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Abstract

Cold-atom quantum simulators offer unique possibilities to prepare, manipulate, and
probe quantum many-body systems. However, despite the high level of control in mod-
ern experiments, not all observables of interest are easily accessible. This thesis aims
at establishing protocols to measure currently elusive static and dynamic properties of
quantum systems. The experimental feasibility of these schemes is illustrated by means
of numerical simulations for relevant applications in many-body physics and quantum
simulation. In particular, we introduce a general method for measuring dynamical cor-
relations based on non-Hermitian linear response. This enables unbiased tests of the
famous fluctuation–dissipation relation as a probe of thermalization in isolated quan-
tum systems. Furthermore, we develop ancilla-based techniques for the measurement of
currents and current correlations, permitting the characterization of strongly correlated
quantum matter. Another application is geared towards revealing signatures of super-
solidity in spin–orbit-coupled Bose gases by exciting the relevant Goldstone modes. Fi-
nally, we explore a scenario for quantum-simulating post-inflationary reheating dynamics
by parametrically driving a Bose gas into the regime of universal far-from-equilibrium
dynamics. The presented protocols also apply to other analog quantum simulation plat-
forms and thus open up promising applications in the field of quantum science and
technology.





Zusammenfassung

Quantensimulatoren auf Basis ultrakalter Atome eröffnen einzigartige Möglichkeiten
zur Präparation, Manipulation und Untersuchung von Quanten-Vielteilchen-Systemen.
Trotz des hohen Maßes an Kontrolle in modernen Experimenten sind jedoch nicht alle
interessanten Observablen auf einfache Weise zugänglich. Ziel dieser Arbeit ist es, Proto-
kolle zur Messung aktuell nur schwer erfassbarer statischer und dynamischer Eigenschaf-
ten von Quantensystemen zu etablieren. Die experimentelle Realisierbarkeit dieser Ver-
fahren wird durch numerische Simulationen anhand relevanter Anwendungen in der Viel-
teilchenphysik und Quantensimulation veranschaulicht. Insbesondere wird eine allgemei-
ne Methode zur Messung dynamischer Korrelationen basierend auf der linearen Antwort
auf nicht-hermitesche Störungen vorgestellt. Diese ermöglicht unabhängige Tests des be-
rühmten Fluktuations-Dissipations-Theorems als Indikator der Thermalisierung isolier-
ter Quantensysteme. Darüber hinaus werden Verfahren zur Messung von Strömen und
Strom-Korrelationen mittels Kopplung an einen Hilfszustand entwickelt, welche die Cha-
rakterisierung stark korrelierter Quantenmaterie erlauben. Eine weitere Anwendung zielt
auf die Enthüllung spezifischer Merkmale von Supersolidität in Spin-Bahn-gekoppelten
Bose-Einstein-Kondensaten ab, indem die relevanten Goldstone-Moden angeregt werden.
Schließlich wird ein Szenario zur Quantensimulation post-inflationärer Thermalisierungs-
dynamik durch die parametrische Anregung eines Bose-Gases in das Regime universeller
Dynamik fern des Gleichgewichts erschlossen. Die dargestellten Protokolle lassen sich
auch auf andere Plattformen für analoge Quantensimulation übertragen und eröffnen
damit vielversprechende Anwendungen auf dem Gebiet der Quantentechnologie.





Sommario

I simulatori quantistici ad atomi freddi offrono possibilità uniche per preparare, mani-
polare e sondare sistemi quantistici a molti corpi. Tuttavia, nonostante l’alto livello di
controllo raggiunto negli esperimenti moderni, non tutte le osservabili di interesse sono
facilmente accessibili. Lo scopo di questa tesi è quello di stabilire protocolli per misurare
delle proprietà statiche e dinamiche dei sistemi quantistici attualmente inaccessibili. La
fattibilità sperimentale di questi schemi è illustrata mediante simulazioni numeriche per
applicazioni rilevanti nella fisica a molti corpi e nella simulazione quantistica. In partico-
lare, introduciamo un metodo generale per misurare le correlazioni dinamiche basato su
una risposta lineare non hermitiana. Ciò consente test imparziali della famosa relazio-
ne fluttuazione-dissipazione come sonda di termalizzazione in sistemi quantistici isolati.
Inoltre, sviluppiamo tecniche basate su ancilla per la misura di correnti e correlazioni di
corrente, consentendo la caratterizzazione della materia quantistica fortemente correla-
ta. Un’altra applicazione è orientata a rivelare l’impronta della supersolidità nei gas Bose
con accoppiamento spin-orbita eccitando il corrispondente modo di Goldstone. Infine,
esploriamo uno scenario per la simulazione quantistica della dinamica di riscaldamento
post-inflazione modulando parametricamente un gas Bose e portandolo nel regime del-
la dinamica universale lontana dall’equilibrio. I protocolli presentati si applicano anche
ad altre piattaforme di simulazione quantistica analogica e aprono quindi applicazioni
promettenti nel campo della scienza e della tecnologia quantistica.
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Introduction

The success of quantum theory has not only revolutionized our view of the world, but
it has also enabled major technological breakthroughs. Nowadays, considerable research
efforts are geared towards what can arguably be regarded as the holy grail of quantum
science and technology: the quantum computer. The vision is to harness and control
the peculiar properties of quantum systems like superpositions and entanglement in
order to solve real-world problems that are intractable on even the fastest classical com-
puters [3]. Despite major technological and conceptual breakthroughs as well as huge
investments of financial and intellectual resources, the development of a scalable and
error-corrected digital quantum computing architecture remains a long-term endeavor.
However, present-day quantum devices, e.g., based on cold atoms, trapped ions, or su-
perconducting qubits, enable another application that promises a quantum advantage:
quantum simulation. Simulating quantum many-body systems is an inherently difficult
task due to the exponential growth of the quantum mechanical state space. Already
systems of moderate sizes easily exceed both the memory resources and compute ca-
pabilities of modern supercomputers1, such that the simulation of large-scale systems
is completely out of reach on any classical machine. A seminal proposal by R. Feyn-
man in 1982 points towards a possible way out [5]: the idea is to simulate a quantum
system using a device which itself is governed by the rules of quantum mechanics, a
so-called quantum simulator. Such quantum simulators are special-purpose devices that
are designed to simulate a special class of target models, often in an analog (as opposed
to digital) way. They should allow for easy and reproducible state preparation, pre-
cise control to adjust model parameters and manipulate the quantum state, as well as
comprehensive readout of the observables of interest [6]. Remarkably, quantum devices
currently available in many laboratories across the world have matured to a level where
non-trivial applications for quantum simulation purposes are in reach. While system
sizes of most setups to date are still moderate such that benchmarks with traditional
numerical methods are possible (and actually needed to make quantum simulators re-
liable [6]), already the next generation of experiments promises to outperform classical
simulation techniques.

The platform of ultracold quantum gases has undergone an explosive development
within the last few decades. This boom was mainly triggered by the first experimen-
tal realization of Bose–Einstein condensation in 1995 [7, 8] — seven decades after the
phenomenon had been theoretically predicted by Einstein based on the work of Bose in

1One of the world’s fastest supercomputers as of 2022 is Fujitsu Fugaku in Kobe, Japan [4]. It permits
petascale supercomputing and is equipped with 4.85 PiB of memory. To represent a pure quantum
state of 𝑁 qubits, storage of 2𝑁 complex amplitudes is required. Assuming that each amplitude is
stored in double precision, the memory of Fugaku is exhausted by storing the state of just 48 qubits.

1



1925 [9, 10]. This milestone culminated in the award of the Nobel Prize in Physics 2001
jointly to E. A. Cornell, W. Ketterle, and C. E. Wieman. While much of the early work
on ultracold quantum gases concerned the regime of weak interactions, groundbreaking
theoretical proposals [11] and experimental advances in the control of cold atoms in
optical lattices [12] have paved the road to cold-atom-based quantum simulation of even
strongly correlated systems [13–16]. Such optical-lattice setups represent close-to-ideal
realizations of many tight-binding models relevant in condensed matter physics like the
Hubbard model, which is believed to describe high-temperature superconductivity of
cuprates [17]. In contrast to solid state systems, interactions between atoms in optical
lattices can be controlled almost at will, offering unprecedented possibilities for studying
the physics of strongly correlated materials. A more recent technological breakthrough
has been achieved with the invention of the quantum gas microscope, which allows for the
preparation, manipulation, and read-out of atoms in optical lattices at both single-site
and single-particle resolution [18, 19]. Cold-atom quantum simulators therefore literally
provide insights into target systems that are hard or impossible to access by any other
means. One should keep in mind, though, that quantum simulators do not replicate the
actual target system (e.g., a solid) in miniature, but they simulate an idealized model
describing the target system. In the words of Galitski and Spielman: “[t]o study mate-
rial systems, theorists create ‘spherical-cow’ models of real materials, while in cold atom
physics experimentalists actually make spherical cows” [20].

Despite the impressive capabilities of present-day analog quantum simulators to en-
gineer and control a given target model, readout of the desired observables can often
be challenging — be it for technical reasons like limited resolution of an imaging sys-
tem, the lack of appropriate measurement schemes, or fundamental restrictions posed
by the laws of quantum mechanics. The ability to accurately probe a quantum state is
viable, for instance, to verify successful state preparation or to disclose novel physics. At
the heart of this thesis lies the development of protocols capable of revealing currently
inaccessible properties of quantum many-body systems. To demonstrate that the pro-
posed protocols may indeed be executed in state-of-the-art experiments under realistic
conditions, we present thorough numerical benchmark simulations and discuss possible
experimental error sources. In addition, we illustrate relevant applications that showcase
the enormous versatility of the cold-atom quantum simulation platform. In what follows,
we introduce the specific problems and applications to be addressed in the course of this
thesis.

Following the introduction of the basic theoretical tools and model systems in Chap-
ter 1, we turn our attention in Chapter 2 to the problem of measuring dynamical correla-
tions involving observables at unequal times. In classical systems, such correlations can
simply be obtained by measuring the observables of interest at different times and corre-
lating the outcomes. By contrast, the analogous procedure in quantum systems does not
yield the desired result due to the collapse of the wave function: a measurement at one
instance of time collapses the quantum state, hindering a second measurement at a later
time with respect to the original unperturbed state. Nonetheless, Kubo’s celebrated
linear response theory provides a general way to access the anti-symmetrized two-time
correlation function of two observables (unequal-time commutator) by probing the sys-
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tem’s response to a weak perturbation [21]. While this quantity is a standard observable
in many experiments, a measurement of the symmetrized two-time correlation function
(unequal-time anti-commutator) is unfortunately much harder and has to date never
been achieved experimentally. In Chapter 2, we develop concrete experimental schemes
for measuring this quantity based on a recently proposed extension of linear response
theory to non-Hermitian perturbations [22, 23]. The idea is to weakly couple the system
to an ancillary state, followed by a post-selected measurement on the condition that no
particles occupy the ancilla. The leakage of probability to a complementary state space
involved in this procedure effectively corresponds to a non-Hermitian perturbation. We
illustrate the scheme through numerical benchmark simulations and discuss perspectives
for an experimental realization in Rydberg quantum simulators.

Among the numerous applications of dynamical correlations, the famous fluctuation–
dissipation relation (FDR) plays a groundbreaking role [21]. In thermal equilibrium, it
connects intrinsic fluctuations of an observable at a certain frequency to the energy dis-
sipated when the system is perturbed at that same frequency. Testing the validity of the
FDR therefore provides an excellent probe for thermalization in isolated quantum sys-
tems [24]. While the dissipation side of the FDR is determined by the unequal-time com-
mutator and can be measured using standard linear response, the non-Hermitian linear
scheme described above enables an independent measurement of the elusive fluctuation
side, corresponding to the unequal-time anti-commutator. Motivated by a groundbreak-
ing cold-atom experiment [25], we demonstrate through numerical simulations how such
an unbiased measurement of both sides of the FDR allows one to track the evolution of
a Bose–Hubbard system from a non-equilibrium initial state to one that locally appears
thermal. This analysis represents a blueprint for experimentally studying whether and
how isolated quantum systems thermalize — or fail to do so [26–31].

In Chapter 3, we devise a handle on another quantity that is hard to access directly in
analog quantum simulators: the current operator. In the simulated solid state system,
currents are comparatively easy to measure by connecting wires to the sample, while in
the simulating cold-atom system, the same procedure is impossible since high vacuum
conditions must be maintained. The standard way of measuring currents in cold-atom
systems is to monitor the time evolution of the density and infer the current indirectly
by invoking the equation of continuity. By contrast, possibilities to directly access the
current operator are sparse. The basic approach pursued in Chapter 3 to enable a direct
measurement of the current between two sites in an optical lattice involves coupling
both sites to an ancilla, e.g., an auxiliary lattice site. The key is to choose the phases
of the coupling appropriately such that the change of the ancilla population becomes
sensitive to the desired current. The measurement can be conducted in a non-invasive
way, which leaves the quantum state of the target system largely intact, or in a projective
way, which achieves a higher signal-to-noise ratio. We discuss several extensions of the
scheme to more general observables like current correlations, which can be used, for
example, to characterize strongly correlated phases of matter. We illustrate the technique
through numerical benchmark simulations for chiral currents of interacting bosons on a
Harper–Hofstadter optical-lattice ladder as well as for loop current correlations revealing
chiral phases of frustrated hard-core bosons on a spatially anisotropic triangular lattice.
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The scheme poses experimental requirements that are readily fulfilled in state-of-the-art
setups and can flexibly be extended to other platforms, as we discuss for trapped ions.

Chapter 4 is devoted to the study of the intriguing phenomenon of supersolidity [32–
34]. A supersolid combines the properties of a superfluid with that of a solid body. The
former is characterized by a spontaneous breaking of gauge symmetry, resulting in typ-
ical superfluid properties like frictionless flows of particles and global phase coherence.
The latter exhibits spontaneously broken translational invariance, leading to the crys-
talline structure of solids. Whether this exotic state of matter can actually exist has been
long debated, but experiments to demonstrate superfluid properties of solid helium have
remained inconclusive [35, 36]. The quest for supersolidity has regained new momen-
tum with the realization of configurations exhibiting typical supersolid features on the
platform of ultracold quantum gases. Candidates for supersolids have been realized in
Bose–Einstein condensates inside optical resonators [37], spin–orbit-coupled systems [38,
39], as well as dipolar quantum gases [40–42]. In Chapter 4, we explore how supersolid
features can be revealed in spin–orbit-coupled Bose–Einstein condensates, where super-
solitiy becomes manifest in the form of stripes in the density profile. In this setup, the
challenge is to certify the solid character of the system, i.e., the periodic modulation of
the density, rather than the superfluid properties, which arise from Bose–Einstein con-
densation. The most straightforward approach of verifying the existence of the stripes
through direct imaging turns out to be impracticable using standard optical techniques
since the distance between the stripes is on the order of the wavelength of the optical
imaging light. The approach pursued in Chapter 4 is therefore to devise dynamical
probes of supersolidity. According to Goldstone’s theorem [43–45], the spontaneously
broken translational invariance in the supersolid phase implies the existence of a gapless
excitation, which in uniform matter corresponds to a translational motion of the stripes.
Since this motion costs zero energy in absence of external potentials, we will refer to
this crystal Goldstone mode also as the “zero-frequency” Goldstone mode. Exciting this
motion and probing its dynamical signatures provides a clear indicator for the supersolid
phase, but has so far not been achieved in spin–orbit-coupled systems. We show that
in experimentally relevant configurations, including quantum mixtures with symmetric
and asymmetric intraspecies interactions, the zero-frequency Goldstone mode can be
excited by applying a uniform spin perturbation, and point out accessible static and
dynamic probes for its existence. Furthermore, we show that the breathing oscillation
in harmonically trapped systems dramatically changes its character once the transition
to the supersolid phase is crossed: above the transition, a single mode of hybridized
density and spin nature is excited, while in the supersolid phase, a beating of two fre-
quencies indicates the appearance of an additional Goldstone spin-dipole mode. Thus, a
measurement of this beating effect provides another hallmark of supersolidity, while the
spin nature of the emergent mode illustrates the crucial interplay of density and spin
degrees of freedom in spin–orbit-coupled configurations, which enriches the phenomenon
of supersolidity.

In addition to the quantum simulation of strongly correlated materials in optical lat-
tices, quantum gases in continuum can act, for example, as simulators of quantum field
theories [46, 47] or analog models of gravity [48], promising valuable insights even in
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the weakly interacting regime. The prospering field of analog gravity aims at modeling
aspects of general relativity in non-relativistic systems. Implementations of such models
in quantum simulators not only make otherwise inaccessible physics of curved spacetime
available for studies in table-top experiments, but additionally have the potential to elu-
cidate the role of quantum effects for the phenomenon of interest. In Chapter 5, we tap
into this development and design a scenario for quantum-simulating post-inflationary
reheating dynamics in the early universe. The theory of cosmological inflation states
that the early universe went through a phase of exponential expansion, which in typical
models is driven by a scalar field known as the inflaton [49]. At the end of inflation,
the universe was in a super-cooled state with practically all energy stored in the ho-
mogeneous mode of the inflaton field. The following process of cosmological reheating
involves the decay of the inflaton into more familiar forms of matter, e.g., standard model
particles, which undergo thermalization [50]. We mimic this reheating process in a para-
metrically excited Bose gas, where the condensate plays the role of the inflaton field and
excitations on top of it are identified with particles produced by the decaying inflaton.
As we demonstrate through classical–statistical simulations, the system undergoes the
characteristic stages of far-from-equilibrium reheating, including a so-called preheating
phase of explosive particle production as well as the subsequent stage of turbulent ther-
malization, characterized by a direct cascade transporting energy in a self-similar way
towards higher momenta [51]. The dynamics in the turbulent regime is governed by a
non-thermal fixed point, which determines the far-from-equilibrium behavior of an en-
tire universality class [52]. Owing to universality, physical systems at vastly different
energy scales, such as ultracold quantum gases in the laboratory, the inflaton in the early
universe, or the quark-gluon plasma explored in heavy-ion collisions, can behave quan-
titatively the same [51, 53–55]. Exploring the dynamics of the Bose gas in the outlined
setting can therefore provide relevant insights far beyond the cosmological application.
In particular, the outlined “analog reheating” scenario exhibits a prescaling regime of
partial universality [55, 56] and may thus pave the road to an experimental observation
of this phenomenon.

All methods introduced in this thesis have been designed with the capabilities and
limitations of presently available quantum hardware in mind. Major efforts have been
invested into numerical simulations to demonstrate that the protocols may indeed be
executed under realistic conditions. The proposed techniques, scenarios, and applications
are therefore intended to stimulate experimental research to disclose so far unobserved
physics in synthetic quantum systems.
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1. Theoretical Background

In this chapter, we summarize the theoretical background that this thesis build upon.
We first outline the basic physics underlying cold-atom quantum simulators, with a focus
on bosonic systems. We start by reviewing the theoretical description of ultracold Bose
gases in continuum, which we will use in Chapter 5 to simulate cosmological reheating
dynamics. The concepts introduced below also form the basis of our investigations into
the phenomenon of supersolidity in Chapter 5, while the relevant model systems, spin–
orbit coupled mixtures of Bose gases, will be introduced at the beginning of that chapter.
Following the overview on the physics ultracold Bose gases in continuum, we turn to cold
atoms in optical lattices and introduce the Bose–Hubbard model, which will be in the
center of our applications in Chapters 2 and 3. Then, we review elements of linear
response theory, which will accompany us through large parts of the thesis.

1.1. Theory of Ultracold Bose Gases

The theory of ultracold Bose gases is discussed comprehensively in Ref. [57], based on
which we summarize below the essential aspects that will turn out to be useful in the
course of this thesis.

An ultracold Bose gas is described by a complex field operator ̂𝛹 (𝒙) that satisfies the
canonical commutation relations

[ ̂𝛹(𝒙), ̂𝛹(𝒚)] = [ ̂𝛹†(𝒙), ̂𝛹†(𝒚)] = 0 , (1.1a)

[ ̂𝛹(𝒙), ̂𝛹†(𝒚)] = 𝛿(𝒙 − 𝒚) , (1.1b)

where 𝛿(𝒙−𝒚) is the Dirac delta function. Within the formalism of second quantization,
the field operator ̂𝛹 (𝒙) and its Hermitian adjoint ̂𝛹†(𝒙) can be interpreted as annihilating
and creating a boson at position 𝒙, respectively. The dynamics is governed by the
Hamiltonian

𝐻̂ = ∫ d𝒙 ̂𝛹†(𝒙)[−ℏ2∇2

2𝑚 + 𝑉ext(𝒙)] ̂𝛹(𝒙) + 1
2 ∫ d𝒙 d𝒚 ̂𝛹†(𝒙) ̂𝛹†(𝒚)𝒱(𝒙, 𝒚) ̂𝛹(𝒙) ̂𝛹(𝒚) ,

(1.2)
where ℏ is the reduced Planck constant and 𝑚 the atomic mass. The first term represents
the kinetic and potential energy of free particles in an external trapping potential 𝑉ext(𝒙),
while the second term describes interactions between particles, mediated by the two-body
interaction potential 𝒱(𝒙, 𝒚). Throughout, we focus on the regime of weakly interacting
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Bose gases where the latter can be replaced by an effective contact potential1,

𝒱eff(𝒙, 𝒚) = 𝑔𝛿(𝒙 − 𝒚) , (1.3)
whose interaction strength

𝑔 = 4𝜋ℏ2𝑎𝑠
𝑚 (1.4)

is characterized by a single parameter: the 𝑠-wave scattering length 𝑎𝑠. This quantity
can not only be measured in experiments, but it is even possible to tune the scattering
length, e.g., by means of Feshbach resonances [58], available in many atomic species.
The sign of the scattering length determines the character of the interactions: 𝑎𝑠 > 0
(𝑎𝑠 < 0) describes repulsive (attractive) interactions. Numerous experiments have con-
firmed that the Hamiltonian (1.2) with the effective contact interaction in Eq. (1.3)
provides an excellent microscopic description as long as the system is sufficiently dilute.
The diluteness condition can be quantified by requiring the smallness of the diluteness
parameter 𝜂 = √𝑛𝑎3𝑠, where 𝑛 represents a typical particle density.

The Hamiltonian (1.2) is invariant under a global 𝑈(1) phase transformation of the
field operator as ̂𝛹 (𝒙) → e𝑖𝜃 ̂𝛹 (𝒙). This symmetry transformation is generated by the
operator ̂𝑈(𝜃) = exp(𝑖 ̂𝑁𝜃), where

̂𝑁 = ∫ d𝒙 ̂𝛹†(𝒙) ̂𝛹(𝒙) (1.5)

is the total particle number operator. The total particle number 𝑁 is a conserved
quantity since the operator ̂𝑁 commutes with the Hamiltonian, [ ̂𝑁, 𝐻̂] = 0. As described
below, Bose–Einstein condensation spontaneously breaks 𝑈(1) symmetry.

In the Heisenberg picture, the time evolution of the field operator ̂𝛹 (𝒙, 𝑡) is governed
by the Heisenberg equations of motion

𝑖ℏ 𝜕
𝜕𝑡

̂𝛹(𝒙, 𝑡) = [ ̂𝛹(𝒙, 𝑡), 𝐻̂] = [− ℏ2

2𝑚∇2 + 𝑉ext(𝒙) + 𝑔 ̂𝛹†(𝒙, 𝑡) ̂𝛹(𝒙, 𝑡)] ̂𝛹(𝒙, 𝑡) . (1.6)

Bose–Einstein Condensation

Bose–Einstein condensation, as predicted by Einstein in 1925 [10] based on the statistics
of photons conceived by Bose [9], describes the phenomenon where a macroscopic frac-
tion of the particles in a system occupies the state of lowest energy. While Einstein’s
argumentation is based on purely statistical properties of the ideal Bose gas, the modern
definition of Bose–Einstein condensation, which also applies to interacting particles, is
based on the existence of off-diagonal long-range order, known as the Penrose–Onsager
criterion [59].

To formulate this concept, we introduce the so-called single-particle (or one-body)
density matrix

𝑛(1)(𝒙, 𝒚) = ⟨ ̂𝛹†(𝒙) ̂𝛹(𝒚)⟩ , (1.7)
1The expression (1.4) for the interaction constant holds in three spatial dimensions. Effective interac-

tions in low-dimensional systems are discussed below.

8



where ⟨⋯⟩ denotes the quantum expectation value. This quantity is normalized to the
total number of particles 𝑁 = ∫ d𝒙 𝑛(1)(𝒙, 𝒙).

Furthermore, we define the single-particle momentum distribution

𝑓(𝒑) = 1
𝑉 ⟨ ̂𝛹†(𝒑) ̂𝛹(𝒑)⟩ , (1.8)

where 𝑉 is the volume and ̂𝛹 (𝒑) = ∫ d𝒙 ̂𝛹(𝒙)e−𝑖𝒑𝒙/ℏ is the Fourier transform of the
field operator ̂𝛹 (𝒙). The normalization is given by 𝑁 = 𝑉 (2𝜋ℏ)−𝑑 ∫ d𝒑 𝑓(𝒑), where 𝑑 is
the number of spatial dimensions. The momentum distribution is closely related to the
single-particle density matrix via

𝑓(𝒑) = 1
𝑉 ∫ d𝑹 d𝒓 𝑛(1)(𝑹 + 𝒓

2, 𝑹 − 𝒓
2)e−𝑖𝒑𝒓/ℏ , (1.9)

where 𝑹 = (𝒙 + 𝒚)/2 and 𝒓 = 𝒙 − 𝒚 are the central and relative spatial coordinates,
respectively. This relations shows that 𝑓(𝒑), which can be accessed experimentally in
time-of-flight measurements [60], probes spatial correlations in the system.

The single-particle density matrix can be written in diagonal form as

𝑛(1)(𝒙, 𝒚) = ∑
𝑖

𝑁𝑖𝜑∗
𝑖(𝒙)𝜑𝑖(𝒚) , (1.10)

where {𝜑𝑖(𝒙)} is an orthonormal and complete set of single-particle eigenfunctions with
corresponding eigenvalues {𝑁𝑖}, ∑𝑖 𝑁𝑖 = 𝑁 , obtained as solutions to the eigenvalue
equation ∫ d𝒚 𝑛(1)(𝒙, 𝒚)𝜑𝑖(𝒚) = 𝑁𝑖𝜑𝑖(𝒙). A system is said to exhibit off-diagonal long-
range order if the single-particle density matrix takes a finite value for |𝒙 − 𝒚| → ∞ in
the thermodynamic limit (𝑁, 𝑉 → ∞). According to the Penrose–Onsager criterion [59],
Bose–Einstein condensation occurs if and only if there is a macroscopically occupied
mode, taken here as 𝑖 = 0, such that the eigenvalue 𝑁0 of the single-particle density
matrix scales with the total number of particles 𝑁 . A Bose–Einstein-condensed system
thus exhibits off-diagonal long-range order as 𝑛(1)(𝒙, 𝒚) → 𝑛0 for |𝒙 − 𝒚| → ∞, where
𝑛0 = 𝑁0/𝑉 is the condensate density.

It should be noted that, according to the famous Mermin–Wagner–Hohenberg the-
orem [61, 62], long-range order (and thus a true condensate) cannot exist in less than
three spatial dimensions at finite temperatures. Nonetheless, so-called quasi-condensates
(condensates with fluctuating phase) can be realized in low-dimensional settings through
tight trapping potentials [63–65] (see discussion below).

1.1.1. Gross–Pitaevskii Theory of Bose–Einstein Condensates
It is instructive to expand the bosonic field operator ̂𝛹 (𝒙) in the diagonal basis {𝜑𝑖(𝒙)}
of the single-particle density matrix in Eq. (1.10) as ̂𝛹 (𝒙) = ∑𝑖 𝜑𝑖(𝒙) ̂𝑎𝑖, where the oper-
ators ̂𝑎𝑖 ( ̂𝑎†

𝑖 ) annihilate (create) a particle in the mode 𝑖. In the Bose–Einstein-condensed
phase, the condensate mode 𝑖 = 0 is macroscopically occupied, 𝑁0 = ⟨𝑎†

0𝑎0⟩ ≫ 1,
such that one can use the Bogoliubov approximation and make the replacement ̂𝑎0 →
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√𝑁0. This is equivalent to treating the condensate mode as a classical field 𝛹0(𝒙) =
√𝑁0𝜑0(𝒙), often referred to as the condensate wave function, corresponding to a de-
composition of the field operator as

̂𝛹 (𝒙) = 𝛹0(𝒙) + 𝛿 ̂𝛹(𝒙) (1.11)
with 𝛿 ̂𝛹(𝒙) = ∑𝑖≠0 𝜑𝑖(𝒙) ̂𝑎𝑖. The classical field 𝛹0(𝒙) = √𝑁0𝜑0(𝒙) plays the role of
the order parameter for the Bose–Einstein-condensed phase, which takes a non-zero
value below the critical temperature 𝑇c for Bose–Einstein condensation. Being a com-
plex quantity, the order parameter can be written in density–phase representation as
𝛹0 = √𝑛0e𝑖𝜃0 . This shows that the 𝑈(1) phase symmetry of the Hamiltonian (1.2) is
spontaneously broken, which leads to a gapless excitation spectrum [see Eq. (1.38)], as
required by Goldstone’s theorem [43–45].

If the depletion of the condensate, i.e., the number of non-condensate atoms 𝑁 − 𝑁0,
is sufficiently small, it is permissible to neglect quantum fluctuations described by the
term 𝛿 ̂𝛹(𝒙) in Eq. (1.11). While the thermal depletion vanishes at zero temperature,
interactions lead to a quantum depletion of the condensate that persists even at 𝑇 = 0.
However, the quantum depletion is often small under realistic experimental conditions,
such that the system is well described by a classical field 𝛹(𝒙) ≡ 𝛹0(𝒙) within Gross–
Pitaevskii theory [57].

Inserting Eq. (1.11) into the Hamiltonian (1.2) and neglecting all quantum fluctua-
tions, we obtain the Gross–Pitaevskii energy functional

𝐸 = ∫ d𝒙 {𝛹 ∗(𝒙)[−ℏ2∇2

2𝑚 + 𝑉ext(𝒙)]𝛹(𝒙) + 𝑔
2|𝛹(𝒙)|4} . (1.12)

The equations of motion for the time-dependent field 𝛹(𝒙, 𝑡) can be derived by im-
posing the stationarity condition 𝛿𝑆 = 0 on action

𝑆 = ∫ d𝑡 𝐸 − 𝑖ℏ ∫ d𝑡 d𝒙 𝛹 ∗𝜕𝑡𝛹 . (1.13)

This yields the famous Gross–Pitaevskii equation (GPE)

𝑖ℏ 𝜕
𝜕𝑡𝛹(𝒙, 𝑡) = [−ℏ2∇2

2𝑚 + 𝑉ext(𝒙) + 𝑔|𝛹(𝒙, 𝑡)|2]𝛹(𝒙, 𝑡) , (1.14)

which can also formally be obtained as the classical equation of motion after replacing the
Bose field operator in Eq. (1.6) by its expectation value, ̂𝛹 (𝒙, 𝑡) → 𝛹(𝒙, 𝑡) ≡ ⟨ ̂𝛹(𝒙, 𝑡)⟩.

Hydrodynamic Formulation and Superfluidity

By adopting the Madelung representation, 𝛹(𝒙, 𝑡) = √𝑛(𝒙, 𝑡)e𝑖𝜃(𝒙,𝑡), the GPE can be
expressed in form of hydrodynamic equations for the density 𝑛(𝒙, 𝑡) = |𝛹(𝒙, 𝑡)|2 and the
phase 𝜃(𝒙, 𝑡) = arg 𝛹(𝒙, 𝑡) of the condensate [57],

𝜕
𝜕𝑡𝑛 = − ℏ

𝑚∇(𝑛∇𝜃) , (1.15a)

ℏ 𝜕
𝜕𝑡𝜃 = −𝑔𝑛 + ℏ2

2𝑚[∇2√𝑛√𝑛 − (∇𝜃)2] . (1.15b)
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The equation for the density (1.15a) can be rewritten as a continuity equation,

𝜕
𝜕𝑡𝑛 + ∇𝒋 = 0 , (1.16)

with the current density

𝒋(𝒙, 𝑡) = − 𝑖ℏ
2𝑚(𝛹 ∗∇𝛹 − 𝛹∇𝛹 ∗) = 𝑛(𝒙, 𝑡) ℏ

𝑚∇𝜃(𝒙, 𝑡) . (1.17)

This suggests identifying the gradient of the phase with the superfluid velocity

𝒗(𝒙, 𝑡) = ℏ
𝑚∇𝜃(𝒙, 𝑡) . (1.18)

With this definition, Eq. (1.15b) takes a form reminiscent of the Euler equation in
hydrodynamics,

𝑚 𝜕
𝜕𝑡𝒗 + ∇(1

2𝑚𝒗2 + 𝑉ext + 𝑔𝑛 − ℏ2

2𝑚√𝑛∇2√𝑛) = 0 , (1.19)

where the last term is known as the “quantum pressure” term. Being a pure gradient
field, 𝒗(𝒙, 𝑡) is irrotational, i.e., ∇ × 𝒗 = 0. This condition can only be violated where
the density vanishes, giving rise to quantized vortices, a hallmark of superfluids.

Superfluidity. Superfluidity is the property of a fluid to flow entirely without inner
friction, i.e., with zero viscosity. According to the Landau criterion for superfluidity,
such a dissipationless flow can exists if the fluid velocity 𝑣 is below the Landau critical
velocity 𝑣s, given by [57]

𝑣s = min
𝒑

𝜖(𝒑)
|𝒑| , (1.20)

where 𝜖(𝒑) denotes the energy of elementary excitations. In a weakly interacting Bose
gas, where 𝜖(𝒑) is given by the Bogoliubov dispersion relation (1.38), the critical veloc-
ity corresponds to the speed of sound, 𝑣s = 𝑐s = √𝑛0𝑔/𝑚. It should be noted that,
though closely related, Bose–Einstein condensation and superfluidity are not the same
phenomenon (for example, the ideal Bose gas can condense, but is not superfluid). Ac-
cording to two-fluid hydrodynamics [57], one can think of the density 𝜌 of a fluid as
consisting of a normal component 𝜌n and a superfluid component 𝜌s, the latter giving
rise to superfluid properties like frictionless flows. However, the superfluid density 𝜌s
can in general not be identified with the condensate density 𝑛0 (for example, in a weakly
interacting Bose gas at 𝑇 = 0, 𝜌s/𝜌 = 1, while 𝑛0/𝑛 < 1 due to quantum depletion).

Ground State of the Condensate

The ground state wave function of a Bose–Einstein condensate can be written as 𝛹(𝒙, 𝑡) =
𝛹0(𝒙)e−𝑖𝜇𝑡/ℏ, where the time evolution corresponds to a pure phase rotation determined
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by the chemical potential 𝜇 = 𝜕𝐸/𝜕𝑁 . With this ansatz, the GPE (1.14) reduces to its
time-independent form

[−ℏ2∇2

2𝑚 + 𝑉ext(𝒙) + 𝑔|𝛹0(𝒙, 𝑡)|2]𝛹0(𝒙) = 𝜇𝛹0(𝒙) . (1.21)

In uniform matter [𝑉ext(𝒙) = 0], the chemical potential is simply given by 𝜇 = 𝑛0𝑔,
where 𝑛0 = |𝛹0|2 = 𝑁/𝑉 is the uniform particle density. In general, the ground state
minimizing the energy functional (1.12) must be calculated numerically, e.g., by means
of imaginary time evolution [66] or non-linear conjugate gradient methods [67]. The
chemical potential is then obtained from Eq. (1.21) as 𝜇 = 𝐸 + ∫ d𝒙 𝑔𝑛2

0(𝒙)/2.
In presence of a harmonic trap,

𝑉ext(𝒙) = 1
2𝑚(𝜔2

𝑥𝑥2 + 𝜔2
𝑦𝑦2 + 𝜔2

𝑧𝑧2) , (1.22)

where 𝜔𝑖 are the trapping frequencies, an accurate estimate of the ground state density
profile 𝑛0(𝒙) can be obtained using the Thomas–Fermi approximation, which consists
in neglecting the kinetic term in Eq. (1.21). This approximation is justified for repulsive
interactions (𝑔 > 0) if the number of particles is sufficiently large, such that the ground
state density profile varies only slowly in space. By solving Eq. (1.21) for the density,
one obtains the Thomas–Fermi density profile

𝑛TF(𝒙) = 1
𝑔 [𝜇TF − 𝑉 (𝒙)] , (1.23)

where the value of the chemical potential 𝜇TF is fixed by the normalization 𝑁 =
∫ d𝒙 𝑛TF(𝒙). Evaluating this integral in 𝑑 spatial dimensions, one obtains

𝜇TF = ℏ𝜔̄
2 [𝑑 + 2

𝛺𝑑
𝑁 𝑔

ℏ𝜔̄ ̄𝑎𝑑 ]
2/(𝑑+2)

, (1.24)

where 𝜔̄ = (∏𝑖 𝜔𝑖)1/𝑑 is the geometric mean of the trapping frequencies, ̄𝑎 = √ℏ/𝑚𝜔̄ is
the corresponding harmonic oscillator length, and 𝛺𝑑 = 𝜋𝑑/2/𝛤(𝑑/2 + 1) is the volume
of the 𝑑-dimensional unit sphere [𝛤(𝑥) is the gamma function]. The boundary of the
Thomas–Fermi ellipsoid is given by the condition 𝑛TF(𝒙) = 0, i.e., 𝑉 (𝒙) = 𝜇TF, which
yields 𝑅2

𝑖 = 2𝜇TF/𝑚𝜔2
𝑖 for the length of the semi-axis in direction 𝑖 = 𝑥, 𝑦, 𝑧. It is

convenient to define the Thomas–Fermi radius as the geometric mean of the semi-axes,
𝑅TF = (∏𝑖 𝑅𝑖)1/𝑑. For 𝑑 = 3, using Eq. (1.4), we recover the well-known expressions

𝜇TF = ℏ𝜔
2 (15𝑁 𝑎𝑠

̄𝑎 )
2/5

, (1.25)

𝑅TF = ̄𝑎(15𝑁 𝑎𝑠
̄𝑎 )

1/5
. (1.26)
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Low-Dimensional Systems

Most of the discussion so far applies to systems in an arbitrary number of spatial dimen-
sions 𝑑. However, since the Mermin–Wagner–Hohenberg theorem rules out the existence
of a true condensate for 𝑑 < 3 in spatially homogeneous systems at finite tempera-
tures [61, 62], low-dimensional settings require further discussions. Experimentally, an
effective reduction of dimensionality can be achieved by a tight harmonic confinement
of a three-dimensional (3D) condensate, which can “freeze” the motion of the gas along
one axis (pancake or disk geometry) or two axes (cigar geometry) up to zero-point
motion. Below the critical temperature, such quasi-two-dimensional (2D) or quasi-one-
dimensional (1D) systems enter a so-called quasi-condensate regime, where density fluc-
tuations are suppressed, but phase fluctuations are still present. At sufficiently low
temperatures, the quasi-condensate gradually turns to a true condensate through the
build-up of phase coherence [63–65].

As will become relevant later in this thesis, we briefly outline the setup for realizing
quasi-2D systems [60]. To this end, we consider an axial harmonic trapping potential
𝑉 (𝑧) = 𝑚𝜔2

𝑧𝑧2/2. In order to effectively freeze the motion along the 𝑧 axis, the energy
scale ℏ𝜔𝑧 set by the axial confinement should be large compared to all other relevant
energy scales in the system, in particular, compared to the thermal energy 𝑘B𝑇 as well
as the typical interaction energy 𝜇 = 𝑛𝑔. The quasi-2D criterion can equivalently be
phrased in terms of characteristic length scales, involving the harmonic oscillator length
in 𝑧 direction 𝑎𝑧 = √ℏ/𝑚𝜔𝑧, the thermal de Broglie wavelength 𝜆𝑇 = ℏ/√2𝜋𝑚𝑘B𝑇 ,
and the so-called healing length of the condensate

𝜉 = ℏ√2𝑚𝑛𝑔 . (1.27)

The healing length is defined by matching the kinetic energy ℏ2𝜉−2/2𝑚 with the typical
interaction energy 𝑛𝑔 and sets the characteristic length scale over which the condensate
“heals” from local defects like vortices. The quasi-2D condition 𝑘B𝑇 , 𝑛𝑔 ≪ ℏ𝜔𝑧 is thus
equivalent to demanding 𝑎𝑧 ≪ 𝜆𝑇 , 𝜉.

An effective two-dimensional description of the system can be obtained by making the
ansatz

𝛹(𝒙, 𝑡) = 𝛹(𝑥, 𝑦, 𝑡)𝜙(𝑧)e−𝑖𝜇𝑧𝑡/ℏ . (1.28)

Deep in the quasi-2D regime, the axial wave function is close to the harmonic oscillator
ground state, 𝜙(𝑧) = 𝜋−1/4𝑎−1/2

𝑧 e−𝑧2/2𝑎2
𝑧 , and the axial chemical potential is given by

the ground state energy 𝜇𝑧 = ℏ𝜔𝑧/2. Inserting the ansatz (1.28) in the GPE (1.14) and
integrating out the 𝑧 direction results in an effective two-dimensional GPE, which has
the same form as the 3D equation, but with an effective 2D interaction constant

𝑔2D = 𝑔3D√
2𝜋𝑎𝑧

= ℏ2

𝑚 ̃𝑔 with ̃𝑔 =
√

8𝜋𝑎𝑠
𝑎𝑧

, (1.29)

where we have used Eq. (1.4) for the 3D interaction constant 𝑔3D.
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It should be noted that the result in Eq. (1.29) for the effective 2D interaction holds if
the number of particles is sufficiently large, while otherwise logarithmic corrections need
to be taken into account [57, 60]. Furthermore, in some experimental setups, it can be
difficult to a achieve a confinement that is strong enough to freeze the motion along the
axial direction exactly. A more accurate description of such settings can be obtained by
allowing for Gaussian excitations along the confined directions, leading to effective non-
polynomial Schrödinger equations [68]. Nonetheless, for the two-dimensional scenarios
considered in this thesis, the description in terms of the GPE (1.14) in two spatial
dimensions with effective interaction given by Eq. (1.29) is sufficient.

1.1.2. Beyond Mean Field Theory

Gross–Pitaevskii theory belongs to the class of mean-field theories, where, in general, a
fluctuating variable is replaced by its mean value (e.g., ̂𝛹 → 𝛹 = ⟨ ̂𝛹⟩). This turns out to
be an accurate description of the weakly interacting Bose gas if quantum depletion of the
condensate is sufficiently small and the role of quantum fluctuations is unimportant for
the particular application. However, in many scenarios, quantum fluctuations give rise to
interesting effects not captured by mean-field theory. For example, quantum fluctuations
are essential to describe parametric instabilities, where they seed the growth of resonant
modes (see Section 5.3.2).

Bogoliubov theory. Bogoliubov theory goes beyond the mean-field description by
taking into account quantum fluctuations to leading order. The framework is based on
the decomposition of the field operator ̂𝛹 (𝒙) according to Eq. (1.11) into a classical
field 𝛹(𝒙), which describes a macroscopically occupied mode, plus quantum fluctua-
tions 𝛿 ̂𝛹(𝒙) on top of it. Provided that occupancies of excited modes are small, higher-
order terms in 𝛿 ̂𝛹(𝒙) can be neglected, resulting in a quadratic Hamiltonian. While in
general, the Bogoliubov Hamiltonian must be diagonalized numerically, well-known an-
alytical results are available in homogeneous systems [𝑉ext(𝒙) = 0], as outlined in what
follows.

It is convenient to work in momentum space, although Bogoliubov theory can also be
applied in position space as well as to quasi-condensates in lower dimensions [69]. In a
homogeneous system, the field operator can be expanded in the plane wave basis as

̂𝛹 (𝒙) = 1√
𝑉 ∑

𝒑
̂𝑎𝒑e𝑖𝒑𝒙/ℏ . (1.30)

The creation and annihilation operators ̂𝑎𝒑 and ̂𝑎†
𝒑 of particles with momentum 𝒑 satisfy

the bosonic commutation relations

[ ̂𝑎𝒑, ̂𝑎𝒒] = [ ̂𝑎†
𝒑, ̂𝑎†

𝒒] = 0 , (1.31a)

[ ̂𝑎𝒑, ̂𝑎†
𝒒] = 𝛿𝒑,𝒒 , (1.31b)
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where 𝛿𝒑,𝒒 is the Kronecker delta. Inserting the expansion(1.30) in the Hamiltonian (1.2)
[𝑉ext(𝒙) = 0], we obtain the momentum space representation

𝐻̂ = ∑
𝒑

𝜖𝒑,0 ̂𝑎†
𝒑 ̂𝑎𝒑 + 𝑔

2𝑉 ∑
𝒑1,𝒑2,𝒑3,𝒑4

̂𝑎†
𝒑1 ̂𝑎†

𝒑2 ̂𝑎𝒑3
̂𝑎𝒑4

𝛿𝒑1+𝒑2,𝒑3+𝒑4
, (1.32)

where 𝜖𝒑,0 = 𝒑2/2𝑚 denotes the dispersion relation of free particles.
The Bogoliubov approximation involves replacing the macroscopically occupied con-

densate mode operators by c-numbers, ̂𝑎0, ̂𝑎†
0 → √𝑁0, and dropping all terms that are

of cubic or higher order in excited (non-condensate) modes. This procedure results in
the Bogoliubov Hamiltonian2

𝐻̂B = 𝑔𝑁2

2𝑉 + ∑
𝒑

𝜖𝒑,0 ̂𝑎†
𝒑 ̂𝑎𝒑 + 1

2𝑔𝑛 ∑
𝒑≠0

(2 ̂𝑎†
𝒑 ̂𝑎𝒑 + ̂𝑎†

𝒑 ̂𝑎†
−𝒑 + ̂𝑎𝒑 ̂𝑎−𝒑 + 𝑚𝑔𝑛

𝒑2 ) , (1.33)

where 𝑛 = 𝑁/𝑉 is the uniform density. This Hamiltonian is quadratic in the mode oper-
ators an can therefore be diagonalized with the help of the Bogoliubov transformations

̂𝑎𝒑 = 𝑢𝒑𝑏̂𝒑 + 𝑣∗
−𝒑𝑏̂†

−𝒑 , ̂𝑎†
𝒑 = 𝑢∗

𝒑 ̂𝑏†
𝒑 + 𝑣−𝒑 ̂𝑏−𝒑 . (1.34)

The new operators ̂𝑏𝒑 and 𝑏̂†
𝒑 obey bosonic commutation relations as in Eq. (1.31),

provided the coefficient functions satisfy |𝑢𝒑|2 − |𝑣−𝒑|2 = 1. By choosing the coefficients
as

𝑢𝒑, 𝑣−𝒑 = ±[𝜖𝒑,0 + 𝑛𝑔
2𝜖𝒑

± 1
2]

1/2
, (1.35)

the Bogoliubov Hamiltonian (1.33) takes the diagonal form

𝐻̂B = 𝐸0 + ∑
𝒑

𝜖𝒑 ̂𝑏†
𝒑 ̂𝑏𝒑 , (1.36)

where

𝐸0 = 𝑔𝑁2

2𝑉 + 1
2 ∑

𝒑≠0
[𝜖𝒑 − 𝑔𝑛 − 𝜖𝒑,0 + 𝑚(𝑔𝑛)2

𝒑2 ] (1.37)

is the ground state energy and

𝜖𝒑 = [𝜖𝒑,0(𝜖𝒑,0 + 2𝑛𝑔)]1/2 = [ 𝒑2

2𝑚( 𝒑2

2𝑚 + 2𝑛𝑔)]
1/2

(1.38)

is the famous Bogoliubov dispersion relation for elementary excitations [70].
At small momenta, the Bogoliubov dispersion (1.38) is linear, 𝜖𝒑 = 𝑐s|𝒑|, where

𝑐s = √𝑛𝑔/𝑚 is the speed of sound. The quasi-particles excited in this regime have
2In deriving the Bogoliubov Hamiltonian (1.33), care must be taken such that all approximations made

are on the same level of accuracy. In particular, a consistent approximation requires a more accurate
computation of the scattering length beyond the lowest-order Born approximation yielding Eq. (1.4).
For details, see Ref. [57].
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the character of sound waves or phonons. At momenta on the order of the inverse heal-
ing length ℏ/𝜉, the dispersion changes from linear to quadratic and for large momenta
approaches that of free particles, 𝜖𝒑 = 𝑛𝑔 + 𝒑2/2𝑚.

The fact that the excitation spectrum is gapless can be regarded as a consequence of
Goldstone’s theorem, which predicts the existence of a gapless excitation called Gold-
stone (or Nambu–Goldstone) mode whenever a continuous symmetry is spontaneously
broken [43–45]. The transition to the Bose–Einstein-condensed phase, where the complex
order parameter 𝛹 takes a non-zero value, spontaneously breaks the 𝑈(1) symmetry of
the Hamiltonian (1.2) and the associated Goldstone mode corresponds to the gapless Bo-
goliubov phonon branch. In Chapter 4, we will explore the phenomenon of supersolidity
in spin–orbit-coupled Bose–Einstein condensates, where, in addition to the broken 𝑈(1)
symmetry responsible for superfluidity, also translational symmetry is spontaneously
broken, leading to a periodic density modulation typical of solids.

Beyond Bogoliubov theory. In Chapter 5, we study the far-from-equilibrium dy-
namics of a parametrically excited ultracold Bose gas by means of classical–statistical (or
truncated Wigner) simulations. This technique takes quantum fluctuations into account
via a stochastic sampling of the Bogoliubov initial state, but it goes beyond Bogoliubov
theory as it captures non-linear interactions between excited quasi-particles, which can-
not be described with the Bogoliubov framework. For details on the classical–statistical
method, see Appendix B.

1.2. Cold Atoms in Optical Lattices
Having discussed the physics of weakly interacting Bose gases in continuum, we now
focus our attention on cold atoms in optical lattices. These setups allow one to realize
a variety of tight-binding models relevant in condensed matter physics. This way, the
platform of cold atoms enables the quantum simulation of strongly correlated materials
despite the fact that the underlying quantum gas is typically weakly interacting. Since
model parameters can be tuned almost at will, cold atoms in optical lattices have the
potential to provide unique insights into strongly correlated quantum matter, impossible
to obtain on any other platform [13–17, 71–74].

1.2.1. Tight-Binding Models

Here, we outline the derivation of the Bose–Hubbard model, following Ref. [11]. Our
starting point is the Hamiltonian (1.2) of a weakly interacting Bose gas subject to an
optical lattice potential. An optical lattice is formed by intersecting laser beams, creating
periodic standing wave patterns. The light field induces an AC Stark shift of atomic
energy levels, providing an optical dipole force that can trap atoms [75]. Depending
on the addressed atomic state, atoms can be trapped either in intensity maxima (red-
detuned optical lattice) or in intensity minima (blue-detuned optical lattice), where the
latter has the advantage of reducing photon scattering rates.
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In what follows, we assume that the external potential in the Hamiltonian (1.2) consists
of an arbitrary trapping potential 𝑉T(𝒙) plus an optical lattice potential 𝑉0(𝒙). For
concreteness, we consider the simplest case of a cubic optical lattice potential

𝑉0(𝒙) = 𝑉𝑥,0 sin2(𝑘𝑥) + 𝑉𝑦,0 sin2(𝑘𝑦) + 𝑉𝑧,0 sin2(𝑘𝑧) , (1.39)

where 𝑉𝑖,0 is the depth of the optical lattice in direction 𝑖 ∈ {𝑥, 𝑦, 𝑧} and 𝑘 = 2𝜋/𝜆
is the wave number of the laser light with wavelength 𝜆, giving rise to a lattice of
period 𝑎 = 𝜆/2.

The eigenstates of non-interacting particles in the periodic potential (1.39) are given
by Bloch wave functions 𝜙𝑛,𝒌(𝒙), characterized by the band index 𝑛 and the quasi-
momentum 𝒌 [76]. Within a single Bloch band, one can define the Wannier functions [77]

𝑤𝑛,𝑹(𝒙) = 1√
𝑁

∑
𝒌

𝜙𝑛,𝒌(𝒙)e−𝑖𝒌𝑹 . (1.40)

The Wannier functions 𝑤𝑛,𝑹(𝒙) = 𝑤𝑛(𝒙 − 𝑹) are localized around the minima 𝑹 of
the lattice potential (1.39) and form an orthonormal basis. Assuming that temperatures
are sufficiently low and that typical interaction energies are small compared to the gap
between the lowest and first excited band, it is sufficient to consider only the lowest
Bloch band as higher bands remain largely unpopulated (from now on, we omit the
band index).

To arrive at a tight-binding description, we expand the field operator in the Wannier
basis,

̂𝛹 (𝒙) = ∑
ℓ

̂𝑎ℓ𝑤ℓ(𝒙) , (1.41)

where 𝑤ℓ(𝒙) = 𝑤(𝒙 − 𝑹ℓ) is the Wannier function located at lattice site ℓ. The oper-
ators ̂𝑎ℓ and ̂𝑎†

ℓ annihilate and create bosons at site ℓ, respectively, and satisfy bosonic
commutation relations as in Eq. (1.31). Inserting the expansion (1.41) in the Hamil-
tonian (1.2), and keeping only tunneling terms between nearest neighbors as well as
interactions between particles on the same site, we arrive at the Bose–Hubbard model

𝐻BH = − ∑
⟨ℓ,ℓ′⟩

ℏ𝐽ℓℓ′𝑎†
ℓ𝑎ℓ′ + ∑

ℓ
𝜖ℓ𝑛ℓ + ℏ𝑈

2 ∑
ℓ

𝑛ℓ(𝑛ℓ − 1) , (1.42)

where 𝑛ℓ = 𝑎†
ℓ𝑎ℓ is the bosonic number operator at site ℓ (from now on, we omit oper-

ator hats where the distinction between operators and classical variables is clear from
the context). The first term in the Bose–Hubbard Hamiltonian (1.42) describes hopping
of particles between neighboring sites (the sum runs over all pairs of nearest neigh-
bors ⟨ℓ, ℓ′⟩) at a rate

ℏ𝐽ℓℓ′ = − ∫ d𝒙 𝑤∗
ℓ(𝒙)[−ℏ2∇2

2𝑚 + 𝑉ext(𝒙)]𝑤ℓ′(𝒙) . (1.43)

The second term in Eq. (1.42) represents a local energy shift due to the external trap
by an amount

𝜖ℓ = ∫ d𝒙 𝑉T(𝒙)|𝑤ℓ(𝒙)|2 ≈ 𝑉T(𝑹ℓ) . (1.44)
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Finally, the on-site interaction energy ℏ𝑈 of particles sitting on the same lattice site, as
described by the last term in the Hamiltonian (1.42), is given by

ℏ𝑈 = 𝑔 ∫ d𝒙 |𝑤ℓ(𝒙)|4 . (1.45)

While the Bose–Hubbard model can arguably be regarded as the “workhorse” of the
field of cold atoms, much like the Ising model in statistical physics, the Fermi–Hubbard
model is actually in the center of interest from a condensed matter physics perspective,
as it is believed to describe high-temperature superconductivity in cuprates. Quantum
simulations of the Fermi–Hubbard model in optical lattices, which can be realized with
ultracold fermions in a similar vein as describe above, may help to shed light on this
question [78]. Beyond the standard bosonic and fermionic Hubbard models, a variety of
non-standard Hubbard models exhibiting novel exotic quantum phases can be engineered
in optical lattices, including the extended Hubbard model featuring long-range dipolar
interactions or generalized lowest-band Hubbard models involving nearest-neighbor in-
teractions, density-induced tunneling, as well as pair tunneling processes [17].

1.2.2. Ground State Phases of the Bose–Hubbard Model
The Fock space of a Bose–Hubbard system consisting of 𝐿 lattice sites is spanned by the
basis states

|𝑛1, … , 𝑛𝐿⟩ = 1
√𝑛1! ⋯ 𝑛𝐿!

(𝑎†
1)

𝑛1 ⋯ (𝑎†
𝐿)

𝑛𝐿 |0⟩ , (1.46)

where 𝑛1, … , 𝑛𝐿 are the occupation numbers of the modes located at the lattice sites
1, … , 𝐿 and |0⟩ ≡ |0, … , 0⟩ is the bosonic vacuum state. The action of the annihilation
and creation operators on the basis states follows the standard rules of second quanti-
zation [79],

𝑎ℓ |𝑛1, … , 𝑛ℓ, … , 𝑛𝐿⟩ = √𝑛ℓ |𝑛1, … , 𝑛ℓ − 1, … , 𝑛𝐿⟩ , (1.47a)
𝑎†

ℓ |𝑛1, … , 𝑛ℓ, … , 𝑛𝐿⟩ = √𝑛ℓ + 1 |𝑛1, … , 𝑛ℓ + 1, … , 𝑛𝐿⟩ . (1.47b)

For a fixed number of particles 𝑁 = ∑𝐿
ℓ=1 𝑛ℓ, the dimension of the Fock space is given

by [80]

𝐷 = (𝑁 + 𝐿 − 1
𝑁 ) = (𝑁 + 𝐿 − 1)!

𝑁!(𝐿 − 1)! . (1.48)

By varying the depth of the optical lattice, the parameters of the Bose–Hubbard
model can be tuned to regimes where either the hopping rate 𝐽 or the interaction rate 𝑈
dominates [11] (here, we disregard the external potential 𝑉T and consider a homogeneous
and isotropic setting where the hopping rate is the same across the lattice).

In the limit 𝑈/𝐽 → ∞, the repulsive interaction dominates, which disfavors multiple
occupancies on the same lattice site. At integer filling 𝑚 = 𝑁/𝐿, the ground state is
then given by a Mott insulator (MI) [12],

|𝛹MI⟩ = 1√
𝑚!

𝐿
∏
ℓ=1

(𝑎†
ℓ)

𝑚
|0⟩ = |𝑚, … , 𝑚⟩ . (1.49)

18



The MI state corresponds to the population a single Fock state without fluctuations of
the number of particles on each site. The energy gap between the first excited state,
corresponding to a single particle–hole excitation, and the ground state is given by
𝛥𝐸 = 𝑈 . It is this gap that is responsible for the insulating character of the MI state,
as it reflects the finite amount of energy needed for transporting a single particle from
one lattice site to another [80].

In the opposite limit 𝑈/𝐽 → 0, where the hopping term in the Hamiltonian (1.42)
dominates, particles tend to delocalize across all lattice sites. The system is then in the
superfluid (SF) ground state [12]

|𝛹SF⟩ = 1√
𝑁!

[ 1√
𝐿

𝐿
∑
ℓ=1

𝑎†
ℓ]

𝑁

|0⟩ . (1.50)

In contrast to the MI state, the SF state is a superposition of all Fock states with weights
following a multinomial distribution. Importantly, all particles are in the same single-
particle state |𝜙⟩ = 𝐿−1/2 ∑𝐿

ℓ=1 𝑎†
ℓ|0⟩, i.e., the system is Bose-condensed. In addition,

the SF state is gapless and characterized by large fluctuations of the number of particles
on each site [80].

If the ratio 𝑈/𝐽 is tuned from the superfluid to the Mott-insulating phase (or vice
versa), the system undergoes a quantum phase transition [12]. Unlike classical phase
transitions, which are driven by thermal fluctuations, quantum phase transitions oc-
cur at zero temperature and are driven by quantum fluctuations [81]. In the seminal
experiment in Ref. [25], an isolated Bose–Hubbard system quenched from the Mott-
insulating to the superfluid regime has been shown to undergo quantum thermalization.
In Chapter 2, we will use this very example to benchmark protocols for the measurement
of dynamical correlations and fluctuation–dissipation relations based on non-Hermitian
linear response. Before turning to this application, we introduce the basics of linear
response theory in the next section.

1.3. Linear Response Theory and the
Fluctuation–Dissipation Relation

Linear response theory is a powerful framework that allows one to extract dynamical
properties of a system from the way it responds to external perturbations [21, 82]. The
theory mainly goes back to R. Kubo, who used it to derive the celebrated fluctuation–
dissipation relation (FDR) for systems in thermal equilibrium (sometimes also called
the fluctuation–dissipation theorem) [83, 84]. In essence, the FDR connects the intrinsic
fluctuations of a system in equilibrium at any given frequency to the energy dissipated
when the system is perturbed at that same frequency. The famous Einstein relation for
Brownian motion [85] is a basic example of such an interplay: the diffusion coefficient 𝐷
of a Brownian particle in thermal equilibrium is connected to the mobility 𝜇 via the
relation

𝐷 = 𝑘B𝑇 𝜇 , (1.51)
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where 𝑘B is the Boltzmann constant and 𝑇 is the temperature. This result can be
viewed as a fluctuation–dissipation relation because 𝐷 quantifies the “fluctuations” of the
particle’s position due to the random kicks by the surrounding fluid molecules, whereas
𝜇, the inverse friction constant, represents the “dissipative” force exerted by the medium.
Another well-known example of an FDR is the Johnson–Nyquist spectrum generated by
thermal fluctuations in electrical resistors [86, 87]. Besides its fundamental importance,
the FDR features a wide range of applications across of multitude of disciplines in physics,
including fluid dynamics, climate science, granular materials, and biological systems [88].

In this thesis, we will be primarily interested in FDRs for quantum systems. Given
its groundbreaking role in statistical mechanics, it is surprising that to date the FDR
has never been measured experimentally in a quantum system. The main difficulty
stems from the requirement to measure unequal-time correlation functions: a projective
von Neumann measurement of an observable at a certain time collapses the quantum
state [89, 90], which hinders a measurement of a second observable at a later time
with respect to the original state. In Chapter 2, we develop protocols based on non-
Hermitian linear response to overcome this measurement back action, enabling unbiased
measurements of dynamical correlations and FDRs in quantum many-body systems.
With this motivation in mind, in what follows, we set the stage by reviewing the basics
of linear response theory and the FDR for general quantum systems. The following
sections are mainly based on Refs. [57, 91].

1.3.1. Kubo’s Linear Response Formula

Let 𝐻0 denote the unperturbed Hamiltonian of the system and 𝐻1(𝑡) = −𝑓(𝑡)𝐴 a
perturbation by a Hermitian operator 𝐴 with a time-dependent modulation 𝑓(𝑡). The
density operator 𝜌(𝑡) evolves under the total Hamiltonian 𝐻(𝑡) = 𝐻0 + 𝐻1(𝑡) according
to the von Neumann equation

𝑖ℏ d
d𝑡𝜌(𝑡) = [𝐻(𝑡), 𝜌(𝑡)] (1.52)

with initial condition 𝜌(𝑡0) = 𝜌0. In many applications of linear response theory, the
system of interest is in thermal equilibrium. Furthermore, to ensure regularity of the
linear response, the perturbation is typically ramped up adiabatically as 𝑓(𝑡) = e𝜖𝑡𝑔(𝑡)
with 𝜖 > 0 small, such that at 𝑡0 = −∞ the system is governed solely by the unperturbed
Hamiltonian 𝐻0. For the time being, we will nonetheless keep 𝜌0 and 𝑡0 general, as the
derivation of Kubo’s formula does not depend on these assumptions.

It is convenient to transform to the interaction picture (rotating frame) with respect
to the unperturbed Hamiltonian 𝐻0. The von Neumann equation then reads

𝑖ℏ d
d𝑡 ̃𝜌(𝑡) = [𝐻̃1(𝑡), ̃𝜌(𝑡)] , (1.53)

where ̃𝜌(𝑡) = e𝑖𝐻0𝑡/ℏ𝜌(𝑡)e−𝑖𝐻0𝑡/ℏ is the density operator and 𝐻̃1(𝑡) = −𝑓(𝑡) ̃𝐴(𝑡) with
̃𝐴(𝑡) = e𝑖𝐻0𝑡/ℏ𝐴e−𝑖𝐻0𝑡/ℏ is the Hamiltonian in the interaction picture. We can rewrite
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this equation equivalently in integral form as

̃𝜌(𝑡) = ̃𝜌(𝑡0) − 𝑖
ℏ ∫

𝑡

𝑡0

d𝑡′ [𝐻̃1(𝑡′), ̃𝜌(𝑡′)] (1.54)

with ̃𝜌(𝑡0) = 𝜌0. In time-dependent perturbation theory, repeatedly inserting the left-
into the right-hand side leads to the well-known Neumann (or Dyson) series [92]. In
linear response theory, we neglect contributions that are of quadratic or higher order in
the perturbation. To linear order in the perturbation, we may therefore replace ̃𝜌(𝑡′) in
the integrand by ̃𝜌(𝑡0), yielding

̃𝜌(𝑡) = 𝜌0 + 𝑖
ℏ ∫

𝑡

𝑡0

d𝑡′ 𝑓(𝑡′)[ ̃𝐴(𝑡′), 𝜌0] . (1.55)

The linear response of an observable 𝐵 to the perturbation 𝐴, i.e., the time evolution
of the expectation value ⟨𝐵(𝑡)⟩ = Tr[𝐵𝜌(𝑡)] = Tr[𝐵̃(𝑡) ̃𝜌(𝑡)] under the total Hamilto-
nian 𝐻(𝑡), linearized with respect to the perturbation, is then given by

⟨𝐵(𝑡)⟩ = ⟨𝐵(𝑡)⟩0 + ∫
𝑡

𝑡0

d𝑡′ 𝑓(𝑡′)𝜙𝐵𝐴(𝑡, 𝑡′) , (1.56)

where we have introduced the response function

𝜙𝐵𝐴(𝑡, 𝑡′) = 𝑖
ℏ𝜃(𝑡 − 𝑡′)⟨[𝐵(𝑡), 𝐴(𝑡′)]⟩0 . (1.57)

This important result, known as the Kubo formula [84], states that the perturbation
by the operator 𝐴 causes a deviation 𝛥𝐵(𝑡) = ⟨𝐵(𝑡)⟩ − ⟨𝐵(𝑡)⟩0 from the unperturbed
expectation value ⟨𝐵(𝑡)⟩0, which in the linear regime is proportional to the perturbation
strength and given by the convolution of the modulation function 𝑓(𝑡) with the response
function 𝜙𝐵𝐴(𝑡, 𝑡′). The Heaviside step function 𝜃(𝑡) in Eq. (1.57), defined as 𝜃(𝑡) = 0
for 𝑡 < 0 and 𝜃(𝑡) = 1 for 𝑡 ≥ 0, ensures causality of the response (the response
must be independent of any future perturbations), so the upper integration bound in
Eq. (1.56) can be extended to +∞. The response function (1.57) is determined by
the unequal-time commutator of the Heisenberg operators 𝐵(𝑡) = e𝑖𝐻0𝑡/ℏ𝐵e−𝑖𝐻0𝑡/ℏ and
𝐴(𝑡′) = e𝑖𝐻0𝑡′/ℏ𝐴e−𝑖𝐻0𝑡′/ℏ. Its complex conjugate reads 𝜙∗

𝐵𝐴(𝑡, 𝑡′) = 𝜙𝐵†𝐴†(𝑡, 𝑡′), so the
response function is real if 𝐴 and 𝐵 are Hermitian. The subscript in the expectation
value ⟨⋯⟩0 reminds us that the operators evolve under the unperturbed Hamiltonian 𝐻0
and that the average is taken with respect to the (unperturbed) initial state 𝜌0. This
way, linear response theory allows one to probe properties of the unperturbed system
from the way it responds to external perturbations.

In deriving Eq. (1.57), we have assumed the perturbation operator 𝐴 to be Hermitian.
However, we may also choose a more general perturbation of the form

𝐻1(𝑡) = −1
2[𝑓(𝑡)𝐴 + 𝑓∗(𝑡)𝐴†] , (1.58)
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where 𝑓(𝑡) is complex and 𝐴 is a general (not necessarily Hermitian) operator. Note
that this perturbation Hamiltonian is still Hermitian3. The linear response then reads

⟨𝐵(𝑡)⟩ = ⟨𝐵(𝑡)⟩0 + ∫
𝑡

𝑡0

d𝑡′ 1
2[𝑓(𝑡′)𝜙𝐵𝐴(𝑡, 𝑡′) + 𝑓∗(𝑡′)𝜙𝐵𝐴†(𝑡, 𝑡′)] , (1.59)

where the response function 𝜙𝐵𝐴 is again given by Eq. (1.57), even if 𝐴 is not Hermitian.
Most of following discussion therefore applies to general operators 𝐴 and 𝐵.

1.3.2. Dynamical Susceptibility
Kubo’s response function (1.57) determines the linear response in time domain. We
now consider the equivalent problem in Fourier domain by introducing the dynamical
susceptibility, which characterizes how the system reacts when perturbed at a certain
frequency. To simplify the discussion, we assume the system to be in a stationary state,
e.g., in thermal equilibrium, such that the response function (1.57) depends only on the
time difference 𝛥𝑡 = 𝑡 − 𝑡′. In Section 2.2.1, we will discuss generalizations to non-
equilibrium states. The dynamical susceptibility is defined as the Fourier transform of
the response function with respect to the relative time 𝛥𝑡,

𝜒𝐵𝐴(𝜔) = lim
𝜖→0+

∫
∞

−∞
d𝛥𝑡 𝜙𝐵𝐴(𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖|𝛥𝑡| . (1.60)

The factor e−𝜖𝛥𝑡 in the integrand acts as an exponential frequency filter and ensures
convergence of the Fourier integral (note that negative 𝛥𝑡 do not contribute to the
integral due to causality). Physically, it can be thought of as mimicking finite spectral
resolution in an experiment. Taking the limit 𝜖 → 0 (from above) makes the final result
independent of 𝜖. Since the response function (1.57) satisfies 𝜙∗

𝐵𝐴(𝑡, 𝑡′) = 𝜙𝐵†𝐴†(𝑡, 𝑡′),
the susceptibility obeys the symmetry relation 𝜒∗

𝐵𝐴(𝜔) = 𝜒𝐵†𝐴†(−𝜔).
If the perturbation is ramped up sufficiently smooth starting at 𝑡0 = −∞ [see comment

below Eq. (1.52)], the linear response in Eq. (1.59) can be expressed in Fourier space as

𝛥𝐵(𝜔) = 1
2[𝑓(𝜔)𝜒𝐵𝐴(𝜔) + 𝑓∗(−𝜔)𝜒𝐵𝐴†(𝜔)] , (1.61)

where 𝛥𝐵(𝜔) and 𝑓(𝜔) are the Fourier transforms of 𝛥𝐵(𝑡) = ⟨𝐵(𝑡)⟩ − ⟨𝐵⟩0 and 𝑓(𝑡),
respectively. For 𝐴 = 𝐴† and 𝑓(𝑡) real, this result reduces to the compact form 𝛥𝐵(𝜔) =
𝑓(𝜔)𝜒𝐵𝐴(𝜔). In case of a periodic perturbation 𝑓(𝑡) = 𝜆e−𝑖𝜔𝑡, inverse Fourier transform
of Eq. (1.61) yields

𝛥𝐵(𝑡) = 1
2[𝜆e−𝑖𝜔𝑡𝜒𝐵𝐴(𝜔) + 𝜆∗e𝑖𝜔𝑡𝜒𝐵𝐴†(−𝜔)] , (1.62)

which shows explicitly that the dynamical susceptibility determines the linear response
to a perturbation that is modulated at a frequency 𝜔.

3In Section 2.1, we consider perturbations by an anti-Hermitian Hamiltonian, where the response
function is given by the anti-commutator instead of the commutator.

