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ABSTRACT. We consider the Kazhdan-Lusztig � -polynomials, �	��
 ��
���� , indexed
by permutations ����� of ��� , where � contains a pattern of type ����� or ����� and � is
obtained from � by applying a transposition and an appropriate � -cycle. We prove,
using combinatorial techniques, that these polynomials are given by a closed prod-
uct formula. The case of permutations which contain a pattern of type ����� follows
from the others.

1. INTRODUCTION

The theory of the Kazhdan-Lusztig
�

-polynomials arises from the Hecke al-
gebra associated to a Coxeter group  (see e.g.[4], Chap.7) and was introduced
by Kazhdan and Lusztig ([5], Sect.2) with the aim of proving the existence of an-
other family of polynomials, the so-called Kazhdan-Lusztig polynomials. The

�
-

polynomials, as the Kazhdan-Lusztig polynomials, are indexed by pairs of ele-
ments of  and they are related to the Bruhat order of  . Most of the importance
of these polynomials comes from their applications in different contexts, such as
representation theory, topology and the algebraic geometry of Schubert varieties
(see e.g.[6], [11] and [1]). The importance of the

�
-polynomials stems mainly from

the fact that they allow the computation of the Kazhdan-Lusztig polynomials.
Although the explicit calculation of the

�
-polynomials is easier than that of the

Kazhdan-Lusztig polynomials, one encounters hard problems in finding closed
formulas for them, even when  is the symmetric group. In recent years purely
combinatorial ways to compute the

�
-polynomials have been found, (see, e.g.,

[3]). In particular these ways allow combinatorial reasoning and techniques to be
applied to the problem of finding explicit formulas for the polynomials of some
classes of permutations. Such an approach is used in the paper [2] and consists in
the investigation of the

�
-polynomials associated to pairs of permutations !#"%$'&)( ,

where & is obtained from " by applying special permutations. As we prove in
section 3 of this paper, from [2] derive closed formulas for pairs of permutations
!#"%$'&)( , where & is obtained from " by swapping two elements or by applying a � -
cycle. Results of the same nature, which are not consequence of the those in [2], are
contained in [10] where it is proved that there exists a product formula for pairs
!#"%$'&)( such that & is obtained from " by applying two nested transpositions. In this
paper we consider permutations " in the n-th symmetric group, for which we have
fixed five positions �+*-,/.102.435.167.98:*1; and corresponding at the internal
positions 0<$�3�$'6 , " contains a pattern of type �=��� (resp. of type �>��� ). We show that

Date: 20th August 2003.
Key words and phrases. descents, symmetric group, Kazhdan-Lusztig � -polynomials.
Partially supported by A.C.E. HPRN-CT-2001-00272 grant.

1



2 MICHELA PAGLIACCI

the
�

-polynomial indexed by the pair ! " $�&�( , where & is obtained by applying to "
a suitable � -cycle nested in the transposition ! ,�$ 8 ( is given by an explicit product
formula.
The organization of the paper is the following. In the next section we recall some
basic definitions, notation, and results, both of an algebraic and combinatorial na-
ture that will be used afterwards. In the third section we prove some explicit
formulas for the

�
-polynomials of pairs !#"%$'&)( , where v is obtained from " by

applying respectively, a transposition, a � -cycle, two disjoint transpositions, or a
transposition and a disjoint � -cycle. In section 4 we exhibit the reduction theorem
which leads to a closed formula for the

�
-polynomials for the class of permuta-

tions described above. Finally, in section 5, we pose some open problems.

2. NOTATION AND PRELIMINARIES

In this section we collect some definitions, notation, and results that will be
used in the rest of the paper. We let

��������
	 ��$ ��$'��$�������
 , � ������ ��� 	�� 
 ; for 0����
we let � 0�� �������	 ��$ ��$'��$�������$'0�
 , where � � � �������� . Given ; , ��� � , ; * � , we let
� ; $!�"� � � �"�$#%� ;'& �(� . We write ) �*	 0,+�$������ $ 0.-/
10 to mean that ) �*	 0,+�$������ $'02-/

and 0,+ .43�3�3 . 02- . The cardinality of a set 5 will be denoted with 6 576 . Given a set8

we will let ) ! 8 ( be the set of all bijections of
8

in itself and ):9 ������ ) !;� ;<� ( .
If =>�?) ! 8 ( and

8 ��	�@ + $������ $ @ 9<
 0BA � then we write = � = + �����!=�9 to mean
that = ! @DC ( � = C , for , � ��$������ $�; , and we call this complete notation. If =E�') 9 then we
will also write = on disjoint cycle form, (see, e.g.[12], Sect 1.3) and we will not usually
write the 1-cycles of = . For example, if = � �1F.GIH.J�����K.L then = � !��=$'�>$MG�$;J�$NL�( !���$MF�( .
Given = $;OP�?) 9 then =<O � =RQSO (composition of functions) so that, for example,
!��=$ ��( !��=$!H)( � ! ��$!H $ �=( .

We define next statistics on a permutation =T�U) 9
V !W= ( ������X	ZY�C[� !#,�$�,<\ ��(]��� ;<�_^�� ;<�[`�= ! , (]a�= !#,b\ ��(N
V !W= ( is called the descent set of = . An element of

V !W= ( is also called right descent,
this is because we can consider a left-handed property and define the left-descent
set of = as follows Vdc !e= ( ������ V !W=gf + (N�

, ; &<!W= ( ������ 6 h�; &<!W= (�6 � 6 	 !#, $ 8)(i�j� ;<�[^�� ;<�[`=, . 8�$M= ! , (kal= ! 8)(�
m6
the number , ; & !e= ( is usually known as inversions of = , (this number corresponds
to the length of = regarding ):9 as a Coxeter group) and the set h=; & !e= ( is the set of
the inversions of = . For example, if = � � ��G��IH then , ; & !e= ( � 6 	 !���$;H ( $ !#�>$!H)(�$ !���$�G=(�
m6 �
� ,
V !e= ( �4	 !���$;H (�
 and

Vdc !e= ( �n	 ! ��$'� ( !eH>$MG�(�
 .
We will always assume that ) 9 is partially ordered by (strong) Bruhat order. We

recall (see, e.g., [4], Sect 5.9) that this means that if " $�&o�E) 9 , "2* & iff p2q;+�$������ $;qr-s�t
where

t �u	 !#0<$ 3 (v�j) 9 ` �+*10 . 3 *-;w
 is the set of transpositions, for x"�j�
such that:

(i) & � "�q + qry/����� q -
(ii) , ; &<!#"�q + �����!q C{z + (]a , ; & ! "Dq + �����!q C ( for , �B� $������ $;x|& � .

A well known and useful characterization of the Bruhat order of )[9 is the follow-
ing.

For "'�U) 9 and ,}��� ;<� , let 	 " Ce~ + $������ $�" C�~ C 
10 ������ 	 "	! ��(�$������ $'" !#, (�
 .
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Theorem 2.1. Let u, v �U):9 . Then "2* & iff "
C�~ �

* &
Ce~ �

for every � * 8+* , * ;R& � .
We refer the reader to [7], Chap.1 for a proof.

We recall that there exists a maximal element under this order, (see [4] chap. 5)
this is the permutation ��� ������ ; !#;R& ��( ! ;R& ��(<�����'� ��� .
The element ��� acts, by multiplication, on the elements of )[9 as follows: �<"'�'):9 ,
we have that ����" � ;v\ �_& "	! ��(<����� ;v\ �g& "	! ; ( and "���� � " !#; (<����� "	! ��( . Moreover
the multiplication by � � is an antiautomorphism of Bruhat order:

Proposition 2.2. Let "%$'&o� ):9 . Then the following conditions are equivalent:
(a) " . &
(b) " f + . & f +
(c) &�� � . "	� �
(d) � � & .
� � "

This follows from Theorem 2.1, (see e.g. [7]).
We now introduce the family of R-polynomials of ) 9 by the next theorem defini-

tion:

Theorem 2.3. There exists a unique family of polynomials 	 ��� ~ 
 !���(N
 � ~ 
������ A�� � ��� such
that:

(i)
� � ~ 
 !���( �B� , if @��*
� ;

(ii)
� � ~ 
 !���( � � , if @R� � ;

(iii)
��� ~ 
 !���( � � ����� ~ 
 � !���(�$ if Y � V ! @ (

!��|& ��( � � ~ 
 � !���(g\�� � ��� ~ 
 � !���(�$ if Y��� V ! @ (
if @ . � and Y � V !!�/( .

See [4], Sect. 7.5 for a proof.
This theorem gives an inductive procedure to compute the

�
-polynomials of )[9

since , ; &<!�� Y ( . , ; & !!�/( . We note that there is also a left version of Theorem 2.3.
We introduce the family of "�$# ~ % !eq�( , which gives a combinatorial interpretation

of the
�

-polynomial of ) 9 ,
Proposition 2.4. Let " $�&T�P) 9 ; then there exists a unique polynomial "� # ~ % !���( A �j� ���
such that �$# ~ % !���( � �'& C 9 % & %)( f C 9 % & # (!(�* y "�$# ~ % !�� + * y &+�.f + * y (N�

It is a consequence of Theorem 2.3 that:

Theorem 2.5. Let " $�& �') 9 be such that " * & .Then, for every Y � V ! &�( , we have that

"��# ~ % !eq�( � � "� # � ~ % � !eq�(�$ if Y � V ! " ("� # � ~ % � !eq�([\ q "� # ~ % � !eq�(�$ if Y��� V ! " (N�
Theorem 2.5 gives an inductive procedure to compute "�$# ~ % !�q�( since

, ; & ! & ! ,�$�,:\ ��(�( � , ; & ! &�( &9� , assuming by definition that "� # ~ % !�q�( �4� if " �� & and"��# ~ % !eq�( � � if " � & .
We note that Proposition 2.4 permits to work with the "��# ~ % !�q�( since every result

can be easily translated in terms of
�

-polynomials, with the advantage that they
have positive coefficients instead of integer coefficients as the

�
-polynomials have.

