
Realizing Flat Multi-Zone Multi-Controller
Software-Defined Networks using Zenoh
Federico Giarré

DISI, University of Trento, Italy
federico.giarre@gmail.com

Luca Cominardi
ZettaScale Technology, France

luca@zettascale.tech

Paolo Casari
DISI, University of Trento, Italy

paolo.casari@unitn.it

Abstract—Software Defined Networks (SDNs) are becoming
an increasingly important paradigm in modern networking. By
making it possible to detach the control plane from network
devices and to instruct those devices via a high-level program-
ming language, SDNs yield a number of administration-level
improvements, such as better policy-driven network manage-
ment and easier support for multi-tenancy. However, moving
the complexity of network administration to the controllers
entails additional challenges, such as scalability, support for
different controller network topologies, and efficient maintenance
of network state information. In this paper, we consider a
distributed and decentralized approach to the SDN paradigm,
targeting zero-configuration scalability and transparency through
the Zenoh framework. We explore the application of Zenoh as an
east/westbound protocol for SDNs and compare its performance
against that of a strongly coupled HTTP-based alternative. Our
results show that Zenoh’s support for distributed queries enables
our SDN architecture to effectively scale to hundreds of SDN
controllers with zero configuration overhead, while supporting
high east/westbound query throughput.

Index Terms—Software defined networking; flat controller
hierarchy; Zenoh; query consolidation; performance evaluation

I. INTRODUCTION AND RELATED WORK

Software Defined Networks (SDNs) have gained increasing
popularity over time, mainly due to the advantages that such
technology provides: easier network management and monitor-
ing, as well as full control over the packet forwarding process.
In particular the latter, if implemented correctly, yields greater
flexibility, scalability, and efficiency to the network. In an
SDN, the control plane of the network devices (e.g., the
switches) is detached and moved to a different device, called
the controller. The controller is in charge of serving forwarding
information to the devices of the network in order to enable
end-to-end communications.

For any level-2 network, one controller is sufficient to
operate the network. However, the presence of additional
distributed controllers enables network administrators to im-
plement such paradigms as multi-tenancy, while decreasing
delays and bandwidth usage within the network. Yet, scaling
a distributed network of SDN controllers implies several chal-
lenges. First, for every new controller connected to an existing
SDN, the controllers already in place typically need to i)
update their configuration and ii) to propagate such changes to
their peers by exchanging update messages, e.g., via efficient
publish/subscribe message passing architectures. Second, to
operate distributed SDNs efficiently, every controller should

have a complete (or anyway very broad) view of the whole
network, so that effective forwarding rules can be determined.

Achieving the above requires the implementation of a
logically and physically distributed SDN framework. In fact,
distributing the knowledge of the network between multiple
controllers reduces the state that every controller needs to
handle, and enables effective scaling. While one immediate
solution would be to arrange controllers hierarchically [1],
managing the hierarchy is challenging if controllers can be
added or removed over time. Alternative solutions such as
clustering [2] attempt to improve the reliability of the SDN
by grouping controllers into clusters. However, this moves the
complexity from hierarchy management to cluster formation
and clusterhead rotation. Conversely, a flat controller topology
would enable not only smooth controller addition/removal, but
also virtually infinite horizontal scaling. Yet, distributed con-
trollers mean distributed information (e.g., device reachability,
local network topologies, etc.) and bring new challenges: how
to connect the controllers, and how to retrieve data from
them. Mesh controller networks are a typical solution to let
controllers connect and communicate [3]. Yet, such a topology
requires significant heavier management as the number of
controllers increases. Moreover, while information retrieval
from other controllers can be achieved through standard
east/westbound interfaces, we need to balance the amount of
data exchanged, e.g., with the help of caching mechanisms in
order to prevent network bandwidth saturation.