22



It is instructive to split the dynamical susceptibility as 𝜒𝐵𝐴 = 𝜒′
𝐵𝐴 + 𝑖𝜒′′

𝐵𝐴 into the
components

𝜒′
𝐵𝐴(𝜔) = 1

2[𝜒𝐵𝐴(𝜔) + 𝜒𝐴𝐵(−𝜔)] , (1.63a)

𝜒′′
𝐵𝐴(𝜔) = 1

2𝑖 [𝜒𝐵𝐴(𝜔) − 𝜒𝐴𝐵(−𝜔)] , (1.63b)

which are commonly referred to as the reactive and dissipative (or absorptive) parts
of the dynamical susceptibility, respectively. To see why these names are justified, we
consider the response of a Hermitian observable to a perturbation by itself, i.e., 𝐵 =
𝐴 = 𝐴†, under a periodic modulation 𝑓(𝑡) = 𝜆 cos(𝜔𝑡). The susceptibility components
in Eq. (1.63) then become real and the response in Eq. (1.62) reduces to

𝛥𝐴(𝑡) = 𝜆[𝜒′
𝐴𝐴(𝜔) cos(𝜔𝑡) + 𝜒′′

𝐴𝐴(𝜔) sin(𝜔𝑡)] . (1.64)

This shows that 𝜒′ determines the part of the response that is in phase with the exter-
nal perturbation and is therefore called the “reactive” component. The out-of-phase re-
sponse, determined by 𝜒′′, is connected to energy absorption: by virtue of the Hellmann–
Feynman theorem, the change of the instantaneous energy ⟨𝐻(𝑡)⟩ can easily be calculated
as

d
d𝑡⟨𝐻(𝑡)⟩ = ⟨𝜕𝐻(𝑡)

𝜕𝑡 ⟩ = −1
2[ ̇𝑓(𝑡)⟨𝐴(𝑡)⟩ + ̇𝑓∗(𝑡)⟨𝐴†(𝑡)⟩] . (1.65)

For a periodic perturbation 𝑓(𝑡) = 𝜆e−𝑖𝜔𝑡, using Eq. (1.62), we obtain the mean energy
dissipation rate

d𝐸
d𝑡 = 1

2|𝜆|2𝜔𝜒′′
𝐴†𝐴(𝜔) , (1.66)

where oscillating terms in Eq. (1.65) vanish after time-averaging over one oscillation
period 2𝜋/𝜔. This result makes it plausible why 𝜒′′ is commonly referred to as the
“dissipative” (or “absorptive”) component of the dynamical susceptibility.

As a consequence of causality, the dynamical susceptibility (1.60), when extended
into the complex plane, is an analytic function in the upper half of the complex plane.
Therefore, the two susceptibility components are not independent, but they are linked
by Kramers–Kronig relations [93, 94],

𝜒′
𝐵𝐴(𝜔) = 1

𝜋 PV ∫
∞

−∞

𝜒′′
𝐵𝐴(𝜔′)
𝜔′ − 𝜔 d𝜔′ , (1.67a)

𝜒′′
𝐵𝐴(𝜔) = − 1

𝜋 PV ∫
∞

−∞

𝜒′
𝐵𝐴(𝜔′)
𝜔′ − 𝜔 d𝜔′ , (1.67b)

(1.67c)

where PV denotes the Cauchy principal value.
It is possible to derive an explicit formula for the dynamical susceptibility in frequency

space with respect to the energy eigenbasis of the unperturbed Hamiltonian 𝐻0. To this
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end, we consider a thermal state described by the canonical4 density matrix

𝜌(𝑇 ) = 1
𝑍(𝑇 ) exp(− 𝐻0

𝑘B𝑇 ) , (1.68)

where 𝑍(𝑇 ) = Tr[exp(−𝐻0/𝑘B𝑇 )] is the canonical partition sum, 𝑘B is the Boltzmann
constant, and 𝑇 is the temperature. Let {𝐸𝑘} denote the spectrum of eigenvalues of 𝐻0
with corresponding eigenstates {|𝑘⟩}, i.e., 𝐻0|𝑘⟩ = 𝐸𝑘|𝑘⟩. By inserting identities in the
form 𝟙 = ∑𝑘|𝑘⟩⟨𝑘| into the definition of the susceptibility (1.60), we obtain

𝜒𝐵𝐴(𝜔) = − lim
𝜖→0+

∑
𝑘,𝑚

𝐵𝑘𝑚𝐴𝑚𝑘(𝑛𝑘 − 𝑛𝑚)
ℏ𝜔 − 𝐸𝑚𝑘 + 𝑖ℏ𝜖 , (1.69)

where 𝑛𝑘 = e−𝐸𝑘/𝑘B𝑇 /𝑍 is the Boltzmann factor describing the thermal occupancy of the
state |𝑘⟩, 𝐵𝑘𝑚 = ⟨𝑘|𝐵|𝑚⟩ are the matrix elements of the operator 𝐵 (and analogously
for 𝐴), and 𝐸𝑚𝑘 = 𝐸𝑚 − 𝐸𝑘 are the transition energies. Using the Dirac formula

lim
𝜖→0+

1
𝑥 ± 𝑖𝜖 = ∓𝑖𝜋𝛿(𝑥) + PV 1

𝑥 , (1.70)

where 𝛿(𝑥) is the Dirac delta function, the susceptibility components (1.63) can be
expressed as

𝜒′
𝐵𝐴(𝜔) = − ∑

𝐸𝑘≠𝐸𝑚

𝐵𝑘𝑚𝐴𝑘𝑚(𝑛𝑘 − 𝑛𝑚)
ℏ𝜔 − 𝐸𝑚𝑘

+ 𝜒′ (el)
𝐵𝐴 𝛿𝜔0 , (1.71a)

𝜒′′
𝐵𝐴(𝜔) = 𝜋 ∑

𝑘,𝑚
𝐵𝑘𝑚𝐴𝑘𝑚(𝑛𝑘 − 𝑛𝑚)𝛿(ℏ𝜔 − 𝐸𝑚𝑘) , (1.71b)

where 𝛿𝜔0 denotes the Kronecker delta. The non-trivial elastic contribution 𝜒′ (el)
𝐵𝐴 to the

reactive component is possible due to the vanishing denominator for 𝐸𝑘 = 𝐸𝑚 in the
static limit 𝜔 → 0. By means of the FDR, one can show that it is given by [91]

𝜒′ (el)
𝐵𝐴 = 1

𝑘B𝑇 ∑
𝐸𝑘=𝐸𝑚

(𝐵𝑘𝑚𝐴𝑘𝑚𝑛𝑘 − ⟨𝐵⟩⟨𝐴⟩) . (1.72)

While in general the susceptibility components 𝜒′ and 𝜒′′ are complex, they in fact
take real values in many applications of physical interest. For example, the susceptibility
components are real for auto-correlations (𝐵 = 𝐴†), which follows from the definition
in Eq. (1.63) by noting that 𝜒𝐴𝐴†(−𝜔) = 𝜒𝐴†𝐴(𝜔)∗ [and is also evident from the spec-
tral representation in Eq. (1.71)]. This even holds for local operators 𝐵 = 𝐴†(𝒚) and
𝐴 = 𝐴(𝒙), provided the system is homogeneous and isotropic, such that the two-point
correlator ⟨𝐴†(𝒚)𝐴(𝒙)⟩ depends only on the distance |𝒚 − 𝒙|. Another important case

4For perturbations that do not conserve the total number of particles, it is more convenient to work in
the grand canonical ensemble, 𝜌(𝑇 , 𝜇) = exp[−(𝐻0 − 𝜇𝑁)/𝑘B𝑇 ]/𝑍(𝑇 , 𝜇), where 𝑁 is the particle
number operator, 𝜇 is the chemical potential, and 𝑍(𝑇 , 𝜇) = Tr{exp[−(𝐻0 − 𝜇𝑁)/𝑘B𝑇 ]} is the
grand canonical partition sum.
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where the susceptibility components are real concerns systems with time reversal sym-
metry, such that the Hamiltonian 𝐻0 is real and symmetric. Then, if 𝐵 and 𝐴 are
Hermitian operators that are both even (or odd) under time reversal, the product of
matrix elements in Eq. (1.71) is real. In the outlined scenarios where the susceptibility
components 𝜒′ and 𝜒′′ take real values, they simply correspond to the real and imaginary
part of the dynamical susceptibility 𝜒, respectively.

1.3.3. The Fluctuation–Dissipation Relation
Before we are in a position to formulate the FDR, we introduce the dynamical correlation
function

𝐶𝐵𝐴(𝑡, 𝑡′) = ⟨𝐵(𝑡)𝐴(𝑡′)⟩ − ⟨𝐵(𝑡)⟩⟨𝐴(𝑡′)⟩ (1.73)
as well as its symmetrized and anti-symmetrized variants

𝑆𝐵𝐴(𝑡, 𝑡′) = 1
2[𝐶𝐵𝐴(𝑡, 𝑡′) + 𝐶𝐴𝐵(𝑡′, 𝑡)] = 1

2⟨{𝐵(𝑡), 𝐴(𝑡′)}⟩ − ⟨𝐵(𝑡)⟩⟨𝐴(𝑡′)⟩ , (1.74)

𝐾𝐵𝐴(𝑡, 𝑡′) = 𝑖[𝐶𝐵𝐴(𝑡, 𝑡′) − 𝐶𝐴𝐵(𝑡′, 𝑡)] = 𝑖⟨[𝐵(𝑡), 𝐴(𝑡′)]⟩ . (1.75)

Here and in what follows, where there are no ambiguities, we omit the subscript in
the expectation values indicating that the Heisenberg operators evolve under the unper-
turbed Hamiltonian 𝐻0. The unequal-time commutator 𝐾𝐵𝐴 is related to the causal re-
sponse function (1.57) by 𝜙𝐵𝐴(𝑡, 𝑡′) = 𝜃(𝑡−𝑡′)𝐾𝐵𝐴(𝑡, 𝑡′)/ℏ or 𝐾𝐵𝐴(𝑡, 𝑡′) = ℏ𝜙𝐵𝐴(𝑡, 𝑡′)−
ℏ𝜙𝐴𝐵(𝑡′, 𝑡). Furthermore, the correlation functions in Eqs. (1.74) and (1.75) obey the
general symmetry relations

𝑆𝐵𝐴(𝑡, 𝑡′) = 𝑆𝐴𝐵(𝑡′, 𝑡) , 𝑆∗
𝐵𝐴(𝑡, 𝑡′) = 𝑆𝐵†𝐴†(𝑡, 𝑡′) , (1.76a)

𝐾𝐵𝐴(𝑡, 𝑡′) = −𝐾𝐴𝐵(𝑡′, 𝑡) , 𝐾∗
𝐵𝐴(𝑡, 𝑡′) = 𝐾𝐵†𝐴†(𝑡, 𝑡′) . (1.76b)

In particular, if 𝐴 and 𝐵 are Hermitian, we have 𝑆𝐵𝐴(𝑡, 𝑡′) = Re[𝐶𝐵𝐴(𝑡, 𝑡′)] and
𝐾𝐵𝐴(𝑡, 𝑡′) = −2 Im[𝐶𝐵𝐴(𝑡, 𝑡′)]. In the context of non-equilibrium quantum field the-
ory, the two-time anti-commutator (1.74) and commutator (1.75) are also known as the
statistical function 𝐹 and the spectral function 𝜌, respectively [95].

We now consider a system in thermal equilibrium described by the density opera-
tor 𝜌(𝑇 ) in Eq. (1.68). The two-time correlators in Eqs. (1.74) and (1.75) then only
depend on the relative time 𝛥𝑡 = 𝑡−𝑡′. Moreover, the Fourier transform of the unequal-
time commutator is connected to the dissipative part of the dynamical susceptibility
via

𝐾𝐵𝐴(𝜔) = lim
𝜖→0+

∫
∞

−∞
d𝛥𝑡 𝐾𝐵𝐴(𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖|𝛥𝑡|

= lim
𝜖→0+

ℏ[∫
∞

0
d𝛥𝑡 𝜙𝐵𝐴(𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡 − ∫

∞

0
d𝛥𝑡 𝜙𝐴𝐵(𝛥𝑡)e−𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡]

= 2𝑖ℏ𝜒′′
𝐵𝐴(𝜔) ,

(1.77)

where in the second step we have split the integral into an integration over the posi-
tive and negative real line, followed by substituting 𝛥𝑡 → −𝛥𝑡 and using 𝐾𝐵𝐴(𝛥𝑡) =
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−𝐾𝐴𝐵(−𝛥𝑡) in the latter. Using the definition of 𝐾𝐵𝐴 in Eq. (1.75) further yields the
relation

𝜒′′
𝐵𝐴(𝜔) = 1

2ℏ[𝐶𝐵𝐴(𝜔) − 𝐶𝐴𝐵(−𝜔)] , (1.78)

where we have introduced the correlation spectrum 𝐶𝐵𝐴(𝜔) as the Fourier transform of
the correlation function (1.73) with respect to 𝛥𝑡.

The key to deriving the FDR is a boundary condition in imaginary time satisfied by
quantum systems in thermal equilibrium, the so-called Kubo–Martin–Schwinger (KMS)
boundary condition [84, 96],

⟨𝐵(𝑡)𝐴⟩ = 1
𝑍 Tr[e−𝛽𝐻𝐵(𝑡)𝐴]

= 1
𝑍 Tr[e𝑖𝐻(𝑡+𝑖𝛽ℏ)/ℏ𝐵e−𝑖𝐻(𝑡+𝑖𝛽ℏ)/ℏe−𝛽𝐻𝐴]

= 1
𝑍 Tr[e−𝛽𝐻𝐴𝐵(𝑡 + 𝑖𝛽ℏ)] = ⟨𝐴𝐵(𝑡 + 𝑖𝛽ℏ)⟩ ,

(1.79)

where 𝛽 = 1/𝑘B𝑇 (and 𝐻 = 𝐻0). The KMS condition implies

𝐶𝐵𝐴(𝛥𝑡) = 𝐶𝐴𝐵(−𝛥𝑡 − 𝑖𝛽ℏ) . (1.80)

Using Cauchy’s integral theorem on the boundary on the strip −𝛽ℏ ≤ Im(𝑡) ≤ 0 in the
complex 𝑡-plane, assuming that 𝐶𝐵𝐴(t) is analytic in the relevant region and that the
observables 𝐵(𝑡) and 𝐴 become uncorrelated for 𝑡 → ±∞, i.e., 𝐶𝐵𝐴(±∞) = 0, one can
show that the above equation in Fourier space reads

𝐶𝐵𝐴(𝜔) = e𝛽ℏ𝜔𝐶𝐴𝐵(−𝜔). (1.81)

This relation expresses the principle of detailed balance. For 𝐵 = 𝐴†, it states that
the probabilities of absorbing and releasing a quantum of energy ℏ𝜔 in response to the
perturbation (1.58), induced by the operators 𝐴 and 𝐴†, respectively, are related in
thermal equilibrium by the Boltzmann factor.

Combining Eqs. (1.78) and (1.81) yields the celebrated fluctuation–dissipation relation

𝐶𝐵𝐴(𝜔) = 2ℏ
1 − e−𝛽ℏ𝜔 𝜒′′

𝐵𝐴(𝜔) . (1.82)

For quantum systems, the FDR is more commonly phrased in terms of the symmetrized
correlation spectrum 𝑆𝐵𝐴(𝜔). Using the definitions (1.63b) and (1.74), the FDR (1.82)
can be rewritten as

𝑆𝐵𝐴(𝜔) = ℏ coth( ℏ𝜔
2𝑘B𝑇 )𝜒′′

𝐵𝐴(𝜔) . (1.83)

This elegant relation connects the correlation spectrum, i.e., the Fourier transform of the
two-time anti-commutator of any two operators 𝐴 and 𝐵, with the dissipative component
of the dynamical susceptibility, i.e., the Fourier transform of the two-time commutator of
𝐴 and 𝐵, across the entire frequency spectrum, requiring only a single input parameter,
the global temperature 𝑇 . In the light of Eq. (1.66), for 𝐵 = 𝐴†, it links the intrinsic
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fluctuations of an observable 𝐴 at any given frequency 𝜔 to the energy dissipated when
the system is perturbed at that frequency. It is worth emphasizing that the crucial
assumption of thermal equilibrium enters via the KMS condition (1.79). While other
symmetry relations like the result in Eq. (1.78) hold also out of equilibrium if the relevant
quantities are generalized in a suitable manner (see Section 2.2.1), the KMS condition
is characteristic to thermal equilibrium and consequently the FDR is an excellent probe
of thermalization, which is our main application in Section 2.2.

Classical Limit of the Fluctuation–Dissipation Relation

It is instructive to consider the classical limit of the FDR (1.83), which formally corre-
sponds to ℏ → 0. Thus, if characteristic energies are small as compared to the energy
scale set by the temperature, we can expand the hyperbolic cotangent and recover the
classical FDR

𝑆𝐵𝐴(𝜔) = 2𝑘B𝑇
𝜔 𝜒′′

𝐵𝐴(𝜔) (1.84)

or
𝜕𝑡𝑆𝐵𝐴(𝑡 − 𝑡′) = −𝑘B𝑇 [𝜙𝐵𝐴(𝑡 − 𝑡′) − 𝜙𝐴𝐵(𝑡′ − 𝑡)] (1.85)

after Fourier-transforming back to time domain. Multiplying both sides by 𝜃(𝑡−𝑡′), i.e.,
considering only 𝑡 ≥ 𝑡′, this relation simplifies to

𝜙𝐵𝐴(𝑡 − 𝑡′) = −𝛽𝜃(𝑡 − 𝑡′)𝜕𝑡𝑆𝐵𝐴(𝑡 − 𝑡′) . (1.86)

The Fourier transform of this equation with respect to the relative time 𝑡 − 𝑡′, using
𝜕𝑡𝑆𝐵𝐴(𝑡, 𝑡′) = −𝜕𝑡′𝑆𝐵𝐴(𝑡, 𝑡′), reads

𝜒𝐵𝐴(𝜔) = 𝛽 ∫
∞

0
d𝑡 ⟨𝐵(𝑡) ̇𝐴(0)⟩e𝑖𝜔𝑡 . (1.87)

This result is another well-known manifestation of the FDR [21], phrased here for clas-
sical observables 𝐴 and 𝐵. Note that in classical systems, the response function is
obtained from the relation (1.56) rather than from the Kubo formula (1.57).

In fact, Eq. (1.87) is a direct generalization of the Einstein relation (1.51). To see this,
we consider the Langevin equation

d𝑣
d𝑡 = −𝛾𝑣 − 1

𝑚
𝜕𝑉 (𝑥, 𝑡)

𝜕𝑥 + √2𝛾𝑘B𝑇
𝑚 𝜉(𝑡) , (1.88)

describing the stochastic dynamics of a Brownian particle [97]. Here, 𝑥(𝑡) and 𝑣(𝑡) = ̇𝑥(𝑡)
denote the particle’s position and velocity, respectively, 𝛾 is the friction coefficient, 𝑚
is the mass, and 𝑉 (𝑥, 𝑡) is an external potential. The random kicks exerted by the sur-
rounding fluid molecules are described by the Gaussian white noise process 𝜉(𝑡), which
satisfies ⟪𝜉(𝑡)⟫ = 0 and ⟪𝜉(𝑡)𝜉(𝑡′)⟫ = 𝛿(𝑡−𝑡′), where ⟪⋯⟫ denotes the ensemble average.
Langevin’s equation is the historic prototype of a stochastic differential equation (SDE),
whose basic properties we review in Appendix A.1, and allows for an elegant derivation
of the Einstein relation [97]. Here, we illustrate how the FDR (1.87) specializes when
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applied to the problem of Brownian motion. To this end, we consider the perturba-
tion 𝑉 (𝑥, 𝑡) = −𝑥𝐹(𝑡) with a time-dependent force 𝐹(𝑡). The relevant perturbation
operator thus corresponds to the position, 𝐴 = 𝑥. Solving Eq. (1.88), one finds the
mean velocity

⟪𝑣(𝑡)⟫ = ⟪𝑣(0)⟫e−𝛾𝑡 + 1
𝑚 ∫

𝑡

0
d𝑡′ 𝐹(𝑡′)e−𝛾(𝑡−𝑡′) . (1.89)

A comparison with the linear response relation in Eq. (1.56) (𝐵 = 𝑣) allows one to
identify the response function 𝜙𝑣𝑥(𝑡 − 𝑡′) = e−𝛾(𝑡−𝑡′)/𝑚, which readily yields the suscep-
tibility

𝜒𝑣𝑥(𝜔) = 1
𝑚

1
𝛾 − 𝑖𝜔 . (1.90)

In the static limit 𝜔 → 0, Eq. (1.87) then reduces to the Einstein relation

𝜇 = 𝛽 ∫
∞

0
d𝑡 ⟨𝑣(𝑡)𝑣(0)⟩ = 𝛽𝐷 , (1.91)

where we have identified the mobility 𝜇 = 1/𝑚𝛾 and the diffusion constant [21]

𝐷 = lim
𝑡→∞

1
2𝑡⟨[𝑥(𝑡) − 𝑥(0)]2⟩

= lim
𝑡→∞

1
𝑡 ∫

𝑡

0
d𝑡′ ∫

𝑡−𝑡′

0
d𝛥𝑡 ⟨𝑣(𝑡′)𝑣(𝑡′ + 𝛥𝑡)⟩

= ∫
∞

0
d𝑡 ⟨𝑣(𝑡0 + 𝑡)𝑣(𝑡0)⟩ ,

(1.92)

Here, in the first step we have used the relation 𝑣 = ̇𝑥 in integral form and the last line
follows from stationarity. All in all, we have recovered the Einstein relation as a special
case of the classical FDR in the form of Eqs. (1.84), (1.85) and (1.87), which in turn
arises as the classical limit of the general FDR (1.83) for quantum systems.

1.3.4. Sum Rules
Sum rules have played a groundbreaking role in the development of quantum mechanics
and other fields of physics. The historically most prominent example is the Thomas–
Reiche–Kuhn sum rule (or 𝑓 sum rule) for the energy-weighted moment of the position
operator 𝑥 [98–100],

∑
𝑗

𝑓𝑗𝑘 = 2𝑚
ℏ2 ∑

𝑗
|⟨𝑗|𝑥|𝑘⟩|2(𝐸𝑗 − 𝐸𝑘) = 1 . (1.93)

Here, the sum ranges over a complete set of eigenstates {|𝑗⟩} of a single-particle Hamil-
tonian of the form 𝐻 = 𝑝2/2𝑚 + 𝑉 (𝑥), where {𝐸𝑗} are the corresponding eigenenergies.
The quantity 𝑓𝑗𝑘 = 2𝑚|⟨𝑗|𝑥|𝑘⟩|2(𝐸𝑗 − 𝐸𝑘)/ℏ2 is called the oscillator strength of the
transition between the states |𝑗⟩ and |𝑘⟩.
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In what follows, based on the discussion in Ref. [57], we review important sum rules
for the moments of the dynamic structure factor and point out their connection to
quantities accessible from linear response theory like the dynamical susceptibility. This
framework provides a powerful and general way of characterizing the excitation spectrum
of a system.

For a system in thermal equilibrium, we define the dynamic structure factor relative
to the operators 𝐴 and 𝐵 as

𝐹𝐵𝐴(𝜔) = ∑
𝑘,𝑚

𝑛𝑘𝐵𝑘𝑚𝐴𝑚𝑘𝛿(ℏ𝜔 − 𝐸𝑚𝑘) , (1.94)

where the notation is the same as in Eq. (1.69). This quantity is the Fourier transform
of the unequal-time correlation function

̃𝐶𝐵𝐴(𝑡 − 𝑡′) = 1
2𝜋ℏ⟨𝐵(𝑡)𝐴(𝑡′)⟩ , (1.95)

expressed in the energy eigenbasis the Hamiltonian 𝐻 (referring to the unperturbed
Hamiltonian in a linear response context), which can be shown following similar steps as
in the derivation of the spectral representation of the dynamical susceptibility leading
to Eq. (1.63). Upon comparison with Eq. (1.73), the dynamic structure factor is related
to the correlation spectrum via 𝐶𝐵𝐴(𝜔) = 2𝜋ℏ[𝐹𝐵𝐴(𝜔) − ⟨𝐵⟩⟨𝐴⟩𝛿(ℏ𝜔)].

The 𝑝-th moment of the dynamic structure factor is defined as

𝑚𝑝(𝐵, 𝐴) = ℏ𝑝+1 ∫
∞

−∞
d𝜔 𝜔𝑝𝐹𝐵𝐴(𝜔) = ∑

𝑚,𝑘
𝑛𝑘𝐵𝑘𝑚𝐴𝑚𝑘(𝐸𝑚 − 𝐸𝑘)𝑝 . (1.96)

Using the completeness relation 𝟙 = ∑𝑚|𝑚⟩⟨𝑚|, one can derive the identities

𝑚0(𝐵, 𝐴) ± 𝑚0(𝐴, 𝐵) = ⟨[𝐵, 𝐴]±⟩ , (1.97)
𝑚1(𝐵, 𝐴) ± 𝑚1(𝐴, 𝐵) = ⟨[𝐵, [𝐻, 𝐴]−]∓⟩ , (1.98)

where [⋅, ⋅]+ and [⋅, ⋅]− denote the anti-commutator and commutator, respectively. In fact,
Eqs. (1.97) and (1.98) are the lowest-order representatives of a hierarchy of sum rules,
which for 𝑝 ≥ 0 can be reduced in terms of commutators with the Hamiltonian [101,
102]. These sum rules thus provide an algebraic way of evaluating the moments of the
dynamic structure factor.

Importantly, the moments of the dynamic structure factor are also closely related to
the properties of the response function. For instance, Eqs. (1.97) and (1.98) determine
the high-frequency expansion of the dynamical susceptibility,

𝜒𝐵𝐴(𝜔) = − lim
𝜖→0+

∫
∞

−∞
d𝜔′ [ 𝐹𝐵𝐴(𝜔′)

𝜔 − 𝜔′ + 𝑖𝜖 − 𝐹𝐴𝐵(𝜔′)
𝜔 + 𝜔′ + 𝑖𝜖]

= − 1
ℏ𝜔⟨[𝐵, 𝐴]⟩0 − 1

(ℏ𝜔)2 ⟨[𝐵, [𝐻0, 𝐴]]⟩0 + 𝒪(𝜔−3) ,
(1.99)
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where the representation of 𝜒𝐵𝐴(𝜔) in the first line follows by combining Eqs. (1.69)
and (1.94), and the second line is obtained by expanding the frequency denominators
around |𝜔| = ∞. This shows that in general the dynamical susceptibility vanishes
at high frequencies like 𝜔−1, whereas if the operators 𝐴 and 𝐵 commute, the leading
contribution comes from the second term which decreases like 𝜔−2. In the opposite limit
at low frequencies, the dynamical susceptibility tends to its static limit

𝜒𝐵𝐴(𝜔 → 0) = 𝑚−1(𝐵, 𝐴) + 𝑚−1(𝐴, 𝐵) . (1.100)

This important relation allows one to access the inverse energy-weighted moments of
the dynamic structure factor, which cannot be reduced in terms of commutators, by
measuring the static susceptibility.

We close our discussion of sum rules by quoting a number of general inequalities
satisfied by the moments of the dynamic structure factor if the system is in its ground
state, i.e., at zero temperature. Since the excitation energies 𝐸𝑚0 = 𝐸𝑚 −𝐸0 are always
positive (𝐸0 is the ground state energy), 𝐹𝐵𝐴(𝜔 < 0) vanishes identically at 𝑇 = 0. For
𝐵 = 𝐴†, the dynamic structure factor then reduces to

𝐹𝐴(𝜔) ≡ 𝐹𝐴†𝐴(𝜔) = ∑
𝑚

|⟨𝑚|𝐴|0⟩|2𝛿(ℏ𝜔 − 𝐸𝑚0) , (1.101)

where |⟨𝑚|𝐴|0⟩|2 is called the strength of the operator 𝐴 relative to the state |𝑚⟩. In
this case, the moments (1.96) take the form

𝑚𝑝(𝐴) ≡ 𝑚𝑝(𝐴†, 𝐴) = ∑
𝑚

|⟨𝑚|𝐴|0⟩|2(𝐸𝑚 − 𝐸0)𝑝 . (1.102)

From the energy-weighted sum rule (1.98), we then recover the 𝑓 sum rule (1.93) for
𝐴 = 𝑥, assuming a Hamiltonian of the form 𝐻 = 𝑝2/2𝑚 + 𝑉 (𝑥) and using the canonical
commutation relation [𝑥, 𝑝] = 𝑖ℏ.

Exploiting the non-negativity of the dynamic structure factor in Eq. (1.101) and the
fact that it vanishes for 𝜔 < 0, one can derive the general inequality

𝑚𝑝+1(𝐴)
𝑚𝑝(𝐴) ≥ 𝑚𝑝(𝐴)

𝑚𝑝−1(𝐴) . (1.103)

In addition, one readily obtains the rigorous upper bound for the frequency of the lowest
mode excited by the operator 𝐴,

ℏ𝜔min ≤ 𝑚𝑝+1(𝐴)
𝑚𝑝(𝐴) . (1.104)

Combining, Eqs. (1.103) and (1.104) further yields

ℏ𝜔min ≤ √𝑚𝑝+1(𝐴)
𝑚𝑝−1(𝐴) . (1.105)
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The above inequalities hold for any value of 𝑝 and become identities if a single excited
state exhausts the strength of the operator 𝐴, i.e., if the dynamic structure factor is
proportional to a single delta function, 𝐹𝐵𝐴(𝜔) ∝ 𝛿(ℏ𝜔 − ℏ𝜔min).

As a concluding remark, it is worth highlighting that sum rule theory draws its out-
standing power from the generality of the underlying approach, which makes the frame-
work completely model-independent. All results presented in this section essentially
require only the assumption that the system is in thermal equilibrium. The moments
of the dynamic structure factor can be evaluated based on general algebraic properties
of the system under investigation, e.g., commutation relations, or can be expressed in
terms of fundamental measurable quantities like susceptibilities. Thus, sum rules play
a fundamental role in physics as they set rigorous bounds which any physical theory
must obey. In Section 4.3.2, we will see how sum rule arguments provide evidence for
the emergence of a new Goldstone mode in the supersolid phase of a spin–orbit-coupled
Bose–Einstein condensate.
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2. Probing Dynamical Correlations and
Fluctuation–Dissipation Relations via
Non-Hermitian Linear Response

This chapter is mainly based on Ref. [103]. Most figures and major parts of the text
have been taken verbatim from that work, occasionally with minor modifications and
supplemental analyses for a better embedding in the context of this thesis. The discussion
of experimental realizations in Rydberg quantum simulators is part of ongoing work
currently in preparation for publication [104]. See List of Publications for a statement
of contributions.

•

Dynamical correlations involving observables at unequal times are ubiquitous across
a multitude of disciplines in physics. They encode fundamental properties of quantum
many-body systems, ranging from optical coherence [105, 106] and transport proper-
ties [82, 91], over far-from-equilibrium universality [53–55, 107, 108], dynamical topolog-
ical transitions [109], as well as glassy dynamics and aging [110–112], up to thermaliza-
tion, integrability, and quantum chaos [26–31, 113, 114]. In Section 1.3, we have already
encountered specific types of temporal correlations in the context of linear response the-
ory. On the one hand, according to Kubo’s formula for the response function (1.57),
the two-time commutator of two observables determines how a system reacts to ex-
ternal perturbations. On the other hand, the two-time anti-commutator encodes the
intrinsic fluctuations of the corresponding observables. In thermal equilibrium, these
quantities are deeply connected via the fluctuation–dissipation relation (FDR). Since
the FDR (1.83) holds for any observables and across the entire frequency spectrum,
given only the temperature as a single global parameter, it represents an excellent probe
of thermalization in closed quantum systems [24, 115–118]. Certifying that a given
quantum state is thermal can also be valuable in novel quantum technologies, e.g., for
applying dynamical protocols to detect entanglement [119–121] — a key resource for
quantum-enhanced metrology [122, 123].

However, despite its key role in statistical mechanics, the FDR has so far only been
tested experimentally in classical systems [124–127]. Such a test requires an independent
measurement of both sides of the relation, but for quantum systems, only the dissipation
side, i.e., the unequal-time commutator, is easily accessible by probing the linear response
to an external perturbation (see Section 1.3). What hinders a straightforward measure-
ment of dynamical correlations in quantum systems is the inevitable measurement back
action: a projective von Neumann measurement collapses the quantum state [89, 90],
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such that a subsequent measurement at a later time probes a perturbed state, which
typically causes a sizable bias in the temporal correlation. Various pioneering proposals
for measuring unequal-time correlations on various platforms exist [24, 128–136], but at-
tempts to overcome the inherent difficulties of such a measurement are often specific to
certain setups or apply only to a limited set of observables. As of today, an experimen-
tal observation of the unequal-time anti-commutator in a quantum many-body system
remains elusive.

Here, we approach this problem from the perspective of non-Hermitian linear re-
sponse [22, 23]. In recent years, a tremendous interest in non-Hermitian physics has
emerged [137, 138], stimulated by the rapid progress in the experimental generation
and control of non-Hermitian systems [139–144]. Indeed, non-Hermiticity gives rise to
a wealth of new physics with novel (topological) phases and unconventional critical be-
havior [145–151], bearing a vast potential for applications, e.g., in strongly enhanced
quantum sensing [152, 153] or adiabatic quantum optimization [154, 155]. Leverag-
ing on this development, we exploit the linear response to a non-Hermitian perturba-
tion [22, 23] in order to design protocols that permit a direct experimental observation of
the unequal-time anti-commutator. This promotes linear response theory to a unifying
framework for measuring both sides of the FDR independently: in the same way as the
two-time commutator can be extracted from how the system responds to a Hermitian
perturbation, the response to a non-Hermitian perturbation gives access to the two-time
anti-commutator.

The plan for this chapter is as follows. To start with, we derive the relevant formulas
that characterize the linear response to a non-Hermitian perturbation and connect the
results to the desired unequal-time correlation functions. With this general, model-inde-
pendent, and platform-agnostic formulation of non-Hermitian linear response at hand,
we then develop concrete schemes that realize this scenario, focusing on cold atoms in
optical lattices. These protocols are most conveniently phrased as an application of the
quantum Zeno effect [156, 157], combining outcoupling to an ancillary system with a
projection on the Zeno subspace that contains no particles in the ancilla. We illustrate
several variants of the scheme, including possible realizations harnessing engineered dis-
sipation [16, 158], by means of numerical simulations at an example motivated by a
ground-breaking cold-atom experiment [25] — a Bose–Hubbard system that is quenched
from a Mott-insulating initial state to the superfluid phase (see Fig. 2.1), where moni-
toring the FDR allows one to track the system’s evolution towards thermal equilibrium.
Moreover, we put the non-Hermitian linear response approach in perspective with other
methods for measuring the unequal-time anti-commutator, e.g., projective protocols [24,
129, 131–133]. We also examine formal relations to open quantum systems [97, 159],
where non-Hermitian dynamics can be generated by post-selecting individual quantum
trajectories on the absence of quantum jumps [143, 151, 160–162], and establish general
cross-connections between (non-)Hermitian linear response and ancilla-based weak mea-
surements of dynamical correlations [131, 132]. Finally, we discuss experimental error
sources and assess ways to overcome potential challenges for experimental implementa-
tions of the non-Hermitian linear response scheme at the example of Rydberg quantum
simulators.
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2.1. Non-Hermitian Linear Response Theory
In this section, we develop the general non-Hermitian linear response formalism in anal-
ogy to the discussion of standard linear response in Section 1.3. After deriving a coun-
terpart of Kubo’s linear response formula (1.57) for anti-Hermitian perturbations [22,
23], we show how this result gives access to the correlation spectrum on the left-hand
side of the FDR (1.83).

Kubo Formula for Anti-Hermitian Perturbations

In contrast to standard linear response theory (see Section 1.3), we assume that the
system is effectively described by a non-Hermitian Hamiltonian 𝐻(𝑡) = 𝐻0+𝐻1(𝑡), where
𝐻0 is the unperturbed Hermitian Hamiltonian and 𝐻1(𝑡) = −𝑖𝑓(𝑡)𝐴 is an anti-Hermitian
perturbation with a positive semi-definite operator 𝐴 and a non-negative time-dependent
function 𝑓(𝑡). For example, such a scenario arises in the quantum trajectories approach
to open quantum systems [160–162] if the evolution is conditioned on the absence of
quantum jumps [141, 143, 151] [see also paragraph below Eq. (2.45)]. In Section 2.3, we
show how to engineer effective non-Hermitian Hamiltonians based on the quantum Zeno
effect, allowing one to probe the response to such perturbations, even frequency-resolved,
for a wide range of observables. Furthermore, we show in Section 2.4.1 that existing
ancilla-based weak measurement protocols for the unequal-time anti-commutator [131,
132] can also be rephrased in the framework of non-Hermitian linear response.

A quantum state described by the density operator 𝜌(𝑡) evolves in time under the
non-Hermitian Hamiltonian 𝐻(𝑡) according to the von Neumann equation

𝑖ℏ d
d𝑡𝜌 = 𝐻(𝑡)𝜌 − 𝜌𝐻†(𝑡) = [𝐻0, 𝜌] + {𝐻1(𝑡), 𝜌} (2.1)

with initial condition 𝜌(0) = 𝜌0.
In analogy to Section 1.3.1, we first transform to the interaction picture with respect

to the unperturbed (Hermitian) Hamiltonian 𝐻0. The von Neumann equation (2.1) then
reads

d
d𝑡 ̃𝜌 = − 𝑖

ℏ{𝐻̃1(𝑡), ̃𝜌} , (2.2)

where ̃𝜌(𝑡) = e𝑖𝐻0𝑡/ℏ𝜌(𝑡)e−𝑖𝐻0𝑡/ℏ is the density operator and 𝐻̃1(𝑡) = −𝑖𝑓(𝑡) ̃𝐴(𝑡) with
̃𝐴(𝑡) = e𝑖𝐻0𝑡/ℏ𝐴e−𝑖𝐻0𝑡/ℏ is the anti-Hermitian perturbation in the interaction picture.

This equation can equivalently be expressed in integral form as

̃𝜌(𝑡) = ̃𝜌(0) − 𝑖
ℏ ∫

𝑡

0
d𝑡′ {𝐻̃1(𝑡′), ̃𝜌(𝑡′)} (2.3)

with ̃𝜌(0) = 𝜌0. To linear order in the perturbation, we can replace ̃𝜌(𝑡′) in the integrand
by 𝜌0, yielding

̃𝜌(𝑡) = 𝜌0 − 1
ℏ ∫

𝑡

0
d𝑡′ { ̃𝐴1(𝑡′), 𝜌0}𝑓(𝑡′) . (2.4)
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The expectation value of a (Hermitian) observable 𝐵 can be computed in the interaction
picture as Tr[𝐵𝜌(𝑡)] = Tr[𝐵̃(𝑡) ̃𝜌(𝑡)], where 𝐵̃(𝑡) = e𝑖𝐻0𝑡/ℏ𝐵e−𝑖𝐻0𝑡/ℏ, which leads to

Tr[𝐵𝜌(𝑡)] = ⟨𝐵(𝑡)⟩0 − 1
ℏ ∫

𝑡

0
d𝑡′ ⟨{𝐵(𝑡), 𝐴(𝑡′)}⟩0 . (2.5)

As in Section 1.3, the subscript in the expectation value ⟨⋯⟩0 signifies that the Heisenberg
operators evolve under the unperturbed Hamiltonian 𝐻0. The non-Hermiticity of the
perturbed Hamiltonian has the important consequence that the state 𝜌(𝑡) is no longer
normalized: as can be seen by inserting the identity operator for 𝐵 in Eq. (2.5), its norm
decreases with time, to linear order, as

Tr[𝜌(𝑡)] = 1 − 2
ℏ ∫

𝑡

0
d𝑡′ ⟨𝐴(𝑡′)⟩0 𝑓(𝑡′) . (2.6)

Physically, this decrease can be interpreted as the leakage of the wave function into a
complementary state space (see also Section 2.3). To account for this loss of probability,
we consider the normalized expectation value ⟨𝐵(𝑡)⟩ = Tr[𝐵𝜌(𝑡)]/ Tr[𝜌(𝑡)], describing
a post-selected measurement [163]. Combining Eqs. (2.5) and (2.6), the disconnected
correlations drop out to linear order, and we can write the response as

⟨𝐵(𝑡)⟩ = ⟨𝐵(𝑡)⟩0 + ∫
𝑡

0
d𝑡′ 𝜙(NH)

𝐵𝐴 (𝑡, 𝑡′)𝑓(𝑡′) (2.7)

with the “non-Hermitian” response function

𝜙(NH)
𝐵𝐴 (𝑡, 𝑡′) = − 1

ℏ𝜃(𝑡 − 𝑡′)[⟨{𝐵(𝑡), 𝐴(𝑡′)}⟩0 − 2⟨𝐵(𝑡)⟩0⟨𝐴(𝑡′)⟩0] . (2.8)

Here, we have inserted the Heaviside step function 𝜃 to ensure causality of the re-
sponse. The non-Hermitian response function (2.8) is the analog of Kubo’s response
function (1.57) for anti-Hermitian perturbations. This result has first been reported in
Ref. [22] and has been generalized in Ref. [23] to situations where both the unperturbed
system and the perturbation may be non-Hermitian. Remarkably, 𝜙(NH)

𝐵𝐴 is the desired
measurable quantity that gives direct access to the unequal-time anti-commutator (1.74)
by virtue of the relation 𝜙(NH)

𝐵𝐴 (𝑡, 𝑡′) = −2𝜃(𝑡 − 𝑡′)𝑆𝐵𝐴(𝑡, 𝑡′)/ℏ.

Non-Hermitian Linear Response and the Fluctuation–Dissipation Relation

Our goal is to establish a link between the response function (2.8) and the correlation
spectrum appearing on the left-hand side of the FDR (1.83). To this end, similarly
to Eq. (1.60), we define the “non-Hermitian” dynamical susceptibility for a stationary
system, where the response function depends only on the relative time 𝛥𝑡 = 𝑡 − 𝑡′, as
the Fourier transform

𝜒(NH)
𝐵𝐴 (𝜔) = lim

𝜖→0+
∫

∞

−∞
d𝛥𝑡 𝜙(NH)

𝐵𝐴 (𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡 . (2.9)
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We can split this quantity as 𝜒(NH)
𝐵𝐴 = 𝜒′ (NH)

𝐵𝐴 + 𝑖𝜒′′ (NH)
𝐵𝐴 into the components

𝜒′ (NH)
𝐵𝐴 (𝜔) = 1

2[𝜒(NH)
𝐵𝐴 (𝜔) + 𝜒(NH)

𝐴𝐵 (−𝜔)] , (2.10a)

𝜒′′ (NH)
𝐵𝐴 (𝜔) = 1

2𝑖[𝜒(NH)
𝐵𝐴 (𝜔) − 𝜒(NH)

𝐴𝐵 (−𝜔)] , (2.10b)

which we refer to, in analogy to their Hermitian counterparts in Eq. (1.63), as the
reactive and dissipative parts of the non-Hermitian susceptibility, respectively. Impor-
tantly, the reactive component (2.10a) gives access to the correlation spectrum 𝑆𝐵𝐴(𝜔).
To see this, we note that for a stationary system, the symmetry relation in Eq. (1.76a)
becomes 𝑆𝐵𝐴(𝛥𝑡) = 𝑆𝐴𝐵(−𝛥𝑡). Thus, similarly to Eq. (1.77), we find

𝑆𝐵𝐴(𝜔) = lim
𝜖→0+

∫
∞

−∞
d𝛥𝑡 𝑆𝐵𝐴(𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖|𝛥𝑡|

= lim
𝜖→0+

[∫
∞

0
d𝛥𝑡 𝑆𝐵𝐴(𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡 + ∫

∞

0
d𝛥𝑡 𝑆𝐴𝐵(𝛥𝑡)e−𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡]

= lim
𝜖→0+

(−ℏ)
2 [∫

∞

−∞
d𝛥𝑡 𝜙(NH)

𝐵𝐴 (𝛥𝑡)e𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡 + ∫
∞

−∞
d𝛥𝑡 𝜙(NH)

𝐴𝐵 (𝛥𝑡)e−𝑖𝜔𝛥𝑡e−𝜖𝛥𝑡]

= −ℏ𝜒′ (NH)
𝐵𝐴 (𝜔) .

(2.11)

This result allows us to rewrite the FDR (1.83) in thermal equilibrium as

𝜒′ (NH)
𝐵𝐴 (𝜔) = − coth( ℏ𝜔

2𝑘B𝑇 )𝜒′′
𝐵𝐴(𝜔) , (2.12)

which is expressed entirely in terms of the susceptibilities 𝜒′ (NH)
𝐵𝐴 and 𝜒′′

𝐵𝐴, accessible
using non-Hermitian and standard (Hermitian) linear response, respectively. As such,
linear response theory provides an elegant and general framework for independently
probing both sides of the FDR (2.12), which works for arbitrary observables in any
quantum many-body system.

It is worthwhile emphasizing that the outlined derivation of the response to a non-
Hermitian perturbation is by no means restricted to the linear regime only, but, as well-
known in standard response theory [84], can be extended to non-linear responses. In fact,
by calculating the expansions in Eqs. (2.5) and (2.6) to the desired non-linear order, one
can in principle access an infinite hierarchy of nested unequal-time anti-commutators,
order by order. By perturbing the system at multiple sites simultaneously, non-linear
responses could therefore also enable access to (global) many-body operators which are
expected not to thermalize (see Section 2.2.1) and consequently violate the FDR.

Approaching the problem of measuring dynamical correlations from the (non-)Hermi-
tian linear response perspective turns out to be fruitful for a number of reasons. For
one, non-Hermitian linear response is completely agnostic to the way the non-Hermitian
perturbation is implemented and therefore directly benefits from any advancements in
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the field of non-Hermitian physics regarding the generation and control of non-Hermitian
Hamiltonians. Furthermore, it provides an ancilla-free interpretation of common ancilla-
based weak measurement schemes for the unequal-time anti-commutator [131, 132]. So
far, it has not been clear whether ancilla-free formulations of such protocols lend for a
meaningful physical interpretation [132], but, as we show in Section 2.4.1, this is indeed
possible in the light of non-Hermitian linear response. Conversely, any non-Hermitian
perturbation can in principle be realized with the help of an ancilla using only uni-
tary evolution and standard projective measurements, although the required couplings
may not always be straightforward to implement. In Section 2.3, we consider specific
ancilla-based schemes with experimentally feasible system–ancilla couplings, providing
access to dynamical correlations for a wide range of observables. Finally, from a linear
response point of view, it is natural to study responses to periodic perturbations that
directly give access to frequency-resolved susceptibilities. As we will see in Sections 2.3.2
and 2.3.3, this becomes practical within the present framework also for non-Hermitian
perturbations by exploiting the quantum Zeno effect.

2.2. Application: Tracking Quantum Thermalization After
a Quench

In this section, we demonstrate how (non-)Hermitian linear response allows one to access
both sides of the FDR (2.12) independently. Such measurements can be used to either
probe thermalization or the absence thereof [24].

2.2.1. Thermalization in Isolated Quantum Systems

If a system of interest is coupled to a large thermal bath, it will sooner or later al-
ways approach thermal equilibrium with the bath temperature [159], and the FDR will
eventually hold. In contrast, the question whether and how a closed quantum system
thermalizes once it is brought out of equilibrium is much more subtle [26–31].

On the one hand, thermal equilibrium is characterized by only a few macroscopic
parameters, e.g., the global temperature 𝑇 in a canonical ensemble. Thus, starting from
a non-equilibrium initial state, the approach to thermal equilibrium is accompanied
by an effective loss of memory on the microscopic details of the initial condition. On
the other hand, an isolated quantum system undergoes unitary time evolution, which
is completely reversible and thus retains all information on the initial state. In what
follows, we outline how this apparent paradox can be resolved.

Consider a system in a pure1 initial state |𝜓0⟩ evolving under a Hamiltonian 𝐻. The
expectation value of an observable 𝑂 can be written as

⟨𝑂(𝑡)⟩ = ∑
𝑘

|𝑐𝑘|2𝑂𝑘𝑘 + ∑
𝑘≠𝑚

𝑐∗
𝑘𝑐𝑚𝑂𝑘𝑚e𝑖(𝐸𝑘−𝐸𝑚)𝑡/ℏ , (2.13)

1A generalization to mixed states is straightforward.
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where {𝐸𝑘} are the eigenenergies of 𝐻 with corresponding eigenstates {|𝑘⟩}, 𝑐𝑘 = ⟨𝑘|𝜓0⟩
is the overlap of the initial state with the 𝑘-th eigenstate, and 𝑂𝑘𝑚 = ⟨𝑘|𝑂|𝑚⟩ are
the matrix elements of 𝑂 with respect to the energy eigenbasis. Assuming that the
spectrum of 𝐻 is non-degenerate, the long-time average of the oscillating off-diagonal
part of Eq. (2.13) vanishes, such that the time average is given only by the diagonal
part [28],

⟨𝑂(𝑡)⟩ = lim
𝑡→∞

1
𝑡 ∫

𝑡

0
d𝑡′ ⟨𝑂(𝑡′)⟩ = ∑

𝑘
|𝑐𝑘|2𝑂𝑘𝑘 . (2.14)

This result can be thought of as the prediction of the expectation value of 𝑂 in the
so-called diagonal ensemble [28],

⟨𝑂⟩diag = Tr[𝑂𝜌diag] , 𝜌diag = ∑
𝑘

|𝑐𝑘|2 |𝑘⟩⟨𝑘| . (2.15)

Obviously, it explicitly depends on the initial state |𝜓0⟩ via the coefficients |𝑐𝑘|2, which
are constant in time.

In a thermalizing system, we expect the predictions of statistical mechanics to hold.
In a microcanonical ensemble at energy 𝐸, the average of an observable reads

⟨𝑂⟩mc = Tr[𝑂𝜌mc(𝐸)] , 𝜌mc(𝐸) = 1
𝒩 ∑

|𝐸𝑘−𝐸|<𝛿𝐸
|𝑘⟩⟨𝑘| , (2.16)

where 𝛿𝐸 is the width of the microcanonical shell (which is small compared to the
spectral width, but sufficiently large to encompass many states) and the normalization
factor 𝒩 corresponds to the number of terms in the sum. Thermalization in a weak
sense can be defined as the requirement that the long-time average of observables should
coincide with the statistical average in the microcanonical ensemble at the energy set
by the initial state, 𝐸 = ⟨𝜓0|𝐻|𝜓0⟩ [28]. For our purposes, we will adopt a definition of
thermalization in the strong sense: instead of referring to the time average, we require
the instantaneous values of observables to approach the microcanonical prediction and
remain close to it most of the time [28]. By virtue of ensemble equivalence [79], we could
as well consider a different thermal ensemble, e.g., the canonical ensemble, described
by the density matrix (1.68). In this case, the temperature of the canonical ensemble
should be such that the thermal expectation value of the energy matches the energy of
the initial state, Tr[𝐻𝜌(𝑇 )] = ⟨𝜓0|𝐻|𝜓0⟩.

The precise conditions under which thermalization occurs remain yet to be understood
and are subject of extensive research [26–31]. Generally, local observables in generic
interacting quantum many-body systems are expected to thermalize. This means that
unless very special conditions are met, e.g., integrability, localization, or scar states (see
discussion below), all local (or few-body) observables, which only involve the degrees of
freedom of a sufficiently small subsystem, should exhibit thermal behavior. By contrast,
global observables often fail to thermalize, which is the case, e.g., for projectors on
individual energy eigenstates.
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The requirement that any local observable thermalizes (in the strong sense) can be
rephrased as the condition that in the limit of long times and large systems, the re-
duced density matrix of any sufficiently small subsystem 𝒜 approaches that of a thermal
state [26, 164],

𝜌𝒜(𝑡) = Tr ̄𝒜{|𝜓(𝑡)⟩⟨𝜓(𝑡)|} 𝑡→∞−−−→ 𝜌𝒜(𝑇 ) = Tr ̄𝒜[𝜌(𝑇 )] . (2.17)

Here Tr ̄𝒜 denotes the partial trace over the complement of subsystem 𝒜 (i.e., the re-
maining part of the system), |𝜓(𝑡)⟩ = e−𝑖𝐻𝑡/ℏ|𝜓0⟩ is the time-evolved state under the
Hamiltonian 𝐻, and the temperature of the canonical density matrix 𝜌(𝑇 ) is fixed by
the initial state via Tr[𝐻𝜌(𝑇 )] = ⟨𝜓0|𝐻|𝜓0⟩. Equation (2.17) suggests that the system,
in some sense, acts as its own bath: unitary dynamics entangles the subsystem with the
rest of the system, thereby spreading the information on the initial condition across the
entire system such that it becomes inaccessible through local measurements alone. The
entanglement entropy built up in this process can be thought of as playing the role of
the thermodynamic entropy [26]. The subsystem thus thermalizes with respect to the
“bath” provided by the remaining (and typically much larger) part of the system. This
picture is consistent with groundbreaking experiments on ultra-cold bosons in optical
lattices, where expectation values of local observables after a quench have been shown
to reach stationary values in agreement with thermal equilibrium, while retaining the
purity of the global quantum state [25]. Thus, the observation that a closed quantum
system can locally appear thermal is in no contradiction with the fact that globally the
system undergoes unitary time evolution and retains all information about the initial
state.

Eigenstate Thermalization Hypothesis

One way to ensure that the long-time average in Eq. (2.14) agrees with the prediction
of the microcanonical ensemble in Eq. (2.16) for generic initial states is to assume that
the matrix elements 𝑂𝑘𝑘 with respect to the energy eigenbasis match the microcanonical
prediction individually. This key idea leads to the famous eigenstate thermalization hy-
pothesis (ETH) [28, 29, 113, 114], according to which thermalization occurs on the level
of individual eigenstates. It is generally believed that ETH holds for local observables
and eigenstates in the bulk of the spectrum of generic interacting many-body Hamilto-
nians (see exceptions discussed below) [28]. A remarkable consequence of ETH is that
thermal properties of local subsystems can be deduced from just a single eigenstate at
the relevant energy scale [164].

Formally, the ETH can be phrased as an ansatz for the matrix elements of local
observables in the energy eigenbasis [165],

𝑂𝑘𝑚 = 𝑂(𝐸𝑘𝑚)𝛿𝑘𝑚 + e−𝑆(𝐸𝑘𝑚)/2𝑓𝑂(𝐸𝑘𝑚, 𝜔𝑘𝑚)𝑅𝑘𝑚. (2.18)

Here, 𝐸𝑘𝑚 = (𝐸𝑘 + 𝐸𝑚)/2 and 𝜔𝑘𝑚 = 𝐸𝑚 − 𝐸𝑘 are the mean energy and the energy
difference of the involved eigenstates, respectively, 𝑆(𝐸) is the thermodynamic entropy,
and 𝑅𝑘𝑚 are Gaussian random variables with zero mean and unit variance, which are
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real (complex) in presence (absence) of time reversal symmetry [28]. The diagonal part
is characterized by the smooth function 𝑂(𝐸), which coincides with the expectation
value of the observable 𝑂 in the microcanonical ensemble at energy 𝐸. Inserting the
ETH ansatz (2.18) into Eq. (2.14), and expanding 𝑂(𝐸𝑘𝑘) around the mean energy 𝐸 =
⟨𝜓0|𝐻|𝜓0⟩, one easily finds that the long-time average agrees with the microcanonical
prediction (2.16), provided that energy fluctuations are not too large [28]. The second
term in Eq. (2.18), the off-diagonal part of the ETH, describes fluctuations around
equilibrium, which decrease exponentially as the system size and thus the entropy grows.
The smooth function 𝑓(𝐸, 𝜔) is closely connected to unequal-time correlations of the
observable 𝑂. In fact, the ETH implies the validity of the FDR (1.83) for 𝐵 = 𝐴 = 𝑂 [28].
Thus, independent measurements of both sides of the FDR can be used to probe the
off-diagonal part of the ETH, as has been proposed in Ref. [24].

Failure of Thermalization

There are a number of notable scenarios where thermalization (and ETH in particular)
fails. For instance, integrable models feature an extensive number of conserved quanti-
ties, which constrain the dynamics and prevent the system from thermalizing [28, 117].
Instead, these systems relax to so-called generalized Gibbs ensembles [28]. In addition,
disordered systems can escape thermalization due to many-body localization [26, 30].
Besides these paradigmatic examples of deviations from thermal behavior, systems can
also exhibit disorder-free localization due to Hilbert space fragmentation (or Hilbert
space shattering), where dynamical constraints restrict the evolution to a finite number
of disconnected subspaces and thus hinder the approach to equilibrium [166, 167]. This
is also related to the existence of particular (typically highly excited) eigenstates of the
Hamiltonian which violate ETH, so-called quantum many-body scars [31, 168].

Thermalization and Fluctuation–Dissipation Relations

The most straightforward way to probe thermalization is to test whether local observ-
ables reach stationary values that agree with the prediction from thermal equilibrium
ensembles, e.g., the microcanonical prediction in Eq. (2.16). Such a behavior has been
demonstrated in seminal cold-atom experiments on Bose–Hubbard systems consisting of
only six lattice sites [25]. Intriguingly, a large bath (i.e., a large system) is not necessary
in order to observe thermal behavior in isolated quantum systems.

In Section 1.3.3, we have seen that a system in thermal equilibrium must satisfy the
FDR (1.83) for any two observables 𝐴 and 𝐵 across the entire frequency spectrum. The
FDR follows from a special symmetry in imaginary time, the KMS boundary condi-
tion (1.79), which is characteristic to thermal states. For this reason, the testing the
validity of the FDR represents a powerful way to study when and how isolated quantum
many-body systems approach thermal equilibrium [24, 115–118]. As the FDR involves
two-time correlations, demonstrating its fulfillment is a much finer probe of thermal-
ization compared to matching equal-time expectation values with thermal predictions.
On top of that, the FDR yields the effective temperature at which the system thermal-
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izes [24, 115–118]. This can be thought of as an independent way of defining temperature
in the first place, which remarkably does not require any a priori assumptions other than
the FDR itself. In a thermalizing system, the effective temperature obtained from the
FDR should agree with the temperature of a thermal state whose mean energy matches
that of the initial state.

It is important to stress that independent measurements of both sides of the FDR
can be used to reveal both thermalization or the absence thereof [24]. In particular, the
FDR is expected to be violated in the above-mentioned scenarios where thermalization
fails, e.g., due to integrability, localization, or scar states. Moreover, broken FDRs
are characteristic signatures of far-from-equilibrium systems near a non-thermal fixed
point [107, 118]. All of these settings represent promising targets for schemes based
on (non-)Hermitian linear response to reveal either the validity or the breakdown of
the FDR. For illustrative purposes, we focus in what follows on the generic case where
the system does thermalize and the FDR is expected to hold. In the next section, we
illustrate how (non-)Hermitian linear response could enable experiments like those in
Ref. [25] to go one step further and certify thermalization by demonstrating the validity
of the FDR.

Non-Equilibrium Generalizations of the Dynamical Susceptibility. Before turn-
ing to our application of probing FDRs in Bose–Hubbard systems, we need to generalize
the definitions of the dynamical susceptibilities in Eqs. (1.60) and (2.9), characterizing
the frequency-dependent linear response to Hermitian and anti-Hermitian perturbations,
respectively, to non-equilibrium scenarios. Out of equilibrium, the response functions
in Eqs. (1.57) and (2.8) generally depend on the two times 𝑡 and 𝑡′ separately. In this
situation, it is common to introduce Wigner coordinates [169],

𝜏 = 𝑡 + 𝑡′

2 , 𝛥𝑡 = 𝑡 − 𝑡′ , (2.19)

where 𝜏 and 𝛥𝑡 are referred to as central and relative time, respectively. The inverse
transformations are given by 𝑡 = 𝜏 + 𝛥𝑡/2 and 𝑡′ = 𝜏 − 𝛥𝑡/2. The dynamical suscep-
tibility can then be defined out of equilibrium as the Fourier transform of the response
function with respect to the relative time at a fixed central time,

𝜒𝐵𝐴(𝜏, 𝜔) = ∫
2𝜏

−2𝜏
d𝛥𝑡 𝜙𝐵𝐴(𝜏 + 𝛥𝑡

2 , 𝜏 − 𝛥𝑡
2 )e𝑖𝜔𝛥𝑡 . (2.20)

In an analogous way, one can define non-equilibrium generalizations of the non-Hermitian
dynamic susceptibility (2.9) as well as of the Fourier transforms of the symmetric
unequal-time correlations in Eq. (1.73). One advantage of using Wigner coordinates
is that the symmetrized correlations functions in Eqs. (1.74) and (1.75), i.e., the two-
time anti-commutator and commutator, obey useful symmetry relations with respect to
relative time 𝛥𝑡,

𝑆𝐵𝐴(𝜏, 𝛥𝑡) = 𝑆𝐴𝐵(𝜏, −𝛥𝑡) , (2.21a)
𝐾𝐵𝐴(𝜏, 𝛥𝑡) = −𝐾𝐴𝐵(𝜏, −𝛥𝑡) , (2.21b)
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which follow directly from Eq. (1.76). Here, we have used the shorthand notation
𝑆𝐵𝐴(𝜏, 𝛥𝑡) = 𝑆𝐵𝐴(𝑡 = 𝜏 + 𝛥𝑡/2, 𝑡′ = 𝜏 − 𝛥𝑡/2) and similarly for 𝐾𝐵𝐴(𝜏, 𝛥𝑡). Conse-
quently, if we define the Fourier transforms these quantities analogously to Eq. (2.19),
generalizations of the relations in Eqs. (1.77) and (2.11) hold also out of equilibrium,

𝑆𝐵𝐴(𝜏, 𝜔) = −ℏ𝜒′ (NH)
𝐵𝐴 (𝜏, 𝜔) , (2.22a)

𝐾𝐵𝐴(𝜏, 𝜔) = 2𝑖ℏ𝜒′′
𝐵𝐴(𝜏, 𝜔) . (2.22b)

Nonetheless, using Wigner coordinates is not the only way to define the dynamical sus-
ceptibility in a non-equilibrium scenario. For later purposes, we introduce two alternative
conventions for the Fourier transform of the response function out of equilibrium, which
are directly related to certain linear response protocols. After a quench, it is common
to probe the response to an external perturbation applied in form of a delta-like pulse,
𝑓(𝑡) ∝ 𝛿(𝑡 − 𝑡w), after a certain waiting time 𝑡w [118]. According to Eq. (1.56), the time
trace of the linear response then gives access to the response function 𝜙𝐵𝐴(𝑡w + 𝛥𝑡, 𝑡w)
as a function of the relative time 𝛥𝑡. From such measurements, the Fourier transform in
Eq. (2.19) at a fixed central time 𝜏 can be obtained by varying both the waiting time 𝑡w
and the observation time 𝑡 = 𝑡w +𝛥𝑡. It would be simpler to keep the waiting time fixed
and vary only the relative time. This suggests defining the dynamical susceptibility as
the Fourier transform with respect to 𝛥𝑡 at a fixed waiting time 𝑡w,

𝜒𝐵𝐴(𝑡w, 𝜔) = lim
𝜖→0+

∫
∞

−∞
d𝛥𝑡 𝜙𝐵𝐴(𝑡w + 𝛥𝑡, 𝑡w)e𝑖𝜔𝛥𝑡e−𝜖|𝛥𝑡| . (2.23)

As the response function must typically be sampled at a high resolution in 𝛥𝑡 to compute
the Fourier transform with respect to this variable, the susceptibility at a fixed waiting
time can often be evaluated more efficiently than the one at a fixed central time, which
is especially true in numerical simulations, where the integrand in Eq. (2.23) can be
obtained from a single time evolution [170]. Furthermore, the definition of the Fourier
integral in Eq. (2.23) is preferable to the one in Eq. (2.19) at early times, as in the former
the integration domain is unbounded (note that negative 𝛥𝑡 do not contribute due to
causality), while in the latter the integration domain is limited to only a short range of
𝛥𝑡 if the central time is close to the initial time.

As a second alternative, we introduce the dynamical susceptibility evaluated at a fixed
final time 𝑡f ,

𝜒𝐵𝐴(𝑡f , 𝜔) = ∫
𝑡f

−𝑡f

d𝛥𝑡 𝜙𝐵𝐴(𝑡f , 𝑡f − 𝛥𝑡)e𝑖𝜔𝛥𝑡 . (2.24)

This variant turns out to be useful when considering periodic perturbations because it
can directly be obtained from the linear response in this scenario.

It is worthwhile remarking that out of equilibrium, the susceptibilities defined in
Eqs. (2.19), (2.23) and (2.24) generally disagree. In particular, the Fourier transforms
of the symmetrized correlation functions (1.74) and (1.75) at fixed waiting time or fixed
final time can in general not be related to the susceptibility components as in Eq. (2.22)
due to a lack of similar symmetries with respect to the relative time as in Eq. (2.21).
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However, these relations are restored once the system reaches a stationary state, where
two-time correlators depend only on the relative time 𝛥𝑡 and consequently the differ-
ent conventions for the Fourier transform become equivalent, provided the integration
domains are chosen appropriately.

2.2.2. Fluctuation–Dissipation Relations in Bose–Hubbard Systems
We now illustrate how to extract FDRs using (non-)Hermitian linear response. Moti-
vated by the experiment in Ref. [25], we demonstrate this framework for a 1D Bose–
Hubbard chain2 [cf. Eq. (1.42)], described by the Hamiltonian

𝐻BH = −ℏ𝐽
𝐿

∑
ℓ=1

(𝑎†
ℓ𝑎ℓ+1 + 𝑎†

ℓ+1𝑎ℓ) + ℏ𝑈
2

𝐿
∑
ℓ=1

𝑛ℓ(𝑛ℓ − 1) . (2.25)

Here, the index ℓ = 1 … 𝐿 labels optical lattice sites with associated bosonic annihilation,
creation, and number (density) operators 𝑎ℓ, 𝑎†

ℓ, and 𝑛ℓ, respectively. 𝐽 is the strength of
the nearest-neighbor hopping, for which we assume periodic boundary conditions, and 𝑈
is the on-site interaction rate. The numerical simulations presented in this chapter have
been conducted using an adaptive Krylov subspace method to solve the full quantum
dynamics without truncating the local Hilbert space dimension [80, 171–173]. While
previous numerical studies of FDRs in Bose–Hubbard models have focused on density
autocorrelations at large 𝑈/𝐽 and low fillings [24], here we consider quenches into the
superfluid regime (𝑈/𝐽 ∼ 1) at unit filling and explore off-site correlations as a function
of distance.

The linear response protocol is illustrated at the top of Fig. 2.1. We initialize the
system of 𝑁 = 𝐿 bosons in a Mott-insulating state at 𝑈/𝐽 → ∞ and then quench it
at time 𝑡 = 0 into the superfluid phase at 𝑈/𝐽 = 1.5625, chosen consistent3 with the
experiment in Ref. [25]. This quench throws the system heavily out of equilibrium. After
a variable waiting time 𝑡w, we either apply a Hermitian or an anti-Hermitian perturbation
in order access the desired response functions in Eq. (1.57) or Eq. (2.8), respectively.
The perturbation is applied as a rectangular pulse of strength 𝑠 and duration 𝛿𝑡, 𝑓(𝑡) =
ℏ𝑠[𝜃(𝑡 − 𝑡w) − 𝜃(𝑡 − 𝑡w − 𝛿𝑡)]/𝛿𝑡. The exact shape of the pulse is unimportant as long
as the pulse duration is sufficiently short compared to the characteristic time scales of
the system (see Section 2.3.1). In this case, the pulse can be approximated by a delta
function as 𝑓(𝑡) ≈ ℏ𝑠𝛿(𝑡 − 𝑡w). Figure 2.1a shows the time trace of the response to a
(non-)Hermitian perturbation giving access to density auto-correlations (𝐵 = 𝐴 = 𝑛)4,
computed in a system of 𝐿 = 12 sites for a perturbation of strength 𝑠 = 0.05 and
duration 𝐽𝛿𝑡 = 0.01.

The thermalization dynamics of the corresponding dynamic susceptibilities 𝜒′ (NH)

and 𝜒′′ is depicted in Fig. 2.1b. For the purposes of this section, we have evaluated
2We emphasize that our approach does not depend on such a model choice and can be applied to

general quantum systems.
3The results are insensitive to the precise choice of parameters.
4It does not matter at which site the perturbation is applied as the model is translationally invariant

for periodic boundary conditions.
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Figure 2.1.: (Non-)Hermitian linear response protocol for measuring fluctuation–dissipation re-
lations (FDRs), exemplified for a Bose–Hubbard chain. (a) Schematic illustration of the protocol
and response of the density ⟨𝑛(𝑡)⟩ to an (anti-)Hermitian perturbation 𝐻1(𝑡) = −(𝑖)ℏ𝑠𝛿(𝑡 − 𝑡w)𝑛
of strength 𝑠 = 0.05, applied at the waiting time 𝐽𝑡w = 10. (b) Thermalization dynamics of the
dissipative part of the “Hermitian” dynamic susceptibility 𝜒′′

𝑛𝑛(𝑡w, 𝜔) (“commutator”) and the
reactive part of the “non-Hermitian” dynamic susceptibility 𝜒′ (NH)

𝑛𝑛 (𝑡w, 𝜔) (“anti-commutator”).
(c) Dynamic susceptibilities, rescaled according to the FDR (2.12) at early and late waiting
times. The effective temperatures 𝑘B𝑇 /ℏ𝐽 = {4.5, 4.2} for 𝐽𝑡w = {0.1, 10}, respectively, are
determined by Eq. (2.26) using the least squares method. The FDR is clearly violated at early
times, but it is restored at late times when the system has thermalized.

the susceptibilities at fixed waiting time 𝑡w according to Eq. (2.23). To regulate the
Fourier integrals, we have used an exponential filter of characteristic frequency 𝛾/𝐽 = 0.2
[corresponding to a finite value of 𝜖 in Eq. (2.23)], which accounts for a finite spectral
resolution in experiments. As discussed in Section 1.3.2, the susceptibility components
for density correlations are real due to homogeneity and isotropy of the periodic 1D
Bose–Hubbard chain. 𝜒′ (NH) is symmetric in 𝜔 and grows as a broad central peak with
small wings of opposite sign that gradually disappear as 𝑡w increases, while 𝜒′′ is anti-
symmetric and develops characteristic peaks around non-zero frequencies. To assess
whether the two functions satisfy the FDR, we use the least squares method to find the
effective temperature 𝑇 that best relates the susceptibilities via the FDR (2.12), i.e., for
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a fixed waiting time 𝑡w,

𝑇 = arg min
𝛩

∫ d𝜔 [−𝜒′ (NH) tanh( ℏ𝜔
2𝑘B𝛩) − 𝜒′′]

2
. (2.26)

In Fig. 2.1c, one can see that the FDR is clearly violated at early times, i.e., there exists
no global value of 𝑇 such that Eq. (2.12) holds, but at later times, the agreement is
remarkable and supports the interpretation that the system undergoes thermalization.

Off-Site Density Correlations
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Figure 2.2.: Thermalization dynamics and FDRs for off-site density correlations in a 1D Bose–
Hubbard chain. (a) Dynamical susceptibility 𝜒′ (NH) (red) and 𝜒′′ (blue) for several waiting
times 𝑡w and distances 𝑑. (b) Comparison of FDRs at early and late waiting times. The quan-
tity 𝜒′ (NH) has been rescaled according to the FDR (2.12) using the least squares result for the
effective temperature indicated in the plots. At small distances and late times, the curves overlap
well, while at larger distances discrepancies persist even after long times.

