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Abstract 

In the last years, Genome-Wide Associations Studies (GWAS) found many variants 

associated with complex diseases. However, the biological and molecular links between 

these variants and phenotypes are still mostly unknown. Also, even if sample sizes are 

constantly increasing, the associated variants do not explain all the heritability estimated 

for many traits.  

Many hypotheses have been proposed to explain the problem: from variant-variant 

interactions, the effect of rare and ultra-rare coding variants and also technical biases 

related to sequencing or statistic on sexual chromosomes. In this thesis, we mainly 

explore the hypothesis of variant-variant interaction and, briefly, the rare coding variants 

hypothesis while also considering possible molecular effects like allele-specific expression 

and the effects of variants on protein interfaces. Some parts of the thesis are also devoted 

to explore the implementation of efficient computational tools to explore these effects 

and to perform scalable genotyping of germline single nucleotide polymorphisms (SNPs) 

in huge datasets. 

 

The main part of the thesis regards the development of a new resource to identify 

putative variant-variant interactions. In particular, we integrated ChIP-seq data from 

ENCODE, transcription factor binding motifs from several resources and genotype and 

transcript level data from GTeX and TCGA. This new dataset allows us to formalize new 

models, to make hypothesis and to find putative novel associations and interactions 

between (mainly non-coding) germline variants and phenotypes, like cancer-specific 

phenotypes. In particular, we focused on the characterization of breast cancer and 

Alzheimer’s Disease GWAS risk variants, looking for putative variants’ interactions. 

 

Recently, the study of rare variants has become feasible thanks to the biobanks that made 

available genotypes and clinical data of thousands of patients.  We characterize and 

explore the possible effects of rare coding inherited polymorphisms on protein interfaces 

in the UKBioBank trying to understand if the change in structure of protein can be one of 

the causes of complex diseases. 
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Another part of the thesis explores variants as causal molecular effect for allele-specific 

expression. In particular, we describe UTRs variants that can alter the post-transcriptional 

regulation in mRNA leading to a phenomenon where an allele is more expressed than the 

other. Finally, we show those variants can have prognostic significance in breast cancer. 

 

This thesis work introduces results and computational tools that can be useful to a broad 

community of researcher studying human polymorphisms effects. 
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Introduction 

Background 

Almost all the human traits are influenced by the genetic background of individuals, to 

some degree ranging from Mendelian monogenic disorders to highly polygenic complex 

traits. In the 80s and 90s, thanks to linkage analysis and Sanger sequencing, the first 

variants causing diseases were identified. In particular, variations in the CFTR (1) for cystic 

fibrosis and multiple CAG repeats in the HTT gene for Huntington Disease (2). However, 

it was with the first human genome (3) that the study of genetic variability really started. 

In few years, the community developed the first Genome-Wide Associations Study 

(GWAS) that linked age related macular degeneration to variants (4). During years, GWAS 

have grown in sample size reaching more than half a million individuals for several traits 

like schizophrenia, breast cancer (5) and Alzheimer’s Disease (6). GWAS studies have been 

extended to cover many phenotypes and, in cancer, variants have been shown to shape 

cancer evolution, cancer molecular subtypes and cancer patients immune response (7,8).  

Usually, a GWAS provides only a statistical and not a mechanistic link between a variant 

and a trait, but they showed that almost every trait is influenced by a genetic component. 

However, even with a growing number of samples, fractions of heritability estimated from 

twin studies for traits are still missing (9). Many hypotheses have been formulated to 

explain this phenomenon.  

The first hypothesis was related to the low power of the first GWAS studies that were 

unable to detect all the associations due to low sample sizes and more recent studies are 

detecting more and more associations but with lower and lower effects and heritability. 

Also, most GWAS only tested additive models and excluded sexual chromosomes from 

the analysis leading to technical biases (10). 

Another hypothesis to explain the missing heritability is related to rare variants. In 

particular, SNP array and early GWAS sample sizes where inadequate to detect variant 

with minor allelic frequency smaller than 5%. Whole genome sequencing is rapidly closing 
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the gaps and it is allowing to detect many variants and the consequent analysis of rare 

variants in a GWAS settings.  

Unfortunately, the study of rare variants is crippled by their rarity and the consequent 

sample size required to perform associations studies. To overcome those limitations 

several variants can be combined into functional units like genes or protein interfaces to 

gain the required statistical power. 

(11). Recently, thanks to BioBanks the first Coding Wide Associations Studies on rare 

variants have been created (12) showing many associations of coding variants with 

phenotypes and also providing one of the likely causal gene related to the phenotype. 

Other even less studied possible contributor to the missing heritability are structural 

variants like Copy-Number Variants (CNV), structural rearrangements, inversions and 

translocations. CNVs and structural variants have been studied less with respect to SNPs 

and INDELs because CNVs are technically more difficult to detect and characterize.  

Recent studies found that many healthy individuals carry CNV and that African 

populations carry 10% more DNA with respect of the current reference genome 

suggesting that, in fact, CNVs can account for a part of the missing heritability (13). First 

association studies found that associated CNVs are usually located in regions where a tag 

SNP for the trait have already been detected and thus they concluded that common CNVs 

are not likely to contribute much to the missing heritability (14). Other studies focused 

on rarer CNVs and found that associated CNV are not randomly distributed and are more 

likely to impact causal genes or GWAS loci relevant to the trait (15). Studies on BioBanks 

have only recently started to perform CNV-GWAS studies but with great technical 

limitations given by the CNV calling using microarrays, CNV detection tools and the 

complex nature of CNVs (16). In conclusion, CNVs effects on some phenotypes, are an 

understudied genetic variant type that will greatly benefit from novel sequencing 

technology and variant calling techniques and where possibly some of the missing 

heritability is still hidden. 

Another very recent hypothesis on the source of the missing heritability is epigenetics 

through a phenomenon called Transgenerational Epigenetic Inheritance. Epigenetic 

inheritance has been proposed in plants since most plants can be propagated without 

requiring germline cells and in fact it has already been observed in plants (17), but its 

effect on animals and humans are still uncertain and unclear. Mathematical models have 
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been proposed to estimate the heritability given by epigenetic inheritance but the 

contribution of epigenetics is still unclear (18). 

Finally, the last hypothesis on the missing heritability is related to epistasis between 

variants and other variants or between variants and the environment. Epistasis was firstly 

introduced by William Bateson in (19) on qualitative phenotypes and was defined as the 

effect of some variants that can block others. Then, the term evolved to describe the 

phenomenon where the additive combination of two or more variants deviates from the 

sum of the single effects (20). The effects of epistasis are extremely difficult to detect 

since if only pairs of variants are investigated the number of tests required scales 

quadratically leading to an enormous amount of tests that can be performed only using 

the most performant supercomputers but, more importantly, multiple tests correction is 

the main burden in finding interacting loci given the amount of tests performed. To 

explore epistasis different functional studies are required to approach the problem (21).  

In the past decades many variants have been associated to complex traits but, even if a 

lot of hits have been replicated in different studies, in very few cases biological links have 

been found to describe the molecular effects of GWAS polymorphisms. The main difficult 

in linking a GWAS hit to a mechanistic link is that, usually, the causal variant is in Linkage 

Disequilibrium (LD) with the GWAS fond, making extremely difficult to dissect the 

haplotype to identify the link. LD makes flanking non causal variants to have the same 

statistical association as the true causal variant making the whole haplotype associated 

to the phenotype. The first observation made was that, even if the GWAS variants are 

located in non-coding part of the genome, they are enriched for regulatory elements and 

their effect can be related to gene regulation (22). The next step was to try to explain the 

effects of variant through gene expression. Expression Quantitative Trait Loci (eQTL) is a 

genomic locus that can modulate the transcript level of a gene. Usually, eQTLs are located 

near the modulated gene in a window of 1 megabase for humans (cis- eQTL), less studied 

but equally important are trans- eQTL which are eQTL acting on genes outside the 1 

megabase window or on other chromosomes. 

eQTLs can start a phenomenon called Allele-Specific Expression (ASE). ASE is the effect of 

when an allele is more expressed than the other. ASE has been extensively studied the X 

chromosome in females where its inactivation can shape the phenotype in case of 

heterozygosis and has been showed to be linked to several diseases (23). When an eQTL 
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is present, the allele with the variant can be differentially expressed with respect to the 

other allele, an effect that has already been linked to cancer (24). 

Given the great amount of associated variants and the variety of possible effects that 

polymorphisms can have, the research community tried to develop methods to stratify 

the population and to identify people at risk of developing pathologies. Ideally, GWAS 

would have changed how we approach common diseases granting a personalized therapy 

and screening tailored on the genetic background of each individual. However, the 

complexity, the small effect of every variant and the interactions between them greatly 

limited the application of GWAS in medicine. Research focused on an aggregative tool 

called Polygenic Risk Score. A PRS is the weighted sum of the risk alleles present in an 

individual multiplied by the risk effect of each variant. PRS have been shown to be able 

to stratify individuals in function of their lifetime risk of diseases, but they are still lacking 

the ability to correctly predict the onset of a disease. In particular, the clinical utility of 

PRS is still unclear since they are able to stratify the population but they do not provide 

enough information at an individual level (25). New machine learning and deep learning 

techniques are now being developed trying to improve the stratification and the 

associations metrics for single individuals (26) and in the future thanks to biggest datasets 

and better methods, personalized screening based on the genetic backgrounds will be 

available and deployed in clinical settings. 

In the last 20 years, since the release of the first human genome draft, researchers started 

to identify loci associated to complex diseases and traits. Many tools to analyze, detect 

and explore those associations were developed, but most of the mechanistic links and 

part of the heritability are still elusive. Hopefully, in the next years we will be able to refine 

our knowledge on germline variants finding the molecular mechanisms behind their 

effects, close the gaps still present in the heritability and to develop tools to stratify the 

population and personalize therapies based on the genetic background of individuals. 
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Thesis aims 

 

This thesis aims to explore human germline variants in term of their identification and 

characterization, their effects and interactions on the expression levels of genes and 

possible molecular mechanisms involved.  

We start by introducing a novel command line tool PaCBAM for Whole-Exome/Targeted 

sequencing scalable analysis and variant genotyping. This tool allows to scale variant 

genotyping across large-scale sequencing datasets. 

Then, we explore possible effects of variants in terms of allele specific expression and 

their interactions. Specifically, we developed new methods to detect variants that can 

affect mRNA translation and explore variant-variant interactions trying to identify 

patterns of epistatic/additive effects among polymorphisms. 

Finally, we analyze the effects of rare coding variants in protein interface across cancer 

genes.  

At the end of the thesis, we introduced new models and tools to characterize and explore 

novel functional effects of variants. 
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Main techniques and data resources 

Next generation sequencing 

Next-generation sequencing is a paradigm in sequencing that started in the mid-2000s. 

NGS main idea is to sequence simultaneously many DNA fragments to greatly reduce 

sequencing time and costs. The technique was firstly introduced in (27) as a proof of 

concept to improve sequencing time with respect to Sanger sequencing. Further, thanks 

to next-generation sequencing, we have been able to increase enormously also the 

efficiency in sequencing with respect to the previous sequencing techniques.  

The underlying technology used in NGS is sequencing by synthesis, which detects and 

identifies single nucleotides while they are added base by base for the synthesis of a new 

DNA strand, complementary to the strand of which we want to read the sequence. 

Sequencing by synthesis starts with an amplification of the DNA sample we want to read 

using PCR. After amplification, strands are forced to divide and only one of the two 

strands of DNA is kept. An admixture of labelled nucleotides is injected allowing the 

growth of the complementary strand by only one nucleotide. Every nucleotide is bound 

to a fluorophore, so that it is labelled with a different color. The machine can detect the 

color and identify which nucleotide bounds to the strand. After detection, fluorophores 

are cleaved, and another cycle is initiated allowing to sequence the next base. Sequencing 

by synthesis usually is able to sequence small fragments up to 100 base with high 

accuracy (28). Conversely, in the last years, new long-read technologies have been 

developed to overcome the short reads sequencing limitations: sequencing of highly 

repeated regions and complex structural variants calling. The first technique is called 

Single-Molecule Real-Time, where  a polymerase is fixed on the bottom of a zero-mode 

waveguide. The zero-mode waveguide works together with an DNA polymerase where 

the zero-mode waveguide detects the fluorescent tag of the last incorporated nucleotide 

by the DNA polymerase. (29).  

Currently, the most advanced developed technology is NanoPore.  It passes a DNA strand 

through a pore where  nucleotides are detected one by one through the modification of 

the electric voltage in the medium (30). Unfortunately, long read technologies have a 

higher error rate with respect to their short read counterpart. This disadvantage can be 

limited by sequencing the same DNA fragment in a circular fashion allowing multiple 
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reads of the same DNA molecule and using a consensus approach to call bases (31). Long 

read sequencing is still in its infancy but has already been proved to be a game changer 

in the development of the Telomere-to-Telomere human reference genome where, 

thanks to long read sequencing, the gaps made of long repeated elements in telomeres 

and near centrosome have been sequenced giving us the best human reference to date 

(32). 

 

Variant Genotyping 

Variant genotyping allows to detect the polymorphisms in the DNA of an individual. In the 

past, variant calling was performed using SNP arrays but recently NGS data is becoming 

the gold standard of variant genotyping. 

A SNP array consists in an array of allele specific probes to which specific fragments of 

DNA can bind. To genotype using a SNP array, a library of DNA must be created by DNA 

fragmentation. Then, a fluorophore is bound to each fragment to allow fluorescence 

detection. The labeled DNA is then injected in the array where it binds the variant probes. 

The genotype can call variants by the fluorescence detected across each probe (33). SNP 

arrays are a cheap and effective way to genotype an individual and the most advanced 

SNP arrays incorporate about 1,000,000 probes for genotyping as many SNPs. 

Unfortunately, SNP arrays allow to detect only the variants included in it, which limits the 

genotyping resolution. Other variants can then be imputed using a population reference 

panel (34). However, rare variants are difficult to impute since they could not be included 

in the reference panel. SNP arrays are still a cost-effective method to genotype individuals 

but now NGS allows to a better genotyping resolution that is needed in GWAS studies. 

NGS and, in particular, Whole-Genome Sequencing allow to detect more variants with 

respect to the SNP arrays. Variant calling from NGS data starts with a quality control 

procedure that consists in the removal of duplicated reads, local realignment, to limit 

alignment errors due to INDELs, and base quality recalibration. After those quality control 

processes, it is possible to genotype the variant from the NGS data using one of the 

available tools and methods (35). 

The easiest SNPs calling methods are based on heuristic. Heuristics use base coverage, 

read and base quality and allelic frequency thresholds to detect SNPs. They are a simple 
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and efficient way to genotype a huge number of loci, however, they can be less precise in 

calling SNPs where one of the parameters is close to the threshold.  

Another class of SNPs callers are probabilistic based variant caller. Those callers rely on 

probabilistic tests such as binomial test (36) or Bayes Theorem (37). Probabilistic callers 

provide a more robust genotyping but are computationally more expensive than heuristic 

methods.  

INDELs calling is more complex and different methodologies have been proposed for a 

correct genotyping. The first method, implemented by many tools like SAMtools(38) and 

GATK(35), uses an alignment-based method where they analyze the alignment errors. 

Other  tools, like PEMer (39), exploit paired end sequencing trying to detect deviations 

across paired read distances. Most advanced methods use local de-novo assembly to 

generate the haplotype like GATK HaplotypeCaller (40). Then, the reads are realigned to 

the novel contig that models the haplotype and a likelihood is computed given the read. 

The haplotype called will be the one with the highest likelihood. 

Recently, machine learning and deep learning methods have been employed for SNPs and 

INDELs calling using pileups images (41) and so introducing a novel genotyping technique. 

 

GWAS analysis 

Genome-wide Association studies try to identify genetic loci that are more frequent in a 

group of individuals that express a phenotype with respect to another group without the 

phenotype of interest. During the last years, GWAS were able to identify and replicate 

many SNPs and INDELs associated with thousands of traits and diseases.  

A GWAS starts with the selection of a population and a trait to study. Individuals are then 

genotyped using a SNP array or through WES/WGS. Other information such as age, sex 

and ethnicity are collected since they can be used to reduce confounder effects. Secondly, 

variants can be imputed using a reference panel if they come from a SNP array. A quality 

control is then applied to remove variants with a low call rate, not in Hardy-Weinberg 

equilibrium or variants on sexual chromosomes.  

Then, the associations are performed using linear regression, if the phenotype is 

continuous, or logistic regression, if the phenotype is binary. Usually, the models include 

the confounding factors to correct for samples stratification.  



 

20 

 

After testing, usually, all variants associated with a p-value < 5*10-8, which is a genome 

wide Bonferroni threshold on the 1,000,000 haploblocks in the human genome, are 

counted as significant. Here, it should be taken into account that, usually, GWAS find many 

variants in linkage disequilibrium as associated with the trait. Linkage disequilibrium 

introduces a correlation in the study and fine mapping is required to better understand 

and identify the causal variant inside the block.  

The first and easiest fine mapping technique is to simply take the most associated variant 

inside the block. While doing this can lead to reasonable hits, the real causal variant can 

be confounded if the effects come from multiple independent variants inside an 

haploblock. Fine mapping and causal variant identification are extremely complex and 

they are still an open problem in GWAS even if many statistical tools based on conditional 

or Bayesian statistic have been developed like FINEMAP(42), where they build a likelihood 

model of the variants in an haploblock and they find the one that has the highest 

likelihood . Another promising line is try to functionally prioritize variants that are located 

in functional regions of the genome, that can alter TF binding motifs or that are eQTLs 

(43).  

GWAS shaped the investigation of complex traits revealing many associations between 

variants and complex traits. However, the molecular links are still mostly unknown and 

post-GWAS functional analysis are required to link polymorphisms to genes to improve 

our knowledge of complex traits. 

 

eQTL analysis 

Since most of the variants identified in GWAS are located in the non-coding part of the 

genome, their effect on the phenotype was mostly unclear. One of the first links between 

GWAS and biological functions were eQTLs. eQTLs are polymorphisms that explain part 

of the transcript level of genes. eQTLs are typically divided in two major classes cis-eQTLs, 

when the variants are comprised in a window from 1 to 5 megabases around the affected 

gene, and trans-eQTLs when they located outside of the genomic window or even on 

other chromosomes. 

An eQTL analysis start with the quantification of the mRNAs in the tissue of interest 

usually in term of Read Per Kilobase of transcript per Million mapped reads. Then, 
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similarly to a GWAS analysis, individuals are genotyped and confounding variables like 

age, sex and ethnicity are recorded. Finally, a linear model association is performed 

between the transcript level of the gene of interest against the genotype and the 

confounding variables. Usually, only variants inside the cis window are tested to limit the 

burden of multiple testing. 

Trans-eQTLs are more difficult to detect since, potentially, they require testing the 

associations using all the variants in the genome which increases the number of statistical 

tests required. The largest association project GTEx (44) focuses only on cis-eQTL while 

other studies performs trans-eQTL association only on variants of interest or already 

know GWAS variants (45) to reduce multiple testing burden. The interest on trans-eQTLs 

is rising since it is an understudied field and can provide some of the missing links in 

GWAS. Recently, a new model that links weak trans to direct genetic contributions to 

traits has been developed (46). In the model, the effect of genes is partitioned into a 

group of core genes, that directly affect a trait, and peripheral genes that can act on core 

genes through a gene regulatory network. The analysis on the model concluded that a lot 

of the missing heritability in traits can be explained by a great amount of small trans 

effects on peripheral genes that can be amplified by the gene network.  

In conclusion, eQTLs are a powerful resource to investigate the effect of inherited variants 

and to detect the missing mechanistic links between variants and traits. 

 

 

The encode project 

The ENCODE project started in 2003 with the aim to detect sequence of DNA that are 

functional in the genome. ENCODE tries to functionally evaluate all the regions inside the 

human genome. Several techniques are used to generate data and the consortium 

developed a uniformed protocol for data processing, improving the standardization and 

reproducibility of the dataset. The effort of ENCODE lead to the creation of more than 

1,640 datasets annotating the human and the mouse genomes. The ENCODE consortium 

found that the 80.4% of the human genome has some regulatory feature in at least one 

tested tissue. They were able to classify the chromatin state into seven different statuses 

and they annotated about 400,000 regions as enhancers and about 70,000 as promoters. 

ENCODE showed that many GWAS SNPs are located in regions annotated as functional, 
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giving strength to the hypothesis that non-coding GWAS variants are involved in 

regulatory processes in cells. In the end, the ENCODE project produced the most 

complete dataset, to date, of human functional elements. The whole ENCODE project is 

described in (47). 
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Chapter 1: PaCBAM: a tool for variants 

genotyping 

 

Introduction 

Per base genotyping is still one of the most time-consuming step in a NGS analysis 

pipeline.  The analysis of large cohorts of patients, usually consisting of thousands of 

whole-exome or targeted sequencing files, needed to characterize common and rare 

variants, requires scalable tools in terms of computing cores usage to be deployed and 

integrated in pipelines running on modern computers and clusters. Moreover, the 

standard pileup file format is cumbersome, taking a huge amount of memory and is 

difficult to use. To improve the running time and memory usage of pileups, region 

coverage and variant calling, we implemented PaCBAM, a new multithreaded tool used 

to compute the pileup of targeted and whole-exome sequencing data. 

 

Results 

In this paper we presented PaCBAM, a tool for the analysis of the Whole-Exome and 

targeted sequencing data. The tool improves the execution time of per-base and region 

coverage computation in Whole-Exome and targeted sequencing data with respect to the 

state of the art tool available. The tool also implements an on-the-fly deduplication 

strategy which allows to skip an intermediate processing step in an NGS pipeline. PaCBAM 

is easy to deploy in an NGS pipeline on workstations or remote servers since it’s available 

as binary and it is containerized in Docker/Singularity. 

Finally, PaCBAM implements a reporting tool used for a visual quality control of the 

results.  
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Materials and methods 

PaCBAM was developed using the C programming language while the visual reports are 

implemented in python.  

The performance evaluation has been implemented using a WES BAM file from the 1000 

Genomes Project in a containerized environment allowing full reproducibility of the 

analysis.  PaCBAM was tested against the main state of the art pileup tools available both 

in pileup and dedup mode.  

I have contributed to the project by designing and implementing the performance 

evaluation and the visual reporting tool.  

 

Discussion 

PaCBAM is a new tool that allows to compute pileups and coverage statistics from whole-

exome and targeted sequencing data. PaCBAM showed a great improvement in execution 

time when computing single-base and region statistics and when using the remove 

duplicate option which allows to skip an entire preprocessing step and we believe that it 

is a useful tool for large datasets analysis. 
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Abstract 
Background: Interrogation of targeted sequencing NGS data is rapidly becoming a pre-

ferred approach for the exploration of large cohorts in the research setting and im-

portantly in the context of precision medicine. Single-base and genomic region level data 

retrieval and processing still constitute major bottlenecks in NGS data analysis. Fast and 

scalable tools are hence needed. 