A. Related work on multi-controller SDN frameworks

Many multi-controller SDN frameworks exist. The survey
in [4] describes the combinations of centralized/distributed
control architectures (physically, logically or both),
whereas [5] discusses the characteristics of different interface
protocols for northbound, southbound and east/westbound
interfaces. Flat structure frameworks for multi-zone multi-
controller SDN are available (e.g., Onix [6], HyperFlow [7],
and ONOS [8]) but they require a unified view of the
network, in order to achieve reliability and to make
the best forwarding decisions. Other frameworks like
KANDOO [9] and ORION [10] are logically distributed,
but require full (KANDOO) or hybrid (ORION) hierarchy
to work. Container-based (or micro-services-based) SDN
architectures [11], distribute the services of a monolithic
SDN controller across the network. This allows the system

to achieve greater scalability and modularity at the cost of
higher latency [12] and of heavier difficult management, due
to micro-service orchestration and load balancing.

B. Contribution of this work

From our analysis of the literature, we conclude that there
is currently a lack of frameworks that cache only information
about the network zone managed by each controller, and store
little to no information about other zones. In this paper, we
tackle the above challenges by proposing and evaluating a
framework that realizes both a distributed, physically-flat SDN
control architecture (i.e., it does not rely on a centralized con-
troller, or a hierarchy thereof) and a distributed logical control
architecture (where no controller needs complete knowledge
of data locations within the network).

In the remainder of this paper we present our envisioned
SDN architecture (§II), describe our use case and evaluation
scenario (§III), discuss performance evaluation results (§IV)
and finally draw concluding remarks in §V.

II. ENVISIONED SDN ARCHITECTURE

A. Overview and assumptions

Our working assumption in this paper is that the physi-
cal network is subdivided into zones, and that there exists
one controller managing each zone. Controllers have full
knowledge of their own zone (e.g., in terms of available
devices, exposed resources, etc.), but ignore other parts of
the network. Therefore, controllers will resort to distributed
queries targeting other controllers, in order to retrieve and
compute the information required to forward packets outside
their own zone. The only information controllers can seek and
store about other zones relate to border devices, i.e., those
devices that host the physical link connecting two different
zones. Controllers will rely on border devices (e.g., a switch in
a simple L2 use case) to compute the path for packets to reach
other zones, using these same border devices as gateways.

All distributed queries pass through east/westbound inter-
faces, and are mediated by the corresponding communications
protocols. East/westbound interfaces enable notification mes-
sages (such as updates about device/resource changes of inter-
ested for the communicating controllers) and make it possible
to retrieve the metadata required for controller to function.
In this work, we employ Zenoh [13] as an east/westbound
communication protocol. We provide a general overview and
the required details about Zenoh in the following subsection.

B. Zenoh

Zenoh is a middleware and communication protocol specif-
ically designed to address the challenges of applications that
operate in a decentralized and heterogeneous system such as
edge/fog computing [14]. Specifically, Zenoh unifies data in
motion, data in-use, data at-rest and computation by blending
traditional publish/subscribe patterns with geographycally dis-
tributed storage, queries and computations. In doing so, it is
designed to retain good time and space efficiency for any type
of data communication: peer-to-peer, brokered, or routed via

a Zenoh infrastructure. Additionally, Zenoh adopts a Named-
Data Networking (NDN) paradigm that provides location
transparency to data communications and data storage, allow-
ing applications to focus on actual data, rather than on their
location. To that end, Zenoh natively integrates decentralized
databases and supports eventual consistency for data [15] via
a dedicated storage alignment mechanism reacting to system
failures. Zenoh uses human-readable names to expose network
resources. For instance, a controller could store a retrievable
value as controller1/value. Distributed stored values
can be queried using wildcards: e.g., **/value retrieves
value from any Zenoh storage hosting it.

Zenoh assigns a timestamp to each resource to ensure even-
tual consistency of data. The user can hence apply consolida-
tion policies to filter incoming responses. Three consolidation
policies are available. None retrieves all the data samples of
a given resource. Samples are neither ordered nor filtered,
and any consolidation policy is delegated to the application.
Latest Value ensures that only the newest sample of a given
resource is returned when performing a query. Zenoh needs
to wait to retrieve all samples firsts, and then singles out the
newest sample. This is the slowest and heavier consolidation
policy. Monothonic returns only newer samples than the last
retrieved one for a given resource, and thus represents a
tradeoff between None and Latest Value consolidation.