A distinct feature of the FDR in equilibrium is that it holds across the entire fre-
quency spectrum and for any pair of observables 𝐴 and 𝐵. To confirm this prediction
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for our model system, we investigate 𝜒′ (NH) and 𝜒′′ for off-site density correlations cor-
responding to 𝐴 = 𝑛ℓ and 𝐵 = 𝑛ℓ+𝑑 as a function of the distance 𝑑. These quantities
are shown in Fig. 2.2a at different waiting times for all distinct distances in the periodic
chain. As in the case of density auto-correlations (𝑑 = 0) already discussed above, we
observe the development of stationary spectra after times on the order of 𝐽−1, where
larger distances tend to reach their stationary distribution slightly delayed, in line with
intuition. Interestingly, the slope of 𝜒′′ at 𝜔 = 0 changes sign from positive at 𝑑 = 0 to
negative at 𝑑 ≠ 0. In fact, such a behavior is enforced by symmetry. As a consequence
of particle number conservation, the symmetrized correlation functions (1.74) and (1.75)
satisfy the sum rules

∑
ℓ

𝑆𝑛ℓ𝑛ℓ′ (𝑡, 𝑡′) = 1
2⟨{𝑁, 𝑛ℓ′(𝑡′)}⟩ − 𝑁⟨𝑛ℓ′(𝑡′)⟩ = 0 , (2.27a)

∑
ℓ

𝐾𝑛ℓ𝑛ℓ′ (𝑡, 𝑡′) = ⟨[𝑁, 𝑛ℓ′(𝑡′)]⟩ = 0 . (2.27b)

In particular, their respective Fourier transforms must sum to zero for any frequency 𝜔,
as do the susceptibility components 𝜒′ (NH)

𝑛ℓ𝑛ℓ′ and 𝜒′′
𝑛ℓ𝑛ℓ′ . As a consequence, the shape of

the density auto-correlation spectrum in Fig. 2.5a (𝑑 = 0) implies that at least for some
distance 𝑑 ≠ 0 the slope must be reversed.

Figure 2.2b shows the extracted FDRs at early and late waiting times for the individual
distances. The susceptibility 𝜒′ (NH) has been rescaled according to the FDR (2.12) using
the indicated effective temperature 𝑇 obtained from the least squares fit in Eq. (2.26).
At early waiting times, there is no global value of 𝑇 to make 𝜒′ (NH) and 𝜒′′ overlap, and
the FDR is clearly violated (in some cases, an attempted fit can even yield unphysical
negative temperatures). By contrast, at late waiting times, 𝜒′ (NH) and 𝜒′′ fulfill the
FDR, and at small distances, the extracted effective temperatures are consistent with
the temperature 𝑘B𝑇 /ℏ𝐽 = 4.27 of a thermal state at the same energy density as the
initial state (see discussion below). At larger distances, some peaks in Fig. 2.2b exhibit
clear deviations which persist even after very long times.

To quantify deviations from the FDR (2.12), we introduce the absolute error

𝜖abs = ∥−𝜒′ (NH) tanh( ℏ𝜔
2𝑘B𝑇 ) − 𝜒′′∥

2
, (2.28)

where ‖⋅‖2 denotes the 𝐿2 norm, which we define by

‖𝑓‖2
2 = 1

|𝛺| ∫
𝛺

d𝜔 |𝑓(𝜔)|2 . (2.29)

Unless stated otherwise, the errors have been computed on the fixed integration domain
𝛺 = {𝜔 | 𝜔/𝐽 ∈ [−10, 10]}. The relative error is obtained by normalizing the absolute
error with respect to the sum of the individual norms,

𝜖rel = 𝜖abs
‖𝜒′ (NH) tanh(ℏ𝜔/2𝑘B𝑇 )‖2 + ‖𝜒′′‖2

. (2.30)
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Figure 2.3.: Analysis of deviations from the FDR for density correlations in a 1D Bose–Hubbard
chain. (a) Comparison of the dynamic susceptibilities 𝜒′′

𝑛ℓ𝑛ℓ+𝑑
and 𝜒′ (NH)

𝑛ℓ𝑛ℓ+𝑑 , rescaled according
to the FDR (2.12), for different waiting times 𝑡w as a function of the spatial distance 𝑑. At
early times, clear deviations are visible, but for late times, the two quantities agree and the
FDR (2.12) is fulfilled. (b) Least squares value of the effective temperature 𝑇 , (c) relative error,
and (d) absolute error of the FDR as a function of the waiting time 𝑡w for several distances 𝑑. At
small distances, after times on the order of 𝐽−1, the effective temperature approaches a constant
value consistent with the prediction ⟨𝐻BH⟩𝑇 = 𝐸 for a thermal state (grey dashed line), and the
relative error becomes small. As the distance increases, the relative error grows, but the absolute
deviation remains small.

The errors defined this way act as a figure of merit measuring how well the FDR (2.12)
is fulfilled at a particular instance of time.

In Fig. 2.3, we analyze how well the FDR is fulfilled as a function of both the waiting
time 𝑡w and the distance 𝑑. Figure 2.3a summarizes the detailed data shown in Fig. 2.2b
and illustrates the initial violation and eventual fulfillment of the FDR qualitatively.
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Here, 𝜒′ (NH) has been rescaled according to Eq. (2.12) with the best-fitting effective
temperature 𝑇 obtained from Eq. (2.26) for each configuration (𝑡w, 𝑑). In Figs. 2.3c
and 2.3d, it can be seen that for small distances, the relative error becomes vanishingly
small after waiting times on the order of 𝐽−1, while for larger distances, the error tends
to drop later and fluctuates around a non-zero offset. A similar behavior is exhibited
by the effective temperature (see Fig. 2.3b): at small distances and late times, the
temperatures are approximately constant and agree with each other, while this is no
longer true for larger distances. Only in the former case, where the relative error is small,
the effective temperature can be attributed the physical meaning of the temperature at
which the subsystem degrees of freedom thermalize. This temperature is consistent with
the one obtained for a thermal state at the equivalent energy density using the condition
⟨𝐻BH⟩𝑇 = 𝐸 (grey dashed line at 𝑘B𝑇 /ℏ𝐽 = 4.27 in Fig. 2.3b, calculated for 𝐿 = 8
using exact diagonalization), where ⟨⋯⟩𝑇 denotes the expectation value with respect to
a canonical ensemble at temperature 𝑇 , and 𝐸 is the energy of the initial state after the
quench (see Section 2.2.1).

While global many-body observables are expected to violate the FDR due to the
purity of the global quantum state, one would expect two-site observables like the off-
site density correlations shown in Fig. 2.3 to thermalize and thus satisfy the FDR for
sufficiently large systems and late times, regardless of the distance between the two sites
in real space. Although the absolute error gradually decreases with increasing distance
due to the lower signal strength, relative discrepancies persist even after very long times.
The observed deviations in Figs. 2.2 and 2.3 may therefore be an artifact of the finite
system size, which we investigate in what follows.

Finite-Size Behavior
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Figure 2.4.: Finite-size behavior of the deviations from the FDR in a 1D Bose–Hubbard chain.
(a) Relative error and (b) absolute error as a function of the particle number 𝑁 (= number of
lattice sites 𝐿 at unit filling) at waiting time 𝐽𝑡w = 10 for all possible distances in the periodic
chain. Both errors clearly decrease with increasing system size.

To study the influence of finite-size effects, we consider the error as a function of the
particle number 𝑁 (corresponding to the number of lattice sites 𝐿 at unit filling) up
to 𝑁 = 𝐿 = 16. Figure 2.4 shows the relative and absolute errors at the moderate
waiting time 𝐽𝑡w = 10 for all possible distances 𝑑 in the respective systems. Note that
for a periodic chain of length 𝐿, the maximum distance is 𝑑 = ⌊𝐿/2⌋. The Fourier

49



integrals have been truncated at 𝐽𝛥𝑡 = 30 using an exponential filter of characteristic
frequency 𝛾/𝐽 = 0.1. Both the relative and the absolute errors for all distances decrease
as the system size increases until the relative error saturates at a value close to zero.
Although the exponential growth of the Hilbert space dimension makes an exact numer-
ical treatment of even larger systems inaccessible, the clear trend in Fig. 2.4 suggests
that the deviations from the FDR in Figs. 2.2 and 2.3 at large distances for 𝐿 = 12 are
likely due to finite-size effects. Apart from finite-size errors, numerical errors induced
in the course of the data analysis, e.g., integration and truncation errors in the evalu-
ation of Fourier integrals or distortions caused by the frequency filter, may contribute
to the deviation. However, it turns out that improving on these points does not alter
the picture qualitatively. Our analysis thus confirms the expectation that the two-site
subsystems relevant for off-site density correlations thermalize and thus fulfill the FDR,
provided the system is not too small.

Two-Dimensional Bose–Hubbard System
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Figure 2.5.: Same as Fig. 2.2, but for a 2D Bose–Hubbard system. At long waiting times,
the dynamic susceptibility 𝜒′′ (blue) agrees well with 𝜒′ (NH) (red) after the latter is rescaled
according to the FDR (2.12).

To show that our conclusions for the 1D Bose–Hubbard chain are generic, we study
the analogous quench scenario in a 2D Bose–Hubbard system. We consider a system of
4 × 4 lattice sites with 𝑁 = 16 particles (unit filling) and periodic boundary conditions
in each direction. The larger system size compared to the 1D setting above allows us to
support the conjecture that the FDR is better fulfilled as the system size increases. As
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Figure 2.6.: Same as Fig. 2.3, but for a 2D Bose–Hubbard system. After waiting times 𝑡w on the
order of 𝐽−1, the relative error (c) of the FDR remains small for all distinct lattice distances 𝑑.

before, we initialize the system in a Mott-insulating state and quench at time 𝑡 = 0 into
the superfluid phase at 𝑈/𝐽 = 1.5625.

Figures 2.5 and 2.6 show the same analysis for the 2D system as carried out in Figs. 2.2
and 2.3, respectively, for the 1D chain. Due to the periodic boundary conditions and the
isotropy of the hopping, the curves fall into five classes corresponding to distances 𝑑 =
0 … 4 between the perturbed and probed lattice site. Note that these distances do not
correspond to the physical distances in the 4 × 4 lattice, but to the minimum number
of hopping events connecting the two sites. Similarly to the 1D setting, the FDR is
violated at short waiting times, indicated by the large relative error in Fig. 2.6c. After
times on the order of 𝐽−1, the errors decrease dramatically and the FDR is fulfilled
for all accessible distances with only a minor trend towards larger relative errors for
larger distances. The remarkable agreement between 𝜒′′ and the rescaled 𝜒′ (NH) at
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late times is also evident from Fig. 2.5b. The effective temperatures in Fig. 2.6b for
the individual distances reach approximately constant values that mutually agree up to
deviations of about ten percent or less. Furthermore, the effective temperatures are close
to the temperature 𝑘B𝑇 /ℏ𝐽 = 8.91 of a thermal state at the same energy density as the
initial state (calculated for a 3 × 3 system using exact diagonalization). This supports
our conclusion from before that the deviations observed for smaller systems are likely
due to finite-size effects, while sufficiently large systems thermalize as expected.

Having illustrated how the FDR becomes accessible via (non-)Hermitian linear re-
sponse, we now turn to the question of how to realize the corresponding non-Hermitian
perturbations experimentally.

2.3. Realization of Non-Hermitian Linear Response

There exists a growing body of work that describes how non-Hermitian physics can be
generated in quantum many-body systems [137, 138]. Non-Hermitian Hamiltonians nat-
urally arise in the context of dissipative quantum systems [97, 159], where they govern
the evolution of individual quantum trajectories conditioned on the absence of quantum
jumps [160–162]. This way, it is possible to harness natural sources of dissipation in
order to explore novel non-Hermitian physics [141, 143, 151]. Over the years, ever better
techniques of screening experiments as much as possible from any sources of dissipation
have been developed, with the goal of observing clean unitary dynamics in isolated quan-
tum systems. This bears the potential to re-introduce channels of engineered dissipation
using specifically designed control schemes.

In this section, we introduce an ancilla-based protocol that relies entirely on synthetic
sources of dissipation in order to realize an effective non-Hermitian Hamiltonian. The
perturbation can selectively be applied as a short pulse or under continuous modulation
of its strength, allowing one to probe frequency-dependent responses in the same way as
in standard linear response scenarios. Moreover, the choice of system–ancilla coupling is
both flexible and experimentally feasible, giving access to a wide range of observables.

Figure 2.7 gives an overview of the scheme, which is most conveniently phrased as
an application of the quantum Zeno effect [156, 157]. In its basic form, the quantum
Zeno effect describes the phenomenon that frequent measurements can keep a quantum
system in a certain eigenstate for an infinite amount of time. If the measurements act
only on a certain subsystem, the evolution is effectively constrained to a part of the
Hilbert space corresponding to a certain measurement outcome, but non-trivial dynam-
ics is still possible within this so-called Zeno subspace. In our case, the total Hilbert
space comprises the target system plus an ancillary system, and the relevant Zeno sub-
space is spanned by all states without any particles in the ancilla. The protocol for
realizing non-Hermitian linear response works as follows. Depending on the desired per-
turbation operator 𝐴, the relevant subsystem, e.g., a single site or two neighboring sites
in an optical lattice, is coherently coupled to the initially empty ancilla, as depicted in
Figs. 2.7a and 2.7b. A measurement of the ancilla population projects the system on
the subspace with a definite number of particles in the ancilla. As will become clear
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Figure 2.7.: Realization of an effective non-Hermitian Hamiltonian using the quantum Zeno
effect, illustrated for an optical lattice. (a) Coupling a single lattice site ℓ to an ancilla gives
rise to a perturbation by the density operator 𝐴 = 𝑛ℓ at that site. (b) A perturbation by the
hopping operator 𝑎†

ℓ1
𝑎ℓ2

+ 𝑎†
ℓ2

𝑎ℓ1
can be achieved by coupling two sites ℓ1 and ℓ2 simultaneously

to an ancilla. (c) Single step in the quantum Zeno evolution. The probability 𝑝(0) of detecting
no particles in the ancilla gradually decreases over time (red). A measurement of the ancilla
population, post-selected on the condition that the ancilla is empty (inset), projects the system
on the empty-ancilla subspace. The coupled evolution plus projection corresponds to an effective
non-Hermitian perturbation (NHH, black). (d) When the projective measurement is performed
frequently as compared to the strength of the coherent coupling 𝛺, the system plus ancilla is
kept in the quantum Zeno regime for a prolonged period of time. The resulting pulsed Zeno
evolution (red) is interpolated by the evolution under an effective non-Hermitian Hamiltonian
(NHH, black). Alternatively, the repeated measurements can be substituted by strong engineered
dissipation on the ancilla. The light grey lines show 20 trajectories corresponding to different
realizations of engineered classical dephasing noise 𝜉(𝑡) on the ancilla, whose ensemble average
(grey dashed line) approximates an effective non-Hermitian evolution.

further below, non-Hermitian dynamics is realized by post-selecting those measurement
outcomes where the ancilla remains empty (see Fig. 2.7c). Repeating this measure-
ment frequently gives rise to a quantum Zeno effect: in the quantum Zeno limit, as
the measurement frequency tends to infinity, the probability of populating the ancilla
vanishes. If, instead, the measurement frequency is finite, there is a finite probability of
populating the ancilla. As illustrated in Fig. 2.7d, this leads to a “pulsed” leakage of
probability from the subspace where the ancilla is empty to a complementary subspace
with non-vanishing ancilla population. Instead of the pulsed Zeno effect, we can also
use the continuous Zeno effect [157], which can be realized by substituting the repeated
measurements with strong engineered dissipation on the ancilla [158]. This has the ad-
vantage of not requiring any non-destructive measurements during the evolution, but
only a single post-selected measurement at the final evolution time. Both the pulsed
Zeno evolution and the ensemble average over many noise realizations in the continu-
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ous case can be described by an effective non-Hermitian Hamiltonian [157, 174, 175]
(see Fig. 2.7d), which realizes the desired anti-Hermitian perturbation for measuring the
unequal-time anti-commutator.

While the scheme can be implemented on various platforms, for the sake of concrete-
ness, we focus here on bosons in optical lattices, where the ancilla may correspond to
an auxiliary lattice site or an additional internal state. A crucial experimental require-
ment is the ability to distinguish an empty ancilla from one with non-zero population,
which enables the projection on the empty-ancilla Zeno subspace. This requirement is
met, for instance, by modern quantum gas microscopes, which reach both single-site and
single-particle resolution [18, 19].

It is instructive to first consider a single step in the Zeno evolution consisting of a short
coupling pulse followed by a projection, as depicted in Fig. 2.7c. It turns out that this
scenario corresponds to applying a delta-like perturbation suitable for measuring the time
trace of the non-Hermitian response function (2.8) like in Section 2.2.2. Subsequently,
we explain how the quantum Zeno effect enables a prolonged evolution under a non-
Hermitian Hamiltonian, focusing on the scenario with strong engineered dephasing noise
that induces a continuous Zeno effect (cf. Fig. 2.7d).

We benchmark variants of the scheme for measurements in both time and frequency
domain at the example of the Bose–Hubbard chain introduced in Section 2.2.2. Bose–
Hubbard systems subject to dissipation have been extensively studied with the goal of
exploring the rich dynamics of open quantum systems [151, 176, 177], whereas here, we
use engineered dissipation as a tool [16] to probe dynamical correlations in closed systems
via non-Hermitian linear response. In Section 2.4, we compare our approach with other
protocols for measuring unequal-time anti-commutators, including ancilla-based weak
measurement schemes [131, 132] and projective protocols [24, 129, 131–133], and discuss
potential sources of errors as well as strategies how to mitigate them.

2.3.1. Non-Hermitian Linear Response as a Single Step in the
Quantum Zeno Evolution

In this section, we discuss a single step in the Zeno evolution consisting of coupling
to the ancilla and a projection on the empyt-ancilla subspace. Using time-dependent
perturbation theory, we show that this process corresponds to applying an effective
non-Hermitian delta-like perturbation as in Section 2.2.2 and allows one to access the
unequal-time anti-commutator (2.8) in time domain.

Derivation of the scheme

For the sake of concreteness, we formulate the protocol for a bosonic lattice system (such
as the Bose–Hubbard model discussed in Section 2.2.2) as well as an ancilla with bosonic
degrees of freedom. We emphasize, however, that the protocol is general and immediately
applies to other scenarios like fermions, spin systems, or continuous systems.
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System–ancilla coupling. We consider a system–ancilla coupling Hamiltonian of the
form

𝐻cpl = ℏ𝛺(𝑏†𝑎 + 𝑎†𝑏) . (2.31)

where 𝑎 (𝑎†) and 𝑏 (𝑏†) represent the bosonic annihilation (creation) operators of the
system mode to be probed and the ancilla, respectively, and 𝛺 is the coupling strength.
In the coupling scheme depicted in Fig. 2.7a, the operator 𝑎 represents a single lattice
site ℓ, giving rise to an effective anti-Hermitian perturbation by the density (number)
operator 𝐴 = 𝑛ℓ = 𝑎†

ℓ𝑎ℓ, as will become clear below. The scheme in Fig. 2.7b couples two
lattice sites ℓ1 and ℓ2, which may or may not be nearest neighbors, simultaneously to the
ancilla. This corresponds to the replacement 𝑎 → 𝑎ℓ1

+ 𝑎ℓ2
in Eq. (2.31) and produces a

non-Hermitian perturbation by the operator 𝐴 = 𝑛ℓ1
+ 𝑛ℓ2

+ 𝑎†
ℓ1

𝑎ℓ2
+ 𝑎†

ℓ2
𝑎ℓ1

. This type
of perturbation can therefore be used to access FDRs for the hopping operator 𝑎†

ℓ1
𝑎ℓ2

+
𝑎†

ℓ2
𝑎ℓ1

, as demonstrated below for nearest neighbors. It is possible to consider even more
general setups. For example, laser-assisted tunneling [178] can be used to add a relative
phase between the two couplings in Fig. 2.7b, which gives rise to perturbations by the
current operator. In Section 3.1, we will use this idea to develop schemes for measuring
currents and current correlations. Furthermore, coupling a multitude of sites to one or
more ancillas enables global perturbations by sums of local operators. The general form
of the accessible perturbations is given further below in this section.

Single Zeno step. The protocol starts by evolving the initial state 𝜌0 under the
unperturbed Hamiltonian 𝐻0 up to the waiting time 𝑡w, at which the perturbation is
applied. Before the coupling, the state is given by 𝜌(𝑡w) = e−𝑖𝐻0𝑡w/ℏ𝜌0e𝑖𝐻0𝑡w/ℏ. The
coupled system evolves under the total Hamiltonian 𝐻 = 𝐻0 + 𝐻cpl (for simplicity,
we assume the ancilla to have no internal dynamics). During one Zeno step, the state
changes, up to a normalization, as [157]

𝜌(𝑡w) → 𝜌′(𝑡w + 𝛿𝑡) = 𝑃𝑈(𝛿𝑡)𝜌(𝑡w)𝑈†(𝛿𝑡)𝑃 . (2.32)

First, the coupled system evolves unitarily for a short time 𝛿𝑡, described by the time
evolution operator 𝑈(𝛿𝑡) = exp(−𝑖𝐻𝛿𝑡/ℏ). Second, a measurement of the ancilla pop-
ulation, post-selected on the condition that no particles are detected in the ancilla,
projects the system on the empty-ancilla Zeno subspace, as expressed by the projection
operator 𝑃 . Let us now analyze these two processes in detail and derive the effective
non-Hermitian Hamiltonian generated this way.

Unitary coupled evolution. It is convenient to work in the interaction picture with
respect to the unperturbed Hamiltonian 𝐻0. Time evolution is then governed by the
von Neumann equation

𝑖ℏ d
d𝑡 ̃𝜌(𝑡) = [𝐻̃cpl(𝑡), ̃𝜌(𝑡)] , (2.33)

where ̃𝜌(𝑡) = e𝑖𝐻0𝑡/ℏ𝜌(𝑡)e−𝑖𝐻0𝑡/ℏ and 𝐻̃cpl(𝑡) = ℏ𝛺[ ̃𝑎†(𝑡)𝑏 + 𝑏† ̃𝑎(𝑡)], along with ̃𝑎(𝑡) =
e𝑖𝐻0𝑡/ℏ𝑎e−𝑖𝐻0𝑡/ℏ, denote the density operator and the coupling Hamiltonian in the inter-
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action picture, respectively. Rewriting Eq. (2.33) as an integral equation and substitut-
ing the left-hand side into the right-hand side, we arrive at

̃𝜌(𝑡) = ̃𝜌(𝑡w)− 𝑖
ℏ ∫

𝑡

𝑡w

d𝑡′[𝐻̃cpl(𝑡′), ̃𝜌(𝑡w)]− 1
ℏ2 ∫

𝑡

𝑡w

d𝑡′ ∫
𝑡′

𝑡w

d𝑡′′[𝐻̃cpl(𝑡′), [𝐻̃cpl(𝑡′′), ̃𝜌(𝑡′′)]] .

(2.34)
For the discussion of a single step in the quantum Zeno evolution, we consider a pulse5

of duration 𝛿𝑡 much shorter than the characteristic time scales of 𝐻0. We can then ap-
proximate ̃𝜌(𝑡′′) ≈ ̃𝜌(𝑡w) and 𝐻̃cpl(𝑡′) ≈ 𝐻̃cpl(𝑡′′) ≈ 𝐻̃cpl(𝑡w) in the integrands, yielding

̃𝜌(𝑡w + 𝛿𝑡) = ̃𝜌(𝑡w) − 𝑖
ℏ𝛿𝑡[𝐻̃cpl(𝑡w), ̃𝜌(𝑡w)]

− 𝛿𝑡2

2ℏ2 ({𝐻̃2
cpl(𝑡w), ̃𝜌(𝑡w)} − 2𝐻̃cpl(𝑡w) ̃𝜌(𝑡w)𝐻̃cpl(𝑡w)) + 𝒪(𝛿𝑡3) .

(2.35)

We require the ancilla to be empty before the coupling. More specifically, we assume
that the combined state of system and ancilla at the waiting time 𝑡w is given by the
product state ̃𝜌(𝑡w) = ̃𝜌S(𝑡w) ⊗ ̃𝜌A, where the ancilla is in the pure bosonic6 vacuum
state ̃𝜌A = |0⟩⟨0|. Inserting this state into Eq. (2.35), we obtain

̃𝜌(𝑡w + 𝛿𝑡) = ̃𝜌S(𝑡w) ⊗ |0⟩⟨0| − 𝑖𝛺𝛿𝑡[ ̃𝑎(𝑡w) ̃𝜌S(𝑡w) ⊗ |1⟩⟨0| − h.c.]

−(𝛺𝛿𝑡)2

2 [{𝑛̃(𝑡w), ̃𝜌S(𝑡w)} ⊗ |0⟩⟨0| − 2 ̃𝑎(𝑡w) ̃𝜌S(𝑡w) ̃𝑎†(𝑡w) ⊗ |1⟩⟨1|

+
√

2( ̃𝑎2(𝑡w) ̃𝜌S(𝑡w) ⊗ |2⟩⟨0| + h.c.)] ,

(2.36)

where 𝑛̃(𝑡w) = ̃𝑎†(𝑡w) ̃𝑎(𝑡w) is the number operator and h.c. denotes the Hermitian con-
jugate.

Measurement of the ancilla population. After coupling the system to the ancilla,
a single step in the Zeno evolution is completed by measuring the ancilla population,
projecting the state on a subspace with a definite number of particles in the ancilla. Let
𝑃𝑛 = 𝟙 ⊗ |𝑛⟩⟨𝑛| denote the projection operator on the subspace with 𝑛 particles in the
ancilla. Since [𝑃𝑛, 𝐻0] = 0, the measurement can optionally be deferred up to the final
observation time (cf. Ref. [131]). The projected states read

𝑃0 ̃𝜌(𝑡w + 𝛿𝑡)𝑃0 = [ ̃𝜌S(𝑡w) − 𝑠{𝑛̃(𝑡w), ̃𝜌S(𝑡w)}] ⊗ |0⟩⟨0| , (2.37a)
𝑃1 ̃𝜌(𝑡w + 𝛿𝑡)𝑃1 = 2𝑠 ̃𝑎(𝑡w) ̃𝜌S(𝑡w) ̃𝑎†(𝑡w) ⊗ |1⟩⟨1| , (2.37b)

5For simplicity, we consider a rectangular pulse of duration 𝛿𝑡. However, the pulse shape is in fact
arbitrary as long as 𝛿𝑡 is sufficiently short. That is, we may equivalently substitute 𝐻cpl → 𝑔(𝑡)𝐻cpl
for any function 𝑔(𝑡) with compact support on the interval [𝑡w, 𝑡w + 𝛿𝑡], normalized such that
∫𝑡w+𝛿𝑡
𝑡w

d𝑡 𝑔(𝑡) = 𝛿𝑡.
6For concreteness, we focus here on bosonic systems, but the derivation for fermions proceeds analo-

gously and yields the same result for the unequal-time anti-commutator.
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where 𝑠 = (𝛺𝛿𝑡)2/2 is the effective coupling strength, and 𝑃𝑛 ̃𝜌(𝑡w +𝛿𝑡)𝑃𝑛 = 0 for 𝑛 ≥ 2,
up to second order in 𝛿𝑡. The probability of detecting 𝑛 particles in the ancilla is then
given by 𝑝(𝑛) = Tr[𝑃𝑛 ̃𝜌(𝑡w + 𝛿𝑡)𝑃𝑛], which yields

𝑝(0) = 1 − 2𝑠⟨𝑛(𝑡w)⟩0 , (2.38a)
𝑝(1) = 2𝑠⟨𝑛(𝑡w)⟩0 , (2.38b)

and 𝑝(𝑛 ≥ 2) = 0, up to second order in 𝛿𝑡. Here, we have used Tr[ ̃𝜌(𝑡w)𝑛̃(𝑡w)] =
Tr[𝜌0𝑛(𝑡w)] = ⟨𝑛(𝑡w)⟩0.

Remarkably, the result in Eq. (2.37a) can, to leading order in the coupling, be ex-
pressed as the evolution under an effective non-Hermitian Hamiltonian,

𝑃0 ̃𝜌(𝑡w + 𝛿𝑡)𝑃0 = e−𝑖𝐻̃eff(𝑡w)𝛿𝑡 ̃𝜌(𝑡w)e𝑖𝐻̃†
eff(𝑡w)𝛿𝑡, (2.39)

with 𝐻̃eff(𝑡) = −𝑖ℏ𝑠 ̃𝐴(𝑡)/𝛿𝑡 and the perturbation operator 𝐴 = 𝑛 = 𝑎†𝑎.
According to Lüders’ rule [179], the conditional state, given that 𝑛 particles have been

detected in the ancilla, is obtained by normalizing the projected states (2.37) by the
respective probabilities (2.38), i.e., ̃𝜌(𝑡w + 𝛿𝑡 | 𝑛) = 𝑃𝑛 ̃𝜌(𝑡w + 𝛿𝑡)𝑃𝑛/𝑝(𝑛). Up to leading
order in 𝑠, we find

̃𝜌(𝑡w + 𝛿𝑡 | 0) = ̃𝜌(𝑡w) − 𝑠[{𝑛̃(𝑡w), ̃𝜌(𝑡w)} − 2⟨𝑛(𝑡w)⟩0 ̃𝜌(𝑡w)] , (2.40a)

̃𝜌(𝑡w + 𝛿𝑡 | 1) = ̃𝑎(𝑡w) ̃𝜌(𝑡w) ̃𝑎†(𝑡w)
⟨𝑛(𝑡w)⟩0

, (2.40b)

where we have discarded (or traced out) the ancilla and omitted the subscripts indicating
system density operators. By contrast, if the ancilla population is not measured or if
the measurement outcomes are ignored, the state after the coupling is instead described
by the unconditional density operator

̃𝜌(𝑡w + 𝛿𝑡) = ∑
𝑛

𝑝(𝑛) ̃𝜌(𝑡w + 𝛿𝑡 | 𝑛)

= ̃𝜌(𝑡w) − 𝑠[{𝑛̃(𝑡w), ̃𝜌(𝑡w)} − 2 ̃𝑎(𝑡w) ̃𝜌(𝑡w) ̃𝑎†(𝑡w)] ,
(2.41)

which can be obtained directly from Eq. (2.36) after tracing out the ancilla.

Non-Hermitian linear response. For times 𝑡 > 𝑡w + 𝛿𝑡, the coupling is switched
off and the system evolves solely under the Hamiltonian 𝐻0. According to Eq. (2.33),
this evolution is trivial in the interaction picture, such that ̃𝜌(𝑡) = ̃𝜌(𝑡w + 𝛿𝑡). The
(unnormalized) expectation value of an observable 𝐵 with respect to the state (2.37a)
projected on the empty-ancilla subspace reads

Tr[𝐵 𝑃0𝜌(𝑡)𝑃0] = Tr[𝐵̃(𝑡)𝑃0 ̃𝜌(𝑡)𝑃0]
= Tr[𝐵̃(𝑡) ̃𝜌(𝑡w)] − 𝑠 Tr[𝐵̃(𝑡){𝑛̃(𝑡w), ̃𝜌(𝑡w)}]
= Tr[𝐵(𝑡)𝜌0] − 𝑠 Tr[𝐵(𝑡){𝑛(𝑡w), 𝜌0}]
= ⟨𝐵(𝑡)⟩0 − 𝑠⟨{𝐵(𝑡), 𝑛(𝑡w)}⟩0 ,

(2.42)
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where we have used the cyclic property of the tract as well as the fact that interaction
picture operators with respect to the total Hamiltonian 𝐻 correspond to Heisenberg pic-
ture operators with respect to the unperturbed Hamiltonian 𝐻0. Normalizing Eq. (2.42)
by the probability (2.38a) finally yields, to leading order in 𝑠, the conditional expectation
value with respect to the state (2.40a),

⟨𝐵(𝑡)⟩𝑃 = Tr[𝐵𝜌(𝑡 | 0)] = ⟨𝐵(𝑡)⟩0 − 𝑠[⟨{𝐵(𝑡), 𝐴(𝑡w)}⟩0 − 2⟨𝐵(𝑡)⟩0⟨𝐴(𝑡w)⟩0] , (2.43)

representing a post-selected measurement conditioned on the empty ancilla (𝑃 = 𝑃0).
As anticipated, a comparison with Eqs. (1.56) and (2.8) shows that this result effectively
corresponds to a linear response after applying the anti-Hermitian perturbation 𝐻1(𝑡) =
−𝑖ℏ𝑠𝛿(𝑡 − 𝑡w)𝐴, giving direct access to the unequal-time anti-commutator (1.74) via
𝑆𝐵𝐴(𝑡, 𝑡w) = −[⟨𝐵(𝑡)⟩𝑃 − ⟨𝐵(𝑡)⟩0]/2𝑠. As required in Section 2.1, the perturbation
operator 𝐴 = 𝑎†𝑎 is indeed positive semi-definite, in line with the physical intuition that
the norm of the state can only decrease through outcoupling followed by a projection.

Unconditional response. It is instructive to compare the result in Eq. (2.43) with
the one obtained if no projection on the empty-ancilla subspace is performed, e.g., if the
measurement apparatus is unable to distinguish an empty ancilla from one with non-
vanishing population or the result of the ancilla measurement is ignored. In this case,
a simple average over all ancilla populations is obtained, where, to leading order in the
effective coupling strength 𝑠, only single occupancies of the ancilla contribute.

The conditional expectation value with respect to the state Eq. (2.40b), given that a
single particle is detected in the ancilla, reads

⟨𝐵(𝑡)⟩𝑄 = Tr[𝐵𝜌(𝑡 | 1)] =
⟨𝑎†(𝑡w)𝐵(𝑡)𝑎(𝑡w)⟩0

⟨𝑛(𝑡w)⟩0
. (2.44)

Here, 𝑄 = 𝟙−𝑃 denotes the projector on the subspace complementary to that projected
on by 𝑃 . According to Eq. (2.41), we thus obtain the unconditional response

⟨𝐵(𝑡)⟩ = ⟨𝐵(𝑡)⟩0 − 𝑠⟨{𝐵(𝑡), 𝑎†(𝑡w)𝑎(𝑡w)} − 2𝑎†(𝑡w)𝐵(𝑡)𝑎(𝑡w)⟩0. (2.45)

The last term stems from a process where a single particle ends up in the ancilla after
the coupling, as expressed by Eq. (2.44). This quantity contributes a systematic error
in the case of faulty detection with false negatives (see the discussion in Section 2.5).
Post-selecting on the empty ancilla eliminates this undesired contribution, yielding a
pure non-Hermitian evolution that gives access to the unequal-time anti-commutator.

Connection to open quantum systems. The structure of the second term on the
right-hand side of Eq. (2.45), characterizing the unconditional response after coupling
to the ancilla without measuring the ancilla population, resembles to the “recycling
term” in Lindblad master equations [159, 162]. In fact, the short coupling pulse to
the ancilla can be viewed as an effective dissipative perturbation, 𝜌(𝑡w) → 𝜌(𝑡w + 𝛿𝑡) =
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𝜌(𝑡w)+𝛿𝑡𝒟[𝜌(𝑡w)], where 𝒟[𝜌] = 𝛾(2𝑎𝜌𝑎† − {𝑎†𝑎, 𝜌}) is the Lindblad dissipator with dis-
sipation rate 𝛾 = 𝑠/𝛿𝑡. This yields Eq. (2.45) for the expectation value of an observable
𝐵 after a unitary evolution up to time 𝑡. In the quantum trajectories picture [160–162],
the Lindblad dissipator 𝒟[𝜌] generates an evolution under the non-Hermitian Hamil-
tonian 𝐻1 = −𝑖ℏ𝛾𝑎†𝑎, subject to quantum jumps described by the “recycling term”
2𝛾𝑎𝜌𝑎†. By post-selecting on the absence of quantum jumps, it is possible to isolate the
pure non-Hermitian evolution [141, 143, 151]. From this point of view, the projection
on the empty-ancilla subspace in Eq. (2.32) can be interpreted as a post-selection on
the absence of quantum jumps, i.e., particles hopping to the ancilla. This allows us
to eliminate the undesired contribution in Eq. (2.45) due to the “recycling term” and
obtain instead the result in Eq. (2.43), reflecting a purely non-Hermitian perturbation
that gives access to the unequal-time anti-commutator.

Numerical Benchmark: Non-Hermitian Linear Response in Time Domain
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Figure 2.8.: Simulation of the linear response to a non-Hermitian perturbation generated by a
single step in the Zeno evolution of coupling to an ancilla followed by a projection on the empty-
ancilla subspace (see Fig. 2.7c). (a) Time trace of the density after applying the perturbation to a
single site as in Fig. 2.7a. The unnormalized and normalized responses correspond to Eqs. (2.42)
and (2.43), respectively. The result agrees well with the response to a non-Hermitian perturbation
by the density operator 𝐴 = 𝑛ℓ (NHH, green dashed line). (b) The correlation spectrum extracted
from the response in (a) agrees well with the exact result 𝑆𝐵𝐴. The FDR (1.83) between 𝜒′′

𝐵𝐴
and 𝑆𝐵𝐴, calculated using the known temperature 𝑘B𝑇 /ℏ𝐽 = 4.27 of the thermal state, is
shown for comparison. (c) Time trace of the nearest-neighbor correlator after coupling two
neighboring sites simultaneously (black, see Fig. 2.7b) or individually (grey, Fig. 2.7a) to the
ancilla. Subtracting the latter quantity from the former yields the response to a perturbation
by the hopping operator 𝐴 = 𝑎†

ℓ𝑎ℓ+1 + a†
ℓ+1aℓ. The respective responses agree well with their

effective descriptions in terms of non-Hermitian Hamiltonians (NHH, green dashed lines). (d) The
extracted correlation spectrum reproduces the exact one to good accuracy.

To benchmark the above scheme, we numerically solve the full quantum evolution de-
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scribing a measurement of 𝑆𝐵𝐴(𝑡, 𝑡w) for a thermal state 𝜌𝑇 = exp(−𝐻0/𝑘B𝑇 )/𝑍(𝑇 ) in a
Bose–Hubbard chain of 𝐿 = 8 sites at unit filling and with periodic boundary conditions.
Here, 𝑍(𝑇 ) = Tr[exp(−𝐻0/𝑘B𝑇 )] is the canonical partition sum, and the temperature 𝑇
is chosen such that the mean energy ⟨𝐻0⟩𝑇 = Tr(𝐻0𝜌𝑇 ) corresponds to that of a Mott-
insulating state. A thermal state is an ideal benchmark for our purposes since the
temperature 𝑇 is known and the FDR is satisfied exactly, so any deviations from the
FDR indicate deficiencies of the method.

In Figs. 2.8a and 2.8c, we show the time traces of the responses to perturbations
corresponding to the coupling configurations in Figs. 2.7a and 2.7b, respectively, i.e.,
for on-site densities (𝐴 = 𝐵 = 𝑛ℓ) and nearest-neighbor correlators (𝐴 = 𝑛ℓ + 𝑛ℓ+1 +
𝑎†

ℓ𝑎ℓ+1+𝑎†
ℓ+1𝑎ℓ, 𝐵 = 𝑎†

ℓ𝑎ℓ+1+𝑎†
ℓ+1𝑎ℓ). From the latter measurement, the response for the

combination 𝐴 = 𝐵 = 𝑎†
ℓ𝑎ℓ+1+𝑎†

ℓ+1𝑎ℓ can be obtained by subtracting the response of the
same observable 𝐵 to perturbations 𝐴 involving only the densities at the relevant sites.
Experimentally, the nearest-neighbor correlator ⟨𝐵⟩ = ⟨𝑎†

ℓ𝑎ℓ+1 + h.c.⟩ can be measured,
for example, using the projective current measurement protocol that will be discussed in
Section 3.3 with properly adjusted phases or by projecting the system on non-interacting
double wells and monitoring the double well occupancy as a function of time [180, 181].
The coupling to the ancilla is applied as a rectangular pulse of duration 𝐽𝛿𝑡 = 0.01 and
its strength is chosen such that the effective coupling becomes 𝑠 = 0.05 for the density
and 𝑠 = 0.02 for the correlator, corresponding to a decay of the norm by about 10 % in
both cases. As can be seen in Figs. 2.8a and 2.8c, the simulated ancilla measurement
agrees well with the description in terms of the effective non-Hermitian Hamiltonian
in Eq. (2.39). Since the thermal state is stationary, the waiting time 𝑡w, at which the
perturbation is applied, does not matter, and has been chosen as 𝑡w = 0. Moreover, the
conventions for the dynamical susceptibilities in Eqs. (2.19) and (2.23) are equivalent for
a thermal state, such that the correlation spectrum is given by 𝑆𝐵𝐴(𝜔) = −ℏ𝜒′ (NH)

𝐵𝐴 (𝜔)
according to Eq. (2.11). In Figs. 2.8b and 2.8d, we compare the correlation spectra
extracted from the responses in Figs. 2.8a and 2.8c, respectively, with the exact result.
The Fourier integrals have been calculated using exponential filters of characteristic
frequencies 𝛾/𝐽 = 0.1 for the density and 𝛾/𝐽 = 0.05 for the correlator. Due to the
sizable static contribution to the response in the latter case, the height of the central
peak in Fig. 2.8d strongly depends on the choice of 𝛾, but this is irrelevant for probing
FDRs because the value of the correlation spectrum at 𝜔 = 0 is not constrained by
the FDR (1.83). Up to small deviations resulting from non-linear effects, which can be
reduced at the cost of a lower signal-to-noise ratio (see discussion in Section 2.5), the
scheme presented in this section provides an accurate measurement of the correlation
spectrum, capable of certifying the validity of the FDR (1.83) for both densities and
correlators.

General System–Ancilla Couplings

The coupling schemes in Figs. 2.7a and 2.7b are designed to realize non-Hermitian per-
turbations by the density operator and the hopping operator, respectively. We now
consider the general situation where an arbitrary number of system modes is coupled to
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up to 𝑀 ancillary modes. This scenario is described by the general coupling Hamiltonian

𝐻cpl =
𝑀

∑
𝑚=1

ℏ𝛺𝑚(𝑏†
𝑚𝛼𝑚 + 𝛼†

𝑚𝑏𝑚) , (2.46)

where the operator
𝛼𝑚 = ∑

ℓ
𝜆𝑚ℓ𝑎ℓ (2.47)

is a linear combination of system modes 𝑎ℓ with coefficients 𝜆𝑚ℓ ∈ ℂ, coupled to the
𝑚-th ancilla with coupling strength 𝛺𝑚 ≥ 0. The configuration in Fig. 2.7a, a single
lattice site ℓ∗ coupled to a single ancilla, is recovered for 𝑀 = 1 and 𝜆1ℓ = 𝛿ℓℓ∗ , while
Fig. 2.7b, two sites ℓ1 and ℓ2 simultaneously coupled to a single ancilla, corresponds to
𝑀 = 1 and 𝜆1ℓ = 𝛿ℓℓ1

+ 𝛿ℓℓ2
.

As before, we consider a short coupling pulse of duration 𝛿𝑡 such that the state af-
ter the coupling is given by Eq. (2.35). Subsequently, a measurement of the individual
ancilla occupancies is performed and the state is conditioned on the outcome of that mea-
surement (as mentioned above, the measurement may also be deferred up to the final
observation time). Given the outcome (𝑛1, … , 𝑛𝑀), the post-measurement state, up to a
normalization, reads 𝑃𝑛1…𝑛𝑀

̃𝜌(𝑡w +𝛿𝑡)𝑃𝑛1…𝑛𝑀
, where 𝑃𝑛1…𝑛𝑀

= 𝟙⊗|𝑛1 ⋯ 𝑛𝑀⟩⟨𝑛1 ⋯ 𝑛𝑀 |
is the projection operator on the subspace with a definite ancilla population correspond-
ing to the measurement outcome.

Up to leading order in the coupling, only processes where at most a single particle
ends up in one of the ancillas contribute. Let 𝑃0 = 𝑃0…0 denote the projector on the
subspace with all ancillas empty. The projector on the subspace with a single particle in
the 𝑚-th ancilla and all others empty can then be expressed as 𝑃 (𝑚)

1 = 𝑏†
𝑚𝑃0𝑏𝑚. Using

the bosonic commutation relations

[𝛼𝑚, 𝑏𝑚′] = [𝛼𝑚, 𝑏†
𝑚′] = 0 , (2.48a)

[𝑏𝑚, 𝑏†
𝑚′] = 𝛿𝑚𝑚′ , (2.48b)

we find the (unnormalized) post-measurement states

𝑃0 ̃𝜌(𝑡w + 𝛿𝑡)𝑃0 = ̃𝜌(𝑡w) −
𝑀

∑
𝑚=1

𝑠𝑚{ ̃𝛼†
𝑚(𝑡w) ̃𝛼𝑚(𝑡w), ̃𝜌(𝑡w)} , (2.49a)

𝑃 (𝑚)
1 ̃𝜌(𝑡w + 𝛿𝑡)𝑃 (𝑚)

1 = 2𝑠𝑚 ̃𝑎𝑚(𝑡w) ̃𝜌(𝑡w) ̃𝑎†
𝑚(𝑡w) , (2.49b)

where we have traced out the ancillas and introduced the effective coupling strengths
𝑠𝑚 = (𝛺𝑚𝛿𝑡)2/2. We note that this result holds for fermions as well, where instead of
Eq. (2.48) the corresponding fermionic anti-commutation relations apply. The respective
probabilities of finding no particles in any ancilla or a single particle in the 𝑚-th ancilla
read

𝑃0 = 1 − 2
𝑀

∑
𝑚=1

𝑠𝑚⟨𝛼†
𝑚(𝑡w)𝛼𝑚(𝑡w)⟩

0
, (2.50a)

𝑃 (𝑚)
1 = 2𝑠𝑚⟨𝛼†

𝑚(𝑡w)𝛼𝑚(𝑡w)⟩
0

. (2.50b)
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A comparison of Eqs. (2.49) and (2.50) with Eqs. (2.37) and (2.38) shows that the
coupling to the 𝑚-th ancilla in the general coupling Hamiltonian (2.46) generates an
effective non-Hermitian perturbation by the operator

𝐴𝑚 = 𝛼†
𝑚𝛼𝑚 = ∑

ℓℓ′
𝜆∗

𝑚ℓ𝜆𝑚ℓ′𝑎†
𝑙 𝑎ℓ′ . (2.51)

Coupling to multiple ancillas simultaneously can be used to realize perturbation by
(arbitrarily weighted) sums of the operators 𝐴𝑚. This demonstrates that the presented
scheme enables flexible access to unequal-time correlations and FDRs for a wide range
of observables, two specific examples of which, namely densities and nearest-neighbor
correlators, are illustrated in Fig. 2.8.

2.3.2. Non-Hermitian Linear Response via the Pulsed Quantum Zeno
Effect

We now explain how to realize a prolonged evolution under a (possibly time-dependent)
effective non-Hermitian Hamiltonian, suitable for probing frequency-resolved responses
as is common in standard linear response experiments. To this end, we generalize the
coupling Hamiltonian in (2.31) by allowing for an arbitrary modulation 𝑔(𝑡) of the cou-
pling strength, i.e.,

𝐻cpl(𝑡) = 𝑔(𝑡)ℏ𝛺(𝑏†𝑎 + 𝑎†𝑏). (2.52)
The key to obtaining a response as in Eq. (2.5) is to iterate the Zeno step presented in

the previous subsection as depicted in Fig. 2.7d. Such a repeated series of measurements
is the common scenario for the pulsed quantum Zeno effect [156, 157, 175]. To this
end, we split the interval [𝑡w, 𝑡] into 𝑛 steps such that 𝑡w = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 =
𝑡 with 𝑡𝑖+1 − 𝑡𝑖 = 𝛿𝑡 = (𝑡 − 𝑡w)/𝑛. The evolution from 𝑡𝑖 to 𝑡𝑖+1 is described by
Eq. (2.32), corresponding to an individual Zeno step of unitary evolution under the
Hamiltonian 𝐻(𝑡) = 𝐻0 + 𝐻cpl(𝑡), followed by a measurement of the ancilla population
that projects the system on the subspace with empty ancilla (realizations where one or
more particles are detected in the ancilla are discarded). Thus, the state evolves, up to
a normalization, as

𝜌(𝑡w) → 𝜌′(𝑡) = 𝑃𝑈𝑛𝑃 ⋯ 𝑃𝑈1𝜌(𝑡w)𝑈†
1 𝑃 ⋯ 𝑃𝑈†

𝑛𝑃 (2.53)

where 𝑈𝑖 = 𝑈(𝑡𝑖, 𝑡𝑖−1) denotes the time evolution operator from time 𝑡𝑖−1 to 𝑡𝑖. This
equation describes the evolution under a continuously applied system–ancilla coupling
with intermittent measurements of the ancilla population. The role of the measurements
is to destroy the coherences between the relevant Zeno subspaces. To gain a deeper
insight into this mechanism, we will now consider in detail two consecutive Zeno steps,
using a similar formalism as in Ref. [157].

The Role of the Measurement Between Two Zeno Steps

Let 𝑃 denote the projection operator on the empty-ancilla subspace ℋ𝑃 and 𝑄 = 𝟙 − 𝑃
the projector on the complementary subspace ℋ𝑄 = ℋ ⟂

𝑃 with at least one particle
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in the ancilla. It is convenient to write the density operator 𝜌 on the total Hilbert
space ℋ = ℋ𝑃 ⊕ ℋ𝑄 in the form

𝜌 = (𝜌𝑃𝑃 𝜌𝑃𝑄
𝜌𝑄𝑃 𝜌𝑄𝑄

) , (2.54)

where 𝜌𝑃𝑃 = 𝑃𝜌𝑃 and 𝜌𝑄𝑄 = 𝑄𝜌𝑄 are the populations of ℋ𝑃 and ℋ𝑄, respectively, and
𝜌𝑃𝑄 = 𝑃𝜌𝑄 = 𝜌†

𝑄𝑃 are the coherences between these two subspaces. Similarly, the time
evolution operator from time 𝑡0 to 𝑡, representing the evolution under the von Neumann
equation (2.33), can be expressed as

𝑈(𝑡, 𝑡0) = (𝑈𝑃𝑃 (𝑡, 𝑡0) 𝑈𝑃𝑄(𝑡, 𝑡0)
𝑈𝑄𝑃 (𝑡, 𝑡0) 𝑈𝑄𝑄(𝑡, 𝑡0)) (2.55)

with 𝑈𝑃𝑄(𝑡, 𝑡0) = 𝑃 𝑈(𝑡, 𝑡0)𝑄.

First Zeno step. Let us denote the initial state ̃𝜌(𝑡w) of the Zeno evolution by 𝜌0 and
set 𝑡0 = 𝑡w. Since the ancilla is initially empty, we have 𝜌0

𝑃𝑄 = 𝜌0
𝑄𝑄 = 0. The unitary

evolution from time 𝑡0 to 𝑡1 in presence of the system–ancilla coupling changes the state
as

𝜌0 = (𝜌0
𝑃𝑃 0
0 0)

𝑈(𝑡1,𝑡0)
−−−−⟶ 𝜌1 = (𝑈1

𝑃𝑃 𝜌0
𝑃𝑃 (𝑈1

𝑃𝑃 )† 𝑈1
𝑃𝑃 𝜌0

𝑃𝑃 (𝑈1
𝑄𝑃 )†

𝑈1
𝑄𝑃 𝜌0

𝑃𝑃 (𝑈1
𝑃𝑃 )† 𝑈1

𝑄𝑃 𝜌0
𝑃𝑃 (𝑈1

𝑄𝑃 )†) , (2.56)

where 𝑈 𝑖
𝑃𝑄 = 𝑃 𝑈(𝑡𝑖, 𝑡𝑖−1)𝑄. From Eq. (2.34), using 𝑃 2 = 𝑃 , 𝑄2 = 𝑄, 𝑃𝑄 = 𝑄𝑃 = 0,

and 𝑃𝐻cpl(𝑡)𝑃 = 0, we obtain the populations and coherences of 𝜌1, up to quadratic
order in the coupling, as

𝜌1
𝑃𝑃 = 𝜌0

𝑃𝑃 − 1
ℏ2 ∫

𝑡1

𝑡0

d𝑡′ ∫
𝑡′

𝑡0

d𝑡′′[ℋ𝑃𝑄(𝑡′)ℋ𝑄𝑃 (𝑡′′)𝜌0
𝑃𝑃 + h.c.], (2.57)

𝜌1
𝑃𝑄 = 𝑖

ℏ ∫
𝑡1

𝑡0

𝜌0
𝑃𝑃 𝐻𝑃𝑄(𝑡′) − 1

ℏ2 ∫
𝑡1

𝑡0

d𝑡′ ∫
𝑡′

𝑡0

d𝑡′′ 𝜌0
𝑃𝑃 ℋ𝑃𝑄(𝑡′′)ℋ𝑄𝑄(𝑡′), (2.58)

𝜌1
𝑄𝑄 = 1

ℏ2 ∫
𝑡1

𝑡0

d𝑡′ ∫
𝑡1

𝑡0

d𝑡′′ ℋ𝑄𝑃 (𝑡′)𝜌0
𝑃𝑃 ℋ𝑃𝑄(𝑡′′) , (2.59)

where ℋ𝑃𝑄(𝑡) = ℋ†
𝑄𝑃 (𝑡) = 𝑃 𝐻̃cpl(𝑡)𝑄 = 𝑔(𝑡)ℏ𝛺𝑃 ̃𝑎†(𝑡)𝑏𝑄. Measuring the ancilla

population projects the state on the subspace with a definite number of particles in the
ancilla. Without registering the measurement outcome, this yields the unconditional
state 𝑃𝜌1𝑃 + 𝑄𝜌1𝑄. Crucially, the measurement process destroys any coherences 𝜌𝑃𝑄
and 𝜌𝑄𝑃 between the Zeno subspaces ℋ𝑃 and ℋ𝑄. We are interested in measurement
outcomes where no particles are detected in the ancilla. Conditioning the state on this
outcome corresponds to a projection on the empty-ancilla subspace ℋ𝑃 ,

𝜌1 = (𝜌1
𝑃𝑃 𝜌1

𝑃𝑄
𝜌1

𝑄𝑃 𝜌1
𝑄𝑄

) 𝑃−⟶ 𝑃𝜌1𝑃 = (𝜌1
𝑃𝑃 0
0 0) . (2.60)
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Second Zeno step. The second Zeno step proceeds in complete analogy to Eqs. (2.56)
and (2.60): the state first evolves unitarily from time 𝑡1 to 𝑡2 in presence of the system–
ancilla coupling and is then projected on the empty-ancilla subspace ℋ𝑃 ,

𝑃 𝜌1𝑃
𝑈(𝑡2,𝑡1)
−−−−⟶ 𝜌2 = (𝜌2

𝑃𝑃 𝜌2
𝑃𝑄

𝜌2
𝑄𝑃 𝜌2

𝑄𝑄
) 𝑃−⟶ 𝑃𝜌2𝑃 = (𝜌2

𝑃𝑃 0
0 0) , (2.61)

with

𝜌2
𝑃𝑃 = 𝑈𝑃𝑃 (𝑡2, 𝑡1)𝜌1

𝑃𝑃 𝑈†
𝑃𝑃 (𝑡2, 𝑡1)

= 𝑈2
𝑃𝑃 𝑈1

𝑃𝑃 𝜌0
𝑃𝑃 (𝑈1

𝑃𝑃 )†(𝑈2
𝑃𝑃 )†

= 𝜌0
𝑃𝑃 − 1

ℏ2 ( ∫
𝑡1

𝑡0

d𝑡′ ∫
𝑡′

𝑡0

d𝑡′′ + ∫
𝑡2

𝑡1

d𝑡′ ∫
𝑡′

𝑡1

d𝑡′′)[ℋ𝑃𝑄(𝑡′)ℋ𝑄𝑃 (𝑡′′)𝜌0
𝑃𝑃 + h.c.] ,

(2.62)

up to leading order in the coupling. It is instructive to compare this result to the one
obtained if no measurement is performed after the first step. The state then receives
additional contributions from the coherences, yielding, to leading order in the coupling,

𝑃𝜌(𝑡2)𝑃 = 𝑃𝑈(𝑡2, 𝑡1)𝜌1𝑈†(𝑡2, 𝑡1)𝑃
= 𝑈2

𝑃𝑃 𝜌1
𝑃𝑃 (𝑈2

𝑃𝑃 )† + 𝑈2
𝑃𝑃 𝜌1

𝑃𝑄(𝑈2
𝑃𝑄)† + 𝑈2

𝑃𝑄𝜌1
𝑄𝑃 (𝑈2

𝑃𝑃 )† + 𝑈2
𝑃𝑄𝜌1

𝑄𝑄(𝑈2
𝑃𝑄)†

= 𝜌2
𝑃𝑃 − ∫

𝑡1

𝑡0

d𝑡′ ∫
𝑡2

𝑡1

d𝑡′′[𝜌0
𝑃𝑃 ℋ𝑃𝑄(𝑡′)ℋ𝑄𝑃 (𝑡′′) + h.c.]

= 𝜌0
𝑃𝑃 − ∫

𝑡2

𝑡0

d𝑡′ ∫
𝑡′

𝑡0

d𝑡′′[ℋ𝑃𝑄(𝑡′)ℋ𝑄𝑃 (𝑡′′)𝜌0
𝑃𝑃 + h.c.] .

(2.63)

The result in the last line could have been directly obtained from Eq. (2.34) for 𝑡 = 𝑡2 by
applying the projector 𝑃 on both sides. This is evident because without the projection
after the first step, the system plus ancilla evolves unitarily from time 𝑡0 to 𝑡2. However,
Eq. (2.63) explicitly exposes the crucial effect of the measurement after the first step: the
last term in the second-to-last line is precisely the contribution from the coherences 𝜌1

𝑃𝑄
and 𝜌1

𝑄𝑃 which is missing in Eq. (2.62) since the coherences have been destroyed by the
measurement.

Pulsed Zeno Evolution and Effective Non-Hermitian Hamiltonian

Iterating the Zeno evolution for 𝑛 steps up to time 𝑡𝑛 (including projections after each
step), the resulting state is given, to leading order in the coupling, by

𝜌𝑛
𝑃𝑃 = 𝜌0

𝑃𝑃 − 1
ℏ2

𝑛−1
∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖

d𝑡′ ∫
𝑡′

𝑡𝑖

d𝑡′′[ℋ𝑃𝑄(𝑡′)𝐻𝑄𝑃 (𝑡′′)𝜌0
𝑃𝑃 + h.c.] . (2.64)

If the duration 𝛿𝑡 = 𝑡𝑖+1 − 𝑡𝑖 of each Zeno step is sufficiently short compared to the time
scales of the unperturbed Hamiltonian 𝐻0 as well as the modulation 𝑔(𝑡), the integrand
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in each integral is approximately constant, such that the (unnormalized) expectation
value of an observable 𝐵 after the Zeno evolution is given by

Tr[𝐵𝜌′(𝑡)] = ⟨𝐵(𝑡)⟩0 − 𝑠
𝑛−1
∑
𝑖=0

𝑔2(𝑡𝑖)⟨{𝐵(𝑡), 𝐴(𝑡𝑖)}⟩0 (2.65)

with 𝐴 = 𝑎†𝑎 and 𝑠 = (𝛺𝛿𝑡)2/2. Approximating the sum by an integral, the pulsed
evolution in Eq. (2.65) can be interpolated by a continuous evolution under an effective
non-Hermitian Hamiltonian (see Fig. 2.7c). In fact, this result then coincides with
a linear response to the anti-Hermitian perturbation 𝐻1(𝑡) = −𝑖𝑓(𝑡)𝐴 according to
Eq. (2.5), where 𝑓(𝑡) = 𝑔2(𝑡)𝛺2𝛿𝑡/2. Since the operator 𝑓(𝑡)𝐴 is positive semi-definite
(cf. Section 2.1), this effective non-Hermitian Hamiltonian describes a gradual leakage
of probability out of the empty-ancilla Zeno subspace (see Fig. 2.7d).

By contrast, if the state is only projected at the final observation time, but no projec-
tions are performed during the evolution as in Eq. (2.63), we obtain, to leading order in
the coupling,

𝑃 𝜌(𝑡𝑛)𝑃 = 𝜌0
𝑃𝑃 − 1

ℏ2 ∫
𝑡𝑛

𝑡0

d𝑡′ ∫
𝑡′

𝑡0

d𝑡′′[ℋ𝑃𝑄(𝑡′)𝐻𝑄𝑃 (𝑡′′)𝜌0
𝑃𝑃 + h.c.] , (2.66)

which yields the (unnormalized) expectation value

Tr[𝐵 𝑃𝜌(𝑡)𝑃 ] = ⟨𝐵(𝑡)⟩0 − 𝛺2 ∫
𝑡

𝑡w

d𝑡′𝑔(𝑡′) ∫
𝑡′

𝑡w

d𝑡′′𝑔(𝑡′′)⟨𝐵(𝑡)𝑎†(𝑡′)𝑎(𝑡′′) + h.c.⟩0 . (2.67)

If 𝑔(𝑡) is properly normalized and has compact support on the interval [𝑡w, 𝑡w+𝛿𝑡] with 𝛿𝑡
sufficiently short as compared to the characteristic time scales of 𝐻0, Eq. (2.67) reduces
to Eq. (2.42). However, for longer evolution times 𝑡 − 𝑡w that are on the same order
or longer than the characteristic time scales of the unperturbed Hamiltonian, it is not
possible to approximate the integrand as constant here. Consequently, this procedure
does not yield the desired two-time anti-commutator in general due to the three-time
correlations in the integrand of Eq. (2.67), which appear because the leading perturbative
contribution to the response is of quadratic order in the coupling Hamiltonian.

As these discussions show, exploiting the Zeno effect allows us to apply effective non-
Hermitian perturbations for an extended period of time according to Eq. (2.65). The
essential mechanism is the destruction of the coherences between the Zeno subspaces due
to the intermittent measurements. As we will see in the next section, this effect can be
mimicked if the ancilla is exposed to strong (engineered) dissipation, which represents an
alternative way of realizing non-Hermitian linear response via the quantum Zeno effect.

2.3.3. Non-Hermitian Linear Response via the Continuous Quantum
Zeno Effect

Unfortunately, implementing the pulsed Zeno effect without destroying the sample dur-
ing the intermittent measurements poses a prohibitive layer of complexity for many
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experiments. For this reason, we instead exploit the continuous Zeno effect in what
follows (see Fig. 2.7d). This formulation of the Zeno effect arises in the presence of a
strong coupling to an external system, which plays the role of a measurement apparatus
and leads to wildly fluctuating phases between the relevant Zeno subspaces [157]. One
way of generating such a continuous Zeno effect is by adding engineered classical noise
to the system, which has been proposed, e.g., in Ref. [158] to constrain the dynamics
of quantum simulators for lattice gauge theories. Here, we apply this idea to realize a
time-dependent effective non-Hermitian perturbation.

From engineered dissipation to non-Hermitian dynamics

We consider the ancilla to be subject to classical dephasing noise, as indicated in Fig. 2.7.
Such a source of noise can be engineered via a rapidly fluctuating effective detuning,
e.g., in form of a Zeeman or AC Stark shift, acting on the ancilla only. We assume that
the fluctuations are sufficiently fast compared to all relevant physical time scales, such
that their effect can be approximated by a Gaussian white noise process 𝜉(𝑡) satisfying
⟪𝜉(𝑡)⟫ = 0 and ⟪𝜉(𝑡)𝜉(𝑡′)⟫ = 𝛿(𝑡 − 𝑡′), where ⟪⋯⟫ denotes the ensemble average over
all noise realizations. For example, using lasers to generate an AC Stark shift, this
technical requirement can be fulfilled using acousto-optical devices [182]. The evolution
of the density operator 𝜌(𝑡) can then be described by the stochastic von Neumann
equation [158]

d𝜌(𝑡) = − 𝑖
ℏ[𝐻(𝑡), 𝜌(𝑡)] d𝑡 − 𝑖

√
2𝜅[𝑏†𝑏, 𝜌(𝑡)] ∘ d𝑊(𝑡) . (2.68)

Here, 𝜅 > 0 is the dephasing rate and ∘ d𝑊(𝑡) = 𝜉(𝑡) d𝑡 are Wiener increments, where the
circle indicates the use of the Stratonovich interpretation of stochastic calculus [183, 184]
(see Appendix A.1). The deterministic part of Eq. (2.68) is governed by the Hamilto-
nian 𝐻(𝑡) = 𝐻0 +𝐻cpl(𝑡), where the coupling Hamiltonian 𝐻cpl(𝑡) is given by Eq. (2.52).

The Gaussian white noise process 𝜉(𝑡) can be viewed as the idealization of a smooth
physical noise process with finite correlation time, arising, for example, from a rapidly
fluctuating electric or magnetic field. As such, it is appropriate to interpret the stochastic
von Neumann equation Eq. (2.68) as an SDE in Stratonovich form, which obeys the rules
of ordinary calculus [183, 184]. In addition, in the form of Eq. (2.68), unitary evolution of
each realization (d Tr[𝜌(𝑡)]/ d𝑡 = 0) is only guaranteed if the Stratonovich interpretation
is used [185].

Master equation for the noise-averaged density operator. In order to com-
pute noise-averaged observables, we average the von Neumann equation Eq. (2.68) over
all noise realizations. However, in the Stratonovich interpretation, the Wiener incre-
ments ∘ d𝑊(𝑡) and the stochastic variable 𝜌(𝑡) are not statistically independent at equal
times, i.e., ⟪𝜌(𝑡) ∘ d𝑊(𝑡)⟫ ≠ 0 in general. It is therefore advantageous to convert
Eq. (2.68) to an Itô SDE, where ⟪𝜌(𝑡) d𝑊(𝑡)⟫ = ⟪𝜌(𝑡)⟫⟪d𝑊(𝑡)⟫ = 0 holds since the
solution of an Itô SDE is non-anticipating [183, 184]. According to the Itô–Stratonovich
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conversion rules (see Appendices A.1 and A.3.3), the linear Stratonovich SDE

d𝜌 = 𝐿0(𝑡)𝜌 d𝑡 + 𝐿1(𝑡)𝜌 ∘ d𝑊 (2.69)

is equivalent to the linear Itô SDE

d𝜌 = [𝐿0(𝑡) + 𝐿2
1(𝑡)/2]𝜌 d𝑡 + 𝐿1(𝑡)𝜌 d𝑊 . (2.70)

In the case of Eq. (2.68), 𝐿0 and 𝐿1 are given by the Liouvillian superoperators 𝐿0(𝑡)𝜌 =
−𝑖[𝐻(𝑡), 𝜌]/ℏ and 𝐿1𝜌 = −𝑖

√
2𝜅[𝑏†𝑏, 𝜌], respectively. Thus Eq. (2.68) is equivalent to

the Itô SDE

d𝜌 = − 𝑖
ℏ[𝐻(𝑡), 𝜌] d𝑡 − 𝜅({𝐿†𝐿, 𝜌} − 2𝐿𝜌𝐿†) d𝑡

− 𝑖
√

2𝜅[𝑏†𝑏, 𝜌] d𝑊
(2.71)

with 𝐿 = 𝑏†𝑏. Taking the ensemble average of Eq. (2.71), the stochastic term van-
ishes, and the noise-averaged density operator 𝜎(𝑡) = ⟪𝜌(𝑡)⟫ obeys the Lindblad master
equation

d
d𝑡𝜎 = − 𝑖

ℏ[𝐻(𝑡), 𝜎] − 𝜅({𝐿†𝐿, 𝜎} − 2𝐿𝜎𝐿†) (2.72)

with the Hermitian Lindblad operator 𝐿 = 𝑏†𝑏.
The stochastic von Neumann equation (2.68) represents a diffusive unraveling [186]

of the master equation (2.72). Such diffusive unravelings typically arise in the theory
of continuous measurements, where a quantum system is continuously monitored and
the resulting measurement back action gives rise to diffusive quantum trajectories [187,
188]. By contrast, in our case, there are no actual measurements involved and Eq. (2.68)
describes a random unitary evolution with pure dephasing [185, 189]. In fact, there
exists an infinite number of stochastic unravelings, both diffusive and jump-like, whose
ensemble average is described by the master equation (2.72) [159, 160, 190]. As an
alternative to the approach in Eq. (2.68) using engineered dephasing, we could also start
from Eq. (2.72) with the Lindblad operator 𝐿 = 𝑏, describing a spontaneous decay of
particles in the ancilla at a decay rate 𝜅. As shown below, such a setting gives rise to
the same effective non-Hermitian Hamiltonian as in the engineered dephasing scenario.

Strong-noise limit and effective non-Hermitian Hamiltonian. The quantum
Zeno effect is realized in the strong-noise limit 𝜅 → ∞ [158]. The strong dissipation
leads to an exponential decay of coherences between Zeno subspaces, in analogy to the
effect of repeated measurements, and thereby suppresses the build-up of population in
the ancilla.

To derive the effective non-Hermitian Hamiltonian governing the time evolution in
this regime, following Ref. [158], we consider the strong noise limit of the master equa-
tion (2.72) projected on the empty-ancilla subspace. It is convenient to work in the
interaction picture, i.e, in a rotating frame with respect to the unperturbed Hamilto-
nian 𝐻0. Equation (2.72) then reads

d
d𝑡𝜎̃ = − 𝑖

ℏ[𝐻̃cpl(𝑡), 𝜎̃] − 𝜅({𝐿†𝐿, 𝜎̃} − 2𝐿𝜎̃𝐿†), (2.73)
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where 𝜎̃(𝑡) = e𝑖𝐻0𝑡/ℏ𝜎(𝑡)e−𝑖𝐻0𝑡/ℏ and 𝐻̃cpl(𝑡) = 𝑔(𝑡)ℏ𝛺[ ̃𝑎†(𝑡)𝑏 + 𝑏† ̃𝑎(𝑡)] with ̃𝑎(𝑡) =
e𝑖𝐻0𝑡/ℏ𝑎e−𝑖𝐻0𝑡/ℏ. The operators 𝑏 and 𝑏† as well as the Lindblad operators remain un-
changed as they act on the ancilla only and therefore commute with 𝐻0.

We now use the projection operator on the empty-ancilla subspace 𝑃 = 𝑃0 as well as
its complement 𝑄 = 𝟙 − 𝑃 to derive coupled equations for the populations 𝜎̃𝑃𝑃 = 𝑃 𝜎̃𝑃
and 𝜎̃𝑄𝑄 = 𝑄𝜎̃𝑄 of the two subspaces, as well as for their coherences 𝜎̃𝑃𝑄 = 𝑃 𝜎̃𝑄 and
𝜎̃𝑄𝑃 = 𝑄𝜎̃𝑃 . The projection operators are Hermitian and satisfy the properties 𝑃 2 = 𝑃 ,
𝑄2 = 𝑄, 𝑃𝑄 = 𝑄𝑃 = 0, as well as [𝑃 , 𝐻0] = [𝑄, 𝐻0] = 0, the latter following from
the fact that 𝐻0 does not change the number of particles in the ancilla. Furthermore,
since 𝑃 projects on the empty-ancilla subspace, we have 𝑏𝑃 = 𝑃𝑏† = 0. Applying the
projectors 𝑃 and 𝑄 to Eq. (2.73) from the left and from the right yields the coupled
system of equations

d
d𝑡𝜎̃𝑃𝑃 = − 𝑖

ℏ(𝐻̃𝑃𝑄𝜎̃𝑄𝑃 − 𝜎̃𝑃𝑄𝐻̃𝑄𝑃 ) , (2.74a)
d
d𝑡𝜎̃𝑃𝑄 = − 𝑖

ℏ(𝐻̃𝑃𝑄𝜎̃𝑄𝑄 − 𝜎̃𝑃𝑃 𝐻̃𝑃𝑄) + 𝑖
ℏ𝜎̃𝑃𝑄𝑄𝐻̃cpl𝑄 − 𝜅𝜎̃𝑃𝑄𝑄𝐿†𝐿𝑄 , (2.74b)

d
d𝑡𝜎̃𝑄𝑃 = − 𝑖

ℏ(𝐻̃𝑄𝑃 𝜎̃𝑃𝑃 − 𝜎̃𝑄𝑄𝐻̃𝑄𝑃 ) − 𝑖
ℏ𝑄𝐻̃cpl𝑄𝜎̃𝑄𝑃 − 𝜅𝑄𝐿†𝐿𝑄𝜎̃𝑄𝑃 , (2.74c)

d
d𝑡𝜎̃𝑄𝑄 = − 𝑖

ℏ(𝐻̃𝑄𝑃 𝜎̃𝑃𝑄 − 𝜎̃𝑄𝑃 𝐻̃𝑃𝑄) − 𝑖
ℏ[𝑄𝐻̃cpl𝑄, 𝜎̃𝑄𝑄]

− 𝜅𝑄({𝐿†𝐿, 𝜎̃𝑄𝑄} − 2𝐿𝜎̃𝑄𝑄𝐿†)𝑄 ,
(2.74d)

where the operators 𝐻̃𝑃𝑄(𝑡) = 𝑔(𝑡)ℏ𝛺𝑃 ̃𝑎†(𝑡)𝑏𝑄 and 𝐻̃𝑄𝑃 (𝑡) = 𝑔(𝑡)ℏ𝛺𝑄𝑏† ̃𝑎(𝑡)𝑃 mix
the two subspaces. In deriving Eq. (2.73), we have considered the engineered dephasing
scenario described by the stochastic von Neumann equation (2.68), in which case the
Lindblad operator 𝐿 = 𝑏†𝑏 is Hermitian and the projectors commute with 𝐿. In the
alternative setting, where the ancilla is subject to spontaneous decay, the Lindblad
operator is given by 𝐿 = 𝑏 and does not commute with the projectors. In this case,
Eqs. (2.74a) to (2.74c) receive an additional contribution from the “recycling terms”
2𝜅𝑏𝜎̃𝑄𝑄𝑏†, whose effect is to incoherently remove particles from the ancilla. Since these
terms are proportional to 𝜎̃𝑄𝑄, which is initially zero and whose growth is suppressed
by the Zeno effect, their presence does not change the following line of arguments.
Nonetheless, it is possible to get rid of these terms completely by keeping track of all
the modes the ancilla decays to and post-selecting on the condition that the ancilla plus
these additional modes are empty. To see this, we can assume that the ancilla decays
only to a single mode with associated annihilation and creation operators 𝑐 and 𝑐†. The
corresponding Lindblad operator 𝐿 = 𝑐†𝑏 now conserves the number of particles in the
ancilla plus the extra mode. Consequently, the contribution from the “recycling terms”
to Eqs. (2.74a) to (2.74c) vanishes due to the action of the projector 𝑃 .

