making the
former the best method in terms of distortion and noise in this range. The technique was also
experimentally validated with a wavelength metering integrated interferometer and did not show
a significant noise penalty with respect to the standard PGC technique.
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