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I. INTRODUCTION

The Industrial Internet of Things (I-IoT) is becoming es-
sential for companies to optimize their production processes.
Adding distributed intelligence along the production lines
can lead to consistent cost savings. Machine learning can
be a crucial tool for supervising products and production
processes [1]. It is possible to generate models that can
quickly inspect the quality of a product (e.g., the presence or
absence of a correct label on a bottle or the classification of
defects on the surface) with statistical methods and databases,
thus avoiding possible waste in production lines [2]. So far,
cloud-based architectures have been used for many industrial
inspection applications by exploiting servers with unlimited
computing resources to carry out complex data processing.
The cloud computing approach usually employs with high-
resolution industrial cameras providing high-quality images for
accurate analysis. However, even though they provide superior
service quality, they are expensive solutions in terms of cost
and performance [3].

This approach is also highly conditioned by the network
quality, which can introduce a significant latency or even lead
to service degradation if the connection is lost. Also, scalabil-
ity is affected as more sensors generate more pressure on the
cloud infrastructure (i.e., bandwidth and data storage require-
ments). A solution can be represented by low-cost intelligent
electronic devices, as such embedded platforms can guarantee
a reduced development cost without affecting the quality of
service [4]. Using the computational capacity that embedded
systems have achieved, it is possible to design complex visual
inspection systems – powered by deep learning algorithms
– directly on intelligent sensors and actuators, creating the
so-called Tiny Machine Learning (tinyML). TinyML expands
the so-called edge computing paradigm bringing complex data
processing closer to the data source. This approach improves
the application’s responsiveness and efficiency, and reduces the
amount of data transmitted [5]. Thus, cloud computing limi-
tations associated with data throughput and costs are avoided.
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In-pixel processing architectures [6] could be used in the near
future to further reduce the amount of data exchange between
the sensor and the nearby microcontroller. Also, event cameras
can improve system’s efficiency by transmitting only detected
conditions in the image (i.e., events in a scene). However, these
solutions are still under development and unavailable on the
market.

This paper presents the design, implementation, and eval-
uation of an automatic visual inspection I-IoT system based
on image data processing with tinyML, designed for large-
scale product quality inspection. We addressed the specific
requirements of a company leader in the production of plastic
parts through the injection molding process. They provided the
dataset used to develop the deep learning models, the specifica-
tions about the responsiveness of the visual inspection system,
and the list of possible anomalies during the process. For this
reason, this work consists of a unique scenario with real case
problems. The system is currently used in a dozen of the
company’s machines for long-time and large-scale testing. Two
convolutional neural networks (CNNs) for image classification
were trained, tested, and compared, namely MobileNetV2 [7]
and SqueezeNet [8]. Then, the CNN models were compressed
and deployed in the target platform, namely OpenMV Cam H7
Plus, for image processing and neural classification directly on
the microcontroller unit (MCU). Results highlight the perfect
fit for this use case due to their optimized structure for
resource-constrained environments.

In particular, the main contributions of this paper are:

• The design of a cyber-physical system for product quality
inspection, capable of detecting the defects of plastic
molded objects (Figure 1).

• The design, optimization, and deployment of tiny neural
networks (NNs) for object classification on resource-
constrained cameras.

• The creation of a custom dataset used to train and test
different NN architectures.

• The evaluation and comparison of performances between
the two tiny NNs, namely MobileNetV2 and SqueezeNet.

• The system characterization by examining its execu-
tion time and energy consumption during image pre-
processing and classification.

The rest of the paper is organized as follows: in Section II
related work is discussed. Section III describes the system
architecture, while Section IV presents the developed tiny NNs
and the used optimization algorithms. In Section V the overall
system’s implementation is discussed, highlighting the pre-
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Fig. 1: Picture of the system’s setup. The top camera is in the
center of the ring light. Each camera is located at a distance
of 25 cm from the working plane to ensure in-focus objects.
Side cameras have an orientation angle of 30° with respect to
the vertical axes.

processing algorithm, the dataset acquisition, the NN training,
and the deployment in the OpenMV Cam H7 Plus. Section VI
discusses the results acquired and the system characterization.
Finally, Section VII closes this paper with some conclusions
and future work.