Results: PaCBAM is a command line tool written in C and designed for the characteriza-

tion of genomic regions and single nucleotide positions from whole exome and targeted 

sequencing data. PaCBAM computes depth of coverage and allele-specific pileup statis-

tics, implements a fast and scalable multi-core computational engine, introduces an in-

novative and efficient on-the-fly read duplicates filtering strategy and provides compre-

hensive text output files and visual reports. We demonstrate that PaCBAM exploits par-

allel computation resources better than existing tools, resulting in important reductions 

of processing time and memory usage, hence enabling an efficient and fast exploration 

of large datasets.  
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Conclusions: PaCBAM is a fast and scalable tool designed to process genomic regions 

from NGS data files and generate coverage and pileup comprehensive statistics for down-

stream analysis. The tool can be easily integrated in NGS processing pipelines and is avail-

able from Bitbucket and Docker/Singularity hubs under the MIT license.  

 

 

Background 
Genomic region and single-base level data retrieval and processing, which represent 

fundamental steps in genomic analyses such as copy number estimation, variant calling 

and quality control, still constitute one of the major bottlenecks in NGS data analysis. To 

deal with the computationally intensive task of calculating depth of coverage and pileup 

statistics at specific chromosomal regions and/or positions, different tools have been 

developed. Most of them, including specific modules of SAMTools (38) and BEDTools (48) 

and the most recent Mosdepth (49), only measure and optimize the computation of 

depth of sequencing coverage. Few others, like the pileup modules of SAMTools, 

Sambamba (50), GATK (35) and ASEQ (36) provide instead statistics at single-base 

resolution, which is essential to perform variant calling, allele-specific analyses and 

exhaustive quality control. Although most of these tools offer parallel computation 

options, scalability in terms of memory and multiple processes/threads usage is still 

limited. To enable an efficient exploration of large scale NGS datasets, here we introduce 

PaCBAM, a tool that provides fast and scalable processing of targeted re-sequencing data 

of varying sizes, from WES to small gene panels. Specifically, PaCBAM computes depth of 

coverage and allele-specific pileup statistics at regions and single-base resolution levels 

and provides data summary visual reporting utilities. PaCBAM introduces also an 

innovative and efficient on-the-fly read duplicates filtering approach. While most tools for 

read duplicates filtering work on SAM/BAM files sorted by read name (38,51) or read 

position (50, broadinstitute.github.io/picard) and generate new SAM/BAM files, PACBAM 

performs the filtering directly during the processing, not requiring the creation of 

intermediate BAM/SAM files and fully exploiting parallel resources. 
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Implementation 
PaCBAM is a command line tool written in C programming language that combines multi-

threaded computation, SAMTools APIs, and an ad-hoc data structures implementation. 

PaCBAM expects as input a sorted and indexed BAM file, a sorted BED file with the coor-

dinates of genomic regions (namely the target, e.g. captured regions of a WES experi-

ment), a VCF file specifying a list of SNPs of interest within the target and a reference 

genome in FASTA format. PaCBAM implements a multi-threaded solution that optimizes 

the execution time when multiple cores are available. The tool splits the list of regions 

provided in the BED file and spawns different threads to execute parallel computations 

using a shared and optimized data structure. The shared data structure collects both re-

gion and single-base level information and statistics which are processed and finally ex-

posed through four different output options. Each output mode provides the user with 

only the statistics of interest, generating a combination of the following text output files: 

a) depth of coverage of all genomic regions, which for each region provides the mean 

depth of coverage, the GC content and the mean depth of coverage of the sub-region 

(user specified, default 0.5 fraction) that maximizes the coverage peak signal, to account 

for the reduced coverage depth due to incomplete match of reads to the captured re-

gions (Figure S1.1); b) single-base resolution pileup, which provides for each genomic po-

sition in the target the read depth for the 4 possible bases (A, C, G and T), the total depth 

of coverage, the variants allelic fraction (VAF), the strand bias information for each base; 

c) pileup of positions with alternative base support, which extracts the pileup statistics 

only for positions with positive VAF, computed using the alternative base with highest 

coverage (if any); d) pileup of SNPs positions, which extracts the pileup statistics for all 

SNPs specified in the input VCF file and uses the alternative alleles specified in the VCF 

file for the VAF calculation and the genotype assignment (Supplementary Material for 

details). All output files are tab-delimited text files and their format details are provided 

in the Supplementary Material.  

PaCBAM allows the user to specify the minimum base quality score and the minimum 

read mapping quality to filter out reads during the pileup processing. 

In addition, we implemented an efficient on-the-fly duplicated reads filtering strategy 

which implements an approach that is similar to the Picard MarkDuplicates method but 
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that applies the filter during region and single-base level information retrieval and pro-

cessing without the need of creating new BAM files (Supplementary Material). The filter-

ing strategy, which fully exploits multi-core capabilities, uses single or paired read align-

ment positions (corrected for soft-clipping at the 5’ end) and total mapping size infor-

mation to identify duplicates and implements ad-hoc data structures to obtain computa-

tional efficiency. 

PaCBAM package also includes a Python script to generate visual data reports which can 

be directly used for quality control. Reports include plots summarizing distributions of 

regions and per-base depth of coverage, SNPs VAF distribution and genotyping, strand 

bias distribution, substitutions spectra, regions GC content (Figure S1.4-S1.8). 

 

Results 
PaCBAM performances were tested on an AMD Opteron 6380 32-cores machine with 

256 GB RAM. To mimic different application scenarios, we measured the execution time 

and memory used by PaCBAM to compute pileups from multiple input BAM files span-

ning different depth of coverage and different target sizes (Supplementary Material, Ta-

ble S1.1) using an increasing number of threads. We compared PACBAM performances 

against pileup modules of SAMTools, Sambamba and GATK (SAMTools offer no parallel 

pileup option). 

In terms of runtime, as shown in Figure 1.1A and Figure S1.9-S1.11, PaCBAM and Sam-

bamba are the only tools that scale with the number of threads used. PaCBAM outper-

forms all other tools in all tested conditions. Of note, while PaCBAM pileup output files 

are of constant size, output files of SAMTools, Sambamba and GATK have a size that is 

function of the coverage; among all the experiments we run in the performance analyses, 

PaCBAM output is up to 17.5x smaller with respect to outputs generated by the other 

tested tools. 

While GATK and PaCBAM, as shown in Figure 1.1B and Figure S1.12-S1.14, have a 

memory usage that depends only on the target size, Sambamba usage depends on both 

target size and number of threads and SAMTools usage is constant. Above 8 cores, PaC-

BAM beats both GATK and Sambamba in all tested conditions in memory usage. 

As an example of performance comparison, when analyzing a BAM file with ~300X mean 

coverage and ~30Mbp target size using 30 threads (Figure 1.1A-B), PaCBAM improves 
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execution time of 4.9x/5.27x and requires 80%/82% less memory compared to Sam-

bamba/GATK. 

 

 

Figure 1.1 PaCBAM performances. Time (A) and memory (B) required by PaCBAM to 

perform a pileup compared to SAMTools, GATK and Sambamba, using increasing 

number of threads. The figure focuses on the analysis of a BAM file with ~300x mean 

coverage and ~30Mbp target size using 30 threads. Note that parallel pileup option is 

not available for SAMTools and red lines in panel A and B refer to the average of single 

thread executions. 

 

Of note, in the sequencing scenarios here considered, PaCBAM demonstrates up to 100x 

execution time improvement and up to 90% less memory usage with respect to the sin-

gle-base pileup module of our previous tool ASEQ (Figure S1.15). 

Depth of coverage and pileup statistics of PaCBAM pileup were compared to GATK results 

on a BAM file with ~300X average coverage and ~64Mbp target size observing almost 

perfect concordance (Figure 1.2A-B).   
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Figure 1.2 Comparison of PaCBAM results with other tools. A) Comparison of 

PaCBAM and GATK depth of coverage (left) with zoom in the coverage range [0,500] 

(right); number of positions considered in the analysis and correlation results are 

reported. B) Comparison of allelic fraction of ~40K positions annotated as SNPs in 

dbSNP database v144 and having an allelic fraction >0.2 in both PaCBAM and GATK 

pileup output. C) Single-base coverage obtained by running either Picard 

MarkDuplicates + PaCBAM pileup or PaCBAM pileup with duplicates filtering option 

active (left) with zoom in the coverage range [0,500] (right). D) Regional mean depth of 

coverage obtained by running either Picard MarkDuplicates + PaCBAM pileup or 

PaCBAM pileup with duplicates filtering option active. 

 

PaCBAM duplicates removal strategy was tested by comparing PaCBAM pileups obtained 

from a paired-end BAM file first processed with Picard MarkDuplicates or parallel 

Sambamba markdup, to PaCBAM pileups obtained from the same initial BAM file but 

using the embedded on-the-fly duplicates filtering. As shown in Figure 1.2C-D and Figure 

S1.16, both single-base and region level statistics results are strongly concordant, with 

single-base total coverage difference (with respect to Picard) that in 99.94% of positions 

is <10X, single-base allelic fraction difference that in 99.95% of positions is <1% and 

region mean coverage difference that in 99.96% of regions is <10X (Figure S1.17A-B-C). 

In addition, PaCBAM strategy improves overall execution time of 2.5x/1.7x with a single 

thread and of 25x/3x with 30 threads compared to Picard and parallel Sambamba, 

respectively (Table S1.2, Figure 1.2C, Figure S1.16A).  
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Overall, these analyses demonstrate that PaCBAM exploits parallel computation re-

sources better than existing tools, resulting in evident reductions of processing time and 

memory usage, that enable a fast and efficient coverage and allele-specific characteriza-

tion of large WES and targeted sequencing datasets. The performance analysis is com-

pletely reproducible using an ad-hoc Debian-based Singularity container (Supplementary 

Material). 

 

Conclusion 
We presented PaCBAM, a fast and scalable tool to process genomic regions from NGS 

data files and generate coverage and pileup statistics for downstream analysis such as 

copy number estimation, variant calling and data quality control. Although designed for 

targeted re-sequencing data, PaCBAM can be used to characterize any set of genomic 

regions of interest from NGS data. PaCBAM generates both region and single-base level 

statistics and provides a fast and innovative on-the-fly read duplicates filtering strategy. 

The tool is easy to use, can be integrated in any NGS pipeline and is available in source/bi-

nary version on Bitbucket and containerized from Docker and Singularity hubs. 

 

Availability and requirements 
Project name: PaCBAM 

Project home page: bcglab.cibio.unitn.it/PaCBAM 

Operating system(s): Platform independent 

Programming language: C, Python 

License: MIT 

 

Supplementary Material 
1. Assignment of genotypes to input SNPs 

PaCBAM provides an option to assign genotype calls to all SNPs listed in the input VCF 

file. The tool implements two approaches. The first one is based on the VAF value and 

specifically assigns genotype 0/0 when VAF<=0.2, assigns genotype 0/1 when VAF is in 

the range (0.2,0.8) and assigns genotype 1/1 when VAF is >=0.8. The second approach 

instead implements a binomial test with probabilities p and q for the reference and the 
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alternative allele, respectively, and a significance cutoff at 1%. To account for the 

reference bias mapping, we apply default probabilities p = 0.55 and q = 0.45. High precision 

and recall of these two approaches in genotyping common SNPs, compared to SNP array 

genotype calls, was previously shown in (52). 

    

2. On-the-fly read duplicates filtering 

PaCBAM duplicates filtering strategy is applied while computing single base and region 

level statistics and fully exploits parallel computation. To allow duplicated reads identifi-

cation at a specific captured region R with genomic coordinates chr:start-end, a prelimi-

nary fetching of reads is performed. Specifically, reads in the extended region chr:(start-

W)-(end+W) are retrieved (with W tunable by the user with default value equal to 1,000) 

and a hash-map collecting positional and mapping information on paired (or single) end 

reads is populated using the read name as key string. For each read, using the CIGAR 

value, the alignment position is corrected for soft-clipping at the 5’ end and the size of 

mapped region is calculated. Duplicates filtering is then performed by searching for 

paired (or single) end reads with same corrected positions and selecting the one with 

largest total mapped region size as representative for each duplicated reads group. Only 

selected reads are kept in the hash-map and considered during the second and standard 

fetching of reads that is used to compute single base and region level statistics. As shown 

in Figure S1.17, default W parameter value equal to 1,000 represents a good trade-off 

balance between computational performances and duplicates filtering effectiveness 

when paired-end reads are used. When single-end alignment files are processed W can 

be set to 0. 

 

3. Creation of BAM files for performance experiments 

PaCBAM has been tested on BAM files representing different target sizes. BAM files were 

created using different BED files representing the different target sizes. Starting from the 

original Nimblegen SeqCap EZ Exome v3 kit BED file of size 64,190,747bp containing 

genomic coordinates of exonic captured regions, new BED files of sizes 6,424,707bp, 

16,053,802bp, 32,102,630bp, and 48,144,328bp (corresponding to 10%, 25%, 50% and 

75% of the original BED file, respectively) have been generated using a gene-level random 
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sampling strategy. Random sampling was performed by first annotating the original 

Nimblegen BED file adding the HUGO symbols of the genes corresponding to the 

captured regions. Random genes were then uniformly sampled from the set of all genes 

(without replacement) and all overlapping captured regions were incrementally added to 

a BED file until the desired target size was reached. 

BAM files corresponding to all combinations reported in Table S1.2 were created from 

the 1,000 Genomes Project HG02057 individual FASTQ files. Alignment was performed 

with BWA (53), SAMtools were used to create BAM files, GATK was used to perform 

realignment and recalibration and SAMtools were finally used to fix MD tags. BAM file 

subsampling was done using SAMtools view command, specifying the fraction of the 

reads (using -s option) to obtain the desired mean depth of coverage and providing pre-

designed BED files (using -L option) to get the desired target representation. 

 

4. Design of performance experiments and reproducibility 

To allow reproducibility of our performance analysis, we created a Debian-based 

Singularity container. The container provides a standardized and configured environment 

with all the dependencies required to run all tools and replicate the overall analysis. All 

used BAM, BED and VCF files and all implemented scripts are available in the container. 

The analysis pipeline runs each of tested tools three times for each combination of input 

parameters. For each run the elapsed real time (wall clock) and the peak memory usage 

of the process was measured using the GNU time command. No other user process was 

running on the test machine while collecting performance data. The pipeline also 

produces automatically all tables and images related with performance evaluation here 

reported. 

 
5. Output files specification 
 
2.1 File *.pileup 
For each genomic position specified in the input BED file it provides: 

• Contig (e.g. chromosome) 

• Genomic coordinate of the position 

• Read depth of the 4 possible bases A, C, G and T 

• Variant allelic fraction (VAF, considering all alternative bases) 

• Total depth of coverage 
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• Strand bias information for each base (when run option “strandbias” is used) 
 
2.2 File *.snps 
For each genomic position specified in the input VCF file and present in the regions 
specified in the input BED file it provides: 

• Contig (e.g. chromosome) 

• Genomic coordinate of the position 

• Position ID (e.g. rsID) specified in the VCF input file 

• Reference and alternative bases 

• Read depth of the 4 possible bases A, C, G and T 

• Variant allelic fraction (VAF, computed with alternative base specified in the VCF 
file) 

• Total depth of coverage 

• Genotype (when run option “genotype” or “genotypeBT” is used) 
 
2.3 File *.rc 

• Contig (e.g. chromosome) 

• Genomic start/end coordinates of the region 

• Genomic start/end coordinates of the peaked region 

• Mean read depth of the region 

• Mean read depth of the peaked region 

• GC content in the region 
 
2.4 File *.pabs 

• Contig (e.g. chromosome) 

• Genomic coordinate of the position 

• Reference and alternative bases 

• Read depth of the 4 possible bases A, C, G and T 

• Variant allelic fraction (VAF, considering all alternative bases) 

• Total depth of coverage 

• Strand bias information for each base (when run option “strandbias” is used) 
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Supplementary Figures 

 

Figure S1.1: Genomic region mean coverage computation. Example of region mean 

coverage computation using a user specified region fraction equal to 0.5. In red the 0.5 

fraction of the region supporting the maximum mean depth of coverage for that region. 

This value (along with corresponding genomic coordinates) is reported in the PaCBAM 

output together with the overall region mean depth of coverage.  
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Figure S1.2: Cumulative coverage distribution report. Example of visual report of the 

cumulative coverage distribution for all positions reported in the PaCBAM pileup output 

file.  



 

37 

 

 

Figure S1.3: Variant allelic fraction distribution report. Example of visual report of variants 

allelic fraction distribution for all positions in the PaCBAM output pileup. The image shows 

a detail in the variants allelic fraction range (0-0.2]. This data could provide information 

regarding the sequencing error distribution for the specific experiment.   
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Figure S1.4: SNP allelic fraction distribution report. Example of visual report of the 

allelic fraction (AF) distribution of all positions contained in the PaCBAM *.snps 

output file. SNPs are classified as heterozygous or alternative homozygous based on 

standard AF thresholds. Classification is also reported stratified by coverage 

quartiles. 
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Figure S1.5: Alternative bases distribution report. Example of visual report of the 

distribution of alternative bases found for each reference base across all positions reported 

in the *.pabs PaCBAM output file (i.e. all positions with non-zero variant allelic fraction). 
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Figure S1.6: Strand bias distribution report. Example of PaCBAM visual report of 

the distribution of strand bias computed across all positions reported in the *.snvs 

PaCBAM output file (i.e. all positions with non-zero variant allelic fraction). Strand 

bias is computed at each position using the formula: 

 

𝑎𝑏𝑠 (
𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝑟𝑒𝑣𝑒𝑟𝑠𝑒

𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝑡𝑜𝑡
−

𝐴𝐿𝑇𝐸𝑅𝑁𝐴𝑇𝐼𝑉𝐸𝑟𝑒𝑣𝑒𝑟𝑠𝑒

𝐴𝐿𝑇𝐸𝑅𝑁𝐴𝑇𝐼𝑉𝐸𝑡𝑜𝑡
) 

 

which computes the absolute difference between ratio of the number of reverse reads 

supporting the reference base over the total number of reads supporting the reference 

base and the ratio of the number of reverse reads supporting the alternative base 

over the total number of reads supporting the alternative base. Values towards 1 

represent strong strand bias for the corresponding position. 
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Figure S1.7: Genomic regions depth of coverage distribution report. Example 

of visual report of the mean depth of coverage distribution computed across all 

regions reported in the PaCBAM output file. Distribution is reported both for 

regions overall mean coverage and for regions fractions maximizing mean 

coverage. 
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Figure S1.8: Genomic regions GC content distribution report. Example of visual report 

of the distribution of GC content computed across all regions reported in the *.rc 

PaCBAM output file. 
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Figure S1.9: Run time comparison at 150X depth of coverage. Run time comparison 

among PaCBAM pileup and pileup module of SAMtools, GATK and Sambamba. 

Comparison is performed on BAM files at mean depth of coverage ~150X, at different 

target sizes and by increasing the number of threads. 
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Figure S1.10: Run time comparison at 230X depth of coverage. Run time comparison 

among PaCBAM pileup and pileup module of SAMtools, GATK and Sambamba. 

Comparison is performed on BAM files at mean depth of coverage ~230X, at different 

target sizes and by increasing the number of threads.   
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Figure S1.11: Run time comparison at 300X depth of coverage. Run time comparison 

among PaCBAM pileup and pileup module of SAMtools, GATK and Sambamba. 

Comparison is performed on BAM files at mean depth of coverage ~300X, at different 

target sizes and by increasing the number of threads.   
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Figure S1.12: Memory usage comparison at 150X depth of coverage. Memory usage 

comparison among PaCBAM pileup and pileup module of SAMtools, GATK and 

Sambamba. Comparison is performed on BAM files at mean depth of coverage ~150X, 

at different target sizes and by increasing the number of threads.  
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Figure S1.13: Memory usage comparison at 230X depth of coverage. Memory usage 

comparison among PaCBAM pileup and pileup module of SAMtools, GATK and 

Sambamba. Comparison is performed on BAM files at mean depth of coverage ~230X, 

at different target sizes and by increasing the number of threads. 
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Figure S1.14: Memory usage comparison at 300X depth of coverage. Memory usage 

comparison among PaCBAM pileup and pileup module of SAMtools, GATK and 

Sambamba. Comparison is performed on BAM files at mean depth of coverage ~300X, 

at different target sizes and by increasing the number of threads. 



 

49 

 

  

Figure S.1.15: Memory usage comparison among PaCBAM pileup and pileup module of ASEQ. 

Comparison is performed on BAM files at mean depth of coverage ~150X and ~230X, at different 

target sizes and by increasing the number of threads. 
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Figure S1.16: Comparison of PaCBAM duplicates filtering strategy to Sambamba 

markdup and Picard MarkDuplicates modules. A) Read duplicates filtering comparison 

between Sambamba markdup and PaCBAM (left) with zoom at smaller coverage interval 

(right). B) Regional mean depth of coverage of a BAM obtained by running either 

sambamba markdup + PaCBAM pileup or PaCBAM pileup with duplicates filtering 

option active. All results are highly concordant with correlation equal to 1. 
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Figure S1.17: Performance of PaCBAM duplicated reads filtering. A) Number of 

positions that have a difference in coverage with respect to Picard results >=10 reads 

across different values for the W PaCBAM parameter; percentages on the bars are 

calculated with respect to the total number of genomic positions captured in the 

considered WES kit (N=56,379,320), excluding SNVs annotated in dbSNP v151. B) 

Number of regions that have a difference in coverage with respect to Picard results >=10 

reads across different values for the W PaCBAM parameter; percentages on the bars are 

calculated with respect to the total number captured regions in the considered WES kit 

(N=368.146). C) Number of SNPs that have an allelic fraction difference with respect to 

Picard results >=1% across different W PaCBAM parameters; percentages on the bars 

are calculated with respect to the total number of SNVs annotated in dbSNP v151 and 

present in the WES kit (= 7,811,427). Results in panels A, B and C are computed 

comparing runs of PaCBAM with duplicated reads filtering and runs of PaCBAM on files 

output of Picard MarkDuplicates. D) Execution time of PaCBAM with duplicated reads 

filtering across different values for the W PaCBAM parameter and number of threads; 

percentages on the bar represent the time increase with respect to the previous bar value. 
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Supplementary Tables 
 

Mean depth 
of coverage 

Target size 
(bp) 

306.02 64,190,747 

229.51 64,190,747 

152.99 64,190,747 

314.78 45,535,680 

236.09 45,535,680 

157.37 45,535,680 

315.59 30,893,295 

236.70 30,893,295 

157.79 30,893,295 

314.03 15,744,773 

235.54 15,744,773 

157.02 15,744,773 

314.28 6,229,847 

235.70 6,229,847 

157.13 6,229,847 

Table S1.1: Mean depth of coverage and 

target sizes of all BAM files used to test 

PaCBAM performance. 
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Tools Threads Time (s) 
Memory 
(MB) 

DedupPaCBAM Duplicate Window 500 1 6557.00 3823.49 

DedupPaCBAM Duplicate Window 500 5 1502.66 3878.53 

DedupPaCBAM Duplicate Window 500 10 821.73 3937.54 

DedupPaCBAM Duplicate Window 500 30 440.45 4182.63 

DedupPaCBAM Duplicate Window 
1000 

1 7082.33 3823.46 

DedupPaCBAM Duplicate Window 
1000 

5 1618.61 3887.65 

DedupPaCBAM Duplicate Window 
1000 

10 879.37 3959.21 

DedupPaCBAM Duplicate Window 
1000 

30 417.96 4236.96 

DedupPaCBAM Duplicate Window 
10000 

1 13105.67 3853.50 

DedupPaCBAM Duplicate Window 
10000 

5 3080.07 3941.18 

DedupPaCBAM Duplicate Window 
10000 

10 1652.61 4052.34 

DedupPaCBAM Duplicate Window 
10000 

30 809.34 4569.39 

Sambamba markdup + PaCBAM pileup 1 9308.40 3802.29 

Sambamba markdup + PaCBAM Pileup 5 2712.57 5290.98 

Sambamba markdup + PaCBAM Pileup 10 1626.27 7441.42 

Sambamba markdup + PaCBAM Pileup 30 1251.32 18473.83 

Picard markdup + PaCBAM Pileup 1 12422.76 28994.42 

Picard markdup + PaCBAM Pileup 5 10764.17 28994.42 

Picard markdup + PaCBAM Pileup 10 10541.08 28994.42 

Picard markdup + PaCBAM Pileup 30 10396.25 28994.42 
 

 

Table S1.2: Time and memory usage of duplicates filtering performance analyses. When 

combining MarkDuplicates and PaCBAM the memory usage is the peak memory usage 

of the entire pipeline. 
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Tool Version 

Sambamba 0.6.8-pre1 compiled with LDC 1.8.0 and LLVM 5.0.1 
GATK 3.8-0-ge9d806836 
SAMtools 
Picard MarkDuplicates 

1.7 
2.17.4 

Table S1.3: Versions of the tools used in performance evaluation analysis. 
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Chapter 2: Identification of variants affecting 

mRNA translation potential 

 

Introduction 

Most of the studies on variants have been focusing on coding or non-coding variants in 

regulatory regions. Less focus has been put in understanding the effects of variants in 

genes UTRs where post-transcriptional regulation can happen. In particular, variants can 

alter microRNA binding sites or can modify the RNA translation potential leading to a 

phenomenon where one allele is expressed more than the other.  