We now consider the strong noise limit of Eq. (2.74). The terms on the right-hand
side of the equations for the coherences (2.74b) and (2.74c) rotate at characteristic
frequencies of the unperturbed Hamiltonian 𝐻0 via ̃𝑎(𝑡) = e𝑖𝐻0𝑡/ℏ𝑎e−𝑖𝐻0𝑡/ℏ as well as via
the modulation function 𝑔(𝑡), whose role is to probe dynamic correlations in the system
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at a given frequency. In contrast, the terms proportional to the dissipation rate 𝜅 cause a
damping of the coherences. If 𝜅 is sufficiently large, in particular, if it is much larger than
the characteristic frequencies of 𝐻0, we can make the approximation that the coherences
are instantaneously damped to a momentary equilibrium state given by d𝜎̃𝑃𝑄/ d𝑡 ≈ 0
(and analogously for 𝜎̃𝑄𝑃 ). This allows us to adiabatically eliminate the fast incoherent
dynamics and to solve Eqs. (2.74b) and (2.74c) for the coherences. To leading order in
𝛺/𝜅, we find

𝜎̃𝑃𝑄 = − 𝑖
ℏ𝜅(𝐻̃𝑃𝑄𝜎̃𝑄𝑄 − 𝜎̃𝑃𝑃 𝐻̃𝑃𝑄)(𝑄𝐿†𝐿𝑄)−1 , (2.75a)

𝜎̃𝑄𝑃 = − 𝑖
ℏ𝜅(𝑄𝐿†𝐿𝑄)−1(𝐻̃𝑄𝑃 𝜎̃𝑃𝑃 − 𝜎̃𝑄𝑄𝐻̃𝑄𝑃 ) , (2.75b)

where (⋯)−1 denotes the Moore–Penrose pseudoinverse. To leading order in 𝛺/𝜅, we can
furthermore neglect the terms proportional to 𝜎̃𝑄𝑄, which is initially zero and grows,
according to Eqs. (2.74d) and (2.75), only slowly at a rate 𝛺2/𝜅. This suppression of
the growth of population in the ancilla is precisely a manifestation of the Zeno effect.
Thus, plugging Eq. (2.75) into Eq. (2.74a), we obtain

d
d𝑡𝜎̃𝑃𝑃 = − 𝑖

ℏ{𝐻̃eff(𝑡), 𝜎̃𝑃𝑃 } (2.76)

with the effective non-Hermitian Hamiltonian

𝐻̃eff(𝑡) = −𝑖𝑔2(𝑡)ℏ𝛺2

𝜅 𝑃 ̃𝑎†(𝑡)𝑏(𝑄𝐿†𝐿𝑄)−1𝑏† ̃𝑎(𝑡)𝑃 . (2.77)

Due to the action of the projector 𝑃 in this expression, the pseudoinverse acts only on
states with exactly one particle in the ancilla, where it reduces to a multiplication by
unity. Thus, the effective non-Hermitian Hamiltonian takes the simple form 𝐻̃eff(𝑡) =
−𝑖𝑔2(𝑡)ℏ𝛺2𝑃 ̃𝑎†(𝑡) ̃𝑎(𝑡)𝑃/𝜅. Finally, after transforming back to the non-rotating frame,
we arrive at the evolution equation

𝑖ℏ d
d𝑡𝜎𝑃𝑃 = 𝐻eff(𝑡)𝜎𝑃𝑃 − 𝜎𝑃𝑃 𝐻†

eff(𝑡) , (2.78)

generated by the effective non-Hermitian Hamiltonian 𝐻eff(𝑡) = 𝐻0 − 𝑖𝑓(𝑡)𝐴 with 𝐴 =
𝑎†𝑎 and 𝑓(𝑡) = 𝑔2(𝑡)ℏ𝛺2/𝜅. As required in Section 2.1, the perturbation operator 𝐴 is
positive semi-definite and 𝑓(𝑡) is non-negative, describing a leakage of probability out
of the empty-ancilla subspace. Figure 2.7d illustrates that this effective non-Hermitian
dynamics arises as the ensemble average over stochastic trajectories governed by the
stochastic von Neumann equation (2.68). The crucial advantage of the continuous Zeno
effect over the pulsed formulation, where repeated non-destructive measurements are
required, is that a single projection at the final measurement time is sufficient, which
can conveniently be realized as a post-selection on measurement outcomes where no
particles are detected in the ancilla.
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Numerical Benchmark: Non-Hermitian Linear Response in Frequency
Domain

We now demonstrate how the above scheme enables access to the FDR directly in fre-
quency domain. From the structure of the general linear response formula (1.56) it
becomes clear that by applying a non-Hermitian perturbation under a suitable periodic
modulation 𝑓(𝑡) continuously until the final observation time 𝑡f , it is possible to di-
rectly measure non-Hermitian dynamic susceptibilities at fixed final time 𝑡f defined in
Eq. (2.24).

It is our goal to extract the reactive suceptibility component 𝜒′(NH)(𝑡f , 𝜔) from the
linear response to the effective non-Hermitian Hamiltonian in Eq. (2.78). For simplicity,
we focus on the common case where 𝜒′(NH) corresponds to the real part of the suscep-
tibility (2.24), and we consider Hermitian operators 𝐴 and 𝐵 such that the response
function (2.8) is real. Due to the non-negativity constraint on 𝑓(𝑡), it is not possible
to modulate the effective coupling around zero. Instead, we choose the modulation in
Eq. (2.68) as 𝑔(𝑡) =

√
2 cos[𝜔(𝑡f − 𝑡)/2], for a fixed final observation time 𝑡f , such that

𝑓(𝑡) = [1 + cos 𝜔(𝑡f − 𝑡)]ℏ𝛺2/𝜅. According to Eq. (2.7), the response is then given by

⟨𝐵(𝑡f)⟩𝑃 = ⟨𝐵(𝑡f)⟩0 + ℏ𝛺2

𝜅 ∫
𝑡f

0
d𝑡 𝜙(NH)

𝐵𝐴 (𝑡f , 𝑡) + ℏ𝛺2

𝜅 ∫
𝑡f

0
d𝑡 𝜙(NH)

𝐵𝐴 (𝑡f , 𝑡) cos[𝜔(𝑡f − 𝑡)] ,
(2.79)

where ⟨𝐵(𝑡f)⟩𝑃 = Tr[𝐵𝜎𝑃𝑃 (𝑡f)]/ Tr[𝜎𝑃𝑃 (𝑡f)] is the conditional expectation value ob-
tained from post-selection. The first two terms on the right-hand side of Eq. (2.79)
represent the response to a static non-Hermitian perturbation with 𝑔(𝑡) ≡ 1 and the
last term is proportional to the desired real part of the susceptibility (2.24), which can
be seen after changing the integration variable to 𝛥𝑡 = 𝑡f − 𝑡. Thus, it is possible to
extract the quantity 𝜒′ (NH)

𝐵𝐴 (𝑡f , 𝜔) for a given probe frequency 𝜔 from two linear response
measurements, one with a periodic modulation and one with a constant perturbation,
the latter being subtracted from the former.

To benchmark to above protocol, we resort to the previous example of the density
autocorrelation spectrum 𝑆𝐵𝐴(𝜔) = −ℏ𝜒′ (NH)

𝐵𝐴 (𝜔) (𝐵 = 𝐴 = 𝑛) of a thermal state in a
periodic 1D Bose–Hubbard chain. For this purpose, we numerically solve the stochastic
von Neumann equation (2.68) — the most fundamental equation in our approach —
using the stochastic Magnus scheme presented in Appendix A.3.3. By comparing the
results of the stochastic simulation to those obtained based on Eqs. (2.72) and (2.78),
we demonstrate the validity of the approximations underlying the effective description
in terms of a non-Hermitian Hamiltonian. To account for the different sensitivities of
the responses at different probe frequencies, we parametrize the perturbation strength
in terms of the norm decay 𝑞 due to the effective non-Hermitian Hamiltonian. That
is, for each frequency 𝜔, given a fixed final observation time 𝑡f and dephasing rate 𝜅,
we adjust the coupling strength 𝛺 such that according to Eq. (2.6) the norm of the
state has decreased by the amount 𝑞 at the end of the evolution. For a translationally
invariant system at unit filling, we have ⟨𝐴(𝑡)⟩0 = ⟨𝑛(𝑡)⟩0 = 1, and therefore 𝛺 =
[𝜅𝑞/2𝑡f(1 + sinc(𝜔𝑡f/𝜋))]1/2, where sinc(𝑥) = sin(𝜋𝑥)/𝜋𝑥.
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Figure 2.9.: Simulation of the non-Hermitian linear response scheme for measuring the den-
sity autocorrelation spectrum in frequency domain. The effective non-Hermitian perturbation
is generated through coupling to an ancilla subject to strong engineered dephasing, exploiting
the continuous quantum Zeno effect. The simulations are based on the stochastic von Neumann
equation (2.68) (SvNE), the master equation (2.72) (ME), and the effective non-Hermitian Hamil-
tonian (2.78) (NHH). The stochastic simulation has been averaged over 200 realizations, and the
error bars show the ensemble standard deviation of the mean. (a) Decrease of the norm re-
sulting from the projection on the empty-ancilla subspace as a function of time for the probe
frequency 𝜔 = 0 and norm decay 𝑞 = 0.15. A stronger dephasing rate 𝜅 improves the agreement
between the ME (SvNE) and NHH descriptions at early times, while the deviations at later
times are due to non-linear effects. (b) Unnormalized and normalized (conditional) responses,
corresponding to Eqs. (2.5) and (2.79), respectively, as a function of frequency for a fixed final
time 𝐽𝑡f = 2 and norm decay 𝑞 = 0.15. (c) Correlation spectra 𝑆𝑛𝑛 extracted from the responses
in (b) according to Eq. (2.79), in comparison with the exact result and the FDR (1.83) between
𝑆 and 𝜒′′. The different combinations of the parameters 𝜅 and 𝑞 for the ME simulation show
that the agreement with the exact result can be improved by going deeper into the limit of strong
dissipation and weak perturbations.

In Fig. 2.9, we compare various simulations of the scheme based on Eqs. (2.68), (2.72)
and (2.78) for a system of 𝐿 = 4 lattice sites. Figure 2.9a illustrates a typical decay
of the norm over time due to the effective non-Hermitian perturbation. The simulated
unnormalized and normalized (conditional) responses as a function of frequency are
shown in Fig. 2.9b, from which we have extracted the correlation spectra presented in
Fig. 2.9c along with a comparison to the exact results. The evolution has been computed
up to the final time 𝐽𝑡f = 2, truncating7 the Fourier integral in Eq. (2.79), which for

7Continuing the evolution to longer times, the spectrum attains more structure, but the validity of the
FDR is only marginally affected by the chosen truncation.
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our small system does not converge due to revivals. For the stochastic simulation, we
have chosen accessible parameters corresponding to a relatively moderate dephasing of
strength 𝜅/𝐽 = 10 and a norm decay 𝑞 = 0.15 that results in a good signal-to-noise ratio,
but lies slightly beyond the onset of the non-linear regime. As can be seen in Fig. 2.9,
the stochastic simulation based on Eq. (2.68) agrees with the simulation based on the
master equation (2.72) within the statistical error bars, showing the ensemble standard
deviation of the mean for an accessible number of 200 realizations. Moreover, Fig. 2.9c
shows that these parameters already yield the correlation spectrum at a reasonable
accuracy suitable for certifying the validity of the FDR (1.83). The description in terms
of the effective non-Hermitian Hamiltonian in Eq. (2.78) is closer to the exact result than
the description in terms of the master equation (2.72) for the same parameters, revealing
that the linear regime is wider for the former than for the latter, which could be remedied
through extrapolation. In the effective non-Hermitian description (2.78), the coupling
strength 𝛺 and the dephasing rate 𝜅 enter only via the ratio 𝛺2/𝜅, which is proportional
to the norm decay 𝑞, while these two parameters enter Eqs. (2.68) and (2.72) individually.
Going deeper into the Zeno limit of large 𝜅 improves the validity of Eq. (2.78) at early
times and at larger frequencies, shown in Fig. 2.9 for 𝜅/𝐽 = 100. Decreasing at the
same time the effective coupling strength, as illustrated in Fig. 2.9 for 𝑞 = 0.05, the
agreement between the extracted correlation spectrum and the exact result improves
further, which shows that, at the cost of decreasing the signal-to-noise ratio, the exact
correlation spectrum can in principle be approximated to arbitrary accuracy.

2.4. Comparison to Other Schemes
In this section, we put the above non-Hermitian linear response approach for measuring
dynamical correlations and FDRs in perspective with other schemes. We first demon-
strate that common ancilla-based weak measurement protocols [131, 132] fit into this
general framework since their ancilla-free formulations can be interpreted as a non-
Hermitian linear response. In addition, we compare the ancilla-based technique for
realizing non-Hermitian linear response presented in Section 2.3 with other schemes for
accessing non-Hermitian dynamics or measuring dynamical correlations, including non-
invasive and projective protocols [24, 129, 131–133].

2.4.1. Ancilla-Based Weak Measurements
Ancilla-based weak measurement schemes for dynamical correlations can be adapted
to probe either the unequal-time commutator or anti-commutator through a suitable
choice of the ancilla state, the system–ancilla coupling, and the projective measurement
performed on the ancilla [131, 132]. It has been shown that those variants that probe
the unequal-time commutator can be cast into an ancilla-free formulation [132], giving
rise, e.g., to rotation-based protocols [24, 129, 131–133]. For weak perturbations, e.g.,
small rotation angles, these ancilla-free schemes correspond in fact to (standard) linear
response. By contrast, the interpretation of ancilla-based weak measurement protocols
that target the unequal-time anti-commutator is far less obvious. For instance, Ref. [132]
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poses the question whether an ancilla-free measurement of this quantity is possible in
general. Here, we show that, indeed, any ancilla-based weak measurement protocol for
the unequal-time anti-commutator can be described in an ancilla-free way as a non-
Hermitian linear response, exposing the close connection between these frameworks.

General relation between non-Hermitian linear response and ancilla-based
weak measurements

We consider a general ancilla-based weak measurement that uses only projective mea-
surements of standard (Hermitian) operators on the ancilla. The following derivation
proceeds in analogy to the one for spin systems presented in Refs. [131, 132], but here
we consider a more general scenario: we do not specify the type of system, work with
general mixed states, and consider arbitrary durations of the system–ancilla coupling.
Let us denote the initial state of system and ancilla by 𝜌S and 𝜌A, respectively, and
assume the combined system to be in a product state initially, 𝜌0 = 𝜌S ⊗ 𝜌A. The tar-
get system evolves under the Hamiltonian 𝐻0, while we assume the ancilla to have no
internal dynamics. System and ancilla are coupled via the general coupling Hamiltonian

𝐻cpl(𝑡) = 𝑓(𝑡)𝐴 ⊗ 𝑋 (2.80)

with a time-dependent function 𝑓(𝑡) and Hermitian operators 𝐴 and 𝑋 acting on system
and ancilla, respectively. The total Hamiltonian of the combined system then reads
𝐻(𝑡) = 𝐻0 ⊗ 𝟙 + 𝐻cpl(𝑡). It is convenient to work in the interaction picture, ̃𝜌(𝑡) =
e𝑖𝐻0𝑡/ℏ𝜌(𝑡)e−𝑖𝐻0𝑡/ℏ. The von Neumann equation

𝑖ℏ d
d𝑡 ̃𝜌(𝑡) = [𝐻̃cpl(𝑡), ̃𝜌(𝑡)] (2.81)

can equivalently be expressed in integral form as

̃𝜌(𝑡) = ̃𝜌(0) − 𝑖
ℏ ∫

𝑡

0
d𝑡′[𝐻̃cpl(𝑡′), ̃𝜌(𝑡′)] ≃ ̃𝜌(0) − 𝑖

ℏ ∫
𝑡

0
d𝑡′[𝐻̃cpl(𝑡′), ̃𝜌(0)] , (2.82)

where 𝐻̃cpl(𝑡) = 𝑓(𝑡) ̃𝐴(𝑡)⊗𝑋 is the interaction-picture coupling Hamiltonian with ̃𝐴(𝑡) =
e𝑖𝐻0𝑡/ℏ𝐴e−𝑖𝐻0𝑡/ℏ. In the last line, we have assumed the coupling to be sufficiently weak
such that we can replace ̃𝜌(𝑡′) in the integral, to linear order in 𝐻cpl, by ̃𝜌(0). Note that
the validity of this linear approximation is not necessarily restricted to short times 𝑡,
but can also be ensured for longer times by a sufficiently weak coupling strength 𝑓(𝑡).

After a coupled evolution up to time 𝑡, during which system and ancilla become
entangled, we measure projectively the observable 𝐵 ⊗ 𝑌 , where 𝐵 and 𝑌 are Hermitian
operators acting on system and ancilla, respectively, and post-select on the outcome of
the ancilla measurement. Although in practice system and ancilla are often measured
simultaneously, it is instructive to treat this process as a consecutive measurement of
the ancilla first and the system second. Without loss of generality, we assume the
observable 𝑌 to have a discrete spectrum of (real) eigenvalues {𝑦}. Let 𝑃𝑦 denote the
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projector on the eigenspace of the eigenvalue 𝑦. After obtaining this outcome, according
to Lüders’ rule [179], the state collapses to

̃𝜌𝑦(𝑡) = 1
𝑝(𝑦)𝑃𝑦 ̃𝜌(𝑡)𝑃𝑦 , (2.83)

where 𝑝(𝑦) = Tr[𝑃𝑦 ̃𝜌(𝑡)𝑃𝑦] is the probability of measuring the outcome 𝑦. For the
coupling Hamiltonian (2.80), the unnormalized post-measurement state reads

𝑃𝑦 ̃𝜌(𝑡)𝑃𝑦 = 𝜌S ⊗ 𝑃𝑦𝜌A𝑃𝑦 − 𝑖
ℏ ∫

𝑡

0
d𝑡′ 𝑓(𝑡′)[ ̃𝐴(𝑡′)𝜌S ⊗ 𝑃𝑦𝑋𝜌A𝑃𝑦 − h.c.] , (2.84)

where h.c. denotes the Hermitian conjugate, while the probability of measuring 𝑦 be-
comes

𝑝(𝑦) = ⟨𝑃𝑦⟩0 − 𝑖 ∫
𝑡

0
d𝑡′𝑓(𝑡′)⟨𝐴(𝑡′)⟩0[⟨𝑃𝑦𝑋⟩0 − ⟨𝑋𝑃𝑦⟩0]. (2.85)

Here, ⟨𝑂(𝑡)⟩0 denotes the expectation value of the Heisenberg operator 𝑂(𝑡), evolving
under the unperturbed Hamiltonian 𝐻0, with respect to the initial state 𝜌0 = 𝜌S ⊗ 𝜌A.
Note that expectation values involving only ancilla operators are time-independent since
we assumed the ancilla to have no internal dynamics. Using (1 + 𝑥)−1 = 1 − 𝑥 + 𝒪(𝑥2),
we obtain the normalized, conditional post-measurement state, to linear order in the
coupling, as

̃𝜌𝑦(𝑡) = 𝜌S ⊗ 𝑃𝑦𝜌A𝑃𝑦
⟨𝑃𝑦⟩0

− 𝑖
ℏ ∫

𝑡

0
d𝑡′ 𝑓(𝑡′){[ ̃𝐴(𝑡′)𝜌S ⊗ 𝑃𝑦𝑋𝜌A𝑃𝑦

⟨𝑃𝑦⟩0
−⟨𝐴(𝑡′)⟩0

⟨𝑃𝑦𝑋⟩0
⟨𝑃𝑦⟩0

]−h.c.} .

(2.86)
Next, we are interested in the conditional expectation value of the system observable 𝐵,

given that the measurement of 𝑌 on the ancilla yields the outcome 𝑦. In a first step, we
trace out the ancilla,

TrA[ ̃𝜌𝑦(𝑡)] = 𝜌S − 𝑖
ℏ ∫

𝑡

0
d𝑡′ 𝑓(𝑡′){

⟨𝑃𝑦𝑋⟩0
⟨𝑃𝑦⟩0

[ ̃𝐴(𝑡′) − ⟨𝐴(𝑡′)⟩0]𝜌S − h.c.} . (2.87)

This yields the conditional expectation value

⟨𝐵(𝑡)⟩𝑦 = Tr[𝐵̃(𝑡) ̃𝜌𝑦(𝑡)]

= ⟨𝐵(𝑡)⟩0 − 𝑖
ℏ ∫

𝑡

0
d𝑡′𝑓(𝑡′){

⟨𝑃𝑦𝑋⟩0
⟨𝑃𝑦⟩0

[⟨𝐵(𝑡)𝐴(𝑡′)⟩0 − ⟨𝐵(𝑡)⟩0⟨𝐴(𝑡′)⟩0] − c.c.} ,

(2.88)

where c.c. denotes the complex conjugate. With this result at hand, we can choose the
ancilla state 𝜌A as well as the ancilla operators 𝑋 and 𝑌 such that the integrand contains
either the unequal-time commutator or the anti-commutator of the system observables 𝐴
and 𝐵.
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Relation to standard linear response: two-time commutator. If ⟨𝑃𝑦𝑋⟩0 =
Tr[𝑃𝑦𝑋𝜌A] is real, i.e., ⟨𝑃𝑦𝑋⟩0/⟨𝑃𝑦⟩0 = −𝑠 with 𝑠 ∈ ℝ, Eq. (2.88) gives access to the
unequal-time commutator,

⟨𝐵(𝑡)⟩𝑦 = ⟨𝐵(𝑡)⟩0 + 𝑖
ℏ𝑠 ∫

𝑡

0
d𝑡′𝑓(𝑡′)⟨[𝐵(𝑡), 𝐴(𝑡′)]⟩0 . (2.89)

This expression coincides with Kubo’s linear response formula [cf. Eqs. (1.56) and (1.57)]
up to a constant factor in the response function. There are two special cases worth dis-
cussing. First, if 𝑋 = 𝟙, ⟨𝑃𝑦𝑋⟩0 = ⟨𝑃𝑦⟩ is always real and the scheme always yields
the unequal-time commutator. This is not surprising: for 𝑋 = 𝟙, system and ancilla
always remain in a product state and the coupling Hamiltonian (2.80) corresponds to
a Hermitian perturbation on the target system only, which is exactly the linear re-
sponse scenario. Second, it is instructive to consider the unconditional expectation
value ⟨𝐵(𝑡)⟩ = ∑𝑦⟨𝐵(𝑡)⟩𝑦𝑝(𝑦), which corresponds to not measuring the ancilla at all
or disregarding the outcome of the ancilla measurement. By combining Eqs. (2.85)
and (2.88), and using the completeness relation ∑𝑦 𝑃𝑦 = 𝟙, we find, to linear order,

⟨𝐵(𝑡)⟩ = ⟨𝐵(𝑡)⟩0 − 𝑖
ℏ⟨𝑋⟩0 ∫

𝑡

0
d𝑡′𝑓(𝑡′)⟨[𝐵(𝑡), 𝐴(𝑡′)]⟩0 , (2.90)

which again always yields the unequal-time commutator. These two examples illustrate
two essential ingredients for extracting the unequal-time anti-commutator from ancilla-
based weak measurements: one in hand, the coupling must entangle system and ancilla,
and second in hand, it is necessary to correlate the measurement on the target system
in some way with the outcome of the ancilla measurement, e.g., through post-selection.

Relation to non-Hermitian linear response: two-time anti-commutator. In
order to extract the unequal-time anti-commutator from Eq. (2.88), ⟨𝑃𝑦𝑋⟩0 must be
purely imaginary, i.e., ⟨𝑃𝑦𝑋⟩0/⟨𝑃𝑦⟩0 = −𝑖𝑠 with 𝑠 ∈ ℝ, yielding

⟨𝐵(𝑡)⟩𝑦 = ⟨𝐵(𝑡)⟩0 − 1
ℏ𝑠 ∫

𝑡

0
d𝑡′𝑓(𝑡′)[⟨{𝐵(𝑡), 𝐴(𝑡′)}⟩0 − 2⟨𝐵(𝑡)⟩0⟨𝐴(𝑡′)⟩0] . (2.91)

This expression corresponds, up to a constant factor in the response function, directly
to the non-Hermitian linear response scenario in Eqs. (2.7) and (2.8).

Equations (2.89) and (2.91) demonstrate the fact that any ancilla-based weak mea-
surement designed to probe the (anti-)commutator can effectively be described as a
(non-)Hermitian linear response. To make this connection even more explicit, we trace
out the ancilla in the unnormalized post-measurement state (2.84),

TrA[𝑃𝑦 ̃𝜌(𝑡)𝑃𝑦] = ⟨𝑃𝑦⟩0𝜌S − 𝑖
ℏ ∫

𝑡

0
d𝑡′𝑓(𝑡′)[⟨𝑃𝑦𝑋⟩0

̃𝐴(𝑡′)𝜌S − h.c.] . (2.92)

In analogy to Ref. [132], to linear order, this result can be re-written in terms of gener-
alized measurement (or Kraus) operators [3, 188] as

TrA[𝑃𝑦 ̃𝜌(𝑡)𝑃𝑦] = 𝑀𝑦𝜌S𝑀†
𝑦 (2.93)
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with

𝑀𝑦 = √⟨𝑃𝑦⟩0 exp{− 𝑖
ℏ

⟨𝑃𝑦𝑋⟩0
⟨𝑃𝑦⟩0

∫
𝑡

0
d𝑡′ 𝑓(𝑡′) ̃𝐴(𝑡′)} . (2.94)

It is easy to verify that, to linear order, these operators fulfill the completeness relation
∑𝑦 𝑀†

𝑦𝑀𝑦 = 𝟙. The measurement operator 𝑀𝑦 describes the effect of the system–ancilla
coupling, conditioned on the outcome 𝑦 of the ancilla measurement, without explicitly
referencing the ancilla. This ancilla-free description corresponds to the evolution under
the effective Hamiltonian 𝐻eff(𝑡) = 𝐻0 + 𝐻1(𝑡) with

𝐻1(𝑡) =
⟨𝑃𝑦𝑋⟩0
⟨𝑃𝑦⟩0

𝑓(𝑡)𝐴. (2.95)

For real ⟨𝑃𝑦𝑋⟩, this evolution is unitary [132] and corresponds to standard (Hermitian)
linear response, giving access to the unequal-time commutator. Remarkably, the case of
purely imaginary ⟨𝑃𝑦𝑋⟩, which according to Eq. (2.91) probes the unequal-time anti-
commutator, corresponds to an anti-Hermitian perturbation and maps directly to the
non-Hermitian linear response scenario described in Section 2.1. This shows that for
any ancilla-based weak measurement of dynamical correlations there is a corresponding
ancilla-free linear response description.

Conversely, any linear response protocol can, at least in principle, be realized via
an ancilla-based weak measurement. While obvious for standard (Hermitian) linear
response, in the non-Hermitian case, the challenge is to choose the ancilla state as well
as the ancilla operators 𝑋 and 𝑌 appropriately such that ⟨𝑃𝑦𝑋⟩ ∈ 𝑖ℝ. To see that this
is always possible in general, let 𝑌 be any Hermitian operator on a (complex) Hilbert
space of dimension two or higher with at least two distinct eigenvalues 𝑦1 and 𝑦2. Then,
take the ancilla state to be the equal superposition of the corresponding eigenstates,
|𝜙⟩ = (|𝑦1⟩ + |𝑦2⟩)/

√
2, with 𝜌A = |𝜙⟩⟨𝜙|. Now, let 𝑃𝑦 = 𝑃𝑦1

be the projector on
the eigenspace with eigenvalue 𝑦1 and set 𝑋 = −𝑖(|𝑦1⟩⟨𝑦2| − |𝑦2⟩⟨𝑦1|). Then, we have
⟨𝑃𝑦𝑋⟩0/⟨𝑃𝑦⟩0 = −𝑖, as desired.

Clearly, for a given anti-Hermitian perturbation, the choice of 𝜌A, 𝑋, and 𝑌 is not
unique, and the challenge consists in finding the configuration that is most convenient
for the desired application. Appropriate choices for spin systems have been discussed,
for instance, in Refs. [131, 132], but their experimental realization on other platforms,
e.g., bosons in optical lattices, is unfortunately not straightforward. To illustrate this,
assume we are interested in perturbations by the density operator 𝐴 = 𝑛 and consider
the above scenario of achieving purely imaginary ⟨𝑃𝑦𝑋⟩0 for a bosonic ancilla, which
translates to 𝑌 = 𝑏†𝑏 (measurement of the occupancy), 𝑋 = −𝑖(𝑏 − 𝑏†), and |𝜙⟩ =
(|0⟩ + |1⟩)/

√
2. However, neither the superposition of Fock states |𝜙⟩ nor the coupling

Hamiltonian 𝐻cpl ∝ 𝑛⊗𝑋, which would be cubic in boson operators, can be realized with
massive, non-relativistic particles. More generally, in order to probe unequal-time anti-
commutators involving the density 𝐴 = 𝑛 through a particle number measurement 𝑌 =
𝑏†𝑏 on a bosonic ancilla, the operator 𝑋 cannot be diagonal in the Fock basis, as this
would imply ⟨𝑃𝑦𝑋⟩ ∈ ℝ, regardless of the ancilla state. In other words, a particle number
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non-conserving coupling Hamiltonian would be required in such a setting. In the scheme
presented in Section 2.3, this difficulty does not arise because the leading contribution
to the response is quadratic in the coupling Hamiltonian, which enables non-Hermitian
perturbations for a wide range of observables including densities and correlators with
experimentally feasible system–ancilla couplings.

The general connection between non-Hermitian linear response and ancilla-based weak
measurements is beneficial for both disciplines: particular observables previously only
accessible via ancilla-based schemes may be obtainable more efficiently in an ancilla-free
way using the tools of non-Hermitian physics, while certain non-Hermitian Hamiltonians
difficult to engineer directly may be realized with the help of an ancilla.

Differences Between Ancilla-Based Weak Measurements and
Non-Hermitian Linear Response via the Quantum Zeno Effect

One of the main challenges of the ancilla-based weak measurement scheme for the
unequal-time anti-commutator discussed above is to engineer the ancilla state as well as
the observables 𝑋 and 𝑌 in such a way that ⟨𝑃𝑦𝑋⟩0 becomes purely imaginary. While
Refs. [131, 132] discuss suitable configurations for spin systems, it is far less obvious how
to choose the setup in an experimentally feasible way on other platforms such as bosons
in optical lattices, as discussed above.

By contrast, the scheme based on the Zeno effect in Section 2.3 relies on the system–
ancilla coupling in Eq. (2.31), which is quadratic in the creation and annihilation op-
erators. Despite its simple form, the coupling can flexibly be adapted to measure the
unequal-time anti-commutator of a wide range of previously inaccessible observables
such as nearest-neighbor correlators, as discussed in Section 2.3.1. In addition, for the
protocol in Section 2.3, the choice of the initial ancilla state in form of the vacuum is
particularly easy to prepare experimentally. On the formal level, an important difference
to the common weak measurement approach is that the coupling Hamiltonian (2.31) for
the Zeno-based scheme, the linear order in perturbation theory vanishes and the leading
contribution to the response stems from the quadratic order (see Section 2.3.1), where
the anti-commutator naturally arises and can be isolated by post-selection on realizations
without any particles in the ancilla.

2.4.2. Projective Protocols

Projective protocols allow one to probe dynamical correlations of dichotomic observables
(observables with two eigenvalues) by performing consecutive projective measurements
directly on the system and correlating the outcomes in a suitable way [24, 129, 131–133].
As such, compared to schemes based on weak perturbations such as linear response, pro-
jective protocols are backaction-free and feature a higher signal-to-noise ratio. Despite
these advantages, the fact that projective protocols work only for dichotomic observables
restricts their general applicability.

In Ref. [24], it has been analyzed how projective protocols can be applied to approx-
imately dichotomic observables, in particular densities in Bose–Hubbard systems close
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to the hard-core limit. In what follows, we assess to what extent projective protocols
represent a good alternative for measuring unequal-time anti-commutators of observ-
ables that are not strictly dichotomic. To this end, we first formulate the protocol for
general observables 𝐴 and 𝐵, where 𝐴 has precisely two eigenvalues. We then investi-
gate with the help of numerical benchmarks at the example of the Bose–Hubbard model
how well the scheme reproduces the exact density autocorrelation spectrum in compar-
ison to non-Hermitian linear response as a function of both the filling and the on-site
interaction.

General Projective Protocol

We begin by briefly reviewing the projective protocol for measuring unequal-time anti-
commutators [24, 129, 131–133]. Here, we formulate the scheme for a general Hermitian
operator 𝐴 with two distinct eigenvalues 𝑎1, 𝑎2 ∈ ℝ. Let 𝑃1 and 𝑃2 be the projection
operators on the corresponding eigenspaces such that 𝐴 = 𝑎1𝑃1 +𝑎2𝑃2 with 𝑃1 +𝑃2 = 𝟙.
This allows us to express both projectors entirely through the operator 𝐴 and the known
eigenvalues,

𝑃1 = 1
𝑎1 − 𝑎2

(𝐴 − 𝑎2𝟙) , (2.96a)

𝑃2 = 1
𝑎2 − 𝑎1

(𝐴 − 𝑎1𝟙) , (2.96b)

which would not be possible if 𝐴 had more than two eigenvalues. The protocol starts by
evolving the initial state 𝜌0 (under the target Hamiltonian 𝐻0) to the waiting time 𝑡w.
Then, the observable 𝐴 is measured projectively and the state is conditioned on the
outcome 𝑎1 or 𝑎2 of this measurement, yielding the conditional post-measurement states

𝜌(𝑡w | 𝑎𝑖) = 1
𝑝(𝑎𝑖)

𝑃𝑖𝜌(𝑡w)𝑃𝑖 (2.97)

with 𝑖 ∈ {1, 2}, where 𝑝(𝑎𝑖) = Tr[𝑃𝑖𝜌(𝑡w)𝑃𝑖] is the probability of obtaining the measure-
ment outcome 𝑎𝑖 at time 𝑡w. Subsequently, the conditional state is evolved to the final
observation time 𝑡 ≥ 𝑡w. The conditional expectation values of an observable 𝐵 then
reads

⟨𝐵(𝑡)⟩𝑎𝑖
= Tr[𝐵𝜌(𝑡 | 𝑎𝑖, 𝑡w)] = ⟨𝐴(𝑡w)𝐵(𝑡)𝐴(𝑡w) − 𝑎𝑗{𝐵(𝑡), 𝐴(𝑡w)} + 𝑎2

𝑗𝐵(𝑡)⟩
𝑝(𝑎𝑖)(𝑎𝑖 − 𝑎𝑗)2 , (2.98)

with (𝑖, 𝑗) ∈ {(1, 2), (2, 1)}, where we have switched to the Heisenberg picture. Solving
for the unequal-time anti-commutator, we obtain

⟨{𝐵(𝑡), 𝐴(𝑡w)}⟩ = ⟨𝐵(𝑡)⟩(𝑎1 + 𝑎2) + [⟨𝐵(𝑡)⟩𝑎1
𝑝(𝑎1) − ⟨𝐵(𝑡)⟩𝑎2

𝑝(𝑎2)](𝑎1 − 𝑎2) . (2.99)

The probabilities 𝑝(𝑎𝑖) can be expressed through the expectation value ⟨𝐴(𝑡w)⟩ with the
help of Eq. (2.96), yielding

⟨{𝐵(𝑡), 𝐴(𝑡w)}⟩ = ⟨𝐵(𝑡)⟩𝑎1
[⟨𝐴(𝑡w)⟩ − 𝑎2] + ⟨𝐵(𝑡)⟩𝑎2

[⟨𝐴(𝑡w)⟩ − 𝑎1] + ⟨𝐵(𝑡)⟩(𝑎1 + 𝑎2) .
(2.100)
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This result states that the desired unequal-time anti-commutator of 𝐴 and 𝐵 can be
extracted from a measurement of the unconditional expectation value ⟨𝐵(𝑡)⟩ (without
previous projective measurement) as well as the conditional expectation values ⟨𝐵(𝑡)⟩𝑎1
and ⟨𝐵(𝑡)⟩𝑎2

, given that the outcomes 𝑎1 and 𝑎2 have been obtained from the projective
measurement of 𝐴 at the waiting time 𝑡w, respectively.

A few remarks are in order. The projective measurement of 𝐴 at time 𝑡w can be
deferred up to the final observation time 𝑡 with the help of an ancilla using shelving
techniques [24]. This way, the need for non-destructive measurements can be avoided.
Furthermore, it is worth emphasizing that there is no restriction on the number of
eigenvalues of the operator 𝐵, i.e., the dichotomic constraint applies only to 𝐴.

Numerical Benchmark: Projective Protocols Versus Non-Hermitian Linear
Response

We now specialize the projective protocol in Eq. (2.100) to density correlations in a
Bose–Hubbard system. In the hard-core limit 𝑈/𝐽 → ∞, multiple occupancies of the
same lattice site are prohibited. The density 𝑛ℓ at site ℓ then becomes a dichotomic
observable with only two eigenvalues 0 and 1. We thus recover the protocol reported in
Ref. [24],

⟨{𝑛ℓ2
(𝑡), 𝑛ℓ1

(𝑡w)}⟩ = ⟨𝑛ℓ2
(𝑡)⟩ + ⟨𝑛ℓ2

(𝑡)⟩
1
⟨𝑛ℓ1

(𝑡w)⟩ − ⟨𝑛ℓ2
(𝑡)⟩

0
(1 − ⟨𝑛ℓ1

(𝑡w)⟩) .
(2.101)

For soft-core bosons, Eq. (2.101) does not hold in general since the density opera-
tor 𝐴 = 𝑛ℓ1

can take more than two eigenvalues. However, the projective protocols
in Eqs. (2.99) and (2.100) can still be used to measure the exact unequal-time anti-
commutator for an arbitrary observable 𝐵 and any dichotomic observable 𝐴. For in-
stance, a possible choice of 𝐴 is the parity 𝛱ℓ of the particle number at site ℓ, which
in conventional quantum gas microscopes is even more easily accessible than the den-
sity itself due to pairwise atom loss caused by the near-resonant imaging light [16].
If we associate the eigenvalues 0 and 1 to even and odd parity, respectively, the op-
erator 𝛱ℓ = 0 ⋅ 𝑃ℓ,even + 1 ⋅ 𝑃ℓ,odd coincides with the density in the hard-core limit.
Thus, in the regime where multiple occupancies can be neglected, we can approximate
the density–density anti-commutator in Eq. (2.101) by the (exactly obtainable) quan-
tity ⟨{𝑛ℓ2

(𝑡), 𝛱ℓ1
(𝑡w)}⟩.

An alternative strategy to approximate ⟨{𝑛ℓ2
(𝑡), 𝑛ℓ1

(𝑡w)}⟩ for soft-core bosons is to
take Eq. (2.101) literally and compute the conditional expectation values ⟨𝑛ℓ2

(𝑡)⟩0 and
⟨𝑛ℓ2

(𝑡)⟩1 from only those realizations where the projective measurement of 𝑛ℓ1
(𝑡w) yields

the outcomes 0 and 1, respectively, discarding realizations with higher occupancies. By
contrast, ⟨𝑛ℓ2

(𝑡)⟩ still represents the (full) unperturbed expectation value. This way, the
asymptotic behavior of the unequal-time anti-commutator for 𝑡 ≫ 𝑡w is correctly repro-
duced: two local observables 𝐴 and 𝐵 typically become uncorrelated in an ergodic system
after sufficiently long times and the anti-commutator reduces to the disconnected prod-
uct 2⟨𝐵(𝑡)⟩⟨𝐴(𝑡w)⟩. For the Bose–Hubbard model, the conditional expectation values of
the local densities in Eq. (2.101) are expected to eventually re-equilibrate to their unper-
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turbed value ⟨𝑛ℓ2
(𝑡)⟩, such that the right-hand side indeed becomes 2⟨𝑛ℓ2

(𝑡)⟩⟨𝑛ℓ1
(𝑡w)⟩.

As long as the system is sufficiently close to the hardcore limit, we can expect Eq. (2.101)
to reproduce the unequal-time anti-commutator for any 𝑡 ≥ 𝑡w to good accuracy. In what
follows, we analyze how well this approximation works for on-site densities (𝐵 = 𝐴 = 𝑛ℓ)
as a function of the filling and the on-site interaction.
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Figure 2.10.: Comparison of the projective protocol (P) and non-Hermitian linear response
(LR) for extracting the unequal-time anti-commutator of the on-site density (𝐵 = 𝐴 = 𝑛2,2)
in a 4 × 4 Bose–Hubbard system with on-site interaction 𝑈/𝐽 = 5 as a function of the filling.
(a) Time trace of the probability 𝑝(𝑛) of finding 𝑛 particles at site (2, 2). (b) Time-averaged
probability 𝑝(𝑛) as a function of the particle number 𝑁 . For small 𝑁 , higher occupancies are
negligible and the on-site density 𝑛2,2 is approximately dichotomic. (c) Time trace of the unequal-
time anti-commutator and (d) correlation spectrum extracted from simulations of the different
measurement schemes at 𝐽𝑡w = 10. (e) Relative error and (f) absolute error of the correlation
spectra in (d) with respect to the exact results. The projective protocol (P) yields good accuracy
at low fillings where multiple occupancies are suppressed, but fails as the filling approaches unity.
Increasing the on-site interaction 𝑈 extends the regime of validity. The non-Hermitian linear
response scheme (LR) performs well irrespective of the filling and the value of 𝑈/𝐽 .

Performance of the projective protocol as a function of the filling. In Fig. 2.10,
we compare the performance of the projective protocol in Eq. (2.101) to that of the non-
Hermitian linear response scheme discussed in Section 2.2 for a 2D Bose–Hubbard system
as a function of the filling. To this end, we vary the number of particles 𝑁 on a square
lattice with open boundary conditions consisting of 4 × 4 sites, labeled by a pair of
indices (ℓ𝑥, ℓ𝑦) with ℓ𝑥, ℓ𝑦 ∈ {1, … , 4}. We initialize the system in a single Fock state
where the particles are distributed to maximize their mutual distances without initially
occupying the interior site (2, 2), at which we probe the density correlations.
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Figure 2.10a shows the probability 𝑝(𝑛) of finding zero, one, or more than one particle
at the probe site for 𝑈/𝐽 = 5 as a function of time. The initial oscillations quickly damp
and the probabilities become approximately stationary. In Fig. 2.10b, we can see the
probability 𝑝(𝑛) = 𝑡−1 ∫𝑡

0 d𝑡′ 𝑝(𝑛, 𝑡′), time-averaged up to time 𝐽𝑡 = 10, as a function of
the particle number 𝑁 . For small 𝑁 , higher occupancies 𝑛 > 1 can be neglected and
the density operator at the probe site is approximately dichotomic.

Figures 2.10c and 2.10d show, respectively, the time trace of the unequal-time anti-
commutator (𝐵 = 𝐴 = 𝑛2,2) and the reactive part of the non-Hermitian dynamic sus-
ceptibility 𝜒′ (NH) (correlation spectrum) at the waiting time 𝐽𝑡w = 10 for several values
of 𝑁 . The exact results are compared to those extracted using the projective protocol
(P) and the non-Hermitian linear response scheme (LR). For the latter, we have used
a rectangular pulse of duration 𝐽𝛿𝑡 = 0.01 and a perturbation strength 𝑠 = 0.05 as in
Section 2.2. The Fourier integral in Eq. (2.23) has been computed using an exponential
filter of characteristic frequency 𝛾/𝐽 = 0.2. While for small 𝑁 the projective protocol
correctly reproduces both the exact time trace and the exact spectrum, there are sizable
deviations as the number of particles 𝑁 (and thus the contribution of higher occupan-
cies) grows. By contrast, the non-Hermitian linear response scheme reproduces the exact
results to good accuracy regardless of the filling.

In Figs. 2.10e and 2.10f, we can see, respectively, the 𝐿2 norm of the relative er-
ror ‖𝜒′ (NH)

sim − 𝜒′ (NH)
exact ‖2/‖𝜒′ (NH)

exact ‖2 and the absolute error ‖ℏ𝜒′ (NH)
sim − ℏ𝜒′ (NH)

exact ‖2 of the
spectra extracted from the simulated measurement protocols in Fig. 2.10d. For the pro-
jective protocol, both errors increase with increasing particle number, while the errors
remain small for the non-Hermitian linear response scheme. For larger on-site interac-
tions 𝑈 , higher occupancies are suppressed more strongly, which delays the rise of the
error curve for the projective protocol as the filling increases: given a certain acceptable
tolerance for the relative error of, say, less than 20 %, the projective protocol for 𝑈/𝐽 = 5
(𝑈/𝐽 = 10) yields acceptable results for up to 𝑁 = 4 (𝑁 = 9) particles.

Performance of the projective protocol as a function of the interaction. We
now investigate the performance of projective protocols for the scenario in Section 2.2,
i.e., a quench in a 1D Bose–Hubbard chain of length 𝐿 = 12 with periodic boundary
conditions at unit filling, initially prepared in a Mott-insulating state. Since ⟨𝑛ℓ(𝑡)⟩ ≡ 1
in this case, the projective protocol in Eq. (2.101) reduces to ⟨{𝑛ℓ2

(𝑡), 𝑛ℓ1
(𝑡w)}⟩ ≈

1 + ⟨𝑛ℓ2
(𝑡)⟩1. If we evaluate this expression at 𝑡 = 𝑡w, the right-hand side takes the

value 2 and therefore the connected anti-commutator extracted from the projective
protocol vanishes. This behavior is qualitatively different from that of the true anti-
commutator, which is maximal at 𝑡 = 𝑡w. Consequently, Eq. (2.101) represents a rather
poor approximation of the unequal-time anti-commutator in this scenario, especially
at small 𝑈/𝐽 . To obtain a slightly better approximation, we resort to the projective
protocol in Eq. (2.99), which is no longer equivalent to Eq. (2.100) if 𝐴 has more than
two eigenvalues. However, unlike Eq. (2.100), the protocol in Eq. (2.99) does not re-
produce the correct asymptotic behavior of the anti-commutator for 𝑡 ≫ 𝑡w if 𝐴 is not
dichotomic. This can be fixed by replacing ⟨𝐵(𝑡)⟩(𝑎1 + 𝑎2) on the right-hand side by
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𝛼⟨𝐵(𝑡)⟩ with 𝛼 = 2⟨𝐴(𝑡w)⟩ − (𝑎1 − 𝑎2)[𝑝(𝑎1) − 𝑝(𝑎2)]. Since ⟨𝐵(𝑡)⟩ is usually stationary
in the regime of interest, this replacement merely contributes a constant offset to the
time trace of the anti-commutator, which ensures ⟨{𝐵(𝑡), 𝐴(𝑡w)}⟩ → 2⟨𝐵(𝑡)⟩⟨𝐴(𝑡w)⟩ for
𝑡 ≫ 𝑡w and avoids spurious static peaks in the correlation spectrum.
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Figure 2.11.: Same as Fig. 2.10, but for a 1D Bose–Hubbard system at unit filling as a function
of the on-site interaction 𝑈 . Despite the suppression of higher occupancies at large 𝑈 (b), the
relative error (e) of the projective protocol (P) remains sizable. By contrast, the non-Hermitian
linear response scheme (LR) yields good results for any value of 𝑈 .

Figure 2.11 shows a similar analysis as in Fig. 2.10 for the 1D system at unit filling
as a function of the on-site interaction 𝑈 . In Fig. 2.11b, it can be seen be seen that
there is a significant contribution from states with higher occupancies at small on-site
interactions 𝑈/𝐽 . As expected, the projective protocol does not perform well in this
regime, while the non-Hermitian linear response scheme yields good results. As we move
to larger 𝑈/𝐽 , we enter the Mott-insulating regime where single occupancies dominate
and the dynamics is governed by particle–hole excitations [191]. Although the probability
of higher occupancies 𝑝(𝑛 > 1) diminishes with increasing 𝑈/𝐽 , its contribution remains
on the same order as that of the probability for vacancies 𝑝(0). Thus, the density
is nowhere well approximated by a dichotomic observable since the neglected higher
occupancies (particle excitations on top of the Mott insulator) are of equal importance
as vacancies (hole excitations). This explains why the absolute error of the projective
protocol in Fig. 2.11f decreases substantially with increasing 𝑈/𝐽 , while the relative error
in Fig. 2.11e decreases only slowly and remains comparatively large even at large 𝑈/𝐽 .
In fact, the error behaves similarly if one approximates the density–density unequal-
time anti-commutator by replacing 𝐴 = 𝑛ℓ1

with the parity 𝛱ℓ1
as discussed above (not

shown). Thus, as opposed to non-Hermitian linear response, projective protocols are

82



not well suited for probing unequal-time anti-commutators and the associated FDRs for
densities at unit filling.

2.5. Experimental Perspectives for an Implementation in
Rydberg Quantum Simulators

As an outlook, we explore the prospects for an experimental realization of the above
ancilla-based non-Hermitian linear response schemes in Rydberg quantum simulators.
We first discuss generic error sources that apply to any potential experimental realization.
Then, we describe how the non-Hermitian linear response protocol can be implemented
in Rydberg quantum simulators for spin systems and investigate potential challenges
and error sources specific to this implementation.

2.5.1. Generic Experimental Error Sources
Many experimental setups such as quantum gas microscopes permit the simultaneous
readout of all site populations in a single shot [18, 19]. This is convenient for simultane-
ously measuring the responses of different observables 𝐵, e.g., 𝐵 = 𝑛ℓ for ℓ = 1 … 𝐿, to
a fixed perturbation 𝐴 determined by the coupling scheme. In addition, for the single
Zeno step and the continuous Zeno evolution in Sections 2.3.1 and 2.3.3, respectively,
the measurement of the ancilla population can be deferred up to the final observation
time 𝑡 and measured along with the other site populations (cf. Ref. [131]). The projec-
tion on the empty-ancilla subspace is then achieved by post-selecting those realizations
where no particles are detected in the ancilla. Since the effective coupling 𝑠 needs to be
chosen sufficiently weak to stay within the regime of linear response, the fidelity of the
post-selection is typically high (see Fig. 2.7c). However, there is the usual linear response
tradeoff between maximizing the measurement signal (large 𝑠) and staying within the
perturbative regime where the linear approximation is valid (small 𝑠).

One can distinguish two types of detection errors: false positives, i.e., at least one
particle is detected in the ancilla, but there is actually none, and false negatives, i.e.,
no particles are detected, but there is at least one. Let 𝛼 be the false positive rate and
let 𝛽 be the false negative rate. If the measurement is post-selected on the condition
that no particles are detected in the ancilla, which may in some cases be erroneous, the
conditional state in Eq. (2.32) is replaced by

𝜌′ = (1 − 𝛼)𝑃𝜌𝑃 + 𝛽𝑄𝜌𝑄 , (2.102)

where 𝜌 is the state right after the coupling and before the projection, and 𝑄 = 𝟙 − 𝑃 is
the projector on the subspace with a non-vanishing ancilla population (for simplicity, we
do not distinguish different false-negative probabilities within the 𝑄-subspace since the
error due to single occupancies dominates in the linear regime). This shows that false
positives lower the measurement fidelity, while false negatives contribute a systematic
error to the result, arising from the inadvertent projection on a complementary subspace
[see the discussion in the context of Eq. (2.45)].

83



2.5.2. Non-Hermitian Linear Response in Rydberg Quantum
Simulators for Spin Systems

In Rydberg atoms, electrons are excited to high principal quantum numbers 𝑛, causing
atomic radii to increase by several orders of magnitude with respect to the non-Rydberg
state. This unique property allows for a high degree of experimental control over inter-
actions between Rydberg atoms, and Rydberg systems have emerged as a competitive
platform for quantum simulation and computation [192]. A spin-1/2 degree of freedom
can be encoded in two Rydberg states, e.g., |↑⟩ = |𝑛𝑃⟩ and |↓⟩ = |𝑛𝑆⟩ in 87Rb [104].
A third Rydberg state, e.g., |A⟩ = |(𝑛 − 1)𝑃⟩, can then play the role of the ancilla
for probing dynamical correlations in the spin-1/2 system via non-Hermitian linear re-
sponse [104]. Since the ancilla state is available to each Rydberg atom individually,
this setup corresponds to the general system–ancilla coupling scheme described in Sec-
tion 2.3.1, where each mode (here each spin) is coupled to a separate ancilla. This
setting allows one to probe global quantities like the total magnetization in a single
configuration. The populations of the individual states can be resolved using electric
field ionization [104], which enables post-selecting realizations where no ancilla state is
populated, as required to generate effective non-Hermitian perturbations.

A first step towards the implementation of the non-Hermitian linear response protocol
with engineered dephasing in Section 2.3.3 consists in the generation of the appropriate
dephasing noise on the ancilla. In Appendix A.2, we show at the example of a single
qubit that the stochastic von Neumann equation (2.68) (or stochastic Schrödinger equa-
tion in case of a pure state) can be obtained by engineering a random walk of the phase
of the driving field. This basic building block has been achieved according to preliminary
experimental results demonstrating unitary stochastic evolutions of individual realiza-
tions, whose ensemble average obeys a Lindblad master equation [104]. Furthermore, the
same experiment demonstrates the extraction of the unequal-time (anti-)commutator us-
ing (non-)Hermitian linear response in a system of non-interacting Rydberg qubits [104].
In the (non-interacting) single-particle case, the non-Hermitian linear response protocols
in Section 2.3 simplify because no post-selection is required.

The final step for an experimental realization of the proposed non-Hermitian linear
response measurement in the many-body case consists in post-selecting on realizations
where no particles occupy the ancilla state. While in principle this can be achieved in
the outlined Rydberg experiment [104], in practice post-selection can severely increase
the number of experimental runs to accumulate sufficient statistics. This is because
post-selection on the condition that no particles are detected in the ancilla involves
discarding runs where this condition cannot be guaranteed. In practice, a statement
whether or not a particle was present in a single realization can often be made only with
a certain probability, which depends on the efficiency of the detection system. Thus,
it would constitute an enormous experimental simplification to relax the requirement
of strict post-selection and tolerate a certain rate of false negatives. In what follows,
we illustrate for a specific setting how the non-Hermitian linear response results are
affected by an incomplete post-selection, corresponding to a finite false negative rate 𝛽.
Furthermore, we investigate a potential simplification of the protocol with engineered
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dephasing, consisting in applying a scalar noise process acting globally an all ancillas
instead of applying independent noise realizations on each ancilla individually.

XXZ Heisenberg model. We illustrate these aspects for an XXZ Heisenberg spin-1/2
model, which can be realized in Rydberg quantum simulators [193]. The Hamiltonian
of this model is given by

𝐻XXZ = 1
2 ∑

𝑖≠𝑗
ℏ𝐽𝑖𝑗(𝑆𝑥

𝑖 𝑆𝑥
𝑗 + 𝑆𝑦

𝑖 𝑆𝑦
𝑗 + 𝛥𝑆𝑧

𝑖 𝑆𝑧
𝑗 ) + ℎ𝑥 ∑

𝑗
𝑆𝑥

𝑗 + ℎ𝑧 ∑
𝑗

𝑆𝑧
𝑗 , (2.103)

where {𝑆𝑥
𝑗 , 𝑆𝑦

𝑗 , 𝑆𝑧
𝑗 } = {𝜎𝑥

𝑗 , 𝜎𝑦
𝑗 , 𝜎𝑧

𝑗 }/2 are the spin-1/2 operators of spin 𝑗, defined in
terms of Pauli matrices, 𝐽𝑖𝑗 are the interactions constants between the spins 𝑖 and 𝑗,
ℎ𝑥 and ℎ𝑧 are external fields in 𝑥 and 𝑧 direction, respectively, and 𝛥 quantifies the
anisotropy of the interaction in 𝑧 direction. Due to the dipolar interactions between
Rydberg atoms, the interactions are long ranged as 𝐽𝑖𝑗 ∝ 𝑟−6

𝑖𝑗 , where 𝑟𝑖𝑗 is the distance
between the spins 𝑖 and 𝑗. We focus on the value 𝛥 = −0.73 of the anisotropy for
consistency with the experiment in Ref. [193]. While the Rydberg atoms in this setup
are disordered, we consider here for simplicity a linear chain with uniform spacing 𝑎, such
that 𝐽𝑖𝑗 = 𝐽/|𝑖 − 𝑗|6, and open boundary conditions, which can be realized in Rydberg
experiments with arrays of optical tweezers [192].

2.5.3. The Role of False Negatives

The system is initialized in the product state |𝛹0⟩ = |→⟩⊗𝑁 , corresponding to all spins
initially pointing in 𝑥 direction, where |→⟩ = (|↑⟩ + |↓⟩)/

√
2. At zero external field, it

can take the system a long time to thermalize due to the long-range 𝑟−6 interaction.
To accelerate the development of a stationary state, we choose the external fields as
ℎ𝑥/ℏ𝐽 = −0.7 and ℎ𝑧/ℏ𝐽 = −0.3. Figure 2.12a shows the unperturbed evolution of
the total magnetization in 𝑥 and 𝑧 direction, ⟨𝑆𝑥⟩ = ∑𝑗⟨𝑆𝑥

𝑗 ⟩ and ⟨𝑆𝑧⟩ = ∑𝑗⟨𝑆𝑧
𝑗 ⟩, for

a system of 𝑁 = 12 spins. After damped initial oscillations, both quantities reach
approximately stationary values around times on the order of 𝐽𝑡 ≈ 10.

Our goal is to investigate the consequences of faulty projection on the correlation
spectrum 𝑆𝐵𝐴 (an thus on the extracted FDRs) for the total magnetization in 𝑥 di-
rection, 𝐵 = 𝐴 = 𝑆𝑥. To this end, we use the non-Hermitian linear response protocol
in Section 2.3.1, corresponding to a single step in the Zeno evolution. The coupling
Hamiltonian reads

𝐻cpl = ℏ𝛺 ∑
𝑗

(|A⟩𝑗⟨→|𝑗 + |→⟩𝑗⟨A|𝑗) , (2.104)

i.e., for each particle, the spin state |→⟩ is coherently coupled to the ancilla state |A⟩
with coupling strength 𝛺.

To mimic imperfect post-selection on realizations without ancilla occupancies, we com-
pute the conditional expectation value with respect to the state in Eq. (2.102) at a finite
false negative rate 𝛽 (for simplicity, we neglect false positives as they do not contribute
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Figure 2.12.: Influence of faulty post-selection on the non-Hermitian linear response measure-
ment of the unequal-time anti-commutator and the FDR. (a) Time evolution of the magnetization
in an XXZ Heisenberg chain with initially all spins polarized in 𝑥 direction. (b) Response of the
total magnetization 𝐵 = 𝑆𝑥 after applying a short system–ancilla coupling pulse at the waiting
time 𝐽𝑡w = 100 (red curves). A measurement with perfect post-selection on the absence of an-
cilla occupancies (false negative rate 𝛽 = 0) realizes a purely non-Hermitian perturbation by the
operator 𝐴 = 𝑃→. The curve with 𝛽 = 1 corresponds to a measurement without post-selection.
The unperturbed evolution (grey) and the response to a Hermitian perturbation with 𝐴 = 𝑃→
(blue) are shown for comparison. (c) Time trace of the response function extracted from (b),
illustrating the ancilla-based measurement for several false negative rates 𝛽. (d) Correlation
spectrum computed from the response functions in (c). The inset shows the FDR (1.83) with the
fitted effective temperature 𝑇 according to Eq. (2.26). The measurement without post-selection
(𝛽 = 1) captures the qualitative behavior of both the response function (c) and the correlation
spectrum (d).

a systematic error, setting 𝛼 = 0). In the present scenario, the projector on the empty-
ancilla subspace reads 𝑃 = (|↑⟩⟨↑| + |↓⟩⟨↓|)⊗𝑁 , while 𝑄 = 𝟙 − 𝑃 projects on the comple-
mentary subspace where at least one particle is detected in the ancilla state. Since we
only probe system observables, which act trivially on the ancilla, coherences between the
𝑃 and 𝑄 subspaces play no role when computing expectation values, such that the state
in Eq. (2.102) can be replaced by 𝜌′ = (1 − 𝛽)𝑃𝜌𝑃 + 𝛽𝜌, where 𝜌 is the (unprojected)
state right after the coupling. Note that to leading order in the perturbation strength,
only configurations where at most one of the particles is in the ancilla state contribute
(see, for example, Eq. (3.17) in Section 3.1.2, where ancilla occupation probabilities are
calculated up to next-to-leading order).
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In case of perfect post-selection (𝛽 = 0), an analogous calculation as in Section 2.3.1
shows that the conditional expectation value of an observable 𝐵, post-selected on the
empty-ancilla, is given by Eq. (2.43) with the perturbation operator 𝐴 = 𝑃→, where
𝑃→ = ∑𝑗 𝑃 (𝑗)

→ = ∑𝑗|→⟩𝑗⟨→|𝑗 is the sum of local projectors on the spin state |→⟩. Using
𝑃 (𝑗)

→ = (𝟙 + 2𝑆𝑥
𝑗 )/2, we thus obtain

⟨𝐵(𝑡)⟩𝑃 = ⟨𝐵(𝑡)⟩0 − 𝑠[⟨{𝐵(𝑡), 𝑆𝑥(𝑡w)}⟩0 − 2⟨𝐵(𝑡)⟩0⟨𝑆𝑥(𝑡w)⟩0] + 𝒪(𝑠2) , (2.105)

where 𝑠 = (𝛺𝛿𝑡)2/2 and 𝑆𝑥 = ∑𝑗 𝑆𝑥
𝑗 is the total spin operator in 𝑥 direction. By

contrast, without post-selection (𝛽 = 1), the result reads

⟨𝐵(𝑡)⟩ = ⟨𝐵(𝑡)⟩0 − 𝑠[⟨{𝐵(𝑡), 𝑃→(𝑡w)}⟩0

− 2 ∑
𝑗

⟨(|→⟩𝑗⟨A|𝑗)(𝑡w)𝐵(𝑡)(|A⟩𝑗⟨→|𝑗)(𝑡w)⟩0] + 𝒪(𝑠2) , (2.106)

which includes undesired contributions similar to recycling terms in Lindblad equations
[cf. Eq. (2.45)].

Figure 2.12 shows how the undesired contributions in Eq. (2.106) manifest in practice
for the particular scenario of probing FDRs in XXZ Heisenberg chains outlined above.
In Fig. 2.12b, the response of the total magnetization in 𝑥 direction (𝐵 = 𝑆𝑥) is shown at
𝐽𝑡w = 100 in the unperturbed case, for a Hermitian perturbation (probing the unequal-
time commutator), as well as for the perturbation generated by coupling to the ancilla
with and without post-selection. In all cases, the strength of the perturbation has been
chosen as 𝑠 = 0.025 with a duration 𝛿𝑡 = 0.01. The result for 𝛽 = 0 reflects a perfect
non-Hermitian perturbation, while 𝛽 = 1 (no post-selection) is experimentally easier
to realize. The corresponding response functions are shown in Fig. 2.12c, including
intermediate values of 𝛽, which interpolate between the corner cases 𝛽 = 0 and 𝛽 = 1.
While deviations are clearly visible, the qualitative behavior of the curves for 𝛽 = 0
and 𝛽 = 1 is similar. This is also reflected in the correlation spectrum depicted in
Fig. 2.12d, where the protocol with 𝛽 = 1 captures characteristic peaks around 𝜔/𝐽 =
2 even quantitatively, while deviations from the ideal result for 𝛽 = 0 are apparent
at small frequencies. The spectrum has been calculated using an exponential filter of
characteristic frequency 𝛾/𝐽 = 0.2. The inset in Fig. 2.12d shows that the system
indeed fulfills the FDR in the stationary regime. For the specific scenario investigated,
a measurement without post-selection is also capable of certifying the validity of the
FDR since deviations in the correlation spectrum at small frequencies are irrelevant for
probing FDRs.

It should be noted that the deviations for measurements with and without post-
selection can be more severe in other scenarios, such that in general post-selection is
required for an unbiased measurement. Yet, the above example illustrates that it is
possible to identify scenarios where the difference is moderate, in which case also a
measurement without post-selection can probe the validity (or the failure) of the FDR.
This insight makes the proposed non-Hermitian linear response protocol attractive even
to experiments where accurate post-selection is difficult to realize.
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2.5.4. Local Versus Global Noise

We now investigate another question of practical relevance for an experimental realiza-
tion of the non-Hermitian linear response scheme with engineered dephasing, presented
in Section 2.3.3.

In case of a single ancilla, as considered in Section 2.3.3, engineered dephasing applied
to the ancilla is described by the Hamiltonian 𝐻A(𝑡) = ℏ

√
2𝜅𝜉(𝑡)𝑏†𝑏, giving rise to the

stochastic von Neumann equation (2.68). The natural generalization of this scenario to
multiple ancillas involves exposing each ancillary mode to a separate independent noise
process [158]. For the Rydberg system considered here, this corresponds to the ancilla
Hamiltonian

𝐻A(𝑡) = ∑
𝑗

√2𝜅𝑗ℏ𝜉𝑗(𝑡)𝑃 (𝑗)
A , (2.107)

where 𝑃 (𝑗)
A = |A⟩𝑗⟨A|𝑗 is the local projector on the 𝑗-th ancilla, 𝜉𝑗(𝑡) represents uncorre-

lated Gaussian white noise with ⟪𝜉𝑗(𝑡)⟫ = 0 and ⟪𝜉𝑖(𝑡)𝜉𝑗(𝑡′)⟫ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′), and 𝜅𝑗 is
the local dephasing rate. For a pure state |𝜓(𝑡)⟩, time evolution is then governed by the
stochastic Schrödinger equation in Stratonivich interpretation,

𝑖ℏ d|𝜓(𝑡)⟩ = [𝐻0 + 𝐻cpl(𝑡)]|𝜓(𝑡)⟩ d𝑡 + ∑
𝑗

ℏ√2𝜅𝑗𝑃 (𝑗)
A |𝜓(𝑡)⟩ ∘ d𝑊𝑗(𝑡) , (2.108)

where 𝑊𝑗(𝑡) is the 𝑗-th component of an 𝑁 -dimensional Wiener process (defined in
Appendix A.1.1). In analogy to the procedure in Section 2.3.3, we can derive a Lindblad
master equation for the noise-averaged density operator 𝜎(𝑡) = ⟪|𝜓(𝑡)⟩⟨𝜓(𝑡)|⟫ using the
methods for SDEs described in Appendix A.1. The result reads

d
d𝑡𝜎 = − 𝑖

ℏ[𝐻0 + 𝐻cpl(𝑡), 𝜎] − ∑
𝑗

𝜅𝑗({𝐿†
𝑗𝐿𝑗, 𝜎} − 2𝐿𝑗𝜎𝐿†

𝑗) (2.109)

with Lindblad operators 𝐿𝑗 = 𝑃 (𝑗)
A .

An enormous practical simplification with respect to the setup in Eq. (2.107) consists
in applying only a single scalar noise process 𝜉(𝑡) globally to all ancillas. Engineering
the corresponding noise Hamiltonian

𝐻A(𝑡) = ℏ
√

2𝜅𝜉(𝑡) ∑
𝑗

𝑃 (𝑗)
A (2.110)

then requires no single-site (or single-particle) addressing. This setting leads to a master
equation with only a single Lindblad operator given by the sum of all local ancilla
projectors, 𝐿 = ∑𝑗 𝑃 (𝑗)

A .
It is clear that the settings in Eqs. (2.107) and (2.110) are not equivalent. Nonetheless,

in the linear regime, where only single occupancies of the ancilla matter, the two variants
give rise to the same evolution. In the non-Hermitian linear response context, we are
interested in the limit where the dephasing rate is large compared to all other relevant
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frequency scales. Using the same approximations as in Section 2.3.3, one derives the
effective non-Hermitian Hamiltonian

𝐻eff(𝑡) = 𝐻0 − 𝑖𝐻𝑃𝑄(𝑡)𝐾−1𝐻𝑄𝑃 (𝑡) , (2.111)

governing the time evolution of the state 𝜎𝑃𝑃 = 𝑃𝜎𝑃 projected on the subspace without
any ancilla occupancies. Here, 𝐻𝑃𝑄(𝑡) = 𝑃𝐻cpl(𝑡)𝑄 and the operator 𝐾 is given by

𝐾 = {𝑄(∑𝑗 ℏ𝜅𝑗𝐿†
𝑗𝐿𝑗)𝑄 (local noise)

𝑄 ℏ𝜅𝐿†𝐿 𝑄 (global noise) .
(2.112)

Due to the projector 𝑃 in Eq. (2.111), this operator only acts on states where exactly
one particle is in the ancilla, state such that 𝐾 can be replaced by a scalar factor ℏ𝜅
in both cases (assuming 𝜅𝑗 ≡ 𝜅 for local noise). For the coupling Hamiltonian (2.113),
the effective non-Hermitian Hamiltonian then becomes 𝐻eff = 𝐻0 − 𝑖ℏ𝛺2𝑃→/𝜅. Recall
that one of the approximations made in the derivation of the effective non-Hermitian
description in Eq. (2.78) is to neglect the population 𝜌𝑄𝑄 = 𝑄𝜌𝑄 to leading order in
𝛺/𝜅. On the non-linear level, the operator 𝐾 in Eq. (2.112) acts differently on states
with multiple ancilla occupancies and therefore deviations between the local and global
noise variants are expected when operating outside of the linear regime.

