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Abstract

We present a study on the use of Pell hyperbolas in cryptosystems
with security based on the discrete logarithm problem. Specifically, af-
ter introducing the group structure over generalized Pell hyperbolas (and
also giving the explicit isomorphisms with the classical Pell hyperbolas),
we provide a parameterization with both an algebraic and a geometrical
approach. The particular parameterization that we propose appears to be
useful from a cryptographic point of view because the product that arises
over the set of parameters is connected to the Rédei rational functions,
which can be evaluated in a fast way. Thus, we exploit these construc-
tions for defining three different public key cryptosystems based on the
ElGamal scheme. We show that the use of our parameterization allows to
obtain schemes more efficient than the classical ones based on finite fields.

1 Introduction

The Pell hyperbola over a field K is a curve defined for a fixed non-zero element
d ∈ K as

Cd(K) =
{

(x, y) ∈ K×K |x2 − dy2 = 1
}
,

whose name comes from the famous Pell equation. It is well-known [1] that
a group structure over the Pell hyperbola can be obtained by considering the
Brahmagupta product that, given two points (x1, y1), (x2, y2) ∈ Cd(K), is

(x1, y1)⊗d (x2, y2) = (x1x2 + dy1y2, x1y2 + y1x2). (1)

The Pell equation can be introduced considering K[t]/(t2 − d), where the norm
of an element x+ yt is Nd(x+ ty) = x2 − dy2 and the Brahamagupta product
essentially coincides with the product in this ring. Thus, in the following, we
will also write Nd(x, y) = x2 − dy2 and we can observe that the Pell hyper-
bola is closed under ⊗d because the multiplicative property of the norm, i.e.,
Nd((x1, y1)⊗d (x2, y2)) = Nd(x1, y1)·Nd(x2, y2). Moreover, the identity element
of ⊗d is the vertex of the hyperbola with coordinates (1, 0) and the inverse of a
point (x, y) is (x,−y), see [1].
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If K is a finite field of order q, with q odd prime or power of an odd prime,
then we denote it by Fq and the group over the Pell hyperbola is cyclic of order
q − χq(d) (see, e.g., [17]), where χq(d) is the quadratic character of d ∈ Fq, i.e.

χq(d) =


0 if d = 0,

1 if d is a square in Fq,

−1 if d is a non–square in Fq.

All Pell hyperbolas with same value of χq(d) are isomorphic. In particular,
if χq(d) = χq(d′), then d′ = ds2 for some s ∈ F×q and the group isomorphism is

δd,d′ :
(
Cd(Fq),⊗d

) ∼−−→
(
Cd′(Fq),⊗d′

)
,

(x, y) 7−→ (x, y/s),
(2)

because

Nd′(x, y/s) = x2 − d′(y/s)2 = x2 − ds2y2/s2 = x2 − dy2 = 1.

The group structure of the Pell hyperbola was used in various cryptosystems,
especially for constructing RSA-like schemes. In [13], an analogue of the RSA
scheme over the Pell hyperbola is introduced. However, it requires to send twice
as many bits per message with respect to classical RSA without increasing the
security. For overcoming this issue, other works exploited parameterization
of the Pell hyperbola, obtaining RSA-like schemes having a two times faster
decryption procedure than RSA [3, 20, 21]. Moreover, recently, several works
have exploited these schemes in different contexts [4, 6, 23, 25].

Since the group of the Pell hyperbola is cyclic, we can think to exploit it
also in Public-Key Encryption (PKE) schemes whose security is based on the
Discrete Logarithm Problem (DLP), such as the ElGamal PKE scheme [7]. In
its classical version, the ElGamal scheme is based on the cyclic multiplicative
group of a finite field Fp, with p prime, and its security is guaranteed by the
hardness of the DLP, which can be solved only in sub-exponential time by the
index calculus algorithm. Later, an analogue of the ElGamal scheme over elliptic
curves was implemented [12]. Over the years, the ElGamal scheme was modified
in order to speed up the execution time and to increase the efficiency of the
scheme [8, 24]. In [9], authors presented an ElGamal-like cryptosystem based
on the matrices over a groupring and, in [14, 15], the authors studied a PKE
scheme, called the MOR cryptosystem, similar to the ElGamal scheme over a
non-abelian finite group and a group of outer automorphism. Moreover, in [18],
the Digital Signature Algorithm (DSA) has been adapted exploiting the solution
space of the Pell equation comparing it with the classical implementations over
finite fields and elliptic curves. The author showed that the signature based on
the Pell equation is more efficient than the analogue with elliptic curves and it
has the same level of security of conventional DSA. Further studies and variant
can be found in [10, 11, 16, 22].

As we will highlight in the next sections, there is a strict link between the
group law of the Pell hyperbola and the elliptic curves, indeed the operation
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can be geometrically introduced with a similar construction, but with a more
simple algebraic expression in the case of the Pell hyperbola. Thus, it seems
interesting to translate the ElGamal scheme over the Pell hyperbola, exploiting
also some specific parameterization of this curve that provides some benefits
from a computational point of view. In particular, in Section 2 we will study a
generalization of the group structure on Pell hyperbolas defined by the equation
x2 − dy2 = c, writing the group operation in terms of Brahmagupta products
and providing an explicit isomorphisms with the classical Pell hyperbolas. In
Section 3, we will provide a parameterization for Pell hyperbolas exploiting an
algebraic approach and connecting it also to a geometrical interpretation. The
particular parameterization that we propose appears to be very useful from
a cryptographic point of view because the product that arises over the set of
parameters is connected to Rédei rational functions, as shown in Section 4.
Then Section 5 will be devoted to the presentation of three new PKE schemes
based on Pell hyperbolas and in Section 6 we will present numerical results.

