
Genetic improvement of TCP congestion
avoidance

Alberto Carbognin[0000−0001−6987−0547],
Leonardo Lucio Custode[0000−0002−1652−1690], and

Giovanni Iacca[0000−0001−9723−1830]

University of Trento
Department of Information Engineering and Computer Science

Via Sommarive 9, 38123 Povo (TN), Italy
alberto.carbognin@studenti.unitn.it

{leonardo.custode,giovanni.iacca}@unitn.it

Abstract. The Transmission Control Protocol (TCP) protocol, i.e., one
of the most used protocols over networks, has a crucial role on the func-
tioning of the Internet. Its performance heavily relies on the management
of the congestion window, which regulates the amount of packets that
can be transmitted on the network. In this paper, we employ Genetic
Programming (GP) for evolving novel congestion policies, encoded as
C++ programs. We optimize the function that manages the size of the
congestion window in a point-to-point WiFi scenario, by using the NS3
simulator. The results show that, in the protocols discovered by GP,
the Additive-Increase-Multiplicative-Decrease principle is exploited dif-
ferently than in traditional protocols, by using a more aggressive window
increasing policy. More importantly, the evolved protocols show an im-
provement of the throughput of the network of about 5%.

Keywords: Genetic Programming · NS3 · TCP · Network protocols

1 Introduction

In the era of the Internet of Things (IoT), networked systems have become a
crucial part of our everyday lives. Network protocols, which describe the interac-
tions that can occur in a networked system, are traditionally modeled by means
of automata, which require: a) complete knowledge about the environment, and
b) strict assumptions on the interactions that can occur. In this scenario, sev-
eral works proposed formal methods that, given a set of service specifications,
perform automatic synthesis of the network protocols [1–4].

As an alternative to this approach, bio-inspired techniques can be used to
evolve network protocols by simulating their behavior, i.e., without any need for
formalizing all the protocol requirements. So, even though the computational
budget required these approaches is higher than the one needed for formal meth-
ods, they have the advantage that there is no need for a complete knowledge
of the environment. Thus, bio-inspired techniques allow to evolve protocols for

2 A. Carbognin et al.

scenarios that are hard to model analytically. Moreover, protocols discovered by
means of bio-inspired approaches allow to perform continual learning and adap-
tation, which allows for: a) an improvement of the performance of the protocol
over time; and b) adaptation to changing domains.

Among the various protocols at the bases of modern Internet, of the most
important ones is the Transmission Control Protocol (TCP). The key element
of TCP is the so-called congestion avoidance mechanism, which makes use of
a congestion window to avoid overloading the link between the sender and the
receiver. The size of the congestion window is traditionally managed by means of
an Additive-Increase-Multiplicative-Decrease approach. However, it may be pos-
sible to adopt alternative, automatically generated congestion avoidance mech-
anisms.

In this paper, we apply Genetic Programming (GP) [5] for the automatic
synthesis of a congestion window management protocol. We employ the NS3
simulator [6] to evaluate the effectiveness of the protocols evolved in a point-to-
point WiFi scenario. In our numerical experiments, we observe that the evolved
protocols are able to obtain approximately a 5% improvement in performance
with respect to the corresponding baseline protocols.

The rest of the paper is structured as follows. In the next section, we present
the background concepts on TCP. Then we make a brief overview of the related
works in Section 3. In Section 4, we describe our methods. In Section 5, we
present our experimental setup and numerical results. Finally, in Section 6 we
conclude this work.

2 Background

The TCP is one of the most used communication protocols together, with the
User Datagram Protocol (UDP) in the Transport Layer of the Internet Protocol
Suite. TCP is well-known for its reliability rather than speed performance, in-
deed it is able to detect the loss of data packets, request missing segments, and
guarantee that all the information is transmitted and delivered to the receiver.
This behavior, however, reduces the available bandwidth; in fact, a potential
issue that may arise by applying these reliability features is the congestion of
the network. Besides the protocol implementation, network congestion can be
caused by many factors, the most common being the low amount of bandwidth
available from the channel and a not properly designed network infrastructure.
TCP has the duty of preventing and mitigating network congestion by using
ad-hoc strategies.