To confirm and illustrate the above predictions, we apply the engineered dephas-
ing protocol to probing the non-Hermitian dynamical susceptibility (2.24) in the XXZ
Heisenberg model (2.103), similarly to the numerical benchmark in Section 2.3.3. We
consider a thermal state of 𝑁 = 6 spins at temperature 𝑘B𝑇 /ℏ𝐽 = 1.57, chosen such
that the mean energy matches that of a state with all spins polarized in 𝑥 direction.
All other model parameters are the same as in Fig. 2.12. Here, we probe unequal-time
correlations of the total magnetization in 𝑧 direction (𝐵 = 𝐴 = 𝑆𝑧 = ∑𝑗 𝑆𝑧

𝑗 ), which can
be realized by coupling the spin state |↑⟩ to the ancilla,

𝐻cpl = ℏ𝛺 ∑
𝑗

(|A⟩𝑗⟨↑|𝑗 + |↑⟩𝑗⟨A|𝑗) . (2.113)

The coupling is applied up to the final observation time 𝐽𝑡f = 10 at a strength 𝑠 =
𝑡f𝛺2/𝜅 = 0.05 without modulation, i.e., we probe the static susceptibility (𝜔 = 0). To
examine the differences between the local and global noise configurations in Eqs. (2.107)
and (2.110), the master equation (2.109) has been solved for the two configurations (in
the case of global noise, there is only a single Lindblad operator, as described above).
The result is depicted in Fig. 2.13 for 𝜅/𝐽 = 10 (𝜅/𝐽 = 1 is shown for comparison,
although this value is not in the limit that yields the effective non-Hermitian Hamil-
tonian). Figure 2.13a shows the decrease of the projector as a function of time. The
dotted line marks the prediction by Eq. (2.6) and can be used to gauge the extent of the
linear regime. Figure 2.13b shows the unnormalized response of the observable 𝐵 = 𝑆𝑧,
while the susceptibility shown in Fig. 2.13d is obtained by normalizing this quantity.
According to Eq. (2.79), the normalized response yields the time integral of the non-
Hermitian response function 𝜙(NH)

𝐵𝐴 over the shaded region in Fig. 2.13c, as indicated by
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Figure 2.13.: Differences between local and global noise in the extraction of dynamical sus-
ceptibilities using engineered dephasing. (a) Decrease of the probability ⟨𝑃 ⟩ to remain in the
empty-ancilla subspace as a function of time. The green line shows the ideal result obtained
directly from the effective non-Hermitian Hamiltonian. The dotted line marks the linear pre-
diction by Eq. (2.6). (b) Unnormalized conditional expectation value of the total magnetization
𝐵 = 𝑆𝑧. (c) Non-Hermitian response function 𝜙(NH)

𝐵𝐴 for 𝐵 = 𝐴 = 𝑆𝑧 (exact result). (d) Static
susceptibility, obtained by normalizing the expectation value in (b). The ideal result corresponds
to the time integral over the shaded region of the response function in (c), as indicated by the
dotted line. There is no visible difference between local and global noise in the linear regime,
but on the non-linear level, the global noise scenario exhibits larger deviations from the desired
non-Hermitian evolution.

the black dots in Fig. 2.13d. Deviations from the ideal non-Hermitian result, obtained
directly from the effective non-Hermitian Hamiltonian 𝐻eff = 𝐻0 − 𝑖ℏ𝛺2𝑃↑/𝜅, become
visible for times larger than 𝐽𝑡 ≈ 3, corresponding to a norm decrease of about 10 %.
The onset of the deviations coincides with the onset of the non-linear regime. This
confirms the above prediction that on the linear level, there is no difference between
the local and global noise scenario, while deviations become apparent in the non-linear
regime. Outside the linear regime, the scheme with local noise is closer to the non-
Hermitian description. This can be explained by the increased sensitivity to correlations
between particles in the ancilla if the noise acts globally. Furthermore, as can be seen
in Fig. 2.13, the differences between the local and global setting grow with increasing
dephasing rate 𝜅.

As this analysis demonstrates, the simpler setup of engineering a single noise pro-
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cess that globally acts on all ancillas yields accurate results when operating in the linear
regime. This extends the scope of the engineered dephasing variant of the non-Hermitian
linear response scheme to experimental setups where single-site addressing is not avail-
able.

2.6. Summary

In this chapter, we have introduced protocols based on non-Hermitian linear response
to measure the elusive unequal-time anti-commutator as the missing piece for the direct
observation of the fluctuation–dissipation relation (FDR) in quantum systems. The ex-
traction of FDRs has been illustrated through numerical benchmark simulations at the
experimentally motivated example of tracking thermalization in a Bose–Hubbard sys-
tem after a quench. The non-Hermitian linear response framework is agnostic to specific
platforms and implementations, and as such can be applied to any quantum many-
body system. In particular, it also represents a simple and efficient way to numerically
compute unequal-time anti-commutators, in analogy to the linear response protocols
employed in Refs. [107, 118] to numerically extract unequal-time commutators. Higher
orders in the response may be used to access nested unequal-time anti-commutators of
increasing order. Furthermore, we have shown that common ancilla-based weak mea-
surement protocols for dynamical correlations fit in the same framework, as these can
be interpreted in the light of (non-)Hermitian linear response.

At the center of our discussion has been the design of specific ancilla-based schemes to
realize the desired non-Hermitian perturbations in cold-atom systems. The basic variant
of the scheme corresponds to a single step in the quantum Zeno evolution and consists
of coupling to the ancilla, followed by a projection on the subspace where the ancilla
remains unoccupied. This procedure realizes a delta-like effective non-Hermitian pertur-
bation, suitable for mapping out the time trace of the unequal-time anti-commutator at
a fixed waiting time. By iterating the Zeno evolution, a prolonged and possibly time-
dependent non-Hermitian perturbation can be achieved, allowing one to directly probe
susceptibilities in frequency space. The repeated measurements generating the Zeno ef-
fect can be substituted by strong engineered dephasing noise on the ancilla, such that
only a single post-selected measurement at the final evolution time is required. The pro-
posed realization of non-Hermitian linear response is feasible even when existing weak
measurement protocols are difficult to engineer experimentally, and it excels in regimes
where projective protocols fail as a consequence of their restriction to observables with
two eigenvalues. While we have focused on lattice systems, the protocol can immedi-
ately be applied to continuous systems, e.g., via spatially focused laser beams, giving
access to dynamical correlations of the field operator coarse-grained over a small region in
space [69]. Moreover, our discussion of experimental perspectives for implementations in
Rydberg quantum simulators has revealed that some experimental requirements, such
as strict post-selection or engineering dephasing noise for each ancilla independently,
may be relaxed under certain conditions. This significantly extends the feasibility of
the method. The proposed realization of non-Hermitian linear response thus opens the
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door to probing dynamical correlations and FDRs in quantum many-body systems for
a broad range of observables, even beyond unequal-time density correlations.
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3. Measuring Currents and Current
Correlations

The discussion of the non-invasive current measurement scheme in this chapter is based
on Ref. [194]. The figures and some parts of the text have been taken verbatim from that
work, but the presentation has been adapted to better showcase the connections to non-
Hermitian linear response discussed in Chapter 2. The application of the scheme to the
measurement of chiral currents in bosonic ladders is a continuation of the work started
in Janika Reichstetter’s Bachelor’s thesis [2]. See List of Publications for a statement of
contributions.

•

In the previous chapter, we have explored ancilla-based schemes exploiting the quan-
tum Zeno effect to realize effective non-Hermitian perturbations in quantum many-
body systems. As demonstrated at the example of optical-lattice setups, measuring
the induced non-Hermitian linear response enables the detection of quantities which are
in general not immediately accessible through standard projective measurements, e.g.,
unequal-time anti-commutators. In this chapter, we follow a related approach to devise
a handle on another observable that is inherently difficult to access in analog quantum
simulators: the current operator.

While quantum simulators of condensed matter systems, e.g., based on cold atoms
or trapped ions, not only allow one to engineer and manipulate a wide range of model
Hamiltonians, but also to observe their dynamics at a microscopic resolution and in real
time [6, 13–17, 71–74, 78, 195–197], possibilities to directly detect currents are sparse.
In actual solid state systems, currents are comparatively easy to measure by connecting
wires to the sample [198, 199], which has enabled milestone discoveries such as the inte-
ger and fractional quantum Hall effects [200–203]. For ultracold atoms or trapped ions,
such a coupling to the outside world would destroy the high-vacuum sample. It is never-
theless possible to measure transport properties by tracking the evolution of individual
particles or collective excitations [40, 182, 204–218], by tomography after quenching an
optical lattice [180, 219–222], or by employing reservoir regions with different chemical
potentials [223, 224]. In contrast, the direct measurement of currents requires additional
experimental overhead, such as tuning interactions to zero [180] or coupling a synthetic
dimension to a cavity [225]. Thus, it remains highly challenging to measure currents in
quantum devices.

This chapter is devoted to novel ancilla-based protocols for the direct measurement
of currents and current correlations [194]. The scheme relies on a setup similar to that
employed in Fig. 2.7b for the realization of non-Hermitian linear response in optical
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lattices, where two lattice sites are coherently coupled to a central ancilla. The key
to gain access to the current operator is to engineer the phases of the couplings in an
appropriate way. A short coupling pulse then maps the current between the two sites
under investigation to the population of the ancilla, which can be read out using standard
detection techniques. This method works for interacting bosons and fermions alike, both
in and out of equilibrium, and can easily be extended to other platforms.

We first develop a non-invasive variant of the protocol, which is directly inspired from
the non-Hermitian linear response scenario discussed in the previous chapter. As elu-
cidated in Section 2.4.1, a non-Hermitian linear response can always be realized via an
ancilla-based weak measurement. Keeping this connection in mind, we will in what
follows adopt a weak measurement point of view. The central idea of this type of mea-
surement is to weakly couple the system to an ancilla, on which suitable measurements
are performed to extract information about the system. In our case, the system–ancilla
coupling is engineered in such a way that a projective measurement of the ancilla popu-
lation gives access to the current operator. Such a weak (or non-invasive) measurement
has the advantage that measurement back action is reduced and the quantum state re-
mains largely intact [163, 188], which enables, for example, the detection of temporal
correlations (see discussion in Section 2.4.1). Furthermore, weak measurements permit
the simultaneous readout of operators that are incompatible according to the Heisenberg
uncertainty principle [226, 227], which turns out to be beneficial when measuring global
currents.

After introducing the general technique for the non-invasive measurement of currents
and current correlations, including a discussion of potential experimental error sources
and strategies how to mitigate them, we unfold various applications of this method.
Our first benchmark example is the Harper–Hofstadter model for interacting bosons on
an optical-lattice ladder, which mimics the Meissner effect in type-II superconductors
exposed to an external magnetic field [181, 228–244]. As demonstrated by numerical
benchmark simulations, the non-invasive current measurement scheme reveals the char-
acteristic current patterns of the Meissner and the vortex phases (see Fig. 3.1c), as well
as the transition to a Mott-insulating phase. As a second benchmark, the technique
is applied to the detection of chiral long-range order in frustrated bosons on spatially
anisotropic triangular lattices, which host rich 1D and 2D Néel as well as subtle chiral
phases [245–248]. The latter cannot be revealed by the current itself as it vanishes on
average, but loop current correlations are sensitive to the chirality [249] and can be
accessed by means of the proposed scheme. Moreover, we discuss possible implemen-
tations in trapped-ion quantum simulators, enabling, for example, the measurement of
spin currents.

A practical challenge for the non-invasive current measurement scheme — as for any
linear-response-type protocol where information about the system is extracted following
a weak perturbation — is to achieve a sufficiently high signal-to-noise ratio. Although
typically a good compromise between measurement accuracy and signal strength can be
found (see numerical benchmarks in Section 3.2.1), it may in some cases be necessary
to improve the signal-to-noise ratio even further, which usually comes at the price of
systematic deviations due to non-linearities. However, it turns out that the non-invasive
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protocol for measuring currents can be turned into a projective measurement by replacing
the weak system–ancilla coupling with a 𝜋-pulse. In the last section of this chapter,
we discuss how this projective variant enables the detection of currents and current
correlations at a substantially increased signal-to-noise ratio.

3.1. Non-Invasive Protocol
We consider a general system described by the tight-binding Hamiltonian

𝐻0 = − ∑
ℓ≠ℓ′

ℏ𝐽ℓℓ′𝑎†
ℓ𝑎ℓ′ + 𝑉 , (3.1)

where 𝑎ℓ (𝑎†
ℓ) denotes the bosonic or fermionic annihilation (creation) operator at local

mode ℓ, which may represent lattice sites or internal states, and 𝑉 contains any density–
density interaction. We allow for complex hopping amplitudes 𝐽ℓℓ′ = 𝐽 ∗

ℓ′ℓ = |𝐽ℓℓ′ |e𝑖𝜙ℓℓ′

involving Peierls phases 𝜙ℓℓ′ , as is common in models with synthetic gauge fields [71, 74,
250]. For concreteness, we focus the following discussion on cold atoms in optical lattices,
but the same concept can also be applied to other quantum simulation platforms, as will
be exemplified in Section 3.2.3 for trapped ions.

It is our goal to measure expectation values involving the current operator from local
mode ℓ1 to ℓ2,

𝑗ℓ1ℓ2
= −𝑖(𝐽ℓ1ℓ2

𝑎†
ℓ1

𝑎ℓ2
− 𝐽 ∗

ℓ1ℓ2
𝑎†

ℓ2
𝑎ℓ1

) , (3.2)

whose form follows by combining the Heisenberg equation of motion

d
d𝑡𝑛ℓ1

= 𝑖
ℏ[𝐻0, 𝑛ℓ1

] (3.3)

with the continuity equation

d
d𝑡𝑛ℓ1

+ ∑
ℓ2≠ℓ1

𝑗ℓ1ℓ2
= 0 , (3.4)

expressing local conservation of the particle number (density) 𝑛ℓ1
= 𝑎†

ℓ1
𝑎ℓ1

.

3.1.1. Non-Invasive Measurement of Currents

The non-invasive protocol for measuring currents is inspired from the non-Hermitian
linear response scenario described in Section 2.1. The basic idea is as follows. Let us
consider the unperturbed Hamiltonian 𝐻0 subject to a static anti-Hermitian perturbation
𝐻1 = −𝑖ℏ𝑠𝐴/2𝛿𝑡, switched on during a short time interval 𝛿𝑡. According to Eq. (2.6),
the norm of a state 𝜌0 evolving under the total Hamiltonian 𝐻0 +𝐻1 decreases, to linear
order in the perturbation strength 𝑠, as

Tr[𝜌(𝛿𝑡)] = 1 − 𝑠⟨𝐴⟩0 + 𝒪(𝑠2) . (3.5)
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Figure 3.1.: Schematic of the non-invasive protocol for measuring currents. (a) The protocol
is illustrated for interacting bosons on a Harper–Hofstadter optical-lattice ladder with on-site
interaction 𝑈 , real intra-leg tunneling 𝐽 , and complex inter-leg tunneling 𝐾e𝑖ℓ𝜙, generating a
synthetic magnetic flux 𝜙 per plaquette. (b) A short pulse of strength 𝛺 coherently couples
two sites ℓ1 and ℓ2 to an empty ancillary mode. Using an appropriate choice of the phases, the
current from site ℓ1 to ℓ2 can be extracted by measuring the probability of not populating the
ancilla. (c) The scheme reveals the current characteristic of the vortex phase as well as the chiral
current running along the system boundary in the Meissner phase, illustrated, respectively, for
𝐾/𝐽 = 1.25 and 𝐾/𝐽 = 2.5, with 𝜙 = 2𝜋/3 and 𝑈/𝐽 = 1.

Thus, it is possible to extract the expectation value of the operator 𝐴 with respect to
the unperturbed state 𝜌0 by measuring the decay of the norm in response to the non-
Hermitian perturbation 𝐻1. In order to turn this idea into a practicable scheme for
measuring currents, it remains to engineer an effective non-Hermitian perturbation such
that the operator 𝐴 is sensitive to the current, as well as to give physical meaning to
the decay of the norm of a state.

Both problems can readily be solved using the tools developed in Section 2.3.1 for
realizing non-Hermitian linear response based on the Zeno effect by coupling to an an-
cilla. In this setting, the decay of the norm corresponds to a leakage of probability
from the subspace without any particles in the ancilla to a complementary subspace
with non-vanishing ancilla population. In order to realize an effective non-Hermitian
perturbation sensitive to the current operator, we consider a coupling scheme similar to
that in Fig. 2.7b, where two modes are coupled simultaneously to an ancilla. As shown
in Section 2.3.1, choosing a coherent coupling without relative phases gives rise to a
non-Hermitian perturbation by the hopping operator (in the absence of Peierls phases).
Here, in order to access the current operator between two modes ℓ1 and ℓ2, we consider
instead a coupling Hamiltonian with phases 𝜃ℓ1

and 𝜃ℓ2
,

𝐻cpl = ℏ𝛺[𝑏†(e𝑖𝜃ℓ1 𝑎ℓ1
+ e𝑖𝜃ℓ2 𝑎ℓ2

) + (e−𝑖𝜃ℓ1 𝑎†
ℓ1

+ e−𝑖𝜃ℓ2 𝑎†
ℓ2

)𝑏] , (3.6)

where the operator 𝑏† (𝑏) creates (annihilates) a particle in the ancilla, modeled here
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as a single bosonic or fermionic mode, and 𝛺 is the coupling strength. The 𝛬 con-
figuration described by this coupling Hamiltonian is depicted in Fig. 3.1, where the
non-invasive current measurement protocol is illustrated at the example of a Harper–
Hofstadter optical-lattice ladder (see Section 3.2.1). Experimentally, the ancilla can
conveniently be realized as an additional internal level of the atoms, for which detuning
or polarization of the optical-lattice lasers are chosen such that it is trapped midway
between the two sites under investigation — a common setup for laser-assisted tunnel-
ing [71, 74, 178, 181, 231–235]. Thus, realizing the system–ancilla coupling is on the
same level of difficulty as, e.g., engineering the Peierls phases of a Harper–Hofstadter
Hamiltonian [181, 231–235]. Alternatively, the ancilla may also correspond to an off-
resonant site in an optical superlattice, where transitions between higher and lower sites
can be generated via microwave pulses [251].

The protocol for the non-invasive measurement of currents resembles to the single step
in the Zeno evolution for realizing non-Hermitian linear response in time domain (see
Section 2.3.1). Let 𝜌0 denote the unperturbed quantum state of interest, which may
be the ground state of the Hamiltonian (3.1), a thermal state, or any other state, e.g.,
obtained after some unitary evolution. The coupling is applied as a rectangular pulse
(or arbitrarily shaped pulse with equivalent pulse area) of duration 𝛿𝑡 much shorter
than the characteristic time scales of the Hamiltonian (3.1). As before, system and
ancilla should be in a product state before the coupling and we assume the ancilla to
be initially empty and to have no internal dynamics1. Instead of post-selecting on the
absence of particles in the ancilla and continuing time evolution as in the protocol for
measuring the two-time anti-commutator, the observable of interest for the measurement
of currents is the ancilla occupancy itself. More precisely, we consider the probability of
not detecting any particles in the ancilla after the coupling. According to Eq. (2.38a),
with the replacement 𝑎 → 𝛼ℓ1ℓ2

= e𝑖𝜃ℓ1 𝑎ℓ1
+ e𝑖𝜃ℓ2 𝑎ℓ2

, to leading order in the effective
coupling strength2 𝑠 = (𝛺𝛥𝑡)2, this probability is given by

𝑝ℓ1ℓ2
(0) = 1 − 𝑠⟨𝛼†

ℓ1ℓ2
𝛼ℓ1ℓ2

⟩
0

+ 𝒪(𝑠2) (3.7)

with
𝛼†

ℓ1ℓ2
𝛼ℓ1ℓ2

= 𝑛ℓ1
+ 𝑛ℓ2

+ e𝑖(𝜃ℓ2 −𝜃ℓ1 )𝑎†
ℓ1

𝑎ℓ2
+ e−𝑖(𝜃ℓ2 −𝜃ℓ1 )𝑎†

ℓ2
𝑎ℓ1

. (3.8)

Here, ⟨⋯⟩0 denotes the expectation value with respect to the unperturbed state 𝜌0 of
the target system. For the choice

𝜃ℓ2
− 𝜃ℓ1

= 𝜙ℓ1ℓ2
− 𝜋

2 , (3.9)

1In the relevant regime, interactions between particles in the ancilla can safely be neglected for two
reasons: first, for measuring currents, we are interested in the linear regime where only a single
particle is transferred to the ancilla, and second, even in the non-linear regime, which is of interest
for measuring correlations, it is usually possible to make the pulse duration 𝛿𝑡 sufficiently short such
that interactions and other internal dynamics of the ancilla are negligible on this time scale.

2For conciseness of the formulas, we do not include a factor of 1/2 in the definition of the effective
coupling strength 𝑠 in this chapter, as opposed to the conventions in Section 2.3.

97



where 𝜙ℓ1ℓ2
= arg(𝐽ℓ1ℓ2

) is the Peierls phase associated with the hopping amplitude 𝐽ℓ1ℓ2
in the Hamiltonian (3.1), the last two terms in Eq. (3.8) yield the current operator (3.2)
and we obtain

𝑝ℓ1ℓ2
(0) = 1 − 𝑠⟨𝑛ℓ1

+ 𝑛ℓ2
+

𝑗ℓ1ℓ2

|𝐽ℓ1ℓ2
|⟩0

+ 𝒪(𝑠2) . (3.10)

This equation tells us that the leakage of atoms out of the system is determined by the
densities at the involved modes and the current between them. Consequently, a measure-
ment of this decrease of probability in the linear regime gives access to the expectation
value of the current operator. In the light of the discussion in Section 2.4.1, this non-
invasive measurement of the current can equivalently be interpreted in an ancilla-free way
as the linear response of the projector on the empty-ancilla subspace (𝐵 = 𝑃0) to a suit-
ably engineered anti-Hermitian perturbation by the operator 𝐴 = 𝑛ℓ1

+𝑛ℓ2
+𝑗ℓ1ℓ2

/|𝐽ℓ1ℓ2
|.

The probability in Eq. (3.10), i.e., the fraction of experimental runs where no atoms
are found in the ancilla, can be measured, e.g., with a quantum gas microscope [18, 19,
207, 213], though other methods exist to resolve occupation probabilities for different
sites of a superlattice [135]. Since in the linear regime only single occupancies of the
ancilla contribute, it is sufficient to be able to distinguish an empty ancilla from one with
non-vanishing population. In the simplest case of a uniform system, the contribution
of the densities to Eq. (3.10) merely yields a constant offset, while otherwise it can be
accounted for via a separate standard measurement. As an alternative, one can conduct
an independent ancilla-based measurement of the probability 𝑝ℓ2ℓ1

(0). This exchange of
the indices ℓ1 and ℓ2 does not affect the densities in Eq. (3.10), but reverses the sign of
the current. Thus, it is possible to extract the current according to

⟨𝑗ℓ1ℓ2
⟩ =

|𝐽ℓ1ℓ2
|

2
𝜕
𝜕𝑠[𝑝ℓ1ℓ2

(0) − 𝑝ℓ2ℓ1
(0)]∣

𝑠=0
. (3.11)

Most studies of transport phenomena monitor the density and then invoke the conti-
nuity equation to infer the current [40, 182, 204–218]. Those few proposals to directly
access the current operator (3.2) are either plagued by strong measurement back ac-
tion [225] or are most suited for non-interacting systems [180, 181] because magnetic
control to turn off interactions via Feshbach resonances is slow. Conversely, the pro-
posed non-invasive protocol achieves a direct measurement of the current even in the
presence of interactions and significantly reduces back action in the linear regime due to
the weakness of the coupling (see Section 3.1.3).

Finally, it is worth emphasizing that the freedom to adjust the phase difference 𝜃ℓ2
−𝜃ℓ1

in Eq. (3.7) enables access to arbitrary quadratures of the operator 𝑎†
ℓ1

𝑎ℓ2
. For example,

the choice 𝜃ℓ1
= 𝜃ℓ2

yields the correlator ⟨𝑎†
ℓ1

𝑎ℓ2
+ 𝑎†

ℓ2
𝑎ℓ1

⟩ (see Section 2.3.1), which can
be useful, e.g., for probing superfluidity [57].

3.1.2. Extension to Current Correlations
The ability to resolve the ancilla occupation probabilities to higher orders in the effective
coupling 𝑠 gives access to successively higher moments of the current operator (3.2) In

98



what follows, we derive the relevant formulas up to quadratic order in 𝑠 and discuss how
such measurements can be used to extract current variances as well as spatial current
correlations. While possibilities to measure variances and correlations for spatially close-
lying links have been discussed in Ref. [180], precise control of the required optical triple-
well potentials still remains elusive to modern experiments. As we will see, the technique
described below permits the measurement of even long-range current correlations using
the same experimental resources as for current expectation values.

General derivation

We consider again the general system–ancilla coupling Hamiltonian already introduced
in Eq. (2.46),

𝐻cpl =
𝑀

∑
𝑚=1

ℏ𝛺𝑚(𝑏†
𝑚𝛼𝑚 + 𝛼†

𝑚𝑏𝑚) , (3.12)

where an arbitrary number of system modes is coherently coupled to one or several of
a total of 𝑀 bosonic or fermionic ancillary modes. That is, the linear combination of
system modes 𝛼𝑚 = ∑ℓ 𝜆𝑚ℓ𝑎ℓ with complex coefficients 𝜆𝑚ℓ is coupled to the mode 𝑏𝑚
of the 𝑚-th ancilla. The 𝛬 configuration described by Eq. (3.6) and depicted in Fig. 3.1b
is recovered for 𝑀 = 1 if only two coefficients 𝜆1ℓ1

and 𝜆1ℓ2
are chosen different from

zero with appropriate phases.
We assume all ancillas to be initially in their respective vacuum states, such that

when the coupling is turned on, the combined state of system and ancilla is given by
the product state 𝜌 = 𝜌0 ⊗ |0 ⋯ 0⟩⟨0 ⋯ 0| (see Section 3.2.3 for generalizations to mixed
initial states of the ancilla). As before, the coupling is applied as a short pulse of
duration 𝛿𝑡, which we assume to be sufficiently short compared to all other relevant time
scales. It is then permissible to assume that the system evolves solely under the coupling
Hamiltonian (3.12) during the coupling period, 𝜌(𝛿𝑡) = e−𝑖𝐻cpl𝛿𝑡𝜌e𝑖𝐻cpl𝛿𝑡.

We are interested in the joint probability 𝑃(𝑛1, … , 𝑛𝑀) of finding 𝑛1 particles in
the first ancilla, 𝑛2 particles in the second ancilla, and so on. This probability can
be expressed with the help of the projector 𝑃𝑛1…𝑛𝑀

= 𝟙 ⊗ |𝑛1 ⋯ 𝑛𝑀⟩⟨𝑛1 ⋯ 𝑛𝑀 | as
𝑃(𝑛1, … , 𝑛𝑀) = Tr[𝑃𝑛1…𝑛𝑀

𝜌(𝛿𝑡)]. If the coupling is sufficiently weak, we can expand
the time evolution operator to approximate this quantity perturbatively, yielding

𝑃(𝑛1, … , 𝑛𝑀) = 𝛿𝑛10 ⋯ 𝛿𝑛𝑀0 − 1
2𝛿𝑡2 Tr[𝑃𝑛1…𝑛𝑀

(𝐻2
cpl𝜌 + 𝜌𝐻2

cpl − 2𝐻cpl𝜌𝐻cpl)]

+ 1
24𝛿𝑡4 Tr [𝑃𝑛1…𝑛𝑀

(𝐻4
cpl𝜌 + 𝜌𝐻4

cpl + 6𝐻2
cpl𝜌𝐻2

cpl

− 4𝐻3
cpl𝜌𝐻cpl − 4𝐻cpl𝜌𝐻3

cpl)] + 𝒪(𝛥𝑡6) .

(3.13)

Note that since Tr(𝑃𝑛1…𝑛𝑀
𝐻𝑝

cpl𝜌𝐻𝑞
cpl) = 0 if 𝑝 + 𝑞 is odd, only even orders in 𝛥𝑡 con-

tribute. Up to quartic order in 𝛥𝑡, the probability that more than two particles are found
in ancillary modes vanishes. In what follows, we therefore focus on the probability 𝑃0 =
Tr[𝑃0…0𝜌(𝛿𝑡)] of not populating any ancilla, the probability 𝑃 (𝑚)

1 = Tr[𝑏†
𝑚𝑃0…0𝑏𝑚𝜌(𝛿𝑡)]
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of finding a single particle in the 𝑚-th ancilla (while all others are empty), the proba-
bility 𝑃 (𝑚1,𝑚2)

2 = Tr[𝑏†
𝑚1𝑏†

𝑚2𝑃0…0𝑏𝑚2
𝑏𝑚1

𝜌(𝛿𝑡)] of detecting one particle in two distinct
ancillas 𝑚1 and 𝑚2 each, and the probability 𝑃 (𝑚)

2 = Tr[(𝑏†
𝑚)2𝑃0…0𝑏2

𝑚𝜌(𝛿𝑡)]/2 of a double
occupancy of the 𝑚-th ancilla (which can be non-zero for bosons only).

For bosons, the annihilation and creation operators satisfy canonical commutation
relations,

[𝑐𝑖, 𝑑𝑗] = [𝑐†
𝑖 , 𝑑†

𝑗 ] = 0 , [𝑐𝑖, 𝑑†
𝑗 ] = 𝛿𝑐𝑑𝛿𝑖𝑗 , (3.14)

while for fermions, they fulfill canonical anti-commutation relations,

{𝑐𝑖, 𝑑𝑗} = {𝑐†
𝑖 , 𝑑†

𝑗} = 0 , {𝑐𝑖, 𝑑†
𝑗} = 𝛿𝑐𝑑𝛿𝑖𝑗 , (3.15)

where 𝑐, 𝑑 ∈ {𝑎, 𝑏}. In the special case of hard-core bosons, where repulsive on-site
interactions are infinitely strong, the second relation in Eq. (3.14) has to be replaced by

[𝑐𝑖, 𝑑†
𝑗 ] = 𝛿𝑐𝑑𝛿𝑖𝑗(1 − 2𝑐†

𝑖 𝑐𝑖) , (3.16)

i.e., annihilation and creation operators anti-commute on site, prohibiting multiple oc-
cupancies of the same mode [252].

After some algebra, using the above (anti-)commutation relations, we find

𝑃0 = 1 −
𝑀

∑
𝑚=1

𝑠𝑚⟨𝛼†
𝑚𝛼𝑚⟩

+
𝑀

∑
𝑚,𝑘=1

𝑠𝑚𝑠𝑘⟨1
3𝛼†

𝑚𝛼𝑚𝛼†
𝑘𝛼𝑘 + 1

6𝛼†
𝑚𝛼†

𝑘𝛼𝑘𝛼𝑚⟩ + 𝒪(𝑠3) ,
(3.17a)

𝑃 (𝑚)
1 = 𝑠𝑚⟨𝛼†

𝑚𝛼𝑚⟩

− 𝑠𝑚
𝑀

∑
𝑘=1

𝑠𝑘⟨1
6{𝛼†

𝑚𝛼𝑚, 𝛼†
𝑘𝛼𝑘} + 2

3𝛼†
𝑚𝛼†

𝑘𝛼𝑘𝛼𝑚⟩ + 𝒪(𝑠3) ,
(3.17b)

𝑃 (𝑚1,𝑚2)
2 = 𝑠𝑚1

𝑠𝑚2
⟨𝛼†

𝑚1𝛼†
𝑚2𝛼𝑚2

𝛼𝑚1
⟩ + 𝒪(𝑠3) , (3.17c)

𝑃 (𝑚)
2 = 1

2𝑠2
𝑚⟨(𝛼†

𝑚)2𝛼2
𝑚⟩ + 𝒪(𝑠3) . (3.17d)

Here, 𝑠𝑚 = (𝛺𝑚𝛥𝑡)2 and ⟨⋯⟩ = Tr(⋯ 𝜌0) denotes the expectation value with re-
spect to the unperturbed system state 𝜌0. Note that for fermions, the expectation
values ⟨𝛼†

𝑚𝛼†
𝑘𝛼𝑘𝛼𝑚⟩ vanish for 𝑚 = 𝑘 due to the anti-commutation relations (3.15), in

accordance with the Pauli exclusion principle. The same applies to hard-core bosons as
a result of Eq. (3.16). It is easy to verify that the probabilities in Eq. (3.17) correctly
sum to unity,

𝑃0 + ∑
𝑚

𝑃 (𝑚)
1 + ∑

𝑚1<𝑚2

𝑃 (𝑚1,𝑚2)
2 + ∑

𝑚
𝑃 (𝑚)

2 = 1 + 𝒪(𝑠3). (3.18)

Up to linear order in 𝑠, Eq. (3.17a) represents a generalization of Eq. (3.7) to an
arbitrary number of system modes coupled to one or more ancillas. In Section 3.2, we
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illustrate how this result can be applied to extract global currents as well as loop currents
around plaquettes. In what follows, we discuss the extraction of current variances as well
as spatial current correlations from a measurement of the probabilities (3.17) resolved
to quadratic order in 𝑠.

Current Variances

We are interested in the variance of the current between two sites ℓ1 and ℓ2,

𝛥𝑗2
ℓ1ℓ2

= ⟨𝑗2
ℓ1ℓ2

⟩ − ⟨𝑗ℓ1ℓ2
⟩2 . (3.19)

This quantity has been used, e.g., to characterize the Mott-insulator–superfluid transi-
tion [180], as well as to reveal many-body multi-valued Lissajous figures [253] or transi-
tions in the Aubry–André–Harper model [254].

We first note that by using the (anti-)commutation relations (3.14) to (3.16), the
square of the current operator (3.2) can be written as

𝑗2
ℓ1ℓ2

= −𝐽2
ℓ1ℓ2

(𝑎†
ℓ1

𝑎ℓ2
)2 − (𝐽 ∗

ℓ1ℓ2
)2(𝑎†

ℓ2
𝑎ℓ1

)2 + |𝐽ℓ1ℓ2
|2(𝑛ℓ1

+ 𝑛ℓ2
± 2𝑛ℓ1

𝑛ℓ2
), (3.20)

where the upper sign applies to (soft-core) bosons, while the lower sign is valid for
fermions and hard-core bosons. In the latter case, the first two terms do not contribute
since multiple occupancies are forbidden, and the second moment of the current operator
reduces to ⟨𝑗2

ℓ1ℓ2
⟩ = |𝐽ℓ1ℓ2

|2⟨𝑛ℓ1
+ 𝑛ℓ2

− 2𝑛ℓ1
𝑛ℓ2

⟩. The density correlations in this ex-
pression are typically easy to measure in many experiments using standard techniques,
which is why we focus the following discussion in this subsection on the non-trivial case
of (soft-core) bosons.

Apart from the ability to resolve the probabilities in Eq. (3.17) to quadratic order
in 𝑠, measuring the variance of the current (3.19) requires no additional experimental
overhead because the same setup as for the current expectation value can be used (see
Fig. 3.1b). For the special case of a single ancilla (𝑀 = 1), the general expressions in
Eq. (3.17) simplify to

𝑝(0) = 1 − 𝑠⟨𝛼†𝛼⟩ + 𝑠2⟨1
3(𝛼†𝛼)2 + 1

6(𝛼†)2𝛼2⟩ , (3.21a)

𝑝(1) = 𝑠⟨𝛼†𝛼⟩ − 𝑠2⟨1
3(𝛼†𝛼)2 + 2

3(𝛼†)2𝛼2⟩ , (3.21b)

𝑝(2) = 1
2𝑠2⟨(𝛼†)2𝛼2⟩ . (3.21c)

(For conciseness of the formulas, here and in what follows we implicitly consider the
expressions for the probabilities as perturbative approximations valid up to second order
in 𝑠, unless stated otherwise. Furthermore, we omit the subscripts ℓ1 and ℓ2 where there
is no ambiguity.)

We choose the phases as in Eq. (3.9), such that (𝛼†𝛼)ℓ1ℓ2
= 𝑛ℓ1

+ 𝑛ℓ2
+ 𝑗ℓ1ℓ2

/|𝐽ℓ1ℓ2
|.

The relevant quantity in Eq. (3.21) for extracting the variance of the current (3.19) is

(𝛼†𝛼)2
ℓ1ℓ2

= (𝑛ℓ1
+ 𝑛ℓ2

)2 + 1
|𝐽ℓ1ℓ2

|{𝑛ℓ1
+ 𝑛ℓ2

, 𝑗ℓ1ℓ2
} +

𝑗2
ℓ1ℓ2

|𝐽ℓ1ℓ2
|2 . (3.22)
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The contribution from the ⟨(𝛼†)2𝛼2⟩ term in Eq. (3.21a) can be accounted for via an
independent measurement of one of the probabilities 𝑝(1) or 𝑝(2). It is then possible to
eliminate this contribution by forming suitable linear combinations, e.g.,

𝑝(0) − 𝑝(2)
3 = 1 − 𝑠⟨𝛼†𝛼⟩ + 1

3𝑠2⟨(𝛼†𝛼)2⟩ . (3.23)

Alternatively, Eq. (3.21a) can be simplified using the commutation relations (3.14). For
the coupling setup under consideration, we have [𝛼, 𝛼†] = 2, yielding

𝑝(0) = 1 − 𝑠⟨𝛼†𝛼⟩ + 𝑠2⟨1
2(𝛼†𝛼)2 − 1

3𝛼†𝛼⟩ , (3.24a)

𝑝(1) = 𝑠⟨𝛼†𝛼⟩ − 𝑠2⟨(𝛼†𝛼)2 − 4
3𝛼†𝛼⟩ , (3.24b)

𝑝(2) = 𝑠2⟨1
2(𝛼†𝛼)2 − 𝛼†𝛼⟩ . (3.24c)

The quantity ⟨(𝛼†𝛼)2⟩ can thus be obtained from the 𝑠2 term of either of the above
probabilites if the value of ⟨𝛼†𝛼⟩, corresponding to the linear coefficient of 𝑝(0) or 𝑝(1),
is known.

In order to isolate the second moment of the current operator ⟨𝑗2
ℓ1ℓ2

⟩ from Eq. (3.22),
knowledge of the other two terms is required. The density correlator ⟨(𝑛ℓ1

+ 𝑛ℓ2
)2⟩ is

typically directly accessible, for instance, in quantum gas microscopes [18, 19]. The con-
tribution due to the density–current anti-commutator can be eliminated by conducting
an additional ancilla-based measurement with the indices ℓ1 and ℓ2 exchanged. Since
the densities in Eq. (3.22) are symmetric under this exchange, while the current is anti-
symmetric, we have

1
2[(𝛼†𝛼)2

ℓ1ℓ2
+ (𝛼†𝛼)2

ℓ2ℓ1
] = (𝑛ℓ1

+ 𝑛ℓ2
)2 +

𝑗2
ℓ1ℓ2

|𝐽ℓ1ℓ2
|2 . (3.25)

Alternatively, the anti-commutator ⟨{𝑛ℓ1
+ 𝑛ℓ2

, 𝑗ℓ1ℓ2
}⟩ can be obtained according to

Eq. (2.43) as the conditional expectation value of the observable 𝐵 = 𝑛ℓ1
+ 𝑛ℓ2

, given
that after the coupling no particles have been detected in the ancilla.

Spatial Current Correlations

Measuring the probabilities in Eq. (3.17) to quadratic order in 𝑠 also gives access to
current correlations. In what follows, we discuss this scenario for correlations ⟨𝑗ℓ1ℓ2

𝑗ℓ3ℓ4
⟩

of the current operators 𝑗ℓ1ℓ2
and 𝑗ℓ3ℓ4

between two pairs of modes (ℓ1, ℓ2) and (ℓ3, ℓ4),
each coupled to a different ancilla. The coupling Hamiltonian (3.12) then reads

𝐻cpl = ℏ𝛺1(𝑏†
1𝛼1 + 𝛼†

1𝑏1) + ℏ𝛺2(𝑏†
2𝛼2 + 𝛼†

2𝑏2) (3.26)

with 𝛼1 = e𝑖𝜃1ℓ1 𝑎ℓ1
+ e𝑖𝜃1ℓ2 𝑎ℓ2

and 𝛼2 = e𝑖𝜃2ℓ3 𝑎ℓ3
+ e𝑖𝜃2ℓ4 𝑎ℓ4

. For each pair of modes, the
phases 𝜃𝑚ℓ are chosen according to Eq. (3.9) such that 𝛼†

1𝛼1 = 𝑛ℓ1
+𝑛ℓ2

+𝑗ℓ1ℓ2
/|𝐽ℓ1ℓ2

| and
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𝛼†
2𝛼2 = 𝑛ℓ3

+𝑛ℓ4
+𝑗ℓ3ℓ4

/|𝐽ℓ3ℓ4
|. Note that the measurement of spatial current correlations

is non-trivial also for fermions and hard-core bosons, unlike the measurement of current
variances discussed above.

We first discuss the case where the modes ℓ𝑗 with 𝑗 = 1, … , 4 are all distinct. Then,
the operators 𝛼1 and 𝛼2 (anti-)commute for bosons (fermions), and Eq. (3.17a) simplifies
to

𝑝ℓ1ℓ2,ℓ3ℓ4
(0, 0) = 1 + [𝑝ℓ1ℓ2

(0) − 1] + [𝑝ℓ3ℓ4
(0) − 1] + 𝑠1𝑠2⟨𝛼†

1𝛼1𝛼†
2𝛼2⟩ . (3.27)

Here, the probabilities 𝑝ℓℓ′(0) are given by Eq. (3.17a) for 𝑀 = 1, corresponding to the
scenario of coupling a pair of modes (ℓ, ℓ′) to a single ancilla. The cross term

𝛼†
1𝛼1𝛼†

2𝛼2 = (𝑛ℓ1
+ 𝑛ℓ2

)(𝑛ℓ3
+ 𝑛ℓ4

)

+
𝑗ℓ1ℓ2

𝑗ℓ3ℓ4

|𝐽ℓ1ℓ2
𝐽ℓ3ℓ4

| + 1
|𝐽ℓ3ℓ4

|(𝑛ℓ1
+ 𝑛ℓ2

)𝑗ℓ3ℓ4
+ 1

|𝐽ℓ1ℓ2
| 𝑗ℓ1ℓ2

(𝑛ℓ3
+ 𝑛ℓ4

)
(3.28)

contains the desired current correlator. To isolate it, one can pursue similar strategies
as for the current variance discussed above. That is, one can measure the surrounding
density correlations and density–current correlations independently, where the latter can
be obtained as conditional expectation values. As an alternative, due to the symmetries
of the densities and the currents with respect to exchanging the indices, the combination

1
4[𝑝ℓ1ℓ2,ℓ3ℓ4

− 𝑝ℓ2ℓ1,ℓ3ℓ4
− 𝑝ℓ1ℓ2,ℓ4ℓ3

+ 𝑝ℓ2ℓ1,ℓ4ℓ3
](0, 0) = 𝑠1𝑠2⟨𝑗ℓ1ℓ2

𝑗ℓ3ℓ4
⟩ (3.29)

gives direct access to the current correlator.
If not all coupled modes are distinct, the procedure is more involved due to the non-

commutativity of the associated operators. We elucidate this circumstance for current
correlations between two adjacent sites, corresponding to ℓ2 = ℓ3 and ℓ1 ≠ ℓ4. Then, ap-
plying the (anti-)commutation relations [𝛼1, 𝛼†

2] = e𝑖(𝜃1ℓ2 −𝜃2ℓ2 ) ({𝛼1, 𝛼†
2} = e𝑖(𝜃1ℓ2 −𝜃2ℓ2 ))

for bosons (fermions) to Eq. (3.17a), we find

𝑝ℓ1ℓ2,ℓ2ℓ4
(0, 0) = 1 + [𝑝ℓ1ℓ2

(0) − 1] + [𝑝ℓ2ℓ4
(0) − 1]

+ 𝑠1𝑠2(1
2⟨{𝛼†

1𝛼1, 𝛼†
2𝛼2}⟩ − 1

6𝑅ℓ1ℓ2,ℓ2ℓ4
) .

(3.30)

with

𝑅ℓ1ℓ2,ℓ2ℓ4
= ⟨e𝑖(𝜃1ℓ2 −𝜃2ℓ2 )𝛼†

1𝛼2 + h.c.⟩

=
⟨𝑗ℓ1ℓ2

⟩
|𝐽ℓ1ℓ2

| + 2⟨𝑛ℓ2
⟩ +

⟨𝑗ℓ2ℓ4
⟩

|𝐽ℓ2ℓ4
| − ⟨e𝑖(𝜙ℓ1ℓ2 +𝜙ℓ2ℓ4 )𝑎†

ℓ1
𝑎ℓ4

+ h.c.⟩ .
(3.31)

(For hard-core bosons, 𝛼†
1𝛼2 and 𝑎†

ℓ1
𝑎ℓ4

are to be replaced in the above expression for
𝑅ℓ1ℓ2,ℓ2ℓ4

by 𝛼†
1(1−2𝑛ℓ2

)𝛼2 and 𝑎†
ℓ1

(1−2𝑛ℓ2
)𝑎ℓ4

, respectively.) The last term in 𝑅ℓ1ℓ2,ℓ2ℓ4
can in principle be obtained by directly coupling the sites ℓ1 and ℓ4 to a single ancilla
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with appropriately chosen phases. However, it may be more practicable to eliminate this
contribution all together by considering instead the combination

𝑝ℓ1ℓ2,ℓ3ℓ4
(0, 0) − 1

3𝑝ℓ1ℓ2,ℓ3ℓ4
(1, 1)

= 1 + [𝑝ℓ1ℓ2
(0) − 1] + [𝑝ℓ3ℓ4

(0) − 1] + 1
3𝑠1𝑠2⟨{𝛼†

1𝛼1, 𝛼†
2𝛼2}⟩ . (3.32)

The last term

{𝛼†
1𝛼1, 𝛼†

2𝛼2} = {𝑛ℓ1
+ 𝑛ℓ2

, 𝑛ℓ2
+ 𝑛ℓ4

} +
{𝑗ℓ1ℓ2

, 𝑗ℓ2ℓ4
}

|𝐽ℓ1ℓ2
𝐽ℓ2ℓ4

|

+ 1
|𝐽ℓ2ℓ4

|{𝑛ℓ1
+ 𝑛ℓ2

, 𝑗ℓ2ℓ4
} + 1

|𝐽ℓ1ℓ2
|{𝑛ℓ2

+ 𝑛ℓ4
, 𝑗ℓ1ℓ2

}
(3.33)

then contains the desired current correlator ⟨{𝑗ℓ1ℓ2
, 𝑗ℓ2ℓ4

}⟩, which can be isolated in a
similar way as discussed before. Note that compared to Eq. (3.28), the anti-commutator
appears here since the operators 𝑗ℓ1ℓ2

and 𝑗ℓ2ℓ4
do not commute. The ability to si-

multaneously measure observables that are incompatible according to the Heisenberg
uncertainty principle is a typical feature of non-invasive measurement protocols [226,
227].

3.1.3. Measurement Back Action

In this subsection, we assess the non-invasiveness of the presented current measurement
scheme. In general, it is not possible to extract information from a quantum system
without disturbing it [188, 255]. This disturbance of the quantum state through the
measurement process, known as measurement back action, is significantly reduced in
ancilla-based protocols with respect to standard projective measurements if the system–
ancilla coupling is weak. However, the reduced back action comes at the price of a
reduced signal-to-noise ratio, which in practice requires a compromise between these
two effects, which nevertheless in the proposed scheme is experimentally feasible.

Fidelity

To understand the back action caused by the system–ancilla coupling and the subsequent
measurement of the ancilla population, we quantify its impact via the fidelity [3] of the
state before and after the measurement. The fidelity of two density operators 𝜌 and 𝜎
is defined as

𝐹(𝜌, 𝜎) = (Tr[√√𝜌𝜎√𝜌])
2

, (3.34)

which reduces to 𝐹(𝜌, 𝜎) = ⟨𝜓|𝜎|𝜓⟩ if 𝜌 is a pure state, 𝜌 = |𝜓⟩⟨𝜓|. To simplify the
discussion, we consider here the case of a single ancilla (𝑀 = 1).
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According to Eq. (2.40), the post-measurement states, conditioned on the outcome
that 𝑛 particles are detected in the ancilla, read (after tracing out the ancilla)

𝜌(𝛿𝑡 | 0) = 𝜌0 − 1
2𝑠({𝛼†𝛼, 𝜌0} − 2⟨𝛼†𝛼⟩𝜌0) + 𝒪(𝑠2) , (3.35a)

𝜌(𝛿𝑡 | 1) = 𝛼𝜌0𝛼†

⟨𝛼†𝛼⟩ + 𝒪(𝑠) . (3.35b)

To leading order in the effective coupling strength 𝑠 = (𝛺𝛿𝑡)2, higher ancilla occupancies
do not contribute.

By virtue of Eq. (2.41), the unconditional state is recovered by averaging over all
possible measurement outcomes as

𝜌′(𝛿𝑡) = TrA[𝜌(𝛿𝑡)] = ∑
𝑛

𝑃(𝑛)𝜌(𝛿𝑡 | 𝑛) = 𝜌0 − 1
2𝑠({𝛼†𝛼, 𝜌0} − 2𝛼𝜌0𝛼†) + 𝒪(𝑠2) .

(3.36)

Intuitively, it is clear that in realizations where a particle is transferred to the ancilla,
as described by the conditional state 𝜌(𝛿𝑡 | 1), the disturbance of the state is somewhat
strong. For instance, consider a pure state 𝜌0 = |𝜓0⟩⟨𝜓0| with a fixed number of particles.
Then, the fidelity vanishes (to all orders), 𝐹[𝜌0, 𝜌(𝛿𝑡 | 1)] = 0, i.e., the initial state and
the state after loosing one particle to the ancilla have zero overlap.

By contrast, if no particles are detected in the ancilla, which gives rise to the condi-
tional state 𝜌(𝛿𝑡 | 0), the fidelity for 𝜌0 = |𝜓0⟩⟨𝜓0| reads

𝐹[𝜌0, 𝜌(𝛿𝑡 | 0)] = 1 − 1
4𝑠2(⟨(𝛼†𝛼)2⟩ − ⟨𝛼†𝛼⟩2) + 𝒪(𝑠3), (3.37)

where the expectation values are taken with respect to the initial state |𝜓0⟩. Thus, the
overlap decreases quadratically with 𝑠 unless the variance of the operator 𝛼†𝛼 vanishes.
This means that, as quantified by the stringent measure of the fidelity, realizations where
no particles are transferred to the ancilla are practically not disturbed if the measurement
operates in the linear regime. This justifies referring to the scheme as “non-invasive”.

The unconditional state 𝜌′(𝛿𝑡) shows a different behavior: the fidelity decreases lin-
early with the coupling strength 𝑠, reflecting the uncertainty whether or not a particle
has been transferred to the ancilla. For a pure state 𝜌0 = |𝜓0⟩⟨𝜓0| with fixed particle
number, the fidelity reads

𝐹[𝜌0, 𝜌′(𝛿𝑡)] = 1 − 𝑠⟨𝛼†𝛼⟩ + 𝒪(𝑠2) , (3.38)

which, to linear order, is the same expression as Eq. (3.17a), i.e., the probability of not
detecting any particles in the ancilla.

We conclude our discussion of the fidelity by deriving a perturbative formula for
general mixed states 𝜌0. To this end, we write 𝜌 = 𝜌0 + 𝑠𝛿𝜌 and evaluate Eq. (3.34)
using the spectral decomposition 𝜌0 = ∑𝜆 𝜆|𝜆⟩⟨𝜆|, yielding

√
𝐹(𝜌0, 𝜌) = Tr √∑

𝜆
𝜆2|𝜆⟩⟨𝜆| + 𝑠 ∑

𝜆,𝜆′

√
𝜆𝜆′⟨𝜆|𝛿𝜌|𝜆′⟩|𝜆⟩⟨𝜆′| . (3.39)
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After diagonalizing the matrix under the square root as ∑𝜂 𝜂|𝜂⟩⟨𝜂|, where the eigenvalues
𝜂 = 𝜆2 + 𝑠𝜆⟨𝜆|𝛿𝜌|𝜆⟩ are obtained from first order perturbation theory, we arrive at

√
𝐹(𝜌0, 𝜌) = ∑

𝜂

√𝜂 = ∑
𝜆

𝜆 + 1
2𝑠 ∑

𝜆>𝜖𝑠

⟨𝜆|𝛿𝜌|𝜆⟩ + 𝒪(𝑠2) . (3.40)

The last expression is obtained from a Taylor expansion of the square root and the
cutoff 𝜖𝑠 excludes eigenvalues 𝜆 on the order of 𝑠. Using the normalization ∑𝜆 𝜆 = 1
and taking the square of the last expression, we finally obtain the fidelity to leading
order in 𝑠 as

𝐹(𝜌0, 𝜌) = 1 + 𝑠 ∑
𝜆>𝜖𝑠

⟨𝜆|𝛿𝜌|𝜆⟩ + 𝒪(𝑠2) . (3.41)

It is easy to verify that this formula is consistent with the results for pure states given
above. Furthermore, plugging in the unconditional state 𝜌 = 𝜌′(𝛿𝑡) from Eq. (3.36), we
find

𝐹[𝜌0, 𝜌′(𝛿𝑡)] = 1 − 𝑠(⟨𝐴†𝐴⟩ − ∑
𝜆>𝜖𝑠

⟨𝜆|𝐴𝜌0𝐴†|𝜆⟩) + 𝒪(𝑠2) , (3.42)

which, as anticipated, decreases linearly with 𝑠.

Dynamics

To further characterize the measurement back action of our scheme, we briefly dis-
cuss how the measurement affects the dynamics of the state. To this end, we con-
sider the expectation value of an observable 𝐵 with respect to the post-measurement
states Eq. (3.35) after a unitary evolution under the Hamiltonian ℋ for a time 𝑡. The
results, conditioned on the absence or presence of a particle in the ancilla, are given,
respectively, by Eqs. (2.43) and (2.44) (with 𝐴 = 𝛼†𝛼, 𝑡w = 0, and the replacement
𝑠 → 𝑠/2).

Thus, if realizations are post-selected on the condition that no particles are de-
tected in the ancilla, the post-measurement state exhibits the same dynamics as the
initial state plus a small contribution on the order of 𝑠 given by the unequal-time anti-
commutator {𝐵(𝑡), 𝛼†(0)𝛼(0)}. This contribution represents the non-Hermitian linear
response used in Section 2.3 to measure dynamical correlations and FDRs. In the con-
text of the non-invasive current measurement scheme, this term reflects the measurement
back action. If the measurement is post-selected instead on the condition that a particle
is detected in the ancilla, the subsequent dynamics corresponds, to leading order, to
that of a state with one particle in the mode 𝛼 annihilated. Finally the expectation
value with respect to the unconditional state in Eq. (3.36) (no post-selection) receives
contributions from both scenarios, and the result is given by Eq. (2.45).

As these discussions demonstrate, the current measurement protocol is non-invasive in
the sense that measurement back action is significantly reduced with respect to standard
projective measurements. In fact, the back action can be made arbitrarily small by
reducing the strength of the coupling at the cost of a lower signal-to-noise ratio, in line
with the rule “no information gain without disturbance” [255]. While we have focused our
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discussion on the linear regime, it is clear that the disturbance and thus the measurement
back action is more dramatic in the non-linear regime. In practice, it is important to
find a good compromise between measurement back action and signal-to-noise ratio, as
the numerical benchmarks in Section 3.2 illustrate.

3.1.4. Error Sources and Error Mitigation

An inherent difficulty typical of non-invasive measurement protocols is the low signal-
to-noise ratio. This is because these protocols rely on the assumption that the coupling
between system and ancilla is weak. Only in this regime, the linear terms in Eq. (3.17),
relevant for measuring expectation values of currents, constitute the dominant signal.
Thus, it can be challenging for an experiment, on the one hand, to make the coupling suf-
ficiently weak to access the linear regime, and, on the other hand, to obtain a reasonably
strong signal. Nevertheless, both requirements can be balanced in realistic situations,
as we discuss now in more detail.

Increasing the coupling strength beyond the linear regime leads to a systematic devia-
tion of the measured values and causes a stronger measurement back action, as discussed
in Section 3.1.3. As can be seen in Eqs. (3.17a) and (3.17b), the linear and the quadratic
terms have opposite signs. Thus, the magnitude of the linear slope is typically under-
estimated in a linear fit, which leads to a systematic underestimation (overestimation)
of the magnitudes of positive (negative) currents (see Fig. 3.3d). The accuracy of the
measurement may therefore be improved by combining measurements in positive and
negative flow direction. For bosons, the range of the linear regime can in general self-
consistently be assessed using the condition that at most a single particle is detected in
the ancilla, as higher occupancies can only stem from non-linear processes.

In the bosonic case, it is possible to mitigate the error due to non-linearities using
knowledge about higher occupation probabilites. To eliminate the leading order error
term in Eq. (3.7), we exploit the fact that the quantities ⟨(𝛼†𝛼)2⟩ and ⟨𝛼†𝛼⟩ appear with
different coefficients in the 𝑠2 terms of the probabilities (3.24). This can be achieved by
considering the combinations 𝑝(1) + 2𝑝(2) or 2 − 2𝑝(0) − 𝑝(1), yielding

̃𝑝(0) ≡ 1 − 𝑝(1) + 2𝑝(2)
1 − 2𝑠/3 = 1 − 𝑠⟨𝐴†𝐴⟩ + 𝒪(𝑠3) . (3.43)

This quantity exhibits a significantly extended linear regime, allowing one to operate
at higher signal-to-noise ratios, which ultimately leads to a more accurate measurement
(see Fig. 3.2).

Apart from the errors due to non-linearities, typical experiments may faultily de-
tect ancilla occupancies. Let 𝛼 and 𝛽 denote the rates of false positives and negatives
of ancilla occupation, respectively (for simplicity, we do not distinguish different false
negative probabilities). Then, instead of Eq. (3.10), one obtains the modified result
𝑝′(0) = (1 − 𝛼)𝑝(0) + 𝛽𝑝(𝑛 > 0). Assuming that 𝛼 and 𝛽 do not depend on 𝑠, this
amounts to

𝑝′(0) = 1 − 𝛼 − (1 − 𝛼 − 𝛽)𝑠⟨𝛼†𝛼⟩ + 𝒪(𝑠2) , (3.44)
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i.e., the faulty detection leads to an irrelevant offset due to 𝛼, but also to a modified
slope by the factor (1 − 𝛼 − 𝛽). If estimates for 𝛼 and 𝛽 are available, these systematic
deviations can in principle be corrected for.

Finally, a potential source of experimental errors consists in adjusting the phase dif-
ference 𝜃2 − 𝜃1 of the system–ancilla coupling. Assume a deviation by an angle 𝛿𝜃 from
the ideal value 𝜃0 = 𝜙ℓ1ℓ2

− 𝜋/2 given by Eq. (3.9). Inserting 𝜃2 − 𝜃1 = 𝜃0 + 𝛿𝜃 into
Eq. (3.8), we find that the deviation results in a measurement of the perturbed operator

(𝛼†𝛼)ℓ1ℓ2
= 𝑛ℓ1

+ 𝑛ℓ2
+ cos(𝛿𝜃)

𝑗ℓ1ℓ2

|𝐽ℓ1ℓ2
| + sin(𝛿𝜃)

𝑐ℓ1ℓ2

|𝐽ℓ1ℓ2
|

= 𝑛ℓ1
+ 𝑛ℓ2

+
𝑗ℓ1ℓ2

|𝐽ℓ1ℓ2
| + 𝛿𝜃

𝑐ℓ1ℓ2

|𝐽ℓ1ℓ2
| + 𝒪(𝛿𝜃2)

(3.45)

with the correlator 𝑐ℓ1ℓ2
= 𝐽ℓ1ℓ2

𝑎†
ℓ1

𝑎ℓ2
+ 𝐽 ∗

ℓ1ℓ2
𝑎†

ℓ2
𝑎ℓ1

. This shows that an erroneous
adjustment of the coupling phases leads to a linear deviation of the measured value.
Thus, the error behaves in a controlled way and no excessive fine tuning of the coupling
phases is required.

3.2. Applications

3.2.1. Chiral Currents in Bosonic Ladders

We first benchmark the proposed measurement scheme at the example of a Harper–
Hofstadter model [228–230], which has successfully been realized experimentally in op-
tical lattice setups [181, 231–235]. These and related systems host rich phase diagrams
involving transitions between superfluid phases with persistent currents, Laughlin states,
as well as (chiral) Mott-insulating and spin liquid phases [236–244].

Here, we focus on interacting bosons on a two-leg ladder in presence of an artificial
magnetic field, as depicted in Fig. 3.1a. Denoting sites as ℓ = (ℓ𝑥, ℓ𝑦) with ladder legs
ℓ𝑥 ∈ {L, R} and rungs ℓ𝑦 ∈ {0, … , 𝐿−1}, this model is described by the Hamiltonian (3.1)
with real hopping amplitudes along legs, 𝐽(ℓ𝑥,ℓ𝑦),(ℓ𝑥,ℓ𝑦+1) ≡ 𝐽 , and complex hopping
amplitudes across rungs, 𝐽(L,ℓ𝑦),(R,ℓ𝑦) ≡ 𝐾e−𝑖𝜙ℓ𝑦 . This way, each lattice plaquette is
pierced by an effective magnetic flux 𝜙, which we choose here as 𝜙 = 2𝜋/3. Moreover,
we consider on-site interactions at strength 𝑈 , i.e., we choose the interaction part of the
Hamiltonian (3.1) as

𝑉 = ℏ𝑈
2 ∑

ℓ
𝑛ℓ(𝑛ℓ − 1) . (3.46)

The numerical benchmarks have been obtained using exact diagonalization on a ladder
of length 𝐿 = 6 with 𝑁 = 12 particles (unit filling) and open boundary conditions.
We focus on current detection across the ground state phase diagram, although the
scheme is equally applicable to mixed states, e.g., at finite temperatures, as well as out
of equilibrium.
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Phase Diagram of the Bosonic Ladder System
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Figure 3.2.: Numerical benchmark of the non-invasive current measurement scheme. (a) The
chiral current ⟨𝑗c⟩ acts as an order parameter to distinguish the vortex, Meissner, and Mott-
insulating phases. (b) Cross section of the chiral current at 𝑈/𝐽 = 1 (grey dashed line in
panel a), in comparison with the values extracted from linear fits to the ancilla occupation
probabilities 𝑝(0) and ̃𝑝(0). (c) Mean current variance 𝛥𝑗2 for 𝑈/𝐽 = 1, compared with a
simulated measurement involving quadratic and quartic fits to 𝑝(0). (d) Probability 𝑝ℓ1ℓ2

(0) of
not detecting any particles in the ancilla as a function of the effective coupling strength 𝑠. The
current is probed in the Meissner phase in positive flow direction for the same configuration as
in Fig. 3.1 (𝐾/𝐽 = 2.5 and 𝑈/𝐽 = 1, marked by the grey cross in panel a). The continuous and
dashed lines show the predictions from perturbation theory to linear and quadratic order in 𝑠,
respectively.

To characterize the ground state phases, we use the chiral current

𝑗c = 𝑗L − 𝑗R (3.47)

as an order parameter, where

𝑗ℓ𝑥
= 1

𝐿 − 1
𝐿−2
∑
ℓ𝑦=0

𝑗(ℓ𝑥,ℓ𝑦),(ℓ𝑥,ℓ𝑦+1) (3.48)

denotes the average current along the ladder leg ℓ𝑥 [181]. Its behavior across the phase
diagram, as resulting from exact diagonalization, is depicted in Fig. 3.2a. At small 𝐾/𝐽
and 𝑈/𝐽 , the model hosts a vortex phase, indicated by a small value of ⟨𝑗c⟩ and currents
circulating around plaquettes in regular distances (see Fig. 3.1c). Upon increasing 𝐾/𝐽 ,
the system undergoes a quantum phase transition to the Meissner phase, characterized
by a large chiral current ⟨𝑗c⟩ along the ladder legs. This current mimics the expulsion of
an external magnetic field, analogous to the Meissner effect in type-II superconductors.
Although the vortex–Meissner phase transition is continuous [238], the chiral current
in our case exhibits a jump (see Fig. 3.2b) due to finite-size effects. At large 𝑈/𝐽 , the
system enters a Mott-insulating regime, where any currents are suppressed.
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As an additional benchmark observable, we use the mean current variance

𝛥𝑗2 = 1
𝑁link

∑
⟨ℓ,ℓ′⟩

𝛥𝑗2
ℓℓ′

|𝐽ℓℓ′ |2
, (3.49)

averaged over all 𝑁link = 3𝐿 − 2 links between nearest neighbors, where 𝛥𝑗2
ℓℓ′ is the

variance of the current between the sites ℓ and ℓ′, as defined in Eq. (3.19). As can be seen
in Fig. 3.2c, this quantity gradually decreases in the vortex phase as the tunneling 𝐾/𝐽
across the ladder rungs becomes stronger, until it saturates in the Meissner phase close
to the value 𝛥𝑗2 = 2 expected in the superfluid phase [180].

Numerical Benchmark of the Non-Invasive Current Measurement Scheme

To simulate the non-invasive measurement scheme, the full evolution of system plus an-
cilla under the Hamiltonian 𝐻0 + 𝐻cpl during a fixed coupling time 𝐽𝛿𝑡 = 0.01 has been
computed for variable coupling strengths 𝛺. Figure 3.2d shows the probability 𝑝ℓ1ℓ2

(0)
as a function of 𝑠 = (𝛺𝛥𝑡)2, where the coupling is set up for probing a local leg cur-
rent in the Meissner phase in positive flow direction (cf. Fig. 3.1). For sufficiently small
values of 𝑠, the result agrees well with the analytical approximations (3.17) to linear
and quadratic order in 𝑠, while higher-order non-linear effects become relevant as 𝑠 in-
creases. This behavior reflects the trade-off between maximizing the signal-to-noise ratio
(large 𝑠 preferred) and minimizing the systematic errors due to non-linearities (small 𝑠
preferred). For bosons, the linear regime can be significantly extended by resolving in-
dividual occupation numbers. For instance, the combination ̃𝑝(0) in Eq. (3.43) agrees
with 𝑝(0) in Eq. (3.10) to linear order, while it is chosen such that the leading error
term vanishes (see Section 3.1.4). As can be seen in Fig. 3.2d, this quantity allows one
to extract the linear slope more reliably, enabling a higher signal-to-noise ratio.

In Fig. 3.2b, the chiral current obtained from a simulation of the measurement scheme
is compared with the exact result. All constituent nearest-neighbor currents have been
extracted in positive flow direction, where the system’s response to the coupling is
stronger (see discussion below). While in principle Eq. (3.10) allows for the extrap-
olation to 𝑠 = 0 with arbitrary precision, in practice, a realistic signal-to-noise ratio
requires a certain minimum fit range 𝛥𝑠 (or equivalently 𝛥𝑝). Figure 3.2b shows the
result for linear fits in the ranges 𝛥𝑝 = 6 % and 𝛥 ̃𝑝 = 20 % (the latter has also been
used for Fig. 3.1c), which represents a satisfactory compromise between accuracy and
signal strength.

Figure 3.2c shows a benchmark of the scheme for measuring the mean current vari-
ance 𝛥𝑗2 (see Section 3.1.2). This quantity has been obtained by extracting the lo-
cal variance 𝛥𝑗2

ℓ1ℓ2
of each nearest-neighbor current from the 𝑠2 term of the probabil-

ity (3.24a), assuming that the surrounding terms in that expression have been obtained
separately. Moreover, the variance has been probed against the current’s flow direc-
tion, as in this case the quadratic part of the probability is easier to resolve at small
coupling strengths. In Fig. 3.2c, the variances have been extracted by fitting quadratic
and quartic polynomials to the probabilities in the ranges 𝛥𝑝 = 6 % and 𝛥𝑝 = 20 %,
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respectively. While the quadratic fits yield reasonable estimates of the variances, fitting
higher-order polynomials can produce more accurate results, provided the quality of the
data is sufficient. The robustness of the non-invasive protocol against further potential
error sources is discussed in Section 3.1.4.

Depending on the sign of the current, the system reacts more or less sensitively to
the coherent coupling. This feature has the consequence that for positive currents,
the effective perturbation strength 𝑠 required to achieve a certain change of the ancilla
occupation probability is much smaller than for negative currents. The performance
of the scheme for measuring currents and their variances in positive and negative flow
direction is analyzed in Fig. 3.3. For current expectation values, the scheme yields
comparable results in either direction, allowing one to choose the configuration that best
fits the experimental characteristics. In the case of current variances, the performance
of the scheme varies depending on the direction in which the variance is probed. As
for positive currents the quantity ⟨(𝛼†𝛼)2⟩ is larger (see Fig. 3.3e), this quantity needs
to be extracted more accurately to obtain the desired second moment of the current
operator ⟨𝑗2

ℓ1ℓ2
⟩ with a given precision than it is the case for negative currents. In

addition, since the linear coefficient ⟨𝛼†𝛼⟩ is smaller for negative currents (see Fig. 3.3c),
the quadratic regime is easier to resolve when probing the current in this direction (cf.
Figs. 3.3a and 3.3b). For these reasons, it is preferable to probe the variance against the
flow direction of the current (see Fig. 3.3f).

Global Measurement of the Chiral Current

So far, we have focused our discussion and benchmark examples on probing local cur-
rent statistics, e.g., nearest-neighbor currents and their variances. Beyond these basic
building blocks, the non-invasive scheme can immediately be extended to more general
observables involving multiple local currents, e.g., currents through or into a given lat-
tice site. In some situations, one is even interested in global currents, as is the case
for the chiral current in the bosonic ladder system. Although global currents can be
calculated from a summation of local ones, it can be more efficient to measure the global
quantity of interest directly. Furthermore, in experiments without single-site addressing,
only global quantities are typically accessible. Within the framework of our non-invasive
measurement protocol, the sum of arbitrary local currents can be obtained directly by
simultaneously coupling the relevant pairs of modes each to a distinct ancilla, located, for
instance, at the intermediate sites of an optical superlattice. According to Eq. (3.17a),
to linear order in 𝑠, the probability of not populating any ancilla then gives access to the
desired sum of local currents, while the corresponding variance can be extracted from
the quadratic order in 𝑠.