2 Generalized Pell hyperbolas

In this section, we study the group structure over a generalized Pell hyperbola
and we give an explicit isomorphism between a classical Pell hyperbola and a
generalized one.

The equation of the Pell hyperbola is a particular case of the canonical form
of hyperbolas and ellipses that, over a finite field, is given by

Cc,d(Fq) =
{

(x, y) ∈ Fq × Fq | Nd(x, y) = x2 − dy2 = c
}
.

Now, we would like to construct a product over this hyperbola that generalizes
the Brahmagupta product. Moreover, we are able to define a product where the
identity point is a chosen point (a, b) that can be any point in Cc,d(Fq) (instead
of the point (1, 0) as in the classical case). We construct this new product
exploiting the classical Brahmagupta product ⊗d in the following way:

(x1, y1)⊗a,b,c,d (x2, y2) =
1

c
(a,−b)⊗d (x1, y1)⊗d (x2, y2), (3)

where the subscripts a, b are used for highlighting the chosen identity point
(a, b) and the subscripts c, d for specifying the hyperbola where the product
works. Given the definition of this product, we can observe, first of all, that the
generalized Pell hyperbola is closed under it since

Nd

(
(x1, y1)⊗a,b,c,d (x2, y2)

)
= Nd

(
1

c
(a,−b)⊗d (x1, y1)⊗d (x2, y2)

)
=

1

c2
· Nd(a,−b) · Nd(x1, y1) · Nd(x2, y2) =

c3

c2
= c.
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Moreover, the identity point for ⊗a,b,c,d is the chosen point (a, b) since

(a, b)⊗a,b,c,d (x, y) =
1

c
(a,−b)⊗d (a, b)⊗d (x, y)

=
1

c
(a2 − db2, 0)⊗d (x, y)

= (1, 0)⊗d (x, y) = (x, y),

and the product is clearly commutative. Finally, the inverse of a point (x, y) is
the point

(x, y)−1 =
1

c
(a, b)⊗d (a, b)⊗d (x,−y),

since

(x, y)−1 ⊗a,b,c,d (x, y) =
1

c
(a,−b)⊗d

(
1

c
(a, b)⊗d (a, b)⊗d (x,−y)

)
⊗d (x, y)

=
1

c
(a2 − db2, 0)⊗d (a, b)⊗d

1

c
(x2 − dy2, 0)

= (1, 0)⊗d (a, b)⊗d (1, 0) = (a, b).

Thus, we have that
(
Cc,d(Fq),⊗a,b,c,d

)
is a commutative group (note that the

associativity is derived from the associativity of the Brahamagupta product).
When c = 1 and the chosen identity point is (a, b) = (1, 0), the product ⊗a,b,c,d

coincides with the classical Brahmagupta product ⊗d from Eq. (1).
In the following theorem we find the explicit isomorphism between Cd(Fq)

and Cc,d(Fq). Then, thanks to this map, we can also write the isomorphism
between generalized Pell hyperbolas.

Theorem 1. Given c, d ∈ F×q and a point (a, b) ∈ Cc,d(Fq), the following map

ϕa,b
c,d :

(
Cd(Fq),⊗d

) ∼−−→
(
Cc,d(Fq),⊗a,b,c,d

)
,

(x, y) 7−→ (a, b)⊗d (x, y),

is a group isomorphism whose inverse is

(ϕa,b
c,d)−1 :

(
Cc,d,⊗a,b,c,d

) ∼−−→
(
Cd,⊗d

)
,

(x, y) 7−→ (1, 0)⊗a,b,c,d (x, y).

Proof. First of all, let us observe that ϕa,b
c,d(Cd(Fq)) ⊆ Cc,d(Fq) since, for any

(x, y) ∈ Cd(Fq),

Nd

(
(a, b)⊗d (x, y)

)
= Nd(a, b) · Nd(x, y) = c.
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Moreover, for any (x1, y1), (x2, y2) ∈ Cd(Fq), we have

ϕa,b
c,d

(
(x1, y1)⊗d (x2, y2)

)
= (a, b)⊗d (x1, y1)⊗d (x2, y2)

=
(a,−b)⊗d (a, b)

c
⊗d (a, b)⊗d (x1, y1)⊗d (x2, y2)

=
1

c
(a,−b)⊗d ((a, b)⊗d (x1, y1))⊗d ((a, b)⊗d (x2, y2))

= ϕa,b
c,d(x1, y1)⊗a,b,c,d ϕ

a,b
c,d(x2, y2).