In the following proposition we give a fundamental property of the "� -polynomials.
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Proposition 2.6. Let "%$'&o� ):9 ; then

"� # ~ % !�q�( � "� #�� + ~ % � + !�q�( � "� 
 � %�~ 
 � # !eq�( � "� %)
 � ~ # 
 � !�q�((�
The above result can be proved using properties of Hecke algebra and 2.4 (see

[4], Proposition 7.6). The left version of Theorem 2.5 follows easily from 2.6:
Let "%$'&o� ):9 such that ":* & . Then, for every Y � V c ! &�( , we have

"� # ~ % !�q�( � � "� � # ~ � % !eq�(�$ if Y � V c !#" ("� � # ~ � % !eq�([\jq "��# ~ � % !�q�( $ if Y��� V c !#" ((�
Finally we note that a general closed formula for the

�
-polynomials does not

exist; for example,

"� + y������ ~ ���	�My +=!�q�( � q y !��}\PG/q y \9� � q � \PF/q 
 \ q � (
and "� + y������ 
 ~ 
 �����My +=!�q�( � q � ! �}\PJ/q y \ �1J/q � \?G�LIq 
 \ ��F/q � \ � � q + � \ q + y (�$

and these factors are irreducible over the field of rational numbers.
However, there are several general classes of permutations for which explicit

formulas do exist,(see, e.g. [2] and [9]); some of them are related to the pairs of
permutations ! " $�&�( in which & is obtained from " by applying a particular permu-
tation, in the next section we survey some results in this direction, while now we
give a closed product formula for the

�
-polynomials of permutations which are

smaller than a transposition ! ,�$ 8)( under the Bruhat order, that will be used in the
proof of Theorem 4.3:

Theorem 2.7. Let " $�& �') 9 be such that " * & *-!#, $ 8)( for some ,�$ 8d�j� ;<� , , �� 8 . Then

"� # ~ % !�q�( � q � !�q y \9��(
C 9 % & %)( f C 9 % & # ( f � * y $

for some 0o�U�
[See [8], Corollary 4.2]. The exponent 0 that appears in this theorem, is related

to reduced expressions for " and & , and is given explicitly in [8], Theorem 4.1.

We end this section by giving the two results of [2] from which we derive the
explicit formulas of the next section. To introduce the first theorem, we need to
recall the definition of restriction of a permutation.
Let "U�') 9 and ,�$ 8d��� ;<� , , * 8 . We define the restriction of " to � , $ 81� to be the unique
permutation "�
 C�~ ��� �U) !;� ,�$ 81� ( such that

" f + ! "�
 C�~ ��� ! , ('( . " f + !#"�
 Ce~ ��� ! ,<\ ��('( .�3�3�3�. " f + !#"�
 Ce~ ��� ! 8)(�(
In other words to find the restriction of a permutation " to � ,�$ 8/� we can write " f +
and consider the set 	 " f + �;~ C $'" f + �;~ C z + $������ $'" f + �;~ � 
�0 �4	 " f + ! , (�$'" f + ! ,!\ ��(<����� " f + ! 8 (N
 ,
then "�
 Ce~ ��� � � "	! " f + �;~ C (�$�"	! " f + �;~ C z + ( $������ $'" !#" f + �;~ � ( � .

For example, consider the permutation " � H �1F.L���G�� then "�
 + ~ � � � H)����G�� since
" f + � L��1G���F��/H it results 	 " f + � ~ + $�" f + � ~ y $������ $�" f + � ~ � 
�0 �4	 ��$ ��$MG�$MF�$NL.
 , hence "�
 + ~ � � ! ��( �
H , "�
 + ~ � � !���( � � , "�
 + ~ � � !#� ( � � , "�
 + ~ � � !�H)( � G , "�
 + ~ � � !WG�( � � .
Theorem 2.8. Let " $�&R�T):9 $�" *9& . Suppose that there exist � � , + *9, y .9,�� .n3�3�3<.
,�� *4; such that " f + ! , � $�, �;z +N� � & f + ! , � $�, �;z +�� , ��8 � � $������ $�� , (where , � ������ � $�,�� z + ������
; ). Then
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(1) "� # ~ % !eq�( � ����� � "� #������
	 ������
�� ~ % ������	 ������
�� !�q�(
We give now the result of [2] from which follows the closed product formulas

for the irreducible pairs ! " $�&�( that we will indicate as 2-cycle or 3-cycle depending
on the cycle type of " f + & ; it is based on the enumerations of increasing subse-
quences of a permutation:

Theorem 2.9. Let "U�') 9 and �n��� C�~ � !#" ( for some , $ 8 ��� ;<� . Then

"� # ~ 
 � 
 # !���( � � � & 
 ( f + !�� y \ ��(


� &���f � & 
 (ez + (

where � C�~ � !#" ( ������ 	 !#" !#, + (�$'" !#,�y�(�$������ $�"	! , � (�( ` Y � � ;<� $�, � , + . , y9. 3�3�37. , � �
8 and " !#,!+ ( .1" !#, y ( . 3�3�3 .1"	! , � (�
 , � ������ , ; & !!� " (i& , ; &<!#" ( and � !!� ( is the length of
the cycle � .

See [2], Sect.4.

3. IRREDUCIBLE PAIRS OF PERMUTATIONS UNDER THEIR
�

-POLYNOMIALS
FACTORIZATION

In this section we introduce a classification of the pairs of permutations for
which we present, in this paper, explicit product formulas for the associated

�
-

polynomials.
Because of Theorem 2.8, we say that a pair ! " $�&�( of permutations is irreducible
if the "�$# ~ % !���( satisfies the (1) only with the condition that there exists a unique
8R�P� � $'; \ ��� such that "�$#���� � 	 � ����
 � ~ % ��� � 	 � ����
 � !eq�( �� � , i.e only one factor of the product
is non trivial. Otherwise we say that !#"%$'&)( is a reducible pair; clearly it is enough
to consider irreducible pairs.

The pairs of permutations of the following Corollary 3.1 and Proposition 3.3 are
irreducible, as well as the ones of Theorem 3.4 and of the main results of this paper.

Corollary 3.1 (2-cycles). Let "'�U):9 be such that " !#, ( . "	! 8)( for some , $ 8 ��� ;<� , , . 8 .
If & � "	! ,�$ 8)( , then "��# ~ % !eq�( � q !eq y \9��(



� & C 9 % & %)( f C 9 % & # ( f + (

.

Proof. It is an immediate consequence of Theorem 2.9 since & � ! "	! , (�$'" ! 8)(�( " �
"	! ,�$ 8)( and ! "	! , (�$'" ! 8 ('(]��� C�~ � !#" ( . �

Next one is a technical lemma which is a consequence of Theorem 2.5. We will
apply it in the proof of Proposition 3.3 and in the following sections.

Lemma 3.2. Let " $�& �>):9 , " * & be such that ! � $���( �lh=; & ! " (! Th=; & ! &�( and "	! , ( �
& ! , (�$ �<, ��� � \ �=$��<& ��� .
Suppose that � , ; 	 " ! ��(�$'&<! ��(�
#" � 0 @:	 "	!$� (�$'&<!���(�
 . Then there exists an index x �
� � $��D& �(� such that:

"� # ~ % !eq�( � "��� ~ % !eq�(
where @ � "<= , & � &.= and = � ! � $	� \ �=$	�s\ ��$������ $!xv& �=$!x�$�� $���& �=$��D& ��$������ $!xS\ ��( .
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Proof. We have:

"
&
�
� "	! ��(&<!���( �����

"	! �>(
&<! ��(

" � z +
" � z + �����

"�� f +"�� f +
"	!$� (
&<!���( �����

"	! ; (
&<!#; (

We can suppose that " � z + .43�3�3�. " � f + by Theorem 2.5.
Let

� ������ � 0 @:	 &<!���(�$'" !���(N
 and

x ������ � 0 @[	 � ��� � \ �=$��D& ���[`�"��4. � 

Then " � z + .X3�3�3/. "<- . � . "<- z + .X3�3�3/. "�� f + and the result follows by

applying Theorem 2.5.
�

We say that an inversion which satisfies the hypotheses of Lemma 3.2 “behaves”
as descent in the sense of Theorem 2.5.

We examine the situation in which &"�E) 9 is obtained from a permutation " by
applying a 3-cycle, there are several possibilities to consider. We write only the
positions in which " and & are different, i.e. the ones that we “rotate” in " to find
& , and we indicate with “ ����� ” the others. .

Proposition 3.3 (3-cycles). Let "E� )[9 , 0<$ 3�$ 6 ��� ;<� , be such that 0 .93/. 6 .
If !#"%$'&)( is one of the next pairs:

" � ������� �����	�"������
 ����� and & � �����	
 ������� ������� �����
" � ������� �����	�"������
 ����� and & � �������"������
 ������� �����
" � ������� ������
 ������� ����� and & � �����	
 ������� ������� �����
" � �����	� �����	� ������
 ����� and & � �����	
 ������� ������� �����

Then

"��# ~ % !�q�( � q y !�q y \9��(


� & C 9 % & %)( f C 9 % & # ( f y (

Moreover in the other cases, "� # ~ % !eq�( � � , since "�
 & .

Proof. If " � ����� 0 �����'3g������6w����� this means that � � !�0 $�3�$'6 (d� � � ~ � !#" ( ; when & �
������6w�����'0|�����'3g����� we can apply Theorem 2.9 since & � � f + " . This implies that"� # ~ % !eq�( � q y !�q y \ ��( 
� & C 9 % & %)( f C 9 % & # ( f y ( being � !!�/( � � .
If & � ������3g�����'6w����� 0 3�3�3 � !#0<$ 3�$'6 ( " then we cannot apply directly the same re-
sult. By Proposition 2.6 the pair ! &'� � $�"	� � ( has the same

�
-polynomial of the pair

!#"%$'&)( . We have
&����
"	� � �� ����� 0 6 ����� 6 3 ����� 30 ����� and if we define , � ! &'����( f + !#6 ( �

!#"�� � ( f + !�3 ( , 8 � ! &'� � ( f + !�3 ( � ! "	� � ( f + !�0)( then !#,�$ 8)(s�Ph�; & ! "	� � (  Uh�; &<!#&�� � ( . We
can apply Lemma 3.2, ( ! ,�$ 8)( behaves as a descent), so that "� # ~ % !�q�( � "��� ~ % !�q�( , with

@
&
�
� ����� 0 6 �����

,!+
, + �����

,��
, �
3
0
6
3
,�� z +
, � z + �����

, �
, � ����� $

which satisfies the conditions of Theorem 2.9.
We consider now " � �����'0|������6w�����'3g�����

If & � �����'6w������3g�����'0 3�3�3 � !#0<$'6�$�3 ( " then the pair ! " $�&�( is exactly the pair that we
called ! &'����$'"�����( in the previous case and we are done.
If & � ����� 3g������0|������6w3�3�3 � !�0<$ 3�$ 6 ( " , by Theorem 2.1 "�
 & and "� # ~ % !eq�( �>� .
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Finally if " � ����� 3g����� 0 ������6w����� and & � �����'6w�����'3g������0|3�3�3 � !�0 $ 6�$ 3 ( " , we observe
that &'��� � �����'0|�����'3g������6w����� and "	��� � �����'6w������0|����� 3g����� and we can apply Theo-
rem 2.9 as we have already seen. If & � !#0<$ 3�$'6 ( " � ����� 0 ������6w�����'3g����� it is obvious
that "�
 & .

The remaining permutations " to consider are the ones in which 6 is in the first
position, but this implies that for each 3-cycle that we apply to " we obtain a per-
mutation & which is not greater than " , so we have completed the proof.

�
Consider now a pair of permutations !#"%$'&)( such that & � "	! ,�$ 8)( ! � $���( and ,7.