In order to achieve a stable and reliable connection between two hosts, it is
required that the transmission is somewhat controlled at both ends. For instance,
propagation delays due to the network infrastructure could affect negatively the
overall throughput. Congestion control algorithms have been developed to avoid
and recover from this kind of network degradation.

A congested network can quickly result in very low performance. Traditional
congestion control algorithms can be divided into two categories: end-to-end and

Genetic improvement of TCP congestion avoidance 3

network assisted. While in the former only information about the sender and the
receiver is needed, in the latter metrics regarding the network infrastructure are
used to take decisions [7].

The challenge, for end-to-end algorithms, is to use implicit signals to infer the
congestion status of the network. For instance, for packet loss-based approaches,
the objective is to increase throughput by exploiting the bandwidth. In general,
if the sender does not receive back the acknowledgment from the receiver after
a certain amount of time, the sender may “infer” that the packet is lost. On the
other hand, delay-based approaches are better suited for networks that need high
speed and flexibility [7], but also in this case calculating the exact transmission
delay is tricky; other paths have been researched and some hybrid algorithms
have been proposed such as [8].

3 Related works

Networks have now evolved into very complex systems, where one specific so-
lution may be suitable for one network but ineffective in another one. For this
reason, research has focused in solutions that make use of various Artificial Intel-
ligence algorithms, including Evolutionary Computation and Machine Learning,
to improve flexibility and performance of protocols. We briefly discuss some of
these works below.

Two rather comprehensive surveys on the application of bio-inspired tech-
niques to the evolution of network protocols can be found in [9, 10]. Most of
the existing approaches focus on offline optimization. For instance, in [11], the
authors employ the Particle Swarm Optimization algorithm for the routing path
selection. In [12], the authors propose the ant routing method for optimizing
routing models. In [13], the authors propose for the first time an EA to evolve
protocols. After this work, several papers have tried to use an EA to evolve a
variety of network protocols: MAC access protocols [14, 15], e.g. through Finite
State Machines (FSMs) [16–18]; wireless protocols [19]; aggregation protocols
[20–22]; and protocol adaptors [23].

Another line of work consists in using distributed EAs (including GP) to
evolve some elements of the network, e.g. through distributed GP [24, 25] to
evolve the nodes’ parameters and functioning logics of WSNs, or through dis-
tributed optimization algorithms, including EAs and single-solution algorithms,
such as simulated annealing, as in [26], and other optimization paradigms [27–
29].

Finally, online learning approaches have been proposed, which allow the net-
work elements to reconfigure at runtime. Su and Van Der Schaar, in [30], propose
a learning approach in which each node, by observing the others’ behavior, tries
to predict the other nodes’ reaction to its actions. STEM-Net [31] is a method
that equips each node with an EA, that allows to reconfigure each layer of the
node, depending on the current state. In [32], the authors propose an approach
where protocols are formed as a combination of “fraglets”. This concept is sim-

4 A. Carbognin et al.

ilar to those presented in [33, 34]. Another recent work on online optimization
over networks has been presented in [35].

Other works have applied Machine Learning to predict congestion signals by
available data. For instance, the Biaz algorithm is able to distinguish a wireless
loss from a congestion loss [36]. Another algorithm is ZigZag [37], which is able
to work with different networks infrastructures. The key advantage over common
congestion control algorithms for wireless networks is the ability to take into con-
sideration multiple parameters. In [38] a Bayesian detector has been developed
and implemented by modifying the TCP New Reno algorithm; the experimental
results reported that the model was able to infer the distribution of the round-
trip time degradation caused by packet reordering and congestion. A critical
point of these models is the difficulty in finding a suitable trade-off between
network performance improvements and network resources consumption.

4 Method

In this work, we employ Genetic Programming (GP) [5] to evolve congestion
control policies in the form of C++ programs. The function set is shown in
Table 1, while the terminal set is shown in Table 2. The parameters used for the
GP algorithm are shown in Table 3.