Thus, the map ϕa,b
c,d is a well defined group homomorphism. Finally, we obtain

that it is bijective since, for any (x, y) ∈ Cd(Fq), we have

ϕa,b
c,d(x, y) = (a, b)⇔ (x, y) = (1, 0),

and, given any (w, z) ∈ Cc,d(Fq), its pre–image is (1, 0)⊗a,b,c,d (w, z) ∈ Cd(Fq):

ϕa,b
c,d

(
(1, 0)⊗a,b,c,d (w, z)

)
= ϕa,b

c,d

(
1

c
(a,−b)⊗d (1, 0)⊗d (w, z)

)
=

1

c
(a, b)⊗d (a,−b)⊗d (1, 0)⊗d (w, z)

=
(a, b)⊗d (a,−b)

c
⊗d (w, z) = (w, z),

where (1, 0)⊗a,b,c,d (w, z) ∈ Cd(Fq) since it has unitary norm.

We can obtain the explicit isomorphism between two generalized Pell hyper-

bolas with same parameter d by applying (ϕa,b
c,d)−1 and ϕa′,b′

c′,d . This isomorphism
can be explicitly written, after some calculations, in the following form:(

Cc,d(Fq),⊗a,b,c,d

) ∼−−→
(
Cc′,d(Fq),⊗a′,b′,c′,d

)
,

(x, y) 7−→ (a′, b′)⊗a,b,c,d (x, y).
(4)

Finally, if
(
Cc,d(Fq),⊗a,b,c,d

)
and

(
Cc′,d′(Fq),⊗a′,b′,c′d′

)
have χq(d) = χq(d′)

and d′ = ds2, then the composition of (ϕa,b
c,d)−1, δd,d′ and ϕa′,b′

c′,d′ is a group
isomorphism between the two generalized Pell hyperbolas given explicitly by

(ϕa′,b′

c′,d′ ◦ δd,d′ ◦ (ϕa,b
c,d)−1)(x, y) =

1

c

(
a′(ax− dby) + d′b′(ay − bx)/s,

a′(ay − bx)/s+ b′(ax− dby)
)
.

From a computational point of view, it is not useful to exploit a generalized
Pell hyperbola in a DLP–based cryptosystem since the security would remain
unchanged while the computational costs would arise. However, in Section 5,
we will exploit the isomorphism between Pell hyperbolas with different d but
same χq(d) to obtain an alternative PKE scheme based on the ElGamal scheme.
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3 Parameterization

In this section, we describe and study a parameterization for Pell hyperbolas
with both an algebraic and a geometrical interpretation.

When considering the following quotient

Rd,q = Fq[t]/(t2 − d) =
{
x+ ty |x, y ∈ Fq, t

2 = d
}
,

for any two elements x1 + ty1, x2 + ty2 ∈ Rd,q, the product naturally induced is

(x1 + ty1)(x2 + ty2) = (x1x2 + dy1y2) + t(x1y2 + y1x2),

which is essentially the classical Brahmagupta product. In order to introduce a
parameterization for Cd(Fq), we denote the invertible elements of Rd,q as R⊗d

d,q,
so that there are two possible cases:

1. if d ∈ F×q is a non–square, then

R⊗d

d,q = Rd,q r {0};

2. if d ∈ F×q is a square and s ∈ F×q is a square root of d, then there is the
decomposition t2 − d = (t− s)(t+ s), so that

R⊗d

d,q = Rd,q r {0,±sy + yt | y ∈ Fq}.

Now, we can consider the quotient Pd,q = R⊗d

d,q/F×q , which yields to a parameter-
ization for the Pell hyperbola. The elements of Pd,q are the classes of equivalence
of the elements m+ nt ∈ R⊗d

d,q, i.e., they are

[m+ nt] =
{
λ(m+ nt) |λ ∈ F×q

}
.

Given the definition of Pd,q, m+ nt is equivalent to (m+ nt)n−1, where n−1 is
the inverse of n in F×q . Thus, when n = 0 we choose as canonical representative
[1] while, in the other cases, we can take [mn−1 + t]. In this way, we can write

Pd,q =

{{
[a+ t]| a ∈ Fq

}
∪ {[1]}, if d is a non–square,{

[a+ t] | a ∈ Fq r {±s}
}
∪ {[1]}, otherwise

∼

{
Fq ∪ {α}, if d is a non–square,

Fq r {±s} ∪ {α}, otherwise,

(5)

where α denotes an element not in Fq and it can be seen as the point at infinity
in the set of parameters. The product in Pd,q, which we denote by �d, is induced
by the quotient and it is given by

[m1 + t]�d [m2 + t] = [m1m2 + (m1 +m2)t+ t2] = [m1m2 + d+ (m1 +m2)t],
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since t2 = d in Rd,q. Therefore, we can also write

[m1 + t]�d [m2 + t] =

{[
m1m2+d
m1+m2

+ t
]
, if m1 +m2 6= 0,

[1], if m1 +m2 = 0.

In the following, we will mainly use the second notation in (5) for denoting the
elements of Pd,q and in this case we can write the product as

m1 �d m2 =


m1, if m2 = α,

m2, if m1 = α,
m1m2+d
m1+m2

, if m1 +m2 6= 0,

α, otherwise.

(6)

In the following theorem, we prove that Pd,q is isomorphic to the classical
Pell hyperbola and thus it can be used as a parameterization for it.