In this paper, we analyzed the MCF7 cell line under different treatments total and 

polysomal RNA and we developed a new method to identify possible SNPs associated 

with allele specific expression.  

 

Results 

In this paper we developed a new method to identify SNPs that can alter the mRNA 

translation potential. We analyzed the MCF7 cell line in three different conditions: mock, 

doxorubicin and Nutlin. We sequenced the total and the polysomal fraction of the RNA in 

the treated cells. We identified 11,544 heterozygous SNPs in the MCF7 cell line and, of 

those, 1,802 are in 3’ UTR while 729 are in the 5’UTR using public data then, using a pileup 

approach we identified 3,974 variants analyzable in our experiments. We then identified 

147 unique variants that show unbalance between the polysomal and the total fraction 

of RNA. We experimentally validated two SNPs in UTRs that are close to genes related to 

p53 and we showed that, in fact, the variants could alter the translation efficiency. We 

then explored the effect of the identified variants on the survival data of the TCGA dataset 

where we found both protective and hazardous SNPs.  

Finally, we analyzed the changes in RNA Binding Proteins motifs scores in variants showing 

a change in the survival. We identified several motifs disruption. We validate one of these 

by using a RIP assay. 
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Materials and methods 

Variants in the MCF7 cell line have been retrieved from two public studies and the two 

dataset have been merged keeping only the concordant heterozygous SNPs in common.  

The allelic imbalance between the two fractions of RNA has been computed using a pileup 

approach keeping reads and bases with at least a quality of 20 and a coverage of 10. 

Starting from the 147 tranSNPs, we retrieved all the variants in linkage disequilibrium with 

a r2 > 0.8. We then computed the Kaplan-Meier survival curves under dominant and 

recessive models on the variables: Overall Survival, Disease-Specific Survival, Disease-

Free Interval and Progression-Free Interval. We considered only variants with a p value < 

0.05 and we aggregate the result in the LD block requiring at least 5% of the variant to be 

associated with the trait. 

Starting from the 33 UTR tranSNPs identified in the survival analysis we performed a motif 

analysis. For each variant we analyzed the reference sequence (hg19) and the sequence 

altered with the variant.  

We treated MCF7 cells with doxorubicin or Nutlin for 16 hours. From the cytoplasmic 

lysates we fractioned the polysomes. We sequenced two biological replicates for each 

RNA type for each condition. Sequencing was performed on an Illumina HiSeq. 

I contributed to the article by analyzing and characterizing the identified tranSNPs, by 

performing the survival analyses using TCGA data and by developing and analyzing the 

RNA Binding Proteins motifs analysis. 

 

Discussion 

Using polysomial and total RNA fractions in MCF7 cell lines we were able to model and 

quantify small difference in the relative amount of RNA fractions.  

We identified 147 variants (about 4% of the total variants analyzed) that exhibit allele 

specific expression pattern among at least one treatment condition. In our tranSNPs 

catalog we identified variants associated to cancer risk and some other that have a 

prognostic. More specifically, variants with a prognostic value usually fall in genes that are 

related to cancer. 
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Our approach allowed us to detect SNPs that affect the RNA translation efficiency 

showing a small but significant prognostic value.  Those variants can be helpful in 

stratifying patient for clinical outcome. 
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Summary 
Few studies have explored the association between SNPs and alterations in mRNA 

translation potential. We developed an approach to identify SNPs that can mark allele-

specific protein expression levels and could represent sources of inter-individual variation 

in disease risk. Using MCF7 cells under different treatments, we performed polysomal 

profiling followed by RNA-sequencing of total or polysome-associated mRNA fractions 

and designed a computational approach to identify SNPs showing a significant change in 
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the allelic balance between total and polysomal mRNA fractions. We identified 147 SNPs, 

39 of which located in UTRs. Allele-specific differences at translation level were confirmed 

in transfected MCF7 cells by reporter assays. Exploiting Breast Cancer data from TGCA we 

identified UTR SNPs demonstrating distinct prognosis features and altering binding sites 

of RNA binding proteins. Our approach produced a catalog of tranSNPs, a class of 

functional SNPs associated with allele-specific translation and potentially endowed with 

prognostic value for disease risk. 

 

Introduction 
Single Nucleotide Polymorphisms (SNPs) represent one of the largest classes of genetic 

variations. They underlie and are responsible for inter-individual variations in complex-

disease phenotypes, including cancer risk or aggressiveness. Wide attention has been 

given to SNPs that can lead to allele-specific changes in gene expression, for instance, by 

modifying the affinity of transcription factor binding sites in promoter or enhancer 

regions directly, or indirectly via influencing epigenetic regulation. Included in these 

examples are functionally relevant SNPs affecting p53 function as a transcription factor 

or p53 protein expression by altering target binding sites (54–57), or association-driven 

studies that have candidated SNPs as modulators of major cancer drivers, such as AR 

(58,59), ER (60,61) or cMYC (62,63).   

A fraction of SNPs identified in the human population is located within coding regions or 

UTRs. In this case, both mechanism- and association-driven studies have pursued 

functional SNPs that can modify aspects of post-transcriptional gene regulation, for 

example by altering microRNA binding sites (64).  

Specific tools have been implemented to mine the available wealth of RNA-seq-based 

gene expression data and identify and pursue instances of allele-specific gene expression 

(65–72). The same cannot be said for annotating candidate SNPs driving or being 

associated with alterations in mRNA translation potential. Recently, we showed that 

allelic imbalance restricted to polysome-bound mRNAs can be exploited to investigate 

the functional significance of 5’UTR Single Nucleotide Variants (SNVs) at the CDKN2A gene 

(73), since specific SNVs affected CDKN2A translation. Those results led us to hypothesize 

that a comparative analysis of allelic-imbalance from total and polysomal mRNAs 

extracted and sequenced starting from the same cell sample, that is independently 
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genotyped for heterozygous SNPs, could overcome the intrinsic noise in SNP calling and 

coverage from RNA-seq data. If so, a catalogue of coding and UTRs SNPs associated and 

potentially causative of alterations in mRNA translation potential could be obtained. Here 

we describe such an approach starting from a commonly used breast cancer cell line and 

two disease-relevant treatments. About 4% of the heterozygous SNPs that could be 

followed showed a significant level of imbalance within polysomal RNAs. Nearly 25% of 

these are located in UTR sequences, and some appear to stratify cancer patients for 

distinct clinical outcomes.  

Thus, our approach led us to distinguish both constitutive and treatment-dependent SNPs 

that are associated with or can cause changes in mRNA translation efficiency. We propose 

that our approach can lead to identify a class of functional SNPs, that we call tranSNPs, 

endowed with prognostic value for cancer or other diseases. 

 

Results 
Using polysome profiling to identify SNPs exhibiting allelic imbalance 
In order to develop an approach to map SNPs associated with allelic imbalance within 

translating ribosomes, we took advantage of a well-characterized cancer cell line with 

available genotyping data. We thus chose MCF7 cells, a p53 wild type breast 

adenocarcinoma-derived cells we had previously used for polysomal profiling studies 

(74). After determining the set of heterozygous SNPs using DNA data, we exploited RNA-

seq reads to compare relative allelic representation between the transcripts isolated in 

the cytoplasm because of their association with polysomes or lack thereof. Besides a 

mock condition, we included two treatments, 1M doxorubicin or 10M Nutlin, that we 

found can reduce global translation, engage p53 responses, and lead to a significant 

uncoupling between transcriptome and translatome changes. Indeed, many transcripts 

were significantly modulated by the treatments only at the level of polysomal RNA 

fractions (74,75). We reasoned that these treatments could uncover specific allelic 

imbalance events due to changes in translation specificity mediated, for instance, by the 

action of RNA binding proteins (74,75). Polysomal profiling was performed using 

cytoplasmic lysates fractionated by a linear 10-50% sucrose gradient, as previously 

described (74–76). Cytoplasmic mRNA associated with light fractions, with ribosome 

subunits, or with the 80S monosome -assumed to be not actively translating- were pooled 
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together and sequenced separately from mRNAs associated with two or more ribosomes. 

Total RNA was also collected and sequenced. The RNA-sequencing of two biological 

replicates for each treatment and fraction produced on average 32 million unique 

mapped reads. Differential gene expression analysis and pathway enrichment analysis 

confirmed that the two treatments activated a canonical p53 response (Figure S2.1). 

 

Identifying instances of allelic imbalance in polysomal RNA 
To identify SNPs exhibiting allelic imbalance in one or more RNA fractions, we first 

retrieved from public databases an exhaustive list of SNPs that are heterozygous in the 

MCF7 cell line. We integrated SNP-array and exome-based genotype calls and overall 

identified 11,544 heterozygous SNPs of which 1,802 in 3’UTRs and 729 in 5’ UTRs (Table 

S2.1). Then, we determined the allelic fractions of these SNPs in our RNA-seq data using 

a pileup approach based on high quality reads and bases and requiring a minimum local 

depth of coverage of 10X. We found an average of 4,100 of the expected 11,544 SNPs per 

sample with confirmed coverage signal and, overall, we found 3,974 SNPs analyzable in 

at least one condition. 

Our approach focuses on the comparison of SNP allelic counts across biological replicates 

of the two RNA fractions that were sequenced for each of the three treatments. We first 

determined which is the distribution of SNP allelic fractions across all experiments and 

measured to what extent they are variable across biological replicates. Interestingly, the 

variability of SNP allelic fractions was limited across biological replicates (Figure S2.2) with 

a mean replicate’s difference of about 7% that was consistent among the different RNA 

fractions and treatments (Table S2.2). In addition, the range of SNP allelic fractions was 

quite wide (Figure S2.2). This suggests that heterozygous SNP allelic counts from RNA-seq 

data are potentially biased by position-specific sequencing properties, indicating that 

divergence from an expected 0.5 allelic fraction should not, as commonly done, be 

directly linked to putative allele-specific expression phenomena, nor to a specific 

expression imbalance direction. Hence, we designed and implemented a computational 

approach that first calculates a condition-specific variability of SNP allelic fractions 

exploiting the available biological replicates, and then uses it to identify significant SNP 

allelic imbalances across different conditions. 
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We used this approach to identify allelic imbalances between polysomal and total RNA 

fractions. Specifically, considering SNPs allelic fraction (AF) intervals calculated by 

summing and subtracting condition-specific AF variabilities from SNPs AFs, we searched 

for SNPs presenting polysomal and total RNA non-overlapping AF intervals (Figure 2.1A). 

The analysis led to 162 imbalance instances, involving 147 SNPs that were identified in 

both biological replicates preserving the imbalance direction. This conservative list of 147 

SNPs represents the first catalogue of tranSNPs: polymorphisms exhibiting allelic 

imbalance specifically in polysome-bound mRNA fractions (Table S2.3 and S2.4). The list 

is almost equally divided between constitutive, doxorubicin-dependent, Nutlin-

dependent polysomal allelic imbalances (Figure 2.1B). Only 3 tranSNPs were common to 

all conditions, and only 8 to the two different p53-activating treatments. Despite the 

limited observed intersection among our conservative calls, the comparison of condition-

associated tranSNPs allelic fractions across all conditions showed not only an expected 

clear shift in the condition-associated tranSNPs AF distribution, but also a fraction of SNPs 

with comparable imbalance across 2 or 3 conditions (Figure 2.1C). The condition-

associated lists of genes harboring the tranSNPs showed mild enrichment for specific 

biological processes or molecular functions, including regulation of spindle organization, 

mitotic cytokinesis, protein kinase regulator activity and catalytic activity (Figure S2.3).   

Characteristics of tranSNPs are shown in Table 2.1 and are compared with those in the 

larger set of 11,544 initial SNPs and those in the set of 3,974 analyzable SNPs. Of the 147 

tranSNPs we identified, 39 are located in UTRs and represent top candidates for a direct 

role on the observed allelic imbalance.  
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Figure 2.1: Identification of SNPs allelic imbalance across different RNA fractions. A) 

Schematic representation of the approach developed to identify RNA fraction-specific 

SNP allelic imbalances. RNA-seq based SNP allelic fraction variability is estimated both 

in total and polysomal RNA fractions. Then variability extended SNP allelic fractions are 

compared and only non-overlapping total versus polysomal imbalances are retained as 

tranSNPs. In the example, SNP2 satisfies the condition and is hence nominated as 

tranSNP. AF = allelic fraction; V = mean AF variability among replicates. B) Venn 

diagram showing private and shared tranSNPs identified across the three analyzed 

conditions. C) Allelic imbalance distribution of condition-associated tranSNPs is shown 

across the different conditions. Aggregate distribution is shown using boxplots, while 

single SNPs distribution is shown using a heatmap, where red intensity represents the 

level of imbalance. In the boxplot, the imbalance is shown as absolute log2 ratio of allelic 

fraction in polysomal RNA and allelic fraction in total RNA. In the heatmap, red intensity 

is proportional to this value; grey represents no value. 
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BRI3BP 3’UTR rs1055472 and CDKN1A 5’UTR rs2395655 alleles are functionally distinct. 
We chose two UTR SNPs showing polysomal allelic imbalance for validation and opted for 

a gene reporter assay to evaluate the functional impact of the two pairs of tranSNPs. We 

selected two Nutlin-dependent tranSNPs and two genes harboring them whose functions 

are related to p53.  

BRI3BP, also known as human cervical cancer oncogene 1 (HCCR-1) might act as negative 

modulator of p53 (77,78). The two rs1055472 alleles of the BRI3BP 373nt 3’UTR were 

cloned downstream of the Firefly cDNA. MCF7 cells were transiently transfected with 

each of the two alleles, and the activity of the reporter relative to the Renilla control 

luciferase was measured in untreated cells or in cells treated with Nutlin. In both cases 

we observed that the alternative allele led to a relative increase in the reporter gene 

activity (Figure 2.2A), suggesting an overall differential translation efficiency. Although the 

SNP was computationally classified as polysomally imbalanced only after Nutlin 

treatment (Table S2.3 and S2.4), computational and experimental data combined suggest 

that the two alleles are functionally distinct, impacting on gene expression. 

CDKN1A (p21) is an important cyclin-dependent kinase inhibitor and one of the major 

direct p53 transcriptional targets mediating cell cycle arrest (79,80). The gene is highly 

regulated at transcriptional and post-transcriptional level (76,81). CDKN1A transcripts 

were highly induced by both doxorubicin and Nutlin treatment and the coverage of 

rs2395655 alleles in the untreated condition was very low (<10X). We evaluated the 

CDKN1A 5’UTR rs2395655 alleles cloned upstream of the Firefly cDNA. We observed an 

overall bimodal distribution in the reporter gene activity, whose amplitude is reduced 

when the alternative allele is present (Figure 2.2B, left panel). The treatment with Nutlin 

further mitigated this bimodal distribution with an overall reporter gene activity that is 

strongly reduced when the alternative allele is present (Figure 2.2B, right panel). Since 

the SNP was concordantly classified as polysomally imbalanced after Nutlin treatment, in 

this case we highlight a scenario with functionally distinct alleles where differential 

translation efficiency may impact protein expression only under specific conditions. 
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Figure 2.2: TranSNPs results in functionally distinct alleles. A) MCF7 cells were 

transiently transfected with pGL4.13-based vectors containing BRI3BP 3’UTR fragments 

differing for the indicated BRI3BP SNP allele and the control pRLSV40 Renilla vector. 

After 24 hours of transfection, cells were treated with Nutlin for 24 hours before 

performing dual-luciferase assays. Firefly luciferase signals were normalized to Renilla 

to control for transfection efficiency and to relative Firefly mRNA levels to take into 

account differences in reporter’s transcript levels. Individual values from independently 

transfected wells are plotted. B) Same as A), except that the p21-5’UTR was cloned in 

the low-expression pGL3-basic vector. ** p < 0.01; **** p< 0.0001, adjusted p-value 

based on a 2-way ANOVA with Sidak’s multiple comparison test. Data are represented as 

mean +/- SD. 

 

TranSNPs can have prognostic significance in Breast Cancer TGCA data.  
Considering that rs1055472 and rs2395655 are tranSNPs with functionally distinct alleles 

and the two genes harboring them are related to p53, we next investigated their potential 

clinical impact. We focused on breast cancer for consistency with the cell line models 

used and exploited the richness of data available in TCGA (82). Interestingly, exploring 

TCGA survival data (83) and using Kaplan-Meier curves, we observed that patients 

harboring the rs1055472 alternative allele show a statistically significant increase in 

progression-free interval time (p-value=0.042, Figure 2.3A). Of note, BRI3BP and TP53 

transcript levels were not correlated (Figure S2.4A) and variant rs1055472 was not 

associated with patients’ TP53 somatic aberration status (Figure S2.4B), nor with the 

utilization of DNA-damage agents (Figure S2.4C). Further, the analysis repeated on TP53 

aberrant or TP53 wild-type patients only (Figure S2.4D) showed similar trends. Overall, 

this indicates that rs1055472 signal is not dependent on TP53 status. In addition, the 
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signal also persisted when a multivariate model including breast cancer subtype as 

covariate was used (p-value=0.028), also highlighting an independence of the signal from 

ER status (Figure S2.4E). 

Motivated by this result, we then explored more systematically whether tranSNPs could 

be associated with distinct clinical variables in cancer patients. To this end, our tranSNPs 

list was extended including all common SNPs in strong linkage disequilibrium (LD) (𝑟2 >

0.8) with them, obtaining 3,003 SNPs distributed across 120 LD blocks with genotype 

imputable from TCGA data. The extended SNP list was then used to interrogate clinical 

data in the breast cancer cohort from TCGA (83), using Overall Survival (OS), Disease and 

Progression Free Intervals (DFI, PFI), and Disease Specific Survival (DSS) endpoints. 

Kaplan-Meier curves were built stratifying patients for the presence of the minor allele 

(AA vs AB+BB) or the presence of the homozygous genotype for the alternative allele 

(AA+AB vs BB). Cox proportional hazards regression models were built to perform the 

analysis. To limit false positive results, for each considered outcome, association results 

demonstrating a p-value<0.05 were aggregated at the level of LD blocks and >5% of SNPs 

reproducing the association signal in a block were required to nominate the block as 

associated. On average, we found 10.7% [min 8.3%, max 14.2%] associated blocks across 

all outcomes with an average fraction of SNPs associated in a block equal to 56.8% and 

an average number of SNPs per block of 23.4 (Table S2.5). Across the associated blocks, 

we identified 33 SNPs in the UTR sequences of 17 genes demonstrating significant 

prognostic effects (Figure 2.3B-D, and Table S2.6). Both protective and risk alternative 

SNP alleles were found. 
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Figure 2.3: Prognostic significance of tranSNPs in Breast Cancer. A) Progression Free 

Interval analysis of BRI3BP related tranSNP. Kaplan-Meyer curves along with summary 

statistics are reported. B-D) Examples of tranSNPs presenting prognostic significance. 

Kaplan-Meyer curves along with summary statistics are reported.  

 

UTR TranSNPs could alter RNA binding protein target sites. 
To search for a mechanism that could underlie polysomal imbalance and the observed 

differential translation, we examined the potential impact on RNA binding proteins (RBP) 

binding sites for the 33 UTR tranSNPs resulting from the survival analysis. These 

polymorphisms might indeed directly cause the observed allelic imbalance of SNPs 

located in UTRs by, for example, impacting on UTR structure or binding sites for RBPs or 

also microRNAs. RNA binding consensus motifs were retrieved from the RBPDB database 

(84). TESS software (85) was used to compute motifs scores starting from 60bp sequences 

with the SNP reference or alternative allele in the center. Overall, we identified 61 
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putative motif disruptions involving 27 UTR variants and RBPs associated with translation 

control and mRNA stability (Table S2.7), such as ELAVLl/HuR, FUS, YBX1, and PABPC1 (86–

90). 

 

UTR specific imbalance in ATF6 transcript 
Among the UTR SNPs showing potential prognostic significance, a peculiar allelic 

imbalance pattern was observed for polymorphisms in the ATF6 transcript. Although only 

one ATF6 SNP was present in our initial tranSNPs list, an overall trend of imbalance in 

polysomal-associated RNAs was observed and restricted to SNPs located in its relatively 

long 3’UTR (Figure 2.4A). This imbalance trend was consistent across most ATF6 3’UTR 

SNPs that are heterozygous in MCF7, and the overall imbalance distribution was strongly 

statistically significant (P<1e-04) when compared to imbalance distributions obtained 

from 1,000 sets of random sequential heterozygous SNPs of the same cardinality (Figure 

2.4B). On the contrary, the ATF6 heterozygous coding SNPs did not show any significant 

imbalance. Furthermore, alternative alleles were confirmed to be all in phase using 1,000 

Genomes Project phased genotype data, ATF6 transcript level was not associated with 

clinical outcomes in both univariate and multivariate models, and no differential ATF6 

transcript level was observed for patients carrying the clinically distinct haplotype 

structure. 

A gene reporter assay was used to evaluate the functional impact of two different sub-

regions of the long ATF6 3’UTR, corresponding to chr1:161930870-161931403 and 

chr1:161931723-161932422 (hg19) genomic coordinates (Figure 2.4C). For the 

downstream region, we observed a consistent statistically significant increase in the 

reporter gene activity for the allele harboring the alternative SNPs bases (Figure 2.4C), 

both in untreated and Nutlin treated cells. For the upstream region, we observed a similar 

trend of increased reporter gene activity (although not reaching statistical significance) 

for the allele harboring the alternative SNPs bases in the untreated cells but not in the 

Nutlin treated cells. 

