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1. Introduction

Advances in Internet of Things (IoT), Cy-
ber-Physical Systems (CPS), Cloud Computing, Big 
Data, and Artificial Intelligence have significantly 
impacted manufacturing and are driving the fourth 
industrial revolution, Industry 4.0 [1]–[5]. With the 
development of these Industry 4.0 technologies, the 
volume of raw data obtained during manufacturing 
processes is constantly increasing (i.e., Big Data) [6], 
[7], so many researchers agree that data is becoming 
a key for optimizing manufacturing processes and 
improving competitiveness [8], [9]. Data acquired 

across the product life cycle can be converted into 
manufacturing intelligence and yield positive impacts 
on all aspects of manufacturing [10]. Nevertheless, 
Big data also increases complexity of processing and 
analysis of large amount of information in manufac-
turing systems. Consequently, Big data stimulates the 
development of data analytics [11], [12], which unfor-
tunately often has to cope with insufficient processing 
power of existing software applications and personal 
computers [8]. However, when big data is exploited 
in a right way, the discovery of patterns in raw data 
enables real-time predictive data analytics [13]. Thus, 
by using predictive models, real-time decisions can 

Industry 4.0 and its innovative technologies (e.g., Internet of Things, Cyber-Physical Systems, 
Cloud Computing, Big Data and Artificial Intelligence) represent great promise. Still, com-
panies experience hardship when transforming from reactive to predictive manufacturing 
systems. The latter, driven by data science development, use predictive models to detect and 
solve production and maintenance issues before they happen. To eliminate the need for 
large and varied datasets for development of predictive models, in the present research we 
propose development of real-time predictive models based on small dataset without faulty 
data. This is achieved by using Mahalanobis–Taguchi system for fault detection in lack of 
fault data samples, and by using Edge Computing environment which provides higher re-
sponsiveness, better security and decreased costs. Subsequently, two predictive models are 
developed, tested and compared for the case company from process industry (i.e. the vi-
nyl-floor industry sector). Finally, recommendations for the industry are provided.
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be made transforming effectively a reactive manufac-
turing system into a predictive manufacturing system 
[8].

Predictive manufacturing systems enable pro-
active behavior; that is, by using predictive models, 
they permit to anticipate an error within the manu-
facturing system before it occurs and to immediately 
take appropriate actions to avoid errors [14], [15]. 
Developing a predictive model depends largely on 
the nature of the data collected from manufacturing 
systems over a period of time, and it is necessary to 
select a dataset that will not have incomplete, homo-
geneous, or noise data that disrupts the quality of a 
defined dataset. Notably, precisely selected hetero-
genic dataset composed of fault and non-fault data, 
with emphasis on fault data particularly, is a challenge 
for industry and academia [16], [17]. Up to now, dif-
ferent predictive data analytics methods have been 
proposed in the literature [18]–[20]. The review of 
the relevant literature showed that the available ar-
ticles focus on developing predictive models based 
on large and varied datasets (i.e. consisting of both 
fault and non-fault data) [19]–[21]. On the one hand, 
Cloud Computing has an important role in Data An-
alytics process with the accent on Big Data (i.e. Big 
Data Analytics) as it offers access-based computing 
infrastructure oriented to subscription, data, and 
application services [22], [23]. On the other hand, 
the Edge Computing, unlike Cloud Computing, 
represents the decentralized computing service for 
storage, processing and applications. It takes place 
on the network edge and acting as a middle layer be-
tween end user and cloud data centers. In that way 
it increases system responsiveness by reducing the 
distance that data must travel on the network while 
producing minimal delays [24].

To eliminate the need for large and varied data-
sets for development of predictive models in the 
present research we develop real-time predictive 
models based on small dataset without faulty data. 
This is achieved by using Mahalanobis–Taguchi sys-
tem (MTS) [25] and Edge Computing. Firstly, for 
development of the predictive models we apply the 
MTS. The MTS involves the development of pre-
dictive models based on small carefully selected non-
fault data samples collected from the manufacturing 
process together with the company experts. Notably, 
these data samples, differently from existing methods 
[20], do not require the presence of fault data so pre-
dictive models can be developed observing the pro-
cess that works without errors. Secondly, to enable 
handling of large amount of data with high respon-
siveness, in secure environment and at a low cost, we 

apply Edge Computing solution MELIPC MI5000 
developed by Mitsubishi Electric Company.

Further, the review of the relevant literature 
showed that the majority of the research available in 
the relevant literature deals with models developed 
and tested in experimental conditions. The present 
research looks to fill this gap by testing two developed 
predictive models in a case company from process 
industry (i.e. vinyl floor industry sector) with prod-
uct quality issues. Notably, the case company satisfies 
highest standards of the World Class Manufacturing 
and is highly automatized. With these characteristics 
it presents a great testing ground for the developed 
predictive models.

The present paper is organized as follows. Sec-
tion 2 provides an overview of the related work for 
the real-time data analytics applied in manufacturing 
systems, the MTS for multivariate data, and Edge 
Computing for multivariate limited-scale data analy-
sis. Section 3 presents details of the research method, 
the predictive models development and the testing 
results of the two developed predictive models. Sec-
tion 4 discusses the results and compares results of 
the two developed predictive models. Finally, Sec-
tion 5 derives some conclusions, summarizes the 
paper’s contributions, and suggests opportunities for 
the future research.

2. Related work

2.1 Real-time data analytics for  
manufacturing systems 

The increasing availability of manufacturing data 
is changing the way decisions are made in industry re-
garding predictive maintenance and quality improve-
ment using data analytics methods [26]. The imple-
mentation of advanced Industry 4.0 technologies, 
namely CPS and IoT combined with data analytics, 
can enable predictive manufacturing and networked 
production environments [8].