Theorem 2. Given d ∈ F×q , the following map is a group isomorphism

πd :
(
Pd,q,�d

) ∼−−→
(
Cd(Fq),⊗d

)
,

m 7−→ (m, 1)⊗d2

Nd(m, 1)
=

(
m2 + d

m2 − d
,

2m

m2 − d

)
,

α 7−→ (1, 0),

and the inverse is

π−1d :
(
Cd(Fq),⊗d

) ∼−−→
(
Pd,q,�d

)
,

(1, 0) 7−→ α,

(−1, 0) 7−→ 0,

(x, y) 7−→ x+ 1

y
.

Proof. It is immediate to check that the map is well–defined.
In addition, it is a group homomorphism since, for any m1,m2 ∈ Pd,q, such

that m1,m2 6= α and m1 +m2 6= 0, we have

πd(m1)⊗d πd(m2) =
(m1, 1)⊗d2 ⊗d (m2, 1)⊗d2

Nd(m1, 1)Nd(m2, 1)
=

(m1m2 + d,m1 +m2)⊗d2

(m2
1 − d)(m2

2 − d)

=

(
m1m2+d
m1+m2

, 1
)⊗d2

m2
1−d

m1+m2
· m2

2−d
m1+m2

=

(
m1m2+d
m1+m2

, 1
)⊗d2

(m1m2+d)2

(m1+m2)2
− d

=

(
m1m2+d
m1+m2

, 1
)⊗d2

Nd

(
m1m2+d
m1+m2

, 1
) = πd(m1 �d m2).

Similarly, it can be proved that the map is a group homomorphism for the
remaining cases.
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We can observe directly by the definition of πd that α ∈ ker(πd). Moreover(
m2+d
m2−d ,

2m
m2−d

)
6= (1, 0) for any m ∈ Fq, so that kerπd = {α} and the map is

injective. Then, the surjectivity follows directly from |Cd(Fq)| = |Pd,q|.
Finally, it is straightforward to see that the pre–image of (1, 0) and (−1, 0)

are α and 0, respectively while, for (x, y) =
(
m2+d
m2−d ,

2m
m2−d

)
∈ Cd(Fq) with y 6= 0,

the pre–image is m = x+1
y ∈ Pd,q. Indeed, we have

x+ 1 =
m2 + d

m2 − d
+ 1 =

2m2

m2 − d
= my.

In conclusion, πd is a group isomorphism whose inverse is explicitly given like
in the statement.

Remark 1. Considering the formula of π−1d given in the statement of the pre-
vious theorem, the set of parameters Pd,q of the Pell hyperbola can be obtained
considering the lines y = 1

m (x + 1) for m varying in Fq or m = α (having the
sense of the point at the infinity).

Since the definition of
(
Pd,q,�d

)
is independent of the choice of the identity

point (a, b) and of the constant c, the parameterization can be adapted for
generalized Pell hyperbolas, leading with a proof analogous to Theorem 2 to
the group isomorphism

πa,b
c,d :

(
Pd,q,�d

) ∼−−→
(
Cc,d(Fq),⊗a,b,c,d

)
,

m 7−→

{(
2am+bd

m2−d m− a, 2
am+bd
m2−d + b

)
, if m 6= α,

(a, b), otherwise,

with inverse

(πa,b
c,d)−1 :

(
Cc,d(Fq),⊗a,b,c,d

) ∼−−→
(
Pd,q,�d

)
,

(x, y) 7−→


x+a
y−b , if y 6= b,

− bd
a , if (x, y) = (−a, b),

α, if (x, y) = (a, b).

(7)

This parameterization and its inverse can be used as an alternative way to obtain
the isomorphism in Eq. (4).

From a geometrical point of view, the parameter m of a point (x, y) is the
slope of the line through (x, y) and (−a, b) written considering x variable with
y. This is very interesting when related to the geometric interpretation of the
Brahmagupta product, which can be introduced in a very similar way to the
one of the elliptic curves. Indeed, given two points P and Q of an elliptic curve,
their sum P ⊕ Q is obtained by considering the point R, intersection between
the elliptic curve and the line through P and Q, so that P⊕Q is the intersection
between the elliptic curve and the line through R and the identity point, that
is the point at infinity. This construction works also considering two points P
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Figure 1: Geometric interpretation of the Brahmagupta product.

and Q of the Pell hyperbola, with the difference that the line through P and Q
intersects the hyperbola at the point R that is, in this case, the point at infinity.
Consequently, the product P ⊗d Q is the intersection between the hyperbola
and the line through R (point at infinity) and the identity, that is, in the case
of the classical Brahmagupta product, the point (1, 0), i.e., the line parallel to
the line through P and Q (see Fig. 1).

It is quite easy to check that, from this geometrical construction of ⊗d, we
obtain the algebraic expression described in Eq. (1), see, e.g., [26, pp. 231–232].
Indeed, given two points P = (x1, y1) and Q = (x2, y2) on the Pell hyperbola, it
is sufficient to check that the slope of the line through P and Q is equal to that
of the line through the points (x1x2 + dy1y2, x1y2 + y1x2) and (1, 0). Thanks to
this geometrical approach, we can also observe that the identity point can be an
arbitrary point of the Pell hyperbola, and this choice leads to the generalized
Brahmagupta product in Eq. (3).