In what follows, we discuss a possible setup for the direct measurement of the chiral
current in the bosonic ladder system using multiple ancillas. We consider a total of 𝑀 =
2𝐿 ancillas located midway between the system lattice sites on the ladder legs. They
are labeled by the index 𝑚 = (𝑚𝑥, 𝑚𝑦) with 𝑚𝑥 ∈ {L, R} and 𝑚𝑦 ∈ {0, … , 𝐿 − 1} + 1/2,
where we consider periodic boundary conditions for ease of notation. The ancilla (𝑚𝑥 =
ℓ𝑥, 𝑚𝑦 = 𝑙𝑦 + 1/2) is then coupled to the lattice sites (𝑙𝑥, 𝑙𝑦) and (𝑙𝑥, 𝑙𝑦 + 1), and the
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Figure 3.3.: Performance of the scheme for measuring currents and their variances in positive
and negative flow direction. (a),(b) Probability 𝑝(±)

ℓ1ℓ2
(0) of not detecting any particles in the

ancilla as a function of the effective coupling strength 𝑠 = (𝛺𝛥𝑡)2 for a bosonic ladder with
rung hopping strength 𝐾/𝐽 = 2.5 (dashed vertical lines in central and lower panels), on-site
interaction 𝑈/𝐽 = 1, and magnetic flux 𝜙 = 2𝜋/3. The lattice sites ℓ1 = (R, 2) and ℓ2 = (R, 3)
are coupled such that the current is probed in positive (+) or negative (−) flow direction. The
numerically computed probabilities are compared to the analytical prediction in Eq. (3.24a) to
linear (L) and quadratic (Q) order in 𝑠. To extract the first and second moment of the current
operator, we fit, respectively, linear and quadratic polynomials to 𝑝(±)

ℓ1ℓ2
in the ranges 𝛥𝑝 = 5 % (1)

and 𝛥𝑝 = 10 % (2), as marked by the dotted vertical lines. For negative currents (b), the system
responds less strong to the coupling, making the linear and quadratic orders in 𝑠 easier to
distinguish than for positive currents (a). (c) The expectation value of the operator 𝛼†𝛼 =
𝑛ℓ1

+ 𝑛ℓ2
+ 𝑗ℓ1ℓ2

/|𝐽ℓ1ℓ2
| extracted from the linear fits (L(±)

1 and L(±)
2 ) tends to underestimate the

exact result (L(±)). (The 𝑦-axis labels use the notation 𝐴 ≡ 𝛼.) (d) Currents computed from
the values of ⟨𝛼†𝛼⟩ in (c). The magnitudes of the currents are systematically underestimated
(overestimated) for measurements in positive (negative) flow direction. (e),(f) While the values
of ⟨(𝛼†𝛼)2⟩ (e) extracted from the quadratic fits (Q(±)

1 and Q(±)
2 ) deviate only little from the exact

result (Q(±)), the derived second moments of the current operator ⟨𝑗2
ℓ1ℓ2

⟩ (f) exhibit large errors
for those values based on 𝑝(+). Consequently, 𝑝(−) is preferred for measuring current variances.
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phases are chosen as in Eq. (3.9) such that

(𝛼†𝛼)(L,ℓ𝑦+1/2) = 𝑛(L,ℓ𝑦) + 𝑛(L,ℓ𝑦+1) + 1
𝐽 𝑗(L,ℓ𝑦),(L,ℓ𝑦+1) , (3.50a)

(𝛼†𝛼)(R,ℓ𝑦+1/2) = 𝑛(R,ℓ𝑦) + 𝑛(R,ℓ𝑦+1) − 1
𝐽 𝑗(R,ℓ𝑦),(R,ℓ𝑦+1) . (3.50b)

For simplicity, we assume the hopping amplitudes along the ladder legs to be of equal
magnitude 𝐽 ≡ |𝐽(𝑙𝑥,𝑙𝑦),(𝑙𝑥,𝑙𝑦±1)|, although spatial anisotropies in the hopping amplitudes
can be accounted for by adjusting the relative magnitudes of the coefficients 𝜆𝑚ℓ in
Eq. (3.12) appropriately. This configuration then yields

∑
𝑚

𝛼†
𝑚𝛼𝑚 = 𝐿

𝐽 𝑗c + 2𝑁 , (3.51)

where the chiral current operator for periodic boundary conditions reads

𝑗c = 1
𝐿

𝐿−1
∑
𝑙𝑦=0

[𝑗(L,ℓ𝑦),(L,ℓ𝑦+1) − 𝑗(R,ℓ𝑦),(R,ℓ𝑦+1)] (3.52)

and 𝑁 = ∑ℓ 𝑛ℓ is the total particle number operator, which reduces to a constant when
working in a subspace with a fixed number of particles. The probability of not finding
any particles in any ancilla (3.17a) thus becomes

𝑃0 = 1 − 𝑠⟨𝐿
𝐽 𝑗c + 2𝑁⟩ + 𝒪(𝑠2) (3.53)

with 𝑠 ≡ 𝑠𝑚 = (𝛺𝑚𝛿𝑡)2, giving access to the chiral current ⟨𝑗c⟩.
By resolving this probability up to quadratic order in 𝑠, it is possible to also obtain the

variance of the chiral current 𝛥𝑗2
c = ⟨𝑗2

c⟩ − ⟨𝑗c⟩2. To eliminate the terms ⟨𝛼†
𝑚𝛼†

𝑘𝛼𝑘𝛼𝑚⟩
in Eq. (3.17a), it is convenient to consider the quantity 𝑃0 − 𝑃2/3, where

𝑃2 = 1
2 ∑

𝑚1≠𝑚2

𝑃 (𝑚1,𝑚2)
2 + ∑

𝑚
𝑃 (𝑚)

2 (3.54)

is the probability of finding two particles in ancillary modes all together. We then obtain,
up to quadratic order in 𝑠, the result

𝑃0 − 1
3𝑃2 = 1 − 𝑠 ∑

𝑚
⟨𝛼†

𝑚𝛼𝑚⟩ + 1
3𝑠2⟨( ∑

𝑚
𝛼†

𝑚𝛼𝑚)
2
⟩

= 1 − 𝑠⟨𝐿
𝐽 𝑗c + 2𝑁⟩ + 1

3𝑠2⟨(𝐿
𝐽 𝑗c + 2𝑁)

2
⟩ ,

(3.55)

from which the variance of the chiral current can be extracted in a similar way as
described in Section 3.1.2. Such a global measurement using multiple ancillas can be
much more efficient than measuring the constituent local currents and pairwise current
correlations individually.
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3.2.2. Chiral Loop Current Correlations Under Geometric Frustration
In our second benchmark example, we apply the non-invasive current measurement
scheme to reveal chiral phases in frustrated quantum matter through loop current corre-
lations. Specifically, we consider hard-core bosons on a spatially anisotropic triangular
lattice at half filling, which exhibit a rich ground state phase diagram of 1D and 2D
Néel as well as subtle chiral phases [245–248]. After introducing the model along with
the chiral loop current correlation as the order parameter of the chiral phase, we dis-
cuss how to efficiently probe such loop current correlations, corroborated by numerical
benchmarks.

Frustrated Hard-Core Bosons on a Spatially Anisotropic Triangular Lattice

(a)

L = 12

L = 24 (b)

0 1 2 3J′
J
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Figure 3.4.: Measurement scheme for loop current correlations revealing the chiral phase of
frustrated bosons on a spatially anisotropic triangular lattice (a) with positive nearest-neighbor
hopping amplitudes 𝐽 (black bonds) and 𝐽 ′ (red bonds). (b) The mean loop current correlation 𝒥
is peaked around 𝐽 ′/𝐽 = 1, indicating long-range chiral order. (c) By coupling the three sites
of a triangle to a central ancilla with properly chosen phases, loop current correlations can be
probed efficiently with only two measurement configurations. (d) Probability of not detecting
any particles in either ancilla for the pair of triangles (△, ▽) highlighted in (a) and different
combinations of counter-clockwise (↺) and clockwise (↻) directions of the probed loop currents
(𝐿 = 24, 𝐽 ′/𝐽 = 1). The inset shows the difference 𝛿𝑝 of the two curves, which yields 𝒥△▽
plotted in (b).

We consider the Bose–Hubbard Hamiltonian describing ultracold atoms in optical
lattices,

𝐻0 = ∑
⟨ℓ,ℓ′⟩

ℏ𝐽ℓℓ′𝑎†
ℓ𝑎ℓ′ + ℏ𝑈

2 ∑
ℓ

𝑛ℓ(𝑛ℓ − 1) , (3.56)

where 𝑎ℓ, 𝑎†
ℓ, and 𝑛ℓ are bosonic annihilation, creation, and number operators, respec-

tively, and the sum in the first term runs over all pairs of nearest neighbors ⟨ℓ, ℓ′⟩. The
model becomes frustrated if the hopping amplitudes are positive (anti-ferromagnetic),
𝐽ℓℓ′ = |𝐽ℓℓ′ |. Note that in the notation of Eqs. (1.42) and (3.1), this situation corre-
sponds to Peierls phases of 𝜙ℓℓ′ = ±𝜋, which can be realized employing the established
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techniques for generating synthetic gauge fields [71, 74, 250]. In what follows, we focus
on triangular lattices like those depicted in Fig. 3.4a, spanned by the primitive lattice
vectors 𝝉1 = (1, 0)𝑇 and 𝝉2 = (1/2,

√
3/2)𝑇 (the lattice constant is set to unity). We

denote the (positive) hopping amplitude along the horizontal directions ±𝝉1 by 𝐽 , and
that along the diagonal directions ±𝝉2 and ±(𝝉2 − 𝝉1) by 𝐽 ′. Furthermore, we con-
sider the hard-core limit of infinitely strong on-site interactions 𝑈 → ∞ at half filling,
⟨𝑛ℓ⟩ = 1/2. The Hamiltonian (3.56) then maps to the spin-1/2 XY Hamiltonian with
anti-ferromagnetic interactions on a spatially anisotropic triangular lattice, which hosts
a rich phase diagram of 1D and 2D Néel, spiral, as well as candidate regions for extended
spin-liquid phases [245–248].

Here, we are particularly interested in the spiral (or chiral) phase, which is charac-
terized by long-range chirality correlations [245–249]. For a spin-1/2 system, the vector
chirality is defined as

𝜅△ = 2
3
√

3[𝑺ℓ1
× 𝑺ℓ2

+ 𝑺ℓ2
× 𝑺ℓ3

+ 𝑺ℓ3
× 𝑺ℓ1

]
𝑧

, (3.57)

where 𝑺ℓ = (𝑆𝑥
ℓ , 𝑆𝑦

ℓ , 𝑆𝑧
ℓ )𝑇 is the vector of spin-1/2 operators at site ℓ and the indices

(ℓ1, ℓ2, ℓ3) label the corners of the triangular plaquette △ in counter-clockwise direction.
The normalization is chosen such that 𝜅△ = ±1 for the ground states of the classical anti-
ferromagnetic 𝑋𝑌 model on a single triangle [256]. By means of the Holstein–Primakoff
transformation [257], we can identify the spin raising and lowering operators 𝑆±

ℓ =
𝑆𝑥

ℓ ± 𝑖𝑆𝑦
ℓ , respectively, with the annihilation and creation operators 𝑎ℓ and 𝑎†

ℓ of hard-
core bosons. The vector chirality (3.57) then translates into the bosonic loop current
operator around the plaquette [249],

𝜅△ = 2
3
√

3
1
2(−𝑖)[𝑆−

ℓ1
𝑆+

ℓ2
+ 𝑆−

ℓ2
𝑆+

ℓ3
+ 𝑆−

ℓ3
𝑆+

ℓ1
− h.c.]

= 2
3
√

3
1
2(−𝑖)[𝑎†

ℓ1
𝑎ℓ2

+ 𝑎†
ℓ2

𝑎ℓ3
+ 𝑎†

ℓ3
𝑎ℓ1

− h.c.]

= − 1
3
√

3
̃𝑗△ .

(3.58)

Here, the normalized loop current operator ̃𝑗△ is defined as the sum of the normalized
current operators along the edges of the triangle in counter-clockwise direction (see
Fig. 3.4c),

̃𝑗△ = ̃𝑗ℓ1ℓ2
+ ̃𝑗ℓ2ℓ3

+ ̃𝑗ℓ3ℓ1
, (3.59)

with ̃𝑗ℓℓ′ = 𝑗ℓℓ′/|𝐽ℓℓ′ | = 𝑖(𝑎†
ℓ𝑎ℓ′ − 𝑎†

ℓ′𝑎ℓ) for the Hamiltonian (3.56).
Intuitively, the chiral phase is characterized by loop currents of alternating signs

around triangles pointing upwards and downwards. However, the loop currents van-
ish on average and thus do not constitute a good order parameter. Instead, it has been
shown that the long-range chiral order is revealed by the chirality correlation [245–249].
In the language of hard-core bosons, this order parameter corresponds to the chiral loop
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current correlation [249], which we define for two triangles 𝑎 and 𝑏 as3

𝒥𝑎𝑏 = 1
3𝜎𝑎𝜎𝑏⟨ ̃𝑗𝑎 ̃𝑗𝑏⟩ , (3.60)

where 𝜎𝑎 = +1 (𝜎𝑎 = −1) if the triangle 𝑎 points upwards (downwards) [247]. The
normalization is chosen as per usual convention4 [245–247].

To reduce finite-size effects, we also define the mean loop current correlation

𝒥 = 1
𝒩∑

𝑎,𝑏

′𝒥𝑎𝑏, (3.61)

where 𝒩 is a normalization corresponding to the number of terms in the sum which runs
over all pairs of triangles that do not share a common edge. This definition reduces the
effect of short-ranged correlations, which are typically suppressed in the thermodynamic
limit, but may lead to artifacts in a system of finite size.

The mean loop current correlation, as obtained from exact diagonalization, is shown
in Fig. 3.4b for two system sizes. This order parameter is clearly peaked around the
isotropic point 𝐽 ′/𝐽 = 1, where chiral order is expected, and close to zero for small
and large lattice anisotropies 𝐽 ′/𝐽 , where one expects 1D and 2D Néel order instead.
Clearly, for finite lattices as in Fig. 3.4a, the order parameter is smooth as the system
is rather far from the thermodynamic limit. To obtain sharper phase boundaries, one
could approach the thermodynamic limit by finite-size scaling, which has been done, for
example, in Ref. [247] for the XY model.

It is worth emphasizing that for the present model, the chirality cannot be revealed
from simple expectation values of loop currents. In fact, any current vanishes on average
in the ground state because the Hamiltonian (3.56) is real. In what follows, we show
how the non-invasive measurement scheme can be extended to give access to loop current
correlations capable of revealing the subtle chiral phases.

Non-Invasive Measurement of Loop Currents

Before turning to the measurement of loop current correlations as relevant for the present
application, we first discuss an efficient way to measure expectation values of persistent
loop currents around lattice plaquettes, arising, e.g., as a consequence of chiral symmetry
breaking in frustrated systems [245–248, 259, 260]. While such loop currents can in
principle be accessed by measuring nearest-neighbor currents across the individual links
forming a plaquette, the required number of measurements can be reduced by coupling
all sites of the plaquette simultaneously to the same ancilla.

3Note that the operator ̃𝑗𝑎 ̃𝑗𝑏 is Hermitian only if ̃𝑗𝑎 and ̃𝑗𝑏 commute, which is the case if the two
triangles do not share any common vertices or edges, as relevant for the long-range chiral loop
current correlations we are interested in here. To ensure that the loop current correlation (3.60) is
real for any pair of triangles, one could replace ⟨ ̃𝑗𝑎 ̃𝑗𝑏⟩ with the symmetrized correlator ⟨{ ̃𝑗𝑎, ̃𝑗𝑏}⟩/2.

4The normalization of the order parameter (3.60) is chosen such that its maximum value is unity,
which follows from the theoretical maximum of the chirality corrlation ⟨𝜅2

△⟩max = 1/9, yielding
𝒥max = ⟨ ̃𝑗2

△⟩max/3 = 9⟨𝜅2
△⟩max = 1. This value is realized, e.g., in the ground state of a fully

frustrated quantum Heisenberg anti-ferromagnet on a triangular plaquette [258].
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Here, we illustrate this principle for a single triangular plaquette as depicted in
Fig. 3.4c. The corresponding loop current operator is given by

𝑗△ = 𝑗12 + 𝑗23 + 𝑗31 , (3.62)

where we allow for arbitrary hopping amplitudes and Peierls phases of the involved
nearest-neighbor currents 𝑗ℓℓ′ .

The three lattice sites forming a plaquette are coupled to a central ancilla via the
coupling operator

𝛼 = 𝑟1e𝑖𝜃1𝑎1 + 𝑟2e𝑖𝜃2𝑎2 + 𝑟3e𝑖𝜃3𝑎3 . (3.63)
To account for spatial anisotropies in the hopping amplitudes, we choose the magnitudes
of the couplings according to

𝑟1 = √𝜁12𝜁31
𝜁23

, 𝑟2 = √𝜁12𝜁23
𝜁31

, 𝑟3 = √𝜁23𝜁31
𝜁12

, (3.64)

where 𝜁ℓℓ′ = |𝐽ℓℓ′ |/𝐽 denotes the magnitude of the hopping amplitude 𝐽ℓℓ′ , relative to
some arbitrary energy scale 𝐽 > 0. To obtain the correct Peierls phases 𝜙ℓℓ′ = arg(𝐽ℓℓ′)
of the currents, the coupling phases should be chosen as

𝜃2 − 𝜃1 = 𝜙12 − 𝜗1 (mod 2𝜋) , (3.65a)
𝜃3 − 𝜃2 = 𝜙23 − 𝜗2 (mod 2𝜋) , (3.65b)
𝜃1 − 𝜃3 = 𝜙31 − 𝜗3 (mod 2𝜋) . (3.65c)

However, by summing these equations, one can see that the angles 𝜗1, 𝜗2, and 𝜗3 cannot
be chosen arbitrarily, but they must satisfy the constraint

𝜗1 + 𝜗2 + 𝜗3 (mod 2𝜋) = 𝛷, (3.66)

where 𝛷 = 𝜙12 +𝜙23 +𝜙31 (mod 2𝜋) is the effective magnetic flux through the plaquette.
We then obtain

𝛼†𝛼 = 𝑟2
1𝑛1 + 𝑟2

2𝑛2 + 𝑟2
3𝑛3 + 1

𝐽 [cos(𝜗1)𝑐12 + cos(𝜗2)𝑐23 + cos(𝜗3)𝑐31]

+ 1
𝐽 [sin(𝜗1)𝑗12 + sin(𝜗2)𝑗23 + sin(𝜗3)𝑗31],

(3.67)

where 𝑐ℓℓ′ = 𝐽ℓℓ′𝑎†
ℓ𝑎ℓ′ + 𝐽 ∗

ℓℓ′𝑎†
ℓ′𝑎ℓ denotes the correlator between the sites ℓ and ℓ′.

The last term in Eq. (3.67) becomes proportional to the loop current operator (3.62)
if sin(𝜗1) = sin(𝜗2) = sin(𝜗3), which is most conveniently achieved by choosing the same
value 𝜗 for all angles 𝜗𝑖. The constraint (3.66) then enforces

𝜗 = 𝛷 + 2𝜋𝑘
3 (3.68)

with 𝑘 ∈ ℤ and Eq. (3.67) simplifies to

𝛼†𝛼 = 𝑛△ + 1
𝐽 cos(𝜗)𝑐△ + 1

𝐽 sin(𝜗)𝑗△ , (3.69)
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where 𝑛△ = 𝑟2
1𝑛1 + 𝑟2

2𝑛2 + 𝑟2
3𝑛3 and 𝑐△ = 𝑐12 + 𝑐23 + 𝑐31.

For the special value 𝛷 = ±𝜋/2 of the magnetic flux, the choice 𝑘 = ∓1 in Eq. (3.68)
yields 𝜗 = ∓𝜋/2, such that the coefficient of 𝑐△ in Eq. (3.69) vanishes. Thus, if the
density ⟨𝑛△⟩ is known, the loop current ⟨𝑗△⟩ can be extracted from only a single mea-
surement configuration.

For general values of the magnetic flux 𝛷, it is possible to deduce the loop current
from two measurement configurations (provided the density ⟨𝑛△⟩ is known). Given the
measured values ⟨𝛼†𝛼⟩(𝑘1) and ⟨𝛼†𝛼⟩(𝑘2) for two different angles 𝜗(𝑘1) and 𝜗(𝑘2) chosen
in accordance with Eq. (3.68) (where 𝑘1 − 𝑘2 is not a multiple of 3), Eq. (3.69) yields
two equations with unknowns ⟨𝑐△⟩ and ⟨𝑗△⟩, which can readily be solved for the desired
expectation value of the loop current. For example, in case of a fully frustrated triangular
plaquette with 𝛷 = 𝜋, the choices 𝑘1 = 0 and 𝑘2 = −1, corresponding to 𝜗 = ±𝜋/3,
yield ⟨𝛼†𝛼⟩(±) = ⟨𝑛△⟩+⟨𝑐△⟩/2𝐽 ±

√
3⟨𝑗△⟩/2𝐽 . These two configurations can be thought

of as probing the loop current in positive and negative flow direction, respectively. The
expectation value of the loop current can then be isolated by taking the difference of the
two results.

All in all, coupling the three sites of a triangular plaquette simultaneously to a central
ancilla has the advantage of reducing the number of measurement configurations from
three, corresponding to separate measurements of the relevant nearest-neighbor currents,
to at most two. This concept can also be applied to other plaquette geometries.

Non-Invasive Measurement of Loop Current Correlations

We now extend the above approach to the measurement of loop current correlations
on a triangular lattice, revealing the chiral phase of frustrated bosons as illustrated in
Fig. 3.4.

To begin with, we note that the loop current correlation can be written as

⟨ ̃𝑗𝑎 ̃𝑗𝑏⟩ = ∑
(ℓ1,ℓ2)∈𝑎

∑
(ℓ3,ℓ4)∈𝑏

⟨ ̃𝑗ℓ1ℓ2
̃𝑗ℓ3ℓ4

⟩, (3.70)

where the sums run over all pairs of sites forming the edges of the triangles 𝑎 and 𝑏. Recall
that the tilde denotes the normalized (loop) current operator as defined in Eq. (3.59).
The spatial current correlation ⟨ ̃𝑗ℓ1ℓ2

̃𝑗ℓ3ℓ4
⟩ can be accessed in the same way as detailed

in Section 3.1.2. One disadvantage of this procedure is that the measurement of the
current correlation for all relevant pairs of links may be somewhat tedious.

Alternatively, it can be more efficient to access the loop current operator directly
by coupling the three sites forming a triangle simultaneously to a central ancilla, as
discussed above. Analogously to Eq. (3.63), the corresponding coupling operator in the
coupling Hamiltonian (3.12) is given by

𝛼𝑚 = e𝜃𝑚,1𝑎𝑚,1 + e𝜃𝑚,2𝑎𝑚,2 + e𝜃𝑚,3𝑎𝑚,3 , (3.71)

where 𝑚 ∈ {𝑎, 𝑏} labels both the ancillas and the triangles. According to Eqs. (3.65)
to (3.67), choosing the phases as 𝜃𝑚,𝑖+1 − 𝜃𝑚,𝑖 = ±2𝜋/3, where the index 𝑖 ∈ {1, 2, 3}
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enumerates the sites within a triangle (wrapping around), yields

𝛼†
𝑚𝛼𝑚 = 𝑛𝑚 + 1

2 ̃𝑐𝑚 ±
√

3
2

̃𝑗𝑚 . (3.72)

Here, 𝑛𝑚 = 𝑛𝑚,1 + 𝑛𝑚,2 + 𝑛𝑚,3 and ̃𝑐𝑚 = ̃𝑐𝑚,12 + ̃𝑐𝑚,23 + ̃𝑐𝑚,31 with the correlators
̃𝑐𝑚,𝑖𝑗 = −(𝑎†

𝑚,𝑖𝑎𝑚,𝑗+𝑎†
𝑚,𝑗𝑎𝑚,𝑖). For simplicity, we focus in what follows on the case where

the triangles have no common vertices or edges, as is most relevant for characterizing
long-range chiral loop current correlations.

The probability of not detecting any particles in either of the two ancillas is then, in
analogy to Eq. (3.27), given by

𝑝(0, 0) = 1 + [𝑝𝑎(0) − 1] + [𝑝𝑏(0) − 1] + 𝑠2⟨𝛼†
𝑎𝛼𝑎𝛼†

𝑏𝛼𝑏⟩ + 𝒪(𝑠3) , (3.73)

where 𝑝𝑚(0) is the probability of not detecting any particles in the ancilla if the coupling
was applied only to triangle 𝑚, given by Eq. (3.17a) for 𝑀 = 1. Note that the hard-core
constraint also applies to the ancilla, although this is not necessary for the protocol to
work.

The correlator ⟨𝛼†
𝑎𝛼𝑎𝛼†

𝑏𝛼𝑏⟩ in Eq. (3.73) contains the desired loop current correla-
tion ⟨ ̃𝑗𝑎 ̃𝑗𝑏⟩ appearing in Eq. (3.60). To isolate it, one could extract the coefficient of
the 𝑠2 term in Eq. (3.73) and separately measure all surrounding terms appearing in
𝛼†

𝑎𝛼𝑎𝛼†
𝑏𝛼𝑏 as well as in 𝑝𝑎(0) and 𝑝𝑏(0). However, there is a more efficient way to achieve

this goal. According to Eq. (3.72), by flipping the signs of the phases 𝜃𝑚,𝑖, we have the
freedom to probe the loop current in counter-clockwise (↺) or clockwise (↻) direction
for each triangle individually. This admits the four combinations {↺↺, ↺↻, ↻↺, ↻↻}.
In analogy to Eq. (3.29), by noting that the operators 𝑛𝑚 and 𝑐𝑚 do not change their
signs upon flipping the phases 𝜃𝑚,𝑖, we can access the loop current correlation through
the combination

𝑝↺↺ − 𝑝↺↻ − 𝑝↻↺ + 𝑝↻↻
4 = 3

4𝑠2⟨ ̃𝑗𝑎 ̃𝑗𝑏⟩ + 𝒪(𝑠3). (3.74)

Since the Hamiltonian (3.56) is real, its ground state can be chosen to have real coeffi-
cients. For this reason, ground state expectation values of loop currents vanish identi-
cally, ⟨𝑗𝑚⟩0 = 0, as do the correlations ⟨𝑛𝑚 ̃𝑗𝑚′⟩0 and ⟨𝑐𝑚 ̃𝑗𝑚′⟩0. This implies 𝑝↺↺ = 𝑝↻↻
and 𝑝↺↻ = 𝑝↻↺, which allows one to isolate the loop current correlation in the ground
state from only two measurement configurations according to

𝑝↺↺ − 𝑝↺↻ = 3
2𝑠2⟨ ̃𝑗𝑎 ̃𝑗𝑏⟩0

+ 𝒪(𝑠3). (3.75)

In Fig. 3.4d, we show the probabilities of not detecting any particles in either an-
cilla for loop currents probed in equal (𝑝↺↺) and opposite (𝑝↺↻) directions around the
pair of triangles (△, ▽) marked in Fig. 3.4a. Their difference, shown in the inset, is
proportional to the loop current correlation according to Eq. (3.75), whose values can
reliably be extracted with a quartic fit (see Fig. 3.4b). As this numerical benchmark
demonstrates, the protocol discussed above provides an efficient way to access chiral
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loop current correlations capable of revealing long-range chiral order in frustrated quan-
tum matter. Although it may be challenging for present-day experiments to achieve the
required resolution, such a measurement represents an attractive intermediate target in
the endeavor of creating full-fledged quantum simulators.

3.2.3. Spin Currents in Trapped-Ion Systems

As a third application, we discuss how to implement the non-invasive current mea-
surement protocol in trapped-ion platforms. To this end, we first specify the class of
Hamiltonians as well as the type of currents we intend to investigate. We then present
a possible implementation of the measurement scheme, where a collective vibrational
mode plays the role of the ancilla. Unlike in our previous discussion, where we have as-
sumed the ancilla to be empty, we consider the ancillary collective mode to be thermally
occupied, which is a common scenario in trapped-ion systems. We present a general-
ization of the measurement scheme adapted to this setup, and discuss how to harness
standard tools of trapped-ion experiments in order to measure the desired currents in
these systems.

Spin Hamiltonian and Current Operator

Trapped-ion quantum simulation experiments enable controlled studies of interacting
systems of spins [195–197] as well as bosons [261, 262]. Though the proposed measure-
ment scheme is general, we focus here on quantum simulation experiments for spin-1/2
degrees of freedom, which in trapped ions can be represented by two internal electronic
states. By coupling to the collective vibrational modes of the ion crystal, it is possible
to engineer generic spin Hamiltonians of Heisenberg type [263], in particular also those
with isotropic spin–spin interaction in 𝑥- and 𝑦-direction [182, 208]. The corresponding
Hamiltonian is given by

𝐻0 = − ∑
ℓ≠ℓ′

ℏ𝐽ℓℓ′𝑆+
ℓ 𝑆−

ℓ′ + 𝑉 . (3.76)

Here, 𝑆±
ℓ = 𝑆𝑥

ℓ ± 𝑖𝑆𝑦
ℓ are the spin raising and lowering operators at site ℓ, defined

in terms of the local spin-1/2 operators 𝑆𝛼
ℓ with 𝛼 ∈ {𝑥, 𝑦, 𝑧}, and 𝐽ℓℓ′ = 𝐽 ∗

ℓ′ℓ are
the (possibly complex [250]) interaction constants in 𝑥- and 𝑦-direction. Furthermore,
the term 𝑉 represents a possible spin interaction in 𝑧-direction, which can be engineered
using additional phononic modes [263]. Important special cases of the Hamiltonian (3.76)
include the XY model (𝐽ℓℓ′ = 𝐽 ∗

ℓℓ′ and 𝑉 = 0) or the XXZ model (𝐽ℓℓ′ = 𝐽 ∗
ℓℓ′ and

𝑉 = − ∑ℓℓ′ ℏ𝐽𝑧
ℓℓ′𝑆𝑧

ℓ 𝑆𝑧
ℓ′), both of which are ubiquitous in many areas of physics and

constitute paradigm models for strongly correlated materials [81, 264, 265]. By virtue
of the Holstein–Primakoff transformation [257], this Hamiltonian maps to the one in
Eq. (3.1) in the limit of hard-core bosons, by identifying the operators 𝑆+

ℓ = 𝑎𝑙, 𝑆−
ℓ = 𝑎†

𝑙 ,
and 𝑆𝑧

ℓ = 1/2−𝑛ℓ. In this mapping, the spin states |↑⟩ and |↓⟩ correspond to the bosonic
vacuum |0⟩ and the single excited state |1⟩, respectively.

An important property of the Hamiltonian (3.76) is the conservation of the total
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magnetization in 𝑧-direction, giving rise to the local continuity equation
d
d𝑡𝑆𝑧

ℓ + ∑
ℓ′≠ℓ

𝑗ℓℓ′ = 0 , (3.77)

where 𝑗ℓℓ′ is the spin current operator from site ℓ to ℓ′. As in the case of soft-core bosons
discussed in Section 3.1, the form of the current operator can be derived by comparing
Eq. (3.77) to the Heisenberg equation of motion

d
d𝑡𝑆𝑧

ℓ = 𝑖
ℏ[𝐻0, 𝑆𝑧

ℓ ] . (3.78)

Using the commutation relations

[𝑆𝑧
ℓ , 𝑆±

ℓ′] = ±𝛿ℓℓ′𝑆±
ℓ , (3.79a)

[𝑆+
ℓ , 𝑆−

ℓ′] = 2𝛿ℓℓ′𝑆𝑧
ℓ , (3.79b)

we find
𝑗ℓℓ′ = −𝑖(𝐽ℓℓ′𝑆+

ℓ 𝑆−
ℓ′ − 𝐽 ∗

ℓℓ′𝑆+
ℓ′𝑆−

ℓ ) , (3.80)
in complete analogy to Eq. (3.2).

Measurement Protocol

The basic idea for the implementation of the current measurement scheme in a trapped-
ion system is to use collective vibrational modes of the ion crystal as ancillas. Here, we
consider the case of a single ancilla corresponding to a certain mode of an orthogonal
set of phonon modes, e.g., the center-of-mass mode. As before, we represent the ancilla
by the bosonic annihilation and creation operators 𝑏 and 𝑏†. Through an appropriate
choice of the laser detunings, the ions can be coupled to this specific mode via the red
sideband Hamiltonian [266]

𝐻cpl = 1
2 ∑

ℓ
𝛺R

ℓ 𝜂ℓ(𝑆+
ℓ 𝑏e−𝑖𝜑ℓ + 𝑆−

ℓ 𝑏†e𝑖𝜑ℓ) . (3.81)

Here, 𝛺R
ℓ is the (Raman) Rabi frequency, 𝜂ℓ is the Lamb–Dicke parameter, and 𝜑ℓ is the

phase of the coupling to the ℓ-th ion, respectively. This Hamiltonian has the same form
as the general coupling Hamiltonian (3.12) with 𝛼 = ∑ℓ 𝜆ℓ𝑆−

ℓ and 𝜆ℓ = 𝛺R
ℓ 𝜂ℓe𝑖𝜑ℓ/2𝛺,

where 𝛺 is the overall strength of the coupling pulse in Eq. (3.12) (𝑀 = 1).
For an ancilla that is initially in its motional ground state, the results in Eq. (3.17)

immediately carry over to the trapped-ion case. Such a situation can be achieved thanks
to the efficient cooling of trapped-ion phonon modes [266–270]. In addition, phonon
heating is typically much slower than the coherent coupling pulses we are interested in
here [271]. Nevertheless, in practice it may be desirable to relax the requirement of
cooling the relevant phonon modes exactly to their motional ground states. Therefore,
we consider here the more general case of an ancilla that is initially in the mixed state

𝜌A =
∞

∑
𝑛=0

𝑝𝑛|𝑛⟩⟨𝑛| , (3.82)
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where 𝑝𝑛 is the occupation probability of the 𝑛-th excited phonon state. The precise
distribution 𝑝𝑛 is unimportant for the following discussion, but we require it to be
quasistationary within the coupling duration 𝛿𝑡. This includes the common scenario of a
thermal state, i.e., 𝑝𝑛 ≡ 𝑝𝑛(𝑇 ) = e−𝑛ℏ𝜔/𝑘B𝑇 /𝑍, where 𝜔 is the frequency of the ancillary
(center-of-mass) mode and 𝑍 = (1 − 𝑒−ℏ𝜔/𝑘B𝑇 )−1 is the partition sum in a canonical
ensemble at temperature 𝑇 .

As before, we assume that when the coupling is turned on, the total state of system
plus ancilla is given by a product state, 𝜌 = 𝜌0 ⊗ 𝜌A. Proceeding in an analogous way
as in Section 3.1.2, we find that, to leading order in the effective coupling 𝑠 = (𝛺𝛥𝑡)2,
the probability of detecting 𝑛 phonons in the ancilla reads

𝑃(𝑛) = 𝑝𝑛 − 𝑠[(𝑛 + 1)𝑝𝑛 − 𝑛𝑝𝑛−1]⟨𝛼†𝛼⟩ − 𝑠[𝑛𝑝𝑛 − (𝑛 + 1)𝑝𝑛+1]⟨𝛼𝛼†⟩ . (3.83)

For a thermal state with 𝑘B𝑇 ≪ ℏ𝜔, implying 𝑝𝑛 ≈ 𝛿𝑛0, we recover the result in Eq. (3.7).
According to Eq. (3.83), the expectation values ⟨𝛼†𝛼⟩ and ⟨𝛼𝛼†⟩ can be extracted by
measuring how the phonon distribution has changed after the coupling with respect to
the original (thermal) distribution. Counting the phonon population is a common tool
in modern trapped-ion experiments [272–276].

To access the current (3.80) between two ions ℓ1 and ℓ2, we choose only those couplings
in Eq. (3.81) corresponding to ℓ1 and ℓ2 different from zero, i.e.,

𝛼ℓ1ℓ2
= e𝑖𝜃ℓ1 𝑆−

ℓ1
+ e𝑖𝜃ℓ2 𝑆−

ℓ2
. (3.84)

The required single-site addressing is typically available in state-of-the art trapped-ion
quantum-simulation experiments [182, 209]. The measurement scheme then gives access
to the general combination

(𝛼†𝛼)ℓ1ℓ2
= 𝑆+

ℓ1
𝑆−

ℓ1
+ 𝑆+

ℓ2
𝑆−

ℓ2
+ e𝑖(𝜃ℓ2 −𝜃ℓ1 )𝑆+

ℓ1
𝑆−

ℓ2
+ e−𝑖(𝜃ℓ2 −𝜃ℓ1 )𝑆+

ℓ2
𝑆−

ℓ1
. (3.85)

By choosing the phases of the coupling such that 𝜃ℓ2
− 𝜃ℓ1

= 𝜙ℓ1ℓ2
− 𝜋/2, where 𝜙ℓ1ℓ2

=
arg(𝐽ℓ1ℓ2

), and using 𝑆+
ℓ 𝑆−

ℓ = 𝑆𝑧
ℓ + 1/2, we obtain

(𝛼†𝛼)ℓ1ℓ2
= 𝟙 + 𝑆𝑧

ℓ1
+ 𝑆𝑧

ℓ2
+

𝑗ℓ1ℓ2

|𝐽ℓ1ℓ2
| . (3.86)

For the coupling operator (3.84), the commutation relations (3.79) imply [𝛼, 𝛼†] =
−2(𝑆𝑧

ℓ1
+ 𝑆𝑧

ℓ2
), from which we conclude

(𝛼𝛼†)ℓ1ℓ2
= 𝟙 − 𝑆𝑧

ℓ1
− 𝑆𝑧

ℓ2
+

𝑗ℓ1ℓ2

|𝐽ℓ1ℓ2
| . (3.87)

Inserting these expressions into Eq. (3.83), we arrive at

𝑝ℓ1ℓ2
(𝑛) = 𝑝𝑛 − 𝑠[𝑢𝑛(1 +

⟨𝑗ℓ1ℓ2
⟩

|𝐽ℓ1ℓ2
| ) + 𝑣𝑛⟨𝑆𝑧

ℓ1
+ 𝑆𝑧

ℓ2
⟩] (3.88)
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with 𝑢𝑛 = (2𝑛 + 1)𝑝𝑛 − 𝑛𝑝𝑛−1 − (𝑛 + 1)𝑝𝑛+1 and 𝑣𝑛 = 𝑝𝑛 − 𝑛𝑝𝑛−1 + (𝑛 + 1)𝑝𝑛+1.
As discussed in Section 3.1.1, the quantity ⟨𝑆𝑧

ℓ1
+ 𝑆𝑧

ℓ2
⟩ required to isolate the desired

current ⟨𝑗ℓ1ℓ2
⟩ can be obtained in a separate standard measurement, or its contribution

can be eliminated by considering the anti-symmetric combination

1
2[𝑝ℓ1ℓ2

(𝑛) − 𝑝ℓ2ℓ1
(𝑛)] = 𝑝𝑛 − 𝑠𝑢𝑛

⟨𝑗ℓ1ℓ2
⟩

|𝐽ℓ1ℓ2
| . (3.89)

As these discussions show, the method works for general initial mixed ancilla states
that are diagonal in the occupation basis of the ancilla. This feature may even be ex-
ploited to optimize the obtained signal. The proposed trapped-ion implementation of the
non-invasive measurement scheme can immediately be extended to global currents, cur-
rent variances, as well as spatial current correlations, following similar ideas as presented
in Section 3.1.2.

3.3. Projective Protocol

In Section 3.1, we have approached the problem of measuring currents in analog quantum
simulators from a weak measurement (or non-Hermitian linear response) point of view
and developed a versatile non-invasive scheme with a wide range of potential applications,
as exemplified in Section 3.2. Yet, since the scheme is based on weak system–ancilla
couplings, it can be challenging for experiments to achieve a sufficiently high signal-to-
noise ratio without leaving the linear regime (see discussion in Section 3.1.4). In this
case, it can be advantageous to resort to projective protocols, which rely on standard
projective von Neumann measurements [89, 90] and therefore typically achieve a higher
signal-to-noise ratio than weak measurements [163]. As we will see in the course of this
section, a direct projective measurement of the current can be realized based on the same
setup as the non-invasive scheme in Fig. 3.1, but with the weak system–ancilla coupling
replaced by a 𝜋-pulse. The resulting protocol admits an instructive interpretation using
the concept of dark and bright states [106]: the coherent coupling is engineered in such
a way that the bright mode which couples to the light field becomes sensitive to the
desired current. The population of this bright mode is then transferred to the ancilla,
where it can be read out via standard projective measurements.

In what follows, we work out the mathematical framework for the projective current
measurement scheme in detail. It is instructive to first illustrate the basic idea for
an atomic 3-level system, before treating the many-body case. In this context, we
discuss how the projective protocol gives access to expectation values of currents, current
variances, as well as spatial current correlations. In particular, the projective technique
immediately applies to the scenarios presented in Section 3.2. Moreover, we elucidate
the relations between the projective and the non-invasive variant and discuss the mutual
benefits and drawbacks of these methods.
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3.3.1. Illustrative Example: Three-Level System
As described in Section 3.1, the non-invasive scheme can be interpreted as probing the
leakage of probability from the system to the ancilla in response to a suitably engineered
coherent perturbation. For the projective scheme, where the system–ancilla coupling no
longer operates in the linear regime, an alternative interpretation in terms of dark and
bright states turns out to be more natural and also provides a complementary view on
the non-invasive scheme. The projective protocol and the connection to dark and bright
states are best illustrated at the simplest non-trivial example of an atomic three-level
system.

To this end, we consider a three-level system in 𝛬 configuration, whose Hilbert space
is spanned by the states {|1⟩, |2⟩, |A⟩}. The two-level subsystem spanned by {|1⟩, |2⟩}
represents the target system, whose properties are probed using the ancilla state |A⟩.

In this example, we are interested in the probability current between the states |1⟩ and
|2⟩. To define this quantity, we first ignore the ancilla and consider only the two-level
subsystem. We assume its dynamics to be governed, in a suitable reference frame, by
the Hamiltonian

𝐻0 = ℏ𝛥
2 (|1⟩⟨1| − |2⟩⟨2|) + ℏ

2 (𝛺R|1⟩⟨2| + 𝛺∗
R|2⟩⟨1|) (3.90)

with detuning 𝛥 and (complex) Rabi frequency 𝛺R. From the Schrödinger equation

𝑖ℏ d
d𝑡 |𝜓(𝑡)⟩ = 𝐻0|𝜓(𝑡)⟩ (3.91)

for the state |𝜓(𝑡)⟩ = 𝑐1(𝑡)|1⟩ + 𝑐2(𝑡)|2⟩, it is easy to derive the continuity equation
𝜕𝑡|𝑐1|2 + 𝑗12 = 0, which allows one to identify the probability current

𝑗12 = 𝑖
2(𝛺R𝑐∗

1𝑐2 − 𝛺∗
R𝑐1𝑐∗

2) . (3.92)

In order to probe this quantity, the states |1⟩ and |2⟩ are coupled resonantly to the
ancilla (cf. Fig. 3.1b), as described by the coupling Hamiltonian

𝐻cpl = ℏ𝛺1|A⟩⟨1| + ℏ𝛺∗
1|1⟩⟨A| + ℏ𝛺2|A⟩⟨2| + ℏ𝛺∗

2|2⟩⟨A| . (3.93)

For any given configuration of the (complex) couplings 𝛺1 and 𝛺2, there is an associated
dark and bright state [106], given by

|D⟩ = 1
̃𝛺
(−𝛺2|1⟩ + 𝛺1|2⟩) , |B⟩ = 1

̃𝛺
(𝛺∗

1|1⟩ + 𝛺∗
2|2⟩) , (3.94)

with ̃𝛺 = √|𝛺1|2 + |𝛺2|2. It is easy to verify that these states form an orthonormal
basis of the two-level subsystem, and the change of basis is given by

|1⟩ = 1
̃𝛺
(−𝛺∗

2|D⟩ + 𝛺1|B⟩) , |2⟩ = 1
̃𝛺
(𝛺∗

1|D⟩ + 𝛺2|B⟩) . (3.95)
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Expressing the coupling Hamiltonian in the basis of dark and bright states, the dark
state decouples from the light field, such that effectively only the bright state is coupled
to the ancilla,

𝐻cpl = ℏ ̃𝛺(|A⟩⟨B| + |B⟩⟨𝐴|) . (3.96)
Let us now consider an arbitrary state |𝜓0⟩ = 𝑐1|1⟩ + 𝑐2|2⟩ with no overlap to the

ancilla state, whose momentary probability current 𝑗12 we intend to probe. For in-
stance, |𝜓0⟩ may be the result of some unitary evolution in the two-level subsystem
under the unperturbed Hamiltonian 𝐻0. By means of Eq. (3.95), we can express this
state equivalently as |𝜓0⟩ = 𝑐D|D⟩ + 𝑐B|B⟩ with coefficients 𝑐D = (−𝑐1𝛺∗

2 + 𝑐2𝛺∗
1)/ ̃𝛺 and

𝑐B = (𝑐1𝛺1 + 𝑐2𝛺2)/ ̃𝛺.
We assume the duration 𝛿𝑡 of the system–ancilla coupling to be sufficiently short such

that we can ignore the evolution under 𝐻0 during the coupling, i.e., the measurement
takes an instantaneous snapshot of the state |𝜓0⟩. The time evolution solely under 𝐻cpl
can then be calculated exactly, yielding

|𝜓(𝛿𝑡)⟩ = e−𝑖𝐻cpl𝛿𝑡/ℏ|𝜓0⟩ = 𝑐D|D⟩ + cos( ̃𝛺𝛿𝑡)𝑐B|B⟩ − 𝑖 sin( ̃𝛺𝛿𝑡)𝑐B|𝐴⟩ . (3.97)

During the coupling, the population of the ancilla changes as

|⟨A|𝜓(𝛿𝑡)⟩|2 = sin2( ̃𝛺𝛿𝑡)|𝑐B|2 . (3.98)

Thus, a pulse of duration ̃𝛺𝛿𝑡 = 𝜋/2 (“𝜋-pulse”) maps the total population of the bright
state,

|𝑐B|2 = 1
̃𝛺2

(|𝑐1|2|𝛺1|2 + |𝑐2|2|𝛺2|2 + 𝑐∗
1𝑐2𝛺∗

1𝛺2 + 𝑐1𝑐∗
2𝛺1𝛺∗

2) , (3.99)

to the population of the ancilla, which can then be read out using standard projective
measurements. Crucially, an appropriate choice of the phases of the couplings 𝛺1 and
𝛺2 gives access to the probability current 𝑗12 defined in Eq. (3.92): choosing 𝛺1 = 𝛺
and 𝛺2 = 𝛺e𝑖𝜑, we obtain

|𝑐B|2 = 1
2(1 + e𝑖𝜑𝑐∗

1𝑐2 + e−𝑖𝜑𝑐1𝑐∗
2) , (3.100)

which indeed yields the current as |𝑐B|2 = 1/2 + 𝑗12/|𝛺R| for 𝜑 = arg(𝛺R) + 𝜋/2.
By contrast, in the non-invasive variant of the scheme, the coupling is applied only

weakly, corresponding to the leading-order expansion of Eq. (3.98), |⟨A|𝜓(𝛿𝑡)⟩|2 =
𝑠|𝑐B|2 + 𝒪(𝑠2) with 𝑠 = ( ̃𝛺𝛿𝑡)2. Consequently, at the cost of a reduced signal strength
compared to the 𝜋-pulse, the state is only slightly perturbed by the measurement: the
post-measurement state for realizations where the system has not been detected in the
ancilla state is given by |𝜓(𝛿𝑡 | {D, B})⟩ = |𝜓0⟩ − 𝑠(𝑐B|B⟩ − |𝑐B|2|𝜓0⟩)/2 + 𝒪(𝑠2), which
has unit overlap with the initial state |𝜓0⟩ up to quadratic order in 𝑠, in line with the
general results in Section 3.1.3.

3.3.2. Projective Measurement of Currents
Having gained intuition at the illustrative example of a single-particle three-level system,
we now formulate the projective current measurement protocol for many-body systems.

125



Connection to Dark and Bright States

To carry the picture of dark and bright states over to the many-body case, we consider
the second-quantized coupling Hamiltonian

𝐻cpl = ∑
𝑖,𝑗

⟨𝑖|ℎcpl|𝑗⟩𝑎†
𝑖 𝑎𝑗 , (3.101)

where ℎcpl is the single-particle coupling Hamiltonian and the summation runs over the
single-particle basis states {|1⟩, |2⟩, |A⟩}. Here, 𝑎1 (𝑎†

1), 𝑎2 (𝑎†
2), and 𝑏 ≡ 𝑎A (𝑏† ≡ 𝑎†

A) are
the annihilation (creation) operators associated with the states |1⟩, |2⟩, and the ancilla
state |A⟩, respectively. Inserting the single-particle coupling Hamiltonian (3.93), yields

𝐻cpl = ⟨𝐴|ℎcpl|1⟩𝑏†𝑎1 + ⟨1|ℎcpl|𝐴⟩𝑎†
1𝑏 + ⟨𝐴|ℎcpl|2⟩𝑏†𝑎2 + ⟨2|ℎcpl|𝐴⟩𝑎†

2𝑏
= 𝛺1𝑏†𝑎1 + 𝛺∗

1𝑎†
1𝑏 + 𝛺2𝑏†𝑎2 + 𝛺∗

2𝑎†
2𝑏 .

(3.102)

By means of Eq. (3.95), we can equivalently express this Hamiltonian with respect to
the basis of dark and bright states as

𝐻cpl = ⟨𝐴|ℎcpl|D⟩𝑏†𝑎D + ⟨D|ℎcpl|𝐴⟩𝑎†
D𝑏 + ⟨𝐴|ℎcpl|B⟩𝑏†𝑎B + ⟨B|ℎcpl|𝐴⟩𝑎†

B𝑏
= ̃𝛺(𝑏†𝑎B + 𝑎†

B𝑏) ,
(3.103)

where we have identified the dark and bright modes

𝑎D = 1
̃𝛺
(−𝛺∗

2𝑎1 + 𝛺∗
1𝑎2) , 𝑎B = 1

̃𝛺
(𝛺1𝑎1 + 𝛺2𝑎2) , (3.104)

and used the fact that according to Eq. (3.96) the matrix elements ⟨𝐴|ℎcpl|D⟩ vanish
since the dark state decouples from the light field.

A comparison between Eqs. (3.6) and (3.103) reveals that the coupling scheme in
Fig. 3.1b actually corresponds to coupling the bright mode 𝑎B in Eq. (3.104) with 𝛺1 =
𝛺e𝑖𝜃1 and 𝛺2 = 𝛺e𝑖𝜃2 to the ancilla mode 𝑏. The choice of the phases in Eq. (3.9)
corresponds to engineering the bright mode such that it involves becomes sensitive to the
desired current. The current operator can then be accessed by transferring population
from the bright mode to the ancilla, either just a small fraction (non-invasive scheme)
or the total population (projective scheme), followed by a standard measurement of the
ancilla occupancy.

Derivation of the Projective Scheme

We now develop the mathematical framework of the projective protocol for measuring
currents. To this end, we consider the coupling Hamilton (3.103), corresponding to the
scheme depicted in Fig. 3.1b. We assume that we can neglect the unperturbed evolution
of system and ancilla during the coupling period, which is permissible if the coupling
pulse is sufficiently short as compared to the characteristic time scales of the unperturbed
dynamics.
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The evolution of the bright mode 𝑎B(𝑡) and the ancilla mode 𝑏(𝑡) under the coupling
Hamilton (3.103) can be computed in the Heisenberg picture by solving the Heisenberg
equations of motion

̇𝑎B(𝑡) = − 𝑖
ℏ[𝑎B(𝑡), 𝐻cpl] = −𝑖 ̃𝛺𝑏(𝑡) , (3.105a)

̇𝑏(𝑡) = − 𝑖
ℏ[𝑏(𝑡), 𝐻cpl] = −𝑖 ̃𝛺𝑎B(𝑡) , (3.105b)

with initial conditions 𝑎B(0) = 𝑎B and 𝑏(0) = 𝑏. Combining these two equations, we
obtain decoupled equations of harmonic oscillator type for both the bright mode and
the ancilla mode,

̈𝑎B(𝑡) + ̃𝛺2𝑎B(𝑡) = 0 , (3.106a)
𝑏̈(𝑡) + ̃𝛺2𝑏(𝑡) = 0 , (3.106b)

whose solutions are given by
𝑎B(𝑡) = 𝑎B cos( ̃𝛺𝑡) − 𝑖𝑏 sin( ̃𝛺𝑡) , (3.107a)

𝑏(𝑡) = 𝑏 cos( ̃𝛺𝑡) − 𝑖𝑎B sin( ̃𝛺𝑡) . (3.107b)
We are interested in the evolution of the number (density) operator 𝑛A(𝑡) = 𝑏†(𝑡)𝑏(𝑡)

of the ancilla mode, as this is the relevant experimentally accessible observable. Using
the result in Eq. (3.107b), we find

𝑛A(𝑡) = cos2( ̃𝛺𝑡)𝑏†𝑏 + sin2( ̃𝛺𝑡)𝑎†
B𝑎B − 𝑖 cos( ̃𝛺𝑡) sin( ̃𝛺𝑡)(𝑏†𝑎B − 𝑎†

B𝑏) . (3.108)
As before, we assume system and ancilla to be in a product state before the coupling,
𝜌 = 𝜌0 ⊗ 𝜌A. Choosing the duration of the coupling pulse as ̃𝛺𝑡 = 𝜋/2, the expectation
value of the ancilla population after the coupling corresponds to the population of the
bright mode in the unperturbed state 𝜌0,

⟨𝑛A(𝑡 = 𝜋
2 ̃𝛺

)⟩ = ⟨𝑎†
B𝑎B⟩

0
(3.109)

with
𝑎†

B𝑎B = 1
̃𝛺2

(|𝛺1|2𝑛1 + |𝛺2|2𝑛2 + 𝛺∗
1𝛺2𝑎†

1𝑎2 + 𝛺1𝛺∗
2𝑎†

2𝑎1)

= 1
2(𝑛1 + 𝑛2 + e𝑖(𝜃2−𝜃1)𝑎†

1𝑎2 + e−𝑖(𝜃2−𝜃1)𝑎†
2𝑎1) ,

(3.110)

where we have specialized to 𝛺1 = 𝛺e𝑖𝜃1 and 𝛺2 = 𝛺e𝑖𝜃2 . If we identify the modes 𝑎1
and 𝑎2 with the local modes 𝑎ℓ1

and 𝑎ℓ2
of a many-body system with Hamiltonian (3.1),

we can access the corresponding current operator 𝑎†
B𝑎B defined in Eq. (3.2) by choosing

the coupling phases as in Eq. (3.9), such that5

𝑎†
B𝑎B = 1

2(𝑛ℓ1
+ 𝑛ℓ2

+
𝑗ℓ1ℓ2

|𝐽ℓ1ℓ2
|) . (3.111)

5The factor 1/2 between Eqs. (3.8) and (3.110) stems from the different normalization of the modes
𝛼ℓ1ℓ2 in Eq. (3.8) and 𝑎B defined in Eq. (3.104). For 𝛺1 = 𝛺e𝑖𝜃ℓ1 and 𝛺2 = 𝛺e𝑖𝜃ℓ2 , we have
𝛼ℓ1ℓ2 =

√
2𝑎B.
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As Eq. (3.109) illustrates, the outlined scheme corresponds to a projective measurement
of the bright mode population. Since the entire population is measured projectively, the
signal-to-noise ratio is significantly improved as compared to the non-invasive measure-
ment of the same quantity according to Eq. (3.10).

In practice, measuring the time trace of ⟨𝑛A(𝑡)⟩ and deducing the quantity ⟨𝑎†
B𝑎B⟩

from the resulting oscillations can yield more accurate results than a single 𝜋-pulse as in
Eq. (3.109), which is sensitive to a precise calibration of the pulse area. A measurement
of ⟨𝑛A(𝑡)⟩ is viable as long as the coupling time 𝑡 is short compared to the characteristic
time scales of the unperturbed dynamics. Note that the expectation value of the last
term in Eq. (3.108) vanishes in the common situation where the initial ancilla state 𝜌A
is diagonal in the Fock basis, e.g., if the ancilla is initially empty or in a thermal state.

In a similar vein, the projective scheme can be used to efficiently measure loop currents
around plaquettes by coupling the sites forming a plaquette simultaneously to a central
ancilla (see Fig. 3.4c). For a triangular plaquette, this amounts to the choice 𝑎B =

̃𝛺−1(𝛺1𝑎1 + 𝛺2𝑎2 + 𝛺3𝑎3) with ̃𝛺 = √|𝛺1|2 + |𝛺2|2 + |𝛺3|2 and choosing the coupling
phases as explained in Section 3.2.2, which allows one to obtain the loop current from
only two measurement configurations.

Non-Invasive Limit of the Projective Protocol

It is instructive to examine the limit of weak coupling strengths, in which the projective
scheme becomes non-invasive. On the one hand, for an initially empty ancilla, the
expectation value of Eq. (3.110) can be expanded as

⟨𝑛A(𝑡)⟩ = sin2( ̃𝛺𝑡)⟨𝑎†
B𝑎B⟩ = [( ̃𝛺𝑡)2 − 1

3( ̃𝛺𝑡)4 + 𝒪(( ̃𝛺𝑡)6)]⟨𝑎†
B𝑎B⟩ . (3.112)

On the other hand, we can express this quantity in terms of the ancilla occupation
probabilities, calculated in Eq. (3.17) up to next-to-leading order in the coupling. For a
single bosonic ancilla, Eq. (3.24) yields6

⟨𝑛A⟩ =
∞

∑
𝑛=0

𝑛𝑝(𝑛) = 𝑝(1) + 2𝑝(2) + … = [𝑠 − 2
3𝑠2 + 𝒪(𝑠3)]⟨𝛼†𝛼⟩ . (3.113)

As expected, the two results in Eqs. (3.112) and (3.113) match since 𝛼†𝛼 = 2𝑎B𝑎B
and 𝑠 = (𝛺𝑡)2 = ( ̃𝛺𝑡)2/2. This shows that in the limit of weak couplings, the projec-
tive scheme for measuring currents becomes equivalent to the non-invasive one in Sec-
tion 3.1.1: a measurement of the expectation value ⟨𝑛A⟩ corresponds to a measurement
of the ancilla occupation probability 𝑝(1) or the combination 𝑝(1)+2𝑝(2) [cf. Eq. (3.43)]
up to linear or quadratic order in 𝑠, respectively.

6In the fermionic case, we have ⟨𝑛A⟩ = 𝑝(1) and the expression in Eq. (3.113) is directly obtained from
Eq. (3.21b) by noting that (𝛼†𝛼)2 = 2𝛼†𝛼 and (𝛼†)2 = 𝛼2 = 0.
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Projective Measurement of Neighboring Currents

In Section 3.2.1, we have discussed how the non-invasive scheme can be set up for the
efficient measurement of global currents using multiple ancillas. Remarkably, even cur-
rents across adjacent links can be measured simultaneously this way despite the fact
that the respective current operators do not commute. The ability to access such incom-
patible observables is an important asset of weak over projective measurements [226,
227]. However, the non-commutativity does affect the measurement beyond the linear
regime, in fact, already at the quadratic level, as we have seen in the context of spatial
correlations between neighboring currents (see Section 3.1.2). This is particularly true
for projective measurements, which are clearly non-perturbative.

To illustrate the consequences for the projective current measurement protocol, we
apply the projective scheme to probe the current across two adjacent links of a bosonic
lattice system. That is, we consider a system described by the tight-binding Hamilto-
nian (3.1) and focus on a subsystem of three lattice sites ℓ1, ℓ2, and ℓ3. Our goal is to
probe the current 𝑗ℓ1ℓ2

+ 𝑗ℓ2ℓ3
through the lattice site ℓ2 by coupling simultaneously to

two ancillas located midway between the pairs of sites (ℓ1, ℓ2) and (ℓ2, ℓ3), respectively.
The corresponding coupling Hamiltonian reads

𝐻cpl = 𝛺(𝑏†
1𝛼1 + 𝛼†

1𝑏1) + 𝛺(𝑏†
2𝛼2 + 𝛼†

2𝑏2) (3.114)

with

𝛼1 = e𝑖𝜃ℓ1 𝑎ℓ1
+ e𝑖𝜃ℓ2,1𝑎ℓ2

, 𝛼2 = e𝑖𝜃ℓ2,2𝑎ℓ2
+ e𝑖𝜃ℓ3 𝑎ℓ3

. (3.115)

Note that both 𝛼1 and 𝛼2 involve the mode 𝑎ℓ2
, which implies the non-trivial commu-

tation relations [𝛼1, 𝛼†
2] = e𝑖𝜙 and [𝛼2, 𝛼†

1] = e−𝑖𝜙 with 𝜙 = 𝜃ℓ2,1 − 𝜃ℓ2,2.
The Heisenberg equations of motion for the ancilla modes can be cast in the form

𝒃̈(𝑡) = −𝛺2( 2 e𝑖𝜙

e−𝑖𝜙 2 )𝒃(𝑡) (3.116)

with 𝒃(𝑡) = [𝑏1(𝑡), 𝑏2(𝑡)]⊺ and initial conditions 𝒃(0) = (𝑏1, 𝑏2)⊺, 𝒃̇(0) = −𝑖𝛺(𝛼1, 𝛼2)⊺.
The fact that these equations do not decouple is a direct consequence of the non-com-
mutativity of the operators 𝛼1 and 𝛼†

2. The resulting coupled equations (3.116) can be
solved by diagonalizing the coefficient matrix. The solution is given by

𝑏1(𝑡) = 1
2(𝑏1 − e𝑖𝜙𝑏2) cos(𝛺𝑡) − 𝑖

2(𝛼1 − e𝑖𝜙𝛼2) sin(𝛺𝑡)

+ 1
2(𝑏1 + e𝑖𝜙𝑏2) cos(

√
3𝛺𝑡) − 𝑖

2
√

3(𝛼1 + e𝑖𝜙𝛼2) sin(
√

3𝛺𝑡) ,
(3.117)

while 𝑏2(𝑡) is obtained by exchanging 1 ↔ 2 and replacing 𝜙 → −𝜙. If the ancilla is
empty before the coupling, the expectation value of the ancilla population evolves in
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time as

⟨𝑏†
1(𝑡)𝑏1(𝑡)⟩ = 1

4⟨𝛼†
1𝛼1 + 𝛼†

2𝛼2 − (e𝑖𝜙𝛼†
1𝛼2 + h.c.)⟩ sin2(𝛺𝑡)

+ 1
12⟨𝛼†

1𝛼1 + 𝛼†
2𝛼2 + (e𝑖𝜙𝛼†

1𝛼2 + h.c.)⟩ sin2(
√

3𝛺𝑡)

+ 1
2
√

3⟨𝛼†
1𝛼1 − 𝛼†

2𝛼2⟩ sin(𝛺𝑡) sin(
√

3𝛺𝑡) .

(3.118)

Again, the corresponding expression for ⟨𝑏†
2(𝑡)𝑏2(𝑡)⟩ is obtained by exchanging 1 ↔ 2

and replacing 𝜙 → −𝜙.
For an appropriate choice of the coupling phases, the current ⟨𝑗ℓ1ℓ2

+ 𝑗ℓ2ℓ3
⟩ can be

extracted from the combination ⟨𝛼†
1𝛼1 + 𝛼†

2𝛼2⟩. In the present example, this quantity
can be isolated from Eq. (3.118) using two specific pulse widths, one with

√
3𝛺𝑡 = 𝜋,

isolating the first term, and the other one with 𝛺𝑡 = 𝜋, isolating the second term.
However, there is apparently no advantage in coupling to two ancillas simultaneously
as the quantities ⟨𝛼†

1𝛼1⟩ and ⟨𝛼†
2𝛼2⟩ could also simply be extracted from two individual

local measurements.
The problem with the outlined approach is that it does not scale well. If we were to

probe a current across a long chain of sites by coupling in sequence to ancillas located
midway on the links, we would end up with a fully coupled system and the analogous
expression to Eq. (3.118) for the ancilla population would take a complex form involving
frequency components of all normal modes, rendering the isolation of the desired global
current impracticable. A possible solution is to spare every other link such that only
commuting observables are probed simultaneously in a single configuration. A repetition
of the measurement for the remaining links then yields the full information on the global
current.

By contrast, in case of the non-invasive scheme, the modes do not couple on the lin-
ear level despite their non-commutativity. This can be seen by expanding Eq. (3.118)
to leading order in the coupling strength, yielding ⟨𝑏†

1(𝑡)𝑏1(𝑡)⟩ = (𝛺𝑡)2⟨𝛼†
1𝛼1⟩ and

⟨𝑏†
2(𝑡)𝑏2(𝑡)⟩ = (𝛺𝑡)2⟨𝛼†

2𝛼2⟩, in agreement with the results in Eq. (3.17). Thus, the
possibility to efficiently access global currents in a single measurement configuration
represents a main advantage of the non-invasive scheme.

3.3.3. Extension to Current Correlations
The projective protocol not only enables the measurement of expectation values of cur-
rents, but it is also well suited to extract current variances as well as spatial current cor-
relations. Since the protocol maps the populations of suitably engineered bright modes
to ancillas, current statistics can be accessed by measuring variances and correlations of
the ancilla populations using standard density detection.

Current Variances

In Section 3.1.2, we have explained how the second moment of the current operator ⟨𝑗2
ℓ1ℓ2

⟩
(and thus the variance of the current) between two modes ℓ1 and ℓ2 can be extracted
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from a measurement of ⟨(𝛼†𝛼)2
ℓ1ℓ2

⟩, as given by Eq. (3.22). In the non-invasive scheme,
this quantity can be obtained by resolving the ancilla occupation probabilities up to
quadratic order in the coupling strength. Yet, it can be challenging for experiments to
achieve the required accuracy due to the low signal-to-noise ratio. We now describe how
the projective variant of the protocol can be harnessed to access the quantity (𝛼†𝛼)2

ℓ1ℓ2
at a significantly higher signal-to-noise ratio.

To this end, we consider the square of the Heisenberg operator (3.108) describing the
time evolution of the ancilla population during the coupling. If the ancilla is initially in
the vacuum state, the second moment of the ancilla population reads

⟨𝑛2
A(𝑡)⟩ = sin4(𝛺𝑡)⟨(𝛼†𝛼)2⟩ + cos2(𝛺𝑡) sin2(𝛺𝑡)⟨𝛼†𝛼⟩ , (3.119)

where we have substituted ̃𝛺 → 𝛺 and 𝑎B → 𝛼 = e𝑖𝜃ℓ1 𝑎ℓ1
+ e𝑖𝜃ℓ2 𝑎ℓ2

. The second term
reflects a contribution from the (anti-)commutation relation [𝑏, 𝑏†] = 1 ({𝑏, 𝑏†} = 1) of
the bosonic (fermionic7) ancilla mode. Thus, at times 𝛺𝑡 = (2𝑘+1)𝜋/2, we have ⟨𝑛2

A⟩ =
⟨(𝛼†𝛼)2⟩ and consequently the variance of the ancilla population corresponds to the
variance of the desired operator (𝛼†𝛼)2. From this quantity, the variance of the current
can be extracted as explained in Section 3.1.2, e.g., by combining two measurements
with the indices ℓ1 and ℓ2 exchanged according to Eq. (3.25).

The consistency of Eq. (3.119) with the perturbative results in Eq. (3.17) can directly
be verified by considering the limit of weak coupling strengths. In the bosonic case,
Eq. (3.24) yields

⟨𝑛2
A⟩ =

∞
∑
𝑛=0

𝑛2𝑝(𝑛) = 𝑝(1) + 4𝑝(2) + … = 𝑠⟨𝛼†𝛼⟩ + 𝑠2(⟨(𝛼†𝛼)2⟩ − 8
3⟨𝛼†𝛼⟩) + 𝒪(𝑠3) ,

(3.120)
which coincides with the first two terms of the Taylor expansion of Eq. (3.119) for small
𝑠 = (𝛺𝑡)2.

3.3.4. Spatial Current Correlations

The projective scheme enables the measurement of spatial current correlations ⟨𝑗ℓ1ℓ2
𝑗ℓ3ℓ4

⟩
using the same setup as in the non-invasive variant discussed in Section 3.1.2: each pair
of modes (ℓ1, ℓ2) and (ℓ3, ℓ4) is coupled to a distinct ancilla, as described by the coupling
Hamiltonian (2.31). Here, we focus on the situation where all modes ℓ𝑗 are distinct.
If this is not the case, the non-commutativity of the relevant modes leads to a fully
coupled system with additional contributions from the normal modes as in Eq. (3.117),
which complicates the extraction of the desired current correlator by far. The case
where all modes are distinct is also the relevant scenario for probing long-range current
correlations, which, for example, can reveal chiral long-range order in frustrated quantum
matter as discussed in Section 3.2.2. Proceeding as in Section 3.3.2, we can solve the

7Recall that for fermions the square of the current operator takes a simple form and the current variance
can directly be measured via density detection, as discussed below Eq. (3.20).
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Heisenberg equations of motion for each ancilla independently, yielding

𝑛A,𝑚(𝑡) = cos2(𝛺𝑚𝑡)𝑏†
𝑚𝑏𝑚 + sin2(𝛺𝑚𝑡)𝛼†

𝑚𝛼𝑚 − 𝑖 cos(𝛺𝑚𝑡) sin(𝛺𝑚𝑡)(𝑏†
𝑚𝛼𝑚 − 𝛼†

𝑚𝑏𝑚) ,
(3.121)

where the ancilla labeled by 𝑚 = 1, 2 is coupled to the modes (ℓ1, ℓ2) and (ℓ3, ℓ4),
respectively. Assuming both ancillas to be initially empty, the equal-time correlator of
the two ancilla densities is given by

⟨𝑛A,1(𝑡)𝑛A,2(𝑡)⟩ = sin2(𝛺1𝑡) sin2(𝛺2𝑡)⟨𝛼†
1𝛼1𝛼†

2𝛼2⟩ . (3.122)

From a measurement of this quantity, the desired current correlator can be extracted as
described in Section 3.1.2.

3.4. Summary
In this chapter, we have introduced non-invasive as well as projective schemes for the
ancilla-based measurement of currents and current correlations in analog quantum sim-
ulators. In the non-invasive variant, the system–ancilla coupling is weak and the current
can be extracted from a measurement of the probability of not populating the ancilla
during the coupling. The projective variant of the scheme corresponds to a projective
measurement of a suitably engineered bright mode, whose population is transferred to
the ancilla in a 𝜋-pulse and can be read out using standard density detection. The ex-
perimental tools for engineering the appropriate phases of the system–ancilla coupling
are readily available, e.g., in state-of-the-art optical lattice setups [71, 74, 178, 181,
231–235]. The non-invasive scheme has the advantage of perturbing the quantum state
only marginally, which comes at the price of a lower signal-to-noise ratio as compared
to the projective scheme. Furthermore, the non-invasive variant enables the efficient
simultaneous measurement of neighboring currents, not possible in the projective case
due to the non-commutativity of the involved operators. We have benchmarked the
non-invasive protocol numerically for probing chiral currents of interacting bosons on
a Harper–Hofstadter optical-lattice ladder, demonstrating its experimental feasibility.
In addition, we have illustrated an application of the scheme for measuring chiral loop
current correlations revealing chiral phases of frustrated quantum matter. Moreover,
we have discussed possible implementations in trapped-ion systems, demonstrating the
high flexibility of the method. Promising targets include currents and current correla-
tions in chiral Mott insulators [236, 237, 243], chiral spin liquids [241], and fractional or
anomalous Hall states [239, 277, 278], loop currents arising in vortex lattices [279, 280]
and frustrated states of matter [259, 260], persistent currents in ring-shaped optical lat-
tices [281–284], as well as local Chern markers [221, 285]. The protocol thus enables the
characterization of strongly correlated phases of matter on a variety of analog quantum
simulation platforms.
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4. Dynamical Probes of Supersolidity in
Spin–Orbit-Coupled Bose Gases

This chapter is based on Ref. [286]. Some figures and parts of the text have been taken
verbatim from that work, while the presentation has been supplemented by a number
of additional results obtained in the course of the project. See List of Publications for a
statement of contributions.

•

Spin–orbit coupling has a deep influence on the structure of matter. For example,
the coupling between spin and orbital angular momentum gives rise to a splitting of
electronic energy levels in atoms, resulting in the fine or hyperfine structure of atomic
spectral lines [287]. Moreover, spin–orbit coupling can modify the band structure of
solids via the Rashba [288] and Dresselhaus [289] effect. With the advent of spin–
orbit-coupled Bose–Einstein condensates (SOC BECs), a novel platform for studying
the physics of spin–orbit coupling has become available [290]. Despite being entirely
synthetic, the unprecedented level of experimental control over ultracold quantum gases
allows one to study fundamental effects of spin–orbit coupling that are relevant also for
other spin–orbit-coupled platforms and beyond.

Arguably, one of the most intriguing phenomena that can be studied in SOC BECs
is supersolidity [32–34]. This exotic state of matter arises from the spontaneous break-
ing of both 𝑈(1) phase symmetry as well as translational invariance. The former leads
to superfluidity, characterized by irrotational and dissipationless flows, while the latter
yields a crystalline structure. Supersolids have first been studied in the context of solid
helium, where experiments aiming to reveal the superfluid properties of this system have,
however, been inconclusive [35, 36]. More recently, the platform of ultracold quantum
gases has been established as a promising playground for exploring supersolidity. Ex-
perimental evidence of typical supersolid features, e.g., the combination of long-range
phase coherence and a spatial modulation of the density, has been reported in a vari-
ety of setups, including Bose–Einstein condensates inside optical resonators [37], spin–
orbit-coupled configurations [38, 39], as well as quantum gases with long-range dipolar
interactions [40–42].

In SOC BECs, supersolidity becomes manifest in the form of stripes in the density pro-
file. However, since the distance between stripes is typically on the order of the optical
wavelength, a direct resolution of the density modulation by optical means is challeng-
ing. Another fundamental hallmark of supersolidity can be deduced from Goldstone’s
theorem [43–45]: for every continuous symmetry that is spontaneously broken, there ex-
ists a gapless excitation called Goldstone mode (or Nambu–Goldstone mode). Thus, the
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spontaneous breaking of translational invariance in a supersolid implies the emergence
of additional Goldstone modes as compared to ordinary superfluids. In a uniform SOC
BECs, the Goldstone mode associated with broken translational symmetry corresponds
to a rigid translation of the stripes, which costs zero energy. Experimental signatures
of such low-energy Goldstone modes have been observed inside optical resonators [291]
and in harmonically trapped dipolar gases [292–295], while no experimental observation
in spin–orbit-coupled configurations has been reported so far.