Note that, besides the selection, crossover, and mutation operators, another
evolutionary operator is introduced: the Stagnation-Driven Extinction Protocol
(SDEP) [39], which controls the extinction of the individuals in the evolutionary
process. It makes use of the following hyperparameters:

– psdep: the extinction probability
– tsdep: threshold used to control the individuals affected by extinction
– ksdep: the number of stagnating generations that, once reached, triggers the

operator

In this work, we employ a modified version of the Targeted extinction approach
proposed in [39], where psdep is modified over time:

pksdep = p0sdep + fsdep(k) (1)

where fsdep(k) is defined as:

fsdep(k) =
10
√
k

1 + e−k
(2)

Moreover, instead of sorting the individuals by fitness, as done in [39], we
employ a threshold-based approach to control the individuals affected by extinc-
tion. This allows us to reduce the computational complexity of the extinction
protocol to a linear complexity. For this purpose, we make use of a threshold
computed as follows:

τ = Felite(1− tsdep) (3)

where Felite is the fitness of the elite individual, and all the individuals that have
fitness below τ are affected by extinction.

Genetic improvement of TCP congestion avoidance 5

Table 1. Non-terminals used, their corresponding C++ code, argument types and
return types.

Non-terminal C++ code Argument types Return type

assignment arg1 = arg2; variable, exp body
IfThenElse if (arg1){ arg2 }; condition, body body
lt (arg1 < arg2) condition, condition condition
lte (arg1 <= arg2) condition, condition condition
gt (arg1 > arg2) condition, condition condition
gte (arg1 >= arg2) condition, condition condition
eq (arg1 == arg2) condition, condition condition
neq (arg1 != arg2) condition, condition condition
expression arg1 body body
mul arg 1, ..., arg n body body
sum arg 1, ..., arg n body body
sub arg 1, ..., arg n body body
div arg 1, ..., arg n body body
ReduceCwnd ReduceCwnd(arg 1) body body
CongestionAvoidance TcpLinuxCongestionAvoidance(arg 1, arg 2) body body

Table 2. Terminals used, their corresponding C++ code and type.

Terminal C++ code Type

cnt arg1 body
segmentsAcked arg1 body
tcb->m cWnd arg1 body
tcb->m segmentSize arg1 body
tcb->m ssThresh arg1 body

Table 3. Parameter setting (Koza-style tableau) of the Genetic Programming algo-
rithm.

Parameter Value

Objective Throughput
Function set See Table 1
Terminal set See Table 2
Population size 30
Number of generations 50
Max lines of code 100

Mutation

Operator flip, prob: 0.6
Switch branches, prob: 0.3
Switch expression, prob: 0.7
Truncate node, prob: 0.25
Max mutations: 10 mutations

4.1 Code simplification procedure

To simplify the evolved trees, we created a procedure that parses the rendered
code and generates a more compact version of it. The procedure performs mul-
tiple tasks that can be summarized as follows:

– remove empty lines: loops through the code lines and removes the empty one
after applying the function .strip;

6 A. Carbognin et al.

– gathering variable names: loop through code lines and detects the declaration
of variable int and float1;

– remove if unused: creates an empty list of used variables, loops through the
code lines to check if they are used in expression or IfThenElse condition
blocks, delete the variables that are not inside the list of the used ones;

– clean empty “IfThenElse”: loop through code lines and removes branches that
are empty;

– simplify expression: loops through the code lines and detects the expression,
if they only contains constant values they are simplified;

– compressing to “for” loop: loops through the code lines and detects the equal
code lines, it then compress them inside a for loop.

5 Experimental results

To evaluate our method, we employ the NS3 simulator [40, 41]. The Network
topology used in our experiments consists of two hosts connected through WiFi
with an application data rate of 100 Mbps, a payload size of 1500 bytes and
simulation time of 5 seconds. The position of the hosts is assumed to be fixed
during the network simulation. The code we used for our experiments is available
at https://carbogninalberto.github.io/pyGENP/.