4 Exponentiation with Rédei rational functions

In this section, we show an efficient algorithm for the exponentiation on the
Pell hyperbola that exploits the parameterization introduced in the previous
one. Moreover, we compare it with the square–multiply algorithm with the
classical Brahmagupta product.

When dealing with cryptosystems whose security is based on the DLP, the
computational bottleneck is the evaluation of the exponentiation, which is usu-
ally implemented with a square–multiply algorithm, eventually enhanced with
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Brahmagupta(xP , yP , e, d, q):

1: (x, y) = (1, 0)
2: bin e = binary(e)
3: for bit in bin e do
4: x = x2 + dy2 ∈ Fq

5: y = 2xy ∈ Fq

6: if bit = 1 then
7: x = xxP + dyyP ∈ Fq

8: y = xyP + yxP ∈ Fq

9: end if
10: end for
11: return (x, y)

Modified More(m, e, d, q):

1: N,D = 1, 0
2: bin e = binary(e)
3: for bit in bin e do
4: N = N2 + dD2 ∈ Fq

5: D = 2ND ∈ Fq

6: if bit = 1 then
7: N = Nm+ dD ∈ Fq

8: D = N +Dm ∈ Fq

9: end if
10: end for
11: return N/D ∈ Fq

Figure 2: square–multiply algorithm with the Brahmagupta product (left) and
modified More algorithm for Rédei polynomials (right).

a pre-computation phase. Therefore the total time is determined by the speed
of the single product, which is required in both square and multiply steps.

The Brahmagupta product described explicitly in (1) requires 5 products
and 2 additions, while the product on the parameters obtained in (6) requires 1
inversion, 2 products and 2 additions. The inversion is largely more expensive
than the additional 3 products required in the Brahmagupta product. There-
fore, in a comparison of square–multiply implementations, the first one is the
most efficient. However, when d is a non–square, the product (6) can be evalu-
ated exploiting the Rédei rational functions. They are introduced over the real
numbers by means of the powers

(m+
√
d)n = An(m, d) +Bn(m, d)

√
d,

which define two sequences of polynomials whose ratios provide the Rédei ra-
tional functions

Qn(m, d) =
An(m, d)

Bn(m, d)
,

with m, d ∈ Z r {0} and d non–square. Observing that

Q1(m, d) = m and Qn1+n2(m, d) = Qn1(m, d)�d Qn2(m, d),

we have
m�de = Qe(m, d).

Clearly, the above definition can be easily adapted over finite fields. In [19],
the author proposed an algorithm for evaluating the Rédei rational function
Qn(m, d) with complexity O(log n) considering additions and multiplications
over a ring, and in [5], the authors improved the performance of this algorithm.
The obtained algorithm is detailed in Fig. 2, where it is compared with the
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KeyGen(n):

1: q ←$ {0, 1}n power of a prime
2: d←$ Fq with χq(d) = −1
3: G←$ Cd(Fq) of order q + 1
4: sk ←$ {2, . . . , q}
5: H = G⊗dsk ∈ Cd(Fq)
6: pk = (q, d,G,H)
7: return pk, sk

Encrypt(msg, pk):

Require: msg < q
1: y ← msg
2: x =

√
1 + d y2 ∈ Fq

3: r ←$ {2, . . . , q}
4: C1 = G⊗dr ∈ Cd(Fq)
5: C2 = H⊗dr ⊗d (x, y) ∈ Cd(Fq)
6: return C1, C2

Decrypt(C1, C2, pk, sk):

1: (x, y) = (C⊗dsk
1 )−1⊗dC2 ∈ Cd(Fq)

2: msg← y
3: return msg

Figure 3: ElGamal PKE scheme with the cyclic group (Cd(Zq),⊗d

)
of order

q + 1. Exponentiations are realized with the square–multiply algorithm with
the Brahmagupta product.

square–multiply algorithm with the classical Brahmagupta product. In partic-
ular, the two algorithms share the quantity of operations at each step except
for steps 7/8, where the Brahmagupta version requires an additional product,
and step 11, where the modified More algorithm requires a final inversion.

Thus, from an efficiency point of view, the two algorithms are comparable.
The main advantage in adopting the parameterization and the modified More
algorithm is that the size of the data is halved because they are elements of Fq

and not of Cd(Fq).

5 Public-key encryption with the Pell hyperbola

In this section, we present and compare three different PKE schemes based on
the ElGamal scheme with Pell hyperbolas over a finite field Fq. In particular,
we exploit the group on the Pell hyperbola Cd(Fq) with d non–square and the
Brahmagupta product with (1, 0) as identity, as well as the parameterization
presented in Section 3. In the following, it is useful to take q = p prime and
p = 2p′ − 1 with p′ prime in order to avoid small subgroups.