II. RELATED WORK

A. Edge computing

Edge devices with ML capabilities are recently gaining
interest in designing intelligent IoT infrastructures that limit
data exchange to a few bytes. AI edge processing focuses on
moving the inference part of the AI workflow on the device
by keeping data locally to improve latency and bandwidth [9].
The authors in [10] discuss the importance of bandwidth
reduction. They present a deep-learning base algorithm for
filtering surveillance videos, to transmit and store only the
meaningful footage. Other applications – such as autonomous
driving – have tight latency constraints, while others like
voice/speech and face recognition need to consider users’ pri-
vacy. Keeping AI processing on the edge device circumvents
privacy concerns while avoiding bandwidth, latency, and cost
issues [11].

B. Industrial quality inspection

The main challenges in using ML algorithms in industrial
manufacturing environments are the limited processing capa-
bilities, the use of big data, memory and energy constraints,
and, sometimes, real-time processing [12]. Recent technolo-
gies for industrial visual inspection are based on line-scan
cameras, spectrometers, or high-resolution cameras. These
systems are expensive and require a significant amount of
time to inspect one piece [13]. However, companies that want
to offer high-quality products and optimize their production
processes or costs need comprehensive and reliable quality

inspection tools. In [14], a framework for the detection of glass
bottle bottom defects is implemented using a combination of
the visual attention model and wavelet transformation. The
system achieves a recall of around 92%, requiring only 535
ms of computational time on a low-performance laptop CPU.
The possible quality improvements in industrial processes are
also highlighted in [15]. By exploiting a machine learning
vision-based classification model, the authors highlight how
the histogram-based droplet detection and micrograph clas-
sification approach can be exploited to determine when the
emulsification process is completed automatically.

However, inspection systems are usually deployed in un-
reachable positions, making maintenance difficult. Thus, such
systems must be standalone and used with the ”deploy and
forget” approach. Also, energy resources play a fundamental
role in ensuring the system’s reliability. For those reasons,
research in machine learning has increasingly shifted to move
data evaluation where it is generated, reducing and optimizing
the used resources. In [12], the authors propose a quality
inspection system that uses supervised ML algorithms in edge
devices. This work supports manufacturing companies with
a predictive model-based quality inspection system to predict
the final product quality based on the recorded parameter of
the process.

On the other hand, deep learning methods are data-hungry:
they need a large amount of annotated data which is labor-
intensive and time-consuming. As a workaround to these
limitations, the authors in [16] have proposed a segmentation-
aggregation framework to train object detectors from annotated
visual data for automatic industrial visual inspection. They
have limited the data annotation to label the image class
and avoid the expensive task of the bounding box coordinate
annotation. For this purpose, developing an accurate dataset for
ML training is crucial to obtaining an accurate and efficient
system.

C. Deep learning architecture and optimization techniques

In the last few years, fostered by new-generation microcon-
trollers, multiple neural network architectures were developed
for resource-constrained devices [17]. Thanks to the study
of innovative pruning and quantization techniques [18], it is
possible to drastically reduce the ML model complexity while
maintaining the same prediction accuracy. By combining those
traditional techniques with more recent Neural Architecture
Search (NAS) [19], and Federated Learning [20] approaches,
it is possible to deploy AI-based systems in MCUs with
impressive low energy consumption and high accuracy [21]. In
the literature, we can already find multiple implementations,
like MobileNetV2 [7] and SqueezeNet [8] and, more recently,
new cutting-edge deep architecture, namely MobileNetV3
small [22], EfficientNet [23], and MCU Net V1 and V2 [21],
[24]. In our proposed implementation, we have preferred to
stick with the well-investigated MobileNetV2 and SqueezeNet
as the preliminary results obtained satisfied the requirements
of this application. We have thus preferred focusing on the
deployment and long-term evaluation of the whole system in
a real industrial large-scale test to assess the real performance
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Cloud 
Gateway

Fig. 2: System architecture. It consists of a conveyor belt,
a ToF sensor that detects the presence of an object, three
MCU-based cameras responsible for image processing and
classification, and the cloud gateway which retrieves or rejects
the piece according to the classification results.

Fig. 3: Possible defects of the objects. From left: conforming
object, deformed object, polluted object, object with stains,
and incomplete object.

of the system. This has allowed us to optimize the selected net-
work further and achieve the results presented in Section VI.