Data analytics, as part of the data science field, 
represents a practice that reveals hidden information 
among data collected from various devices by using 
advanced analytics techniques, including expert sys-
tems, machine learning, and advanced statistical anal-
ysis [27], [28]. These analytical techniques further 
enable real-time decision making in manufacturing 
systems that use real-time data analytics [12].

Real-time data analytics, as a part of data analyt-
ics, refers to analytical techniques where data is pro-
cessed and analyzed as it is generated, in real time 
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[29] or near to real time [30]. Currently, there are 
few real-time data analytics applications for manufac-
turing systems [30]. The existing architectures have 
been mainly developed for offline data analysis and 
are not suitable for real-time data processing and 
analysis [31].

Among the available applications of real-time data 
analytics, Zang et al. [32] proposed a real-time pro-
duction performance analysis and exception diagnosis 
integration model for manufacturing systems. Their 
model, consisting essentially of a hierarchical timed 
colored Petri net model and a decision tree model, 
achieves real-time production performance and ex-
ception information for dynamic and stochastic man-
ufacturing processes. Similarly, Oh et al. [33] focused 
their research on real-time monitoring of quality and 
on controlling the system with an integrated cost-ef-
fective support vector machine (CESVM) algorithm. 
In their study, an integrated CESVM was developed 
and installed for the door trim manufacturing pro-
cess using a kiosk so real-time quality inspection data 
could be collected, analyzed, and predicted. Finally, 
Qian et al. [34] proposed the real-time data-driven 
framework, Intelligent Collaborative Mechanism 
(ICM), in order to achieve collaborative and effective 
interactions among assembly stations and operators. 
The real-time data-driven ICM for a fixed-position 
assembly system is based on three models, namely 
the Petri net model of the assembly workflow, the 
constraint matrix of tasks, and the partitioned struc-
ture of the task pools. Using these models, the ICM 
was able to monitor the assembly progress and select 
proper tasks for the further matching process of dy-
namic scheduling in manufacturing.

2.2 Mahalanobis–Taguchi system for  
multivariate data

A high quality dataset is crucial for developing an 
effective predictive model. Specifically, for a dataset 
to be considered high quality, it should consist of 
samples from periods when the manufacturing sys-
tem worked without problems, interruptions, and dif-
ficulties (non-fault data samples), as well as data from 
when problems occurred in the system (fault data 
samples). However, it is very difficult to find a bal-
ance between the number of non-fault data samples 
and the number of fault data samples [20]. Moreover, 
for the non-fault data that comprises the majority of 
the data collected, it is not possible to use the most 
common data analytics methods, which require a bal-
anced use of faulty and non-faulty data (e.g., linear 
regression, support vector machines, artificial neural 

networks etc.) [17]. Additionally, the non-fault data 
mainly consists of a large number of similar data val-
ues that do not provide different types of information 
about the condition of the manufacturing system. In 
this case, it is necessary to optimize the collected non-
fault dataset in the right way.

The MTS is a relatively new method in the field 
of diagnosis and prediction using multivariate data 
[25]. The MTS uses the Mahalanobis distance intro-
duced by Mahalanobis [35] in order to distinguish 
the pattern of an observed group from other groups 
[36] based on the correlation between data that is 
maintained with the Mahalanobis distance and var-
ious patterns that can be identified and analyzed in 
relation to the observed dataset [37].

Taguchi [37] extended the use of the Mahalanobis 
distance by developing the primary methodology of 
the MTS [38], [39]. Therefore, the MTS is Taguchi’s 
hybrid systematic diagnosis and forecasting method-
ology based on the Mahalanobis distance principle 
for multivariate data [25]. The MTS calculates the 
distance between observed data and sample data, 
and quantitatively determines their differences and 
optimizes the measurement scale of unobserved data 
[35], [37].

In many scenarios, the MTS is used for monitor-
ing the quality of products and the quality of the man-
ufacturing systems [35]. For example, Su and Hsiao 
[40] investigated the effect of imbalanced training set 
using the MTS and other classification techniques, 
namely stepwise discriminate analysis, decision tree 
analysis, back-propagation neural network, and sup-
port vector machines. The results showed that the 
MTS has the best classification ability and is the most 
robust classification technique. Additionally, Huang, 
Hsu, and Liu [41] integrated the MTS and the arti-
ficial neural network algorithm to create a novel al-
gorithm that solves pattern-recognition problems and 
can be applied to construct a model for manufactur-
ing improvements regarding inspections in dynamic 
environments. Jobi-Taiwo and Cudney [42] used the 
MTS for extracting information in a multidimension-
al system and integrating information from different 
variables into a single composite metric. The meth-
od was evaluated in a case study on a multiple fault 
class of steel plate manufacturing, which indicates 
the practicality of the method for improving system 
quality in industrial applications. Using multi-sen-
sor signals and the MTS, Rizal et al. [43] investigat-
ed predictive maintenance for detecting cutting tool 
wear during manufacturing processes, and the results 
showed that the medium wear and critical wear stag-
es of the cutting tools can be detected in real time. 



149Bajic et al.

International Journal of Industrial Engineering and Management Vol 11 No 2 (2020)

Wang et al. [44] focused on developing a method 
called the adaptive Multiclass Mahalanobis–Taguchi 
system in conjunction with variational mode decom-
position and singular value decomposition, which are 
employed to detect faults based on variable condi-
tions. Finally, Reséndiz-Flores, Navarro-Acosta, and 
Hernández-Martínez [45] proposed a novel method-
ology representing a combination of the MTS and a 
hybrid binary metaheuristic based on particle swarm 
optimization and gravitational search algorithm for 
improving product quality. They did so by perform-
ing an optimal feature selection to detect the relevant 
variables in a real foam injection process in the auto-
motive industry.