5.1 ElGamal with the Pell hyperbola

The first algorithm is detailed in Fig. 3. Given q power of a prime n bits long
(step 1), the order of the cyclic group is q − χq(d) = q + 1. After choosing,
in step 2, d ∈ Fq, a random generator G of Cd(Fq) is taken in step 3. Then
the algorithm proceeds by taking a random exponent sk (step 4) and obtaining
a public point H ∈ Cd(Fq) through the square–multiply algorithm with the
Brahmagupta product (step 5). The public key contains q, d and the points G
and H, while the secret key is the exponent sk used to obtain H from G. In the
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KeyGen(n):

1: q ←$ {0, 1}n power of a prime
2: d←$ Fq with χq(d) = −1
3: g ←$ Pd,q of order q + 1
4: sk ←$ {2, . . . , q}
5: h = g�dsk ∈ Pd,q

6: pk = (q, d, g, h)
7: return pk, sk

Encrypt(msg, pk):

Require: msg < q
1: r ←$ {2, . . . , q}
2: c1 = g�dr ∈ Pd,q

3: c2 = h�dr �d msg ∈ Pd,q

4: return c1, c2

Decrypt(c1, c2, pk, sk):

1: msg = −c�dsk
1 �d c2 ∈ Pd,q

2: return msg

Figure 4: ElGamal PKE scheme with the cyclic group
(
Pd,q,�d

)
of order q+ 1

of the parameters of Cd(Fq). Exponentiations are realized with the modified
More algorithm.

first step of the encryption algorithm, the message determines the y coordinate
of a point, while in the second step the corresponding x is chosen under the
condition (x, y) ∈ Cd(Fq). Since such a point could not exist, some bits of y
can be kept variable by reducing the maximum length of the message. The
ciphertext consists of two points C1 and C2. After taking a random exponent r
in step 3, it is used in step 4 to obtain C1 through the exponentiation with the
Brahmagupta product with base the public generator G. In step 5, the point
C2 is determined as the Brahmagupta product of H⊗dr with the point (x, y)
representing the message. During the decryption, the point (x, y) is retrieved as
the Brahmagupta product of the inverse of C⊗dsk

1 with C2 (step 1). From the
obtained y coordinate, the original message is recovered in step 2. In particular,
this implementation is formally equivalent to the ElGamal PKE scheme with a
cyclic subgroup of order q + 1 of Fq2 [17].

5.2 ElGamal with the group of parameters

The second algorithm is described in Fig. 4 and consists of the ElGamal PKE
scheme with the cyclic group

(
Pd,q,�d

)
. A power of a prime q of n bits is taken

in step 1 and the order of the cyclic group is still q − χq(d) = q + 1. In step 2,
a random non–square d ∈ Fq is taken. After choosing a generator g ∈ Pd,q in
step 3 and a random exponent sk in step 4, a parameter h = g�dsk is evaluated
in step 5 with the modified More algorithm. The public key consists of q, d and
the parameters g, h, while the secret key is the exponent sk. The encryption
considers the message as a parameter msg ∈ Pd,q. Step 1 takes a random
exponent r, which is used in step 2 to obtain the parameter c1 through the
modified More algorithm for the exponentiation. The second parameter c2 is the
result of the parameter product between h�dr and msg. Finally, the ciphertext is
the pair of parameters (c1, c2) and consequently it requires half of the space than
in the previous algorithm. The decryption is straightforward. It retrieves the
message as the parameter product between the inverse of c�dsk

1 (which is simply
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KeyGen(n):

1: q ←$ {0, 1}n power of a prime
2: d ∈ Fq minimum with χq(d) = −1
3: g ←$ Pd,q of order q + 1
4: sk ←$ {2, . . . , q}
5: h = g�dsk ∈ Pd,q

6: pk = (q, d, g, h)
7: return pk, sk

Encrypt(msg, pk):

Require: msg ≤ (q − 1)2

1: (x, y)← msg

2: d′ = x2−1
y2 ∈ Fq with χq(d′) = −1

3: m = π−1d′ (x, y) = x+1
y ∈ Pd′,q

4: r ←$ {2, . . . , q}
5: s =

√
d′/d ∈ Fq

6: c1 = (gs)�d′r ∈ Pd′,q

7: c2 = (hs)�d′r �d′ m ∈ Pd′,q

8: return c1, c2, d
′

Decrypt(c1, c2, d
′, pk, sk):

1: m = (−c�d′sk
1 )�d′ c2

2: msg← πd′(m) =
(

m2+d′

m2−d′ ,
2m

m2−d′

)
3: return msg

Figure 5: Alternative ElGamal PKE scheme with the cyclic group
(
Pd′,q,�d′

)
of order q + 1 and d′ part of the ciphertext. Exponentiations are realized with
the modified More algorithm.

its opposite) and c2. Because of the comparison between the exponentiation
algorithms in Section 4, the computational time is comparable with that of the
ElGamal scheme with the points of the Pell hyperbola. However, the public key
and the ciphertext require less space because they contain parameters instead
of coordinates.