Computational predictions suggest that the allele harboring the alternative SNPs bases 

loses two PABPC1 binding sites that have strong scores when considering the allele 

harboring the reference SNPs bases (Table S2.7), suggesting an allele dependent distinct 

processing of the 3’UTR. Indeed, using RIP assays, we demonstrate that the ATF6 
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transcript, and specifically the 3’UTR region, is a PABPC1 target in MCF7 cells (Figure 

2.4D). 

 

 

Figure 2.3: Haplotype structure and allelic imbalance along the ATF6 gene and impact 

of UTR TranSNPs. A) RNA-seq based allelic fractions of ATF6 heterozygous SNPs are 

reported for both coding and 3’UTR (in red) SNPs. On the top we show the distribution 

observed in the first biological replicate while on the bottom we show the distribution 

observed in the second biological replicate. B) Significance of ATF6 3’UTR SNPs allelic 

imbalance (red line) versus distribution of sequential random SNPs imbalances. On top 

using heterozygous SNPs data from the first biological replicate while on the bottom 

using data from the second biological replicate. C) Dual-luciferase assays in MCF7 cells 

transiently transfected with reporter vectors containing ATF6 3’UTR SNP alleles. 

Experiments were developed as described in Figure 2.  **** p< 0.0001, adjusted p-value 

based on a 2-way ANOVA with Sidak’s multiple comparison test. Data are represented as 

mean +/- SD. D) RIP experiment probing the interaction of PABPC1 with the ATF6 
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transcript. Bars plot the average fold enrichment relative to the input sample. Individual 

average values from three biological replicates are also shown. Results obtained with an 

IgG control antibody are included. * p< 0.05, two-tailed, unpaired t-test. Data are 

represented as mean +/- SD. 

 

 

Discussion 
The relative abundance of an mRNA in polysomal versus subpolysomal fraction is 

frequently used as a proxy for protein synthesis and can capture changes both in global 

and specific translation efficiency, driven by structural or sequence elements in the 

context of cell stress responses. It is common knowledge that cancer cells experience 

chronic stress as well as acute stress responses that converge on translation controls, 

unfolded protein responses, oxidative stress, and proteasome functions. Recent studies, 

including some from our group, are placing wild-type p53 in an important position to 

respond and influence these pathways, and also are indicating that the gain of function 

properties of several mutant p53 proteins may converge on the dysregulation of controls 

on translation quality, protein folding, and proteasome functionality. Hence, in this study, 

we chose a p53 wild-type cancer cell line well characterized in terms of p53-induced 

responses (91), including post-transcriptional and translational changes (74). We used 

both a commonly used chemotherapeutic drug that activates the DNA damage response 

and a selective MDM2 inhibitor that results in acute p53 activation without apparent 

genotoxic response (75,92). Doses and treatment time points were selected based on 

previous characterization of both p53 activation pathway and cell outcome (93,94). 

Furthermore, for both treatments, we have previously shown a global as well as a specific 

impact on translation (74).  

Since MCF7 cells have been genotyped both by SNP arrays and by exome-sequencing as 

part of the cell-line encyclopedia and NCI-60 studies, we could leverage RNA-seq data of 

total and polysome-bound mRNAs to focus on allele counts for all transcribed SNPs in the 

heterozygous state to reveal an imbalance in one fraction over the other. We 

hypothesized that this approach, although restrictive, could overcome limitations 

deriving from the quality and quantity of sequence reads that can be attributed to each 

allele of a SNP pair. Computational approaches that use allele counts of heterozygous 

SNPs to identify imbalance events have been implemented and widely used to investigate 
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allele-specific expression patterns both in healthy and disease tissues (65–68,70,71). 

However, only few approaches (69,72) have been developed to compare allelic 

imbalances across matched samples, and all of the available methods have been 

specifically designed in the context of cancer (e.g. to compare cancer samples with their 

matched normal counterparts), limiting hence their broad applicability.  

Using polysomal profiling and RNA relative quantification from either pooled or individual 

fractions typically show relatively small differences, that can, however, underlie an 

important effect at the level of protein amounts. The approach we developed to identify 

tranSNPs is focused on computing and comparing the relative change of allele counts 

across mRNA fractions. To account for technical noise, the approach embeds in the 

calculation the amount of allele counts variability observed in a given condition exploiting 

data from biological replicates. Of note, such variability was not affected by the cellular 

treatment employed and was consistent across different RNA fractions. We identified 147 

tranSNPs, representing nearly 4% of the overall analyzed SNPs, a fraction that although 

conservative, can be considered comparable with the recent fraction of about 2% of 

allele-specific expressed genes computed across tumor versus normal matched samples 

(72). Indeed, in (72), differential allele-specific expression of genes was computed by 

aggregating at gene level heterozygous SNPs data and no statistically significant difference 

between genes with differential ASE and those without with respect to the number of 

heterozygous SNPs across the length of the genes was found. We checked the intersection 

of our tranSNP list with the current list of GWAS variants from the GWAS catalog (95) that 

are related to cancer (N=2,657), although it is possible that tranSNPs might not be directly 

related to the risk of developing a tumor but be related to a distinct clinical outcome. 

Only an intersection between the LD block defined by our tranSNP rs760077 and 

association signal with gastric cancer (variant rs760077 and LD variants rs140081212, 

rs4072037) and breast cancer (LD variants rs2075570, rs2974935) was identified. We 

further explored the intersection between the tranSNPs and a set of GWAS-implicated 

cancer risk SNPs identified in 41 genes of the p53 response pathway, of which those 

mapping at KITLG, CDKN2A, and TEX9 genes were reported to potentially impact drug 

sensitivity (96,97). Given that MCF7 cells express wild type p53 and that the doxorubicin 

or Nutlin treatments elicit a p53-dependent response, we were motivated to examine the 

potential overall with our tranSNP list. However, only 13 of those 41 GWAS-implicated 
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cancer risk SNPs could be evaluated in our MCF7 RNA-seq data. They map at six genes 

(CERSS, ISYNA1, CFLAR, SESN1, AKAP9, CYP51A1) that were not reported to impact drug 

sensitivity (96,97). Finally, we considered the results of a very recent study where over 

12,000 3’UTR variants, including more than 2,000 disease-associated SNPs from the 

GWAS catalog, were cloned within 100nt-long fragments and tested in a massively parallel 

reporter assay measuring relative RNA expression (98). Surprisingly, about 25% of the 

tested GWAS SNPs resulted in steady-state changes in reporter transcripts’ abundance. 

Among the GWAS SNPs included in that screen, 131 are heterozygous in MCF7 and could 

be analyzed by our method. We found no intersection with our tranSNP list, consistent 

with our approach being focused on allelic differences that are detected among 

polysomal-associated mRNAs but not total mRNAs. 

 

A subset of the identified UTR tranSNPs showed apparent prognostic value. Some of 

these are located in genes that have been already established to play a role in cancer in 

general and in breast cancer or in relation to p53 functions, in particular. These include 

BRI3BP, also known as human cervical cancer oncogene 1 (HCCR-1) that might act as a 

negative modulator of p53 (77,78), the ATF6 gene, an important modulator of 

endoplasmic reticulum stress that can promote cell survival (99,100) and the protein 

lysine methyltransferase SETD3 gene, that was recently reported as a prognostic marker 

in breast cancer patients (101), and also shown to promote apoptosis in response to DNA 

damage, in part through the modulation of p53 (102). Other genes implicated by our 

results are GFM1, a mitochondrial translation elongation factor that has been linked to 

oxidative stress and cancer cell survival (103), and PLEC, an important member of a large 

family of scaffolding proteins that can modulate various aspects of cell function. The 

plectin gene is frequently found co-amplified with MYC in BRCA1-deficient breast cancer 

(104). Sequence variants predicted to be deleterious have also been identified in primary 

breast cancers (105). Physical interaction of plectin with BRCA2 has also been reported 

(106). In all these cases, the tranSNPs we uncovered may be modifiers of protein 

expression, influencing mRNA translation efficiency, with consequences on cancer 

phenotypes.  
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To begin exploring a more precise mechanism of action, motifs analysis based on eCLIP 

or RIP-seq data was exploited to identify UTR tranSNPs that may alter or lead to gain or 

loss of RNA binding sites. Based on these predictions and focusing on a peculiar 

imbalance in ATF6 transcript that we observed only across 3’ UTR SNPs, we performed 

RIP assays and confirmed that ATF6 is a target of PABPC1, a well-known RNA binding 

protein. This, combined with predicted putative loss of two PABPC1 binding sites across 

one of the two ATF6 alleles, suggests an allele-dependent processing of the 3’UTR. 

Overall, our approach led us to identify a class of SNPs that are associated with changes 

in mRNA translation efficiency, potentially acting at post-transcriptional level, and that 

show prognostic value for cancer, hence implicating the potential identification or 

stratification of cancer patients based on genetic markers that are helpful in the 

prediction of prognosis in regard to death, progression or recurrence. 

 

Limitation of Study 
This study considers a single cell-line and two biological replicates for each considered 

treatment/condition. Survival analysis is focused on breast cancer data. Our catalog of 

tranSNPs is hence limited to the data we analyzed. 

 
 

Methods 
 

Data and code availability 
RNA-seq BAM files have been deposited at BioProject under the accession number 

PRJNA693005. 

 

Experimental Model and Subject Details 
 

Cell lines and culture conditions 
MCF7 cells were cultured in standard RPMI (Lonza) supplemented with 10% FBS (brand), 

100 units/ml penicillin, 100 mg/ml streptomycin antibiotic mix, and 2mM glutamine. Cells 

were periodically tested to ascertain the absence of mycoplasma contamination. The 

authenticity of the parental cells was confirmed by a commercial genotypic service (BMR 
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genomics, Padova, Italy). Doxorubicin was purchased from Sigma. Nutlin was purchased 

from Cayman chemicals. 

 

Method Detail 
 

SNP status in MCF7 cells 
We retrieved from the literature genotype assays for MCF7. Two different public datasets 

(GEO and NCI-60) were used containing information about homozygosis or heterozygosis 

conditions for SNP alleles in MCF7, the unique identifier, the relative and alternative base 

in specific single positions. One SNP-array based file (GSM888366) contains 756,260 SNPs 

with the information about the reference and alternative bases, while the second exome-

based file (107) contains 85,593 SNPs. The SNPs in common (N=6,454) were compared 

to verify the consistency among the two datasets: more than 91% of the SNP calls were 

consistent. This concordance suggested the possibility to merge the two files removing 

the data with opposite information. A first screening was performed through the 

elimination of SNPs called as homozygous in the two datasets, but with a different base 

call: i.e. reference “0/0” vs alternative “1/1”. Together, the final file presents 11,544 

heterozygous SNPs of which 1,802 in 3’UTR and 729 in 5’UTR. Variants were annotated 

using VariantAnnotation R package (108). 

 

Differential allele-specific expression analysis 
To identify allelic imbalances between polysomal and total RNA fractions a computational 

approach that exploits SNP allelic fractions variability across biological replicates was 

implemented. Given an experimental condition C, SNP allelic fractions variability for 

condition C is calculated as: 

 

𝑉𝑐 = 𝑚𝑒𝑎𝑛 ({|𝑠𝑛𝑝
𝑖

𝑅𝑗 − 𝑠𝑛𝑝𝑖
𝑅𝑘|   𝑠. 𝑡.  1 ≤ 𝑖 ≤ 𝑁  𝑎𝑛𝑑  1 ≤ 𝑗, 𝑘 ≤ 𝑀  𝑎𝑛𝑑 𝑗 < 𝑘}) 

 

where N is the number of considered SNPs, M is the number of biological replicates, and 

 𝑠𝑛𝑝
𝑖

𝑅𝑗 is the allelic fraction of SNP i computed from the RNA-seq BAM file representing 

the biological replicate 𝑅𝑗 using ASEQ pileup module (70) and defined as: 
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𝑠𝑛𝑝
𝑖

𝑅𝑗 =
#𝐴𝐿𝑇

#𝐴𝐿𝑇 + #𝑅𝐸𝐹
 

 

where #𝐴𝐿𝑇 and #𝑅𝐸𝐹 correspond to, respectively, the number of reads supporting the 

SNP i alternative base and the number of reads supporting the SNP i reference base. Of 

note, in the pileup computation only reads and bases with quality above 20 and a 

minimum of local depth of coverage of 10X were considered. 

Now, given variabilities values 𝑉𝑝𝑜𝑙𝑦 and 𝑉𝑡𝑜𝑡 computed, respectively, from RNA-seq 

replicate samples of polysomal and total RNA fractions, we define as tranSNPs all SNPs 

satisfying the following condition: 

 

∀𝑗 ∈{1,…,𝑀} (𝑠𝑛𝑝
𝑖

𝑝𝑜𝑙𝑦𝑗
+ 𝑉𝑝𝑜𝑙𝑦 < 𝑠𝑛𝑝

𝑖

𝑡𝑜𝑡𝑗
− 𝑉𝑡𝑜𝑡) ⋁ ∀𝑗 ∈{1,…,𝑀} (𝑠𝑛𝑝

𝑖

𝑝𝑜𝑙𝑦𝑗
− 𝑉𝑝𝑜𝑙𝑦 > 𝑠𝑛𝑝

𝑖

𝑡𝑜𝑡𝑗
+ 𝑉𝑡𝑜𝑡) 

 

Survival analysis using TCGA data 
From our list of 147 tranSNPs an extended list of variants was built retrieving variants in 

strong linkage disequilibrium. We queried the Ensembl rest API version GRCh37 (109) and 

retrieved all the variants with r^2>0.8 in a genomic window of 500kbp using general 

population data. For a total of 3,003 variants, distributed among 120 LD blocks, we were 

able to retrieve genotype calls from TCGA data. Specifically, raw TCGA genotype calls were 

downloaded from TCGA legacy data portal (portal.gdc.cancer.gov/legacy-archive) and 

only genotypes with confidence score larger than 0.1 were retained. Genotypes were 

analyzed with SHAPEIT v2 (110) to infer haplotype structure and optimize genotype 

content information for the imputation process. Variants were imputed using IMPUTE 

v2.3.2 (34) against a reference panel built from 1,000 Genomes Project data. The final 

extended list of variants was used to perform variant-specific survival analysis using TCGA 

breast cancer survival data (83). Overall Survival (OS), Disease-Specific Survival (DSS), 

Disease-Free Interval (DFI) and Progression-Free Interval (PFI) were considered in our 

analysis. Dominant and recessive models were built, respectively, grouping together 

patients with homozygous reference and heterozygous genotypes and homozygous 

alternative and heterozygous genotypes. Kaplan-Meier survival curves were built for each 

variant and Cox proportional hazards regression models were used and inspected. To limit 

false positive results, for each considered outcome, association results demonstrating a 
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p-value <0.05 (minimum between Log rank test p-value and Wald test p-value was 

considered) were aggregated at the level of LD blocks and >5% of variants reproducing 

the association signal in a block were required to nominate the block as associated. 

Survival analyses were performed using survival R package (111). 

 

Identification of SNPs disrupting putative RBP consensus motifs 
We retrieved 552 human RNA binding consensus motifs from RBPDB database (84). Motif 

analysis was performed on the list of 33 UTR tranSNPs resulting from the survival analysis. 

For each variant, two sequences of length 60bp with the SNP reference or alternative 

allele in the middle were built using GRCh37 reference genome. All sequences were then 

collected in a FASTA file and TESS software (85) was ran on this file to compute motifs 

scores. TESS tool provides a set of log-likelihood-ratio-based scores, among which we 

used the score La, which represent the log-odds ratio of the match, and the score Lm, 

which represents the maximum possible log-odds ratio for a match from a given 

consensus motif. For each motif overlapping a variant, results were collected only if the 

score La for the reference or the alternative allele was at least 3 and it was computed on 

the forward (transcribed) strand. Confident results were filtered by considering only 

entries having a La/Lm value greater than 0.5 in at least one of the two conditions. In 

addition, only variants presenting an absolute ratio between reference and alternative La 

scores greater than 10% or presence of a motif with the reference but not with the 

alternative (or vice-versa) were retained. 

 

Polysomal profiling and RNA-sequencing. 
MCF7 parental cells were seeded in P100 dishes and treated at about 70% confluence by 

1M doxorubicin or 10M Nutlin, for 16 hours. DMSO was used for treatment control. 

Cytoplasmic lysates were obtained and polysome fractionations performed as described 

in (74–76,112,113). Briefly, cytoplasmic lysates were loaded on a 15ml, 10-50% sucrose 

gradient, ultra-centrifuged (40k rpm for 100’) and fractionated with an automated 

fraction collector (1ml per fraction Teledyne ISCO), tracing the 254nm absorbance. All the 

lighter fractions containing subpolysomal fractions (from the top to the gradient up to 

the fractions corresponding to the 80S monosome) were pooled in a tube. Heavier 

fractions corresponding to polysomal RNAs (two or more ribosomes) were also pooled in 
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a separate tube. RNA was purified by extraction with 1 volume of phenol-chloroform. The 

aqueous fraction was recovered after centrifugation, transferred to a new tube where 

RNA precipitation was induced by the addition of 1 volume of isopropanol and a 

subsequent centrifugation step. Pellets were a washed once using 70% V/V ethanol to 

remove phenol contaminations and resuspended in sterile, RNAse free water. Total RNA 

samples were instead obtained by TRIzol (ThermoFisher) extraction of a separate cell 

population prepared in parallel. RNA preparations were quantified by NanoDrop 

microvolume spectrophotometer. Purity and integrity were checked by Agilent 2100 

Bionalyzer electrophoretic runs exploiting the Agilent RNA 6000 Nano kit. Sampling with 

RIN over 6 were used to prepare libraries for RNA sequencing. Two biological replicates 

for each RNA type (total and polysomal) and condition (mock, doxorubicin, Nutlin) were 

sequenced. Libraries were prepared following the TruSeq RNA Library preparation kit v2 

protocol (Illumina), staring from 1 µg of input RNA. Paired end (100 bp) sequencing was 

performed on a HiSeq 2500 (Illumina). FASTA files were aligned to the reference genome 

GRCh37 using TopHat v2.0.10 (114), resulting in BAM files with an average of ~32 million 

unique mapping (mapping quality > 5) reads. Differential expression analysis was 

performed with Cuffdiff (115) comparing Nutlin and doxorubicin samples against mock 

samples, considering both total and polysomal RNA fractions. Pathway enrichment 

analysis of deregulated genes in all tested comparisons was performed using 

clusterProfiler R package (116) exploiting KEGG database (117). Comparison of multiple 

gene lists obtained from condition-associated tranSNPs was performed with Metascape 

(118). 

 

Cloning 5’UTR or 3’UTR allelic variants for gene reporter assays. 
The commercial Firefly luciferase plasmid pGL4.13 was used to clone the two rs1055472 

alleles BRI3BP 3’UTR as well as two regions of the ATF6 3’UTR containing different set of 

SNPs, using a PCR based approach that introduced the XbaI restriction enzyme site. MCF7 

cDNA was used as template, given the heterozygous state for the SNPs of interest. The 

cloned regions correspond to genomic coordinates chr12:125509977-125510349 (hg19) 

for BRI3BP and chr1:161930870-161931403 or chr1:161931723-161932422 for ATF6. 

Primers used for the cloning are listed in the Key Resource Table, where the lowercase 

bases are the restriction site sequence included in the primers after two initial adenines. 
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The pGL3 basic vector was instead used to clone the two rs2395655 alleles of the CDKN1A 

5’UTR exploiting the unique NcoI site that overlaps with the firefly start codon and using 

complementary primers containing the 5’UTR sequence of interest for each SNP allele 

that were annealed prior to ligation to generate NcoI sites at both ends. After in vitro 

ligation (T4 DNA ligase, NEB), E. coli competent cells were transformed and colonies 

picked to recover plasmids based first on a colony PCR approach, followed by plasmid 

recovery from positive colonies followed by electrophoresis migration and digestion 

pattern analysis. The successful cloning of both SNP alleles for the two targets was then 

verified by Sanger sequencing (Eurofins Genomics) of independent candidate colonies.  

 

Dual-Luciferase assays 
pGL4.13- or pGL3-derivative plasmids were transiently transfected along with the pRL-

SV40 Renilla control luciferase in a 3:1 ratio (250ng plus 50ng for 24 well format) using 

Mirus-LTI transfection reagents following the manufacturer’s protocol. When needed, 

cells were treated with doxorubicin or Nutlin for 16 hours, starting 24 hours after 

transfection. Luciferase assays were performed using Dual-Luciferase™ Reporter (DLR™) 

Assay System (Promega), following the provided protocol. Light units were measured 

using a Tecan M200pro multilable plate reader through three technical replicates of well. 

Presented in the graphs are the average Relative Light Units (Firefly/Renilla) and standard 

deviations of three biological experiments, compared using a two-tailed, equal variance 

Student’s t-test. 

 

RIP assays 
Ribonucleoprotein particles immunoprecipitation (RIP) experiments were performed 

following a published protocol with some modifications described recently (119,120), 

starting from 4 × 107 MCF7 cells. After lysis, the supernatants were collected and 1% of 

each sample was set aside as input while the remaining was incubated for 4 hours at 4°C 

with protein A magnetic beads (Thermo Fisher Scientific) coated either with 3 μg of an 

anti-PABPC1 antibody (Abcam) or with 3 μg of normal Rabbit IgG (Santa Cruz). After the 

washing steps, RNA was isolated from Input and IP samples using TRIzol (Thermo Fisher 

Scientific) and converted to cDNA using the RevertAid First Strand cDNA Synthesis Kit and 

standard protocol (Thermo Fisher Scientific). qPCR reactions were performed using the 
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qPCRBIO SyGreen Mix (PCR Biosystems) master mix on a CFX384 thermal cycler (Biorad). 

GAPDH was tested as a comparison.  Two pairs of primers were used for ATF6, of which 

one targeting exon 9, and the second targeting the 3’UTR sequence comprising the 

rs2499847 SNP whose alleles are predicted to impact a PABPC1 binding site (Table S2.7). 

The primers sequences can be found in the Key Resource Table. 

 

Quantification and Statistical Analysis 
Statistical tests applied throughout the study are specified in results, figure legends and 

in the methods accordingly. Given a list of variants, LD blocks were determined identifying 

the number of cliques in a graph were nodes are variants and edges are present between 

two nodes when the corresponding variants are in LD with an r2>0.8. In all considered 

cases the number of cliques corresponded to the number of connected components. 