2.3 Edge Computing for multivariate limited 
-scale data analysis in Industry 4.0

As already stated, the volume of acquired data 
in Industry 4.0 environment is constantly increasing 
[8]. Due to insufficient processing power [8], big data 
often cannot be processed and analyzed using the 
existing software applications and personal comput-
ers. Therefore, new technologies (i.e., Cloud, Fog, 
and Edge Computing) use advanced data analytics 
techniques to detect hidden information. To over-
come the problems of processing and analyzing large 
amounts of data, various approaches and system ar-
chitectures have been proposed in the research litera-
ture [24], [46]–[48]. However, a large amount of data 
does not guarantee the good quality datasets required 
for data analysis. On the contrary, a carefully selected 
limited-scale dataset that reflects the real state of the 
manufacturing system can provide a lot of valuable 
information if the right technologies for the data anal-
ysis are selected. The most appropriate technology 
for limited-scale data analysis is Edge Computing 
which is mainly used for data storage, processing, 
and applications that take place on the network’s 
edge [24]. Edge Computing optimizes different tech-
nologies, namely Cloud Computing, by performing 
data analytics as close to the data sources as possi-
ble [23]. Thus, we argue that data analytics should 
begin during manufacturing, using an Edge Comput-
ing solution and striving for real time predictive data 
analytics in order to minimize network traffic [49], 
increase data security [50], [51], speed up data pro-
cessing [52] and reduce costs regarding data analysis 
transfer in comparison to Cloud Computing [53].

Cases of Edge Computing use for data analyt-
ics are not numerous in the literature, especially 
for limited-scale data. For example, Qian et al. [52] 
proposed an Edge Computing framework for fault 

diagnosis and dynamic control of rotating machines 
and deployed it on a designed edge computing node 
based on small amounts of data that have machine 
fault values. Their framework is used for real-time 
diagnosis of multiple types of electrical and mechan-
ical faults by fusing multiple sensor data. Similarly, 
Forkan et al. [54] presented an architecture for im-
plementing edge computing in Industrial IoT appli-
cations to perform real-time data analysis and data 
mining of the local database based on limited-scale 
data collected from a customized candy production 
line. The experiment showed that the self-organized 
scheduling mechanism of Edge Computing provides 
obvious advantages in terms of bandwidth optimi-
zation compared to traditional approaches. Finally, 
Vater, Harscheidt, and Knoll [55] proposed IT archi-
tecture based on a combination of Edge and Cloud 
Computing for prescriptive automation that enables 
network-based interoperable process control. Their 
architecture offers the possibility of comprehensive 
data processing for continuous increases in manufac-
turing process productivity where real-time data anal-
ysis is not possible.

3. Development and testing of the  
predictive models

3.1 Research method

In the present research we opted for application 
of MTS for development of the predictive models. 
This is because the MTS has proved itself as an effec-
tive approach for fault detection, diagnosis, and data 
classification in the context of improving product 
quality and the quality of manufacturing processes 
when applied to multivariate datasets in manufactur-
ing environments [56]. These characteristics have led 
to great interest from both industry and researchers 
for MTS.

The present research applies a research method 
based on the data mining approach [57]–[59] - Figure 
1. The research method, used for development of 
the predictive models, contains six phases which re-
sult in application the MTS for real-time data analyt-
ics in Industry 4.0. We develop two predictive mod-
els (Figure 1), namely 1) a random parameter model 
(RPM); and 2) a parameter configuration model 
(PCM) (Figure 1). The RPM represents a predictive 
model developed from randomly collected samples 
with random process parameters, while the PCM 
represents a predictive model developed for a group 
of products with a defined parameter configuration.
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Figure 1. Research method (based on data mining approach [57]–[59])
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3.2 Development and testing of the  
predictive models: the performed steps

We apply the proposed six-phase method in a 
process industry conditions in a company from vinyl 
floor sector. First, we developed the RPM and the 
PCM models. Subsequently we tested them. Finally, 
we assessed and compared the performances of these 
two models. Hereafter we describe the six phases of 
the method and exemplify them, when needed, with 
what we performed in the case company.

Phase 1: Problem definition – This phase has 
three parts (Figure 1): determining the manufacturing 
system characteristics; defining the type of problem 
in the manufacturing system; and specifying the loca-
tion of the problem.

Phase 2: Data identification – Based on the de-
fined problem (Phase 1), in this phase, the data that 
affect the onset of the problem in the manufacturing 
system are identified and collected (Figure 1). Data 
identification is performed in three steps: specifi-
cation of data types, identification of influential pa-
rameters, and checking the availability of influential 
parameters. Influential parameters represent all pro-
cess parameters that have a significant impact on the 
occurrence of product quality issues. As a result the 
influential parameters are defined.

Phase 3: Production data collection – In this 
phase, two different datasets are collected for the 
two developed predictive models (Figure 1). The 
first dataset, used for the RPM predictive model, 
represents the data collected continuously for 24 h 
for random parameter samples. The second dataset, 
used for the PCM predictive model, represents data 
collected intermittently for 12 days in which the data 
was collected for a group of nine products that share 
the same parameter configuration for the observed 
part of the production line (i.e., Coating 1, Coating 
2, and Printing).