In this chapter, we explore signatures of supersolidity in harmonically trapped SOC
BECs and develop protocols for their experimental observation. We consider two ex-
perimentally relevant configurations, one with symmetric intraspecies interactions, as
typically found in 87Rb [290], and the other one with highly asymmetric intraspecies
interactions, which have recently become available in experiments on 39K by means of
Feshbach resonances [296]. We first investigate equilibrium properties such as density
profiles or the static polarizability of these configurations with a particular emphasis on
effects that arise due to the asymmetry of intraspecies interactions. Then, we discuss
how Goldstone modes as dynamical probes of supersolidity can be accessed experimen-
tally. In particular, a Goldstone mode of spin nature is revealed by a beating effect in
the breathing oscillation, generated by a sudden change of the trap frequency, in analogy
to a similar procedure followed in dipolar supersolids [292]. In addition, we point out
experimentally accessible signatures of the zero-frequency Goldstone mode associated
with the translation of the stripes and show that this mode can directly be excited via
a uniform spin perturbation.

4.1. Spin–Orbit-Coupled Bose–Einstein Condensates

Spin–orbit coupling in a binary mixture of quantum gases can be realized via a Raman
coupling of two internal states, generated by a pair of intersecting lasers [290]. Such a
Raman transition involves a momentum transfer between the light field and the atoms
due to the absorption and emission of photons. In contrast to simple microwave or radio
frequency couplings, this momentum recoil cannot be neglected. In a suitable frame of
reference, the system is described by the single-particle Hamiltonian [297]

𝐻SOC = 1
2𝑚(𝒑 − ℏ𝒌0𝜎𝑧)2 + 𝛺

2 𝜎𝑥 + 𝛿
2𝜎𝑧 + 𝑉ext(𝒙), (4.1)

where 𝑚 is the mass, 𝒙 and 𝒑 denote position and momentum, respectively, 𝜎𝑥 and
𝜎𝑧 are Pauli matrices, and 𝑉ext(𝒙) is an external potential. The parameters relevant
for spin–orbit coupling comprise the Raman wave vector 𝒌0, describing the momentum
transfer due to the Raman lasers, the strength of the Raman coupling 𝛺, as well as
the detuning 𝛿 from the Raman resonance. Throughout this chapter, we assume the
Raman wave vector to be oriented in 𝑥 direction, 𝒌0 = 𝑘0 ̂𝒆𝑥. A peculiarity of the
Hamiltonian (4.1) is the fact that it features equal contributions of Rashba [288] and
Dresselhaus [289] spin–orbit couplings.
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In uniform matter (𝑉 (𝒙) = 0), the single-particle dispersion relation of the Hamilto-
nian (4.1) contains two bands given by [297]

𝜖±(𝒑) = 𝒑2

2𝑚 + 𝐸r ± √(ℏ𝑘0𝑝𝑥
𝑚 − 𝛿

2)
2

+ 𝛺2

4 , (4.2)

where 𝐸r = ℏ2𝑘2
0/2𝑚 is the recoil energy. At 𝛿 = 0, the lower band exhibits two

degenerate minima for 𝛺 < 4𝐸r, located at non-zero momenta

𝒑± = ±ℏ𝑘0 ̂𝒆𝑥√1 − ( 𝛺
4𝐸r

)
2

. (4.3)

For 𝛺 ≥ 4𝐸r, the two minima merge into a single minimum at 𝒑 = 0. The disappearance
of the double-minimum structure at 𝛺 = 4𝐸r is associated with a divergence of the
effective mass (𝑚∗)−1 = 𝜕2𝜖/𝜕𝑝2

𝑥 of a particle moving along the 𝑥 direction and gives rise
to a second-order phase transition between the so-called plane-wave and single-minimum
phase, as explained below.

Within mean-field Gross–Pitaevskii theory [57], the interacting many-body system is
described by a two-component spinor 𝜳(𝒙) = [𝛹↑(𝒙), 𝛹↓(𝒙)]⊺, where 𝛹↑(𝒙) and 𝛹↓(𝒙) are
the wave functions of the involved internal states. The use of the mean-field picture in
the description of SOC BECs is justified since the quantum depletion of the condensate
is typically small for realistic experimental parameters [298, 299]. The energy functional
is given by

𝐸 = ∫ d𝒙(𝜳†𝐻SOC𝜳 + 1
2𝑔↑↑∣𝛹↑∣

4 + 1
2𝑔↓↓∣𝛹↓∣

4 + 𝑔↑↓∣𝛹↑∣
2∣𝛹↓∣

2) , (4.4)

where the interaction constants 𝑔𝑖𝑗 = 4𝜋ℏ2𝑎𝑖𝑗/𝑚 with 𝑖, 𝑗 ∈ {↑, ↓} are determined by
the 𝑠-wave scattering lengths 𝑎𝑖𝑗 for the respective spin channels. It is instructive to
rewrite the interaction part of the energy functional (4.4) in terms of the particle density
𝑛 = |𝛹↑|2 + |𝛹↓|2 and the spin density 𝑠𝑧 = |𝛹↑|2 − |𝛹↓|2, yielding

𝐸 = ∫ d𝒓(𝜳†𝐻SOC𝜳 + 1
2𝑔nn𝑛2 + 1

2𝑔ss𝑠2
𝑧 + 𝑔ns𝑛𝑠𝑧) . (4.5)

Here, we have introduced the coupling constants

𝑔nn = 1
4(𝑔↑↑ + 𝑔↓↓ + 2𝑔↑↓) , (4.6a)

𝑔ss = 1
4(𝑔↑↑ + 𝑔↓↓ − 2𝑔↑↓) , (4.6b)

𝑔ns = 1
4(𝑔↑↑ − 𝑔↓↓) , (4.6c)

characterizing density–density, spin–spin, and density–spin interactions, respectively.
The equations of motion can be derived by varying the action

𝑆 = ∫ d𝑡 𝐸[𝛹↑, 𝛹↓] − 𝑖ℏ ∫ d𝑡 d𝒙 (𝛹 ∗
↑ 𝜕𝑡𝛹↓ + 𝛹 ∗

↓ 𝜕𝑡𝛹↓) (4.7)
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with respect to 𝛹 ∗
↑ and 𝛹 ∗

↓ , yielding the coupled time-dependent GPEs

𝑖ℏ 𝜕
𝜕𝑡𝛹↑ = [ ℏ2

2𝑚(−𝑖∇ − 𝒌0)2 + 𝛿
2 + 𝑉ext(𝒙) + 𝑔↑↑∣𝛹↑∣

2 + 𝑔↑↓∣𝛹↓∣
2]𝛹↑ + 𝛺

2 𝛹↓ , (4.8a)

𝑖ℏ 𝜕
𝜕𝑡𝛹↓ = [ ℏ2

2𝑚(−𝑖∇ + 𝒌0)2 − 𝛿
2 + 𝑉ext(𝒙) + 𝑔↓↓∣𝛹↓∣

2 + 𝑔↑↓∣𝛹↑∣
2]𝛹↓ + 𝛺

2 𝛹↑ . (4.8b)

Expectation values of an observable 𝑂 can be computed as

⟨𝑂(𝑡)⟩ = 1
𝑁 ∫ d𝒙 𝜳†(𝒙, 𝑡) 𝑂 𝜳(𝒙, 𝑡) (4.9)

or with respect to an individual spin component 𝑖 as

⟨𝑂(𝑡)⟩𝑖 = 1
𝑁𝑖

∫ d𝒙 𝛹 ∗
𝑖 (𝒙, 𝑡) 𝑂 𝛹𝑖(𝒙, 𝑡) , (4.10)

where 𝑁𝑖 = ∫ d𝒙 |𝛹𝑖|2 is the number of particles in the respective component, while
𝑁 = 𝑁↑ + 𝑁↓ is the total number of particles in the system.

As one varies the strength of the Raman coupling 𝛺, the ground state of the system
undergoes transitions between the following three characteristic phases [300, 301]. At
small values of 𝛺, the system is in the stripe (or supersolid) phase, characterized by
a periodic modulation of the density along the direction of the Raman wave vector.
Intermediate values of 𝛺 give rise to the plane wave phase, where the system condenses
in one of the two minima (4.3) of the single-particle dispersion relation (4.2). For large 𝛺,
the dispersion only has a single minimum at zero momentum, and the corresponding
phase is therefore called the single-minimum phase. A comprehensive characterization of
the mean-field phase diagram in uniform systems with symmetric intraspecies interaction
can be found in Ref. [297].

In what follows, we study how static and dynamic properties vary across these phases
in presence of a harmonic trapping potential given by Eq. (1.22). Throughout this chap-
ter, we measure length mainly in units of the harmonic oscillator length in 𝑥 direction,
𝑎𝑥 = √ℏ/𝑚𝜔𝑥. A main focus will be put on the effects of asymmetry in the intraspecies
interactions as well as on the identification of experimentally accessible signatures of
supersolidity.

4.2. Equilibrium Properties of Harmonically Trapped
Systems

In this section, we investigate the equilibrium properties of harmonically trapped SOC
BECs. We first consider the behavior of the polarization and the ground state den-
sity profiles across the different phases as a function of the Raman coupling 𝛺. In this
context, we will point out crucial effects of spin–orbit coupling as well as of asymmet-
ric interactions, especially in comparison to coherently coupled BECs with negligible
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momentum transfer. Furthermore, we study the behavior of the static magnetic polariz-
ability as a function of 𝛺, which is deeply connected to dynamic properties of the system.
This analysis will serve as a bridge to the next section, which is devoted to the study of
collective excitations and Goldstone modes as dynamical probes of supersolidity.

Parameters Symmetric configuration Asymmetric configuration

Mass 𝑚 87 u (87Rb) 39 u (39K)

Interaction constants
(𝑔↑↑, 𝑔↑↓, 𝑔↓↓)

1√
2𝜋𝑎𝑧

4𝜋ℏ2

𝑚 (100, 60, 100) a0
4𝜋ℏ2

𝑚 (252.7, −6.3, 1.3) a0 [296]

Trap frequencies
(𝜔𝑥, 𝜔𝑦, 𝜔𝑧)

2𝜋 × (50, 200, 2500) Hz 2𝜋 × (50, 200, 200) Hz

Dimensionality quasi-2D 3D

Particle number 𝑁 104 105

Raman momentum
transfer 𝑘0

𝑘0 =
√

2𝜋/𝜆 = 5.53 µm−1

𝜆 = 804.1 nm [290]
𝑘0 = 2𝜋/𝜆 = 8.17 µm−1

𝜆 = 768.97 nm [296]

Recoil energy
𝐸r = ℏ2𝑘2

0/2𝑚
2𝜋ℏ × 1.773 kHz 2𝜋ℏ × 8.652 kHz

Raman coupling 𝛺 0 … 6 𝐸r 0 … 8 𝐸r

Detuning 𝛿 0 0

Table 4.1.: Physical parameters used for numerical simulations of spin–orbit-coupled Bose–
Einstein condensates with symmetric and asymmetric intraspecies interactions. In the symmetric
case, the interaction constants correspond to effective values in a quasi-2D system, obtained
by reducing the spatial overlap of the two spin components and integrating out the tightly-
confined 𝑧 direction, as explained in Section 4.2.1. The parameters specified above have been
used throughout this chapter unless explicitly stated otherwise.

4.2.1. Symmetric Intraspecies Interactions

We start by investigating SOC BECs with symmetric intraspecies interactions, which
is also where the majority of previous works focuses on. Symmetric configurations are
well realized, for example, in the 𝐹 = 1 hyperfine structure manifold of 87Rb, where
interactions between the |↑⟩ = |𝐹 = 1, 𝑚𝐹 = 0⟩ and |↓⟩ = |𝐹 = 1, 𝑚𝐹 = −1⟩ states are
characterized by the scattering lengths 𝑎↑↑ = 101.41 a0 and 𝑎↑↓ = 𝑎↓↓ = 100.94 a0 (a0 is
the Bohr radius) [297]. Thus, in 87Rb not only the intraspecies interactions constants
𝑔↑↑ and 𝑔↓↓ are close to each other, but also the interspecies interaction 𝑔↑↓ is close to 𝑔↑↑
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and 𝑔↓↓, corresponding to 𝑔𝑠𝑠 ≈ 0 according to Eq. (4.6). This has the downside that
the critical value of the Raman coupling below which the system enters the supersolid
phase [300, 301],

𝛺c = 4𝐸r√
2𝑔ss

𝑔nn + 2𝑔ss
, (4.11)

takes a small value. On top of that, in the limited range of Raman couplings where the
stripe phase is available, the contrast of the stripes, which is proportional to 𝛺 [297], is
relatively low, which makes the observation of supersolid features quite difficult. It is
therefore desirable to increase the value of 𝛺c in order to limit the effects of magnetic
fluctuations and to observe measurable consequences due to the presence of stripes.

This can be achieved by reducing the spatial overlap between the wave functions
of the two spin components, for instance, with the help of a spin-dependent trapping
potential separating the two components [302, 303], or using pseudo-spin orbital states
in a superlattice potential [38]. Here, we follow the former approach, employing a tight
harmonic confinement along the 𝑧 direction with the minima of the potentials for the
two spin components separated by a distance 𝑑,

𝑉 (𝑧) = 1
2𝑚𝜔2

𝑧(𝑧 − 𝑑
2𝜎𝑧)

2
. (4.12)

Then, provided that 𝜔𝑧 is sufficiently large such that the wave function in 𝑧 direction
can be approximated by the harmonic oscillator ground state (see discussion of low-
dimensional systems in Section 1.1.1), integrating out the 𝑧 direction yields a quasi-2D
description with effective coupling constants [302]

̃𝑔↑↑ = 𝑔↑↑√
2𝜋𝑎𝑧

, ̃𝑔↓↓ = 𝑔↓↓√
2𝜋𝑎𝑧

, ̃𝑔↑↓ = e−𝑑2/2𝑎2
𝑧

𝑔↑↓√
2𝜋𝑎𝑧

. (4.13)

Thus, the reduced spatial overlap between the wave functions of the two spin components
leads to an effective reduction of the interspecies interaction constant ̃𝑔↑↓. Consequently,

̃𝑔𝑠𝑠 is effectively increased, which enhances the stripe phase according to Eq. (4.11). In
addition, the quasi-2D description contains the effective Raman coupling ̃𝛺 = e−𝑑2/4𝑎2

𝑧𝛺,
which is reduced compared to its physical value 𝛺. Thus, when reporting Raman cou-
plings for the symmetric configuration, we mean this effective coupling in the quasi-2D
description.

In what follows, we consider a configuration with symmetric intraspecies scattering
lengths 𝑎↑↑ = 𝑎↓↓ = 100 a0 close to those of 87Rb. Furthermore, we choose a tight
harmonic confinement along the 𝑧 direction with frequency 𝜔𝑧 = 2.5 kHz and adjust the
separation 𝑑 of the two spin components such that the effective 2D interspecies coupling
becomes ̃𝑔↑↓ = 0.6 ̃𝑔↑↑. Other physical parameters are summarized in Table 4.1.

The following results have been obtained by numerically computing the ground state
of the Gross–Pitaevskii energy functional (4.5). Traditionally, this can be achieved using
the method of imaginary time evolution (also known as normalized gradient flow) [66,
304]. However, for the problem at hand, an adaptation of the more recently developed
preconditioned non-linear conjugate gradient method [67] turns out to have superior
convergence properties and has been used throughout.

138



Polarization

0 1 2 3 4 5 6
Raman coupling Ω/Er

0.0

0.2

0.4

0.6

0.8

1.0

Po
la
riz

at
io
n
〈σ
z
〉

0.0

0.2

0.4

0.6

0.8

1.0

St
rip

e
co
nt
ra
st

n
m

ax
−
n

m
in

n
m

ax
+
n

m
in

stripe plane
wave

single
minimum

Figure 4.1.: Ground state polarization and contrast of the stripes in a harmonically trapped
SOC BEC with symmetric intraspecies interactions, obtained by numerically minimizing the
Gross–Pitaevskii energy functional (4.5). The vertical dotted lines mark the transitions from
the stripe to the plane-wave phase at 𝛺c ≈ 2.4 and from the plane-wave to the single-minimum
phase at 𝛺PW−SM ≈ 3.8, respectively. The dashed line corresponds to the prediction (4.14) for
the polarization in the plane-wave phase of uniform systems with the fitted uniform density 𝑛̄𝑎2

𝑥 ≈
242.8. In the stripe phase, the polarization vanishes and the contrast of the stripes grows linearly
with the Raman coupling 𝛺.

To get a first impression on the mean-field phase diagram, we consider the behavior of
the polarization ⟨𝜎𝑧⟩ as a function of the Raman coupling 𝛺, shown in Fig. 4.1. Overall,
the harmonically trapped system behaves similarly to the corresponding scenario in
uniform matter, which has extensively been studied for symmetric configurations, e.g.,
in Refs. [297, 300, 301].

At large values of 𝛺, it is energetically favorable for the system to maximize the
spatial overlap of the wave functions of the spin-up and spin-down components [cf.
Eq. (4.5)]. Consequently, we find a vanishing polarization in the single-minimum phase.
This behavior is completely analogous to that of coherently coupled BECs with negligible
momentum transfer [57].

As we lower the Raman coupling, the system undergoes a second-order phase transition
to the plane-wave phase, characterized by a non-vanishing polarization. The polarization
therefore plays the role of the order parameter for this transition. At zero detuning,
configurations with positive and negative polarizations have the same energy, but this
degeneracy can be lifted by adding a small detuning as a bias. The transition from the
plane-wave to the single-minimum phase is expected to occur at the Raman coupling 𝛺 =
4𝐸r, where the two minima (4.3) of the single-particle dispersion relation merge. Taking
interaction effects into account, in uniform matter one finds that the order parameter in
the plane-wave phase behaves like [300, 301]

⟨𝜎𝑧⟩ = √1 − ( 𝛺
𝛺PW–SM

)
2

, (4.14)
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where the transition point 𝛺PW–SM = 4(𝐸r − 𝑛̄𝑔ss/2) is slightly shifted with respect to
single-particle case. Here, 𝑛̄ is the density in the uniform system. Treating this quantity
as a fit parameter, the numerical data in Fig. 4.1 is well described by Eq. (4.14) for the
value 𝑛̄𝑎2

𝑥 = 242.8. This corresponds to the critical Raman coupling 𝛺PW–SM/𝐸r = 3.66,
which is not too far from the vertical dashed line on the right-hand side of Fig. 4.1 at
𝛺PW−SM ≈ 3.8, marking the point where the polarization starts to differ significantly
from zero as one lowers the Raman coupling coming from the single-minimum phase.

Once the Raman coupling reaches the critical value 𝛺c for the transition to the stripe
phase, the polarization jumps from a non-zero value in the plane-wave phase to zero in
the stripe phase, reflecting the first-order nature of this transition. For our choice of
parameters, Eq. (4.11) predicts the value 𝛺c/𝐸r = 2.31, which is close to the position
𝛺c = 2.4 (vertical dashed line on the left-hand side of Fig. 4.1) where the jump of
the polarization occurs. Shifting this critical coupling to a larger value in order to
observe appreciable effects due to the presence of stripes has been our main motivation
of studying systems with reduced interspecies interactions 𝑔↑↓.
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Figure 4.2.: Ground state density profiles for symmetric intraspecies interactions. The three
panels represent typical profiles in the stripe phase (𝛺/𝐸r = 1.8), plane-wave phase (𝛺/𝐸r = 2.8),
and single-minimum phase (𝛺/𝐸r = 6). The envelope of the total density in all three phases is
close to a 2D Thomas–Fermi profile with effective interaction constant 𝑔nn (grey dashed lines).

Figure 4.2 depicts characteristic density profiles in the stripe, plane-wave, and single-
minimum phases. In the single-minimum phase (𝛺/𝐸r = 6), the wave functions of
the two spin components overlap completely and the total density is well-described
by a 2D Thomas–Fermi profile with interaction constant 𝑔nn (see Eq. (1.24) as well
as the corresponding discussion for the asymmetric configuration below). Apart from
slight deviations due to the non-zero polarization, the total density in the plane-wave
phase (𝛺/𝐸r = 2.8) is still close to the Thomas–Fermi prediction. In the stripe phase
(𝛺/𝐸r = 1.8), the density profile exhibits the characteristic stripe pattern. The fact
that the densities of the two spin components match exactly is a consequence of the
symmetry of the intraspecies interactions and no longer holds in the asymmetric case,
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as we will see below.
Phenomenologically, the stripe density profile can be approximated using the corre-

sponding result for uniform systems [297] and replacing the uniform density 𝑛̄ by a
Thomas–Fermi envelope 𝑛TF(𝒙),

𝑛(𝒙) = 𝑛TF(𝒙)[1 + 𝐶 cos(2𝑘1𝑥 + 𝜙)] . (4.15)

Here, the wave number 𝑘1 describes the periodicity of the stripes, 𝜙 is a phase, and the
contrast 𝐶 of the stripes is defined as

𝐶 = 𝑛max − 𝑛min
𝑛max + 𝑛min

. (4.16)

As can be seen in Fig. 4.2, the same Thomas–Fermi profile describing the plane-wave and
single-minimum phases corresponds to the envelope of the density profile in the stripe
phase.

The red data points in Fig. 4.1 show the contrast of the stripes, extracted by fitting
Eq. (4.15) to numerically computed ground state density profiles. It can be seen that
the contrast of the stripes grows linearly with the Raman coupling, in agreement with
the predictions for uniform systems with symmetric intraspecies interactions [297].
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Figure 4.3.: Magnetic polarizability for symmetric intraspecies interactions. The polarizability
diverges at the second-order phase transition between the plane-wave and single-minimum phase
near 𝛺/𝐸r ≈ 3.65. In the stripe phase, the polarizability is higher than in the bulk of the plane-
wave and single-minimum phases and increases strongly as the transition to the plane-wave phase
near 𝛺/𝐸r = 2.4 is approached. The continuous lines show fits of the analytical predictions
according to Eq. (4.18) in the stripe phase and Eqs. (4.21) and (4.22) in the plane-wave and
single-minimum phases, respectively, with the uniform density 𝑛̄ taken as a fit parameter.

In Section 1.3.2, we have introduced the dynamical susceptibility as a key quantity
that determines the linear response of a system to an external, possibly time-dependent
perturbation. Here, we will be interested in the static susceptibility characterizing the
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response of the polarization (𝐵 = 𝜎𝑧) to a static perturbation by a magnetic field
(𝐴 = 𝜎𝑧). This quantity, which we will from now on also call the magnetic polarizability,
is defined as [297]

𝜒M = lim
ℎ→0

⟨𝜎𝑧⟩ℎ − ⟨𝜎𝑧⟩ℎ=0
ℎ , (4.17)

where ⟨⋯⟩ℎ denotes the expectation value with respect to the ground state in presence of
the perturbation 𝐻1 = −ℎ𝜎𝑧 with a magnetic field ℎ. Such a perturbation corresponds to
an effective detuning and can therefore also be implemented optically by varying the de-
tuning 𝛿 from the Raman resonance. The polarizability is deeply connected with dynam-
ical properties like collective excitations. Using sum rule arguments (see Section 1.3.4),
it is possible to derive a rigorous upper bound for the lowest energy mode [305], which
we will use in the next section to infer the existence of the zero-frequency Goldstone
mode associated with the translation of the stripes in the supersolid phase.

The polarizability of the symmetric SOC BEC configuration as a function of the Ra-
man coupling 𝛺 is depicted in Fig. 4.3. Similar results for symmetric intraspecies interac-
tions in uniform and 1D harmonically trapped systems have been obtained in Ref. [305].
At the transition between the plane-wave and single-minimum phase near 𝛺/𝐸r ≈ 3.65,
the polarizability diverges, reflecting the second-order nature of this phase transition (the
polarizability above and below the transition differ by a factor of two [305], as evident
from the formulas given below). This divergence of the susceptibility has been con-
firmed experimentally by measuring collective dipole oscillations [306], whose frequency
is strongly reduced close to the transition. In fact, a strong reduction of the frequency
is expected for any hydrodynamic mode in 𝑥 direction near the second-order transition
where the polarizability diverges [297]. We will encounter such a behavior in the dis-
persion of the breathing (compression) mode in our analysis of collective excitations in
Section 4.3.1 (see Fig. 4.7c).

The stripe phase is characterized by a significantly higher polarizability than in the
bulk of the plane-wave and single-minimum phases. Close to the transition from the
stripe to the plane-wave phase near 𝛺/𝐸r = 2.4, the polarizability is strongly peaked,
before it jumps to a value close to zero in the plane-wave phase. The strongly enhanced
polarizability in the stripe phase is a feature that may well be used to identify the
supersolid phase in experiments.

For SOC BECs with symmetric intraspecies interactions, analytical predictions for
the magnetic polarizability in uniform matter are available, which can be derived by
means of a plane-wave variational ansatz for the ground state wave function [305]. For
convenience, the relevant formulas are quoted below. In the supersolid (SS) phase, the
prediction for the polarizability reads [307]

𝜒(SS)
M = 2𝐸r𝛺4 − 4(2𝐸r + 𝐺1)2(4𝐸r + 𝐺1 + 𝐺2)𝛺2 + 16(2𝐸r + 𝐺1)4(2𝐸r + 𝐺2)

𝑎4𝛺4 − 𝑎2𝛺2 + 𝑎0
(4.18)
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with coefficients

𝑎0 = 32𝐺2(2𝐸r + 𝐺1)4(2𝐸r + 𝐺2) , (4.19a)
𝑎2 = 4(2𝐸r + 𝐺1)2[(𝐺1 + 2𝐺2)(𝐺1 + 𝐺2) + 2𝐸r(𝐺1 + 4𝐺2)] , (4.19b)
𝑎4 = 2𝐸r(𝐺1 + 2𝐺2) , (4.19c)

where 𝐺1 = 𝑛̄𝑔nn and 𝐺2 = 𝑛̄𝑔ss with the uniform density 𝑛̄. Assuming weak couplings
𝐺1, 𝐺2 ≪ 𝐸r, this rather involved expression simplifies to [305]

𝜒(SS)
M = 𝛺2 − 16𝐸2

r
(𝐺1 + 2𝐺2)𝛺2 − 32𝐺2𝐸r

. (4.20)

Finally, in the plane-wave (PW) and single-minimum (SM) phases, one finds, respec-
tively, the predictions [305]

𝜒(PW)
M = 𝛺2

(2𝐸r − 2𝐺2)[4(2𝐸r − 2𝐺2)2 − 𝛺2] , (4.21)

𝜒(SM)
M = 2

𝛺 − 2(2𝐸r − 2𝐺2) . (4.22)

In Fig. 4.3, the above predictions for uniform systems have been fitted to the polariz-
ability of the harmonically trapped system, computed by numerically solving the GPE.
The only free parameter is the uniform density 𝑛̄. The stripe phase has been fitted
separately for values of the polarizability 𝜒M < 0.45 𝜔−1

𝑥 ≈ 16 𝐸−1
r using the full expres-

sion (4.18), which turns out to describe the numerical data better than the simplified one
in Eq. (4.20). Up to slight deviations close to the transitions, the analytical predictions
are in good agreement with the numerical results.

4.2.2. Asymmetric Intraspecies Interactions

We now focus our attention on SOC BECs with highly asymmetric intraspecies inter-
actions, 𝑔↑↑ ≫ 𝑔↓↓ ≈ 𝑔↑↓, corresponding to 𝑔nn ≈ 𝑔ss ≈ 𝑔ns. Such configurations have
recently become available in experiments on 39K and represent a promising setting for
studying supersolidity in spin–orbit-coupled systems [296]. Our main motivation is to
explore how the strong polarization effects due to the asymmetric interactions influ-
ence the static and dynamic properties of this system, especially in the stripe phase.
Specifically, we consider a set of scattering lengths given by 𝑎↑↑ = 252.7 a0, 𝑎↓↓ = 1.3 a0,
and 𝑎↑↓ = −6.3 a0, which can be realized in 39K by using Feshbach resonances near
a magnetic field of 𝐵 ≈ 389 G [296]. These values are consistent with the stability
criterion 𝑔↑↑𝑔↓↓ > 𝑔2

↑↓ for binary quantum gas mixtures [57]. The full set of param-
eters can be found in Table 4.1. As an exception, the polarization and density pro-
files depicted in Figs. 4.5 and 4.6 have been computed for a different trap geometry,
(𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 × (138, 125, 59) Hz, and particle number 𝑁 = 1.4 × 105, corresponding
to specific set of experimental parameters [296].

143



It should be noted that for sufficiently small differences of the interaction parameters,
the effect of the asymmetry can be compensated by applying an appropriate detun-
ing 𝛿 [297]. The ground state then exhibits the same properties as in the symmetric
case. However, for the highly asymmetric configuration above (𝑔↑↑/𝑔↓↓ ≈ 194), an exact
compensation is not possible in general. In what follows, we explore the consequences
of the asymmetric intraspecies interactions for 𝛿 = 0.
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Figure 4.4.: Ground state polarization of a harmonically trapped SOC BEC with highly asym-
metric intraspecies interactions. The polarization gradually decreases with as the Raman cou-
pling 𝛺 increases, indicating a smooth crossover between the plane-wave and single-minimum
regimes. In the stripe phase, shown in the inset, the polarization remains large in magnitude,
as opposed to the symmetric configuration (cf. Fig. 4.3). The black dot marks the analytical
prediction by Eq. (4.26) at small 𝛺, ⟨𝜎𝑧⟩ ≈ −0.943. The behavior of the polarization is compared
to that in systems with radio frequency (RF) coupling (red curve) as well as spin–orbit coupling
with symmetric interactions (grey dashed line). Differing from the parameters given in Table 4.1,
the experimental values (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 × (138, 125, 59) Hz and 𝑁 = 1.4 × 105 [296] have been
used in this figure.

Figure 4.4 shows the polarization of the SOC BEC configuration with asymmetric
intraspecies interactions as a function of the Raman coupling 𝛺. At large values of 𝛺,
the system can minimize its energy most efficiently by maximizing the overlap of the wave
functions of the two spin components, which is why the polarization is close to zero in this
regime. As 𝛺 becomes smaller, the polarization gradually increases in magnitude. Unlike
in the symmetric case (Fig. 4.1), there is no second-order phase transition, but rather
a smooth crossover between the single-minimum and the plane-wave regime, the latter
being characterized by a strong polarization. The direct comparison to an equivalent
system with a simple radio frequency (RF) coupling, formally obtained by setting 𝑘0 = 0
in Eq. (4.4), exposes the crucial polarization effects incurred by spin–orbit coupling:
the presence of the spin-orbit term ∝ −𝑘0𝑝𝑥𝜎𝑧 in the single-particle Hamiltonian (4.1)
favors spin polarization and is responsible for the qualitatively different behavior of
the polarization between RF and spin–orbit coupling, as evident from Fig. 4.4. As a
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guide to the eye, the dashed line in this figure shows the prediction by Eq. (4.14) for
𝑔ss = 0, ⟨𝜎𝑧⟩ = −√1 − (𝛺/4𝐸r)2, which reflects the behavior of systems like 87Rb
where all interaction constants are approximately equal. Clearly, in the asymmetric
case, configurations with opposite polarizations are no longer energetically equivalent.

At the value 𝛺c/𝐸r ≈ 1, a transition to the stripe phase occurs and the system slightly
depolarizes as the Raman coupling decreases further. There are two crucial differences
with respect to the stripe phase in the symmetric case. First, there is no jump in the
order parameter, but the polarization behaves continuous at the transition to the stripe
phase. This indicates that, as the transition is approached from the stripe phase, the
contrast of the stripes is reduced, whereas in Fig. 4.1, the stripes reach there maximum
contrast just before the transition. Second, as opposed to the symmetric case, where the
polarization in the stripe phase vanishes, for highly asymmetric intraspecies interactions,
the system remains strongly polarized even in the stripe phase.

A simple estimate of this effect can be obtained in uniform matter for 𝛺 → 0 [308].
In this limit, the contribution of 𝑘0 to the kinetic term in Eq. (4.5) can be transformed
away by means of 𝜳 → e𝑖𝒌0𝒙𝜎𝑧𝜳 . Then, in uniform matter, we can make the ansatz
𝜳 =

√
𝑛̄(𝐶↑, 𝐶↓)⊺, yielding the energy per particle

𝜖 = 1
2𝑛̄𝑔nn + (𝛿

2 + 𝑛̄𝑔ns)𝑆 + 1
2𝑛̄𝑔ss𝑆2 (4.23)

with 𝑆 = |𝐶↑|2 − |𝐶↓|2, subject to the normalization constraint |𝐶↑|2 + |𝐶↓|2 = 1. It is
convenient to introduce a new variable 𝜃 via 𝐶↑ = cos2(𝜃/2) and 𝐶↓ = sin2(𝜃/2), such
that 𝑆 = cos(𝜃). This quantity directly corresponds to the polarization, ⟨𝜎𝑧⟩ = 𝑠𝑧/𝑛 =
cos(𝜃). Minimizing Eq. (4.23) at fixed uniform density 𝑛̄ with respect to 𝜃 yields the
condition

(𝛿
2 + 𝑛̄𝑔ns) sin(𝜃) + 𝑛̄𝑔ss cos(𝜃) sin(𝜃) = 0 . (4.24)

Thus, the minimum energy configuration corresponds to

cos(𝜃) = −𝑛̄𝑔ns + 𝛿/2
𝑛̄𝑔ss

, (4.25)

provided that |𝑛̄𝑔ns + 𝛿/2| ≤ 𝑛̄|𝑔ss|. If this stability condition is not satisfied, the energy
minimum is instead given by sin(𝜃) = 0, corresponding to a fully polarized system. At
𝛿 = 0, Eq. (4.25) yields the polarization

⟨𝜎𝑧⟩ = −𝑔ns
𝑔ss

(4.26)

and the stability condition is fulfilled if 𝑔↑↑ > 𝑔↑↓ and 𝑔↓↓ > 𝑔↑↓. For the asymmetric
configuration under investigation, this prediction yields the value ⟨𝜎𝑧⟩ = −0.943, which
is in excellent agreement with the numerical results in Fig. 4.4 (black dot in the inset). As
this simple estimate shows, the strong polarization in the stripe phase is a consequence
of the highly asymmetric intraspecies interactions, which is in stark contrast to the
symmetric case, where we have 𝑔ns = 0 and the polarization vanishes in the stripe phase
(see Fig. 4.1).
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Figure 4.5.: Ground state density profiles for highly asymmetric intraspecies interactions.
The three panels represent typical profiles in the stripe phase (𝛺/𝐸r = 0.5), plane-wave phase
(𝛺/𝐸r = 3), and single-minimum phase (𝛺/𝐸r = 8). The central density increases strongly as the
Raman coupling is reduced, which is accompanied by a shrinking of the cloud radius. At small and
large 𝛺, the total density is close to a Thomas–Fermi profile with effective interaction constants
𝑔nn − 𝑔2

ns/𝑔ss and 𝑔nn, respectively (grey dashed lines). Differing from the parameters given in
Table 4.1, the experimental values (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 × (138, 125, 59) Hz and 𝑁 = 1.4 × 105 [296]
have been used in this figure.

To gain a deeper understanding of the polarization effects due to highly asymmetric
intraspecies interactions, we consider typical density profiles in the stripe (𝛺/𝐸r = 0.5),
plane-wave (𝛺/𝐸r = 3), and single-minimum regimes (𝛺/𝐸r = 8), as illustrated in
Fig. 4.5. The stripe phase is characterized by a large polarization and fringes of high
contrast in the minority component 𝛹↑. The polarization remains large also in the plane-
wave regime, and decreases only gradually at large Raman couplings as the system enters
the single-minimum regime. A main difference with respect to the symmetric case in
Fig. 4.2, where the total density is approximately the same across the phase diagram,
is the strong increase of the central density at small and intermediate Raman couplings
(note the different scales on the 𝑦 axes in Fig. 4.5). The enhancement of the central
density, dominated by the majority component 𝛹↓, is accompanied by a shrinking of the
cloud radius.

This effect can be estimated in a simple way for 𝛺 → 0 [308]. In this limit, the
contrast of the stripes is small and we can use the Thomas–Fermi approximation, which
consists of neglecting the kinetic term in the energy functional (4.5). It is important to
keep in mind, however, that the coherent coupling fixes the value of the polarization. To
take this effect into account, we use the estimate for the polarization in Eq. (4.26) and
substitute 𝑠𝑧 = −𝑛𝑔ns/𝑔ss, such that the energy functional becomes

𝐸 = ∫ d𝒙 [𝑉 (𝒙)𝑛 + 1
2(𝑔nn − 𝑔2

ns
𝑔ss

)𝑛2] . (4.27)

The total density in 3D is then described by a Thomas–Fermi profile with chemical
potential (1.25), Thomas–Fermi radius (1.26), and an effective scattering length 𝑎eff ,
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which, in the light of Eq. (4.27), is given by

4𝜋ℏ2

𝑚 𝑎eff ≡ 𝑔eff = 𝑔nn − 𝑔2
ns

𝑔ss
=

𝑔↑↑𝑔↓↓ − 𝑔2
↑↓

𝑔↑↑ + 𝑔↓↓ − 2𝑔↑↓
. (4.28)

Thus, for a non-zero value of 𝑔ns, the effective scattering length is reduced, which leads
to a shrinking of the Thomas–Fermi radius 𝑅TF ∝ 𝑎1/5

eff as well as to an enhancement
of the central density 𝑛(0) = 𝜇TF/𝑔eff ∝ 𝑎−3/5

eff . In Fig. 4.5, it can be seen that the
density profile in the stripe phase is close to the Thomas–Fermi prediction obtained by
this simple estimate (grey dashed line).

In the opposite limit of large Raman couplings 𝛺, the spin density 𝑠𝑧 is instead small
as the tendency of the two spin components to overlap dominates over the polarization
favored by the asymmetric interaction and the spin–orbit term. According to the energy
functional in Eq. (4.5), this suggests that the system mainly interacts via the total
density 𝑛, characterized by the interaction constant 𝑔nn. Consequently, it is reasonable
to expect the density to be well approximated by a Thomas–Fermi profile with effective
interaction constant 𝑔eff = 𝑔nn. Indeed, the density profile in Fig. 4.5 at 𝛺/𝐸r = 8 is
close to this prediction (grey dashed line), and the agreement further improves for larger
values of 𝛺. In contrast, the symmetric case in Fig. 4.2 is well described by a Thomas–
Fermi profile with 𝑔eff = 𝑔nn in both limits of small and large Raman couplings, which
follows for 𝛺 → 0 from Eq. (4.28) by noting that 𝑔ns = 0, and in the opposite limit by
the same argument of a vanishing polarization due the large Raman coupling.
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Figure 4.6.: Magnetic polarizability for highly asymmetric intraspecies interactions. The po-
larizability is peaked near the crossover between the plane-wave and single-minimum regimes
around 𝛺/𝐸r = 4, but there is no divergence as in the symmetric case (cf. Fig. 4.3). In the
stripe phase, the polarizability is higher than in the bulk of the other phases. As the critical
Raman coupling 𝛺c/𝐸r ≈ 1 is approached, the polarizability sharply drops, which is the opposite
behavior as observed for symmetric intraspecies interactions.
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To conclude our discussion of ground state properties of the asymmetric SOC BEC
configuration, we consider the polarizability as a function of the Raman coupling 𝛺
shown in Fig. 4.6. Obviously, there is no divergence of the polarizability at the crossover
between the plane-wave and single-minimum regimes due to the absence of a proper
phase transition, in line with the behavior of the polarization in Fig. 4.4. However, a
remnant of this phase transition is still clearly visible in form of a peak near the Raman
coupling 𝛺/𝐸r = 4, where the single-particle dispersion relation (4.2) changes from a
double-minimum to a single-minimum structure.

As in the symmetric case, the stripe phase features a higher polarizability compared
to the bulk of the plane-wave and single-minimum regimes. However, the polarizability
in the stripe phase of the asymmetric configuration is more than one order of magnitude
smaller than that of the symmetric configuration. Intuitively, this is a consequence of
the strong polarization due to the asymmetric intraspecies interactions, which requires a
stronger magnetic field to polarize the system even further. Yet, there is a key difference:
at the transition from the stripe to the plane-wave regime near 𝛺/𝐸r = 1, there is a
sharp drop of the polarizability, which is connected to the gradual disappearance of the
stripes discussed in the context of Fig. 4.4. This is in stark contrast to the behavior of the
symmetric configuration in Fig. 4.3, where the polarizability instead strongly increases
and the stripes acquire their highest contrast just before the transition.

In principle, it is possible to understand the properties of the asymmetric configu-
ration in uniform matter using a similar plane-wave ansatz for the ground state wave
function as in Ref. [301]. However, due to the strongly enhanced central density at low
and intermediate values of the Raman coupling (see Fig. 4.5), the relevant interaction
constants are no longer small. Thus, the corresponding theory likely requires the inclu-
sion of higher harmonics in the ansatz, such that the relevant equations become much
more involved and must in general be solved numerically [307].

4.3. Probing Supersolidity by Exciting Golstone Modes

Having compared the equilibrium properties of SOC BECs with symmetric and asymmet-
ric intraspecies interactions in the previous section, we now consider dynamic properties
and study collective excitations. To this end, we consider the following linear response
protocol. The system is initially prepared in the ground state in presence of a static per-
turbation of density or spin nature. At time 𝑡 = 0, the perturbation is suddenly removed,
which excites collective oscillations. The frequencies 𝜔 of these oscillations can then be
extracted from sinusoidal fits to the time traces of the relevant observables. Repeat-
ing this procedure for different Raman couplings 𝛺 yields the dispersion relation 𝜔(𝛺),
which allows us to study the hybridization of density and spin degrees of freedom in
spin–orbit-coupled configurations and reveals characteristic signatures of supersolidity
in the stripe phase. In order to simulate this protocol numerically, the time-dependent
GPE (4.8) has been solved using a time-splitting Fourier pseudospectral method [309],
while the same method for computing ground states as in the previous section has been
employed.
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More specifically, we consider breathing (monopole) oscillations, generated by sud-
denly changing the trap frequency. As we will see, the behavior of this excitation changes
drastically at the transition to the supersolid phase. Above the critical Raman coupling,
a single mode of hybridized density and spin nature is excited, while below it, a beat-
ing of two different frequencies can be observed, signaling the excitation of a Goldstone
spin–dipole mode.

Furthermore, we explore experimentally accessible signatures of the zero-frequency
Goldstone mode associated with the translational motion of the stripes. Indirect evidence
for its existence can be gained from the behavior of the center-of-mass (dipole) mode
in relation to the previously discussed polarizability when the transition to the stripe
phase is crossed. In addition, it turns out that the zero-frequency Goldstone mode can
also be excited directly by applying a uniform spin perturbation, which is accompanied
by a characteristic locking of the polarization.

These effects can be observed in both configurations with symmetric and highly asym-
metric intraspecies interactions, which therefore provide promising platforms for exper-
imentally observing typical supersolid features in SOC BECs.

4.3.1. Goldstone Spin-Dipole Mode

A main feature that distinguishes spin–orbit-coupled configurations from other platforms
for studying supersolidity is the existence of a non-trivial spin degree of freedom. The
coupling between density and spin by the spin–orbit term in the Hamiltonian (4.1) leads
to a mixture (or hybridization) of the corresponding degrees of freedom. For example, in
the plane-wave and single-minimum phase, the position (or dipole) operator 𝑥 excites the
same mode as the spin operator 𝜎𝑧, which follows from the locking of the relative phase
of the spin wave functions in these phases [297, 310]. A similar hybridization mechanism
exists between the operators 𝑥2 and 𝑥𝜎𝑧, the former exciting the breathing (monopole)
mode and the latter exciting the spin dipole mode, i.e., the oscillation of the two spin
components relative to each other. In what follows, we exploit the hybridization of these
modes and show that the character of the breathing oscillation changes qualitatively
when crossing the transition to the supersolid phase. While above the transition only a
single frequency is excited, corresponding to full hybridization, below it there is a beating
of two frequencies. The newly emerging mode in the supersolid phase corresponds to a
spin–dipole oscillation and its Goldstone nature derives from the fact that its frequency
vanishes at the critical Raman coupling, such that it can be identified with a gapless
Goldstone spin branch in uniform matter [311]. The appearance of a Goldstone mode of
spin nature in the supersolid phase shows that the phenomenon of supersolidity becomes
even richer in systems with non-trivial spin degree of freedom and motivates further
studies of such configurations. In particular, the predicted beating effects represent an
experimentally accessible signature of supersolidity in both systems with symmetric and
asymmetric intraspecies interactions.
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Figure 4.7.: Collective modes of a harmonically trapped SOC BEC with symmetric intraspecies
interactions. (a),(b) Oscillations of the observables 𝑥rms = √⟨𝑥2⟩ and 𝑑𝑥 = ⟨𝑥⟩↑ − ⟨𝑥⟩↓ after
suddenly removing the perturbation 𝐻1 = 𝜆𝑚𝜔2

𝑥𝑥2 with 𝜆 = 0.2. In the stripe phase (a), a clear
beating of two frequencies 𝜔B ≈ 1.49 𝜔𝑥 and 𝜔SD ≈ 0.32 𝜔𝑥 is visible in the observable 𝑑𝑥, which
is absent in the plane-wave phase (b), where 𝑑𝑥 oscillates only at a single frequency 𝜔B ≈ 1.02 𝜔𝑥.
(c) Dispersion 𝜔(𝛺) of the breathing mode (B), the spin-dipole mode (SD), and the center-of-
mass (dipole) mode (D), calculated for 𝜆 ≪ 1. The breathing and the spin-dipole modes are
fully hybridized above the critical coupling 𝛺c ≈ 2.5 𝐸r, while below 𝛺c, a new Goldstone mode
of spin nature appears. The dipole frequencies 𝜔D have been obtained from the center-of-mass
oscillation 𝑥c.m. = ⟨𝑥⟩ after a sudden shift of the trap center. For 𝛺 > 𝛺c, they practically
coincide with the bound 𝜔𝑥/√1 + 2𝐸r𝜒. The violation of this upper bound by 𝜔D for 𝛺 < 𝛺c
implies the emergence of a new low-energy mode.

Symmetric Intraspecies Interactions

We first investigate the configuration with symmetric intraspecies interactions. As we
are interested in probing collective excitations along the 𝑥 axis, i.e., the axis of spin–orbit
coupling, we have chosen an elongated trap in 𝑥 direction (see parameters in Table 4.1).
The elongated trap geometry is also advantageous for studying axial breathing oscilla-
tions excited by the operator 𝑥2 as it avoids the simultaneous excitation of the quadrupole
mode.

Figures 4.7a and 4.7b, shows the time dependence of the root-mean-square radius
𝑥rms = √⟨𝑥2⟩ and of the relative displacement 𝑑𝑥 = ⟨𝑥⟩↑ − ⟨𝑥⟩↓ of the two spin compo-
nents after suddenly removing the static perturbation 𝐻1 = 𝜆𝑚𝜔2

𝑥𝑥2, corresponding to
a sudden decrease of the trapping frequency 𝜔𝑥 by a factor

√
1 + 2𝜆. Note that for an

unpolarized system, the spin displacement 𝑑𝑥 is linked to the expectation value of the
operator 𝑥𝜎𝑧 via 𝑑𝑥 = 2⟨𝑥𝜎𝑧⟩. Since the commutator [𝑥2, 𝐻SOC] contains a term pro-
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portional to 𝑥𝜎𝑧, one would expect, in general, to observe two collective oscillations of
hybridized density and spin nature. For values of 𝛺 larger than the critical coupling 𝛺c,
we find instead that the observables 𝑥rms and 𝑑𝑥 oscillate with one and the same fre-
quency (see Fig. 4.7b). This is the consequence of the locking of the relative phase
of the order parameters of the two spin components characterizing the low-frequency
oscillations in the plane-wave and single-minimum phases [310].

When entering the stripe phase, the scenario changes drastically and we observe the
appearance of a new oscillation of spin nature, revealed by the beating in the signal 𝑑𝑥
(see Fig. 4.7a). This oscillation is the finite-size manifestation of the gapless Goldstone
spin branch exhibited by the supersolid phase in uniform matter [311]. The beating
reflects the fact that the two gapless branches are decoupled density and spin modes
only in the limit of long wavelengths. An analogous effect has recently been identified
in spin–orbit-coupled fluids of light in Kerr non-linear media [312].

The dispersion 𝜔(𝛺) of the breathing and spin-dipole modes excited by the opera-
tor 𝑥2 is shown in Fig. 4.7c. The observable 𝑥rms = √⟨𝑥2⟩, associated with the density
perturbation operator 𝑥2, oscillates in all phases at a single frequency, the breathing fre-
quency 𝜔B, which is the same frequency found in the 𝑑𝑥 signal. However, as described
above, in the stripe phase, the spin observable 𝑑𝑥 contains a second frequency 𝜔SD,
corresponding to the spin-dipole mode. Conversely, by applying a spin perturbation
proportional to 𝑥𝜎𝑧, which amounts to a relative displacement of the two spin compo-
nents, one finds that the observable 𝑑𝑥 associated with the spin excitation operator 𝑥𝜎𝑧
oscillates at the single frequency 𝜔B in all phases, but a beating of 𝜔B and 𝜔SD occurs
in the density observable 𝑥rms when entering the stripe phase. The fact that the density
operator 𝑥2 and the spin operator 𝑥𝜎𝑧 excite the same modes is an expression of the
hybridization of density and spin degrees of freedom in spin–orbit-coupled systems.

At small values of the Raman coupling 𝛺, the breathing frequency in Fig. 4.7c ap-
proaches the analytical prediction 𝜔B/𝜔𝑥 = √8/3 ≈ 1.63 for the axial breathing mode in
a 2D harmonic trap [57]. Furthermore, in the limit 𝛺 → 0, the spin-dipole frequency can
be calculated analytically within the formalism of two-fluid hydrodynamics [57]. One
finds

𝜔2
SD(𝛺 → 0) = 𝜔2

𝑥
1 − (𝑔ns/𝑔ss)2

𝑔nn/𝑔ss − (𝑔ns/𝑔ss)2 , (4.29)

yielding the value 𝜔SD = 0.5 𝜔𝑥 for the symmetric configuration under investigation,
in agreement with Fig. 4.7c. The dispersion of the spin-dipole branch decreases as
𝛺 approaches the transition at the critical value 𝛺c and is expected to vanish at the
spinodal point, corresponding to a value of 𝛺 a little higher than 𝛺c where the system
develops a dynamic instability associated with the divergent behavior of the magnetic
polarizability [305] (see Fig. 4.3). The decrease of 𝜔SD as a function of 𝛺 is a crucial
consequence of spin–orbit coupling and of the presence of stripes. By contrast, for a radio
frequency or microwave coupling, the spin-dipole frequency increases with the coupling
strength, quickly approaching the value 𝛺 of the spin gapped branch [313].

In addition to the breathing and spin-dipole frequencies, Fig. 4.7c also shows the dis-
persion of the center-of-mass (dipole) mode, which can be excited by suddenly removing
the perturbation 𝐻1 = −𝜆𝑚𝜔2

𝑥𝑎𝑥𝑥, corresponding to a shift of the harmonic trap by
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a distance 𝜆𝑎𝑥 in 𝑥 direction. Above 𝛺c, the dipole operator 𝑥 and the spin opera-
tor 𝜎𝑧 excite the same mode, similar to the case of the operators 𝑥2 and 𝑥𝜎𝑧 discussed
above. Both the breathing and the dipole frequencies decrease when approaching the
transition to the single-minimum phase, where the effective mass increases, inducing
sizable non-linear effects [305, 306]. These anharmonic properties make it difficult to
observe stable harmonic oscillations at very low frequencies close to the second-order
transition in experiments [306] and even in numerical simulations, where high spatial
and temporal accuracy as well as weak perturbations are required to suppress the pro-
liferation of instabilities. At the transition to the supersolid phase, both the breathing
and the dipole frequencies exhibit a small jump, reflecting the first-order nature of the
supersolid–superfluid transition. As we will see below, using sum rule arguments, the
behavior of the dipole frequency and the high polarizability in the stripe phase provide
indirect evidence for the zero-frequency Goldstone mode associated with the translation
of the stripes.
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Figure 4.8.: Amplitudes of the collective modes in Fig. 4.7c for symmetric intraspecies inter-
actions. They have been extracted in the linear regime and are normalized by the perturbation
strength 𝜆. The amplitudes of the spin-dipole observable 𝑑𝑥 are strongly peaked around the
second-order transition between the plane-wave and single-minimum phase. In the stripe phase
(inset), the amplitudes of the frequency components 𝜔B and 𝜔SD in the beating signal 𝑑𝑥 increase
gradually with the Raman coupling.

Figure 4.8 shows the amplitudes of the oscillations corresponding to the frequencies
in Fig. 4.7c, normalized with respect to the perturbation strength 𝜆. The amplitudes of
the breathing and dipole modes are approximately constant, with only small instabilities
close to the second-order phase transition between the plane-wave and single-minimum
phase. In the vicinity of this transition, the amplitude of the spin-dipole observable 𝑑𝑥
is strongly peaked, which is linked to the divergence of the polarizability (cf. Fig. 4.3).
In the stripe phase (shown in the inset of Fig. 4.8), the amplitudes of both frequency
components in the beating signal 𝑑𝑥 gradually increase with the Raman coupling and
thus with the contrast of the stripes. The beating signal is strongest just before the tran-
sition to the plane-wave phase, where the two modes fully hybridize and the amplitude
exhibits a discontinuity as typical for first-order phase transitions.

152



The frequencies and amplitudes of the collective excitations in Figs. 4.7c and 4.8
have been calculated for small perturbations in the regime of linear response. However,
the beating effect in the supersolid phase is clearly visible also for larger perturbation
strengths (cf. Fig. 4.7a) that are closer to the onset of the non-linear regime. We will
analyze the impacts of non-linearities in more detail for the asymmetric configuration in
the next section.

Finally, we remark that similar dispersion laws as in Fig. 4.7c have been obtained
in Ref. [314] by solving the Bogoliubov equations for a spin–orbit-coupled mixture in
one dimension. With respect to Ref. [314], the present approach explicitly exposes the
beating effect between the spin-dipole excitation and the compression mode in the stripe
phase, as well as the full hybridization of the two modes above 𝛺c.

Asymmetric Intraspecies Interactions
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Figure 4.9.: Same as Fig. 4.7, but for highly asymmetric intraspecies interactions. The asym-
metry leads to a smooth crossover between the plane-wave and the single-minimum regime.
Nevertheless, in the stripe phase, the beating effects (a) and the additional frequencies (c) char-
acteristic of the Goldstone spin-dipole mode are evident, while they are absent in the plane-wave
phase (b).

We now investigate the analogous scenario for the configuration with highly asym-
metric intraspecies interactions, as relevant for experiments on 39K. As before, in order
to probe collective excitations along the 𝑥 axis, an elongated trap in 𝑥 direction has
been chosen (see parameters in Table 4.1), which also suppresses quadrupole oscillations
excited by the operator 𝑥2. Following the same procedure employed in the symmet-
ric case, we consider the relative displacement 𝑑𝑥 of the two components after a sudden
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quench of the trapping frequency. The respective time traces are illustrated in Figs. 4.9a
and 4.9b for a Raman coupling below and above the transition to the supersolid phase at
𝛺c/𝐸r ≈ 1. Also in this case, we observe a clear beating effect, revealing the occurrence
of a Goldstone mode of spin nature in the stripe phase. Because of the large polarization
of the system, this mode mainly corresponds to the motion of the minority component 𝛹↑,
while the majority component 𝛹↓ remains practically at rest, i.e., 𝑑𝑥 ≈ ⟨𝑥⟩↑.

In Fig. 4.9c, the dispersion law of the resulting elementary excitations is shown as a
function of the Raman coupling 𝛺, along with the dispersion of the center-of-mass mode
excited by shifting the trap center. At 𝛺 → 0, the spin-dipole frequency is larger than
the center-of-mass frequency as a result of the negative interspecies interaction 𝑔↑↓, in
agreement with Eq. (4.29). Because of the asymmetry of the intraspecies interactions, the
transition between the plane-wave and the single-minimum phase is less sharp than in the
symmetric case and actually becomes a smooth crossover. Nonetheless, the qualitative
features of the excitation spectrum are similar to the symmetric case. In particular, the
beating effect in the observable 𝑑𝑥, signaling the emergence of a Goldstone spin-dipole
mode below the critical coupling 𝛺c/𝐸r ≈ 1, provides a clear experimental signature of
the supersolid phase.

0 1 2 3 4 5 6
Raman coupling Ω/Er

0

4

8

12

N
or
m
al
iz
ed

am
pl
itu

de
[λ
a
x
]

0.0 0.5 1.0
0

1

2

xrms (B)
xc.m. (D)
dx (B)
dx (SD)

Figure 4.10.: Amplitudes of the collective modes in Fig. 4.9c for highly asymmetric intraspecies
interactions. The gradual increase of the amplitude of the breathing oscillation in the observ-
able 𝑥rms reflects the growth of the cloud radius with increasing Raman coupling. A shallow
peak in the amplitude of 𝑑𝑥 around 𝛺/𝐸r = 4 indicates the smooth crossover between the plane-
wave and single-minimum regime. In the stripe phase (inset), the amplitudes of the frequency
components 𝜔B and 𝜔SD in the beating signal 𝑑𝑥 exhibit a peak where the stripes reach their
maximum contrast.

The normalized oscillation amplitudes corresponding to the frequencies in Fig. 4.9c
are shown in Fig. 4.10. Unlike in the symmetric case (see Fig. 4.8), the amplitude of the
𝑥rms oscillation grows with increasing Raman coupling, which reflects the concomitant
increase of the cloud radius (see Fig. 4.5). While for symmetric intraspecies interactions
the amplitude of the signal 𝑑𝑥 is strongly peaked at the transition between the plane-
wave and single-minimum phase, the asymmetric configuration exhibits only a moderate
increase of the amplitude in this region. Interestingly, the amplitudes of the frequency
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components creating the beating signal 𝑑𝑥 reach a maximum in the bulk of the stripe
phase (see inset in Fig. 4.10). As mentioned before, in the system with asymmetric
intraspecies interactions, the stripes disappear continuously as the transition to the
plane-wave phase is approached and their contrast does not jump as in the symmetric
case. Hence, the maximum amplitude in Fig. 4.10 is found at the Raman coupling
where the stripes have their highest contrast. This shows that the beating effect and
the appearance of the Goldstone spin–dipole mode are intrinsically connected with the
presence of stripes.
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Figure 4.11.: Amplitudes of collective modes excited by the operator 𝑥2 as a function of the
perturbation strength 𝜆 for highly asymmetric intraspecies interactions. The Raman coupling
𝛺/𝐸r = 0.55 lies in the bulk of the stripe phase. As the perturbation strength extends into the
non-linear regime, the frequencies 𝜔B and 𝜔SD in the signal 𝑑𝑥 start deviating moderately, but
the beating effect remains robust.

It is important to keep in mind that the frequencies and amplitudes in reported
Figs. 4.9c and 4.10 have been computed for weak perturbations in the linear regime.
However, experiments are often forced to apply stronger perturbations in order to ob-
tain a sufficiently large signal-to-noise ratio. Thus, it is a relevant question whether
the predicted beating effect in the supersolid phase survives in the non-linear regime
typically probed in experiments. As our protocol of exciting collective modes is by no
means restricted to the linear regime, we can answer this question by studying how the
amplitudes and frequencies change as the perturbation strength 𝜆 is increased beyond
the linear regime. This is illustrated in Fig. 4.11 for a fixed value of the Raman coupling
in the stripe phase. For small perturbations, the amplitudes in Fig. 4.11a behave lin-
early and the frequencies in Fig. 4.11b are approximately constant. As the perturbation
strength is increased into the non-linear regime, the frequencies slightly deviate, but
the beating effect remains robust. This suggests that a measurement of the Goldstone
spin–dipole mode is in reach for state-of-the-art experimental setups.

4.3.2. Zero-Frequency Goldstone mode
In the supersolid phase, one expects the emergence of the crystal Goldstone mode that
corresponds, in uniform matter, to the rigid translation of stripes. In a harmonic trap,
the frequency of this motion is not exactly zero, but still much smaller than the oscillator
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Figure 4.12.: Evidence for the zero-frequency Goldstone mode associated with the translation
of the stripes in a SOC BEC with symmetric intraspecies interactions. (a) Time evolution of
the polarization ⟨𝜎𝑧⟩ with respect to its equilibrium value ⟨𝜎𝑧⟩0 after removing the perturbation
𝐻1 = −𝜆𝐸r𝜎𝑧 with 𝜆 = 0.02 in the stripe phase (𝛺 = 2 𝐸r) and 𝜆 = 0.1 in the plane-wave
phase (𝛺 = 3 𝐸r). In the latter case, the polarization oscillates around equilibrium at the dipole
frequency 𝜔D ≈ 0.55 𝜔𝑥. By contrast, in the stripe phase, the polarization remains locked for a
time much longer than 2𝜋/𝜔𝑥, providing evidence for the zero-frequency Goldstone mode. The
low-amplitude oscillations at the dipole frequency 𝜔D ≈ 0.89 𝜔𝑥 shown in the inset indicate a
weak excitation of the center-of-mass mode. (b) Time evolution of the density profile 𝑛(𝑥) in the
stripe phase for the same scenario as in (a), explicitly revealing the excitation of the translational
motion of the stripes.

frequency 𝜔𝑥. The existence of this “zero-frequency” Goldstone mode can be inferred
employing a sum-rule argument (see Section 1.3.4). As shown in Ref. [305], a rigorous
upper bound to the lowest-energy mode excited by the operator 𝑥 is given by

𝜔min ≤ 𝜔𝑥
√1 + 2𝐸r𝜒M

, (4.30)

where 𝜒M is the static magnetic polarizability defined in Eq. (4.17). As can be seen
in Figs. 4.7c and 4.9c, this upper bound practically coincides with the center-of-mass
frequency 𝜔D if 𝛺 > 𝛺c, while below 𝛺c the calculated value of 𝜔D violates the bound
due to the large value of 𝜒M, revealing the existence of a new low-frequency mode.

To shed light on the nature of this low-energy excitation, we consider a uniform spin
perturbation 𝐻1 = −𝜆𝐸r𝜎𝑧, causing a magnetic polarization of the system. After re-
moving the perturbation1, one would expect the polarization to oscillate around its
equilibrium value, driven by the Raman coupling. Indeed, above 𝛺c, after a short ini-
tial decrease reflecting the contribution of the high-frequency gapped spin branch to
the static magnetic polarizability [310], the polarization oscillates at the center-of-mass
frequency. This is shown in Fig. 4.12a for the system with symmetric intraspecies
interactions. The fact that the spin operator excites the center-of-mass mode is a mani-

1To avoid the excitation of high-frequency modes on the order of the Raman coupling, the perturbation
should be switched off smoothly within a time interval 𝜏 chosen such that 2𝜋ℏ/𝛺 ≪ 𝜏 ≪ 2𝜋/𝜔𝑥.

156



festation of the hybridization mechanism between the operators 𝑥 and 𝜎𝑧, similar to the
one discussed above for 𝑥2 and 𝑥𝜎𝑧.

In the stripe phase, we find instead that the polarization remains locked to its initial
value throughout the simulation time, with a residual small-amplitude oscillation stem-
ming from a weak excitation of the center-of-mass mode by the spin operator 𝜎𝑧. In the
numerical simulation, the locking of the polarization survives longer than 1000 times the
oscillator time 2𝜋/𝜔𝑥, confirming the anticipated low frequency of the Goldstone mode.
Remarkably, releasing the spin perturbation has the effect of applying a boost to the
stripes, causing their translation at a constant velocity, as illustrated in Fig. 4.12b. The
translation of the stripes is practically independent of the center-of-mass motion, thereby
providing direct evidence for the excitation of the zero-frequency Goldstone mode. By
contrast, after suddenly shifting the trap center, corresponding to a perturbation by the
dipole operator 𝑥, the center of mass oscillates around equilibrium both in the superfluid
and in the supersolid phase (not shown). This shows that the zero-frequency Goldstone
mode contributes only marginally to the static dipole polarizability, whereas its strong
excitation by the operator 𝜎𝑧 implies that it constitutes the predominant contribution
to the magnetic polarizability in the stripe phase.
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Figure 4.13.: Dependence of the phase velocity of the zero-frequency Goldstone mode on the
perturbation strength for symmetric intraspecies interactions. (a) Ground state density profiles
of the two spin components at 𝛺/𝐸r = 2 after applying the perturbation 𝐻1 = −𝜆𝐸r𝜎𝑧 with
𝜆 ≈ 0.024. (b),(c) Fits of the density profile (4.31) to the total density at time 𝑡 = 0 and position
𝑥 = 0 in order to extract the wave number 𝑘1 and the angular frequency 𝜔1 of the stripe motion,
respectively. (d) The phase velocity 𝑣 = 𝜔1/𝑘1 of the stripes is proportional to the perturbation
strength 𝜆.
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In Fig. 4.13, we analyze the dependence of the phase velocity of the stripe motion
on the strength 𝜆 of the spin perturbation. The evolution of the total density can be
described phenomenologically by a Thomas–Fermi profile, modulated by a running wave
with wave number 𝑘1 and frequency 𝜔1 [cf. Eq. (4.15)],

𝑛(𝒙, 𝑡) = 𝑛TF(𝒙){1 + 𝐶 cos[2(𝑘1𝑥 − 𝜔1𝑡 + 𝜙)]} . (4.31)

Note that the angular frequency 𝜔1 of this running wave is not to be identified with
the quasi-zero energy cost of the stripe motion. Figure 4.13a depicts a typical spin-
polarized density profile after applying the uniform spin perturbation. The phase velocity
𝑣 = 𝜔1/𝑘1 of the stripes can be extracted by fitting Eq. (4.31) to the numerical data.
At a fixed instance of time 𝑡, the fit yields the wave number 𝑘1 (Fig. 4.13b), while at a
fixed position 𝑥, the angular frequency 𝜔1 can be extracted (Fig. 4.13c). In Fig. 4.13d,
the phase velocity 𝑣 = 𝜔1/𝑘1 obtained this way is plotted against the strength 𝜆 of the
uniform spin perturbation, which reveals a linear relation. If the perturbation strength
is increased further, the stripes eventually cease to exist and the system enters a highly
spin-polarized state. Nonetheless, the linearity of the stripe velocity for a wide range of
perturbation strengths is remarkable.

Let us conclude this section by summarizing the evidence for the zero-frequency Gold-
stone mode in the stripe phase. First, the violation of the sum rule bound (4.30) by the
dipole mode due to the high polarizability implies the emergence of a new low-energy
mode below the critical coupling 𝛺c. Second, after polarizing the system by a uniform
spin perturbation, the polarization, instead of undergoing harmonic oscillations at the
dipole frequency, remains locked on all practically accessible time scales, which hints at
the excitation of a mode of very low frequency. And third, the translational motion of
the stripes at a velocity proportional to the perturbation strength is directly revealed
by the time evolution of the density profile.

While we have demonstrated the possibility to excite the zero-frequency Goldstone
mode for a SOC BEC with symmetric intraspecies interactions, the same procedure also
works in the asymmetric case. In uniform matter, it has recently been understood ana-
lytically that the spin collective mode in the stripe phase corresponds to a translational
motion of the fringes in the long-wavelength limit [315], corroborating the excitation
mechanism for the crystal Goldstone mode identified in this section. The above re-
sults may thus guide the efforts towards an experimental detection of the zero-frequency
Goldstone mode in spin–orbit-coupled configurations.

4.4. Summary
In this chapter, we have explored accessible signatures of supersolidity in harmoni-
cally trapped spin–orbit-coupled Bose–Einstein condensates. We have investigated equi-
librium properties of configurations with symmetric as well as highly asymmetric in-
traspecies interactions, the latter being motivated by the recent availability of such
configurations in experiments on 39K [296]. The asymmetric configuration is charac-
terized by sizable polarization effects even in the stripe phase and exhibits equilibrium
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properties different from the symmetric case such as the increase of the central density
and the concomitant shrinking of the cloud radius at small Raman couplings. One char-
acteristic of the supersolid phase is the large value of the magnetic polarizability. As we
have seen, the polarizability is also closely linked to dynamical properties, as it yields a
rigorous upper bound for the lowest energy mode excited by the dipole operator, which
can be derived using the general framework of sum rule theory. The violation of this
upper bound by the dipole frequency provides indirect evidence for the existence of the
zero-frequency Goldstone mode associated with the translational motion of the stripes.
As illustrated through Gross–Pitaevskii simulations, this crystal Goldstone mode can
directly be excited by suddenly releasing a uniform spin perturbation. Furthermore, we
have shown that the emergence of a Goldstone spin-dipole mode in the supersolid phase
is revealed by a beating effect in the breathing oscillation induced by suddenly changing
the trap frequency. The approach of probing supersolidity by exciting Goldstone modes
exposes the crucial hybridization phenomena of density and spin degrees of freedom in
spin–orbit-coupled configurations, which makes the phenomenon of supersolidity even
richer.
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5. Analog Cosmological Reheating:
From Parametric Instabilities to
Universal Dynamics Far From
Equilibrium

This chapter is based on Ref. [108]. The figures and parts of the text have been taken
verbatim from that work, occasionally with minor modifications and additional expla-
nations for a better embedding in the context of this thesis. See List of Publications
for a statement of contributions. Parts of the results are also discussed in Aleksandr
Chatrchyan’s PhD thesis [1], with a focus on the cosmological perspective and using the
methods of non-equilibrium quantum field theory.

•

In Chapter 2, we have developed measurement tools based on non-Hermitian linear
response for probing fluctuation–dissipation relations, allowing one to monitor if and how
isolated quantum systems return to thermal equilibrium after a quench. As we have seen,
a Bose–Hubbard system quenched from a Mott-insulating initial state into the superfluid
phase thermalizes on time scales on the order of the inverse coupling parameters in
the Hamiltonian. However, there exists a wide range of far-from-equilibrium initial
conditions for which quantum many-body systems first approach a so-called non-thermal
fixed point (NTFP), in whose vicinity they spend a very long time before eventually
approaching thermal equilibrium. Such a NTFP can be thought of as an attractor in a
renormalization group sense and characterizes the far-from-equilibrium behavior of an
entire universality class of physical systems across vastly different scales [51, 53, 54, 316–
318]. In the vicinity of a NTFP, dynamics becomes universal and self-similar [52], which
is associated with the onset of hydrodynamic behavior and leads to a significant reduction
of complexity in the description of central dynamical properties [56]. Universality makes
it possible to use table-top experiments, e.g., based on cold atoms, to study universal
aspects in the non-equilibrium dynamics of systems that are challenging (or impossible)
to access otherwise, such as the quark–gluon plasma explored in heavy-ion collisions or
the early universe [51, 53–55].