III. SYSTEM ARCHITECTURE

The architecture of the visual inspection system is shown in
Figure 2. The workflow consists of positioning the produced
items on a conveyor belt and moving them until they reach
three cameras that acquire pictures of the items from different
perspectives. A ToF (Time of Flight) sensor is placed on the
side of the belt and alerts the cloud gateway that the object has
arrived at the exact location. The gateway stops the belt, and
the image classification phase begins. By using deep neural
networks (DNN) and computer vision algorithms, the MCU
on the camera classifies objects, like those in Figure 3, as
conformant, with shape problems, or with color anomalies.
Inferences and detection results are sent to the gateway,
which controls and rejects the part if it does not meet the
requirements. In detail, this process can be divided into four
steps.

A. Item Upload

The first phase consists of sliding the object on the conveyor
belt. The rotation of the object during the feeding has no
constraints, so the components can assume a random rotation.
The conveyor belt color was carefully chosen as ”matte black”
to avoid unwanted light reflections that can generate image
distortions and lead to wrong classifications.

B. Item Movement
The object slides on the conveyor belt, which is moved

by a stepper motor positioned at the roller. The motor is
controlled by the M4 core of the STM32MP1 MPU through
the X-NUCLEO-IHM03M1 expansion board. Moreover, an X-
NUCLEO-6180XA1 expansion board detects the presence of
the items on the belt through a ToF sensor. The X-NUCLEO-
6180XA1 also measures the ambient light, used to derive
the light conditions when tagging and classifying items. Both
expansion boards are connected to the cloud gateway.

C. Object Classification
Object classification is carried out with an edge computing

approach by the arrangement of three OpenMV H7 Plus
cameras, as shown in Figure 1. Two different models are
used for the classification of shape and color anomalies. The
position and the number of the cameras were chosen based on
the types of defects to detect. Anomalies mainly occur only
on 5 of the 6 faces of the object. This means that the field of
view (FoV) of a single camera cannot cover all the object’s
faces. The three cameras are placed in three different locations
to ensure that all faces are within the cameras’ FoV. A ”Top
camera” is positioned orthogonally to the belt and focuses on
the 2D plane of the object. The other two cameras, called ”side
cameras”, are placed in a specular position with an orientation
angle of 30° with respect to the vertical axes. They are placed
on either side of the object and expand the field of view on
the remaining four faces. The distance of the lens from the
object is 25 cm to ensure focus objects. Moreover, the 20
degrees FoV lens guarantees the inclusion of an item within
a picture with some extra space around it to compensate for
possible delays when stopping the belt. The three cameras
take three different images of the component on the belt.
These images are the input of DNNs deployed on the MCU
responsible for classifying shape and color imperfections. The
”shape-defect” anomalies occur on the perimeter of the object.
It follows that the top camera is best suited to select this type
of nonconformity. The side cameras are used to detect color-
defected objects.

D. Post-processing
The cloud gateway, according to the value obtained from

the three cameras, enables the conveyor belt motor when the
objects are conformant. On the contrary, if the result of the
prediction is a non-conforming object, it proceeds to eliminate
the component by activating a plunger.

IV. TINY NEURAL NETWORKS

A. Network Architecture and Hardware Requirements
Most DNN architectures require high computational ca-

pacity, focusing the deployment on specific high-performance
computational units. In this application, the available resources
are limited because the target board is an MCU. This lead
to a challenge in researching and optimizing DNNs. Two
of the best-performing DNNs specifically designed for em-
bedded systems are chosen, namely MobileNetV2 [7] and
SqueezeNet [8].
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TABLE I: Topology of MobileNetV2. ”n” denotes the replicas
of the same layer, ”c” the number of output channels, ”s” the
stride, and ”t” the expansion factor [7].