Fig. 1. Fitness trend (mean ± std. dev. across 10 runs) of the protocols evolved from
TCP New Reno (blue) vs. the baseline throughput of TCP New Reno (red).

1 The variables inside the expression are not detected

Genetic improvement of TCP congestion avoidance 7

Fig. 2. Fitness trend (mean ± std. dev. across 10 runs) of the protocols evolved from
TCP Bic (blue) vs. the baseline throughput of TCP Bic (red).

Table 4. Throughput of the best evolved TCP protocols in comparison with different
congestion control algorithms from the literature (average across 10 runs), for different
values of payload size.

Algorithm
Payload size (bytes)

250 1500 3000 7500 15000

TcpNewReno (ours) 14.05± 0.02 55.24± 0.04 53.73± 0.49 54.45± 0.50 55.30± 0.51
TcpNewReno 35.17± 0.26 52.38± 0.44 53.44± 0.46 54.70± 0.41 55.20± 0.41
TcpBic (ours) 35.44± 0.27 54.57± 0.02 55.39± 0.02 56.58± 0.02 57.74± 0.03
TcpBic 35.36± 0.25 52.54± 0.62 53.39± 0.54 54.86± 0.54 55.25± 0.56

TcpHybla 35.28± 0.21 52.58± 0.97 53.65± 0.53 54.65± 0.24 55.08± 0.30
TcpHighSpeed 35.30± 0.16 52.71± 0.60 53.45± 0.35 54.99± 0.67 55.02± 0.32
TcpHtcp 35.06± 0.26 52.53± 0.46 53.67± 0.61 55.13± 0.52 55.43± 0.43
TcpVegas 30.49± 3.06 53.89± 1.50 55.68± 0.17 55.96± 0.68 55.36± 0.62
TcpScalable 35.22± 0.34 52.27± 0.46 53.71± 0.66 54.69± 0.54 55.21± 0.45
TcpVeno 35.37± 0.24 52.53± 0.54 53.68± 0.38 54.67± 0.66 55.14± 0.46
TcpYeah 35.47± 0.23 52.58± 0.31 53.39± 0.82 54.72± 0.32 54.88± 0.39
TcpIllinois 35.16± 0.13 52.50± 0.48 53.79± 0.77 54.61± 0.47 55.08± 0.22
TcpWestwood 35.12± 0.27 52.77± 0.33 53.70± 0.50 54.74± 0.37 55.18± 0.52
TcpWestwoodPlus 35.17± 0.18 52.59± 0.38 53.78± 0.68 54.82± 0.37 55.30± 0.37
TcpLedbat 35.13± 0.16 52.45± 0.46 53.81± 0.48 54.78± 0.50 55.15± 0.46

First of all, from Figures 1 and 2 we can see that, for both TCP New Reno
and Bic, the evolutionary process quickly outperforms the corresponding baseline
values of throughput. On average, we can see that the evolved protocols achieve
a 5% improvement on the baseline value of throughput in 50 generations. More-
over, we observe that the evolutionary process seems to stabilize faster (and

8 A. Carbognin et al.

more robustly across runs) in the case of TCP New Reno with respect to the
case of TCP Bic.

In Table 4, we report the performance metrics for each algorithm available
in the NS3 simulator. While our protocols have been evolved on a payload of
1500 bytes, we test them with different payload sizes, to understand whether the
resulting protocols are biased towards the payload size used for the evolutionary
process. We set as maximum payload size 15000 bytes, which is approximately
1/4 of the maximum theoretical payload size allowed by TCP (65535 bytes). By
analyzing the results in the table, it seems reasonable to say that the evolved
TCP New Reno protocol appears biased on the payload size used during the
evolutionary process (1500 bytes); indeed, it performs comparably or worse than
the original TCP New Reno for all the other payload sizes. On the other hand,
while the evolved TCP Bic has less performance gain with respect to the original
TCP Bic protocol, on average it performs better for all the payload sizes above
1500 bytes. Of note, the throughput reached by the evolved TCP Bic with a pay-
load size of 15000 bytes is the highest among all the other compared congestion
control protocols.