SDN controllers can take advantage of the Zenoh middle-
ware and protocol by using Zenoh’s distributed storage and
query capability to i) store and expose their state and ii)
retrieve the state from other controllers. Zenoh’s pub/sub func-
tionalities can then be used to notify other controllers about
updates in their zone. We remark that Zenoh’s NDN-based
operational design is in contrast with strongly coupled and
location-dependent protocol options (e.g., as realized through
REST APIs relying on HTTP), which require to know the
location of a resource and to establish one-to-one connections
between every pair of existing devices, greatly limiting the
scalability of SDNs. At the same time, Zenoh provides the
SDN controllers with the required level of consistency to store
and share their state.

Zenoh tackles the above complexity by interconnecting con-
trollers and by allowing them to locate and reach any devices
or resources through distributed queries, with no changes
to their codebases or previous knowledge on their location.
Moreover, Zenoh does not need coupled communications, and
controllers can be arranged into any topology (e.g., peer-to-
peer, mesh or even across different networks using the Zenoh
Routers extension). For instance, if controllers A and B are
directly connected, we can connect controller C only to B.
With Zenoh, controller C will be able to perform queries on
both controllers A and B (and vice-versa, controllers A and B
will be able to query controller C). Thanks to this, connecting a
new network section to the existing ones is as easy as booting
up the controller and connecting the SDN controller to the
Zenoh system. Other uses of Zenoh include the seamless man-
agement of topology changes, e.g., due to device relocation or
collective controller reconfigurations towards some common

Zenoh

L2 Devices L2 Devices

Zenoh

L2 Devices

Zone 1 Zone 2 Zone 3

Fig. 1. (Top) Scheme of the topology of our considered use case and (bottom)
example of realization of a topology including L2 devices, shown as blue
cubes with crossing arrows. The devices are interconnected by either 1-Gbit/s
links (red) or 1-Mbit/s links (black).

goal (e.g., ensuring a minimum amount of bandwidth on some
end-to-end path). Similarly, by storing the SDN controllers’
state in Zenoh decentralized storage, switches can be migrated
from one controller to another, even across different zones,
since data can be accessed transparently.

III. CONSIDERED USE CASE AND EXPERIMENTAL SETUP

A. Use case description

The scenario we focus on is an SDN applied to a large
enterprise or university campus network. These examples are
representative of ever-evolving networks that can benefit from
transparent addition/removal of new network sections that do
not affect existing sections. For example, if a university wants
to add new temporary laboratories, the controllers in other
parts of the network have to account for the changes and
rearrange their knowledge in order to ensure connectivity. This
process can require heavy or cumbersome setup and mainte-
nance operations, which include reverting the configuration to
the status quo, once temporary laboratories are discontinued.

Even in the presence of an evolving topology, network
devices and resources on the network should be seamlessly
available and reachable. Therefore, this scenario can benefit
significantly from the plug-and-play controller connection
functionalities offered by Zenoh.

As a reference topology for our use case, we consider
the setup of Fig. 1. In this setup, the network is subdivided
into three zones, each managed by a single controller. Zones
include devices and an L2 connectivity fabric. The bottom
panel of Fig. 1 depicts a possible physical network topology,
where zones 1 and 3 include both devices and switches,

TABLE I
CONFIGURATION OF THE PHYSICAL AND VIRTUAL TESTBED PLATFORMS

Physical workstations Controller VMs

CPU 8-core AMD Ryzen 7 5800X 4 vCPUs
Memory 32 Gb 8 Gb
OS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS

whereas zone 2 is mainly an interconnecting zone, and con-
tains only switches. SDN controllers communicate with one
another using Zenoh as their east/westbound protocol.

B. Experimental setup

We implement the above scenario using the following setup.
We employ a workstation embedding an 8-core AMD Ryzen 7
5800X CPU, 32 GByte of RAM, and running on an Ubuntu
20.04.3 LTS operating system. We virtualize computing and
networking resources on this workstation in order to run SDN
controllers, as well as instantiate the L2 fabric and all network
devices. In particular, all controllers run on virtual machines
(VMs) managed by KVM, whereas we employed Mininet [16]
to emulate connectivity, network devices and switches. The
configuration of the physical and virtual machines are sum-
marized in Table I.