Input Operator t c n s
224× 224× 3 conv2d - 32 1 2
112× 112× 32 bottleneck 1 16 1 1
112× 112× 16 bottleneck 6 24 2 2
56× 56× 24 bottleneck 6 32 3 2
28× 28× 32 bottleneck 6 64 4 2
14× 14× 64 bottleneck 6 96 3 1
14× 14× 96 bottleneck 6 160 3 2
7× 7× 160 bottleneck 6 320 1 1
7× 7× 320 conv2d1× 1 - 1280 1 1
7× 7× 1280 avgpool7× 7 - - 1 -
1× 1× 1280 conv2d1× 1 - k - -

1) MobileNetV2: MobileNetV2 is an upgrade of the less
recent MobileNet. The idea consists of using a new tech-
nique of convolution called depthwise separable convolution.
It consists of replacing a full convolution operator with a
factorized version that splits convolution into two separate
layers: a depthwise convolution, and a pointwise convolution.
MobileNetV2 also introduces two new types of calculations:
the inverted residuals, and the linear bottleneck. They modify
the network topology and obtain better performance and
benchmarks. These operations compose the new block which
includes three convolution layers. The first layer is a point-
wise convolution that expands the low-dimensional feature
map to a higher-dimensional space, followed by a depthwise
convolution that implements spatial filtering of the higher-
dimensional tensor with a ReLu activation function. Then,
another pointwise convolution is added to the last feature map
to lower the dimensional space. It is followed by a linear
activation function to avoid the loss of information caused
by the projection of the last convolution. The overall topology
is defined in Table I [7].

2) SqueezeNet: SqueezeNet is an NN designed for systems
with low computational capacity. The developers goal was
to create a network that maintains competitive accuracy by
reducing the number of parameters. These results are achieved
with three strategies:

• Replacing 3x3 filters with 1x1 filters reduces the network
size. This setting involves 9x fewer parameters and per-
mits capturing correlations amongst near pixels.

• Reduce the number of inputs for the remaining 3x3
filters by feeding “squeeze” layers into “expand” layers
as shown in Figure 4 (called “Fire Module”).

• Downsample late in the network so that convolution
layers have large activation maps, thus increasing the
network accuracy.

“Squeeze” layers are convolution layers that are made up
of only 1x1 filters; “expand” layers are convolution layers
with a mix of 1x1 and 3x3 filters. SqueezeNet starts with
a convolution layer, followed by 8 fire modules, and ends
with a final convolution layer. The number of filters in the fire
modules increases progressively throughout the network [8].

Fig. 4: SqueezeNet micro-architectural view of convolution
filters and fire module [8].

B. Model Compression

Model compression is a fundamental step to deploy deep
learning models in resource-constrained devices. In this ap-
plication, three compression techniques were used to make
possible the deployment of MobileNetV2 and SqueezeNet on
the OpenMV Cam H7 plus. Even though two datasets are
used to compose the visual inspection system for color and
shape anomalies, they share the same model architecture and
input image size; therefore, the number of parameters and the
required resources are the same.

1) Parameter minimization: DNN’s parameters are the sum
of the weights and biases of each layer. Convolution or
fully connected layers present a high number of parameters.
Therefore, the number of parameters is proportional to the
number of convolution layers and affects the final model
dimensions. It is possible to reduce the number of layers to
obtain a lighter model. However, this operation can reduce
the overall accuracy, especially if the network becomes too
shallow. Starting from this idea, MobileNetV2’s blocks are
reduced from 17 to 14, and the fire modules of SqueezeNet
are reduced from 8 to 5. The effect of parameter optimization
is presented in the last two rows of Table IV.

2) Pruning: after training the DNN models with the opti-
mized architectures, pruning is applied to optimize the model
complexity further. It permits cutting off weights irrelevant for
prediction purposes (e.g., weights close to zero). We used the
”Polynomial Decay” method to apply sparsity to the DNN.
This method uses a range of sparsity values to mask weights,
starting from those with less significant values and increasing
them until the final sparsity is reached. In this case, both DNNs
were pruned with a sparsity range of [20, 50] expressed as a
percentage of removed weights, obtaining a model composed
of 50% of the original parameters. This threshold was chosen
to not lose accuracy. The result of the pruning operation is
shown in Table II.

3) Quantization: quantization aims to reduce the NN model
size by replacing the 32-bit float model with an 8-bit repre-
sentation. This operation reduces size, storage, and memory

TABLE II: Number of parameters before pruning and number
of non-zero parameters (NNZ) after pruning.