Phase 4: Data pre-processing – The dataset opti-
mization based on multivariate analysis (MVA) was 
done in this phase (Figure 1). The MVA approach 
is defined based on the range option, where the de-
fined number of collected rows of data, called sam-
ples (exactly 120 samples), is grouped into single 
data for each set of collected data. According to this 
methodology, the final number of samples used for 
further analysis for the first dataset is 710, and for 
the second dataset is 815 samples. The number of 
influential parameters differs in the datasets because 
of constant values for certain parameters, so the num-
ber of influential parameters for the first dataset is 63, 
while the number of influential parameters for the 

second dataset is 62.
Phase 5: Data processing – In this phase, the 

pre-processed data is processed using the MTS for 
each set of collected data separately (Figure 1). As a 
result, two different predictive models are developed 
for early detection of quality issues based on princi-
ples of mutual distance in the reference data, that is, 
the Mahalanobis distance. According to Peng et al. 
[60], the Mahalanobis distance in data values that are 
characterized as non-fault is less than 2.5, but in cer-
tain cases, values over 4 are defined as non-fault [60].

Phase 6: Real-time model testing – In this phase, 
two developed predictive models are tested in real 
time in manufacturing environment conditions (Fig-
ure 1). The two models are tested in a process in-
dustry company from the vinyl floor sector for a de-
fined period of 15 days. Real-time model testing was 
performed exclusively for the products with defined 
parameter configuration. As a result of this phase, the 
performances of the two developed predictive mod-
els are summarized and compared.

3.3 Testing of the developed predictive  
models: context information and results

The developed predictive models were tested in a 
vinyl floors process industry company. The observed 
production line consists of 12 machines, and the 
main problems are product quality issues. The qual-
ity issues include wrinkles on the final product, low 
paint finish quality, stains on the final product, and so 
on. The company is not currently able to detect root 
causes of these quality issues.

In order to address the need to prevent these 
quality issues, an MELIPC MI5000 edge computing 
solution developed by Mitsubishi Electric Company 
was implemented in the company. According to the 
manufacturer, the MELIPC MI5000 can run two op-
erating systems at the same time, namely VxWorks 
and Windows. VxWorks is used for device control 
and data collection, while Windows displays analysis 
results for collected data, allowing superior process-
ing. The pre-installed software enables easier collec-
tion of production data. Installing additional software 
allows easier collection of third-party company pro-
duction data, allowing off-line model development, 
real-time data processing, and monitoring of produc-
tion processes on the shop floor using functions pro-
vided at the edge computing level. Finally, the most 
important characteristic of this Edge Computing 
solution is its ability to support machine self-configu-
ration by providing corresponding feedback.

The present research is defined as a pilot study 
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for early detection of product quality issues in a vinyl 
floors production company. The research has been 
limited to the first three machines in the production 
line (i.e. Coating 1, Coating 2, and Printing) due to the 
limited resources of Edge Computing for real-time 
model testing and the great complexity of the produc-
tion line in the manufacturing system. Accordingly, 
production data was generated and collected on these 
three machines. Thus, the occurrence of quality is-
sues is limited to the three machines observed.

The two predictive models (RPM and PCM) were 
developed and tested using the MTS approach ac-
cording to the six-phase method presented in Figure 
1. A comparison of the performances of the two de-
veloped predictive models is presented in Table 1, 
which provides the main results for each phase of the 
proposed and applied method.

4. Discussion

At the beginning of the research, the review of 
the relevant literature showed that the available arti-
cles focus on developing predictive models based on 
large and varied datasets (i.e. consisting of both fault 
and non-fault data) [19]–[21]. However, the needed 
size of the dataset and the lack of faulty data can both 
represent a problem for development of predictive 
models and implementation of predictive manufac-
turing systems in industry. Thus, in order to respond 
to this gap, in the present research we focused on de-
velopment of predictive models based on small data-
set for fault detection with lack of fault data samples. 
Specifically, we proposed development of the predic-
tive models based on MTS (Figure 1) that enables 
working on non-faulty data. Further, we used Edge 
Computing (designed to process small datasets) to 
increase MTS responsiveness, provide security and 
decrease costs [24]. Subsequently, we developed and 
operationalized two predictive models using small 
sets of carefully selected data.

The main difference between the two developed 
predictive models is the methodology for data sam-
pling that is used for creating the optimal dataset to 
develop a predictive model. The data sampling meth-
odology is adapted for process industry conditions 
for real-time fault detection. The dataset for devel-
oping the RPM predictive model consists of random 
parameter configurations sampled over 24 h, while 
the dataset for developing the PCM model consists of 
data for a group of products with defined parameter 
configuration collected intermittently for 12 days.

In the data processing phase (Phase 5, Figure 1), 
both models demonstrated high accuracy. The PCM 

model, with an accuracy of 98.04%, slightly outper-
formed the RPM model’s 97.89% (Table 1). Further-
more, the final testing of the predictive models (i.e., 
Phase 6. Real-time model testing, Figure 1) was per-
formed in an industrial environment in real time us-
ing the Edge Computing solution MELIPC MI5000. 
The system was designed to give alarms when there 
are changes in the process parameters that signal the 
occurrence of a product quality issue. During the re-
al-time testing of both models, only the products per-
taining to the defined parameter configuration were 
used because the PCM model was developed exclu-
sively for defined parameter configuration, while the 
goal with the RPM model was to understand whether 
it could be universally applicable to parameter config-
urations in the production system.

The PCM model outperformed the RPM model 
regarding the total accuracy of the model by almost 
10% during real-time model testing (Table 1). How-
ever, the RPM model correctly predicted 5 faults out 
of 7 (real number of faults provided by company ex-
perts) regarding product quality issues, giving better 
recall performances compared to the PCM model, 
which correctly predicted 4 faults. Comparing the 
number of false alarms, even though the number of 
false alarms was very high in both cases, the RPM 
model produced almost twice as many alarms as the 
PCM model, which again gives the advantage to the 
PCM model.