Luciferase assay data were analyzed using a 2-way ANOVA with Sidak’s multiple 

comparison test. RIP assays were analyzed using a, two-tailed unpaired t-test. 
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Supplementary Material 
Supplementary Figures 

 
 

 

 

 

 

 

Figure S2.1: Dotplots of gene set enrichment analysis results. Significant terms are shown 

together with adjusted p-values, gene ratios and gene counts. 
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Figure S2.2. Distribution of SNPs allelic fractions in RNA-seq data across mRNA 

fractions and treatments. For each RNA fraction and treatment we show the comparison 

of RNA-seq based allelic fraction of putative MCF7 heterozygous SNPs across different 

biological replicates and the distribution of these RNA-seq based allelic fractions. 
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Figure S2.3 Metascape analysis. Comparison of the top GO terms enriched by the 

multiple gene lists obtained from the condition-associated tranSNPs. 
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Figure S2.4 Characterization of rs1055472 association. A) Association between BRI3BP 

and TP53 transcript levels (cbioportal data); B) Distribution of rs1055472 genotype 

across TCGA patients stratified by TP53 mutational status; from the left stratification by 

point mutations, somatic copy number aberrations (deletions) and integration of point 

mutations and deletions; C) Distribution of rs1055472 genotype across TCGA patients 

stratified by DNA-damage treatment (chemotherapy); D) PFI analysis considering TP53 

mutated (left) and TP53 wild type (right) patients’ only; E) Multivariate analysis 

considering breast cancer subtype 
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Supplementary Tables 
Supplementary Tables are available at  

Supplementary Table S2.1: 

 https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/e59ceca7-0a18-

458b-827b-d410c369e584/mmc2.xlsx 

Supplementary Table S2.2:  

https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/d1140315-9167-

4f24-9773-f902e4dd8524/mmc3.xlsx 

Supplementary Table S2.3:  

https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/7fbfab2f-642b-

428d-9c8f-6c1fbadc56f9/mmc4.xlsx 

Supplementary Table S2.4:  

https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/92ee460d-9535-

42e7-9017-c85f8905f4c4/mmc5.xlsx 

Supplementary Table S2.5:  

https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/6dae1eec-aeee-

4d10-ae3e-b49fe7fe37f6/mmc6.xlsx 

Supplementary Table S2.6: 

https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/927facde-b99e-

4949-89f9-a8121b7444cc/mmc7.xlsx 

Supplementary Table S2.7: 

https://www.cell.com/cms/10.1016/j.isci.2021.103531/attachment/5e7a9d03-a881-

4f83-a893-aadb1843167b/mmc8.xlsx 
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Chapter 3: Finding functional relations 

among common human genetic variants 

 

Introduction 

In recent years, many resources have been developed to explore the effects of germline 

variants. However, these tools don’t allow to explore relations among multiple variants. 

To tackle these limitations, we developed Polympact, a novel web resource that allows 

the analysis of multiple variants in terms of their effects on transcript levels and changes 

in motifs binding scores. Polympact provides two new network frameworks that allow to 

detect putative variant-variant and variant-gene interactions. 

Variant-variant interactions on gene expression, epistatic or additive, have not been 

extensively studied since most eQTL dataset relies on cis-eQTL. Resources like GTEx (44) 

don’t perform trans-eQTLs associations since their calling is burden by the multiple test 

correction required. Also, cis-eQTLs effects are usually local and linked to the modification 

of transcription factor binding site, chromatin interactions or some other regulatory 

element making difficult to find other variants associated that are not in linkage 

disequilibrium making the identification of interactions extremely difficult given the huge 

amount of correlation between variants. 

 

 

Results 

Polympact is a new web resource that characterizes over 18 million common human 

germline variants and that aims to identify putative interactions between common 

human germline variants. Polympact characterizes variants by integrating ChIP-seq data 

from ENCODE and Roadmap projects, transcription factor binding motifs from Homer, 

Hocomoco, Jaspar and Transfac, and genotype and gene expression data from GTeX and 

TCGA databases. 
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Polympact builds on the data by defining and introducing two novel network models: a 

similarity network model used to identify variants that can have a common effect on 

transcript level of genes or commonly alter a transcription factor binding motif and a 

variant-gene network model that aims to identify interactions between variants and 

genes. 

Using Polympact, we used the similarity network framework to identify putative 

interactions between variants in the Alzheimer’s diseases and breast cancer GWAS 

variants dataset. Finally, we analyzed those interactions in detail using the variant gene 

network model. 

Polympact is freely available and can be queried using a web interface and a REST API for 

programmatic access. 

 

Materials and methods 

Variants SNPs and INDELS have been retrieved from dbSNP version 151 and they have 

been filtered using a custom script keeping only the ones that have a minor allelic 

frequency >1% in the general population. We integrated ChIP-seq data from ENCODE and 

Roadmap projects to identify variants that fall in a functional peak of a transcription factor 

or a histone mark. We retrieved regulatory elements from CONREL to find variants falling 

in a regulatory region. Then, we performed a motifs scan over to identify the changes 

introduced in transcription factor binding scores. We defined four cases: match when the 

variant does not change significantly the binding score of a motif, change when it does, 

addition when a binding motif is created and deletion when a binding motif is deleted. 

Finally, we integrated the GTEX and TCGA germline and computed linear associations 

between genotypes and gene expression levels under additive, dominant and recessive 

models in fifteen different tissues.  

Using the data in Polympact we formalized two novel network models to identify variants 

that have potential cooperative effects on gene regulation and to model the landscape of 

interactions between variants and genes. 

The first model, called similarity network, defines a network where variants with a similar 

putative effect on gene expression or on motif binding scores are linked together and, 

using community detections algorithms, we are able to identify groups of variants that 
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may exhibit complex patterns on genes regulation when considered together. The second 

network model links the effects of variants to genes and allows to explore in detail 

multiple relations. 

Finally, we retrieved GWAS variants associated to cancer and Alzheimer’s Disease in the 

GWAS catalog, and we analyzed them using Polympact.  

I contributed to the project by creating the Polympact database and by performing all the 

data integrations analyses apart from the merging of the TCGA and GTeX datasets. I have 

formalized, implemented and analyzed the networks models introduced in the resource. 

I have supervised and contribute to the development of the web interface. I have 

developed the case studies on variants interactions and supervised and implemented 

parts of the case study on the functional element enrichment in cancer variants. 

 

 

Discussion 

Polympact is a new web resource that allows the exploration of putative variant-variant 

and variant-gene interactions. We integrated data from many public databases and we 

developed new models to characterize variants. In particular, we introduced and 

performed a motif scan on over 18 million variants using more than 5,000 transcription 

factors and RNA binding protein motifs. Secondly, we introduced a new genotype 

transcript level analysis that can help in identifying medium/strong cis effects and new 

trans effects. 

Using the Polympact data we implemented a new similarity network model between 

variants. This model allows to discover groups of variants that show a common behavior 

in modulating gene expression or in altering transcription factor binding motifs.  

Then, we developed another network model to analyze putative interactions between 

variants and genes. This model, called variant-gene network, showed a complex topology 

when built using all the variants modulating at least one gene in a tissue. In particular, it 

showed putative regulatory hubs and putative feedback loops that can model dynamic 

instability. 

Analyzing the Polympact data, we showed that GWAS variants are enriched for regulatory 

elements with respect to random variants. 
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Then, we analyzed the breast cancer and Alzheimer’s Disease GWAS variants using our 

framework finding many examples of putative variant-variant interactions in the 

modulation of transcript level of genes where variants are modulating transcripts in a 

cooperative or additive way. 

We believe that Polympact can be used to analyze the effects of multiple variants and to 

identify putative interactions. 
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Abstract 
In the last years, many studies were able to identify associations between common 

genetic variants and complex diseases. However, the mechanistic biological links 

explaining these associations are still mostly unknown. Common variants are usually 

associated with relatively small effect size, suggesting that interactions among multiple 

variants might be a major genetic component of complex diseases. Hence, elucidating 

the presence of functional relations among variants may be fundamental to identify 

putative variants’ interactions. To this aim, we developed Polympact, a web-based 

resource that allows to explore functional relations among human common variants by 

exploiting variants’ functional element landscape, impact on transcription factor binding 

motifs, and effect on transcript levels of protein-coding genes. Polympact characterizes 

over 18 million common variants and allows to explore putative relations by combining 

clustering analysis and innovative similarity and interaction network models. The 
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properties of the network models were studied and the utility of Polympact was 

demonstrated by analysing the rich sets of Breast Cancer and Alzheimer’s GWAS variants. 

We identified relations among multiple variants, suggesting putative interactions. 

Polympact is freely available at bcglab.cibio.unitn.it/polympact. 

 

Introduction 
Common genetic variants in the form of Single Nucleotide Polymorphisms (SNPs) and 

Small Insertions and Deletions (INDELs) are the most frequent forms of DNA 

polymorphisms. SNPs and INDELs are supposed to be the largest source of phenotypic 

variation across individuals (121). Although common variants are mostly located outside 

of gene coding regions and seem to have no direct consequences on protein sequences 

and phenotypes, genome-wide association studies (GWAS) identified thousands of them 

associated with complex traits and diseases (95). Despite expression quantitative trait loci 

(eQTL) studies have broadly shown that non-coding variants modulate gene expression 

(122), there are still limited examples of clear mechanistic models linking common 

variants and biological functions (123,124) and the functional role of most of them 

remains largely unknown. Indeed, most variants identified in GWAS studies have low 

effect size, suggesting that individual variants have a small impact on the heritability of 

complex traits and diseases (125). In addition, complex traits and diseases are often 

affected by many genes. Overall, this suggest that the interaction among common 

variants may play an important role and could represents a major genetic component of 

complex diseases (126). 

Advances in high-throughput technologies, especially those based on next-generation 

sequencing (NGS), have generated a huge amount of genomic datasets of different types. 

Several databases and web applications have been developed upon these datasets to 

annotate genetic variants, providing effective platforms for the exploration of their 

functional properties. Some of these resources are focused on specific aspects of SNPs 

and INDELs like SNP2TFBS (127), which annotates how variants’ alleles may affect 

transcription factors (TFs) motifs, or HACER (128), which allows to explore how non-

coding variants in active enhancers may modulate gene expression. Other resources 

instead, like RegulomeDB (129), Haploreg (130) and the recent VARAdb (131), provide 

extensive annotations of common variants by integrating ChIP-seq data, chromatin 
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accessibility and interaction data, TFs motif changes, eQTLs and GWAS data. Although 

these resources provide important information to investigate the functional role of single 

variants, none of them allows to aggregate information of multiple variants, limiting 

hence their applicability to investigate to what extent different variants may be involved 

in the modulation of same genes or genes involved in same biological processes. Tools 

and frameworks to explore functional relations and links among multiple variants are 

indeed needed and fundamental to help identifying putative variants’ interactions. 

To overcome these limitations, we developed Polympact, a computational resource and 

framework which allows to investigate the presence of functional relations among 

multiple variants. On the one side, Polympact characterizes over 18 million common, 

mainly non-coding, variants by combining: (i) cell line and tissues regulatory elements 

data; (ii) the landscape of changes observed in transcription factors binding sites (TFBS) 

scores; (iii) the association of genetic variants genotype with the expression of protein 

coding genes in various healthy human tissues. On the other side, Polympact provides a 

novel framework to explore functional relations among a set of queried variants, 

combining clustering analysis, a network model describing similarities which also includes 

community detection features, and an additional network model which integrates all 

functional annotations computed and collected in Polympact to explore in detail 

interactions among variants and genes. 

We believe that Polympact could become a useful and effective computational platform 

to investigate the potential impact of multiple common genetic variants in human 

diseases and biological processes. 

 

Materials and Methods 
Collection of genetic variants 
We collected genetic variants information from dbSNP version 151 (132) using version 

hg19 as human reference genome. We kept all common variants with Minor Allele 

Frequency greater or equal than one percent, considering the general population 

frequencies available from 1,000 Genomes Project (133) or the TOPMed (134) data. 

Overall, we collected 18,683,752 genetic variants composed by 14,810,175 SNPs and 

3,873,577 INDELs. 
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Functional annotation of genetic variants 
ChIP-seq data from ENCODE (135) and RoadMap (136) projects (as available in March 

2018) were retrieved. We collected data for 9,074 narrow peak experiments and 1,395 

broad peak experiments on 42 tissues and 238 cell lines, annotating 755 functional 

elements divided between 724 transcription factors and 31 histone marks. Then, using 

the BEDTools intersect module (137) with default parameters, we checked, for each 

collected variant, if its genomic position fell within a functional peak in all replicates of a 

given TF/histone mark specific  experiment. Overall, we annotated all the variants by the 

number of experiments that supports a TF or histone mark in a cell line/tissue. We also 

annotated variants based on functional marker data available from CONREL (138), a 

resource we recently developed which provides an extensive collection of consensus 

promoters, enhancers and active enhancers across 38 tissue types. 

 

Impact of genetic variants on binding motifs 
We retrieved 5,424 TFBS consensus motifs (in the form of position frequency matrices 

PFM) from Transfac Professional (139), Hocomoco (140), Homer (141), and Jaspar (142) 

and 552 human RNA binding protein consensus motifs from RBPDB database (143). 

Extending an approach we previously proposed and used in (144), for each variant we 

performed an extensive motif search using a pattern matching approach, considering a 

30bp flanking window around the variant and using the TESS computational tool (145). 

RBP motifs were used to characterize only UTR variants.  

Among the log-likelihood-ratio-based scores provided by TESS we used the score La, 

which represents the log-odds ratio of the match, and the score Lm, which represents the 

maximum possible log-odds ratio. TFBS and RBP scores (hereafter referred to as binding 

motifs scores) were computed considering both the reference genome sequence and the 

sequence modified with the variant alternative allele. For each motif, significance of 

scores was determined comparing the calculated scores against a motif-specific reference 

distribution of scores computed across random genomic sequences. For motifs shorter 

than 11 nucleotides we enumerated all the possible nucleotide combinations, while for 

longer motifs we extracted 1,000,000 random sequences from the hg19 human reference 

genome. Considering all positive scores obtained across all motifs tested at the specific 
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genetic variants, score ratios La/Lm were calculated and normalized considering the 

average of La/Lm ratios and the average of length-specific La/Lm ratios. 

Overall, motif matches at the specific genetic variant locus were retained when: i) the 

match overlaps the genetic variant; ii) the score for the reference allele or the score for 

the alternative allele was at least 6 (TESS default parameter) for TFBSs and 2 for RBPs 

(which motifs are generally smaller); iii) the score p-value for the reference or the 

alternative allele calculated against the motif-specific reference distribution is smaller 

than 0.001; iv) the normalized La/Lm score ratio for the reference or alternative allele is 

greater than 0.5. 

Retained variants were classified as a “match”, when the difference between the score 

computed on the reference sequence and the alternative sequence was less than 10%, 

and as a “change”, when this difference was equal or greater than 10%. Instead, we call 

an “addition” when the alternative allele score is positive (and respects all the other 

thresholds) and the reference allele score is negative, while a “deletion” is called in the 

opposite case. When the analysed genetic variant is a small insertion and the motif match 

starts inside the added genomic sequence, we call it an “addition” in all cases. Examples 

of considered cases are provided in Figure S3.1.   

 

Integration of TCGA and GTEx projects data 
Genotype and transcriptomic information from either TCGA (146) and GTEx (147) 

datasets were collected and examined. We conducted the analysis across 15 different 

human tissues for which genotype-expression normal matching samples were provided, 

including breast, brain, uterus, lung, liver, cervix, prostate, pancreas, stomach, esophagus, 

thyroid, skin, ovary, colon and bladder. Specifically, genotype and normal RNA-seq 

samples from each tissue were processed and analysed separately according to the 

tissue-specific data availability from TCGA and GTEx, generating a unique (GTEx/TCGA) 

combined dataset when data from both resources were present. A comprehensive list of 

all processed tissues and the amounts of tissue-specific samples is reported in Table S3.1. 

 

RNA-seq data from TCGA and GTEx projects 
Tissue-specific RNA-seq data from either TCGA normal (non-tumor) samples or GTEx 

samples were downloaded from the Recount2 (148) project data portal and processed as 
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follows: raw count matrices were extracted and filtered to retain only protein-coding 

genes according to GRCh38-v25 Human Gencode annotation (www.gencodegenes.org). 

Tissue-specific TCGA and GTEx RNA-seq samples were combined into a unique matrix and 

genes having RPKM ≥ 0.5 in at least the 10% of the samples were considered as expressed 

and hence retained in the downstream analyses. Normalized gene counts were then 

obtained using edgeR (149) followed by a voom-quantile normalization function (150) to 

correct for both technical and biological variability across samples. Tissue-specific TCGA 

and GTEx combined data was further normalized using ComBat (151) to adjust for the 

source-specific batch effect generated in the merging step. 

 

Genotype data from TCGA and GTEx projects 
Tissue-specific raw TCGA genotype calls were downloaded from TCGA legacy data portal 

(portal.gdc.cancer.gov/legacy-archive) and converted into the common PLINK (152) file 

format (MAP/PED) retaining only genotypes with confidence score larger than 0.1. PED 

files underwent a first pre-filtering step to remove duplicate SNPs and discard variants 

with a call rate smaller than 0.75. MAP/PED files were then converted into more readable 

GEN/SAMPLE format using Gtool (well.ox.ac.uk/~cfreeman/software/gwas/gtool.html). 

Chromosome-separated GEN files were then analysed with SHAPEIT v2 (110) to infer 

haplotype structure and optimize genotype content information for the imputation 

process. Variants were imputed using IMPUTE v2.3.2 (34) against a reference panel built 

from 1,000 Genomes Project data. Imputed TCGA genotype calls were intersected with 

imputed GTEx genotype data obtained from dbgap (phs000424.p7.v2) and samples with 

overall call rate below 0.9 were excluded. Only variants with MAF greater or equal than 

1% were finally retained. 

 

Ancestry analysis  
Ancestry analysis was performed using EthSEQ (153). For each tissue-specific TCGA/GTEx 

integrated genotype data, a selection of random 10% common variants with MAF >5% 

(about 700,000) were selected and used to run EthSEQ using a reference model built from 

1,000 Genomes Project data. The first three principal components of the PCA analysis 

performed by EthSEQ, which effectively describe the major populations structure (154), 

were extracted from EthSEQ results. 
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Association of genetic variants genotype with transcript levels 
Tissue-specific associations between variants genotypes and genes transcripts were 

calculated using the following model of linear correlation: 

E ~ 𝛽0 + 𝛽1G + 𝛽2 A + 𝛽3S + 𝛽4 PC1 + 𝛽5 PC2 + 𝛽6PC3 

where, E is the transcript level of a gene, 𝛽0 is the intercept coefficient, G is the genotype 

of a genetic variant, A is the individual’s age, S is the individual’s sex and PC1, PC2 and 

PC3 are the first three EthSEQ principal components. Each genetic variant was tested 

against all the genes expressed in the tested tissue using three different association 

models: additive, dominant, and recessive. In the additive model we grouped samples in 

three different genotype classes: reference homozygous, heterozygous and alternative 

homozygous. In the dominant model we combined the heterozygous samples with 

alternative homozygous while in the recessive model heterozygous are combined with 

reference homozygous. Age, sex, and the three PCA terms were included to correct biases 

toward genes whose expression changes during life, variants that are more common in a 

sex with to respect to the other and effects on transcript that are due to individuals’ 

ancestry. We tested a variant for the association only if the genotype had at least 3 

samples in each genotype class. P-values for the associations were obtained by a two-

tailed t-test on the genotype coefficient 𝛽1 under the null hypothesis that 𝛽1 is equal to 

zero. For each variant and model, p-values were corrected using Benjamini-Hochberg 

method considering all tested genes as multiple hypothesis. Only associations with a 

corrected p-value less than 0.005 were considered for further analysis.  

 

Variants Similarity Network 
Given a variant 𝑣, let 𝐺 be the set of genes annotated in Polympact having transcript 

levels associated with 𝑣. Now, let 𝐼𝑣 be the set of pairs such that: 

𝐼𝑣 ⊆ 𝐺 × {+, −} 

where a gene g is associated with “+” when the variant alternative allele increases the 

transcript level of g and with “-” when the variant alternative allele decreases it. Now, the 

similarity of two variants 𝑣1 and 𝑣2 in terms of transcript level associations (denoted also 

as variants transcript similarity) is defined as: 
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𝑆𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡(𝑣1, 𝑣2) =  𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐼𝑣1
, 𝐼𝑣2

) =  
|𝐼𝑣1

∩ 𝐼𝑣2
|

|𝐼𝑣1
∪ 𝐼𝑣2

|
 

 

The function 𝑆𝑚𝑜𝑡𝑖𝑓𝑠(𝑣1, 𝑣2) is defined by applying the same idea to binding motif 

alteration Polympact data (variants motifs similarity). Specifically, a gene is associated 

with “+” when the variant alternative allele increases the binding motif score and with “-” 

when the variant alternative allele decreases it. 

Based on these definitions, we can define a similarity network where the nodes are 

variants and two variants are connected if and only if their transcript (or motifs) similarity 

is greater than zero. Since connected variants may have relationships with common 

genes, we can use community detection algorithms to identify groups of variants 

presenting similar functional impact. 

To study the similarity degree of variants’ pairs, we selected for each tissue all variants 

associated with the transcript level of at least one gene. Then, we computed with PLINK 

the sets of variants that are not in linkage disequilibrium using a genomic window of size 

250kb and using 0.1, 0.5 and 0.8 as r2 thresholds. Finally, for each threshold, we built both 

variants transcripts and variants motifs similarity networks.  

  

Variant-Gene Network  
Combining all data available in Polympact, we finally developed a model to describe the 

complex interaction landscape between a set of common genetic variants and genes. We 

formalized this model as a variant-gene network, defined as a directed bipartite graph 

where nodes are variants or genes, and edges are relations we found between variants 

and genes. Edges have a variant to a gene direction when the variant associates to the 

transcript level of the gene, while an edge has a gene to a variant direction when the gene 

binds at the variant locus.  

To analyse Polympact variant-gene networks, we constructed for each tissue the 

networks using all variants associated with at least one transcript level. Then, we analysed 

the networks structures by finding the strongly connected components and exploring 

centrality measures like degree, betweenness and closeness. Finally, we enumerated 

every possible 2-cycle in the network. All the analyses were conducted using NetworKit 

(155). 
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Polympact database and web interface implementation 
Polympact database is hosted on a MySQL version 5.7 containerized with singularity 

version 3.4. The web interface is implemented in Python3 using the Django framework 

version 3.0.5. The data visualization is obtained using Plotly-Dash version 3.1 for the 

heatmaps and Cytoscape-js 0.1.1 for the networks. Community detection in similarity 

networks is performed using the Louvain algorithm (156). 

 

Results 
Overview of Polympact data 
Polympact characterizes (Figure 3.1) more than 18 million common human genetic 

variants and allows for the exploration of: i) their functional properties, exploiting more 

than 10,000 cell lines and tissue ChIP-seq experiments; ii) their impact on binding motifs 

scores, exploiting about 6,000 TFBS/RBP consensus motifs; iii) their tissue-specific 

association with transcript levels, exploiting genotype and RNA-seq data of more than 

5,000 human individuals. A summary of the data contained in Polympact is reported in 

Figure 3.2. 
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Figure 3.1. Polympact data and services. Polympact is implemented integrating common 

variants information and genotypes, ChIP-seq data, TFBS and RBP motifs and 

genotype/transcript level data retrieved and integrated from several databases. Data are 

filtered for high quality characteristics and stored in a MySQL database. Polympact 

offers an intuitive web interface providing visual reports and an innovative network 

visualization. It is also accessible programmatically through a REST API. 