As the SDN zone controller we chose Ryu [17]. While
Ryu is a physically and logically centralized SDN framework,
we recall that the controller structure is flat and distributed,
and every controller manages its own zone, without having
to maintain any knowledge about devices and resources avail-
able in other zones. Because the scope of each controller is
limited to a single network zone, a fully centralized controller
perfectly fits our purposes.

Further, we deployed two additional workstations equal to
the one hosting the controller VMs and the L2 devices. This
enables us to make routed tests, where different instances of
Zenoh are separated by at least one physical network hop.
Moreover, this prevents effecting the results by having too
many SDN controllers running on virtualized resources on the
same physical machine, without an actual network in between.
Instead, with this setup we address the case where different
controllers instances are displaced throughout different physi-
cal places (as is typical in realistic large networks), and cannot
connect in a peer-to-peer manner.

We relied on two different types of processes. Getters start
a Zenoh session and connect to a Zenoh router, in order
to perform distributed queries at the epochs determined by
the user. Queryable processes, conversely, store some value
that will be served to the Getter process upon receiving the
distributed queries. Queryables also start a Zenoh session and
connect to the Zenoh router at startup. Both Getters and
Queryables are SDN controllers.

In particular, following the scheme in Fig. 2, we connect
the three physical machines via 100-Gbit/s Ethernet links,
and run one Getter on the leftmost machine, and multiple
Queryables on the rightmost machine. The same machine that
hosts the controllers and L2 devices also instantiates a Zenoh

Zenoh Getter

Controller VM 3

Controller VM 2

Controller VM 1

Mininet
VM

Zenoh
Router

Zenoh

Queryable 1

Zenoh

Queryable N

Fig. 2. Setup used for our performance evaluation, with three physical
workstations connected via 100-Gbit/s Ethernet links.

router. With this setup, the controllers have to communicate
outside their own virtual machine in order to retrieve data in
the network. We inspected several alternative deployments of
Getters and Queryables, but did not experience any significant
performance differences. As a summary reference, the soft-
ware packages used to implement and execute the tests are
Mininet 2.3.0; Ryu 4.34; Openflow 1.3; Scapy 2.4.5; Zenoh
0.6.0-dev (clique-peers branch); Zenoh nightly for Python.

IV. EXPERIMENTAL EVALUATION

In this section we present a performance evaluation of our
envisioned SDN architecture. Section IV-A investigates the
delays incurred by controller-related operations; Section IV-B
tests the delay needed to collect answers to Zenoh’s distributed
queries; finally, Section IV-C compares Zenoh’s performance
against a HTTP REST-based implementation of the con-
trollers’ east/westbound communications.

A. Delay of controller-related operations

With reference to the topology in Fig. 1, we now focus
on how the coexistence of Zenoh and of the SDN controller
leads to different types of delay, depending on the zone
where communication endpoints are located. We consider
three classes of delays: i) Host discovery delay: required to
retrieve information about a host (source, destination or both);
ii) Border discovery delay: required to collect available paths
to reach a certain zone (the source’s, the destination’s or both);
and iii) Controller forwarding delay: required to compute an
end-to-end communication path and forward data flow routing
instructions to the requesting switch.

The host discovery delay is defined as the time difference
between the start epoch of a distributed query and the epoch
all responses arrive. Measuring the border discovery delay
requires to complete a recursive discovery procedure starting
from the destination, since the only information controllers
have about other zones is the name of the zones they are
adjacent to. To simplify the measurement of the border dis-
covery delay, we carry out border discovery exactly once per
experiment. Finally, the controller forwarding delay is defined
as the time the controller takes to analyze a packet, compute
the forwarding path (excluding the time required for queries)
and transmit the packet.

We distinguish among the four communication types enu-
merated as follows, which require different actions:

1 2 3 4
Communication Type

0

200

400

600

800

1000

1200

Ti
m

e(
s)

Delay Type
Host Delay
Border Delay
Controller Delay

Fig. 3. Packet handling delays for different communication types.

1) both the source and the destination are in the same zone
managed by the controller (no query needed);

2) the destination is in the zone of the controller, the source
is not (one query needed for host discovery);

3) The source is in the same zone of the controller, the
destination is not (one query needed for host discovery,
one query for border discovery);

4) Both the source and the destination are in zones different
from the one of the controller (two queries needed for
host discovery, two queries for border discovery).