Param. before pruning Sparsity NNZ after pruning
MobileNetV2 234 914 50% 117 457
SqueezeNet 120 930 50% 60 456
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peak usage during inference. Quantization is essential to
deploy DL models in MCU and improve hardware acceleration
latency and power efficiency. A model quantized with 8-
bit representation results in a model 4x smaller and 1.5x-4x
faster in computations. In this paper, weights, activations, and
network inputs and outputs were quantized. As a result, a ”full-
integer” model is obtained.

V. SYSTEM IMPLEMENTATION

A. Image Pre-processing

The pre-processing algorithm analyzes the images in the
camera MCU to highlight the relevant features useful for
classification purposes. In this use case, the object arrives
on a dark belt; thus, algorithms for background removal are
used to avoid light reflection problems. Moreover, the object
to classify may not be placed exactly in the center of the
acquisition window. This means that clipping can cause the
elimination of fundamental data for classification. For this
reason, the developed algorithm considers the component’s po-
sition within the image window and therefore avoids incorrect
clipping. Three well-known computer vision algorithms are
used: the ”Canny algorithm”, ”Blob detection”, and ”Otsu’s
method”. The pre-processing algorithm works as follows:

• Capture an image and create a copy.
• Conversion of the image from RGB565 to gray-scale.
• Canny algorithm to find the component contour.
• Search for blobs inside the Canny image.
• Blobs merging.
• Blob center computation.
• Check the position of the center to avoid wrong cropping.
• Image crop by taking as reference the obtained center.

The images are acquired by setting the sensor size to QVGA
resolution (i.e., 320×240). After the Canny algorithm, we
binary the image in the range [0,1] in which the pixels
with value 1 are the contours of the plastic component. The
Blob detection algorithm obtains different blobs of 1-pixel
size referred to each pixel with value 1. The blobs fusion
represents the four corners of the image, taking into account
their outermost positions. Once a single blob is obtained,
its center is calculated as a reference point for the crop to
avoid clipping. Then, images are resized into 160×160 size,
and the background is removed. The resulting images include
only the object and straighten every other pixel regarding the
background as a value of 0 in the RGB range. At this point,
Otsu’s method is used to find an optimal threshold to execute
background removal.

B. Dataset Acquisition

The collection of a robust dataset is a key step in DL
algorithm development. The three-camera arrangement uses
two different DNN models, thus, it is necessary to collect
two separate datasets: one for the top camera and one for
the side cameras. The two datasets are composed of images
pre-processed with the algorithm presented in Section V-A.

Figure 5 shows the results obtained by the pre-processing
algorithms in the top camera and side cameras, respectively. In

(a) (b) (c)

Fig. 5: (a) pre-processing on the top camera showing a
”conformant” component. (b) pre-processing done on the
side camera showing a ”color defected” component. (c) pre-
processing done on the side camera showing a ”conformant”
component.

particular, Figure 5a is related to the pre-processing result from
the top camera of a ”conformant” component. Figure 5b shows
a ”color defected” component obtained after pre-processing.
In this case, the background pixels and the stained part of the
component have a value of 0 in the RGB channels. The rest
of the image is in the RGB color space, where each pixel
can take any value in the range [0,255]. Figure 5c shows a
”conformant” component; therefore, despite the previous case,
no pixel value about the component is set to 0, but only the
background pixels.

The pre-processed images are sent to the cloud gateway
responsible for collecting the dataset. In this way, the camera
does not keep images in memory but sends them to the
gateway through the Remote Procedure Call (RPC) library
embedded in Micro-Python. This allows the camera to connect
to another device and execute remote procedure calls on the
camera. The complete dataset was acquired with the setup
shown in Figure 1. Each component was placed within the
field of view of the three cameras, with different orientations
and a minimum of random rotation to extend the heterogeneity
of the dataset. Then, through a GUI, each image is tagged by
selecting the class of the object.

More than 500 images were acquired for each camera in a
balanced manner (i.e., each class includes the same number
of images). Moreover, data augmentation was performed to
increase the dataset size. Rotation and translation are used
as image transformations for better generalizing the DNN’s
inputs. This operation is necessary to increase the number of
images and replicate the real scenario where components can
be placed in different positions and with minimal rotations in
the camera field of view. The dataset is augmented by rotating
the image in a range of [10, -10] degrees. However, this
process is only done concerning the datum of the top camera
because the two side cameras capture an image of the object
laterally, therefore in a perspective way. A rotation of the
image can cause distortion, thus, a wrong dataset optimization.