 

 

More than 95% of the variants characterized by Polympact are non-coding and annotated 

as intergenic or intronic variants (Figure 3.2A). Specifically, 143,725 are annotated as 

variants in the 3’ UTR, 12,362 in the 5’ UTR, 10,018,421 are intergenic, 210,232 are 

located in a transcription termination site, 82,826 are exonic, 7,899,469 are intronic, 

84,127 in non-coding RNAs, and 232,590 in promoters. 

Regarding the functional characterization of the variants, we found that 18,545,354 of 

18,683,752 (99.26%) fall within at least one ChIP-seq peak (18,485,601 fall in at least one 

histone mark peak and 18,409,488 in at least one TF peak considering both broad and 

narrow peak data) in at least one tissue. As shown in Figure 3.2B, the majority of variants 

fall within few peaks across all tissues (Figure 3.2B) with half variants falling in 2 to 3 peaks 

in every tissue. In addition, 170,239 (0.9%) variants have a promoter annotation in at least 
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one cell-line/tissue, whereas 7,839,972 (42%) have an enhancer annotation and 

4,357,136 (23%) have an active enhancer annotation. 

With respect to the TFBS motifs analysis landscape, we observed that more than 99.9% 

(18.678.853) of the variants cause at least one putative change, addition or deletion of a 

transcription factor. More specifically, 17,277,379 variants cause at least a putative 

change, 7,724,608 cause at least one addition and 8,859,076 cause at least one deletion. 

About 59% of the motifs analysis results are annotated as match, while 32% show a 

change in the score. Additions and deletions account, respectively, for the 3% and 6% of 

the overall motifs analysis results (Figure 3.2C left). The distribution of the number of 

variants matching or altering a certain number of motifs show that we have more than 

2.5 million variants overlapping 40 to 50 putative motifs that are annotated as matches, 

changes, additions or deletions. The distribution is slightly asymmetrical with very few 

variants that are associated with only 1 to 10 motifs (Figure 3.2C right). Putative change, 

addition or deletion of RBP motifs was observed in 95,265 UTR variants (66%), with 

66,654 variants causing at least a putative change, 17,488 causing at least one addition 

and 27,412 causing at least one deletion. 

Moving to the association with transcript levels, unlike eQTL analysis and similarly to what 

we have previously proposed in (144), association of genetic variant genotypes and 

transcript levels is here performed by testing each variant against all protein-coding 

transcripts, to search for association patterns that might be similarly shared across 

different variants. We found 3,653,655 variants with a total of 6,451,090 associations 

across fifteen tissues and the three different association models. Of these, 1,037,712 

were additive associations, 2,555,425 were dominant and 2,857,953 were recessive. As 

shown in Figure 3.2D, thyroid was the tissue with the highest number of variants 

displaying associations (N=873,525) and bladder the one with the lowest number 

(N=63,448). Although the median value of associations per variant is one, the mean value 

is pretty variable across tissues (minimum 5.6 for uterus and maximum 104.2 for skin) 

indicating the presence of variants strongly enriched for associations. Indeed, as shown 

in Table S3.2, while the 75th percentile of the tissue-specific variants associations 

distributions indicates an average number of associations per variant that is less than 3, 

when considering the 95th percentile, we observe an average value of 97 associations, 

which rapidly increases to 1,171 associations when we consider the 99th percentile of the 
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tissue-specific variants association distributions. Skin was the tissue with the highest 

number of total identified associations, while uterus was the tissue with the lowest 

number (Figure S3.2). As expected, most (~99%) of these associations are putative trans 

associations. Although our approach differs from standard eQTL analysis, we checked to 

what extent the putative cis associations we found are similar to the landscape of cis 

associations reported by GTEx eQTL data. Focusing for simplicity on a subset of tissues, 

we took the intersection between the variants characterized in GTEx and Polympact, and 

computed the fraction of cis associations in Polympact by selecting, similarly to GTEx, 

variants within one megabase of distance from the modulated gene in the selected 

tissues. We found a good concordance with about 60% of our cis associations that are 

also reported in GTEx and preserving in all cases the association direction (Figure S3.3). 

 

 

Figure 3.2: Summary of the data contained in Polympact. A) Annotations for the 

different types of variants stored in Polympact. B) Percentiles of the distribution of the 

number of variants overlapping a ChIP-seq peak in various tissues. C) Types of binding 

motifs results and distribution of the number of motifs overlapping a variant for match, 

change, addition and deletion types. In small, a zoom of the major distribution part. D) 

Number of variants associated with a transcript level in additive, dominant and recessive 

models in different tissues. 
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Database and web interface 
Polympact offers a web interface accessible through a web browser that can be used to 

query the resource by selecting the variants of interest and the preferred parameters 

setting. The only mandatory parameter is the list of variants IDs (in the form of rsids or 

strings with the variant position, reference and alternative alleles) while all the others are 

optional. The resource offers two search modes: quick and advanced search for both 

similarity and interaction analysis modes. The quick search is available from the home 

page (Figure S3.4A) and retrieves the data for the requested variants using the default 

parameters (all tissues, all motifs effects and all associations models). In the advanced 

search page (Figure S3.4B) a selection tree can be used to select a specific tissue of 

interest or a selection of specific cell lines available for that tissue. Using checkboxes, it is 

possible to specify the peak file format for the ChIP-seq data (narrow and/or broad peaks), 

the model used in the genotype/transcript association analysis (additive, dominant 

and/or recessive models) and the type of binding motifs results (match, change, addition 

and/or deletion). In addition, the corrected p-value threshold for the genotype/transcript 

association analysis (default 0.005) and the normalized difference in binding motifs scores 

(default 0) can be set to further filter displayed genetic variants results. Of note, only for 

a subset of selectable tissues the genotype/transcript association analysis data is 

available, and the cell-line selection is exploited only for the analysis of functional 

elements. 

Polympact similarity analysis provides an interactive interface to explore the similarity 

network of queried variants’ effects on transcript levels (Figure 3.3A) or on binding motifs 

scores. Computed network communities are highlighted, and each single community can 

be selected to perform an in-depth interaction analysis. 

Polympact interaction analysis provides first a graphical representation, in the form of a 

heatmap, to explore functional relationships among the queried variants, separately for 

the functional elements, the binding motifs score alterations, and the transcript level 

associations. The heatmaps are accessible through, respectively, the “Functional 

Elements”, “Transcript Levels” and “Motif Binding Scores” tabs (Figure 3.3BCD) and are 

clustered using hierarchical clustering in a way that variants with similar characteristics 

are represented closer in the visualization. All the data is also reported in a tabular form 

and can be filtered and downloaded in various file formats. The “Markers” (Figure 3.3E) 
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tab provides additional insights into the regulatory role of the genomic regions spanning 

the variants and highlights links to our external resource CONREL to visualize the variant 

and its genomic context into a genome browser view. The variant-gene network model is 

accessible from the “Network” tab (Figure 3.3F) where genes are reported in yellow and 

variants have colours representing their functional marker annotations across the cell 

lines/tissues selected. Edges are red if the variant alternative allele increases the binding 

motif score or is associated with increased transcript level; they are blue if the variant 

alternative allele decreases the binding motif score or is associated with decreased 

transcript level. 

 

 

Figure 3.3 Polympact web interface. A) Polympact similarity network model built from 

transcript association data. Each node represents a variant and two variants are 

connected if and only if they have a similarity greater than zero. B) Histone marks and 

transcription factor ChIP-seq peaks overlapping in the genomic region of the variant. C) 

Binding motifs scores. Red annotates variants that are increasing the motif binding score 

of the motif while blue annotates variants reducing it. D) Genotype to transcript level 

associations. Alternative alleles lowering the transcript level are depicted in blue while 

alternative alleles increasing it are depicted in red. E) CONREL marker annotations in 

the genomic region of the variant. F) Polympact variant-gene network model. Genes are 

coloured in yellow while variants are in blue if they are annotated as putative active 

enhancers or in green otherwise. Edges from a variant to a gene represents an association 

to transcript levels and are blue if the transcript are reduced and red if transcript levels 

are increased. Edges from a gene to a variant represent binding motifs changes and are 

red if the binding score is increased and blue if it is decreased.  
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Properties of Similarity Networks 
Using Polympact data, similarity networks considering all variants’ pairs were created for 

15 tissues. Networks based on binding motifs scores focused only on effects classified as 

addition or deletion, considered more relevant from a functional perspective. On average 

1.5% (N= 1,241,691,365) of all possible variants’ pairs had a positive 𝑆𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 similarity 

and 0.4% (N= 367,267,669) had a positive 𝑆𝑚𝑜𝑡𝑖𝑓𝑠 similarity. Comparable results were 

obtained when high linkage disequilibrium (LD) variants were filtered (Table S3.3 and 

Table S3.4). Analysis of similarity values distributions across the networks revealed 

specific properties. Focusing for example on the breast tissue transcript similarity 

network, but comparably for all other tissues, the distribution of 𝑆𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 values was 

multimodal with a range of peaks located across the overall range [0,1] and the highest 

peak located in value one, representing perfect similarity (Figure 3.4A). As shown in 

Figure 3.4B, most similarities located in the highest peak were, as expected, from variants’ 

pairs associated with a single gene; in spite of that, we observed a tail of pairs involving 

tens of genes. Concordant distributions were obtained when correcting for linkage 

disequilibrium, demonstrating that a large fraction of similarities are not due to LD. 

Results obtained considering the distribution of 𝑆𝑚𝑜𝑡𝑖𝑓𝑠 similarity values were 

comparable (Figure 3.4CD), further demonstrating the presence of a vast range of 

variants’ pairs not in LD sharing common functional relations. 
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Figure 3.4. Analysis of variants similarity networks. A) Distribution of variants 

transcript similarity values in the breast similarity network. B) Cardinality of the union 

of associated transcripts of each interacting pair divided by similarity thresholds. C) 

Same as A) but with variants motifs similarity values. D) Same as B) but with variants 

motifs similarity values. 

 

Properties of Variant-Gene Networks 
For each tissue, we created a variant-gene network considering all the variants associated 

with at least one transcript level in that tissue, and studied the topology of the network 

by exploring the number of connected components, the distribution of centrality metrics 

and the embedded 2-cycles. Each tissue network showed a similar topology, consisting of 

a single strongly connected component and many isolated nodes (Table S3.5). Degree 

centrality distributions highlighted across all tissues a heavy tailed power law or a log-

normal distribution with a likelihood ratio test propending for the log-normal distribution 

(Figure 3.5A, Figure S3.5). Betweenness centrality distribution showed instead that, for 

each tissue, a large number of nodes do not participate in the network connections being 

the nodes outside the strongly connected component (Figure 3.5B). In particular, most 

tissues follow a similar distribution suggesting a conserved topological structure with 
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bladder tissue showing a shift in the distribution, probably due to the low number of 

nodes in the network. Inspection of closeness centrality also showed a conserved 

distribution among tissues with a peak in zero, where all the nodes not belonging to the 

strongly connected component are located, and a second peak near 0.25, which contains 

the nodes in the main connected component (Figure 3.5C).  

We then focused on variant gene network cycles, which are structures involving relations 

between variants and genes. Specifically, we focused on variants associated with the 

transcript level of a TF that are also modifying the binding motif score of the same TF, 

forming a 2-cycle in the network. Cycles are of particular interest because they may 

underlie the presence of positive or negative feedback loops between variants and 

transcription factors. We observed 2-cycles in every tissue (Figure 3.5D) from a maximum 

of 17,522 in lung to a minimum of 2,283 in bladder. By investigating the possible 

functional impact of 2-cyles we found that variants involved in 2-cycles are enriched in 

functional markers (p-value=1.7e-76, Table S3.6). 
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Figure 3.5 Analysis of variant-gene networks. A) Log-log plot of the degree centrality 

distribution of the breast variant-gene network. B) Betweenness centrality distribution of 

the variant-gene network across tissues. C) Closeness centrality distribution of the 

variant-gene network across tissues. D) Number of 2-cycles across tissues. 

 

 

Case Studies 
To explore the utility of Polympact, we considered a first case study based on cancer risk 

GWAS common variants and a second case study based on Alzheimer’s disease risk GWAS 

common variants (Table S3.7, Table S3.8). 

 

Cancer risk GWAS variants 
2,657 variants related to cancer were retrieved from the GWAS catalogue (95), of which 

2,370 were present in Polympact. 

We first explored the landscape of functional annotations across the loci identified by the 

GWAS risk variants. After computing the extent of linkage disequilibrium across the 2,370 

variants using the Ensembl REST API (157), we identified 1,958 LD blocks; we considered 

pairs of variants with an r2 greater than 0.5 to be LD. Then we built 100 random GWAS 
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sets where a single variant is randomly selected from each LD block, hence obtaining 100 

sets of 1,958 GWAS variants that are not in LD. We also created 100 sets of 1,958 random 

variants selected among all variants in Polympact (excluding the 2,370 GWAS variants) 

and preserving the distribution of minor allele frequency of the GWAS variants. 

We then counted for each GWAS and random variant the number of overlapping marker 

regions and compared the distribution of counts in the GWAS variants sets with respect 

to the random variants sets. As shown in Figure 3.6A and Figure S3.6A, markers of 

promoters, enhancers, active enhancers together with a subset of histone marks result 

enriched in the GWAS sets with respect to the random sets (p-value<0.01), clearly 

supporting the observation that variants associated with cancer risk have an active 

functional role. 

Being the number of risk variants reported in the GWAS catalogue not uniformly 

distributed across the different cancer types, we decided to further explore risk variants 

functional properties by focusing only on a single cancer type. Specifically, we selected 

the richest subset of 853 GWAS variants that are associated to breast cancer risk, 808 of 

which are characterized in Polympact. Of those, 58 variants are associated with at least 

one transcript level with 445 total unique associations, of which 71 (~16%) are cis-

associations. Out of the 808 variants, we identified 653 LD blocks and we generated as 

previously 100 random sets of 653 GWAS variants (not in LD) and 100 random sets of 653 

random variants. Also in this case, markers of promoters, enhancers, active enhancers 

and a selection of histone marks resulted enriched in the GWAS variants sets with respect 

to the random variants sets (p-value<0.01, Figure 3.6B and Figure S3.6B). In addition, 

more than 30 genes known to be implicated in cancer were found to have enriched 

transcription factor functional peaks in the GWAS variants sets with respect to the 

random variants sets and/or binding motifs that are changed, added or deleted by GWAS 

variants alternative alleles (Figure 3.6C). In particular, the estrogen receptor ESR1 and the 

oncogene ZNF217 are both enriched for functional peaks in the GWAS variants and have 

binding motifs that are significantly impacted by a subset of the same variants. 

Interestingly, focusing more generally on all transcription factors (not only cancer genes) 

that have this dual characteristic, we found a set of genes that enrich for pathways related 

to hormone synthesis, estrogen signalling and breast cancer (Figure 3.6D), overall 
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supporting the implication of breast cancer GWAS variants in cancer relevant biological 

processes. 

 

Figure 3.6 Pan-cancer and breast cancer GWAS analysis. A) GWAS variants associated 

to all cancer types annotated as enhancers, active enhancers and promoters compared 

with random sets of variants. B) Same as A) but with GWAS variants associated to breast 

cancer. C) Cancer transcription factor over-represented in breast cancers GWAS variants 

with respect to random sets in ChIP-seq data and TFBS motif alterations. Red p-values 

< 0.01, blue p-values > 0.01, white no data. D) Cancer related terms resulting from the 

enrichment analysis on all transcription factors over-represented for both ChIP-seq and 

TFBS motif alterations. 

 

To further characterize the functional role of breast cancer risk GWAS we analysed all the 

808 variants using the Polympact transcript similarity network created with standard 

parameters and focusing on breast tissue. We found 10 unique network communities 

(Figure 3.3A). Out of them, we selected 4 communities associated with genes CASP8, 

MAN2C1, BTN3A2 and ARL17A which are all reported in literature as possibly involved in 

cancer. The CASP8 network community contains the two variants rs1830298 and 

rs3769821. In particular, the variant rs1830298 is 60kbp far away from the variant 

rs3769821, which is annotated as an intron variant of CASP8. Variant rs1830298 

alternative allele reduces the binding score of NR2C2 hormone receptor while rs3769821 

decreases the binding score of the tumor suppressor IRF1 (Figure 3.7A); both variants 

have the GWAS catalogue reported risk allele (allele C) that is strongly associated with a 

decrease in the CASP8 transcript levels (Figure 3.7BC). Of note, our integrated TCGA and 

GTEx dataset from which the associations were computed is composed by individuals 
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with mainly European (75%) and African (16%) ancestry, populations were the two 

variants have respectively moderate (r2~0.5) and low (r2~0.2) linkage disequilibrium. 

Inspection of transcript levels at all variants genotype combinations (Figure 3.7D) 

revealed that homozygous alternative genotype (TT genotype for both variants) is needed 

to sustain on average high CASP8 transcript level. In particular, a first decrease of CASP8 

levels is observed in presence of the risk allele C in at least one variant (e.g. when at least 

one variant has heterozygous genotype) and a further decrease is observed when at least 

one variant has homozygous CC genotype. These results, together with the genotype 

combinations observed from phased data retrievable from the 1,000 Genomes Project 

data (Figure S3.7) strongly suggest a putative interaction effect that rs1830298 and 

rs3769821 have in maintaining a high level of CASP8 transcript, which is lost in individuals 

carrying the breast cancer risk allele in at least one of the two variants. 

The MAN2C1 network community (Figure 3.7E) includes SNP rs8027365 (PTPN9 intron 

variant, risk allele A) and the small deletion rs59356490 (intergenic variant, risk allele 

deletion not present) located 120kb away and they are not reported to be in LD. Both 

variants modulate additively the transcript level of MAN2C1 (Figure 3.7F-H) and variant 

rs59356490 has a functional annotation for POLR2A and ESR1 and overall it deletes 23 

TFBS motifs. The combination of the two variants shows an additive trend where the 

highest transcript level is reached when both variants are present. 

The BTN3A2 network community contains 6 variants: rs13195401, rs13198474, 

rs17598658, rs34546498, rs55834529 and rs68006638 and they are all associated with a 

decrease in transcript level for BTN3A2 gene in the dominant model. Among them we 

selected the pair rs13195401 (annotated as BTN2A1 non-sense variant, risk allele G) and 

rs13198474 (annotated as SLC17A3 5’ UTR variant, risk allele G) having the lowest LD 

(r2=0.49) in the general population (Figure S3.8). The combination of the two effects 

shows a trend where the decrease is small when only the variant rs13195401 is present, 

the decrease is higher when only the variant rs13198474 is present, and the highest 

decrease in the transcript level is reached when both variants are present. 

Finally, we analyzed the network community of ARL17A. The two variants in this 

community are rs2532263 (KANSL1 intron variant, risk allele G) and rs4763 (ARHGAP27 

3’ UTR variant, risk allele G) and both are associated with an increase of ARL17A, 
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LRRC37A. LRRC37A2 and CRHR1 genes transcript levels. For all genes the variants have a 

full additive effect similarly to MAN2C1 (Figure S3.9).  

Interestingly, we also found that the variant rs8050871, located in a region annotated as 

active enhancer, has a cis effect on the transcript level of gene ZNF23 causing a decrease 

in its transcript level. The variant also deletes a binding motif for the same TFs creating a 

loop (a 2-cycle) in the variant gene network. Overall, this suggests that the variant is 

possibly involved in a regulatory positive feedback loop, potentially inducing dynamic 

instability. 

 



 

110 

 

 

Figure 3.7 Figure 7. Effect of variants on CASP8 and MAN2C1 transcripts. A) Variant-

gene network of the two variants rs3769821 and rs1830298. B) Effect of the variant 

rs3769821 on the transcript level of CASP8 gene under the additive model. C) Effect of 

the variant rs1830298 on the transcript level of CASP8 gene under the additive model. 

D) Combined effect of the two variants rs3769821 (first pair of nucleotides in the label) 

and rs1830298 (second pair) on CASP8. E) Variant-gene network of the two variants 

rs59356490 and rs8027365. F) Effect of the variant rs59356490 on the transcript level 

of MAN2C1 under the additive model. G) Effect of the variant rs8027365 on the 

transcript level of MAN2C1 under the additive model. H) Combined effect of the two 

variants rs59356490 (first pair of nucleotides in the label) and rs8027365 (second pair) 

on MAN2C1. 
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Alzheimer’s disease GWAS variants 
1044 common variants related to Alzheimer’s disease were retrieved from the GWAS 

catalogue, 810 of which were present in Polympact. 

To highlight the utility of Polympact in identifying more putative functional relations, we 

analysed the 810 variants exploiting the similarity network computed on the brain tissue. 

We identified 4 network communities and focused only on the 3 ones composed by 

variants that are not in high LD. 

The first community contains variants rs199499 and rs7207400, that are reported in the 

GWAS catalogue as associated to trait Alzheimer’s disease in APOE ε4- carriers and that 

present a low LD in the general population (r2=0.18) and moderate LD (r2=0.52) in the 

European population. The second community is formed by three variants, rs113260531, 

rs7225151 and rs80257887, that are reported as associated to trait Alzheimer’s disease 

or family history of Alzheimer’s disease; the first two variants are located on chromosome 

17 and are in moderate LD (r2=0.67) while the third variant is located on chromosome 19. 

Finally, the last community is formed by variants rs7963314 and rs79926713, associated 

with trait Alzheimer’s disease and Late-onset Alzheimer’s disease and are located on two 

different chromosomes.  

The first community variants are located on chromosome 17 and are about 1Mbp afar. 

Variant rs199499 is annotated as intron variant of gene LRRC37A2 and is located about 

800kB downstream to the gene MAPT, while rs7207400 is annotated as intron variant of 

LINC02210-CRHR1. The Polympact network (Figure 3.8A) shows that both variants are 

increasing the transcript levels of LRRC37A, LRRC37A2 and ARL17A. Interestingly, both 

variants are increasing the binding of MYF6 and have an opposite effect on the binding 

of TAL1. Also, rs7207400 notably creates new binding for MYCN and TCF4. Risk alleles (C 

for rs199499, T for rs7207400) are strongly associated with decreased levels of gene 

transcripts LRRC37A, LRRC37A2 and ARL17A (Figure 3.8BC and Figure S3.10ABDE). 

Genotype combinations (Figure 3.8D and Figure S3.10CF) show that absence of risk allele 

for both variants is needed to guarantee the highest transcripts levels. A first decrease in 

transcript levels is indeed observed when one of the two variants has heterozygous 

genotype and a second decrease is observed when one of the two variants has 

homozygous genotype for the risk allele. In addition, 1,000 Genomes Project phased 

genotypes indicate that risk variants are almost always present on the same allele (Figure 
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S3.11). Overall, the data suggest that both rs199499 and rs7207400 non-risk alleles are 

required in phase to sustain the highest levels of LRRC37A, LRRC37A2 and ARL17A 

transcripts. 