�2. � . 8 . there exists a product formula which is not a consequence of Theorem
2.9 and which is proved in [10], Theorem 4.3:

Theorem 3.4. (two nested transpositions) Let " � )[9 , � * , . �9. �5. 8 * ;
"	! ��(]a " !���( , and suppose that & � " !#, $ 8)( ! � $���( , " . & . Then"��# ~ % !�q�( � q � !��}\jq y ( & C 9 % & %)( f C 9 % & # ( f � (�* y

Note that if " ! ��( . "	!$� ( there is not a closed formula, for example:"� + y���� 
 � ~ � 
 ����y + !�q�( � q y !eq + � \TLIq � \ �ZGIq 
 \ ���Iq � \TGIq y \ ��( or "� + y������ 
 ~ 
 ����y�� + !�q�( � q y !eq y \
��( !�q � \PF/q 
 \9� � q � \PG/q y \ ��(

The pairs of the next theorems are reducible, in fact they are obtained from The-
orem 2.8 and the formulas of the previous corollary and proposition. We choose
these classes because they are related to our investigations on the pairs ! " $�&�( such
that the cycle type of " f + & is !#,�$ 8)( ! � $�� ( , or !#, $ 8)( !#0<$�3�$'6 ( , where these cycles are dis-
joint.

Proposition 3.5. (two disjoint transpositions) Let " $�&o�U) 9 be such that & � "	! ,�$ 8)( ! � $���(
and , . 8+. � . � . If ":. & , we have that

"� # ~ % !�q�( � q y !�q y \9��(


� & C 9 % & %)( f C 9 % & # ( f y (

Proof. We consider pairs of permutations ! " $�&�( such that & � " !#,�$ 8)( ! � $�� ( and ,/.
8 . � . � . We write a pair of this type as follows:

"
&
�
� ����� " !#, (" ! 8)( �����

" ! 8 (
" !#, ( �����

" ! ��(
" !���( �����

"	!$� (
"	! ��( �������

The possible orderings of "	! , (�$'" ! 8)(�$�"	! �>(�$�"	!$� ( such that " . & are, by Theorem 2.1:
"	! , ( .4"	! 8)( .4" ! ��( .4"	!$� ( , "	! , ( .4" ! ��( .4"	! 8)( . "	!$��( , " !#, ( .4" ! ��( .4"	!$��( .1"	! 8)( .
There are also the orderings symmetric to these by multiplication with � � : " ! ��( .
"	!$� ( . " !#, ( . " ! 8 ( , "	! �>( . " !#, ( . " !���( . "	! 8)( , "	! ��( . "	! , ( . "	! 8)( .9" !���( . It is clear
that the fundamental condition for " . & is that "	! , (/. "	! 8)( and " ! ��(/. "	!$��( as in
the case of 2-cycles.
We assume to be in one of the previous orderings for "	! , (�$'" ! 8 ( $�"	! ��( $�"	!$� ( . We apply
Theorem 2.8 to @u� " f + and & � & f + . It is obvious that @ f + � �=$ 8/� � & f + � �=$ 8/�
and @ f + � 8 \ �=$';<� � & f + � 8 \ ��$�;<� . Hence "��# ~ % !eq�( � "� � ~ % !�q�( � "� ��� 
 	 � � ~ % � 
 	 � � !�q�( ^"� � � ����
 	 � � ~ % � ����
 	 � � !eq�( . By definition of restriction of @ and & , we have:@ 
 + ~ ��� � � " f + ! " �;~ + ( $������ $'" f + ! " �;~ C (�� , & 
 + ~ ��� � � & f + !#" �M~ + ( $������ $'& f + ! " �;~ C (�� , since @ f + �
" , & f + � & and 	 " !���(�$������ $�"	! , (�$������ " ! 8)(�
 � 	 " �;~ + $�" �;~ y $������ $�" �;~ � 
�0 . It is clear that
there exist � . Y + . Y y .18 such that & 
 + ~ ��� � @ 
 + ~ ��� ! Y +�$ Y y ( and then by Corollary
3.1 "� � � 
 	 � � ~ % � 
 	 � � !eq�( � q !�q y \ ��( 
� & ��f + ( , where � � , ; &<!$& 
 + ~ ��� (]& , ; & ! @ 
 + ~ ��� ( . The same
argument applied to @ 
 �;z + ~ 9 � $ & 
 �;z + ~ 9 � , gives the result. �
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Essentially we have broken @ and & in two pairs of permutations in which the
second permutation is obtained from the first by applying a transposition; we can
do the same for the next result.

Proposition 3.6. (a transposition and a disjoint 3-cycle) Let " $�& �T)_9 be such that
& � "	! ,�$ 8)( !�0<$ 3�$ 6 ( and , . 8+. 0 . 3 . 6 . If ":. & , then

"��# ~ % !�q�( � q � !�q y \9��(


� & C 9 % & %)( f C 9 % & # ( f y (

Proof. In Proposition 3.3 we analyzed the possibilities for the relative order of "	!#0�( ,
"	!�3 ( , "	!#6 ( , to be " . & when & � "�O , and O is the three cycle !#0<$ 3�$ 6 ( or its inverse.
(Note that in 3.3 we used a different notation: a,b,c indicated the values of three
fixed elements and not the positions as in this case). Here we refer to that result
and assume to be under one of those conditions and to add the hypothesis that
"	! , ( . " ! 8)( . As before we apply Theorem 2.8 to @u� " f + and & � & f + since@ f + � �=$ 81� � & f + � ��$ 81� and @ f + � 8v\ �=$';<� � & f + � 8|\ �=$�;<� .
Then "� # ~ % !�q�( � "��� ~ % !eq�( � "��� � 
 	 � � ~ % � 
 	 � � !�q�(k^ "�$� � ����
 	 � � ~ % � ����
 	 � � !�q�( . Now we have"��� � 
 	 � � ~ % � 
 	 � � !eq�( � q !eq y \4��(



� &���f + ( , while, by Proposition 3.3 the other factor is now"� � � ����
 	 � � ~ % � ����
 	 � � !eq�( � q y !�q y \9��(



� & � 
 f + ( , where � + � , ; &<!$& 
 �;z + ~ 9 � (g& , ; &<! @ 
 �;z + ~ 9 � ( . �

It is clear that in a similar way we can compute the
�

-polynomials of pairs
!#"%$'&)( , " . & , in which & is obtained from " by applying � disjoint transpositions
or mixed � -cycles and � -cycles but all disjoints, we do not write explicitly these
formulas. More interesting are the irreducible classes and in the next section we
consider the case of a � -cycle nested in a transposition. Before ending this section
we note that by applying Proposition 2.4 each result on "��# ~ % !�q�( gives easily the
corresponding

��# ~ % !���( .
4. MAIN RESULT

In this section we prove our main result, it is a closed product formula for the
�

-
polynomials of a pair of permutations ! " $�&�( , where v is obtained from " applying
a 3-cycle nested in a transposition ! ,�$ 8 ( more precisely & � " !#, $ 8)( !#0<$�3�$'6 ( if " !�0�(Sa
"	!#6 ( a "	!�3 ( or & � " !#,�$ 8)( !�0 $ 6�$ 3 ( if " ! 3 (ka "	!#0�( a "	!#6 ( , where , .90 . 3 .96 . 8 . In
other words we consider permutations " which contain a pattern of type ���>� or �����
(this means that there exist � .1, + .4, y+.4, � .1; such that "	! ,ry ( .4"	! ,�� ( .4"	! , + ( ,
respectively "	! ,�� ( . "	! , + (7. "	! , y ( between the position ! ,�$ 8)( and to obtain & we
apply the cycle that send the elements of this pattern in their natural order. We
prove that even the case "	!#0�(ka9"	!�3 (ka9"	!#6 ( is covered by this theorem. The proof
is based on Theorem 4.2 which permits to reduce the computation of

� # ~ % !�q�( to the�
-polynomial of a three-cycle and the transposition ! ��$�; ( .

Lemma 4.1. Let "U�') 9 and � * , . 0 . 3/. 6/. 8+* ; .
(1) If "	!#0�( � � 0 @:	 " !�0)( $�"	!�3 ( $�"	!#6 (N
 then

" . "	! ,�$ 8)( !#0<$ 3�$ 6 (���� "	! , ( .P� , ; 	 "	!�3 ( $�"	!#6 (N
 and " !�0)( . "	! 8)(
(2) If "	!#6 ( � � , ; 	 " !�0)( $�"	!�3 ( $�"	!#6 (N
 then

":. "	! ,�$ 8)( !�0<$'6�$�3 (���� " !#, ( . "	!#6 ( and � 0 @:	 " !�0�(�$�"	!�3 (�
 . "	! 8)(
Proof. It is easy to check the sufficient condition.
We prove the other part assuming "2. & , where & � "	! ,�$ 8 ( !#0<$ 3�$'6 ( or & � "	! ,�$ 8)( !#0<$'6�$�3 ( .
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In both cases immediately we have that " !#, (:. " ! 8 ( ; in fact if we suppose that
"	! 8)( . "	! , ( and, under the notation of Theorem 2.1 we take the , -th rearrangement
of 	 " !���(�$'" ! �=( $�������$�"	! , (�
 � 	 " C�~ + $�" C�~ y $������ $'" Ce~

�
$�"	! , (�$'"

� z y ~ C ������
�� , where " � ~
� z + is the

position occupied by "	! , ( in the � -th rearrangement, and of 	 &<!���( � " !���( $�& !��=( �
"	!���(�$������ $'&<!#, ( � " ! 8 (N
 �%	 " Ce~ + $�" C�~ y $������ $'" ! 8 ( $�" C�~

�
$'"
� z y ~ C $������N
�� , we will have " !#, ( �

"
C�~ � z + 
 &

Ce~ � z + � " Ce~ � , which implies "�
 & , a contradiction.
We prove the part 1) of the statement for the case that " !�0�(]a "	!#6 (]a " ! 3 ( , and

" � ����� "	! , (<������"	!#0�(<����� "	!�3 (<����� " !�6 (<������"	! 8)(<�����
& � ����� " ! 8)(<������"	!�3 (<����� "	!#6 (<������"	!#0�(<����� "	! , (<�����

We have to show that "	! , ( . " ! 3 ( and that " !�0)( . "	! 8)( . Suppose that " !�0)( . "	! , ( ,
the 0 -th rearrangements will be:

	 " !���( $�������$�"	! , (�$������ $�"	!#0�(N
 �n	 " � ~ + $������ $�" � ~ � $�� ! �>( $�" � ~ ��z y $������ $'" !#, ( $������N
 �
	 " !���( $�������$�"	! 8)(�$�������"	!�3 (N
 �n	 " � ~ + $������ $�"	!�3 ( $������ $���� ~ 	 $'" � ~ ��z y $������ $'" !#, (�$�������
 � $

where " � ~ ��z + is the position occupied by "	!#0�( in the � -th rearrangement. It fol-
lows that "�
 & , since "	!#0�( � " � ~ ��z + 
 & � ~ ��z + � " � ~ � .
To conclude this part suppose now that "	!�3 ( . "	! , ( . " !�0�( and consider again the
0 -th rearrangement of " and & :