5.3 ElGamal with the isomorphisms

The third algorithm is an alternative version of ElGamal PKE scheme with the
use of the parameters. The differences are due to the exploitation of the explicit
isomorphisms between Pell hyperbolas with different d. The algorithms are de-
scribed in Fig. 5. The key generation is analogous to the previous one, except for
the smallest non–square d taken in step 3, which is used for the exponentiation
in step 6 and then included in the public key. The main differences are in the
encryption: the maximum length of the message can be doubled with respect to
the previous algorithms, because it is used in step 1 to obtain the coordinates
of a point (x, y) ∈ Fq × Fq, e.g., by mapping the first half of msg in x and the
second half in y. From this point, step 2 searches for a non–square d′ ∈ Fq such
that (x, y) ∈ Cd(Fq). If necessary, some of the bits of x can be kept variable
so that such a d′ can be found. Then, in step 3, the parameter m related to
the point is obtained through the parameterization from Eq. (7). In step 4 a
random exponent r is chosen. Now, since the public key contains parameters
of points of Cd(Fq), the isomorphism between Pell hyperbolas δd,d′ is exploited.
In particular, the version between the groups of parameters is required. Thus,
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Sec. FFC ECC Cd(Fq) Pd,q πd′ , δd,d′
80 1024 160 512 512 512
112 2048 224 1024 1024 1024
128 3072 256 1536 1536 1536
192 7680 384 3840 3840 3840
256 15360 512 7680 7680 7680

Table 1: Field size in bits for different DLP–based cryptosystems depending on
the cyclic group and the classical security strength in bits.

supposing d′ = ds2, δd,d′(x, y) = (x, y/s) gives the explicit group isomorphism(
Pd,q,�d

) ∼−−→
(
Pd′,q,�d′

)
,

m 7−→ ms,
(8)

which is used to obtain gs and hs to be used for the exponentiations with
�d′ . In step 5, the factor s =

√
d′/d ∈ Fq can always be evaluated because

d′ and 1/d are non–squares and their product is a square. Steps 6-7 evaluate
the parameters c1, c2 as in the previous algorithm but with the basis obtained
from the isomorphism with the factor s. The ciphertext contains c1, c2 and also
the non–square d′ used in the calculations. The setting of the decryption is
analogous to the previous case but, after evaluating the product between the

inverse of c
�d′sk
1 and c2 (step 1), the message must be retrieved from the point

related to the obtained parameter (step 2). The main advantage in adopting
this algorithm is the doubled length of the message with a cost of less than
double operations and also the decreased keys and ciphertext sizes.

6 Security and performance

In this section some results about security, data size and computational costs
are presented.

6.1 Security

Since all the introduced cryptosystems are variants of the classical ElGamal,
security against chosen–plaintext and chosen–ciphertext attacks is achieved as
in the standard scheme. However, they also remain insecure against adaptive
chosen–ciphertext attacks, so that in these scenarios a padding of the message
is required.

Looking at the security strength for the DLP–based cryptosystems, it relies
on the adopted cyclic group. In particular, since in all the introduced schemes
the parameter d ∈ Fq is a non–square, there is an explicit group isomorphism
between

(
Cd(Fq),⊗d

)
and the multiplicative subgroup G ⊂ F×q2 of order q + 1

[17]. In addition, this is true also for
(
Pd,q,�d

)
through πd. Thus, the DLP

related to the Pell hyperbola can be reduced to that in a finite field that, with
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Formulation par pk sk msg c1, c2
FFC 2n n n n 2n

2048 1024 1024 1024 2048
ECC 6n 2n n n 4n

960 320 160 160 640
Cd(Fq) 4n 2n n n 4n

2048 1024 512 512 2048
Pd,q 3n n n n 2n

1536 512 512 512 1024
πd′ , δd,d′ 2n n n 2n 3n

1024 512 512 1024 1536

Table 2: Data–size in bits for ElGamal with FFC, ECC, Cd(Fq), Pd,q and the
alternative formulation, depending on the size n of q and for 80 bits of security.

respect to the standard security strengths from [2] for ElGamal in Finite Field
Cryptography (FFC), has halved size of q.

The comparison of the size of q for FFC, ECC and the introduced cryp-
tosystems based on the Pell hyperbola is detailed in Table 1, where the fourth
column refers to the formulation in Fig. 3, the fifth to Fig. 4 and the last to
Fig. 5. Despite the sizes of the fields in Pell–based cryptosystems are halved
with respect to those in FFC, the sizes in ECC still remain the smallest. Given
these security levels, it is possible to compare the proposed cryptosystems with
the classical ones in terms of data–size and performance.

6.2 Data–size

Table 2 collects the size of the data involved in the various ElGamal formula-
tions. In particular, the public key is divided in two parts: the public parame-
ters, i.e., the data required for the description of the cyclic group and one of its
generators, that can be used by different users, and the actual public key (the
element h or the point H). The other collected values are the size of the secret
key, the maximum message length and the bit–length of the ciphertext (that
for ElGamal is a pair of elements or points). The considered formulations are,
in order from top to bottom, the classical ElGamal scheme in FFC and ECC,
and the three cryptosystems based on the Pell hyperbola and the group of its
parameters. For each case, the table shows the data–size depending on the size
n of the cardinality q of the related finite field (taken from Table 1) and the
values for 80 bits of security strength.

The formulation with Cd(Fq) in the third row has the same size of that
in FFC (first row) in terms of parameters, public key and ciphertext, but the
maximum message length is halved, so that in a fair comparison its encryption
and decryption should be run twice, and the ciphertext length becomes the
double of that in the first row. Despite this drawback, a performance comparison
could be interesting since q has still halved size with respect to FFC.