Deepening the issue of false alarms, while dis-
cussing the results with the company’s experts, it was 
concluded that besides faults regarding product qual-
ity issues, there were also so-called “system faults” 
present in the system. These system faults appear, 
for example, at the start of production of a new batch 
while the machine calibration is done. Both models 
predicted not only product quality issues but also 
system faults, which were originally classified as false 
alarms. These system faults were left to be remedied 
in the future and are beyond the scope of the present 
research.

5. Conclusions

The case company in which the two developed 
predictive models were tested is from the vinyl floor 
process industry. For the case company’s process, 
we developed two predictive models based on differ-
ent sampling for dataset creation, namely 1) random 
parameter sampling and 2) parameter configuration 
sampling. Subsequently, the two models were ap-
plied in industry conditions, and the performances of 
these two models were assessed and compared. Both 
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Phase No. Phase name RPM model PCM model

1

Problem definition

1. Determination of manufacturing system characteristics # Process industry

# Vinyl flooring p oduction

# Over 40 variations of floorin

# Constant reduction in batch sizes and increase of product variety

2. Type of problem definitio # Product quality classification p oblem

3. Specifying the location of problem occurrence # The beginning of the production line consisting of three machines: Coating 
1, Coating 2, and Printing

2

Data identification 

1. Specification of data type # Real time production data generated from three machines (Coating 1, 
Coating 2, and Printing) in the manufacturing system

2. Identification of influential p ameters # Influential pa ameters are identified based on experts’ kn wledge

# The number of identified pa ameters is 65 in total

3. Availability of influential pa ameters # All influential pa ameters are generated by sensors implemented on the 
production line confirming their vailability

3 Production data collection

# Real time production data acquisition and logging every 2 minutes (after 2
minutes, one logging file is gene ated consisting of 120 samples)

• Dataset corresponds to the data 
collected continuously for 24 h and 
relates to all products that were 
produced at a given time in the 
manufacturing system. During that 
time, the number of relevant logging 
files for 65 p ocess parameters is 710 
including only non-fault values

• Dataset corresponds to the 
parameter configu ation. Dataset is 
collected intermittently for 12 d ys 
and consists of 815 logging files
consisting of the non-fault values

4 Data pre-processing

• Pre-processed dataset consists of: • Pre-processed dataset consists of:

- 710 samples that correspond to the 
non-fault values

- 815 samples that correspond to 
the non-fault values

- 63 influential pa ameters - 62 influential pa ameters

5 Data processing

# MTS is used for model development

# The Mahalanobis distance is set to a value of 4

• From the total number of 710 non-
fault samples:

• From the total number of 815 non-
fault samples:

- 695 are true positive - 799 are true positive

- 15 are false negative (error type II) - 16 are false negative (error type II)

• Total accuracy of the model: 
97.89%

• Total accuracy of the model: 
98.04%

6 Real-time model testing

# The number of logging files gene ated is 2,253 (each logging file contains
120 samples), where 7 faults were detected in product quality for the 
specified time period (information p ovided by experts). Thus, 2,246 of the 
generated logging files a e classified as non- ault product quality data.

• Total number of 2,253 samples: • Total number of 2,253 samples:

- 1,741 are true positive - 1,958 are true positive

- 505 are false negative (error type II) - 288 are false negative (error 
type II)

- 5 are true negative - 4 are true negative

- 2 are false positive (error type I) - 3 are false positive (error type I)

- total accuracy of the model:  
77.50%

- total accuracy of the model: 
87.10%

- precision of the model: 0.98% - precision of the model: 1.40%

- recall of the model: 71.40% - recall of the model: 57.10%

Legend: # Characteristic/performance are equal for both predictive models

• Characteristic/performance are diffe ent for each predictive model

Table 1. Comparison of the characteristics and performances achieved by the two developed predictive models
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models demonstrate high accuracy and applicability 
to a large number of different products benefiting the 
company that implements them in two ways: 1) the 
manufacturing errors are anticipated before they oc-
cur, and 2) new hidden relationships among data in-
fluencing the occurrence of the errors in production 
are discovered.

Based on the results obtained and discussed, 
the parameter configuration model (PCM) outper-
formed the random parameter model (RPM) in the 
real-time testing phase in an industrial environment 
using Edge Computing. This is an indication that the 
PCM model has strong potential for application in 
the process industry, with high accuracy and usabil-
ity of the model based on the small dataset. Nota-
bly, PCM model was subsequently applied as a pilot 
project in the case company since it was recognized 
by the company top management as a viable way of 
moving towards digital transformation based on Edge 
Computing, advanced statistics and artificial intelli-
gence techniques. Moreover, the application of the 
developed PCM model demonstrated possibilities to 
immediately eliminate great amount of quality issues 
on the produced products. The developed PCM 
model in an Edge Computing environment can pro-
vide signal information (alarms) if a critical state is 
nearly reached for faults regarding product quality 
issues and system faults. This signal can also be sent 
to PLCs in order to autonomously make changes in-
side the manufacturing system and achieve machine 
self-configuration by changing the parameter config-
uration.

Although the PCM outperformed the RPM in 
the real-time testing phase, the limitation of this pre-
dictive model is that it is not universal. Specifically, 
the PCM provides strong performances if it is used 
for preventing quality issues in products that are pro-
duced with a defined parameter configuration. Thus, 
products that do not fall into the exact parameter 
configuration cannot use this predictive model. For 
products that have other parameter configurations, a 
new PCM should be developed.