	 " � ~ + $������ $�" � ~
�
f + $�� !�
�(�$'" � ~

� z + $������ $�" � ~ � $�"	!#0�(�$'" � ~ ��z y $������N
 �
	 " � ~ + $������ $'" ! 3 (�$������ $���� ~ 
 f��)$�" � ~

� z + $[����� $�" � ~ � $'" � ~ ��z y $:����� $'" ! 8)(�$:�����N
 �
We have again a contradiction because " � ~

� � " !#, (�
 & � ~
� � " � ~

�
f + ; moreover

from the same rearrangement we can derive that "	!#0�( . "	! 8)( and since "	!�3 ( .
"	!#6 ( .1"	!#0�( we are done. The case that " !�0)( a4" ! 3 (sa4"	!#6 ( , where " and & are as
above, is identical but, in addition, we need to verify that " !#, ( . " !�6 ( . Suppose
that " !�6 ( . " !#, ( and consider the 3 -th rearrangement of " and & :

	 " !���( $������ $�"	! , ( $������ "	!#0�(<������"	!�3 (N
 �
	 " � ~ + $������ $�" � ~

�
$�� !�
�( $�"

� ~ � z y $������ $�" � ~ - $�"	!�3 (�$�" � ~ - z y $������ $'" � ~ � $�"	!#0�(�$'" � ~ ��z y $������(
��
	 " !���(�$������ $�"	! 8)(�$������ " ! 3 (<������"	!#6 (�
 �

	 " � ~ + $������ $�"	!#6 ( $������ $�� � ~ 
 $'" � ~
� z y $������ $'" � ~ - $'" ! 3 (�$'" � ~ - z y $������ $�" � ~ � ����� $'" ! 8 ( $������N
 �

where " �
~ � z + � " !#, ( 
 & �

~ � z + � " �
~ �

. Hence we have proved that if " . &
then "	! , (/.B� , ; 	 "	!�3 ( $�"	!#6 (N
 and " !�0�( . " ! 8)( under the hypothesis that "	!#0�( �
� 0 @:	 "	!#0�( $�"	!�3 ( $�"	!#6 (N
 .

To prove part 2) of this Lemma we use the fact that the mapping ���� � f + is an
automorphism of Bruhat order, as stated in Proposition 2.2: " *1&�� " f + *-& f + .
Let " !�6 ( . "	!#0�( . " ! 3 ( and

" � ����� "	! , (<������"	!#0�(<����� "	!�3 (<����� " !�6 (<������"	! 8)(<�����
& � ����� " ! 8)(<������"	!�3 (<����� "	!#6 (<������"	!#0�(<����� "	! , (<�����

Suppose that " . & and for simplicity of notation define " � � "	! Y ( for every Y �j� ;<� ,
then " f + ! " � ( � Y . The problem is to establish the natural ordering of elements of
the set 	 " � $'" � $�" � $�" C $�" � 
 ; from the hypothesis we now that " � . " � . " � and,
from the initial part of this proof, that " C . " � . Depending on this ordering is the
position of the elements 0<$ 3�$'6�$', $ 8 on the inverses of " $�& :
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" f +
& f +
� ����� 60 �����

0
3 �����

3
6 ����� and we want to determine the position of the columns

C�
and

� C . Since " f + and & f + are under the conditions of part 1), we can conclude by
symmetry that " C . " � and " � . " � ; in fact, as example if " � . " C then

" f +
& f +
� ����� 60 �����

,
8 �����

0
3 �����

3
6 �����

and by the arguments used before it follows that " f + 
-& f + . Since the remaining
case is similar to this, we can consider the proof completed.

�
Now we prove the main result of this section:

Theorem 4.2. Let "E� ) 9 be such that " !���( � � , " !#; ( � ; . Consider � . 0 . 3 . 6/. ;
and suppose that

& �
�
"	! ��$�; ( !�0<$ 3�$ 6 (�$ if "	!#0�( � � 0 @:	 " !�0)( $�"	!�3 ( $�"	!#6 (N

"	! ��$�; ( !�0<$'6�$�3 (�$ if "	!#6 ( � � , ; 	 " !�0)( $�"	!�3 ( $�"	!#6 (N


If
V !#" (  V ! &�( � V c ! " (  V c ! &�( � � , then "��# ~ % !eq�( � "� � ~ & + ~ 9 ( !eq�( , where @ is a

� -cycle.

Proof. We consider the case that " ! 3 ( .4"	!#6 ( . " !�0)( so & � "	! ��$�; ( !#0<$ 3�$ 6 ( , explic-
itly:

" � � "	!���(<����� " !�0�& ��( "	!#0�( "	!#0,\ ��(<����� " ! 3Z& ��( " ! 3 ( "	!�3�\ ��(<����� " !�6I& ��( " !�6 ( "	!#6�\ ��(<����� " !#; & ��( ;
& � ; "	!��=(b����� "	!#0D& ��( "	!�3 ( " !�0m\ ��(<����� " ! 3Z& ��( " !�6 ( "	!�3�\ ��(<����� " !�6I& ��( " !�0�( "	!#6�\ ��(<����� " !#; & ��(��
Since

V ! " (  V ! &�( ��� we have that:
0b& ���� V ! " ( , in fact if 0:&5�s� V ! " ( then 0b&5�s� V ! &�( because " !�0b&5��(]a "	!#0�(]a "	!�3 ( ;
and similarly that 0��� V !#&)( ; 3}& ���� V !#&)( ; 3��� V ! " ( ; 6]& ���� V ! &�( ; 6��� V ! " ( .

It is obvious that 	 �=$';U& �/
 A V ! &�( and since by our assumptions " is not the
identity,

V ! " ( must contains at least the descent 0 , i.e. 	 0�
 A V ! " ( , so we conclude
that 	 �=$';s&:�/
 A V !#&)( A 	 �=$'0]&:��$ 3�$ 6�$�;s&:�1
 and 	 0�
 A V ! " ( A 	 0 $�3<&:�=$ 6b&:�/
 . We
now show that if 07&9�=$ 6s� V !#&)( then

V c !#" (  V c !#&)( �� � , so by our assumptions
we conclude that 0 & �=$ 6��� V !#&)( .

Suppose that 07& �v� V !#&)( .
This means that "	!#07& ��(Sa9"	!�3 ( ; we define � ������ � 0 @:	 � �P� 07& �Z� ` " !e� ( .9" ! 3 (�
 ,
so � . "	!���( . 3�3�3>. " !��<( . "	!�3 ( . "	!��7\ ��( that is equivalent to "	! , ( � & ! , ( � , for
every , �P� �$� , "	!�3 ( � & !#0�( � � \-� and " !�� \-��( � & !��d\ ��( � � \ � . It follows that
" f + !�� \1��( � 3da " f + !�� \9�=( � � \4� and & f + !�� \1��( � 0�a & f + !��o\ �=( � � \1� ,
therefore !��7\ �=$	�7\ ��(]� V c !#" (  V c ! &�( .

We now treat the case that 6v� V ! &�( .
We have " !�0)("a " !�6 \ ��( , let 5 ������ � 0 @[	 � �u� 6 \ �=$';�&1��� ` "	!��:( . "	!#0�(�
 , so
"	!#6S\ ��( . 3�3�3 . " !W5/( . "	!#0�( . " !W5�\ ��( then "	!e5�\ ��( � & !e5�\ ��( � 54\ � ,
"	!#0�( � & !#6 ( � 5 and "	!e5 ( � & !e5/( � 5B& � . Clearly !e54&9�=$M5/( � V c ! " (  V c !#&)(
since " f + !W5>& ��( � 5 a " f + !W5/( � 0 and & f + !e5>& ��(]a & f + !W5/( � 6 .

We conclude that under our hypothesis
V ! &�( �n	 ��$�;S& �1
 or

V !#&)( � 	 �=$ 3�$�;S& �1
 .
Before starting the proof for these two cases, we observe that "	!��:( � � , for every
� ��� 0 & �(� � � 6i\9��$�; & �(� .
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(i) ���������
	���
��������
We have immediately that & � ! �=$'; ( . Therefore it is & !#0�( � "	!�3 ( � 0 , & !�3 ( � "	!#6 ( �
3 and & !#6 ( � "	!#0�( � 6 . So " � !#0<$'6�$�3 ( .

(ii) ����������	���
���
�������� and ����������	 �!
"�#�����
Every step of the proof involve “operations on the pair of permutations !#"%$'&)( ”
which preserve the

�
-polynomial since are applications of Theorem 2.5 or Propo-

sition 2.6. For this reason we will not indicate the polynomials, but only the result-
ing permutations, writing the smallest one on the first row.

We recall that:

" � ���k����� 0v& � "	!#0�( " !�0k\ ��(<����� " ! 3w& ��( " ! 3 ( "	!�3:\ ��(<������"	!#6 & ��( " !�6 ( 6g\ � ����� ! ; & ��( ;
& � ; �k����� 0 & � "	!�3 ( "	!#0 \ ��(<����� "	!�3w& ��( "	!#6 ( " ! 3[\ ��(b������" !�6 & ��( " !�0)(�6g\ � ����� !#; & ��( �
By our assumptions it must be "	!#0�( � 6 , " !�6 ( � 6,&+� and " ! 3 ( � 0 , in fact looking at
" we see that "	!�3m\ ��( .�3�3�3�. " !�6D& ��( . "	!#6 ( while looking at & it is "	!�3m\ ��( . "	!#6 ( ;
moreover " !�6 ( . "	!#0�( and 0|& � . " ! 3 ( . "	!#0 \ ��( . Now, being " ! 3g& ��(]a " ! 3 ( , we
have to consider the relative natural order of " ! 3,& ��( and "	!�32\ ��( . We first suppose

that "	!�3 &-��( a "	!�3 \4��( and we introduce the next parameters: � ������ � 0 @:	 � �
� 0k\ �=$�3g& �I�[`�"	!��:( . "	!�3b\ ��(N
 and Y ������ � 0 @:	 � ��� 3:\ �=$'6w& ���:`�" !e� ( . "	!�3g& ��(�
 .
Therefore "	!�3 ( .-"	!#0 \-��( . 3�3�3 .1" !eq�( .1" ! 3i\-��( .1"	!�q_\-��( . 3�3�3 .1" ! 3k& �=( .
3�3�3�. " ! Y ( . "	!�3_& ��( . "	! Y \ ��( .43�3�3>. "	!#6 ( . " !�0�( , which implies that " !e� ( � �
for � �j� 0S\ �=$;q�� , "	!�3[\ ��( � q�\ � , " !e� ( � � \ � for � ��� q<\ �=$ 3 &2�Z� , " ! Y ( � Y &2� ,
"	!�3}& ��( ��Y & � , " ! Y \ ��( � Y , "	!#6 ( � 6k& � . We represent these two permutations
from the position 0 to the position 6 , in the next figure:

"
&
�
� 6
0
0 \9�
0 \9� �����

q
q
q[\ �
q[\ � �����

Y & �Y & �
0

6]& �
q:\9�
q:\9� �����

Y & �Y & �
Y
Y
Y \9�Y \9�

6]& �
6

6 \ �
6 \ �

and !eq:\ �=$;q<\ �=( , ! Y & ��$ Y & ��( are left common descents for " and & .
It follows that we can definitively suppose " ! 3}& ��( . "	!�3 \ ��( . This implies " ! 3i&
��( � 3}& � , "	!�3 \9��( � 3 , . . . , "	!#6]& ��( � 6}& � then

"
&
�
� �
;
�
� �����

07& �
07& �

6
0
0 \ �
0 \ � �����

3}& �
3}& �

0
6k& �

3
3
3 \ �
3 \ � �����

6]& �
6]& �

6k& �
6

6 \9�
6 \9� �����

;R& �
;R& �

;
�

(As a remark we note that if 3[\ � � 6 & � we have that "	!�3[\ ��( . "	!#6 & ��( � 3 and
"	!#6 ( � 3 \9� , thus the block from the position b+1 to c-2 does not appear.)