To measure the above delays, we need Zenoh and Ryu to
co-exist. Because Ryu is written in python, we employ Zenoh-
python, a binding to the core Rust implementation of Zenoh.
It is worth highlighting that Python, being an interpreted
language, cannot deliver the same performance as Rust, a
compiled language. Therefore, the results in the following are
to be considered as worst-case results imposed by the Python
language, rather than by Zenoh.

Fig. 3 shows the average value of the host, border, and
controller delays for the four above communication types. The
controller delay is almost constant whenever the controller
zone includes one or both communication endpoints. Our
measurements indicate that the overall delay is bounded by
the number of distributed queries performed by Zenoh. In fact,
each controller is isolated, hence delays caused by changes in
other zones do not affect local controller delays. Because the
above results depend only on Zenoh’s distributed queries, we
will now turn to evaluate Zenoh’s performance in more detail.

As a final remark, the above tests were performed by
disabling the flow saving system, so that we can observe
the longest delays, typical of an SDN’s startup period. Once
controllers learn how to route packets across zones, this
knowledge can be cached,1 so that no periodic queries to

1Recall that we assume that controllers and zones do not change location.
Rather, only devices can move.

1 10 100 1k 10k 100k 1M inf
Query executed per second

10
2

10
3

10
4

10
5

D
el

ay
 (

s)
Number of Queryables

512
256
128

64
32
16

8
4
Delay limit

Fig. 4. Zenoh brokered topology, lazy consolidation. Best-case delay.

retrieve end-to-end paths are needed, and the border delay
disappears from inter-zone communication delays after startup.

B. Response delay for Zenoh’s distributed queries

We consider a best case and a worst case for query response
retrieval while applying lazy consolidation. In the best case,
the queried resource is available at a single storage, hence
only one controller will reply to a distributed query at any
given time and the first returned sample is guaranteed to be
the most recent one. This behavior is the same as with the
None consolidation policy and retaining only the first sample.
In the worst case, the same resource is available at all storages.
Therefore, from the point of view of the response delay, the
otherwise effective lazy consolidation policy behaves the same
as full consolidation, i.e., it requires the querying controller to
wait for all query responses.

We implement the above tests by starting one Getter (i.e., an
SDN controller performing a query) and an increasing number
of Queryables (i.e., SDN controllers replying to the query), in
order to observe how the latter quantity affects the delay of
the received responses. The payload for each resource in these
tests is set to 32 bits.

Figs. 4 and 5 show the variation of the median delay as a
function of the number of queries issued per second (i.e., the
query rate, in the abscissa) and of the number of Queryables
(different curves). The dotted line refers to the maximum delay
affordable to deliver all responses before a new query is issued.
Therefore, the abscissa of the intersection between each solid
line and the dotted line conveys the maximum theoretical
throughput of the corresponding test.

We observe that, for a fixed query rate, the response delay
increases with an increasing number of Queryables (solid
colored lines). Consider the best case in Fig. 4: as the query
rate increases, the response delay decreases initially (up to
100–1000 queries per second) and then stabilizes. We attribute
the initial decrease to the context switching overhead in the

1 10 100 1k 10k 100k 1M inf
Query executed per second

10
2

10
3

10
4

10
5

D
el

ay
 (

s)

Number of Queryables
512
256
128

64
32
16

8
4
Delay limit

Fig. 5. Zenoh brokered topology, lazy consolidation. Worst-case delay.

machines hosting the Getter and Queryables: as the query rate
increases, it becomes more likely that the operating system
keeps the Zenoh process in memory and in the CPU caches,
thereby increasing its reactiveness to incoming queries.

Conversely, in the worst case of Fig. 5, the delay due to
the multiple incoming responses dominates the overall delay
if at least 128 Queryables are instantiated, and we observe the
initial delay decrease only for 64 Queryables or less. We also
observe that, with less than 64 Queryables, the best- and worst-
case delays are almost the same, whereas tests with a higher
number of Queryables experience one order of magnitude
greater delay. In any event, the delay obtained for the largest
number of 512 Queryables in the worst case is 10 to 20 ms,
well below the 30 ms target dedicated to signaling for path in-
stantiation and restoration [18], [19]. Considering that we can
expect the heaviest east/westbound traffic only at controller
startup, we can conclude that Zenoh is a suitable and scalable
solution for the controller’s east/westbound communications.