Given that the component can assume various positions, also
image translation is used as image transformation. Considering
that we are using square images with a rectangular object, the
translation along the image width was set to 4% of the total
(i.e., a random translation in the range [-9, 9] pixels). The
translation in amplitude is 10% of the total (i.e., a random
translation in the range [-22, 22] pixels along the height). The
dataset size is summarized in Table III and is organized in
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TABLE III: Overview of the dataset size for the top camera
and the side cameras after data augmentation.

160x160px Top Camera Side Camera
Conformant Shape Defected Conformant Color Defected

Train 3709 4068 2500 2409
Validation 1045 1145 691 672

Test 863 544
Total 10830 6816

TABLE IV: NN training parameters.

Network Architecture
SqueezeNet MobileNetV2

Batch size 32 32
Initial learning rate 10−5 10−5

Input image RGB 160×160 RGB 160×160
Optimizer Adam Adam

Loss function Binary cross-entropy Binary cross-entropy
Source framework Tensorflow Tensorflow

♯ of parameters - base model 723 522 412 770
♯ of parameters - modified model 337 090 176 386

sub-folders to simplify the label extraction.

C. Training

The training of MobileNetV2 (alpha parameter equal to
0.35) and SqueezeNet is carried out with the parameters
shown in Table IV. Model weights are initialized with random
values. The number of epochs was set by using the early
stopping callback by validation accuracy approach. This
technique permits stopping the training session when the
validation accuracy is below a certain threshold (i.e., 99.5%)
to be less prone to network overfitting. The model evaluation
is presented in Section VI-A.

VI. RESULTS AND EVALUATION

A. Tiny Neural Network Evaluation

1) Top Camera: Figures 6a and 6b show the training
results and validation accuracy of both architectures for the
top camera dataset. To reach the desired validation accuracy
value, MobileNetV2 and SqueezeNet need 25 and 38 epochs,
respectively.

2) Side Cameras: Figures 6c and 6d show the results of
the training session for the side camera dataset evaluated
with MobileNetV2 and SqueezeNet, respectively. In this case,
MobileNetV2 needs only 12 epochs to reach the desired
validation accuracy, while SqueezeNet does not reach the
set validation accuracy and uses the maximum number of
epochs to complete the train (i.e., 100). Figure 6c shows that
the validation loss value is low from the first epoch, which
implies a rapid growth of the training accuracy. On the other
hand, the plot in Figure 6d shows different negative peaks

TABLE V: Resources needed by the developed models to
perform inference on OpenMV Cam H7 Plus.

160x160px
Float32 model

(opt. parameters)
Optimized model

(pruning, quantization) Compress
FactorFlash (KB) RAM (KB) Flash (KB) RAM (KB)

MobileNetV2 635.29 1490 172.26 381.22 3.8 ×
SqueezeNet 1290 1780 334.35 455.25 3.9 ×

TABLE VI: Comparison of MobileNetV2 and SqueezeNet
performance for the top camera. ”Float 32” refers to the
model with optimized parameters, while ”Optimized” refers
to compressed models with pruning and quantization.

160x160px MobileNetV2 SquezeNet
Float32 Optimized ∆ Float32 Optimized ∆

Accuracy 99.5% 98.9% 0.6% 98.6% 98.4% 0.2%
Precision 99% 98% 1% 99% 99% 0

Recall 100% 100% 0 98% 98% 0
F-score 99.5% 99% 0.5% 98% 98% 0

in the validation accuracy due to the wrong weight update
during backpropagation. In this case, parameter optimization
has influenced the performance of SqueezeNet.

B. Top Camera Test

The top camera aims to classify ”conformant” and ”shape-
defected” objects. MobileNetV2 and SqueezeNet are evaluated
by considering accuracy, precision, recall, and f-score, as well
as the loss in accuracy throughout the optimization operations.
The test is conducted with 863 images, where 412 of them
are ”conformant” and 451 are ”shape-defected” images. Their
results are summarized in Table VI. Even though the models
are highly compressed, the loss in performance is negligible.