It can be argued that the RPM could come close 
to the performance of the PCM in some specific 
cases. However, we expect that the PCM will signifi-
cantly outperform the RPM in a great majority of 
applications in the process industry. Thus, a recom-
mendation for the process manufacturer would be to 
develop the necessary number of PCMs to cover the 
entire product assortment. Accordingly, newly devel-
oped products should be fitted in one of the existing 
PCMs or a new PCM should be developed for new 
products in order to obtain good results in real-time 

fault detection.
The next possible step in the research could be to 

identify all parameter configurations and to develop 
PCM models for all present parameter configura-
tions in the vinyl floor process industry sector case 
company. Testing these models on part of the pro-
duction line and then extending this testing to the rest 
of the production line machines is a plausible and 
meaningful continuation of the present research in 

the future.

Funding

This research did not receive any specific grant 
from funding agencies in the public, commercial, or 
not-for-profit sectors.

References

[1]		 Z. Li, Y. Wang, and K. S. Wang, “Intelligent predictive  
		 maintenance for fault diagnosis and prognosis in machine  
		 centers: Industry 4.0 scenario,” Adv. Manuf., vol. 5, no. 4,  
		 pp. 377–387, 2017.
[2]		 Y. Lu, “Industry 4.0: A survey on technologies, applications  
		 and open research issues,” J. Ind. Inf. Integr., vol. 6,  
		 pp. 1–10, 2017.
[3]		 M. Ghobakhloo, “The future of manufacturing industry:  
		 a strategic roadmap,” J. Manuf. Technol. Manag., vol. 29,  
		 no. 6, pp. 910–936, 2018.
[4]		 S. Digiesi, F. Facchini, G. Mossa, and G. Mummolo,  
		 “Minimizing and balancing ergonomic risk of workers of an  
		 assembly line by job rotation: A MINLP Model,”  
		 Int. J. Ind. Eng. Manag., vol. 9, no. 3, pp. 129–138, 2018.
[5]		 M. Crnjac, I. Veža, and N. Banduka, “From concept to the  
		 introduction of industry 4.0,” Int. J. Ind. Eng. Manag., vol. 8,  
		 no. 1, pp. 21–30, 2017.
[6]		 R. Holubek and P. Kostal, “The intelligent manufacturing  
		 systems,” Adv. Sci. Lett., vol. 19, no. 3, pp. 972–975, 2013.
[7]		 B. Li, B. Hou, W. Yu, X. Lu, and C. Yang, “Applications  
		 of artificial intelligence in intelligent manufacturing: a  
		 review,” Front. Inf. Technol. Electron. Eng., vol. 18, no. 1,  
		 pp. 86–96, 2017.
[8]		 B. Nikolic, J. Ignjatic, N. Suzic, B. Stevanov, and  
		 A. Rikalovic, “Predictive Manufacturing Systems in Industry  
		 4.0: Trends, Benefits and Challenges,” in 28TH DAAAM  
		 International Symposium on Intelligent Manufacturing and  
		 Automation, 2017, pp. 769–802.
[9]		 U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody,  
		 “Critical analysis of Big Data challenges and analytical  
		 methods,” J. Bus. Res., vol. 70, pp. 263–286, 2017.
[10]		M. P. Pacaux-Lemoine, D. Trentesaux, G. Zambrano  
		 Rey, and P. Millot, “Designing intelligent manufacturing  
		 systems through Human-Machine Cooperation principles:  
		 A human-centered approach,” Comput. Ind. Eng.,  
		 vol. 111, pp. 581–595, 2017.
[11]		R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman,  
		 “Intelligent Manufacturing in the Context of Industry 4.0:  
		 A Review,” Engineering, vol. 3, no. 5, pp. 616–630, 2017.
[12]		S. S. Kamble, A. Gunasekaran, and S. A. Gawankar,  
		 “Sustainable Industry 4.0 framework: A systematic literature  
		 review identifying the current trends and future  
		 perspectives,” Process Saf. Environ. Prot., vol. 117,  
		 pp. 408–425, 2018.



155Bajic et al.

International Journal of Industrial Engineering and Management Vol 11 No 2 (2020)