We proceed with Fig. 6, which depicts the cumulative
distribution function (CDF) of the query response delays for
an increasing number of Queryables, and considering a fixed
query rate of 10k queries/s. In this case, every test runs in
saturation conditions, above the delay limit shown in Figs. 4
and 5. All curves are very steep, signifying a very limited
statistical dispersion of the query response times, that does not
change even with increasing Queryables. Only for the largest
number of Queryables do delay outliers slightly extend the tail
of the CDFs. We can thus conclude that Zenoh is a suitable
east/westbound protocol for use cases where response delay
consistency and predictability are important design constraints.

C. Comparison against HTTP-based REST east/west APIs

We now compare the performance of Zenoh against a
strongly coupled east/westbound communication alternative.
For this, we implement HTTP-based REST APIs, which would
require the controllers to maintain a one-to-one connection to

10
2

10
3

10
4

Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y

Queryables
512
256
128
64
32
16
8
4
2

Fig. 6. Query delay CDF for an increasing number of Queryables. Zenoh
brokered topology, lazy consolidation, best case.

every other controller. We tested this setup under the same
conditions used for Zenoh. The HTTP library is written in
Rust, setting the best scenario for HTTP, performance-wise.
The results in Fig. 7 show that HTTP is typically slower than
Zenoh’s best case (cf. Fig. 4), except for the cases with up to
16 Queryables. While HTTP is indeed twice as fast as Zenoh’s
worst case (cf. Fig. 5), we recall that the latter is constructed
by having all Queryable controllers reply with the desired
resource and the same timestamp, so that no consolidation is
possible. Besides this being an arguably unlikely occurrence,
we also emphasize the following considerations.
Coupling—HTTP needs controllers to connect with each other
into a fully meshed network, whereas Zenoh can work with
any possible topology. In our test scenario, Zenoh has been
configured in a brokered mode introducing one extra hop
in the east/westbound path compared to HTTP. Nevertheless,
Zenoh latency is still largely under the 30 ms delay target
for 512 SDN controllers, which is a very unrealistic scenario.
On the other hand, scaling a set of controllers that use
HTTP would become increasingly more complex with an
increasing number of controllers requiring heavy configuration
and manual tracking.
APIs—Zenoh enables easy distributed query management via
wildcards and pub/sub-based message passing, which are not
natively available when using a strongly coupled HTTP REST
interfaces. This allows any SDN controller application to be
developed in a generic and flexible way that is independent of
the number, locations, and roles of the SDN controllers.
Storage—Zenoh natively integrates support for geodistributed
storage that provides data persistency to SDN controller. An
HTTP REST interface requires manual work to discover,
interconnect, and handle data replicas.
Consolidation—Zenoh can filter out responses with older
timestamps to prevent network saturation. To achieve the the
same behavior with an HTTP REST interface, significant

1 10 100 1k 10k 100k 1M inf
Query executed per second

10
2

10
3

10
4

10
5

D
el

ay
 (

s)

Number of Queryables
512
256
128

64
32
16

8
4
Delay limit

Fig. 7. East/westbound communications via REST APIs mediated by HTTP:
query response delay.

burden needs to be put on the SDN controller.
Performance—Zenoh Python binding still outperforms the
HTTP Rust implementation for many scenarios. As a conse-
quence, should an SDN controller be available in Rust, Zenoh
could deliver even better performance for east/westbound
communication [20].

V. CONCLUSIONS

In this paper, we targeted software-defined networks (SDNs)
with distributed controllers that can be connected using any
topology, and evaluated Zenoh as a suitable east/westbound
protocol to coordinate controllers, find end-to-end communi-
cation paths, and query/retrieve remote resources.