We apply proposition 2.6 to the pair !#"%$'&)( as follows. First we calculate

" f +
& f +
�
� �
;
�
� �����

07& �
07& �

3
0
0v\ �
0v\ � �����

3}& �
3}& �

3 \9�
3 \9� �����

6]& �
6]& �

6
3
0
6 �����

6 \ �
6 \ �

;"& �
;"& �

;
�

Now we recall that if " � "	! ��( "	!��=(b������" !#; ( then "�� � � " !#; (<����� " ! �=( " !���( . Let "b+ �
& f + � � and &�+ � " f + � � , therefore:

"b+
& +
�
� �
;

;R& �
;R& � �����

6 \ �
6 \ �

6
0
3
6
6k& �
6k& � �����

3 \ �
3 \ �

3}& �
3}& � �����

0v\ �
0v\ �

0
3

0 & �
0 & � �����

�
�

;
�



12 MICHELA PAGLIACCI

Our purpose is to obtain again two permutations which have not common left
or right descents by applying Theorem 2.5 to the common descents of " + and & + .
There is not a unique way to do this, but there are two main steps:

(S1) Reordering of common blocks
We focus our attention on the boxed common blocks of the pair ! " + $�& + ( and we
multiply these permutations by the suitable descents to reorder each block in-

side. For the reordering of the block
;R& �
;R& � �����

6 \9�
6 \9� from the position 2 to ;R& 6 ,

we multiply by ":+�� 9 f � f y��� + Y y Y � ����� Y 9 f & ��z � ( and &�+�� 9 f � f y��� + Y y Y � ����� Y 9 f & ��z � ( , whereY C � ! ,�$�,w\4��( . With similar product we reorder the other two boxed blocks and
at the end of this step we obtain from !#" + $�& + ( the permutations indicated with the
prefix S1:

! ) ��( " +
!W) ��( & +

�
� �
;

6 \9�
6 \9� �����

;R& �
;R& �

6
0
3
6
0v\ �
0v\ � �����

3}& �
3}& �

3 \ �
3 \ � �����

6k& �
6k& �

0
3

�
� �����

0%& �
0%& �

;
�

First block are the integers � 6<\ �=$';%&2��� which are bigger than all the other integers
that appear on the complete notation of ! ) ��( " + and ! ) ��( & + from the position ;E&
6_\ � to the position ;o& � ; we move this block between 6_\ � -th place and ; & � -th
place multiplying the permutations !W) ��( " + and ! ) ��( & + on the right by

! Y 9 f � Y 9 f ��z + Y 9 f ��z yw����� Y 9 f y ( ! Y 9 f � f + Y 9 f � Y 9 f ��z + ����� Y 9 f � (<����� ! Y y ����� Y � (
. Similarly we shift on the left the block containing integers of the interval � ��$'0k& ���
to their homonymous positions and we obtain

"<y
&/y
�
� �
;
�
� �����

07& �
07& �

6
0

3
6
0 \9�
0 \9� �����

3}& �
3}& �

3 \9�
3 \9� �����

6k& �
6k& �

0
3

6i\ �
6i\ �

;"& �
;"& �

;
� �

(S2) Final shifting
We have that 	 0<\+��$'6Z
 � V ! " y (  V !#& y ( thus we apply Theorem 2.5 as follows: " � �
" y ! Y � f + Y � f y ����� Y � z + ( ! Y � z + Y � z y ����� Y � ( and & � � & y ! Y � f + Y � f y ����� Y � z + ( ! Y � z + Y � z y ����� Y � ( ,
where we called " � and & � the resulting permutations which have no common
right descents as it is clear from the next illustration:

" �
& �
�
� �
;
�
� �����

0 & �
0 & �

6
0
0s\9�
0s\9� �����

3i& �
3i& �

0
3
3
6
3 \ �
3 \ � �����

6}& �
6}& �

6 \9�
6 \9�

; & �
; & �

;
� �

We observe now that " � and & � have common left descents by computing:

" f +�
& f +�
�
� �
;
�
� �����

0%& �
0%& �

3
0
0 \9�
0 \9� �����

3i& �
3i& �

3 \9�
3

3 \ �
3 \ � �����

6
6

0
3 \ �

6i\ �
6i\ �

;"& �
;"& �

;
� �

We apply again Theorem 2.5 on the common descents which are indicated in
the next products: "�� � ! " f +� ( Y � f + Y � f y ����� Y � z + and &�� � ! & f +� ( Y � f + Y � f yw����� Y � z +

" �
&��
�
� �
;
�
� �����

0%& �
0%& �

3
0
0 \ �
0 \ � �����

3}& �
3}& �

3w\ �
3

0
3 \9�

3 \ �
3 \ � �����

;"& �
;"& �

;
�

and we are done.

(iii) ����������	���
"� 
�������� and ����� ����	 �!
��#����
�� � ���
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From these hypothesis follows that "	!�3 ( � 0 and "	!#0�( � 6 , moreover we can
suppose that "	!�3}& ��( . "	!�3 \ ��( because "	!�3}& ��(]a " ! 3w\ ��( implies that

V c ! " (  V c ! &�( is not empty, as we have already shown in (ii).

We define q ������ � 0 @[	 �X�P� 3 \ ��$'6]& �Z�w`)" !e� ( .9" !�6 (�
 so 0 � "	!�3 ( .9" !�0 \ ��( .
3�3�3�. " ! 3<&:��( . "	!�3�\ ��( .B3�3�3�. " !eq�( . "	!#6 ( . "	!�q�\ ��( .43�3�3�. "	!#6:&:��( . "	!#0�( � 6 .
Then it must be "	!��:( � � , for every � � � 0]\ �=$�3_& ��� � � q,\ ��$'6g& ��� , " !e� ( � � & �
for every � �j� 3 \9��$!q�� , moreover "	!#6 ( � q , in other words

"
&
�
� �
;
�
� �����

0 & �
0 & �

6
0
0 \ �
0 \ � �����

3i& �
3i& �

0
q
3
3 �����
qg& �
qg& �
qb\ �
qb\ � �����

6]& �
6]& �

q
6
6 \ �
6 \ � �����

;R& �
;R& �

;
� �

The algorithm shown in (ii) with S1, S2, S3 as fundamental steps is valid in this
case too; in fact, as one can observe, there is only the central block which will
require some additional products in S1 to be reordered. Therefore following (ii)
we start with the next computation:

" f +
& f +
�
� �
;
�
� �����

07& �
07& �

3
0
0v\ �
0v\ � �����

3}& �
3}& �

3w\ �
3w\ � �����

qg& �
qg& �
q
q
6
3
q:\9�
q:\9� �����

6]& �
6]& �

0
6
6 \9�
6 \9� �����

;"& �
;"& �

;
� $

and then calculating " + � & f + ��� , & + � " f + � � , we have

" +
&�+
�
� �
;
;R& �
;R& � �����

6 \ �
6 \ �

6
0
6k& �
6k& � �����

qb\ �
qb\ �

3
6
q
q
qw& �
qw& � �����

3 \9�
3 \9�

3}& �
3}& � �����

0s\9�
0s\9�

0
3
0%& �
0%& � �����

�
�
;
�

As in (v)(S1) we multiply ! ":+�$�&�+ ( for appropriate YZC to put the elements of the
blocks between the following interval positions � ��$�;'& 6N� , � ;T& 0 & ��$�;'&-�(� , � ;T&
6k\ ��$�;E& 0d& H/� , in their natural order (as indicated in the previous figure). This
produces the following pair of permutations:

" y
&/y
�
� �
;
6 \9�
6 \9� �����

;"& �
;"& �

6
0
q[\9�
q[\9� �����

6]& �
6]& �

3
6
0 \9�
0 \9� �����

3i& �
3i& �

3 \ �
3 \ � �����

qw& �
qw& �
q
q
0
3
�
� �����

0%& �
0%& �

;
� �

Therefore we can interchange the first and last blocks and also shift on the left

the block
0v\ �
0v\ � �����

3}& �
3}& � . One obtains:

" �
& �
�
� �
;
�
� �����

0 & �
0 & �

6
0
0v\ �
0v\ � �����

3}& �
3}& �

q:\ �
q:\ � �����

6}& �
6}& �

3
6
3 \9�
3 \9�

q
q
0
3
6 \9�
6 \9� �����

;"& �
;"& �

;
�

We have that 6$& � � V !#" � (  V !#& � ( and applying Theorem 2.5 to the appropriate
descents we obtain

" �
& �
�
� �
;
�
� �����

6
0
0s\9�
0s\9� �����

3i& �
3i& �

0
3
qb\ �
qb\ � �����

6]& �
6]& �

3
6
3 \ �
3 \ �

q
q
6 \ �
6 \ � �����

;R& �
;R& �

;
�

This was the “final shifting”, (S2), then we calculate the inverses of " � and & � :
observing that " ��!�3 ( � q \ � ,. . . , " �=! 3|\ 6 &Bq�( � 67& � , " ��!�3 \46%&Bqk\ ��( � 3 ,
" ��!�3 \ 6]&Tq[\ �=( � 3w\ � , . . . , "	!#6k& ��( � q_& � , " !�6 ( � q it results

" f +�
& f +�
�
� �
;
�
� �����

0%& �
0%& �

3
0
0s\9�
0s\9�

3}& �
3}& �

0
3
3 \ 6]&Tq[\ �
3 \ 6]&Tq[\ �

3w\ 6]&Tq[\ �
3w\ 6]&Tq[\ � �����

6}& �
6}& �

6
6
3 \9�
3 \9� �����

3 \ 6}& qw& �
3 \ 6}& qw& �

3 \ 6]&Tq
3 \ 6]&Tq

0
3 \ 6k& q:\9�

6 \ �
6 \ � �����

; & �
; & �

;
�
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and with the shifting of the underlined blocks on the left we have:

"��
& �
�
� �
;
�
� �����

0%& �
0%& �

3
0
0s\9�
0s\9�

3}& �
3}& �

0
3
3 \ �
3 \ � �����

3 \ 6]& qg& �
3 \ 6]& qg& �

3 \ 6k& q
3 \ 6k& q

3 \ 6k& q:\9�
3 \ 6k& q:\9�

3 \ 6]&Tq:\ �
3 \ 6]&Tq:\ � �����

6k& �
6k& �

6 \9�
6 \9� �����

;R& �
;R& �

;
�

In other words " � � !#0<$�3�$ 3 \ 6 &�q[\-��( where 3 \ 6k&�q_\ �7�?� 3 \ ��$'6k& ��� and
&�� � ! ��$�; ( as we wanted prove, for part (1).