Figures 7a and 7b show the Grad-CAM heatmap of Mo-
bileNetV2 and SqueezeNet, respectively. Grad-CAM is a tool
to reveal zones where the network extracts features for classi-
fication. Here, the yellow circle highlights the shape anomalies
(i.e., a missing pin), while the red circle highlights the region
where most of the features are extracted by the deep learning
model. In this case, the DL model extracts most of the features
where the imperfection is located to produce the classification
result. The MobileNetV2 heatmap in Figure 7a shows that
only the image portion that includes the object, especially the
right side, is used for feature extraction. This leads to a more
generalized CNN, which processes almost the whole object
to classify shape defects. On the other hand, the SqueezeNet
heatmap in Figure 7b highlights only the image part related to
the anomaly (upper right corner). It means that the model is
specialized for this type of imperfection and cannot generalize
as MobileNetV2 does. Furthermore, it is crucial to minimize
false negatives (FNs) in an industrial visual inspection system
to avoid missing detection of defects. As shown in Table VI,
MobileNetV2 outperforms SqueezeNet achieving a recall of
100% (i.e., any FN is predicted during the test).

C. Side Cameras Test

Side cameras classify ”conformant” and ”color-defect” ob-
jects. The same evaluation for the top camera was conducted,
but with 544 images. Table VIII summarizes the results. In this
case, the comparison reveals good performance also with a dif-
ferent dataset, and the loss in accuracy due to the optimization
process is negligible. Figures 7c and 7d show the Grad-CAM
heatmap of a color-defected component of MobileNetV2 and
SqueezeNet, respectively. Here, the yellow circle highlights the
color anomalies (i.e., a stain), while the red circle highlights
the region where the deep learning model extracts most of
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(a) Training and validation accu-
racy of the MobileNetV2 architec-
ture for the top camera.

(b) Training and validation accu-
racy of the SqueezeNet architec-
ture for the top camera.

(c) Training and validation accu-
racy of the MobileNetV2 architec-
ture for the side camera.

(d) Training and validation accu-
racy of the SqueezeNet architec-
ture for the side camera.

Fig. 6: Training and validation accuracy for both networks and cameras.

(a) (b) (c) (d)

Fig. 7: Grad-CAM heatmap of MobileNetV2 and SqueezeNet
for the top camera ((a), and (b)), and side camera ((c), and
(d)), respectively.

the features. It is visible that feature extraction involves the
portion of the image where the defect is located. However,
Figure 7d confirms the worsening of the performance of
SqueezeNet. It highlights that most of the features useful for
classification are extracted from the region in the upper-left
corner, while features in the bottom-right corner are less useful
for classification purposes. This phenomenon does not occur in
the MobileNetV2 case (Figure 7c), where the whole region that
covers the object is used to extract features to classify color
anomalies. It means that MobileNetV2 can better generalize
color anomalies than SqueezeNet. Furthermore, MobileNetV2
outperforms Squeezenet by analyzing the FNs, achieving a
recall of 99% after the optimization process (i.e., only 1% of
the samples were classified as FN during the test).

D. Inference on Cameras

The developed NN models were deployed in the setup
shown in Figure 1. Their performance was evaluated by
considering the execution time and the energy consumption
of the two main tasks: pre-processing and classification. The
OpenMV Cam H7 Plus consumes 0.8 W in active mode.
The result is summarized in Table VII. The pre-processing
time remains the same for both architectures because this task
does not use DNN models. However, the top camera pre-

processing time is slightly higher than side cameras because
of the image binarization operation. MobileNetV2 outperforms
SqueezeNet for both top camera and side cameras, considering
the classification time and the energy consumption. As a result,
MobileNetV2 needs only 240 ms and 233 ms for the top
camera and the side camera, respectively, to process one image
and classify the object. Consequently, it consumes 192 mJ and
186 mJ for the top camera and side camera processing, respec-
tively. Moreover, the industrial molding machines, supported
by the developed system, take about 20 seconds to produce
two moles of 8 pieces. Thus, 240 ms to classify one piece is
enough to guarantee the continuous and smooth operation of
the production lines.