The second community is composed by variants located on different chromosomes: 

chromosome 17 for variants rs113260531 and rs7225151 (both annotated as upstream 

variants for gene SCIMP, risk allele A) and chromosome 19 for variant rs80257887 

(annotated as intron variant of CEACAM20, risk allele A). The Polympact variant-gene 

network (Figure 3.8E) shows that variants rs113260531 and rs80257887 are significantly 

decreasing the binding scores of RUNX3 and RREB1 and have alternative alleles 

associated with decreased HIST2H2AC gene transcript levels. We selected variants 

rs7225151 over rs113260531 having more alternative homozygous samples for further 

analysis. Specifically, a recessive effect is observed for variant rs7225151 (Figure 3.8F) 

with AA genotype associated with lower HIST2H2AC transcript level, while a dominant 

effect is observed for variant rs80257887 (Figure 3.8G) with AA or AG genotype 

associated with lower HIST2H2AC transcript level. Notably, a reduction of HIST2H2AC 

transcript level (Figure 3.8H) is evident in individuals carrying both AA risk genotype for 

variant rs113260531 and AA or AG risk genotype for variant rs80257887. 

Finally, we analysed variants rs7963314 and rs79926713. Variant rs79926713 is located 

on chromosome 6 (annotated as intron variant of SYNGAP1, risk allele T) while rs7963314 

is located on chromosome 12 (annotated as intergenic, risk allele A). Variant rs79926713 

is annotated as promoter and is associated with an increase in transcript of gene 

PPP1R12A in the recessive models. Variants rs7963314 is instead associated in the 

modulation of 19 genes in the recessive model, including PPP1R12A gene (Figure 

S3.10GHIJ). 
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Figure 3.8 Alzheimer’s disease GWAS variants analysis. A) Variant-gene network of the 

two variants rs7207400 and rs199499. B) Effect of the variant rs7207400 on the 

transcript level of LRRC37A2 gene under the additive model. C) Effect of the variant 

rs199499 on the transcript level of LRRC37A2 gene under the additive model. D) 

Combined effect of the two variants rs7207400 (first pair of nucleotides in the label) and 

rs199499 (second pair) on LRRC37A2. E) Variant-gene network of the community 

formed by variants rs7225151, rs113260531 and rs80257887. F) Effect of the variant 

rs7225151on the transcript level of HIST2H2AC gene under the recessive model. G) 

Effect of the variant rs80257887 on the transcript level of HIST2H2AC gene under the 

dominant model. H) Combined effect of the two variants rs7225151(first pair of 

nucleotides in the label) and rs80257887 (second pair) on HIST2H2AC.  
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Discussion 
The study of common human genetic variants can provide insights into the biological 

cause of complex traits and diseases. Although several databases and web applications 

have been developed in the last decade to annotate and characterize genetic variants, 

the aggregation of these information to identify variants links and interactions has been 

largely unexplored. To this aim we developed Polympact, a tool that enables the 

exploration and the analysis of common genetic variants and their potential interactions 

by exploiting the integration of a large variety of biological data and analyses. Reasoning 

that variants’ interaction could be identified by characterizing their impact and 

involvement in the modulation of same genes or same biological pathways and processes, 

we first designed a workflow to uniformly characterize a large amount of common 

variants based on specific functional properties retrieved from well-known public 

databases. Then, on top of this uniform and homogenous annotations we developed a 

framework to represent and explore variants functional relations. More specifically, we 

combined genotype data together with transcription factor and histone marks ChIP-seq 

peak data, TFBS and RBP motifs data and transcriptomic profiling via RNA-seq across 

multiple human tissues, and we implemented a framework, provided as a dedicated web-

server, to systematically characterize variants and to explore the landscape of variants 

functional relations through the combination of clustering analysis and novel network 

models. 

While the uniform characterization of variants provided by Polympact was tailored with 

respect to the built clustering and network models, the resource we provide extends and 

complements annotations provided by other databases. Indeed, Polympact binding 

motifs data were determined both for an extended number of variants and an extended 

number/type of motifs. The recent SNP2TFBS tool (127), for example, characterizes only 

around 3 million SNPs and uses only Jaspar database (142). Of note, provided that 

variants in UTRs can alter mRNA translation potential (158) also RBP consensus motifs 

were included to characterize UTR variants. In addition, our functional characterization in 

terms of regulatory elements uses our recent CONREL tool (138), exploiting hence a novel 

tissue level functional annotation of variants. Further, our genotype/transcript 

association analysis approach well complements eQTL interaction data and was already 

proven successful in characterizing and prioritizing variants in terms of their impact on 
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specific genes or biological processes (144). Although we recognize that this approach 

could limit the identification of moderate/weak cis effects, a good concordance with GTEx 

cis-eQTL data is shown, and overall we believe that enabling the identification of trans 

effects is fundamental to unravel key features of the architecture of complex diseases 

(46).  

To characterize variants’ functional relations, we first introduced the notion of similarity 

network, which allows for the identification of variants that have common effects on the 

level of the same transcripts or the binding score of the same TFs/RBPs. In-depth analysis 

of the distribution of variants’ pairs similarities across networks built from different tissue 

data, revealed how these distributions are highly conserved also when keeping only 

variants not in linkage disequilibrium, supporting hence the presence of many 

independent variants that can possibly interact and further highlighting a landscape of 

complex patterns in gene regulation. 

Additionally, we introduced the notion of variant-gene network, which provides a detailed 

network view of variants and genes interactions across different tissues integrating all 

Polympact data. In-depth analysis of these networks built from different tissue data, 

revealed heavy-tailed degree distribution highlighting the presence of regulatory hubs 

(variants or TFs) in the network. We also analyzed the 2-cycles present in the networks 

showing that variants forming these types of loops are enriched for regulatory markers, 

suggesting hence the possible presence of positive and negative feedback loops related 

to specific TFs. Overall, the analysis unravelled a complex topology and highlighted that 

our variant-gene network can be a useful tool to detect and analyse complex interaction 

patterns. Additional mesoscale and group-centric metrics could be considered to further 

explore properties of these large networks (159). 

Using the exhaustive list of common genetic risk variants available from the GWAS 

catalog, we then showed that Polympact is able to highlight important features and 

functional relations among disease risk variants in terms of their functional genomic 

context, binding motifs alterations and transcript level modulations.  

Exploiting Polympact data we first showed that cancer GWAS risk variants are enriched 

for regulatory elements annotations, in line with previous studies (160–162). In addition, 

we found that the set of transcription factors with functional peaks enriched for GWAS 

variants and having binding motifs modified by the same variants have a statistically 
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significant role in cancer-related pathways, suggesting that GWAS variants may hence 

modulate downstream effects of oncogenic pathways. These results were also confirmed 

when we focused on about 800 GWAS breast cancer risk variants, were using the same 

selection criteria we found a set of transcription factors enriched in pathways specific to 

breast cancer and to response to hormone related pathways. This, in line with previous 

observations made by us (144) and others (58) in the context of other hormone driven 

cancers, suggests that common genetic variants may modulate downstream effects of 

hormone signalling by altering the binding of hormone receptors or hormone regulated 

genes, potentially favouring the risk of developing cancer in only a subset of individuals 

carrying a specific genetic makeup. Notably, our analysis highlighted ESR1 (estrogen 

receptor alpha), GATA3 gene which is known to influence response to estrogen (163) and 

the well-known oncogene MYC. In particular, our data shows that GWAS variants 

associated with breast cancer risk not only are enriched in regions that are bound by the 

estrogen receptor but also tend to alter the way in which ESR1 binds these regions. 

Further inspection of the network models built by Polympact on breast cancer GWAS 

variants revealed a putative interaction between two variants that, when present on the 

same allele, synergistically modulate the transcript level of CASP8 gene, a key regulator 

of apoptotic response already shown to be downregulated in breast cancer (164,165) and 

involved in cancer initiation when deficiently expressed (166,167). Specifically, we have 

shown that CASP8 transcript level is reduced when GWAS risk allele for at least one of the 

two variants is present, with the lowest expression that is observed when at least one of 

the two variants has a risk allele homozygous genotype. This suggests that the presence 

of the GWAS risk allele may favour the evasion from apoptosis, a well-known cancer 

hallmark, increasing hence the risk of breast cancer initiation. Our findings are in line with 

(168) where the authors show that the strongest associations with breast cancer risk in 

the region come from variant rs1830298 and that variant rs3769821 is an eQTL for CASP8. 

Our results are consistent with the authors’ hypothesis that one or more variants in the 

region are responsible for the reduced expression in CASP8. 

With respect to our results related with MAN2C1 gene, it has been shown that the gene 

may inhibit the function of tumor suppressor gene PTEN in breast and prostate cancer 

(169) and another study found that the gene may have a protective role in cancer 

initiation with respect of progression (170). In our analysis, each risk allele of variants 



 

117 

 

rs8027365 and rs67079557 contribute to a reduction in the expression of MAN2C1 

transcript, suggesting hence a protective role of MAN2C1 in breast cancer initiation. 

In the context of breast cancer GWAS variants we also found variant rs8050871, involved 

in a 2-cycle. The variant is located in a putative active enhancer and simultaneously 

associated with decreased transcript level of ZNF23 and decreased ZNF23 binding at the 

variant locus. Provided that ZNF23 is a gene downregulated in cancer and associated to 

inhibition of cell-cycle progression (171,172), the identified feedback loop could 

potentially contribute to an enhanced cellular proliferation and potentially an increased 

cancer risk. 

Searching for additional examples of multiple variants functional relations, we studied 

GWAS variants associated to Alzheimer’s disease and showed that absence of risk alleles 

for variants rs199499 and rs7207400 is necessary to sustain the transcript level of several 

genes (LRRC37A, LRRC37A2 and ARL17A) in the complex genomic region 17q21.31. This 

region, which hosts the Alzheimer related MAPT gene (173,174), is known to have 

undergone an inversion event during evolution (175) and to be associated with abnormal 

tau protein deposit (176). Both rs199499 and rs7207400 variants were observed to 

modify the binding motif of TAL1 gene, which is known for its effects on GABAergic 

neurogenesis (177). Variant rs7207400 also creates a binding motif for the TCF4 

transcription factor, involved in synaptic plasticity (178), and the well-known MYCN gene, 

essential in neurogenesis. 

We also found that specific rs113260531, rs7225151 and rs80257887 variants risk allele 

patterns reduce the transcript level of HIST2H2AC, a histone protein shown to be 

downregulated in brain blood vessels of Alzheimer’s disease mouse model (179). Variants 

rs7225151 and rs80257887 are in moderate LD (r2 = 0.6) while rs113260531 is located 

on a different chromosome. Variants rs113260531 and rs80257887 were also observed 

to decrease the binding score of RUNX3, a transcription factor that is essential in the 

development and fundamental formation of axons (180), and RREB1, a regulator of 

glutamatergic axons death (181). 

Overall, we have shown that Polympact represents a useful tool to explore functional 

annotations and properties of common genetic variants, leading not only to an effective 

characterization of single variants but also to an effective investigation of putative 

functional relations and potential interactions among multiple variants. We hence believe 
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Polympact might be broadly applied and used to generate hypothesis about the biological 

causes of complex diseases. 

 

Resource Availability 
Polympact is available at bcglab.cibio.unitn.it/polympact 

 

 

Supplementary Material 
Supplementary Figures 

 

Figure S3.1 A) SNP alteration of a TFBS consensus motif in position 8 annotated as 

change since the difference in score is greater than 10%. B) Small deletion of the red 

nucleotides starting from position 7 annotated as motif addition since reference score is 

negative and alternative score is positive. C) Small deletion of the red nucleotides starting 

from position 7 annotated as motif deletion since reference score is positive and 

alternative score is negative. D) Small insertion of the red nucleotides starting from 

position 6 annotated as motif addition because the motif starts inside the insertion region. 

E) Small insertion of the red nucleotides starting from position 8 annotated as deletion 

because the reference score is positive and the alternative score is negative. 
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Figure S3.2. Total number of genotype/transcript associations in various tissues stratified 

by the three different association models.  
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Figure S3.3. A) Venn diagram of Polympact and GTEx prostate tissue cis associations. 

B) Same as A) but considering breast tissue cis associations. C) Comparison of the 

direction of the associations in the prostate tissue data; GTeX- Polympact- represent 

associations with negative effect on the transcript levels in both GTeX and Polympact, 

while GTeX+ Polympact+ represent associations with positive effects. D) Same as C) but 

with breast data. 
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Figure S3.4. A) Quick search interface. The only required input are the variants provided 

in different formats and separated by commas. The search is performed using default 

parameters. B) Advanced search interface. The user can select specific tissues/cell lines, 

ChIP-seq peaks files types, transcript level association models and stringency and type 

of motif binding to refine the search. 
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Figure S3.5. Degree centrality distributions of the variant-gene networks across all 

tissues analyzed in Polympact. 
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Figure S3.6. A) Histone marks enriched by GWAS cancer risk variants. B) Same as A) 

but considering GWAS breast cancer risk variants. 

 

 

Figure S3.7. 1,000 Genomes Project genotypes for variants rs3769821 and rs1830298. 

Genotypes are phased. The first element in the pair refers to the two alleles of variant 

rs3769821 while the second element refers to the two alleles of variant rs1830298. 
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Figure S3.8. Variant-gene network (top) and effect of variants rs13195401 and 

rs13198474 on BTN3A2 transcript in the breast tissue under the dominant model (bottom 

left and middle). Combined effect of the two variants (bottom, right) where the first 

boxplot contains samples with no dominant effect for both variants, the second has 

samples with a dominant effect for rs13195401 but no effect for rs13198474, the third 

has sample with a dominant effect for rs13198474 but no effect for rs13195401 and the 

fourth has samples with a dominant effect for both. 
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Figure S3.9. Variant-gene network of variants rs2532263 and rs4763 in breast tissue 

(top). Effects of rs2532263 and rs4763 on genes ARL17A, CRHR1, LRRC37A and 

LRRC37A2 under an additive model in breast tissue (bottom). 
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Figure S3.10. A) Effect of variant rs7207400 on the transcript level of LRRC37A under an 

additive model. B) Effect of variant rs199499 on the transcript level of LRRC37A under an 

additive model. C) Combined effect of the two variants rs7207400 (first pair of nucleotides 

in the label) and rs199499 (second pair) on LRRC37A. D) Effect of variant rs7207400 on the 

transcript level of ARL17A under an additive model. E) Effect of variant rs199499 on the 

transcript level of ARL17A under an additive model. F) Combined effect of the two variants 

rs7207400 (first pair of nucleotides in the label) and rs199499 (second pair) on ARL17A. G) 

Variant-gene network of variants rs7963314 and rs79926713 in the brain tissue. H) Effect of 

variant rs7963314 on transcript PPP1R12A under a recessive model. I) Effect of variant 

rs79926713 on transcript PPP1R12A under a recessive model. J) Combined effect of the two 

variants where the first boxplot contains samples with no recessive effect for both variants, 

the second has samples with a recessive effect for rs7963314 but no effect for rs79926713, 

the third has sample with a recessive effect for rs79926713 but no effect for rs7963314 and 

the forth has samples with a recessive effect for both. 
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Figure S3.11. 1,000 Genomes Project genotypes for variants rs7207400 and rs199499. 

Genotypes are phased. The first element in the pair refers to the two alleles of variant 

rs7207400 while the second element in the pair refers to the two alleles of variant 

rs199499. 

 

 

Supplementary Tables 
Supplementary tables are available at: 

www.academic.oup.com/nar/article/50/3/1335/6513575#supplementary-data 
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Chapter 4: Somatic mutations and rare 

variants in protein interfaces 

 

Introduction 

Human genetic variants were firstly studied in Mendelian disorders, where a single variant 

is linked to a specific disease because it exerts a huge effect on a phenotype, an effect so 

large that can be selected against and tend to affect a small percentage of the population. 

In particular, highly penetrant variants associated to monogenic disorders tend to create 

stop codons or they affect the folding leading to a non-functional protein. Mendelian 

disorders have been fundamental to identify functions of genes but, recently, the focus 

of researchers have moved to polygenic complex traits usually caused by thousands of 

variants (182). Variants in complex traits are usually non-coding and their effect, mostly 

still unknown, are related to regulatory effects. Nevertheless, GWAS variants have been 

found recently among rare coding variants (12), starting to find some mechanistic effects 

and possibly drug targets.  

Structures that are possibly altered by genetic variants are protein interfaces. Protein 

interfaces are residues of a protein where a physical interaction with other molecules 

happen. Protein interfaces are fundamental for the correct protein functions and their 

alteration can lead to disease while also offering an optimal target for drugs (183). 

Similarly, in cancer, non-synonymous somatic mutations have been observed to be more 

present on protein interfaces with respect to other parts of a protein (184). 

Starting from these results we hypothesize that also non-synonymous rare germline 

variants can be localized in protein interfaces. BioBanks offer a tremendous opportunity 

to study rare variants given the required sample size to gain enough statistical power. In 

particular, the UKBioBank offers hundreds of thousands of samples with matching clinical 

and genomic data that allows researcher to explore complex hypothesis on germline 

variants. 

In this chapter, developed during my stay at the Barcelona Supercomputing Center, we 

replicated the study on somatic interfaces reported in (184), using TCGA updated data, 



 

129 

 

and finally we analyzed the UKBioBank looking for enrichment of missense mutations in 

protein interfaces of cancer genes. 

 

Results 

Identification of somatic mutations in protein interfaces in TCGA 

We replicated and extended the study reported in (184) where the authors analyzed the 

whole TCGA dataset to detect if the somatic mutations are randomly distributed across 

proteins or if they are located in functional regions. Starting from that results we 

replicated the enrichment analysis in protein interfaces using the new public TCGA 

mutations published in (185). (Table 4.1). 

Cancer #Samples 

Missense 

Mutations Genes Enriched 

Interfaces En-

riched 

ACC 91 5588 0 0 

BLCA 412 78906 11 51 

BRCA 1087 60059 3 11 

CESC 306 44278 4 9 

CHOL 36 1868 1 7 

COAD 445 124526 7 44 

DLBC 50 3681 0 0 

ESCA 183 19716 1 16 

GBM 599 36364 3 21 

HNSC 523 63002 9 47 

KICH 65 1625 0 0 

KIRC 518 14811 0 0 

KIRP 286 16189 0 0 

LAML 200 3742 1 6 

LGG 514 22300 4 17 

LIHC 374 28939 0 0 

LUAD 575 127120 5 20 

LUSC 490 103312 3 15 

MESO 87 1803 0 0 

OV 600 26422 2 15 

PAAD 184 16552 2 12 

PCPG 178 1467 1 8 
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PRAD 495 17619 3 15 

READ 159 33372 5 27 

SARC 257 13749 1 1 

SKCM 470 275344 8 27 

STAD 440 114951 6 20 

TGCT 149 1658 2 3 

THCA 503 5915 2 18 

THYM 124 1923 1 7 

UCEC 543 412839 6 26 

UCS 57 5409 4 24 

UVM 80 1057 2 7 

PANCAN 11080 1704921 35 130 

Table 4.1 TCGA datasets samples, number of mutations, genes and interfaces enriched 

by dataset. 

  

The dataset showing the highest enrichment in both genes and interfaces in TCGA is the 

pan-cancer (including all tumor types) dataset having the largest number of samples and 

mutations and thus the greatest statistical power. The smallest datasets in terms of 

samples and mutations did not show enrichment apart from UCS and UVM with 4 and 2 

genes enriched for mutations, respectively. Surprisingly, large datasets like KIRC and KIRP 

did not show any enrichment in interfaces.  

In TCGA we found enriched many interface types (Figure 4.1). In particular, the pan-

cancer dataset shows the greatest number of enriched genes and interfaces mutated 

while some cancers, like UVM, show only a small number of genes enriched. TP53 is the 

most common enriched gene across the datasets and usually its protein, nucleic and 

ligands interfaces are enriched for mutations. Also, the RAS gene family is recurrently 

mutated in their ligand and protein interfaces across most tissues. Some tissues show 

specific enrichments in mutations like SPOP in prostate cancer or GNA11/GNAQ in Uveal 

Melanoma which are genes that are recurrently mutated in those cancers. 
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Figure 4.1 TCGA interfaces enrichment across the different cancers types. Colors 

represent if a protein interface, a nucleic acid interface or a ligand interface of a gene 

are enriched for mutations in the tissue. 
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cBioPortal enrichment 

We then extended the analysis to the cBioPortal datasets by selecting tissue specific 

cancers Whole-Exome Sequencing studies (Table 4.2).  

 

Study Cancer #Samples 

Missense 

Mutations 

Genes 

Enriched 

Interfaces 

Enriched 

all_phase2_target_2018_pub ALL 145 580 6 25 

aml_ohsu_2018 AML 570 6943 13 71 

aml_target_2018_pub AML 148 447 2 20 

ampca_bcm_2016 AMPCA 152 14679 4 20 

bcc_unige_2016 BCC 292 118002 4 13 

brca_broad BRCA 103 2821 1 3 

brca_igr_2015 BRCA 211 12166 3 25 

brca_mbcproject_wagle_2017 BRCA 237 13391 4 23 

brca_sanger BRCA 100 4123 1 1 

brca_smc_2018 BRCA 185 5273 2 4 

ccrcc_utokyo_2013 CCRCC 106 3940 0 0 

chol_icgc_2017 CHOL 393 3402 6 32 

cll_broad_2015 CLL 535 7232 6 29 

cll_iuopa_2015 CLL 506 5474 0 0 

cllsll_icgc_2011 CLLSLL 105 836 0 0 

coad_cptac_2019 COAD 106 38306 3 6 

coadread_dfci_2016 COAD 619 159037 7 49 

difg_glass_2019 DIFG 444 77376 6 25 

dlbcl_dfci_2018 DLBCL 135 12018 2 2 

dlbcl_duke_2017 DLBCL 954 5315 9 28 

es_iocurie_2014 ES 106 629 0 0 

esca_broad ESCA 146 15361 2 16 

hcc_inserm_fr_2015 HCC 240 15369 0 0 

hccihch_pku_2019 HCC 171 10297 3 11 

ihch_smmu_2014 IHCH 103 4947 6 20 

lcll_broad_2013 LCLL 157 1788 1 1 

lihc_amc_prv LIHC 231 16242 0 0 

luad_broad LUAD 181 38010 3 12 

luad_oncosg_2020 LUAD 302 24214 3 9 
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mbl_dkfz_2017 MBL 384 1398 6 13 

mel_dfci_2019 MEL 144 69645 4 18 

metastatic_solid_tumors_mich_2017 MIXED 499 60197 7 40 

mixed_allen_2018 MIXED 249 91127 5 22 

mixed_pipseq_2017 MIXED 99 18333 10 30 

mm_broad MM 204 6592 4 21 

mpcproject_broad_2021 MPCPROJECT 82 6584 1 6 

mpn_cimr_2013 MPN 146 859 2 7 

nbl_broad_2013 NBL 227 3097 0 0 

nbl_target_2018_pub NBL 117 163 0 0 

nccrcc_genentech_2014 NCCRCC 138 3370 0 0 

nepc_wcm_2016 NEPC 114 6101 4 12 

paad_qcmg_uq_2016 PAAD 377 12260 2 11 

paad_utsw_2015 PAAD 109 5669 2 5 

pediatric_dkfz_2017 PEDIATRIC 706 9253 7 46 

pptc_2019 PPTC 240 34940 5 15 

prad_broad PRAD 112 3467 1 7 

prad_fhcrc PRAD 141 11590 28 77 

prad_p1000 PRAD 1011 47224 5 28 

prad_su2c_2015 PRAD 150 13202 3 10 

prad_su2c_2019 PRAD 421 29885 3 15 

prostate_dkfz_2018 PRAD 308 7176 3 13 

sclc_ucologne_2015 SCLC 110 21520 1 1 

skcm_broad SKCM 121 47380 2 12 

skcm_dfci_2015 SKCM 110 44828 1 10 

stad_oncosg_2018 STAD 147 18175 2 7 

stad_pfizer_uhongkong STAD 100 11969 1 4 

wt_target_2018_pub WT 99 554 0 0 

Table 4.2 cBioPortal datasets samples, number of mutations, genes and interfaces 

enriched by dataset. 
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The analysis allowed us to discover more tissue specific associations (Figure 4.2). Out of 

57 studies we found enrichments in 47 of them. In particular, TP53 interfaces are 

recurrently mutated in almost all the datasets together with KRAS and NRAS, similarly to 

the TCGA dataset. Other frequently mutated genes are IDH1 and PIK3CA. In particular, 

PIK3CA is mostly enriched in protein interfaces in breast cancer datasets. A similar pattern 

can be observed for AR and SPOP that are enriched in most prostate adenocarcinoma 

studies (AR in mixed primary/metastatic and only metastatic cancer datasets). Other 

interesting patterns are related to the gene EGFR recurrently mutated in Lung 

Adenocarcinoma and in the single dataset of Diffuse Glioma. Other common enriched 

mutations are CREBBP and TBL1XR1 in Diffuse Large B Cell Lymphoma. Also, WHSC1 is 

recurrently mutated in Acute Lymphoblastic Leukemia, typically a pediatric cancer, where 

its DNA interface is the only one enriched in the pediatric pan-cancer study. Examples of 

interfaces enriched for somatic mutations are reported in Table 4.3. 