We now prove a part of the statement (2) of the theorem, i.e. we consider "'�U)_9
such that "	! ��( . " !�6 ( . " !�0)( . " ! 3 ( . " !#; ( so & � "	! ��$�; ( !�0<$ 3�$ 6 ( , explicitly:

" � ���k����� 0v& � "	!#0�( " !�0k\ ��(<����� " ! 3w& ��( " ! 3 ( "	!�3:\ ��(<������"	!#6 & ��( " !�6 ( 6g\ � ����� ! ; & ��( ;
& � ; �k����� 0 & � "	!�3 ( "	!#0 \ ��(<����� "	!�3w& ��( "	!#6 ( " ! 3[\ ��(b������" !�6 & ��( " !�0)(�6g\ � ����� !#; & ��( �
By similar arguments used in part (1) case we have that under our hypothesis	 3�
 A V !#" ( A 	 0<$ 3�$'6}& �1
 and

V !#&)( �n	 ��$�;"& �1
 or
V ! &�( �n	 �=$�3 & �=$';"& �/
 .

����������	���
��������
Then & � !��=$�; ( , so that "	!#6 ( � 0 , " !�0�( � 3 and "	!�3 ( � 6 . Clearly " � !�0 $�3�$'6 ( and
we have treated the symmetric case in fact " f + � !#0<$'6�$ 3 ( .

����������	���
��#����
�������� and ����������	 ��
 �#�����
" � ���k������0 & � "	!#0�(<����� "	!�3}& ��( " ! 3 ( "	!�3 \ ��(<����� "	!#6]& ��( "	!#6 ( 6 \9�i������;R& � ;
& � ; �k������0%& � " !�6 (<����� "	!�3}& ��( "	!#0�( " ! 3w\ ��(b������" !�6}& ��( " ! 3 ( 6 \ � ����� ; & � ;

We suppose that "	!�3g& ��( . " ! 3:\ ��( otherwise
V c ! " (  V c ! &�( is not empty. Under

this hypothesis we have: 0<& �/. "	!#6 ( . " !�0�( . "	!#0$\7��( .�3�3�3�. "	!�3/& ��( . " ! 3�\7��( .
����� "	!#6 & ��( . "	!�3 ( . 6g\ � that implies "	!#6 ( � 0 , " !�0�( � 0 \ � , "	!#0S\ ��( � 0 \ � , . . . ,
"	!�3w& ��( � 3 , " ! 3_\ ��( � 3g\ � , . . . , " !�6 & ��( � 6 & � , "	!�3 ( � 6 . The structure of " and
& is completely determined:

"
&
�
� �
;
�
� �����

0 & �
0 & �

0v\ �
0

0s\ �
0s\ � �����

3
3

6
0v\ �

3w\ �
3w\ � �����

6}& �
6}& �

0
6
6i\ �
6i\ � �����

;"& �
;"& �

;
�

The inverses of these permutations are:

" f +
& f +
�
� �
;
�
� �����

0 & �
0 & �

6
0
0
3
0v\ �
0v\ � �����

3}& �
3}& �

3 \ �
3 \ � �����

6]& �
6]& �

3
6
6i\ �
6i\ � �����

;"& �
;"& �

;
�

which are of the type described in (iii) since " f + !�0�(oa " f + !�6 ( a " f + !�3 ( e & f + �
" f + !�0<$'6�$�3 ( , V ! " f + ( � 	 0<$'6s& �1
 and

V ! & f + ( � 	 ��$'0 \ �=$�;j& �1
 . With the no-
tation introduced in (iii) we have "�� � !�3 \ 6 &lq�$'0<$ 3 ( but in this case we have
q � � 0 @[	 ,S`>" f + ! , ( .-" f + !#6 (N
 � 3 since that " f + !�6 ( � 3 , then " � � !#6�$ 0<$ 3 ( as one
can directly compute. The case that

V ! " ( � 	 3�
 is included in this with 6 � 3 \ � .
����������	���
��#����
�������� and ����������	 � 
 � 
 �#�����

It is obvious that "	!#6 ( � 0 and " ! 3 ( � 6 . We suppose again that " ! 3 & ��( . "	!�3_\9��(
and we define Y ������ � 0 @:	 � � � 0 \ �=$�3w& �I�[`�"	!��:( . "	!#0�(�
 , then: "	!#6 ( . "	!#0 \ ��( .
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"	!#0}\2�=( .43�3�3>. "	! Y ( . "	!#0�( . " ! Y \ ��( .B3�3�3�. " ! 3:& ��( . " ! 3D\ ��( .B�����'" !�6[& ��( .
"	!�3 ( . This implies that

"
&
�
� �
;
�
� �����

0%& �
0%& �

Y \ �
0

0 \9�
0 \9� �����

Y
Y
Y \ �Y \ � �����

3i& �
3i& �

3
3

6Y \ �
3 \9�
3 \9� �����

6k& �
6k& �

0
6
6 \9�
6 \9� �����

;R& �
;R& �

;
�

We can see that the inverses of this permutations satisfy the hypothesis of (iii),
in fact:
" f +
& f +
�
� �
;
�
� �����

0 & �
0 & �

6
0
0s\ �
0s\ � �����

Y
Y 0 3
Y \ �Y \ � �����

3}& �
3}& �

3w\ �
3w\ � �����

6]& �
6]& �

3
6
6 \ �
6 \ � �����

;R& �
;R& �

;
�

We observe that
V !#" f + ( � 	 0<$ Y $'6 & �1
 , V ! & f + ( � 	 �=$ Y \4��$�;E&-�/
 and being

0 . Y . Y \ �7. 6 , using the arguments of (iii), we reduce to the pair of permuta-
tions "�� � ! Y \ 6i\ � &Tq�$ 0 $ Y \ ��( and &�� � ! ��$�; ( .

To conclude the proof we consider "'�'):9 , � * , . 0 .93 . 6 . 8 * ; , such that
"	!#0�(]a "	!�3 (]a "	!#6 ( , as we will see it is a consequence of the previous cases.
If & � "	! �=$'; ( !�0 $ 6�$ 3 ( we have that ! 3�$'6 ( is a common inversion of " and & which
behaves as a descent, by Lemma 3.2 In fact, we can suppose that the intervals
� ��$ 0 & �(� and � 6w\ ��$�;"& �(� are fixed points and in � 0|\9�=$ 3 & ��� � � 6w\ ��$�;"& �(� there
are not descents, moreover "	!�3 ( � &<!�6 ( :
" � ���k����� 0v& � "	!#0�( " !�0k\ ��(<����� " ! 3w& ��( " ! 3 ( "	!�3:\ ��(<������"	!#6 & ��( " !�6 ( 6g\ � ����� ! ; & ��( ;
& � ; �k����� 0 & � "	!#6 ( "	!#0 \ ��(<������"	!�3 & ��( "	!#0�( " ! 3:\ ��(<����� "	!#6i& ��( "	!�3 ( 6_\ � ����� !#; & ��( �
This implies that there exists xn� � 3�$ 6%& �(� such that "� # ~ % !eq�( � "��� ~ % !�q�( , where@"� ���k����� 0g&+� "	!#0�( " !�0b\ ��(<������"	!�3m&+��( "	!�3�\ ��(<����� " - "	!#6 ( "	!�3 ( " - z + 6�\ �i����� !#; &+��( ; and
& � ; �k������0i& � " !�6 ( "	!#0w\:��(<������"	!�3�& ��( "	!�3m\ ��(<����� " - " ! 3 ( "	!#0�( " - z + �����'6,\:�i����� !#;|& ��( �
and this case has been studied.
If & � "	! ��$�; ( !#0<$ 3�$ 6 (/!#0<$ 3 ( which is a common inversion of " and & behaves as a
descent.

" � ���k����� 0v& � "	!#0�( " !�0k\ ��(<����� " ! 3w& ��( " ! 3 ( "	!�3:\ ��(<������"	!#6 & ��( " !�6 ( 6g\ � ����� ! ; & ��( ;
& � ; �k����� 0 & � "	!�3 ( "	!#0 \ ��(<����� "	!�3w& ��( "	!#6 ( " ! 3[\ ��(b������" !�6 & ��( " !�0)(�6g\ � ����� !#; & ��( �
and since !#0<$ 3 ( is a common inversion of " and & behaves as a descent, by Lemma
3.2 then we reduce to another studied case.

�
Corollary 4.3. Let "T� ):9 , � *9, . 0 . 3 . 6 . 8 * ; and "	! , ( .9"	! Y ( .9" ! 8)(�$ � Y �	 0 $�3�$'6I
 .