Listing 1.1 reports the code of one of the best evolved individuals obtained
in the case of TCP New Reno; the solution sets the segmentsAcked variable to
a fixed value of 175. It then calls the ReduceCwnd function that is updating the
CWND as CWND = max(CWND

2 , segmentSize) and then calls the “TcpLin-
uxCongestionAvoidance” function. The interesting part of this protocol is the
fact that this solution always sets the segmentAcked variable to a fixed value,
thus removing the loss feedback that should be used by the TCP New Reno to
signal possible congestion of the network. Moreover, it always reduces the con-
gestion window before executing the congestion avoidance. The logic of this last
code is to increase the congestion window by the segment size if the congestion
window counter is equal or bigger than the number of segment sizes contained
in the CWND, the variable w. Moreover, it always updates the counter by the
segmentsAcked which is a static value. Then, it further updates the CWND if
the congestion window counter is bigger than the variable w. Further investi-
gations must be done to understand if in this case the static segmentsAcked is
behaving if the network is congested; in the evolution environment, the simple
network packets are lost according to the Friis propagation loss model [42, 43].
The algorithm may have exploited some specific properties of the simulated sce-
nario; for this reason, future work should also include an analysis of the packet
loss rates.

The solutions obtained were also very different from each other across runs.
For instance, the one reported in Listing 1.2 shows a more complex logic even
though, in terms of throughput, it achieves the same result as the one showed in
Listing 1.1. This might indicate that the metric used to optimized the protocol
may not be able to correctly discriminate solutions of different complexities.

In Listing 1.3, we report one of the best solutions obtained in the case of the
TCP Bic protocol; the evolved logic in this case is a bit more complicated than
the ones found in the case of TCP New Reno.

Genetic improvement of TCP congestion avoidance 9

1 segmentsAcked = (int)175.271;

2 ReduceCwnd(tcb);

3 TcpLinuxCongestionAvoidance(tcb , segmentsAcked);

Listing 1.1. Best evolved individual for TCP New Reno with payload size
1500 bytes.

6 Conclusions and future work

Networks have become ubiquitous in our everyday lives. To increase the efficiency
of such networks, it is crucial to efficiently manage the size of the TCP congestion
window depending on the scenario at hand. In this paper, we propose a bio-
inspired approach to the optimization of congestion control algorithms for a
point-to-point WiFi scenario. As shown in Section 5, we were able to evolve
protocols that increase the performance up to about 5% with respect to the
baseline protocols from the literature. This result indicates that the proposed
approach is a promising alternative for optimal protocol design.

Future work may focus, among the other things, on: the modification of
the fitness evaluation process, to take into account different payload sizes; the
evolution of protocols that are able to work well with different packet loss models;
the extension of the function set used in GP, in order to include loops and
operators with arity greater than 2; the study of the GP parameter effect on the
resulting protocols, e.g. through the irace [44] or the ParamILS [45] packages.

References

1. Saleh, Kassem and Probert, Robert: Automatic synthesis of protocol specifications
from service specifications. In: International Phoenix Conference on Computers
and Communications, New York, NY, USA, IEEE (1991) 615–621

2. Probert, Robert L. and Saleh, Kassem: Synthesis of communication protocols:
survey and assessment. Transactions on Computers 40(4) (1991) 468–476

3. Carchiolo, Vincenza and Faro, Alberto and Giordano, Daniela: Formal description
techniques and automated protocol synthesis. Information and Software Technol-
ogy 34(8) (1992) 513–521

4. Saleh, Kassem: Synthesis of communications protocols: an annotated bibliography.
SIGCOMM Computer Communication Review 26(5) (1996) 40–59

5. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press, Cambridge, Mass (1992)

6. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Modeling and tools
for network simulation. Springer (2010) 15–34

7. Jiang, H., Li, Q., Jiang, Y., Shen, G., Sinnott, R., Tian, C., Xu, M.: When Machine
Learning Meets Congestion Control: A Survey and Comparison. arXiv:2010.11397
[cs] (October 2020) arXiv: 2010.11397.

8. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A Compound TCP Approach for
High-Speed and Long Distance Networks. In: Proceedings IEEE INFOCOM 2006.
25TH IEEE International Conference on Computer Communications. (April 2006)
1–12 ISSN: 0743-166X.

10 A. Carbognin et al.

9. Nakano, Tadashi: Biologically inspired network systems: A review and future
prospects. Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 41(5) (2010) 630–643

10. Dressler, Falko and Akan, Ozgur B: A survey on bio-inspired networking. Computer
Networks 54(6) (2010) 881–900

11. Guo, Kai and Lv, Yang: Optimizing Routing Path Selection Method Particle
Swarm Optimization. International Journal of Pattern Recognition and Artificial
Intelligence 34(12) (2020) 2059042

12. Zhang, Ximing and Li, Jin and Qiu, Rongfu and Mean, Tian-Shine and Jin, Fanzhu:
Optimized Routing Model of Sensor Nodes in Internet of Things Network. Sensors
and Materials 32(8) (2020) 2801–2811

13. Khaled El-fakih and Hirozumi Yamaguchi and Gregor Bochmann: A Method and a
Genetic Algorithm for Deriving Protocols for Distributed Applications with Min-
imum Communication Cost. In: International Conference on Parallel and Dis-
tributed Computing and Systems, Calgary, AB, Canada, IASTED (1999) 1–6

14. Lewis, Tim and Fanning, Neil and Clemo, Gary: Enhancing IEEE802.11 DCF
using genetic programming. In: Vehicular Technology Conference. Volume 3., New
York, NY, USA, IEEE (2006) 1261–1265

15. Roohitavaf, Mohammad and Zhu, Ling and Kulkarni, Sandeep and Biswas, Subir:
Synthesizing customized network protocols using genetic programming. In: Ge-
netic and Evolutionary Computation Conference Companion, New York, NY, USA,
ACM (2018) 1616–1623

16. Sharples, Nicholas and Wakeman, Ian: Protocol construction using genetic search
techniques. In: Workshops on Real-World Applications of Evolutionary Computa-
tion, Berlin, Heidelberg, Springer (2000) 235–246

17. Hajiaghajani, Faezeh and Biswas, Subir: Feasibility of Evolutionary Design for
Multi-Access MAC Protocols. In: Global Communications Conference, New York,
NY, USA, IEEE (2015) 1–7

18. Hajiaghajani, Faezeh and Biswas, Subir: MAC protocol design using evolvable
state-machines. In: International Conference on Computer Communication and
Networks, New York, NY, USA, IEEE (2015) 1–6

19. Tekken-Valapil, Vidhya and Kulkarni, Sandeep S: Derivation of Network Repro-
gramming Protocol with Z3 (2017)

20. Weise, Thomas and Geihs, Kurt and Baer, Philipp A: Genetic programming for
proactive aggregation protocols. In: International Conference on Adaptive and
Natural Computing Algorithms, Berlin, Heidelberg, Springer (2007) 167–173

21. Weise, Thomas and Zapf, Michael and Geihs, Kurt: Evolving proactive aggregation
protocols. In: European Conference on Genetic Programming, Berlin, Heidelberg,
Springer (2008) 254–265

22. Weise, Thomas and Tang, Ke: Evolving distributed algorithms with genetic pro-
gramming. Transactions on Evolutionary Computation 16(2) (2011) 242–265

23. Van Belle, Werner and Mens, Tom and D’Hondt, Theo: Using genetic programming
to generate protocol adaptors for interprocess communication. In: International
Conference on Evolvable Systems, Berlin, Heidelberg, Springer (2003) 422–433

24. Johnson, Derek M and Teredesai, Ankur M and Saltarelli, Robert T: Genetic
programming in wireless sensor networks. In: European Conference on Genetic
Programming, Berlin, Heidelberg, Springer (2005) 96–107

25. Valencia, Philip and Lindsay, Peter and Jurdak, Raja: Distributed genetic evolu-
tion in WSN. In: International Conference on Information Processing in Sensor
Networks, New York, NY, USA, ACM/IEEE (2010) 13–23