Our tests involve a topology with multiple controllers, an
increasing number of Queryable controllers exposing resources
within the SDN, and an increasing query rate targeting such
resources. The results show that Zenoh achieves predictable
query response delays with low statistical dispersion, even with
a large number of Queryables. Further advantages of this solu-
tion include easy scalability to integrate additional controllers
and support for any controller network topology. The main
features that enable these advantages are Zenoh’s location-
transparent approach, distributed queries, and the automatic
consolidation of query results.

Future work includes deploying an L2 controller fully
integrated with Zenoh without bindings or wrappers and
considering even larger network use-cases.

ACKNOWLEDGMENT

This work received support from the Italian Ministry of Ed-
ucation’s Departments of Excellence initiative (Law 232/2016)
and by the EU’s Horizon 2020 research and innovation pro-
gramme under grant agreement no. 101017109 (DAEMON).

REFERENCES

[1] Y. Liu, A. Hecker, R. Guerzoni, Z. Despotovic, and S. Beker, “On
optimal hierarchical SDN,” in Proc. IEEE ICC, 2015, pp. 5374–5379.

[2] A. Abdelaziz, A. T. Fong, A. Gani, U. Garba, S. Khan, A. Akhunzada,
H. Talebian, and K.-K. R. Choo, “Distributed controller clustering in
software defined networks,” PLOS ONE, vol. 12, pp. 1–19, 04 2017.

[3] M. Kulkarni, M. Baddeley, and I. Haque, “Embedded vs. external
controllers in software-defined IoT networks,” in Proc. IEEE NetSoft,
2021, pp. 298–302.

[4] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control: Sur-
vey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, 2018.

[5] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang,
“A comprehensive survey of interface protocols for software defined
networks,” J. of Netw. and Computer Appl., vol. 156, pp. 1–28, 2020.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
Proc. USENIX OSDI, Oct. 2010.

[7] Y. Ganjali and A. Tootoonchian, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. USENIX INM/WREN, Apr. 2010.

[8] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: towards an open, distributed SDN OS,” in Proc. ACM HotSDN,
2014.

[9] S. Yeganeh et al., “Kandoo: A framework for efficient and scalable
offloading of control applications,” in Proc. ACM HotSDN, 2012.

[10] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A hybrid
hierarchical control plane of software-defined networking for large-scale
networks,” in Proc. IEEE ICNP, 2014.

[11] Q. P. Van, D. Verchere, H. Tran-Quang, and D. Zeghlache, “Container-
based microservices SDN control plane for open disaggregated optical
networks,” in Proc. ICTON, 2019, pp. 1–4.

[12] A. Hölscher, M. Asplund, and F. Boeira, “Evaluation of an SDN-based
microservice architecture,” in Proc. IEEE NetSoft, 2022, pp. 151–156.

[13] G. Baldoni, J. Loudet, L. Cominardi, A. Corsaro, and Y. He, “Facilitating
distributed data-flow programming with Eclipse Zenoh: The ERDOS
case,” in Proc. MobileServerless, 2021.

[14] L. Cominardi, R. Andres, K. Hopkins, and F. Desbien, “From DevOps
to EdgeOps: A vision for edge computing,” in Eclipse Foundation edge
native WG white paper, 2021.

[15] S. Burckhardt, “Principles of eventual consistency,” Foundations and
Trends® in Programming Languages, vol. 1, no. 1-2, pp. 1–150, 2014.
[Online]. Available: http://dx.doi.org/10.1561/2500000011

[16] K. Kaur, J. Singh, and N. Ghumman, “Mininet as software defined
networking testing platform,” in Int. Conf. on Commun., Comput. and
Syst., Aug. 2014.

[17] R. Kubo, T. Fujita, Y. Agawa, and H. Suzuki, “Ryu SDN framework –
Open-source SDN platform software,” NTT Technical Reviews, vol. 12,
no. 08, 2014.

[18] W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies
for Optical, MPLS, SONET, and ATM Networking. Prentice Hall, 2003.

[19] S. Yadav, “Do we still need 50 ms restoration for running telecom
services?” 2021. [Online]. Available: https://tinyurl.com/mtxawd6e

[20] “Zenoh’s core Rust implementation performance,” 2021. [Online].
Available: https://zenoh.io/blog/ 2021-07-13-zenoh-performance-async/