& �
�
"	! ,�$ 8 ( !#0<$ 3�$'6 ( $ if " !�0�( � � 0 @:	 "	!#0�( $�"	!�3 ( $�"	!#6 (N

"	! ,�$ 8 ( !#0<$'6�$ 3 ( $ if " !�6 ( � � , ; 	 "	!#0�( $�"	!�3 ( $�"	!#6 (N


Then "� # ~ % !�q�( � q � !��}\jq y ( & C 9 % & %)( f C 9 % & # ( f � (�* y
Proof. Suppose that " and & have common right or left descents, then we can apply
Theorem 2.5 to these descents and reduce to consider a pair of permutations with
no common left or right descents. Moreover for 2.1, we can suppose , � � � " !#, (
and ; � 8 � "	! ; ( without lost of generality. Then we are under the conditions of
Theorem 4.2 "��# ~ % !eq�( � "� & � ~ %Z~ � (�~ & + ~ 9 ( !�q�( , where ! @ $ & $ � ( is a generic 3-cycle. Apply-
ing the Theorem 3.2 of [8] at this last polynomial the result follows. �
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Corollary 4.4. Let "j�j):9 , � *-, .-0 .43 .-67. 8 * ; and & under the conditions of
Theorem 4.3. Then

� # ~ % !���( � !��v& ��( � !�� y &+� \9��( & C 9 % & %)( f C 9 % & # ( f � (�* y .
Proof. This follows from Proposition 2.4. �

Remarks and applications
The pairs of permutations ! " $�&�( considered in Corollary 4.3 have all the property
that " f + & � ! ��$�; ( @ where @ is a 3-cycle, i.e these products are in the same conju-
gacy class. We observe that the hypothesis on " !�0)( $�"	!�3 ( $�"	!#6 ( are essential and that
the fact that " f + & is in the conjugacy class of !��=$'; ( @ is not sufficient to have the
same

�
-polynomial:"� + y��	��� ~ ���My�� + !�q�( � q � ! ��\|q y ( and ���/H��.G�Q/G=���/H>� � !��=$�G=( ! ��$;H>$'� ( . � � "	!#0�( �� � 0 @:	 ��$ ��$!H$


as in the next example"� + y������ ~ ����y�� +�!�q�( � q � !eq 
 \PG/q � \ F1q y \9��( and �����1H.GkQkGIH �=��� � !��=$MG�( ! ��$!H $'� ( ."� + y��	��� ~ ���	�My +�!�q�( � q � !eq 
 \ G/q � \ F/q y \ ��( and ���IH ��G Q7G/H�� ��� � !��=$MG�( ! ��$'�>$!H)( , but
� � " !�6 ( �� � , ; 	 ��$'��$;H,
 .

However, under some additional conditions on " , we obtain in the following
proposition a closed product formulas which is a consequence of the main result
of this paper and the one of [10]. Such a result is an example of the possible ap-
plications of these formulas and of the idea that every explicit formulas for the�

-polynomials could give formulas for different irreducible classes of permuta-
tions, and not uniquely for the reducible classes.

Proposition 4.5. Let " $�&R�T):9 and � *9, . 0 . 3 . 6 . 8 *9; be such that one of the
following conditions is satisfied:

i) " contains a pattern of type � ��� at the positions 0 , 3 , 6 ; � Y �*� 0 \ �=$�3 & �(� ,
"	! Y ( ��j� "	!#0�(�$'" !�6 (�� and ":. & � "	! ,�$ 8 ( !#0<$'6�$ 3 (

ii) " contains a pattern of type ����� at the positions 0 , 3 , 6 ; � Y � � 3v\ �=$ 6 & �(� ,
"	! Y ( ��j� "	!�3 ( $�"	!#6 ( � and " . & � " !#,�$ 8)( !�0 $ 6�$ 3 (

iii) " contains a pattern of type ����� at the positions 0 , 3 , 6 ; � Y � � 3v\ �=$ 6 & �(� ,
"	! Y ( ��j� "	!#0�(�$'" !�6 (�� and ":. & � "	! ,�$ 8 ( !#0<$ 3�$'6 (

iv) " contains a pattern of type ����� at the positions 0 , 3 , 6 ; � Y �*� 0 \ �=$�3 & �(� ,
"	! Y ( ��j� "	!#0�(�$'" ! 3 (�� and & . " !#, $ 8)( !#0<$�3�$'6 (

Then

"�$# ~ % !�q�( � q � ! �}\ q y ( � ��� � ��� � � ��� � � � ���� !eq y \ �=(
Proof. In order to lighten notation, we write all permutations, in their complete
notation, only between the positions ,�$ 8 ; moreover, as in the proof of Theorem 4.3,
we apply at each step, excepted the final part, operations on the pair of permu-
tations which preserves the "� polynomials, by Theorem 2.5. For this reason we
write only the permutations and not their polynomials.

"
&
�
� " !#, (
" ! 8 ( �����

"	!#0�(
"	!#6 ( �����

"	!�3 (
" !�0)( �����

" !�6 (
" ! 3 ( �����

"	! 8)(
"	! , (

We prove part i).
From the hypotheses follows that � Y �l� 0 \-�=$�3k&9�(� , either "	! Y ( .1" !�0�( or "	! Y (va
"	!#6 ( .
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We assume that "	!#0 &-��( . 3�3�3 . "	!�3|&-��( and " ! 3 \4��( . 3�3�3 . " !�6v& ��( , by

Theorem 2.5. Define q ������ � 0 @[	 � �B� 07\ �=$ 3 & �(� ` "	!��:(5. " !�0)(N
 , it follows that
"	!#0 \9��( .B3�3�3�. " !eq�( . "	!#0�( . "	!#6 ( . "	!�q:\9��( .

We compute ! ":+�$�&�+ ( where ":+ � " Y � Y � z +g����� Y � , ":+ � " Y � Y � z +g����� Y � . More ex-
plicitly

"b+
& +
�
� "	! , ("	! 8)( �����

"	!#07& ��( "	!#0 \9��(
"	!#07& ��( "	!#0 \9��( �����

" !eq�( "	!#0�( "	!�q:\9��(
"	!�q�( " !�6 ( "	!�q:\ ��( �����

" ! 3i& ��( " ! 3 ( "	!�3w\ ��(
" ! 3}& ��( "	!#0�( "	!�3 \ ��( �����

"	!#6]& ��( " !�6 ( "	!#6 \ ��(
"	!#6k& ��( " ! 3 ( "	!#6 \ ��( �����

"	! 8)(
"	! , (

We reverse these permutations:

&�+)� �
" + ��� �� "	! , ("	! 8)( �����

"	!#6 \ ��( "	!�3 ( "	!#6]& ��(
"	!#6 \ ��( "	!#6 ( "	!#6]& ��( �����

"	!�3 \9��( "	!#0�( "	!�3}& ��(
" ! 3 \9��( "	!�3 ( " ! 3i& ��( �����

"	!�q:\ ��(
"	!�q:\ ��(

"	!#6 (
"	!#0�(

" !eq�(
" !eq�(

����� " !�0v\ ��( " !�0 & ��(" !�0v\ ��( " !�0 & ��( �����
"	! 8)(
"	! , (

By definition of q we have that !#& + ��� $�" + ����( has the same "� -polynomial of the
next pair:

" y
& y
�
� " !#, (" ! 8)( �����

" !�6 \9��( "	!�3 ( " !�6}& ��(
" !�6 \9��( "	!#6 ( " !�6}& ��( �����

" ! 3g\ ��( "	!#0�( "	!#6 ( " ! 3 & ��(
" ! 3 \9��( "	!�3 ( " !�0)( " ! 3 & ��( �����

" !�0 \ ��( " !�0 & ��(
" !�0 \ ��( " !�0 & ��( �����

"	! 8)(
"	! , (

We reverse again to obtain:

" �
& �
�
� " !#, (" ! 8)( �����

" !�0 & ��( " !�0v\ ��(
" !�0 & ��( " !�0v\ ��(

"	!�3}& ��( " !�0)( " ! 3 ( "	!�3w\ ��(
"	!�3}& ��( " !�6 ( "	!#0�( "	!�3 \ ��( �����

"	!#6]& ��( " !�6 ( "	!#6 \ ��(
"	!#6]& ��( " ! 3 ( "	!#6 \ ��( �����

"	! 8)(
"	! , (

Here we have defined " � � &/y ��� and & � � "Dy � � .
Now we compute "��#�� ~ % � !eq�( by applying Theorem 2.5 to the descent Y � f + �V !#& � ( ; since Y � f + ��

V ! " � ( we have: "� # � ~ % � !eq�( � "� # � � � � 
 ~ % � � � � 
 !�q�( \lq "� # � ~ % � � � � 
 !�q�(
The pair !#" � Y � f +�$'& � Y � f + ( satisfies the hypotheses of Theorem 4.3, in fact " � Y � f +
contains a pattern ����� at the positions 3 & �=$�3�$'6 and & � Y � f + � " � Y � f + !#, $ 8)( !�3%&��$ 3�$ 6 ( ; whereas the pair ! " ��$'& � Y � f + ( is under the conditions of Theorem 3.4, since
" ��!�3]& ��(]a " ��!�3 ( and & � Y � f + � " ��!#, $ 8)( !�3]& �=$�3 ( .
Therefore

"��#�� ~ % � !eq�( � q � ! �]\ q y (
� ��� � � � � � � 
 � � � ��� � � � � � � 
 � ���� \ q !�q � ! �}\ q y (

� � � � � � � � � 
 � � � ��� � � � � ���� ( �
q � ! �}\ q y (

� ��� � � � � � � � � �
�
� � ���� !��S\ q y (

The last equality follows from , ; &<!#" ��( � , ; & ! " � Y � f + ((& � and , ; & ! & ��( � , ; & ! " � Y � f + (;\� , since Y � f + is a descent of & � , but not of " � . The final result is a consequence of
the fact that "� # ~ % !eq�( � "� # � ~ % � !eq�( implies that , ; &<!#&)( & , ; & ! " ( � , ; & ! & � (w& , ; & ! " � ( .

Now we consider to be under the conditions ii).
We assume that the values between the positions 3 \ � and 6k& � are in increasing
order. Since � Y �>� 3]\-�=$'6 &9�(� , " ! Y (���>� "	!�3 (�$�"	!#6 (�� we have that either "	! Y ( .4"	!�3 (
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or "	! Y ( a " !�6 ( . Let q ������ � 0 @:	 � � � 3 \ ��$'6v&1�(�s`	" !e� ( . " ! 3 (�
 , it follows that
"	!�3 \ ��( . 3�3�3 . "	!�q�( . " ! 3 ( . "	!#6 ( . " !eq]\ ��( . We calculate !#":+�$�&�+ ( where
":+ � " Y � f +_����� Y ��z + , &�+ � & Y � f +w����� Y ��z + .

"b+
& +
�
� "	! , ("	! 8)( �����

"	!#0�(
"	!#6 ( �����

"	!�3 ( " ! 3g\ ��(
"	!#0�( "	!�3 \ ��( �����

"	!�q�( "	!#6 ( "	!�q[\9��(
"	!�q�( " ! 3 ( "	!�q:\9��( �����

"	! 8)(
"	! , (

Now we multiply by ��� :
& + ���
":+ � � �� "	! , ("	! 8)( �����

"	!�q:\ ��( "	!�3 ( "	!�q�(
"	!�q[\ ��( "	!#6 ( "	!�q�( �����

"	!�3 \ ��( "	!#0�(
"	!�3 \9��( "	!�3 ( �����

"	!#6 (
"	!#0�( �����

"	! 8)(
"	! , (

And again by definition of q we can move the column
" ! 3 (
" !�6 ( to the right to obtain:

"<y
& y
�
� " !#, (" ! 8)( �����

" !eq:\ ��( " !eq�(
" !eq:\ ��( " !eq�( �����

"	!�3 \9��( "	!�3 ( " !�0�(
" ! 3 \9��( "	!#6 ( " ! 3 ( �����

"	!#6 (
" !�0)( �����

" ! 8 (
" !#, (

We reverse again:

" �
& �
�
� " !#, (" ! 8 ( �����

"	!#0�(
"	!#6 ( �����

"	!�3 ( " !�6 ( "	!�3 \ ��(
" !�0)( " ! 3 ( "	!�3w\ ��( �����

"	! 8s& ��( " ! 8)(
"	! 8%& ��( "	! , (

At this point if we apply Theorem 2.5 to the descent !�3S& �=$�3 (s� V !#& � ( we ob-
tain two summands which are under the conditions of Theorem 3.4 and 4.3 as in i).