[13]		B. Wang, “The Future of Manufacturing : A New  
		 Perspective,” Engineering, vol. 4, no. 5, pp. 722–728, 2018.
[14]		N. K. Ming, N. Philip, and S. Sahlan, “Proactive and  
		 predictive maintenance strategies and application for  
		 instrumentation & control in oil & gas industry,” Int. J.  
		 Integr. Eng., vol. 11, no. 4, pp. 119–130, 2019.
[15]		M. Kumari and M. S. Kulkarni, “Single-measure and  
		 multi-measure approach of predictive manufacturing  
		 control: A comparative study,” Comput. Ind. Eng., vol. 127,  
		 pp. 182–195, 2019.
[16]		S. J. Qin, “Process Data Analytics in the Era of Big Data,”  
		 AIChE, vol. 60, no. 9, pp. 3092–3100, 2014.
[17]		J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey  
		 of machine learning for big data processing,” EURASIP J.  
		 Adv. Signal Process., vol. 2016, no. 1, 2016.
[18]		J. C. Kabugo, S. L. Jämsä-Jounela, R. Schiemann, and C.  
		 Binder, “Industry 4.0 based process data analytics platform:  
		 A waste-to-energy plant case study,” Int. J. Electr. Power  
		 Energy Syst., vol. 115, pp. 1–18, 2020.
[19]		J. M. D. Delgado, L. Oyedele, M. Bilal, A. Ajayi, L. Akanbi,  
		 and O. Akinade, “Big Data Analytics System for Costing  
		 Power Transmission Projects,” J. Constr. Eng. Manag.,  
		 vol. 146, no. 1, pp. 1–10, 2020.
[20]		H. N. Dai, H. Wang, G. Xu, J. Wan, and M. Imran,  
		 “Big data analytics for manufacturing internet of things:  
		 opportunities, challenges and enabling technologies,”  
		 Enterp. Inf. Syst., vol. In press, pp. 1–25, 2019.
[21]		J. Ruiz-sarmiento, J. Monroy, F. Moreno, and C. Galindo,  
		 “A predictive model for the maintenance of industrial  
		 machinery in the context of industry 4.0,” Eng. Appl. Artif.  
		 Intell., vol. 87, pp. 1–15, 2020.
[22]		C. Wu, R. Buyya, and K. Ramamohanarao, “Big Data  
		 Analytics = Machine Learning + Cloud Computing,”  
		 Big Data Princ. Paradig., pp. 3–38, 2016.
[23]		G. P. Bhandari and R. Gupta, “An Overview of Edge/Cloud  
		 Computing Architecture with its Issues and Challenges,”  
		 in Advancing Consumer-Centric Fog Computing  
		 Architectures, 2018, pp. 1–37.
[24]		B. Bajic, I. Cosic, B. Katalinic, S. Moraca, M. Lazarevic,  
		 and A. Rikalovic, “Edge Computing Vs. Cloud Computing:  
		 Challenges And Opportunities In Industry 4.0,” in 30th  
		 Daaam International Symposium on Intelligent  
		 Manufacturing and Automation, 2019, pp. 864–871.
[25]		E. A. Cudney, D. Drain, K. Paryani, and N. Sharma,  
		 “A Comparison of the Mahalanobis-Taguchi System to A  
		 Standard Statistical Method for Defect Detection,” J. Ind.  
		 Syst. Eng., vol. 2, no. 4, pp. 250–258, 2009.
[26]		G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and  
		 A. Beghi, “Machine learning for predictive maintenance:  
		 A multiple classifier approach,” IEEE Trans. Ind.  
		 Informatics, vol. 11, no. 3, pp. 812–820, 2015.
[27]		Y. Chen, H. Chen, A. Gorkhali, Y. Lu, Y. Ma, and L. Li,  
		 “Big data analytics and big data science: a survey,”  
		 J. Manag. Anal., vol. 3, no. 1, pp. 1–42, 2016.
[28]		S. Tiwari, H. M. Wee, and Y. Daryanto, “Big data analytics  
		 in supply chain management between 2010 and 2016:  
		 Insights to industries,” Comput. Ind. Eng., vol. 115,  
		 pp. 319–330, 2018.
[29]		Z. Milosevic, W. Chen, A. Berry, and F. A. Rabhi,  
		 “Real-Time Analytics,” in Big Data: Principles and  
		 Paradigms, 2016, pp. 39–61.
[30]		Y. Cui, S. Kara, and K. C. Chan, “Manufacturing big data  
		 ecosystem: A systematic literature review,” Robot. Comput.  
		 Integr. Manuf., vol. 62, no. In press, pp. 1–20, 2020.
[31]		S. Wang, J. Wan, D. Li, and C. Liu, “Knowledge reasoning  
		 with semantic data for real-time data processing in smart  
		 factory,” Sensors (Switzerland), vol. 18, no. 2,  
		 pp. 1–10, 2018.
[32]		Y. Zhang, W. Wang, N. Wu, and C. Qian, “IoT-Enabled  

		 Real-Time Production Performance Analysis and Exception  
		 Diagnosis Model,” IEEE Trans. Autom. Sci. Eng., vol. 13,  
		 no. 3, pp. 1318–1332, 2016.
[33]		Y. G. Oh, M. Busogi, K. Ransikarbum, D. Shin, D. Kwon,  
		 and N. Kim, “Real-time quality monitoring and control  
		 system using an integrated cost effective support vector  
		 machine,” J. Mech. Sci. Technol., vol. 33, no. 12,  
		 pp. 6009–6020, 2019.
[34]		C. Qian, Y. Zhang, C. Jiang, S. Pan, and Y. Rong,  
		 “A real-time data-driven collaborative mechanism in  
		 fixed-position assembly systems for smart manufacturing,”  
		 Robot. Comput. Integr. Manuf., vol. 61, no. In press,  
		 pp. 1–13, 2020.
[35]		K. Arai and T. Ueda, “Data Analysis for Stabilizing  
		 Product Quality and the Mahalanobis Taguchi ( MT )  
		 Method,” 2016.
[36]		G. Taguchi and R. Jugulum, The Mahalanobis-Taguchi  
		 strategy: A Pattern technology System. John Wiley &  
		 Sons, 2002.
[37]		G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi’s Quality  
		 Engineering Handbook. 2007.
[38]		E. Ghasemi, A. Aaghaie, and E. A. Cudney, “Mahalanobis  
		 Taguchi system: A review,” Int. J. Qual. Reliab. Manag.,  
		 vol. 32, no. 3, pp. 291–307, 2015.
[39]		W. H. Woodall, R. Koudelik, K. L. Tsui, S. B. Kim,  
		 Z. G. Stoumbos, and C. P. Carvounis, “A review and  
		 analysis of the Mahalanobis—Taguchi system,”  
		 Technometrics, vol. 45, no. 1, pp. 1–15, 2003.
[40]		C. T. Su and Y. H. Hsiao, “An evaluation of the robustness  
		 of MTS for imbalanced data,” IEEE Trans. Knowl.  
		 Data Eng., vol. 19, no. 10, pp. 1321–1332, 2007.
[41]		C. L. Huang, T. S. Hsu, and C. M. Liu, “The Mahalanobis 
		 -Taguchi system - Neural network algorithm for data-mining  
		 in dynamic environments,” Expert Syst. Appl., vol. 36, no. 3,  
		 part 1, pp. 5475–5480, 2009.
[42]		A. A. Jobi-Taiwo and E. A. Cudney, “Mahalanobis-Taguchi  
		 system for multiclass classification of steel plates fault,”  
		 Int. J. Qual. Eng. Technol., vol. 5, no. 1, pp. 25–39, 2015.
[43]		M. Rizal, J. A. Ghani, M. Z. Nuawi, and C. H. C. Haron,  
		 “Cutting tool wear classification and detection using  
		 multi-sensor signals and Mahalanobis-Taguchi System,”  
		 Wear, vol. 376–377, pp. 1759–1765, 2017.
[44]		N. Wang, Z. Wang, L. Jia, Y. Qin, X. Chen, and Y. Zuo,  
		 “Adaptive multiclass Mahalanobis Taguchi system for  
		 bearing fault diagnosis under variable conditions,” Sensors  
		 (Switzerland), vol. 19, no. 1, pp. 1–16, 2019.
[45]		E. O. Reséndiz-Flores, J. A. Navarro-Acosta, and A.  
		 Hernández-Martínez, “Optimal feature selection in  
		 industrial foam injection processes using hybrid binary  
		 Particle Swarm Optimization and Gravitational Search  
		 Algorithm in the Mahalanobis–Taguchi System,” Soft  
		 Comput., vol. 24, pp. 341–349, 2020.
[46]		Y. Zuo, F. Tao, and A. Y. C. Nee, “An Internet of things  
		 and cloud-based approach for energy consumption  
		 evaluation and analysis for a product,” Int. J. Comput.  
		 Integr. Manuf., vol. 31, no. 4–5, pp. 337–348, 2018.
[47]		D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao,  
		 T. Kurfess, and J. A. Guzzo, “A fog computing-based  
		 framework for process monitoring and prognosis in  
		 cyber-manufacturing,” J. Manuf. Syst., vol. 43, pp.  
		 25–34, 2017.
[48]		J. Um, V. Gezer, A. Wagner, and M. Ruskowski,  
		 “Edge Computing in Smart Production,” in Advances in  
		 Service and Industrial Robotics, Springer International  
		 Publishing, 2020, pp. 144–152.
[49]		K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials,  
		 trends, and prospects in edge technologies: Fog, cloudlet,  
		 mobile edge, and micro data centers,” Comput. Networks,  
		 vol. 130, pp. 94–120, 2018.