VII. CONCLUSIONS

High-accuracy product quality inspection is a fundamental
step in any manufacturing process. It permits to boost in pro-
duction yield and reduces production costs. By using machine
learning techniques, developers can automate and make the
process real-time. This paper presents the development and
study of an innovative sensor system for automatically inspect-
ing on-edge the quality of objects in large-scale production.
The system exploits three smart cameras trained to detect and
classify different anomalies in the components. Two different
DNN models – namely the MobileNetV2 and the SqueezeNet
– were trained and assessed, showing an accuracy of 99% and
98%, respectively. Thanks to the learning model optimization,
the system can achieve respectively 5 FPS and 2 FPS for the
two learning models while executing the evaluation on the
edge of resource-constrained smart cameras. Future work will
investigate new and innovative training techniques, like NAS,
and enhance some features by integrating continuous learning
functionalities to evolve the model automatically and extend
the set of anomalies detectable by the system. Moreover,
system’s efficiency will be improved by using cameras to
detect only relevant information directly from the imager,
avoiding useless processing of uninteresting pixels.
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TABLE VII: Execution time and energy consumption of the pre-processing and classification tasks for the top camera and the
side cameras.

160x160px
Top Camera

binarization=True
Side Camera

binarization=False
Pre-processing (ms) Classification (ms) Total (ms) Total Energy (mJ) Pre-processing (ms) Classification (ms) Total (ms) Total Energy (mJ)

MobileNetV2 125 115 240 192 118 115 233 186
SqueezeNet 125 390 515 412 118 390 508 406

TABLE VIII: Comparison of MobileNetV2 and SqueezeNet
performance for the side cameras. ”Float 32” refers to a
model with optimized parameters, while ”Optimized” refers
to compressed models with pruning and quantization.

160x160px MobileNetV2 SquezeNet
Float32 Optimized ∆ Float32 Optimized ∆

Accuracy 100% 99.6% 0.6% 98.4% 98.2% 0.2%
Precision 100% 100% 0 100% 100% 0

Recall 100% 99% 1% 96% 96% 0
F-score 100% 99.5% 0.5% 98% 98% 0

REFERENCES

[1] H. Chopra, H. Singh, M. S. Bamrah, F. Mahbubani, A. Verma, N. Hooda,
P. S. Rana, R. K. Singla, and A. K. Singh, “Efficient fruit grading
system using spectrophotometry and machine learning approaches,”
IEEE Sensors Journal, vol. 21, no. 14, pp. 16 162–16 169, 2021.

[2] J. Tao, Y. Zhu, F. Jiang, H. Liu, and H. Liu, “Rolling surface defect
inspection for drum-shaped rollers based on deep learning,” IEEE
Sensors Journal, vol. 22, no. 9, pp. 8693–8700, 2022.

[3] Z. Wang, J. Bai, X. Zhang, X. Qin, X. Tan, and Y. Zhao, “Base detection
research of drilling robot system by using visual inspection,” Journal of
Robotics, vol. 2018, 2018.

[4] D. L. Dutta and S. Bharali, “Tinyml meets IoT: A comprehensive
survey,” Internet of Things, vol. 16, p. 100461, 2021.

[5] R. Sanchez-Iborra and A. F. Skarmeta, “Tinyml-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits and Systems
Magazine, vol. 20, no. 3, pp. 4–18, 2020.

[6] Y. Zou, M. Gottardi, M. Lecca, and M. Perenzoni, “A low-power
vga vision sensor with embedded event detection for outdoor edge
applications,” IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp.
3112–3121, 2020.

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[8] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[9] L. Tsutsui da Silva, V. M. A. Souza, and G. E. A. P. A. Batista, “An open-
source tool for classification models in resource-constrained hardware,”
IEEE Sensors Journal, vol. 22, no. 1, pp. 544–554, 2022.

[10] K. Muhammad, T. Hussain, J. Del Ser, V. Palade, and V. H. C.
de Albuquerque, “Deepres: A deep learning-based video summarization
strategy for resource-constrained industrial surveillance scenarios,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 9, pp. 5938–5947,
2020.

[11] A. Albanese, M. Nardello, and D. Brunelli, “Low-power deep learning
edge computing platform for resource constrained lightweight compact
uavs,” Sustainable Computing: Informatics and Systems, vol. 34, p.
100725, 2022.
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