Genetic improvement of TCP congestion avoidance 11

26. Iacca, Giovanni: Distributed optimization in wireless sensor networks: an island-
model framework. Soft Computing 17(12) (2013) 2257–2277

27. Wang, S., Li, C.: Distributed robust optimization in networked system. IEEE
Transactions on Cybernetics 47(8) (2017) 2321–2333

28. Ning, B., Han, Q., Zuo, Z.: Distributed optimization of multiagent systems with
preserved network connectivity. IEEE Transactions on Cybernetics 49(11) (2019)
3980–3990

29. Wang, D., Yin, J., Wang, W.: Distributed randomized gradient-free optimization
protocol of multiagent systems over weight-unbalanced digraphs. IEEE Transac-
tions on Cybernetics 51(1) (2021) 473–482

30. Su, Yi and Van Der Schaar, Mihaela: Dynamic conjectures in random access
networks using bio-inspired learning. Journal on Selected Areas in Communications
28(4) (2010) 587–601

31. Aloi, Gianluca and Bedogni, Luca and Felice, Marco Di and Loscri, Valeria
and Molinaro, Antonella and Natalizio, Enrico and Pace, Pasquale and Ruggeri,
Giuseppe and Trotta, Angelo and Zema, Nicola Roberto: STEM-Net: an evolu-
tionary network architecture for smart and sustainable cities. Transactions on
Emerging Telecommunications Technologies 25(1) (2014) 21–40

32. Yamamoto, Lidia and Schreckling, Daniel and Meyer, Thomas: Self-replicating
and self-modifying programs in fraglets. In: Workshop on Bio-Inspired Models of
Network, Information and Computing Systems, New York, NY, USA, IEEE (2007)
159–167

33. Tschudin, Chr and Yamamoto, Lidia: Self-evolving network software. Praxis der
Informationsverarbeitung und Kommunikation 28(4) (2005) 206–210

34. Miorandi, Daniele and Yamamoto, Lidia: Evolutionary and embryogenic ap-
proaches to autonomic systems. In: International Conference on Performance Eval-
uation Methodologies and Tools, New York, NY, USA, ACM (2008) 1–12

35. Yaman, A., Iacca, G.: Distributed embodied evolution over networks. Applied Soft
Computing 101 (2021) 106993

36. Biaz, S., Vaidya, N.: Discriminating congestion losses from wireless losses us-
ing inter-arrival times at the receiver. In: Proceedings 1999 IEEE Symposium on
Application-Specific Systems and Software Engineering and Technology. ASSET’99
(Cat. No.PR00122). (March 1999) 10–17

37. Cen, S., Cosman, P.C., Voelker, G.M.: End-to-end differentiation of congestion
and wireless losses. IEEE/ACM Trans. Netw. 11(5) (2003) 703–717

38. I’onseca, N., Crovella, M.: Bayesian packet loss detection for TCP. In: Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and Communications
Societies. Volume 3., Miami, FL, USA, IEEE (2005) 1826–1837

39. Ye, G.Z., Kang, D.K.: Extended Evolutionary Algorithms with Stagnation-Based
Extinction Protocol. Applied Sciences 11(8) (April 2021) 3461

40. Kurkowski, S., Camp, T., Colagrosso, M.: Manet simulation studies: the incredi-
bles. SIGMOBILE Mob. Comput. Commun. Rev. 9(4) (2005) 50–61

41. Stojmenovic, I.: Simulations in wireless sensor and ad hoc networks: matching
and advancing models, metrics, and solutions. IEEE Communications Magazine
46(12) (2008) 102–107

42. Friis, H.T.: A note on a simple transmission formula. Proceedings of the IRE 34(5)
(1946) 254–256

43. Stoffers, M., Riley, G.: Comparing the ns-3 propagation models. In: 2012 IEEE
20th international symposium on modeling, analysis and simulation of computer
and telecommunication systems, IEEE (2012) 61–67