156 Bajic et al.

International Journal of Industrial Engineering and Management Vol 11 No 2 (2020)

[50]		S. Garg, A. Singh, K. Kaur, G. S. Aujla, S. Batra, N. Kumar,  
		 and M. S. Obaidat, “Edge Computing-Based Security  
		 Framework for Big Data Analytics in VANETs,” IEEE  
		 Netw., vol. 33, no. 2, pp. 72–81, 2019.
[51]		W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A.  
		 Ahmed, “Edge computing: A survey,” Futur. Gener.  
		 Comput. Syst., vol. 97, pp. 219–235, 2019.
[52]		G. Qian, S. Lu, D. Pan, H. Tang, Y. Liu, and Q. Wang,  
		 “Edge Computing: A Promising Framework for Real-Time  
		 Fault Diagnosis and Dynamic Control of Rotating Machines  
		 Using Multi-Sensor Data,” IEEE Sens. J., vol. 19, no. 11,  
		 pp. 4211–4220, 2019.
[53]		T. Francis, “A comparison of cloud execution mechanisms  
		 fog, edge, and clone cloud computing,” Int. J. Electr.  
		 Comput. Eng., vol. 8, no. 6, pp. 4646–4653, 2018.
[54]		A. R. M. Forkan, F. Montori, D. Georgakopoulos,  
		 P. P. Jayaraman, A. Yavari, and A. Morshed, “An  
		 industrial IoT solution for evaluating workers’ performance  
		 via activity recognition,” in 39th International Conference  
		 on Distributed Computing Systems (ICDCS), 2019,  
		 pp. 1393–1403.
[55]		J. Vater, L. Harscheidt, and A. Knoll, “A reference  
		 architecture based on edge and cloud computing for smart  
		 manufacturing,” in Proceedings - International Conference  
		 on Computer Communications and Networks, ICCCN,  
		 2019, pp. 1–7.
[56]		E. O. Reséndiz-Flores, J. A. Navarro-Acosta, C. G.  
		 Mota-Gutiérrez, and Y. I. Reyes-Carlos, “Fault detection and  
		 optimal feature selection in automobile motor-head  
		 machining process,” Int. J. Adv. Manuf. Technol., vol. 94,  
		 pp. 2613–2622, 2018.
[57]		D. Abbott, Applied Predictive Analytics: Principles and  
		 Techniques for the Professional Data Analyst, 1st ed. Wiley,  
		 2014.
[58]		O. Doğan, “A Roadmap for Data Driven Decision Making  
		 to Improve Quality A Roadmap for Data Driven Decision  
		 Making to Improve Quality,” no. May, pp. 0–8, 2017.
[59]		H. Wiemer, L. Drowatzky, and S. Ihlenfeldt, “Data Mining  
		 Methodology for Engineering Applications (DMME)—A  
		 Holistic Extension to the CRISP-DM Model,” Appl. Sci.,  
		 vol. 79, pp. 403–408, 2019.
[60]		C. F. Peng, L. H. Ho, S. B. Tsai, Y. C. Hsiao, Y. Zhai,  
		 Q. Chen, L. C. Chang, and Shang, Z., “Applying the  
		 Mahalanobis-Taguchi System to improve tablet PC  
		 production processes,” Sustain., vol. 9, no. 9,  
		 pp. 1–17, 2017.