Looking at the fourth row, i.e, at the formulation with Pd,q, all the sizes are
half of those for FFC, except for the bit–length of the parameters which is still
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smaller. Again, when fixing the same message length, two runs of Enc and Dec

are required so that the size of the ciphertext is doubled and becomes equal to
that in the first row. However, with respect to the previous formulation, the
public key has half the size and calculations are still faster than in FFC since q
is smaller.

Finally, when comparing the formulation in the fifth row with the classical
FFC, its parameters and keys require half the bits, and the ciphertext is smaller
for the same maximum message length.

Despite the formulation in ECC (second row) is competitive for its smallest
data, when fixing the maximum message length, its parameters and keys main-
tain the smallest size, but the ciphertext length grows as that of the formulation
with Cd(Fq). In particular, the ratio with the length of the message is 4, while
in the first and fourth row the ratio is 2 and the best value is 1.5 corresponding
to the last proposal.

In conclusion, the formulation in the last row is the best proposal in terms
of information encrypted.

6.3 Performance

The last study concerns the performance of the ElGamal formulations and con-
sists in collecting the elapsed times of a simple implementation in Python of
each of the algorithms run on the cluster of the DISMA at Politecnico of Turin,
on a single CPU with 46G of RAM allocated. For each level of security strength
and cryptosystem, the times shown in Table 3 are the means of 10 randomly
generated instances, whose times are taken as the minimum of 10 identical runs.
The formulations are compared for different security strengths each with max-
imum message length fixed. Following considerations from the analysis on the
data–size, this results in repeating encryption and decryption k times for ECC,
where k is the ratio between the maximum message length for FFC and ECC
(e.g., for 80 bits of security, 1024/160 = 6.4 so that k = 7), and 2 times when
using directly Cd(Fq) or Pd,q. When working with a finite field Fq, the case
with q prime is considered, and the bit–length n of q depends on the standard
security strengths, assuming the values obtained in Table 1.

The times for the key generation algorithm do not consider the generation of
the public parameters, i.e., the cyclic group and one of its generators, e.g., steps
1-3 in Fig. 3, Fig. 4 and Fig. 5. This because they can be pre–computed and
used by different users, so that the collected times consider only the generation
of private and public key, i.e., a single exponentiation.

Columns 3 and 5 show that the key generation performs similarly for FFC
and ElGamal with Cd(Fq), despite the latter is generally a bit faster. The for-
mulation with Pd,q in the sixth column is generally at the third place, beaten by
the version that exploits the change of parameter d described in Fig. 5 (column
7). ECC in the fourth column is less efficient at lower security strengths but,
thanks to the good scalability of elliptic curves, works better than any other
formulation starting from the third level of security strength (128 bits).
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Sec. Alg. FFC ECC Cd(Fq)× 2 Pd,q × 2 πd′ , δd,d′
80 Gen 0.011079 0.028271 0.011713 0.009781 0.007524

Enc 0.022311 0.393407 0.059983 0.040459 0.028152
Dec 0.012183 0.194531 0.023631 0.020472 0.010203

112 Gen 0.074718 0.056586 0.073778 0.056865 0.038527
Enc 0.149400 1.194561 0.364686 0.229299 0.164122
Dec 0.077622 0.567866 0.148194 0.115962 0.057106

128 Gen 0.233983 0.075437 0.227347 0.171958 0.112873
Enc 0.467730 1.818186 1.103675 0.689103 0.496599
Dec 0.239429 0.903710 0.454805 0.347872 0.171190

192 Gen 3.188959 0.185410 2.811594 2.127992 1.372381
Enc 6.372422 7.454103 13.791595 8.525471 6.291258
Dec 3.218019 3.718247 5.630895 4.273549 2.103753

256 Gen 22.874051 0.365562 18.155630 13.841428 9.519104
Enc 45.766954 22.052779 87.457496 55.563741 42.658508
Dec 22.981310 10.965318 36.287580 27.792128 14.464945

Table 3: Average times in seconds for 10 random instances of ElGamal with
FFC, ECC, with Cd(Fq), Pd,q and the alternative formulation, for fixed message
length, depending on the security strength.

This advantage is a bit attenuated for encryption and decryption: in partic-
ular, ECC is the less efficient formulation for the first four levels and becomes
comparable to the others for 128 bits of security. However, for the highest level,
the good scalability of elliptic curves allows to increase the efficiency of the two
algorithms, which become the fastest. Among the others, ElGamal with Cd(Fq)
is generally the worst option, followed by the formulation with Pd,q. For the
first four levels of security, the formulations in FFC and from Fig. 5 are the
most efficient, with encryption slightly better for the former and decryption
more efficient for the latter.

In conclusion, the first two new cryptosystems remain interesting from the
theoretical point of view and they could be studied further to obtain better per-
formances. On the other hand, the new ElGamal formulation that exploits πd′

and δd,d′ introduced in Fig. 5 seems to be a very powerful alternative for DLP–
based cryptosystems: its performance is comparable with the classical ElGamal
in FFC for all security levels and also with the ECC version up to the fourth level
of security, while it maintains the highest ratio of message/ciphertext length.
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