12 A. Carbognin et al.

44. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3 (2016) 43–58

45. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36
(2009) 267–306

Genetic improvement of TCP congestion avoidance 13

1 if (tcb ->m_segmentSize > tcb ->m_ssThresh) {

2 tcb ->m_ssThresh = (int)1.0;

3 ReduceCwnd(tcb);

4 } else {

5 tcb ->m_ssThresh = (int)35.63;

6 tcb ->m_ssThresh = (int)2706.002;

7 }

8 tcb ->m_segmentSize = (int)(85.733 - (56.436) - (tcb ->

m_ssThresh) - (92.142) - (70.956) - (6.654));

9 float hnPsxuBCtPVMMYBm = (float)(36.2 - (8.073) -

(16.935) - (78.417) - (21.996) - (tcb ->

m_segmentSize));

10 if (tcb ->m_segmentSize >= segmentsAcked) {

11 segmentsAcked = (int)(hnPsxuBCtPVMMYBm * (68.195) *

(tcb ->m_cWnd) * (tcb ->m_ssThresh) * (9.219) *

(96.226) * (85.611) * (31.971) * (18.886));

12 ReduceCwnd(tcb);

13 } else {

14 segmentsAcked = (int)(72.07 - (tcb ->m_ssThresh) - (

segmentsAcked));

15 }

16 TcpLinuxCongestionAvoidance(tcb , segmentsAcked);

17 if (tcb ->m_cWnd <= hnPsxuBCtPVMMYBm) {

18 hnPsxuBCtPVMMYBm = (float)(92.554 - (74.251) -

(81.969) - (27.667) - (segmentsAcked) - (54.344) -

(64.616) - (12.799));

19 segmentsAcked = SlowStart(tcb , segmentsAcked);

20 tcb ->m_cWnd = (int)(41.965 + (69.396) + (26.746) +

(30.182) + (tcb ->m_ssThresh) + (12.114) + (tcb ->

m_ssThresh));

21 } else {

22 hnPsxuBCtPVMMYBm = (float)(tcb ->m_segmentSize *

3643.109);

23 tcb ->m_cWnd = (int) -34.453;

24 }

25

26 for (int i = 0; i < 2; i++) {

27 TcpLinuxCongestionAvoidance(tcb , segmentsAcked);

28 }

Listing 1.2. Another best evolved individual for TCP New Reno with
payload size 1500 bytes.

14 A. Carbognin et al.

1 if (cnt != segmentsAcked) {

2 tcb ->m_segmentSize = (int)(13.704 * (53.117) *

(74.527) * (segmentsAcked) * (61.69) * (17.898));

3 if (m_cWndCnt > cnt) {

4 tcb ->m_cWnd += tcb ->m_segmentSize;

5 m_cWndCnt = 0;

6 }

7 } else {

8 tcb ->m_segmentSize = (int) -352.836;

9 tcb ->m_ssThresh = (int)1.133;

10 }

11 int MkycqeZLOKenojJc = (int)1.549;

12 cnt = (int)(94.326 * (89.844) * (7.283) * (47.081) * (

tcb ->m_ssThresh) * (94.293) * (segmentsAcked) *

(72.366) * (25.407));

13 ReduceCwnd(tcb);

14 if (tcb ->m_ssThresh > cnt) {

15 tcb ->m_cWnd = (int)(segmentsAcked + (68.779) +

(83.102) + (85.846) + (cnt) + (9.069));

16 if (m_cWndCnt > cnt) {

17 tcb ->m_cWnd += tcb ->m_segmentSize;

18 m_cWndCnt = 0;

19 }

20 MkycqeZLOKenojJc = (int)(23.82 - (79.771) -

(14.523) - (27.086) - (65.009) - (0.513) - (49.232)

- (tcb ->m_ssThresh));

21 } else {

22 tcb ->m_cWnd = (int)(52.023 - (70.074) - (19.636) -

(tcb ->m_ssThresh) - (47.417) - (55.579) - (

MkycqeZLOKenojJc));

23 }

24 ReduceCwnd(tcb);

Listing 1.3. Best evolved individual for TCP Bic with payload size 1500
bytes.