We prove case iii).

As before we let q ������ � 0 @:	 � � � 3|\ �=$'6%& �(�R` "	!��:( . "	!#0�(N
 , it follows that
"	!�3w\ ��( .�3�3�3�. "	!�q�( . "	!#0�( . " !�6 ( . " !eqb\ ��( .

"
&
�
� "	! , ( " !#,D\9��(
"	! 8)( "	! ,b\9��( �����

" !�0�(
" ! 3 ( �����

"	!�3 (
"	!#6 ( �����

"	!�q�(
"	!�q�(

" !eq[\9��(
" !eq[\9��( �����

" !�6 (
" !�0�( �����

" ! 8 & ��( " ! 8)(
" ! 8 & ��( " !#, (

With the same computation of the previous cases, we obtain the pair ! " + $'& + ( ,
which is explicitly:

" +
&�+
�
� "	! , ( " !#,<\ ��("	! 8)( " !#,<\ ��( �����

"	!#0�(
" ! 3 ( �����

"	!�3 (
"	!#6 (

" ! 3w\ ��(
" ! 3w\ ��( �����

" !eq�(
" !eq�(

"	!#6 (
"	!#0�(

"	!�q[\ ��(
"	!�q[\ ��( �����

"	! 8 & ��( "	! 8)(
"	! 8 & ��( "	! , (

Then we multiply to the right by ��� :
& + ���
":+ � � �� "	! , ( "	! 8 & ��("	! 8)( "	! 8%& ��( �����

" !eqb\ ��(
" !eqb\ ��(

" !�0�(
" !�6 (

"	!�q�(
"	!�q�( �����

"	!�3 \ ��(
"	!�3 \ ��(

"	!#6 (
"	!�3 ( �����

" ! 3 (
" !�0�( �����

"	! ,D\ ��( " ! 8)(
"	! ,<\ ��( " !#, (

By definition of q , we can move the column
"	!#0�(
" !�6 ( and it results:

"Dy
&/y
�
� "	! , ( " ! 8s& ��("	! 8)( " ! 8s& ��( �����

"	!�q[\9��(
"	!�q[\9��(

"	!�q�(
"	!�q�( �����

"	!�3 \ ��(
"	!�3 \ ��(

"	!#0�(
"	!#6 (

" !�6 (
" ! 3 ( �����

"	!�3 (
"	!#0�( �����

"	! ,b\9��( "	! 8)(
"	! ,b\9��( "	! , (

Now define " � � & y � � and & � � " y � � . To end the computation we apply again
Theorem 2.5 to the descent Y � f + of & � ; then we split "��#�� ~ % � !�q�( in two summands
which are "� # � ~ % � � that satisfies the hypotheses of Theorem 3.4, since " � ! 3S&-��( a
" � !�3 ( and & � � " � !#, $ 8)( !�3|&1�=$�3 ( and "� # � � ~ % � � !eq�( which is under the conditions of
Theorem 4.3, since " � Y � f + contains a pattern �=��� at the positions 0 $�3 & �=$�3 and
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& � Y � f + � " � Y � f + ! ,�$ 8)( !�0<$ 3}& ��$ 3 ( .
Finally, we treat case iv).

To prove this case it is enough to observe that if !#"%$'&)( satisfies iv) then ! &'� ��$'"�����(
satisfies the conditions of iii). In fact, if we define " + � &'� � , & + � "	� � , �0 �
" f ++ !#" !�0�(�( , � 3 � " f ++ ! "	!#6 ('( and �6 � " f ++ !#" ! 3 (�( , then � Y � � � 3 \ �=$ �6 & ��� , " + ! Y ( ��
� " + ! �0�(�$'" + ! �6 ( � , since " + ! �0�( � "	!#0�( and " + ! �6 ( � "	!�3 ( . For an easier visualization we
write explicitly ":+�$�&�+ :

" +
&�+
�
� "	! , ( "	! 8 & ��("	! 8)( "	! 8 & ��( �����

" !�0�(
" !�6 ( �����

"	!#6 (
"	!�3 ( �����

"	!#6 (
"	!#0�( �����

" !#,D\9��( "	! 8)(
" !#,<\ ��( "	! , (

and it is clear that "[+ contains a pattern ����� at the positions �0 $ � 3�$ �6 .
This concludes the proof. �
Corollary 4.6. Let "%$'&o�U):9 be such that one of the conditions of the previous proposition
is satisfied. Then

� # ~ % !���( � !��|& ��( � !�� y & � \ ��( � ��� � ��� � � ��� � � � ���� !�� y \9��(
Proof. It is an application of Proposition 2.4. �

5. OPEN PROBLEMS AND CONJECTURES

In this last section we propose a natural prosecution of the investigation on the
irreducible classes.

One problem is to discover if Theorem 2.9 permits to solve also the problem
of irreducible class of H -cycles, while the problem of two permutations “which
differ” for H -cycles nested in a transpositions is suggested by this paper and also
by [10].

In these works we followed the idea that we can summarize in the “natural re-
ordering of a pattern”: suppose that a permutation " contains a pattern of type ���
(Theorem 3.4) or ����� or �=��� (Corollary 4.4) and & is obtained from " as we have
described, by applying the cycle which put the elements of the pattern in their
natural order in " , then the

�
-polynomial associated to !#"%$'&)( factors nicely. It is

now useful to recall the general definition of pattern of permutation:
A permutation � � � + � y ����� � 9 �?) 9 contains a pattern & ��)�� , � * ; , if there
exists a sequence � C 
 � C � ����� � C � with the same relative order as & � &.+ & y ������& � ; usu-
ally we write &�+�$�& y $������ $�& � a pattern & in � . See, e.g [13].
For example the permutation � � L=�IH.G���F�� contains a pattern 1234 which is 2456.

We say that a permutation � contains a pattern & between two fixed positions ,�$ 8 , if
there exists a sequence � C 
 � C � ����� � C � with the same relative order as & � & + &/yi������& �
and , . , + . ,�y .�������, � . 8

Now we can express the “law of natural reordering” for pattern of length H :
Conjecture 5.1. Let � * , .-0 .43 .167. �:. 8:* ; and "%$'&U��):9 , " . & , be one of
the following pairs of permutations.

(1) " contains a pattern of type H>����� between the positions ,�$ 8 , & � " !#, $ 8)( !#0<$�3�$'6�$�� (
(2) " contains a pattern of type ����H � between the positions ,�$ 8 , & � " !#, $ 8)( !#0<$�3�$�� $'6 (
(3) " contains a pattern of type �IH � � between the positions ,�$ 8 , & � " !#, $ 8)( !#0<$ 6�$�� $ 3 (
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(4) " contains a pattern of type ���1H>� between the positions ,�$ 8 , & � " !#, $ 8)( !#0<$��>$ 6�$ 3 (
where 0<$�3�$'6�$�� are the indexes to which corresponds the fixed pattern. Then"� # ~ % !�q�( � q 
 !��}\jq y ( & C 9 % & %)( f C 9 % & # ( f 
 (�* y

This has been tested using Maple C.A.S up to ; � K .
In the next proposition we observe that if the above conjecture is true then there

other cases which will be covered:

Proposition 5.2. Let � * , .-0 .-3 . 65. � . 8 * ; and @ $�&'�T):9 , @ . & , be one of
the following pairs of permutations:

(1) @ contains a pattern of type H��>��� between the positions ,�$ 8 and & � @ !#, $ 8)( !#0<$�3�$'6�$�� (
(2) @ contains a pattern of type �/H)��� between the positions ,�$ 8 and & � @ !#, $ 8)( !#0<$��>$ 6�$ 3 (

where 0<$�3�$'6�$�� are the indexes to which corresponds the fixed pattern. Then"� � ~ % !���( � "��# ~ % !���(
where !#"%$'&)( is the pair of case (2) of Conjecture 5.1

Proof. If @ contains a pattern of type H������ between the positions ,�$ 8 this means, by
definition, that @ !#, ( . @ !�6 ( . @ !�� ( . @ !�3 ( . @ !#0�( . @ ! 8)( and & � @ ! ,�$ 8)( !�0<$ 3�$ 6�$��)(
then we consider the usual visualization of this paper:

@
& �
�����
�����
@ !#, (@ ! 8 (
�����
�����
@ !#0�(@ !�3 (
�����
�����
@ ! 3 (@ !�6 (
�����
�����
@ !#6 (@ !�� (
�����
�����
@ !$�)(@ !#0�(
�����
�����
@ ! 8)(@ ! , (
�����
�����

We have that !#0<$�3 (d� h�; &<! @ (  Th=; & ! &�( and @ !#0�(oa & !#0�( �*@ !�3 (oa & ! 3 ( ; therefore
we are under the conditions of Lemma 3.2: there exists x � � 0 \ �=$�3}& ��� such that"� � ~ % !���( � "� � ~ � !���( , where = and O are the following permutations:

=
O �
�����
�����
@ ! , (@ ! 8)(
�����
�����
@ !�0 \ ��(@ !�0 \ ��(

�����
�����
@ !ex�(@ !ex�(
@ !�3 (@ !#6 (
@ !�0)(@ !�3 (
@ !ex \9��(@ !ex \9��(

�����
�����
@ !�6 (@ !$�)(
�����
�����
@ !�� (@ !#0�(
�����
�����
@ ! 8)(@ ! , (

Now !exs\ ��$'6 (d�>h=; & !e= (  h�; &<!eO>( and again Lemma 3.2 can be applied. This
implies that there exists Y ��� xS\ ��$'6]& �(� such that "� � ~ � !���( � "� � ~ � !���( , where

�
� � ����������

@ ! , (@ ! 8)(
�����
�����
@ !�0 \ ��(@ !�0 \ ��(

�����
�����
@ !ex�(@ !ex�(
@ !�3 (@ !#6 (
@ !exS\ ��(@ !exS\ ��(

�����
�����
@ ! Y (@ ! Y (
@ !�6 (@ !$�)(
@ !#0�(@ !�3 (
@ ! Y \ ��(@ ! Y \ ��(

�����
�����
@ !�� (@ !#0�(
�����
�����
@ ! 8)(@ ! , (

We observe that � contains a pattern of type ����H � corresponding to the indexes
x \ �=$ Y \ ��$ Y \ ��$�� and

� � � ! ,�$ 8 ( !�xS\ ��$ Y \9�=$�� $ Y \ �=( , as we wanted proof. By a
similar application of Lemma 3.2 the case of @ that contains a pattern of type �/H)���
follows.

�
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