 

Rare variants in cancer genes interface enrichment 

Provided the enrichment of cancer mutations we found, we started to hypothesize that 

germline variants can have a similar effect on cancer genes.  

The UKBioBank project offers a unique opportunity to explore variant-phenotype 

associations on rare variants given the huge sample sizes. We retrieved 200,643 Whole-

Exome Sequencing genotype data with associated clinical data from the UKBioBank and 

we analyzed if rare germline variants are more present in protein interfaces with respect 

to other positions. We analyzed 8 tissues: Brain, Breast, Colorectal, Endometrial, Kidney, 

Melanoma, Prostate and Thyroid (Figure 4.3). We also performed a pan-cancer analysis 

(Figure 4.4).  
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Figure 4.2 Enrichment of protein interfaces across cBioPortal studies. Genes are 

clustered using seriation clustering while studies are grouped by tissue. Colors represent 

if a protein interface, a nucleic acid interface or a ligand interface of a gene are enriched 

for mutations in the tissue 
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Figure 4.3 Enrichments of rare germline variants in protein interfaces of cancer genes 

across the Brain, Breast, Colorecttal, Endometrial, Kidney, Melanoma, Prostate and 

Thyroid tissues. The red line shows a significance threshold of 0.05. 
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Figure 4.4 Enrichments rare germline variants in protein interfaces of cancer genes in 

the pancancer dataset. The red line shows a significance threshold of 0.05. 

 

The results show few enrichments in the tissues, with the pan-cancer dataset showing 

the highest enrichments having the greatest statistical power. However, after multiple test 

correction only two interfaces in the CDK4 gene in the pan-cancer dataset shows a p-

value < 0.05. The enriched interfaces have an overlapping coefficient of 0.25. The first 

interface is a protein-protein interface between CDK4 and CCND3 gene while the second 

is a protein-ligand interface with magnesium. The other datasets do not show any 

significant enrichment after correction. 

Generally, despite the sample size of the UKBioBank, the dataset used is possibly still 

underpowered to detect signal from extremely rare variants. This is particularly evident 

in the single tissue datasets, where less tumor samples are available with respect to the 

pan-cancer dataset.  

As an exploratory analysis, keeping every interface with a nominal p-value < 0.05, we find 

27 interfaces enriched in the pan-cancer analysis. Interestingly, the most significant TP53 

interface that is involved in the formation of TP53 tetramer is also enriched in the TCGA 

pan-cancer dataset, strengthening our exploratory result and indicating that possibly a 

similar mechanism is altered when somatic mutations and/or germline variants are 

involved. CDK4 and TP53 interfaces are reported in Table 4.3. 
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Gene Interface Residues Protein Domain Cancers 

SPOP 70/76/77/80/83/87/102/115/116/117/119/123/129/130/131 

/132/133/134/135/136/137/138/141 

MATH Domain Prostate 
Cancer 

AR 702/705/706/708/709/710/712/742/743/746/747/750/753/ 

765/781/788/874/877/878/881/892/896/900 

Nuclear Receptor 
Ligand Binding 

Prostate 
Cancer 

GNA11 187/188/189/189/191/204/208/209/210/211/212/214/215/ 

216/218/219/220/221/263 

GTP-Alpha Uveal 
Melanoma 

GNAQ 77/78/81/85/92/117/119/184/185/186/187/188/189/190/ 

192/209/211/212/214/215/218/240/241/242/243 

GTP-Alpha Uveal 
Melanoma 

PIK3CA 5/6/11/23/25/26/27/28/29/30/31/57/58/60/61/71/72/73/74/ 

75/77/78/79/95/96/98/100/343/345/346/347/349/357/364/ 

365/367/368/369/409/410/412/421/422/447/448/449/450/ 

452/453/454/455/467/469/510/511/512/513/542/543/544/ 

545/546/549/573/678/843/1017/1029/ 

Multiple Breast 
Cancer 

EGFR 
718/719/720/726/743/744/745/766/775/776/777/788/789/790/ 
791/792/793/794/796/797/844/853/854/855/856/858/997/1001 

 

Kinase Domain Lung 
Cancer 

EGFR 110/217/218/219/220/227/228/229/233/234/254/263/270/ 

273/274/275/276/277/286/287/288/289/299/302/304/306/ 

307/308/309/310 

Extracellular 
domain 

Gliomas 

CREBBP 1410/1431/1432/1433/1434/1435/1436/1443/1446/1447/ 

1450/1471/1472/1473/1474/1475/1476/1480/1482/1487/ 

1491/1492/1493/1494/1495/1498/1499/1502/1503/1542 

HAT Domain DLBCL 

TBL1XR1 171/173/229/245/270/312/313/351/353/354/369/395/ 

420/446/462/487/ 

Multiple DLBCL 

WHSC1 998/1099/1124/1152 SET Pediatric 

CDK4 41/42/45/46/47/48/49/50/51/53/54/55/57/58/59/61/ 

62/64/65/66/75/76/77/79/87/89 

Protein kinase Germline 
Pancancer 

TP53 94/95/96/166/167/170/171/172/174/175/176/177/ 

180/210/211/212/213/244/245/249 

DNA Binding Germline 
Pancancer/ 
Somatic 
Pancancer 

Table 4.3 Examples of interfaces recurrently mutated in different cancer types or with 

enrichments in rare germline variants 
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Material and methods 

 

Protein Interfaces 

Protein interfaces have been computed using 3DMapper 

(https://www.github.com/vicruiser/3Dmapper) and were already available when I joined 

the Barcelona Supercomputing Center for my stay.  

3Dmapper is a novel tool that maps variants or positions to protein structures using an 

annotated vcf/maf file and protein structures in PDB format. 3Dmapper creates a 

structural database by aligning a target proteome against all the PDB files provided by the 

user using BLAST. This step is necessary to identify the relative positions between the 

protein sequences and each PDB file. Also, thanks to the sequence alignment, it allows 

for to detection of proteins that do not have an available structure but share sequence 

similarity. Finally, for each PDB with at least one BLAST hit, inter-protein interfaces are 

computed. For each pair of chains in a PDB file, a residue is considered part of an interface 

if their heavy atoms are closer than 5Å using the Euclidian distance. Ligands that are 

considered experimental artifacts are not considered. 

3DMapper also provides an efficient and computational scalable tool that allows mapping 

the position of a variant on a protein structure. 

TCGA and cBioPortal interfaces have been obtained by aligning the PDB chain sequence 

to the sequence from Uniprot (release 2021-04) while the UKBioBank interfaces have 

been aligned against the Ensembl sequence (release 104). 

 

TCGA dataset 

The TCGA mutation data have been retrieved from (185). We retrieved data for about 33 

tumors and 11,080 patients for a total of 3,600,963 mutations. Mutations were filtered 

keeping only missense mutations for a total of 1,704,921 missense mutations. 
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cBioPortal dataset 

cBioPortal mutational datasets were retrieved from (186) and were manually curated and 

filtered to include only Whole-Exome sequencing experiments with at least 50 samples. 

We retrieved 57 studies for a total of 14,348 patients and 1,204,776 missense mutations.  

 

Enrichment in protein interfaces and multiple test correction 

We started from the null hypothesis that the mutations inside a protein are randomly 

distributed. Then for each interface we performed a binomial test: 

 

(
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 

where n is the total number of mutations, k are the mutations happening inside an 

interface and, p is estimated by the ratio between the length in number of residues of 

the interface and the length of the protein. 

For each tumor we corrected resulting p-values using a Benjamini-Hochberg correction 

and we selected the interfaces having a corrected p-value smaller than 0.01.  

 

Interface filtering for germline analysis 

We retrieved 1,031 cancer genes with germline signal from COSMIC (187) and we merged 

them with genes retrieved from (188) obtaining 1,080 unique transcripts. Of those, we 

selected the canonical interface using BioMart, obtaining 858 interfaces across 95 

proteins. Then, for each pair of interfaces belonging to the same protein, we computed 

the overlapping index and if the overlap was greater than 0.5, we kept the longest 

interface in a greedy manner until no pair of interfaces has an overlap index greater than 

0.5, obtaining 471 non-overlapping interfaces. 

 

UKBioBank dataset 

The UKBioBank Whole-Exome Sequencing dataset was retrieved from the 

UKBioBank(189), obtaining 200,643 whole-exomes with matching clinical data. We 

analyzed 8 tumor types: Brain, Breast, Colorectal, Endometrial, Kidney, Melanoma, 
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Prostate and Thyroid. Also, an analysis across all cancers was performed integrating all 

cancer types available in the UKBioBank. Variants inside the 95 genes were extracted from 

the UKBioBank variant files using PLINK (152) and, finally, variants were annotated using 

VEP (190). We obtained a total of 36,474 rare missense variants. 

 

Proportion tests 

For each interface we counted the number of patients with cancer and at least one 

variant in the interface, patients without cancer and at least one variant in the interface, 

patients with cancer and no variants in the interface and finally patients without cancer 

nor mutation. We obtained the following contingency table: 

 

Cancer Patient and Mutation in 

interface 

Cancer Patient and no mutations in 

interface 

Non cancer and Mutation in interface No cancer and no mutations in interface 

 

We performed a one tailed Fisher Exact Test and finally we corrected the p-values 

obtained using Benjamini-Hochberg method considering each interface in a tested tissue 

as a separate hypothesis. 
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Discussion 
 

Coding variants were the first variants identified as causal in monogenic diseases and 

evidence that coding variants can influence the risk of disease was available even before 

the creation of the human reference genome. During the years many coding variants have 

been identified, like variants in the BRCA1 gene (191) in breast and ovarian cancers and 

variants in the APOE gene in Alzheimer’s disease (192). Usually, coding variants have 

larger effects on phenotypes and risk of diseases with respect to non-coding variants 

identified by Genome-Wide Associations Studies. Rare coding variants are still 

understudied since they require an enormous sample size to be correctly characterized 

and only recently, thanks to biobanks, the firsts GWAS on rare coding variants was 

performed (12). However, even with strong associations and a clear effect on a gene, clear 

mechanistic links between the variants and the phenotypes is still missing. Missense 

variants can be indeed very difficult to characterize since they can alter the 3D structure 

of a protein, impacting protein folding or protein binding and making the prediction 

extremely complicate. 

 

Studies on somatic mutations, showed that they are not distributed at random in proteins 

but they tend to affect protein interfaces (184). The first part of this chapter was 

dedicated to replicate the study on a more recent TCGA dataset version and on additional 

cancers available from cBioPortal. The study replicated most of the results, in particular 

we confirmed that most of the mutations that are recurrent in cancer are not happening 

at random, but they tend to be localized in protein interfaces. This is particularly evident 

in TP53 and the RAS family. Interestingly, some genes recurrently mutated in specific 

cancer types have enrichment in interfaces in their specific tissues, like SPOP in prostate 

cancer. SPOP is one of the most recurrent mutated genes in prostate cancer and studies 

found that it’s MATH domain is the most mutated one (193). Also, GNA11 and GNAQ in 

Uveal Melanoma show hotspots of mutations related to a GTP binding domain (194). 

Mutational hotspots for SPOP, GNA11 and GNAQ are highlighted in our results. 

 

In the cBioPortal study we found that PIK3CA protein interfaces are recurrently mutated 

in breast cancer. This gene is recurrently mutated, has been extensively studied 
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molecularly and its mutation hotspot in positions 542 and 545 in its helical domain of the 

catalytic subunit has been predicted to be pathogenic (195) and we show that both 

hotspots are located in a protein interfaces. 

 

Similar to the TCGA dataset in prostate cancer, SPOP shows recurrent mutations and, in 

most datasets, also AR interfaces are recurrently mutated in more advanced cancers (196) 

strengthening our results.  

 

The Epidermal Growth Factor Receptor (EGFR) is a recurrently mutated gene in many 

tumors (197). We found it enriched in non-smoker lung adenocarcinoma and its 

mutations were found primarily located in the tyrosine kinase domain (198). We found it 

is also enriched in gliomas, in particular in its extracellular domain (199). Interestingly, the 

two tumors are mutated in different domains and interfaces, suggesting that EGFR may 

activate different oncogenic mechanisms in different tumors. As seen in Table 4.3 we 

found interfaces in both domain indicating that, probably, those mutations are altering 

important bindings in EGFR but in different domains. 

 

Other recurrently mutated interfaces belong to CREBBP and TBL1XR1 proteins in the 

Diffuse Large B Cell Lymphoma (DLBCL). DLBCL is a rare lymphoma that cause the B 

lymphocyte to grow abnormally. CREBBP is recurrently mutated in DLBCL, and a 

mutational hotspot was found in an interface in the HAT domain. This hotspot has already 

been described but its effects are still unclear nevertheless CREBBP mutations are 

believed to be a main driver of DLBCL (200). TBL1XR1 is also a major driver of DLBCL and 

it has been shown that its missense mutations change the immune system into producing 

more B cells (201).  

 

We found enriched for mutations an interface located in the SET domain of the gene 

WHSC1 in the Acute Lymphoblastic Leukemia, a common pediatric tumor, and in a mixed 

pediatric cancer dataset. This protein mutation has been shown to alter the chromatin 

methylation by enhancing the methyltransferase activity and the recurrent mutation of 

residue 1099 (located in our interface Table 4.3) is believed to be a driver of Acute 

Lymphoblastic Leukemia (202).  
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In the first part of this chapter, we showed that cancer mutations are not randomly 

distributed across proteins and, in fact, many recurrent mutated proteins in specific 

tissues shows an altered interface. These results can help in identifying specific altered 

molecular mechanisms in cancers and therapeutic approaches. 

 

In the second part of this chapter, we explored the rare variant landscape in the 

UKBioBank. Here, we found that, after multiple test correction, only two partially 

overlapping interfaces show an enrichment in the pan-cancer dataset while none resulted 

significant in the single tissue studies. The enriched interface is related to the binding 

between CDK4 and CCND3, two genes involved in the cell cycle progression. Taking a less 

stringent threshold of nominal p-values < 0.05 in the pancancer dataset, we found an 

interface of TP53 that is both enriched for the presence of rare inherited variants and 

somatic mutations in the TCGA pancancer analysis. This result suggests that a common 

mechanism, that can be acquired through somatic mutations or inherited, is commonly 

altered in TP53 in multiple cancers. However, a bigger sample size is required to better 

detect other possible shared mechanism between somatic mutations and inherited 

variants or to detect entirely novel alterations induced by coding germline 

polymorphisms. 

 

Our results suggest that the study of protein interfaces can be a viable solution to 

prioritize genes and interface to study and, with new protein folding prediction 

technology like Alphafold (203), it maybe will be possible to describe the change in 

structure and to make predictions about the altered molecular mechanisms. 
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Discussion, conclusion and future works 

The study of human germline variants allowed to discover the genetic cause of many rare 

Mendelian disorders and it is now starting to reveal the complex effects of common 

variants on common traits. Despite the progress made many questions are still open. In 

particular, GWAS studies are still unable to explain the estimated heritability of most traits 

and the biological links between GWAS hits and molecular mechanisms are still mostly 

unknown. Since most of GWAS hits are located in non-coding regions, many mechanisms 

have been proposed to explain the effects of those variants to phenotype, such as eQTLs, 

modifications of chromatin loops and allele-specific expression phenomena.  

Also, the missing heritability problem is still one of the main open questions, even with 

constantly growing studies’ sample sizes. Many hypotheses have been formulated to 

explain the missing heritability:  from variant-variant interactions to rare and ultra-rare 

coding variants, effect of copy numbers and more technical reasons like the frequent 

exclusion of the X chromosome from associations studies.  

In this thesis we explored effects and interactions of human germline variants while 

developing new tools and bioinformatics resources. 

 

The first challenge when working with germline variants is the process of variant calling. 

Variant calling is the first step in many genomic data analyses and many subsequent 

results depends on it. Many methods and tools have been developed like the famous 

GATK (204), SNVer (205) or VarScan (206). Those tools provide very precise variant calling 

and variant discovery on NGS dataset however their usefulness is reduced by the amount 

of time required when calling variants of several samples like in huge genomic cohorts or 

biobanks. To improve the execution time of known variants genotyping on large cohortsin 

Chapter 1 we introduced PaCBAM, a new tool for pileup computation and variant 

genotyping. PaCBAM improves the running time and memory usage of pileup 

computation and variant genotyping on whole-exome and targeted sequencing data. The 

tool substantially improves the execution time for known SNPs variant calling in exomes 

and targeted sequencing. PaCBAM  is not suited to detect variants in whole genome 

sequencing data and its current version is not able to characterize INDELs. 
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PaCBAM is a useful resource that can be used to characterize NGS data from large-scale 

sequencing projects like TCGA (207). 

After genotyping, variants data can be exploited in many ways by trying to detect some 

of their possible molecular effects or by finding statistical associations to specific 

phenotypes. 

We started by exploring molecular effects that can be affected by germline variants. In 

particular, we investigated the translational regulation that can be induced by variants 

that can induce the allelic specific expression phenomena where an allele is more 

expressed with respect to the other. This phenomenon has been seen associated to many 

diseases (208) like cancer (209), schizophrenia (210), and Parkinson’s Disease (210). In 

Chapter 2 we introduced the novel concept of tranSNP, a class of SNPs that alter mRNA 

translation potential.. Impact on translational potential was associated with prognostic 

effects in cancer, showing that UTR variants can be linked to cancer progression or 

evolution and can be helpful to stratify patients based on clinical endpoints. Our findings 

are compatible with the hypothesis that allele-specific expression is a possible molecular 

effect of variants on phenotypes and in fact it can alter diseases progression. However, 

given the complexity of the human haplotypes in terms of linkage disequilibrium blocks 

the causal variants are still elusive and may require further investigation to determine the 

altered molecular effects and the causal link to a disease. 

 

After investigating more direct molecular effects of variants, we started to study more 

elusive effects in form of statistical associations with phenotypes. In particular, we 

explored the variant-variant interaction hypothesis trying to investigate if multiple 

variants can have a synergistic effect on phenotypes. This hypothesis has been proved to 

be extremely difficult to test given the enormous sample size required, the computational 

resources needed, and the number of tests and relative corrections required to test every 

possible combination of variant (211). Several tools have been implemented to test 

epistatic interactions. The first technique introduced was multifactor dimensionality 

reduction (212) were the authors implemented a method to project the information of 

multiple genomics loci into a one dimensional space. From multifactor dimensionality 

reduction many other methods evolved based on several techniques like TEAM (213) 

which is based on minimum spanning trees, techniques based on neural networks (214) 
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or the very recent Epi-MEIF based on random forests (215). All those approaches are 

tackling the interaction problem from a statistical point of view but none of them are 

considering the effects that variants can have on traits. To approach the problem from a 

functional point of view in Chapter 3 we introduced Polympact, a new web platform that 

allows the exploration of putative interactions between germline variants. Polympact 

characterizes the putative effects on transcript levels and transcription factor binding 

motifs of over 18 million variants. Polympact, also, introduces new network models that 

allowed us to explore and find novel putative interactions. In particular, we found 

functional relations among pairs of variants in GWAS, suggesting that the effect of 

variants on gene expression is mediated by many independent or cooperative 

interactions. Those effects are in support of the hypothesis that complex variant-variant 

interactions can affect complex traits and they can be a source of a part of the missing 

heritability. However, further investigations are needed to better understand how 

complex epistatic effects can affect traits and diseases. 

 

Finally, in this thesis we analyzed another possible source of missing heritability: rare 

coding variants. The study of rare coding variants has been neglected in the past years 

mainly due to the sample size required to have enough statistical power to perform 

associations studies (216). Now, thanks to biobanks, we were able to explore the effects 

of rare germline variants and somatic mutations by aggregating them based on their 

effect on protein interfaces. 

In Chapter 4 we explored the effects of rare coding germline variants on protein interfaces 

of cancer genes in the UKBioBank dataset. Even if the associations did not reach 

significance after multiple hypothesis correction, we believe our results can be used to 

prioritize the study of specific genes and interfaces that act as drivers in cancer. We 

believe that, thanks to the expansion of the biobanks, a part of the missing heritability 

can probably be explained by the effects of rare coding variants. 

 

Most of the work presented in this thesis is under evolution. We are currently extending 

Polympact to include protein-protein interactions data, extending our notion of 

functional relation not only among variants and single genes but also on complex 

functional modules. We are also extending the models presented in Chapter 2 to identify 
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and validate additional instances of allele-specific expression across different cancer cell 

lines. 

 

It is clear that entering in the post-GWAS era, we should start to shift our studies from 

associations to functional validation, since linking molecular mechanisms to 

polymorphisms can help in the diagnosis, prognosis and treatment of several diseases. 

However, finding mechanistic links have been proved to be tougher than expected. Most 

of the GWAS variants identified are non-coding and their biological effects are difficult to 

detect. eQTLs studies started to clarify the regulatory effects of variants located in non-

coding part of the genome, however the mechanistic biological links are still mostly 

missing. Also, for a complex trait, GWAS may identify many variants affecting many genes, 

so a mechanistic link is probably going to involve complex interaction across gene 

regulatory networks. Currently, GWAS and eQTL studies are analyzing each variant as 

independent since testing for interactions is currently unfeasible due to the sample size 

and statistical testing requirements. However, this approach does not allow to detect 

interactions that can be fundamental in shaping a particular trait. In this thesis we defined 

and implemented novel functional approaches to study possible functional interactions 

between multiple variants and genes. These approaches allowed us to limit our 

hypothesis space, permitting us to detect and explore some putative variant-variant 

interactions.  

 

We believe that this thesis introduced novel notions and ideas to explore mechanistic 

effects of human germline variants and potential functional relations and interactions 

among them. This work produced also technical tools and bioinformatics resources that 

are freely available for the scientific community.  
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