In this chapter, we study far-from-equilibrium dynamics in a parametrically excited ul-
tracold Bose gas, providing an analog of post-inflationary reheating dynamics in the early
universe. According to the theory of cosmological inflation [319, 320], the early universe
underwent an epoch of exponential expansion, during which its radius increased by some
60 e-folds or so with expansion times on the order of 10−34 sec [49]. This theory not only

161



Potential

Si
m

ul
at

in
g

sy
st

em
Si

m
ul

at
ed

sy
st

em
Inflaton field

Parametric
instabilities

Scattering
length

Time

Turbulent
thermalization

T
he

rm
al

 e
qu

ili
br

iu
m

Se
lf-s

imilar evo
lution

In
fla

tio
n

Density

Phase

BEC

Figure 5.1.: Schematic illustration of post-inflationary reheating dynamics in the early universe
and the simulation of an analogous process in an ultracold Bose gas. We consider a scenario
where a single-component homogeneous “inflaton” field oscillates around the minimum of its
potential, producing particles via parametric instabilities (“preheating”). Later, the system
enters a turbulent state where energy is transported towards higher momenta in a self-similar
way as the universe approaches thermal equilibrium (“reheating”). In the simulation, expanding
spacetime as well as the oscillating inflaton field are mimicked in the non-relativistic limit by
modulating the scattering length of a Bose–Einstein condensate (BEC), whose excitations play
the role of particles produced by the decaying inflaton.

solves the horizon and flatness problem in cosmology [319, 320], but also explains the
origin of density perturbations that seeded structure formation [321]. In typical models,
inflation is driven by a scalar field known as the inflaton. Inflation leaves the universe
in a super-cooled state with essentially all energy stored in the homogeneous (conden-
sate) mode of the inflaton. The subsequent stage of cosmological reheating, which we
are interested in here, involves the decay of the inflaton into lighter constituents, e.g.,
standard model particles. These decay products then thermalize, causing the universe
to heat up and eventually approach thermal equilibrium at the reheating temperature,
as required for Big Bang nucleosynthesis [50]. In a common scenario, the heating process
is preceded by a so-called preheating stage of explosive particle production, driving the
system far away from equilibrium into a turbulent state, where energy is transported
self-similarly towards higher momenta in form of a direct cascade [51, 322, 323]. This
regime of universal self-similar time evolution can be thought of as being governed by a
NTFP, in whose vicinity the system remains for a long time before it eventually reaches
thermal equilibrium.

It is our goal to gain a better understanding of the rich far-from-equilibrium dynamics
underlying this turbulent thermalization scenario [51] by harnessing the capabilities of
state-of-the-art analog quantum simulators. To this end, we design an experimental
protocol for quantum-simulating salient aspects of cosmological reheating dynamics in
an ultracold Bose gas. The basic setup is depicted in Fig. 5.1. An atomic BEC plays

162



the role of the inflaton field after inflation and excitations on top of the condensate are
identified with particles produced by the decaying inflaton. Both expanding spacetime
as well as the background oscillating inflaton field, which drives preheating by inducing
parametric resonances, are mimicked in the non-relativistic limit by a modulation of the
condensate scattering length, which can be realized via Feshbach resonances [58]. As will
be illustrated by means of classical–statistical (or truncated Wigner) simulations [324–
327], this “analog reheating” scenario gives access to the well-known stages of far-from-
equilibrium reheating [323], including the preheating phase of parametric amplification
of quantum fluctuations (“analog preheating”) as well as the later stage of turbulent
thermalization [51].

Analog gravity is a thriving field aiming at investigating aspects of the physics of
curved spacetime in non-relativistic systems [48]. On the platform of cold atoms, such
an analogy can be established by engineering emergent curved spacetimes for low-energy
excitations on top of BECs, e.g., by manipulating external potentials [328–330] or inter-
actions [330–334]. Based on such setups, a variety of scenarios for simulating particle
production and (post-)inflationary dynamics have been investigated both theoretically
and experimentally [329, 331–341]. A main challenge for the quantum simulation of
cosmological reheating remains the incorporation of non-linear effects into these frame-
works, as the mappings to curved spacetime are typically restricted to the linear regime.
In the analog (p)reheating scenario presented below, we mimic particle production in
Bose gases by inducing parametric instabilities [342–348] and put particular emphasis
on the less understood non-linear stages of reheating dynamics, including secondary ex-
citations [322, 339, 349] as well as the turbulent regime of universal self-similar time
evolution [51].

Universal dynamics far from equilibrium has been observed experimentally in spinor
and tunnel-coupled Bose gases in form of inverse cascades transporting conserved quan-
tities towards lower momenta [317, 318]. Bidirectional universal scaling, involving ad-
ditionally a direct cascade transporting energy towards higher momenta, have been
studied numerically in 1D spinor Bose gases [350] and have been realized experimentally
in isolated 3D Bose gases following a cooling quench [351]. Below, we show that the
analog reheating scenario of parametrically exciting a scalar BECs constitutes a comple-
mentary route into the regime of self-similar dynamics far from equilibrium and allows
one to study the direct energy cascade in both driven and isolated systems, as well
as a recently predicted prescaling regime of partial universality [55, 56], characterized
by time-dependent scaling exponents which slowly relax to their universal values. The
proposed setup thus enables the observation of salient features of far-from-equilibrium
dynamics, which are of great relevance far beyond the cosmological context.

5.1. Cosmological Reheating in the Early Universe

Before addressing the task of quantum-simulating post-inflationary reheating dynamics
in an ultracold Bose gas, we briefly review the cosmological target model.

The inflaton is commonly modeled as a relativistic real scalar field 𝜙(𝑥) in curved
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spacetime with the action [49]

𝑆 = ∫ d𝑑+1𝑥 √−ℊ[1
2𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉 (𝜙)] , (5.1)

where 𝑉 is the potential, 𝑔𝜇𝜈 is the metric tensor, ℊ its determinant, and 𝑑 the number
of spatial dimensions1. The expansion of the universe is well described by the flat
Friedmann–Lemaître–Robertson–Walker (FLRW) metric [49]

d𝑠2 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 = 𝑐2 d𝜏2 − 𝑎2(𝜏) d𝒙2 , (5.2)

where 𝑐 is the speed of light and 𝜏 denotes the cosmic time. The cosmic scale factor 𝑎(𝜏)
grows with time in an expanding universe and relates the comoving distance 𝒙 to the
proper distance 𝒓(𝜏) = 𝑎(𝜏)𝒙. The FLRW metric describes a homogeneous and isotropic
universe that is Minkowskian at each time slice, in accordance with the cosmological
principle [49].

The classical equations of motion for the inflaton field can be obtained from Eq. (5.1)
using the principle of least action. For the FLRW metric (5.2), one obtains

1
𝑐2

̈𝜙 + 1
𝑐2 𝑑𝐻 ̇𝜙 − ∇2

𝑎2 𝜙 + 𝑉 ′(𝜙) = 0 , (5.3)
where

𝐻(𝑡) = ̇𝑎(𝑡)
𝑎(𝑡) (5.4)

is the Hubble parameter. Here, we use the dot to represent the derivative with respect to
the cosmic time 𝜏 , while (⋯)′ denotes the derivative with respect to the field 𝜙. There
are two main effects induced by the expansion as compared to scalar fields in static
spacetime. First, the “Hubble friction” term proportional to the Hubble parameter 𝐻
expresses the dilution of the field due to the expansion. Second, the presence of the
scale factor 𝑎 in the spatial derivative term describes the redshift of momenta in the
co-moving frame [49].

5.1.1. Inflation
In what follows, we briefly outline the basic mechanism behind the widespread “slow-
rollover” scenario of cosmic inflation, which is sometimes also refereed to as “new infla-
tion” [352, 353].

In a flat FLRW universe (and in absence of the cosmological constant), the Friedmann
equation determines the expansion rate as [49]

𝐻2 = 8𝜋𝐺
3 𝜌𝜙 , (5.5)

where 𝐺 is the gravitational constant and 𝜌𝜙 is the mass density associated with the
inflaton field 𝜙.

1The cosmologically relevant case is 𝑑 = 3. For later purposes, we keep 𝑑 general nonetheless.
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For the description of inflation, only the zero-momentum (condensate) mode of the
inflaton field plays a role, any spatial inhomogeneities are rapidly red-shifted away [49].
We can therefore safely neglect any spatial derivative terms in Eq. (5.3) during the infla-
tionary epoch, which amounts to taking 𝜙(𝜏, 𝒙) ≡ 𝜙(𝜏) to be a homogeneous field. The
canonical energy–momentum tensor 𝑇 𝜇𝜈 = 𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑔𝜇𝜈ℒ, where ℒ is the Lagrangian
density corresponding to the action (5.1) (𝑆 = ∫ d4𝑥 √−ℊℒ), then takes the form of a
perfect fluid with energy density 𝜖𝜙 = 𝑐2𝜌𝜙 and pressure 𝑝𝜙 given by [49]

𝜖𝜙 = 1
𝑐2

1
2

̇𝜙2 + 𝑉 (𝜙) , (5.6a)

𝑝𝜙 = 1
𝑐2

1
2

̇𝜙2 − 𝑉 (𝜙) . (5.6b)

The typical setting is to consider the inflaton field 𝜙 initially to be displaced from the
minimum of its potential. Inflationary expansion is obtained if the potential is suffi-
ciently flat, such that the field “slowly rolls down” its potential landscape towards the
minimum [49]. In this slow-roll regime, one has ̈𝜙 ≈ 0 and the kinetic energy of the
inflaton field ̇𝜙2/2𝑐2 is much smaller than the potential energy 𝑉 (𝜙). Consequently, the
energy density 𝜖𝜙 in Eq. (5.6a) is approximately constant and the system is character-
ized by a negative pressure 𝑝𝜙 ≈ −𝜖𝜙 [95]. Moreover, using 𝜌𝜙 = 𝜖𝜙/𝑐2 = const, the
Friedmann equation (5.5) yields 𝐻 = ̇𝑎/𝑎 = const, which implies an exponential growth
of the scale factor,

𝑎(𝑡) = e𝐻𝑡𝑎(0) . (5.7)

The inflationary expansion of the universe is accompanied by a dramatic drop in tem-
perature as 𝑇 ∝ e−𝐻𝑡, which is sometimes referred to as “super-cooling” [49]. Inflation
ends when 𝜙 reaches the bottom of its potential and starts undergoing rapid coherent
oscillations around the minimum, which marks the beginning of the reheating phase (see
Fig. 5.1).

5.1.2. Reheating and Preheating
At the end of inflation, the universe is in a super-cooled state with practically all energy
contained in the condensate mode of the inflaton field 𝜙. This sets the initial condition
for the reheating process, which we are interested in here. During reheating, the inflaton
decays and the decay products thermalize at the reheating temperature 𝑇f , involving
a massive increase in entropy with respect to the state before inflation (𝑆 ∝ 𝑎3(𝑡f)𝑇 3

f ,
where 𝑡f is the reheating time) [49].

Preheating

We focus on the scenario where reheating is preceded by a preheating stage of explosive
particle production. To this end, we consider a generic potential with quartic self-
interactions,

𝑉 (𝜙) = 𝑚2𝑐2

2ℏ2 𝜙2 + 𝜆
4!𝜙

4 , (5.8)
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where 𝑚 is the mass and 𝜆 a quartic coupling. A common mechanism for preheating is the
parametric amplification of quantum fluctuations in the presence of the effective potential
induced by the inflaton [322, 349]. This effect can most conveniently be understood
by linearizing the fluctuations of the inflaton field around its homogeneous background,
𝜙(𝜏, 𝒙) = 𝜙0(𝜏)+𝛿𝜙(𝜏, 𝒙), and inserting it in Eq. (5.3). The resulting equation describes
damped oscillations of the background field around the minimum of the potential (see
Fig. 5.1),

1
𝑐2

̈𝜙0 + 1
𝑐2 𝑑𝐻 ̇𝜙0 + 𝑚2𝑐2

ℏ2 𝜙0 + 𝜆
6 𝜙3

0 = 0 . (5.9)

The equations of motion for the fluctuations, dropping all terms of quadratic or higher
order in 𝛿𝜙, read in Fourier space

𝛿 ̈𝜙𝒑 + 𝑑𝐻𝛿 ̇𝜙𝒑 + 𝜔2
𝒑(𝜙0, 𝜏)𝛿𝜙𝒑 = 0 (5.10)

with

𝜔2
𝒑(𝜙0, 𝜏) = 𝑐2𝒑2

ℏ2𝑎2(𝜏) + 𝑚2𝑐4

ℏ2 + 𝜆𝑐2

2 𝜙2
0 (5.11)

and the Fourier transform 𝛿𝜙𝒑(𝜏) = ∫ d𝑑𝑥 𝛿𝜙(𝜏, 𝒙)e−𝑖𝒑𝒙/ℏ. Equation (5.10) describes
a collection of parametric oscillators for each momentum mode 𝒑, driven by the back-
ground oscillations of 𝜙0(𝜏). Modes within certain instability bands satisfy resonance
conditions, which leads to an exponential growth of occupancies, corresponding to parti-
cle production [349, 354]. The growth of fluctuations eventually invalidates the linearized
approach of Eq. (5.10). Note that in more realistic models, couplings of the inflaton to
other bosonic fields can lead, in a similar way, to a production of those degrees of free-
dom via parametric resonances as well [322]. Here, we focus on the simplest scenario
corresponding to a decay of the inflaton solely into its own quanta of excitation, as has
been studied in Ref. [51].

Reheating

Particle spectra formed during preheating are highly non-thermal with large occupation
numbers at low momenta. As a consequence, the system is driven far away from equi-
librium into a turbulent state, characterized by a local transport of conserved quantities
in momentum space that leads to universal self-similar time evolution [51]. Typically,
an inverse cascade transports particles towards lower momenta, while a direct cascade
transports energy towards higher momenta. The latter constitutes a key process in the
context of turbulent thermalization [51]. At early times, this transport is driven, i.e., the
oscillating inflaton acts as a source injecting energy into the system at resonant momenta.
Eventually, the inflaton decays, marking the transition from driven to free turbulence.
The system remains in the turbulent state for a long time, until the occupancy of charac-
teristic momenta eventually becomes comparable to the vacuum expectation value given
by the “quantum half”. In this final stage, which is dominated by quantum fluctuations,
the system relaxes to thermal equilibrium at the reheating temperature, completing the
reheating process [51, 323].
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5.2. Expanding Spacetime in Bose Gases
Our goal is to observe reheating-like dynamics in an ultracold Bose gas in analogy to
reheating in the early universe. As a first step, we discuss an approach for incorporating
expansion in non-relativistic Bose gases. Note that since we are interested in post-
inflationary dynamics, we do not target the exponential expansion during inflation, but
typical expansion schemes in standard cosmology, e.g., power-law expansions 𝑎(𝑡) ∝ 𝑡𝜈,
where 𝜈 = 1/2 (𝜈 = 2/3) in a radiation-dominated (matter-dominated) universe [49].

A Bose gas is described by a non-relativistic complex field operator ̂𝛹 subject to the
Hamiltonian (1.2). The most straightforward approach to incorporate expansion in a
trapped Bose gas is to physically expand the trap geometry [328, 330]. For example, in
the experiment of Ref. [329], preheating-like dynamics has been observed after rapidly
expanding a ring-shaped trap. While this approach is simple and direct in principle,
there are practical limitations such as the restriction to short times or small expansion
velocities due to a finite optical imaging system.

Here, we follow an alternative approach, motivated by taking the non-relativistic limit
of the relativistic equations of motion (5.3) for the inflaton field 𝜙. To this end, we factor
out the fast oscillations due to the mass term in Eq. (5.3) from the canonically quantized
inflaton field ̂𝜙(𝜏 , 𝒙), defining a slowly varying complex field ̂𝜓(𝜏 , 𝒙) via the relation

̂𝜙 = ℏ√
2𝑚𝑐[ ̂𝜓e−𝑖𝑚𝑐2𝜏/ℏ + h.c.] . (5.12)

As shown in Appendix A of Ref. [108], provided typical momenta, expansion velocities,
and field values are small, this new field evolves according to [355]

𝑖ℏ ̇̂𝜓 = (− ℏ2

2𝑚
∇2

𝑎2 − 𝑖ℏ𝑑
2𝐻 + 𝑔 ̂𝜓† ̂𝜓) ̂𝜓 (5.13)

with coupling 𝑔 = 𝜆ℏ4/8𝑚2𝑐. Equation (5.13) is reminiscent of the Heisenberg equations
of motion of an ultracold Bose gas (1.6) in absence of an external trapping potential.
The kinetic term is proportional to 𝑎−2, which describes the redshift of momenta in the
co-moving frame, and the dilution of the system due to the expansion is expressed by a
non-Hermitian term causing the norm of the field to decay. Remarkably, this formulation
allows one to simulate expansion without physically expanding the trap by associating
physical distances with the co-moving distances of an expanding system. The required
non-Hermitian Hamiltonian describing an effective decrease of the norm can in principle
be realized experimentally using the same methods as presented in Section 2.3. However,
apart from the technical overhead and the challenge of engineering the modified kinetic
term, e.g., via a time-dependent effective mass, this approach has the practical drawback
that the decreasing atomic density leads to an ever diminishing signal-to-noise ratio.

To arrive at a more practicable formulation, we introduce a new time variable, the
laboratory time 𝑡, as well as a rescaled field operator ̂𝛹 via the relations

d𝑡 = d𝜏
𝑎2 , ̂𝛹 = ̂𝜓𝑎𝑑/2 . (5.14)
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This procedure is analogous to the transformation to conformal variables, well-known in
quantum field theory on curved spacetime [356]. Equation (5.13) then takes the standard
form of the equations of motion for a non-relativistic bosonic field (1.6),

𝑖ℏ𝜕 ̂𝛹
𝜕𝑡 = (−ℏ2∇2

2𝑚 + 𝑔eff(𝑡) ̂𝛹† ̂𝛹) ̂𝛹 , (5.15)

with the time-dependent effective coupling

𝑔eff(𝑡) = 𝑔𝑎2−𝑑(𝑡) . (5.16)

Equations (5.15) and (5.16) describe a Bose gas in an expanding spacetime, where the
expansion enters only in the time dependence of the interaction term via the scale fac-
tor 𝑎(𝑡). In cold-atom experiments where a broad Feshbach resonance is available to
tune the interactions, this approach may be the preferred way of studying a broad range
of expansion scenarios.

The above scheme may be compared to common scenarios in analog gravity, where
time-dependent atomic interactions have been used to engineer an emergent expanding
spacetime for linear excitations on top of the condensate [330–332]. However, the map-
ping to an expanding relativistic system within the analog gravity framework typically
breaks down on the non-linear level. By contrast, in the approach presented above,
the relation between Eqs. (5.3) and (5.15) holds even on the non-linear level since the
derivation does not rely on any linearization. This formulation is therefore well suited
for simulating reheating-like dynamics, where non-linear effects are essential. On the
downside, the correspondence to Eq. (5.3) is restricted to the non-relativistic limit and
therefore not capable of capturing relativistic effects, such as the resonant amplification
of fluctuations during the preheating stage. As discussed in the next section, we can
nonetheless mimic an analogous process in the non-relativistic system by periodically
modulating the interaction.

Scale Invariance and Expansion in 2D

For 𝑑 = 2, the effective coupling in Eq. (5.16) becomes independent of the scale fac-
tor 𝑎(𝑡). This is a consequence of a dynamical symmetry in 2D Bose gases known as
scale invariance [357]. While quantum anomalies in strongly interacting systems can
lead to violations of scale invariance [358, 359], this property has been well tested ex-
perimentally in the weakly interacting regime [360, 361]. Thus, if scale invariance holds,
the equations of motion are the same as in the case of a static spacetime. The nature of
the expansion, encoded in the scale factor 𝑎(𝑡), then only enters the transformation back
to the original temporal and spatial coordinates as well as field variables. This makes
the simulation in two spatial dimensions particularly efficient, since the evolution of a
single experiment can conveniently be mapped to arbitrary expanding spacetimes in a
post-processing step. For this reason, we will focus on weakly interacting 2D Bose gases
in the remainder of this chapter. Although our universe is clearly not 2D, this geometry
captures most of the essential physics of reheating dynamics, as demonstrated in the
following sections.
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5.3. Analog Preheating: Mimicking Preheating Dynamics
in Bose Gases via Parametric Instabilities

We are now in a position to develop a scenario that enables the quantum simulation
of the characteristic stages of (p)reheating dynamics (as outlined in Section 5.1) in an
ultracold Bose gas. This scenario, which we will refer to as “analog reheating”, is de-
picted in Fig. 5.1 and consists of two main stages: an early preheating-like phase, where
particle production is mimicked by inducing parametric instabilities in a Bose–Einstein
condensate (“analog preheating”), and the subsequent regime of turbulent thermaliza-
tion, characterized by universal self-similar time evolution. This section is devoted to
the analog preheating scenario, which we will study both analytically and by means of
classical–statistical simulations.

As described in Section 5.1.1, inflation leaves the universe in a super-cooled state
with essentially all energy contained in the zero-momentum mode of the inflaton. This
suggests taking a uniform BEC as the initial state for the analog implementation of the
reheating process in an ultracold Bose gas. (Possible implications of the presence of an
external trapping potential are discussed in Section 5.5.) Time evolution is governed
by Eq. (5.15), which, as discussed in Section 5.2, describes the non-relativistic limit of
the inflaton dynamics in expanding spacetime. It is tempting to search for a direct
analog of the oscillations performed by the homogeneous part of the inflaton according
to Eq. (5.9), which could trigger parametric instabilities in the condensate. However,
this effect is not present in a single-component Bose gas in its ground state.

In fact, the absence of parametric resonances is a consequence of the non-relativistic
limit considered in Section 5.2. To re-introduce parametric instabilities in the non-
relativistic model, we add a periodic modulation of the coupling according to2

𝑔(𝑡) = 𝑔0[1 + 𝑟 sin(𝜔𝑡)] , (5.17)

where 𝑔0 is a positive offset value, 𝑟 is the amplitude of the modulation and 𝜔 is its fre-
quency. This replacement can be motivated by the structure of the relativistic equations
for the fluctuations of the inflaton field (5.10). The modulation of the dispersion (5.11),
which induces parametric resonances, occurs due to the coherent oscillations of the ho-
mogeneous background field 𝜙0 in the term proportional to the quartic coupling 𝜆. On
the linear level, it makes formally no difference whether this modulation arises from the
time-dependence of 𝜙0 or 𝜆. Since in a non-relativistic cold-atom BEC the magnitude
of the field does not oscillate, an analogous mechanism of parametric resonance can be
realized in the simulating system by a modulation of the interaction 𝑔 (which according
to Eq. (5.13) is proportional to 𝜆).

2Note that here we have used the laboratory time 𝑡 in the argument of the sine function instead of the
cosmic time 𝜏, which, when expressed in terms of the laboratory time 𝑡, results in oscillations with
increasing frequency. This substitution is based on the simplifying assumption that the expansion
is insignificant during the duration of the modulation, in which case the relation between both time
variables becomes linear and the corresponding proportionality constant can be absorbed in the
modulation frequency.
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It should be said that this procedure does not map one-to-one to the parametric res-
onance scenario described by Eq. (5.10) (see Appendix B of Ref. [108] for a detailed
discussion). For instance, the modulation frequency 𝜔 is non-relativistic in the sim-
ulating system, while according to Eq. (5.9), the inflaton oscillates at relativistic fre-
quencies 𝜔rel ≃ 𝑚𝑐2/ℏ on the scale given by its rest mass. Furthermore, in contrast to
the post-inflationary setting, where the produced particles back-react on the inflaton,
the modulation of the coupling is imposed externally through Eq. (5.17). Switching off
the modulation thus corresponds to the decay of the inflaton, which constitutes a free
parameter in the model.

Despite these differences, modulating the interaction as described above suffices to
generate the desired parametric resonance phenomena in the Bose gas [342–348], analo-
gous to the ones taking place in the preheating stage of most inflationary models [322,
349]. This is demonstrated in detail in what follows.

5.3.1. Numerical Study of Preheating Dynamics

We illustrate the analog preheating scenario by means of numerical simulations based
on Eq. (5.15) for a 2D Bose gas, where due to scale invariance the expansion does not
explicitly enter the dynamics. (Nonetheless, we keep the number of spatial dimensions 𝑑
in all formulas general.) Equation (5.15) then formally corresponds to a Bose gas in static
spacetime, while arbitrary expansion schemes 𝑎(𝑡), which enter the back transformation
to the original time and field variables according to Eq. (5.14), can be considered in
post-processing (see discussion at the end of Section 5.4.3).

As a main observable in the study of parametric instabilities and turbulent thermaliza-
tion, we consider the single-particle momentum distribution 𝑓(𝑡, 𝒑) defined in Eq. (1.8).
Importantly, this quantity can be experimentally accessed in time-of-flight measurements
(see Section 5.5 for further discussions).

We evaluate the quantum expectation value in Eq. (1.8) by means of classical–sta-
tistical (or truncated Wigner) simulations [324–327]. This method takes into account
quantum fluctuations by stochastically sampling classical field configurations from the
Wigner distribution of the initial state. Each realization is propagated deterministically
according to the GPE and quantum mechanical observables are obtained as statistical
averages over multiple realizations. In the present case, the initial state corresponds to a
spatially homogeneous BEC, and for each realization, all non-zero momentum modes are
populated with vacuum noise corresponding to an average occupancy of half a particle
per mode. This mimics quantum fluctuations acting as a seed for parametric instabil-
ities. It is important to note that this approach goes beyond a mean-field description,
which fails to capture parametric resonance since the occupancies of all excited modes are
exactly zero. Further details about the simulation method can be found in Appendix B.

In what follows, we express length and time in units of the characteristic scales
𝑥0 = ℏ/√𝑚𝑛0𝑔0 and 𝑡0 = ℏ/𝑛0𝑔0, respectively, where 𝑛0 = 𝑁/𝑉 is the homogeneous
particle density in a system of 𝑁 particles in a volume 𝑉 . Momenta are given either
in units of the lowest non-zero momentum 𝑝𝐿 = 2𝜋ℏ/𝐿 or in units of the characteristic
momentum 𝑝𝜉 = 2𝜋ℏ/𝜉 corresponding to the healing length 𝜉 = ℏ/√2𝑚𝑛0𝑔0. According
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Figure 5.2.: Radially averaged momentum distribution 𝑓(𝑡, 𝑝) as a function of the radial mo-
mentum 𝑝 = |𝒑| at different times 𝑡, demonstrating preheating dynamics. The coupling is modu-
lated with relative strength 𝑟 = 0.25 at a frequency 𝜔, chosen such that the resonance condition
𝜖𝑝res

= ℏ𝜔/2 for the momentum 𝑝res = 12 × 𝑝𝐿 with 𝑝𝐿 = 2𝜋ℏ/𝐿 is fulfilled [see discussion below
Eq. (5.19)]. At early times 𝑡 ≲ 30 × 𝑡0, a single narrow resonance can be observed around 𝑝res.
At later times, a broad resonance band emerges with peaks at higher harmonics of the modu-
lation frequency. These secondary resonances are due to non-linear interactions, as discussed
in Section 5.3.3. See the video3 in the Supplemental Material of Ref. [108] for a qualitative
illustration of the dynamics of a single realization.

to Eq. (1.29), in a quasi-2D Bose gas, the interaction strength 𝑔0 = ̃𝑔ℏ2/𝑚 is character-
ized by the dimensionless parameter ̃𝑔 =

√
8𝜋𝑎𝑠/𝑎HO, where 𝑎𝑠 is the 𝑠-wave scattering

length and 𝑎HO is the oscillator length of the harmonic potential in the strongly confined
direction. If not stated otherwise, we consider a uniform quasi-2D system of 𝑁 = 106

weakly interacting particles with coupling ̃𝑔 = 2.5 × 10−3 in a square box with periodic
boundary conditions. This choice of parameters fixes the box length as 𝐿/𝑥0 = 50.
Moreover, in this isotropic setting, the momentum distribution depends only on the
magnitude 𝑝 = |𝒑| of the momentum, 𝑓(𝑡, 𝒑) ≡ 𝑓(𝑡, 𝑝).

Figure 5.2 shows the radially averaged momentum distribution of a parametrically
excited system described by Eq. (5.15). The interaction is modulated according to
Eq. (5.17) with 𝑟 = 0.25, and the modulation frequency 𝜔 is chosen as the resonance
frequency of the momentum |𝑝res| = 12 × 𝑝𝐿, as discussed below Eq. (5.19). In this
simulation, the noise cutoff has been chosen as 𝑝𝛬 = 𝑝𝜉 ≈ 70.7 × 𝑝𝐿, which is smaller
than the lattice cutoff, but sufficiently large to not affect the dynamics at early times.
To gain a qualitative impression of the induced preheating dynamics, see the video3 in
the Supplemental Material of Ref. [108], illustrating the evolution of both the density
and the phase of a single realization.

3A video illustrating the preheating dynamics of the density and the phase of a single realization can
be found in the Supplemental Material of Ref. [108] or in the section “ancillary files” on the arXiv
page of that article.
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At early times, 𝑡 ≲ 30 × 𝑡0, in Fig. 5.2, we observe a single narrow resonance around
the resonance momentum 𝑝res satisfying the resonance condition 𝜖𝑝res

= ℏ𝜔/2 (see Sec-
tion 5.3.2). Due to particle number conservation, the growing occupancy of the resonant
momentum causes the condensate to decay, mimicking particle production from the de-
caying inflaton in the early universe. At later times, secondary resonances at higher
harmonics of the modulation frequency appear as a result of non-linear interactions
among the produced quasi-particles.

In addition to the narrow resonance peaks, a transient growth of fluctuations at low
momenta occurs at early times before the primary peak becomes visible. This growth
can be interpreted as a consequence of the fact that the sampled initial state corresponds
to the ground state of an ideal Bose gas. At 𝑡 = 0, the system is effectively quenched to
a finite interaction, producing a power law in the momentum distribution proportional
to 𝑝−1 at low momenta (see Appendix B). This early-time behavior has, however, no
influence on the preheating dynamics we are interested in here.

Below, we provide analytical insights into both the linear regime of parametric reso-
nance as well as the non-linear regime of secondary excitations.

5.3.2. Parametric Resonance in the Linear Regime
Parametric instabilities play a crucial role in many modern experiments with BECs [342–
344, 346, 347] and the concept has evolved into a promising tool for state prepara-
tion [348]. The underlying process can conveniently be understood by adopting a semi-
classical point of view. To this end, we consider the GPE (1.14) with 𝑉ext(𝒙) = 0 for
the condensate wave function 𝛹(𝑡, 𝒙). It is instructive to work in the Madelung repre-
sentation, 𝛹(𝑡, 𝒙) = √𝑛(𝑡, 𝒙) exp[𝑖𝜃(𝑡, 𝒙)], which allows us to express the GPE (1.14)
in form of the hydrodynamic equations (1.15). To obtain some intuition about the
early stages of the evolution, we express both the density and the phase in terms of a
homogeneous background with fluctuations on top of it, 𝑛(𝑡, 𝒙) = 𝑛0(𝑡) + 𝑛1(𝑡, 𝒙) and
𝜃(𝑡, 𝒙) = 𝜃0(𝑡) + 𝜃1(𝑡, 𝒙). Linearizing Eq. (1.15) with respect to the fluctuations yields
the equations 𝜕𝑡𝑛0 = 0 and 𝜕𝑡𝜃0 = −𝑔(𝑡)𝑛0/ℏ for the background condensate. For the
fluctuations, we obtain

𝜕𝑡𝑛1 = −ℏ𝑛0
𝑚 ∇2𝜃1 , (5.18a)

ℏ𝜕𝑡𝜃1 = −𝑔(𝑡)𝑛1 + ℏ2

4𝑚𝑛0
∇2𝑛1 . (5.18b)

Taking the time derivative and inserting the resulting equations into each other, fluctua-
tions of the density and the phase decouple to linear order. Transforming to momentum
space, 𝑛1 𝒑(𝑡) = ∫ d𝑑𝑥 𝑛1(𝑡, 𝒙)e−𝑖𝒑𝒙/ℏ and similarly for the phase, the linearized equations
can be expressed as

𝜕2
𝑡 𝑛1 𝒑 + 𝜔2

𝒑(𝑡)𝑛1 𝒑 = 0 , (5.19a)

𝜕2
𝑡 𝜃1 𝒑 + 2𝑛0𝜕𝑡𝑔(𝑡)

2𝑛0𝑔(𝑡) + 𝜖𝒑,0
𝜕𝑡𝜃1 𝒑 + 𝜔2

𝒑(𝑡)𝜃1 𝒑 = 0 , (5.19b)
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where
ℏ2𝜔2

𝒑(𝑡) = 𝜖𝒑,0[𝜖𝒑,0 + 2𝑛0𝑔(𝑡)] (5.20)

is a time-dependent form of the Bogoliubov dispersion relation (1.38) with the free-
particle dispersion relation 𝜖𝒑,0 = 𝒑2/2𝑚. Equation (5.19) describes a collection of
parametric oscillators for each momentum mode 𝒑, which are undamped for the density
and damped for the phase. The structure is similar to the relativistic equations for the
inflaton fluctuations (5.10) describing the linear stage of cosmological preheating.

The equation for the density fluctuations (5.19a) can be rewritten in the form

𝜕2𝑛1 𝒑(𝑠)
𝜕𝑠2 + [𝐴𝒑 − 2𝑞𝒑 cos(2𝑠)]𝑛1 𝒑(𝑠) = 0 (5.21a)

with parameters

𝐴𝒑 = 𝜖2
𝒑

(ℏ𝜔/2)2 and 𝑞𝒑 = 𝑟𝜖𝒑,0𝑛0𝑔0
(ℏ𝜔/2)2 , (5.21b)

where 𝑠 = 𝜔𝑡/2+𝜋/4 is a dimensionless time variable and 𝜖2
𝒑 = 𝜖𝒑,0(𝜖𝒑,0 +2𝑛0𝑔0) denotes

the Bogoliubov dispersion relation. Equation (5.21) is the standard form of Mathieu’s
equation [362]. Importantly, this equation admits solutions which can be expressed as
the product of an oscillatory function and an exponentially growing prefactor ∝ e𝜁𝒑𝑡,
describing parametric resonance [349, 354]. The condition for exact resonance is given
by 𝐴𝒑 = 1, or equivalently 𝜖𝒑 = ℏ𝜔/2. That is, resonance occurs for those momentum
modes 𝒑res whose energy equals half a quantum of energy ℏ𝜔/2 injected in the system
through the modulation.

The growth rate 𝜁𝒑 of unstable modes can be estimated for small modulation ampli-
tudes 𝑞𝒑 ≪ 1 using perturbation theory [363]. To leading order, it is given by

𝜁𝒑 = 𝜔
4 √𝑞2𝒑 − (𝐴𝒑 − 1)2 . (5.22)

Thus, there is an entire range of modes around 𝒑res which experience a positive growth
rate and thus undergo parametric resonance. The width of this instability band is
delimited by the modes satisfying 𝐴𝒑 = 1 ± 𝑞𝒑 and increases with the amplitude 𝑟 of the
modulation. At the resonant momentum 𝒑res, Eq. (5.22) reduces to

𝜁𝒑res
= 𝑟𝜔(𝑛0𝑔0

ℏ𝜔 )
2⎛⎜
⎝

√1 + ( ℏ𝜔
2𝑛0𝑔0

)
2

− 1⎞⎟
⎠

. (5.23)

For ℏ𝜔 ≪ 𝑛0𝑔0, this rate simplifies to 𝜁𝒑res
≈ 𝑟𝜔/8. In this regime, the Bogoliubov

dispersion becomes linear, 𝜖𝒑 ≈ 𝑐s|𝒑| with the speed of sound 𝑐s = √𝑛0𝑔0/𝑚, and
the produced quasi-particles have the character of sound waves. In the opposite limit,
ℏ𝜔 ≫ 𝑛0𝑔0, particles with quadratic dispersion 𝜖𝒑 ≈ 𝑛0𝑔0 + 𝒑2/2𝑚 are produced.
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Comparison to numerical results. In Fig. 5.2, parametric resonance is clearly visi-
ble as a pronounced peak at the momentum satisfying the resonance condition. Likewise,
the excitation of a single dominant wave length in the linear stage of the dynamics is
qualitatively confirmed in the evolution of both the density and the phase of a single
realization, as can be seen in the video3 in the Supplemental Material of Ref. [108] as
well as in the snapshots4 shown in the central panels in the lower part of Fig. 5.1. It is
worthwhile emphasizing that parametric instabilities can be triggered only if the initial
occupancy is non-zero. This seed is not contained in the mean field analysis presented
in this subsection, but is added in the simulation in form of vacuum noise according to
the truncated Wigner prescription.

The linearized equations (5.18) are helpful to get an intuitive analytical understanding
for the early stages of the dynamics and describe the emergence of the primary resonant
peak in Fig. 5.2. However, as a result of the exponential growth of occupancies, this
approach fails to describe the later stages where non-linear effects play a fundamental
role. These non-linearities are taken into account in the numerical simulations, which are
based on the full GPE (1.14), and include secondary excitations outside the resonance
band, as shown in Fig. 5.2. These will be discussed further below.

5.3.3. Secondary Instabilities
We now discuss secondary instabilities arising from non-linear interactions of the pro-
duced quasi-particles [339, 349]. By expanding the hydrodynamic equations (1.15) to
quadratic order in the fluctuations, it can be shown that modes which are stable on the
linear level experience an effective forcing, which leads to an exponential growth of mode
occupancies for momenta 𝑝 ≲ 2𝑝res proportional to e2𝜁𝒑res 𝑡, where the growth rate 𝜁𝒑res
is given by Eq. (5.23) [108]. Furthermore, modes which additional satisfy the resonance
condition 𝜖𝒑 ≈ 2𝜖𝒑res

are resonantly amplified and therefore strongest enhanced [108].
These features of secondary instabilities are captured by the classical–statistical sim-

ulations shown in Fig. 5.2. In particular, one can observe both the narrow peak and the
broad band in the distribution function between 𝑡/𝑡0 = 46 and 𝑡/𝑡0 = 58. Similar peaks
at higher multiples of the resonance frequency appear at later times due to higher-order
corrections to Eq. (1.15).

Analysis of growth rates. Figure 5.3 depicts the time evolution of the occupancies
corresponding to the primary and secondary resonances annotated in Fig. 5.2. The
growth of the secondary resonance marks the onset of the non-linear regime where the
quasi-particles produced in the primary resonance start to interact, and the linear picture
presented in Section 5.3.2 breaks down.

Before comparing the numerically extracted growth rates to analytical predictions, we
first relate the momentum distribution 𝑓(𝑡, 𝒑) to the hydrodynamic density and phase

4Since 𝑛1 and 𝜃1 are conjugate variables, they are phase shifted such that the density fluctuations
reach their maximum when the phase fluctuations cross zero, and vice versa. To create a better
visual impression, the central snapshot of the phase in Fig. 5.1 has been shifted forward in time by
a quarter of an oscillation period until the phase fluctuations reach their next maximum.
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Figure 5.3.: Radially averaged momentum distribution 𝑓(𝑡, 𝑝) as a function of time 𝑡 showing
the exponential growth of the primary and secondary resonances corresponding to the annotated
peaks in Fig. 5.2. The growth rates have been extracted by fitting a straight line to the quantity
ln 𝑓(𝑡, 𝑝), as shown in the insets. The result for the primary resonance, 𝜁(1)

num𝑡0 = 0.13, agrees
well with the analytical prediction 2𝜁(1)

pert𝑡0 = 0.15 obtained from Eq. (5.23). The growth of the
secondary instability starts later, but its rate 𝜁(2)

num𝑡0 = 0.23 is approximately twice as large as the
one of the primary resonance, as expected from the discussion in Section 5.3.3. The exponential
growth stops when the number of excited atoms becomes comparable to the number of condensate
atoms.

variables. On the mean-field level, linear fluctuations of the condensate wave function,
expressed as 𝛹(𝑡, 𝒙) = 𝛹0(𝑡)+𝛹1(𝑡, 𝒙), are related to linear density and phase fluctuations
via 𝛹1(𝑡, 𝒙)/𝛹0(𝑡) = 𝑛1(𝑡, 𝒙)/2𝑛0 + 𝑖𝜃1(𝑡, 𝒙). The momentum distribution on the linear
level then corresponds to

∣𝛹1 𝒑∣2 = 𝑛0[ 𝑛2
1 𝒑

(2𝑛0)2 + 𝜃2
1 𝒑] . (5.24)

Therefore, a parametric resonance where the density and phase fluctuations grow as
𝑛1 𝒑 ∝ 𝜃1 𝒑 ∝ e𝜁𝒑𝑡 results in a growth of the momentum distribution as 𝑓(𝑡, 𝒑) ∝ e2𝜁𝒑𝑡.

The oscillations of the occupancies in Fig. 5.3 can be understood from the linearized
parametric oscillator equations (5.19). Recall that the latter admit oscillatory solutions
with exponentially growing amplitudes. However, being conjugate variables, the oscilla-
tions of 𝑛1 and 𝜃1 are shifted in phase by approximately 𝜋/2. According to Eq. (5.24),
the momentum distribution thus corresponds to the sum of two phase-shifted oscillating
functions with slightly different initial amplitudes. This results in the residual oscilla-
tions on top of the exponential growth observed in Fig. 5.3. As expected, the oscillation
frequency of the primary resonance agrees with the modulation frequency, while the
oscillations of the secondary resonance additionally contain frequency components cor-
responding to twice the modulation frequency, reflecting the interactions between the
resonantly produced quasi-particles.

175



The growth rate of the primary resonance 𝜁(1)
num𝑡0 = 0.13 has been extracted by fitting

an exponential function to the numerical data, as shown in the insets of Fig. 5.3. The
result is close to the analytical prediction (5.23) obtained from perturbation theory,
2𝜁(1)

pert𝑡0 = 0.15. The secondary resonance at 2𝜖𝒑res
grows at a rate 𝜁(2)

num𝑡0 = 0.23, which
is indeed approximately twice the growth rate of the primary resonance.

The perturbative regime ends when 𝑛1/𝑛0 ≈ 1, i.e., when the number of excited atoms
becomes comparable to the number of condensate atoms. At this point, the exponential
growth stops and turbulent dynamics sets in. A typical snapshot3 of the density and the
phase of a single realization after the onset of turbulence is shown in the right panels
in the lower part of Fig. 5.1. In the next section, we analyze the turbulent dynamics
quantitatively in momentum space.

5.4. Analog Reheating: Turbulent Thermalization in Bose
Gases

This section is devoted to the turbulent thermalization stage of the analog reheating
scenario (see Fig. 5.1). Turbulent dynamics is accompanied by the emergence of self-
similarity and universality. This is reflected by a power-law behavior of the momentum
distribution within a certain inertial range of momenta. One well-known example within
the theory of weak wave turbulence is the prediction of a stationary direct cascade with
a universal power-law distribution 𝑓(𝑝) ∝ 𝑝−𝑑 [364]. More generally, self-similarity in
far-from-equilibrium systems can become manifest in their time evolution. In such a
scenario the evolution of the distribution function can be expressed as

𝑓(𝑡, 𝒑) = 𝑠𝛼𝑓S(𝑠𝛽𝒑) , (5.25)

where 𝑠 = 𝑡/𝑡ref and 𝑡ref is an arbitrary reference time. The scaling hypothesis (5.25)
constitutes a significant reduction of complexity as it allows one to describe a relevant
part of the dynamics by simply rescaling a single-variable scaling function 𝑓S, as deter-
mined by the scaling exponents 𝛼 and 𝛽. Remarkably, in many far-from-equilibrium
scenarios, both the exponents as well as the scaling form of the distribution are univer-
sal, which means they are insensitive to microscopic details as well as initial conditions,
and depend only on a few macroscopic system parameters like dimensionality, symme-
try or the number of field components [51, 53–55, 365]. As a result, if universality
holds, physical systems with vastly differing energy scales can behave quantitatively the
same. This makes ultracold Bose gases a particularly promising target for simulating
universal aspects of far-from-equilibrium dynamics like that of the inflaton in the early
universe. Universal self-similar time evolution reflects the system being in the vicinity
of a non-thermal fixed point, which acts as an attractor on the way towards thermal
equilibrium [52, 366, 367].

In this section, we demonstrate, corroborated by classical–statistical simulations, that
the salient features of the turbulent thermalization scenario of cosmological reheating
(see Section 5.1.2) can be observed in an ultracold Bose gas within the proposed analog
reheating setup. We first study the regimes of driven and free turbulence separately,
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before considering a transient prescaling regime, where the universal shape of the scaling
function is maintained, but the scaling exponents change over time. The numerically
extracted scaling exponents in the universal regimes turn out to agree well with analytical
predictions from kinetic theory. Finally, we discuss the relaxation to thermal equilibrium,
which is, however, not captured by classical–statistical simulations as it is dominated by
quantum fluctuations. We conclude this section with a discussion of how expansion may
prevent the system from thermalizing, building a bridge to Section 5.2.

5.4.1. Driven Versus Free Turbulence

In order to drive the system into a turbulent state, we follow the protocol presented in
Section 5.3 of parametrically exciting a homogeneous BEC. Here, our focus lies on the
later stages of the non-linear dynamics after the proliferation of secondary instabilities,
when a smooth distribution in form of a power law has formed. We distinguish the regime
of driven turbulence, realized by continuously modulating the interaction according to
Eq. (5.17), and free turbulence, developed if the modulation is switched off shortly after
the primary resonance has saturated. In our analogy to reheating in the early universe,
the former case corresponds to the situation where the inflaton possesses enough energy
to drive turbulence for a long time, while in the latter case, the inflaton runs out of
energy rather quickly at around the same time when turbulence sets in.

To maximize the inertial range where self-similar scaling can be observed, it is desirable
to inject energy at momentum scales close to the lowest momenta supported by the
system, where occupancies can become large. To this end, we consider a modulation
of the interaction with a relative amplitude 𝑟 = 1 at frequency 𝜔 chosen such that the
resonant momentum becomes 𝑝res = 3 × 2𝜋ℏ/𝐿 (see Section 5.3.2).

The left and right panels of Fig. 5.4 show a comparison of the direct cascades emerg-
ing in the regimes of driven and free turbulence, respectively. All parameters for both
simulations are identical, with the exception that in Fig. 5.4a, the interaction is mod-
ulated continuously, while in Fig. 5.4b, the modulation is switched off smoothly within
two modulation periods 2𝜋/𝜔 ≈ 8.2 𝑡0 at time 𝑡/𝑡0 = 80, roughly corresponding to the
time when the primary resonance saturates5. In the latter case, energy is conserved
already at the onset of turbulence and the driven regime is skipped. In both scenarios,
the momentum distribution takes a scaling form corresponding to a power law close to
𝑓(𝑡, 𝑝) ∝ 𝑝−2, which is indicated by a dotted line as a guide to the eye. A power law
proportional to 𝑝−𝑑 is characteristic for weak wave turbulence [364, 368, 369] and has
been observed experimentally in Ref. [370].

Moreover, as can be seen in Fig. 5.4, the distributions in the two regimes exhibit
self-similar time evolution in different ways. In the case of driven turbulence, Fig. 5.4a,
the front of the cascade evolves self-similarly, leaving behind a stationary distribution.
Stationary turbulence arises in the theory of weak wave turbulence as a stationary so-
lution of the scattering integral. However, such a configuration necessarily requires the

5The differences between switching off the modulation suddenly or smoothly within a few modulation
periods are insignificant.
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(a) Direct cascade with continuous modulation.
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(b) Direct cascade after switching off the modulation.

Figure 5.4.: Self-similar time evolution of the momentum distribution in form of a direct
energy cascade for driven turbulence (a) and free turbulence (b). Energy is injected at low
momenta by modulating the scattering length according to Eq. (5.17) with a relative amplitude
𝑟 = 1 at a frequency 𝜔 chosen such that ℏ𝜔/2 = 𝜖𝑝res

with 𝑝res = 3 × 2𝜋ℏ/𝐿. In the case of
continuous modulation (a), a stationary distribution with a power law close to 𝑝−2 develops,
whose front is evolving self-similarly. If the driving is switched off once the primary resonance
has saturated, corresponding here to 𝑡 = 80 × 𝑡0 (b), energy is propagated in a self-similar way
to higher momenta, but the distribution at a given momentum decreases with time, reflecting
energy conservation. A power law proportional to 𝑝−2 is shown in form of a dotted line as a
guide to the eye. The insets show the distributions rescaled according to Eq. (5.25) using the
numerically extracted scaling exponents displayed below the respective distributions [108].

existence of at least a source and a sink for energy to be injected and dissipated, re-
spectively [364]. In the present case, the energy source is provided by the modulation
of the interaction. In fact, the rate of energy injection into the system is approximately
constant in this stationary regime, as expected for driven turbulence [51]. Since energy
is transported locally in momentum space, unoccupied higher momentum modes play
the role of an energy sink [51]. This allows for the build-up of a stationary distribution,
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although the model lacks a mechanism of dissipation. By contrast, the distribution in
the case of free turbulence, Fig. 5.4b, is not stationary, but decreases as a function of
time for a given momentum, reflecting energy conservation.

To quantify the self-similar time evolution, the scaling exponents 𝛼 and 𝛽 defined in
Eq. (5.25) have been extracted from the numerical data at different times using a max-
imum likelihood technique [108]. In the turbulent stage of the dynamics, the exponents
are approximately constant at late times, as shown in the lower part of Fig. 5.4. The
observed slow relaxation of the exponents at early times in Fig. 5.4b can be interpreted
as prescaling (see Section 5.4.2). At the latest simulated times, the exponents take the
values

𝛼driven = −0.95 ± 0.17, 𝛽driven = −0.46 ± 0.06 , (5.26)

for driven turbulence, and

𝛼free = −1.05 ± 0.11, 𝛽free = −0.27 ± 0.03 , (5.27)

for free turbulence, respectively. Rescaling the distribution according to Eq. (5.25) with
the extracted exponents (see Ref. [108] for technical details), all data points collapse to a
single universal scaling function 𝑓S(𝑝), as shown in the insets of Fig. 5.4. The exponent 𝛽
describes the speed of energy propagation towards higher momenta, which is higher for
the driven cascade than for the free cascade.

The above values of the exponents are insensitive to the details of how the far-from-
equilibrium state is approached. In particular, one observes the same exponents starting
from an initial state with a highly occupied narrow window of momenta on top of a
condensate background. Such an initial state is similar to the state of the system at
the end of the preheating stage, when a certain momentum mode is overpopulated as a
consequence of parametric resonance.

The slow power-law dynamics of the direct cascade can be challenging to capture
with classical–statistical simulations for experimentally realistic configurations, since this
method is known to be prone to instabilities caused by the vacuum noise [327]. These
instabilities manifest themselves in a decay of the “quantum half” and the generation of
spurious quantum pressure, resulting in an unphysical dependence of the results on the
ultraviolet (UV) cutoff [371]. Classical–statistical simulations are therefore restricted to
large occupancies and weak couplings, where these inevitable deficiencies are mitigated
via a separation of scales. To simulate reheating dynamics in the turbulent regime, the
particle number has therefore been increased and the coupling reduced such that the
validity of the classical–statistical approximation can be ensured. Further details can be
found in Appendix B.3, where we also assess the range of accessible coupling strengths
for the present setup. In Section 5.5, we discuss how the above numerical results relate
to realistic experimental conditions.

Comparison to Analytical Predictions

Let us now compare the numerically extracted scaling exponents in Eqs. (5.26) and (5.27)
with analytical predictions.
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One relation between the exponents 𝛼 and 𝛽 follows from the scaling of the total
energy. To see this, we assume a self-similar time evolution according to Eq. (5.25) as
well as a power-law scaling of the dispersion relation, 𝜖𝒑 ∝ |𝒑|𝑧, where 𝑧 ≈ 2 in the
particle regime of the Bogoliubov dispersion. Then, the total kinetic energy scales as

𝐸(𝑡) = 𝑉 ∫ d𝑑𝑝
(2𝜋ℏ)𝑑 𝜖𝒑𝑓(𝑡, 𝒑) = ( 𝑡

𝑡ref
)

𝛼−(𝑑+𝑧)𝛽
𝐸(𝑡ref) . (5.28)

In the case of free turbulence, energy is conserved across the cascade, 𝐸 = const, while
in the case of driven turbulence, it grows linearly with time, 𝐸 ∝ 𝑡. This implies the
relation

𝛼 = 𝛾 + (𝑑 + 𝑧)𝛽 , (5.29)
where 𝛾 = 1 in the driven regime and 𝛾 = 0 in the absence of driving. For 𝑑 = 2 and
𝑧 = 2, Eq. (5.29) yields 𝛼 = 1+4𝛽 for driven turbulence and 𝛼/𝛽 = 4 for free turbulence,
in agreement with the numerical results in Eqs. (5.26) and (5.27), respectively.

Another relation between the scaling exponents can be obtained from the scaling of
scattering integrals in Boltzmann-type equations within kinetic theory [54, 364, 368].
In the scaling regime 𝑓(𝑡, 𝑝) ≫ 1, the direct cascade can still be treated perturbatively
(in contrast to the inverse cascade, where occupancies are typically orders of magnitude
higher), allowing one to derive the relation [54, 108]

(𝑙 − 2)𝛼 = [(𝑙 − 2)𝑑 − 2]𝛽 − 1 . (5.30)

Here, 𝑙 = 4 (𝑙 = 3) if 2 ↔ 2 (2 ↔ 1) scattering dominates. Combining this result with
Eq. (5.29) yields [108]

𝛽 = −−1 − (𝑙 − 2)𝛾
(𝑙 − 2)𝑧 + 2 . (5.31)

For driven turbulence, 𝛾 = 1, and a quadratic dispersion, 𝑧 = 2, both scattering
types lead to 𝛽 = −1/2, in agreement with the numerical result in Eq. (5.26). In
case of free turbulence, 𝛾 = 0, the prediction from perturbative kinetic theory yields
𝛽 = −1/6 for 2 ↔ 2 scattering and 𝛽 = −1/4 for 2 ↔ 1 scattering. The latter is
closer to the value in Eq. (5.27) found at late times in the numerical simulations. By
contrast, in the experiment reported in Ref. [351], where, instead of parametrically
driving a pure condensate out of equilibrium, a cooling quench has been applied to
an initially uncondensed Bose gas, a scaling exponent closer to the 2 ↔ 2 scattering
solution, 𝛽 = −1/6, has been observed. Deviations from the predicted scaling can in
general be induced by a non-quadratic scaling of the dispersion relation 𝜖𝒑 or by the
time dependence of the number of atoms in the condensate [108].

5.4.2. Prescaling
So far, we have investigated the two limiting cases where turbulence is either driven or
free. Now, we address the transient regime corresponding to the somewhat more realistic
situation where, in the beginning, turbulence is driven by the inflaton oscillations, but
at some point goes over to free turbulence when the inflaton has decayed.
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Figure 5.5.: Prescaling at the transition from driven to free turbulence. The simulation pa-
rameters are identical to those in Fig. 5.4, but the modulation is switched off suddenly at a later
time 𝑡/𝑡0 = 256. Before this time (blue curves), turbulence is driven and both the momentum
distribution as well as the scaling exponents 𝛼 and 𝛽 are the same as in Fig. 5.4a. After switch-
ing off the modulation (red curves), the ratio 𝛼/𝛽 quickly changes to the one expected for free
turbulence, reflecting energy conservation. The exponent 𝛽 gradually changes towards the value
obtained for free turbulence in Fig. 5.4b, reducing the speed of energy transport in the cascade.
Although the scaling exponents still change in time, the distribution has already attained its
universal scaling form. This important hallmark of prescaling is indicated in the inset, where all
data points collapse to a single curve after rescaling according to Eq. (5.25) with the extracted
time-dependent scaling exponents 𝛼(𝑡) and 𝛽(𝑡) [108].

This scenario is illustrated in Fig. 5.5. Up to the time 𝑡/𝑡0 = 256, the direct cascade
is driven (blue curves), as in Fig. 5.4a. At this time, the modulation is switched off,
mimicking the decay of the inflaton. We then observe a slowing down of the speed of
energy propagation and the distribution decreases in time for a given momentum (red
curves), reminiscent of the direct cascade of free turbulence shown in Fig. 5.4b.

On the right-hand side of Fig. 5.5, the numerically extracted scaling exponents are
shown as a function of time. After switching off the modulation, the exponent 𝛽 slowly
evolves from a value close to the one reported in Eq. (5.26) for driven turbulence to a
value close to the one reported in Eq. (5.27) for free turbulence. By contrast, the ratio
𝛼/𝛽 changes rather quickly between these two regimes. This behavior is expected since
this ratio is fixed by energy conservation [see Eq. (5.29)], which is enforced instanta-
neously after switching off the modulation. Surprisingly, the self-similar scaling form of
the distribution is approximately preserved during the transition, which is clearly visible
in the inset of Fig. 5.5, where the distributions, rescaled according to Eq. (5.25) with
the time-dependent scaling exponents, fall on top of each other.

Recently, such a situation, where the system’s dynamics is governed by a universal
scaling function much before the corresponding exponents have attained their universal
values, has been studied in the context of heavy-ion collisions [56] This phenomenon,
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termed prescaling, is closely related to the emergence of a far-from-equilibrium hydrody-
namic behavior, as it allows one to describe the dynamics in terms of few slowly changing
parameters [56]. A different type of prescaling, where certain correlation functions al-
ready scale with their universal exponents at early times while others do so only at
much later times, has been studied numerically in three-component Bose gases [55]. The
above results indicate that prescaling, as defined in Ref. [56], can be observed during
the transition from driven to free turbulence6, opening up new paths to studying this
phenomenon experimentally.

Analysis of Prescaling Using the Method of Moments

To gain a deeper understanding of the phenomenon of prescaling, we conduct a comple-
mentary scaling analysis based on the method of moments [56]. The maximum likelihood
technique used to extract the scaling exponents in Figs. 5.4 and 5.5 locally compares the
distributions at two reference times 𝑡1 and 𝑡2 > 𝑡1 [108]. By iterating over all times 𝑡1,
time-dependent scaling exponents are obtained that best collapse the pairs of distribu-
tions 𝑓(𝑡1, 𝒑) and 𝑓(𝑡2, 𝒑) on top of each other. By contrast, the method introduced in
Ref. [56] relies on the moments as global properties of the distribution and allows one to
extract instantaneous scaling exponents 𝛼(𝑡) and 𝛽(𝑡) that do not depend on a reference
time. In what follows, we briefly outline the method of moments, following Ref. [56],
and then apply it to the prescaling scenario discussed above.

Method of moments. The 𝑛-th moment of the distribution 𝑓(𝑡, 𝒑) is defined as

𝑀(𝑛)(𝑡) = 𝑉 ∫ d𝑑𝑝
(2𝜋ℏ)𝑑 ( 𝑝

𝑝0
)

𝑛
𝑓(𝑡, 𝒑) , (5.32)

where 𝑉 is the volume, 𝑝 = |𝒑|, and 𝑝0 is an arbitrary momentum scale to make the
moment dimensionless. Note that in an isotropic system, as considered here, the distri-
bution in fact depends only on the magnitude of the momentum, 𝑓(𝑡, 𝒑) = 𝑓(𝑡, 𝑝). For
each moment 𝑀(𝑛), the integrand is peaked around a certain characteristic momentum
whose scaling properties are probed. In particular, the zeroth moment is the total par-
ticle number and the second moment is proportional to the total kinetic energy for a
system with quadratic dispersion.

The most straightforward way of introducing time-dependent scaling exponents 𝛼(𝑡)
and 𝛽(𝑡) is to make the replacements 𝛼 → 𝛼(𝑡) and 𝛽 → 𝛽(𝑡) in the scaling ansatz
Eq. (5.25), such that the latter reads 𝑓(𝑡, 𝒑) = 𝑠𝛼(𝑡)𝑓S(𝑠𝛽(𝑡)𝒑) with 𝑠 = 𝑡/𝑡ref . How-
ever, the exponents defined in this way depend on the reference time 𝑡ref . To lift this
dependency, it is advantageous to define 𝛼(𝑡) and 𝛽(𝑡) instead in terms of the scaling
functions

𝑠𝛼(𝑡) = exp[∫
𝑡

𝑡ref

𝛼(𝑡′)d𝑡′

𝑡′ ] (5.33)

6A much shorter and less pronounced stage of prescaling occurs also in the scenario shown in Fig. 5.4b,
where the modulation is switched off much earlier, at 𝑡/𝑡0 = 80.
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and 𝑠𝛽(𝑡) defined in an analogous way. The scaling ansatz in Eq. (5.25) then generalizes
to

𝑓(𝑡, 𝒑) = 𝑠𝛼(𝑡)𝑓S[𝑠𝛽(𝑡)𝒑] . (5.34)

For constant exponents 𝛼 and 𝛽, the power-law scaling of Eq. (5.25) is recovered.
Inserting the above scaling ansatz into Eq. (5.32), it is straightforward to derive that

the moments scale with time as

𝑀(𝑛)(𝑡) = 𝑠𝛼(𝑡)𝑠𝑑+𝑛
𝛽 (𝑡)𝑀(𝑛)(𝑡ref) . (5.35)

Given a pair of moments 𝑀(𝑛1)(𝑡) and 𝑀(𝑛2)(𝑡) with 𝑛1 ≠ 𝑛2, it is thus possible to express
the scaling functions 𝑠𝛼(𝑡) and 𝑠𝛽(𝑡) in terms of these moments,

𝑠𝛼(𝑡) = [
𝑀𝑑+𝑛2

(𝑛1) (𝑡)/𝑀𝑑+𝑛2
(𝑛1) (𝑡ref)

𝑀𝑑+𝑛1
(𝑛2) (𝑡)/𝑀𝑑+𝑛1

(𝑛2) (𝑡ref)
]

1/(𝑛2−𝑛1)

, (5.36a)

𝑠𝛽(𝑡) = [
𝑀(𝑛1)(𝑡)/𝑀(𝑛1)(𝑡ref)
𝑀(𝑛2)(𝑡)/𝑀(𝑛2)(𝑡ref)

]
1/(𝑛2−𝑛1)

, (5.36b)

which allows one to access the scaling exponents as

𝛼(𝑡) = 1
𝑛2 − 𝑛1

d
d ln 𝑡 ln

𝑀𝑑+𝑛2
(𝑛1) (𝑡)

𝑀𝑑+𝑛1
(𝑛2) (𝑡)

, (5.37a)

𝛽(𝑡) = 1
𝑛2 − 𝑛1

d
d ln 𝑡 ln

𝑀(𝑛1)(𝑡)
𝑀(𝑛2)(𝑡)

. (5.37b)

Note that the dependency on the reference time 𝑡ref drops out as a consequence of the
derivatives.

Prescaling analysis. Since each moment condenses the information about the distri-
bution into a single number, it is necessary to examine many different moments, each
sensitive to a different characteristic momentum, to certify that a given distribution
scales as a whole. Figures 5.6 and 5.7 show the scaling functions and time-dependent
scaling exponents, respectively, extracted using the method of moments outlined above
for all possible combinations of moments 1 ≤ 𝑛1 < 𝑛2 ≤ 4. We exclude the zeroth mo-
ment from our analysis since the associated particle number conservation is incompatible
with the energy-conserving direct cascade. All simulation parameters are the same as
in Fig. 5.5, with the exception that the modulation is switched off at a later time,
𝑡 = 56 × 2𝜋/𝜔 ≈ 458.6 𝑡0, allowing one to better distinguish the regimes of driven and
free turbulence. The classical–statistical simulation presented in Figs. 5.6 and 5.7 has
been conducted on a spatial grid of 768 × 768 grid points to increase the UV resolution
and the data have been averaged over 100 runs. To reduce numerical errors of the cal-
culated moments due to instabilities near the UV cutoff, the integral in Eq. (5.32) has
been restricted to absolute momenta |𝒑| ≤ 3 × 𝑝𝜉 (|𝒑| ≤ 𝜋ℏ/𝛥𝑥, where 𝛥𝑥 is the lattice
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Figure 5.6.: Scaling functions 𝑠𝛼(𝑡) (a) and 𝑠𝛽(𝑡) (b) with respect to the reference time
𝑡ref/𝑡0 = 85, extracted from the moments of orders 1 ≤ 𝑛1 < 𝑛2 ≤ 4. The vertical dotted
line marks the time 𝑡/𝑡0 ≈ 458.6 when the modulation is switched off instantaneously. Before
this point, the oscillatory behavior of the moments is directly reflected in the evolution of the
scaling functions. As driven turbulence develops, their time averages approach power laws with
exponents close to the predictions from kinetic theory, 𝛼driven = −1 and 𝛽driven = −1/2 (dashed
lines). After the modulation is switched off, the scaling functions exhibit a kink and the oscilla-
tions vanish. In the subsequent evolution, the scaling functions extracted from different moments
evolve asynchronously, until they adopt a power-law behavior again for times 𝑡/𝑡0 ≳ 1000 with
exponents close to the predictions from kinetic theory in the regime of free turbulence, 𝛼free = −1
and 𝛽free = −1/4 (dashed-dotted lines). The system evolves self-similarly where all curves have
the same slope, as analyzed in Fig. 5.7.

spacing) before (after) switching off the modulation. In addition, the origin of time has
been shifted as 𝑡 → 𝑡 − 63 𝑡0 to improve the scaling analysis at early times [108].

Figure 5.6 shows the scaling functions 𝑠𝛼(𝑡) and 𝑠𝛽(𝑡) with respect to the reference
time 𝑡ref/𝑡0 = 85. As turbulence develops, the scaling functions approach power laws
𝑠𝛼(𝑡) ∝ (𝑡/𝑡ref)𝛼 and 𝑠𝛽(𝑡) ∝ (𝑡/𝑡ref)𝛽. In the driven regime, before switching off the
modulation, the corresponding exponents are close to the analytical predictions from
kinetic theory, 𝛼driven = −1 and 𝛽driven = −1/2 (see Section 5.4.1). At the time when
the modulation is switched off instantaneously, the scaling functions exhibit a kink and
continue evolving asynchronously for some time. This indicates that the shape of the dis-
tribution is not preserved exactly, but slightly readjusts during the transition from driven
to free turbulence. The changes in the shape of the distribution are more pronounced
at lower momenta, which is reflected by the fact that those curves in Fig. 5.6 extracted
from lower moments react stronger at the transition. Despite these local adjustments, it
is remarkable that the global scaling form of the distribution is approximately preserved
during the transition from driven to free turbulence, as can also be seen in Fig. 5.5.
For 𝑡/𝑡0 ≳ 1000, the scaling functions again approach a power law with exponents close
to the analytical predictions for free turbulence, 𝛼free = −1 and 𝛽free = −1/4. In the
region where the scaling functions extracted from different combinations of moments all
evolve in parallel, the distribution scales self-similarly as a whole. To certify that the
distribution also exhibits prescaling, i.e., a self-similar evolution with time-dependent
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ᾱ

(t
)/
β̄

(t
)

n1 = 1, n2 = 2

n1 = 1, n2 = 3

n1 = 1, n2 = 4

n1 = 2, n2 = 3

n1 = 2, n2 = 4

n1 = 3, n2 = 4

(b)

Figure 5.7.: Time-averaged scaling exponents ̄𝛽(𝑡) (a) and ̄𝛼(𝑡)/ ̄𝛽(𝑡) (b), extracted from the
moments of orders 1 ≤ 𝑛1 < 𝑛2 ≤ 4. The data have been smoothed using simple moving
means and the shaded regions show the corresponding moving standard deviations. The vertical
dotted line represents the time when the modulation is switched off. Before this point, in the
regime of driven turbulence, the exponents are approximately constant and close to the analytical
predictions from kinetic theory, 𝛽driven = −1/2 and 𝛼driven/𝛽driven = 2 (dashed lines). After
the modulation is stopped, the exponents jump discontinuously and the exponents extracted
from different combinations of moments exhibit discrepancies. For 𝑡/𝑡0 ≳ 1000, they converge
and continue evolving as a single curve, certifying the existence of a prescaling regime of self-
similar time evolution. The exponent 𝛽(𝑡) gradually approaches the universal value 𝛽free = −1/4
[dashed-dotted line in panel (a)] predicted from kinetic theory in the regime of free turbulence,
while the ratio of the exponents quickly adjusts to the prediction 𝛼free/𝛽free = 4 [dashed-dotted
line in panel (b)], reflecting energy conservation. The inset in panel (a) shows the instantaneous
exponent 𝛽(𝑡) in the driven regime, which strongly oscillates due to the modulation.

scaling exponents, we analyze the change of the scaling functions as quantified by the
exponents 𝛼(𝑡) and 𝛽(𝑡) in what follows.

In the driven regime, the scaling functions oscillate in time, as indicated in the inset
of Fig. 5.6b. These oscillations originate from the modulated interaction, which causes
the distribution and therefore the moments to oscillate in time (cf. Fig. 5.3). As a
result, the instantaneous scaling exponents 𝛼(𝑡) and 𝛽(𝑡), which are derivatives of the
scaling functions according to Eq. (5.37), exhibit the strong oscillatory behavior shown
for 𝛽(𝑡) in the inset of Fig. 5.7a. To connect with the results in Fig. 5.5 obtained
using the maximum likelihood technique [108], it is convenient to consider instead the
time-averaged exponents ̄𝛼(𝑡) and ̄𝛽(𝑡), defined as

̄𝛽(𝑡) = 1
ln(1 + 𝑇 /𝑡) ∫

𝑡+𝑇

𝑡
𝛽(𝑡′)d𝑡′

𝑡′ , (5.38)

and analogously for ̄𝛼(𝑡), where 𝑇 = 2𝜋/𝜔 is the modulation period. After switching off
the modulation, the oscillations of the moments vanish and the time-averaging of the
exponents is not required any more.

Figures 5.7a and 5.7b show the quantities ̄𝛽(𝑡) and ̄𝛼(𝑡)/ ̄𝛽(𝑡), respectively, as a function
of time. The derivatives in Eq. (5.37) are sensitive to small fluctuations in the data due to
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statistical uncertainties, resulting in a large spread of the data points. This is especially
true where moments of lower orders are involved since they probe the distribution at
smaller momenta with a lower density of states. To better visualize the trend of the
exponents, the data have been smoothed by calculating simple moving means (separately
in the regimes of driven and free turbulence) using a window size of 8 (16) periods
involving 512 (1024) data points for 𝑛1 > 1 (𝑛1 = 1). The shaded regions represent the
corresponding moving standard deviations.

Before the modulation is switched off, the system is in the state of driven turbu-
lence. Indeed, for 𝑡/𝑡0 ≳ 200, both ̄𝛽(𝑡) and ̄𝛼(𝑡)/ ̄𝛽(𝑡) are approximately constant
and for all considered moments close to the analytical predictions 𝛽driven = −1/2 and
𝛼driven/𝛽driven = 2 (see Section 5.4.1). After suddenly switching off the modulation, the
exponents jump discontinuously, reflecting the kink in the scaling functions in Fig. 5.6.
Furthermore, there are discrepancies in the values of the exponents extracted from dif-
ferent combinations of moments after the modulation is stopped. As discussed above,
this indicates a slight readjustment of the shape of the distribution, which is consistent
with the behavior in Fig. 5.5, where the exponents exhibit large error bars in this regime.
For times 𝑡/𝑡0 ≳ 1000, the exponents extracted from different moments converge to a
single curve, certifying a self-similar evolution of the distribution as a whole. During this
prescaling stage, the exponent ̄𝛽(𝑡) evolves gradually towards the analytical prediction
for free turbulence, 𝛽free = −1/4. By contrast, the ratio ̄𝛼(𝑡)/ ̄𝛽(𝑡) adjusts rather quickly
to the value 𝛼free/𝛽free = 4, expressing energy conservation.

Thus, the analysis using the method of moments certifies the existence of a prescaling
regime during the transition from driven to free turbulence, where the momentum distri-
bution scales self-similarly with time-dependent scaling exponents approaching gradually
their universal values.

5.4.3. Thermalization
As we have seen, on its way to thermal equilibrium the system takes a detour via
a non-thermal fixed point, in the vicinity of which the dynamics is dominated by a
turbulent transport of energy towards higher momenta. The self-similar dynamics of the
direct cascade stops once the occupancy of the characteristic momentum dominating the
kinetic energy budget becomes comparable to the expectation value of the vacuum noise
given by the “quantum half”. At this point, quantum fluctuations become dominant
over statistical fluctuations [51] and the system is expected to relax to a Bose–Einstein
distribution

𝑓BE(𝒑) = 1
exp(𝜖𝒑/𝑘B𝑇f) − 1 , (5.39)

where 𝜖𝒑 is the dispersion relation, 𝑘B is the Boltzmann constant and 𝑇f is the reheating
temperature.

The dominance of quantum fluctuations makes this final stage of the dynamics in-
accessible to classical–statistical simulations. In contrast to the expected relaxation
to a Bose–Einstein distribution, at sufficiently late times in the numerical simulation,
the cascade stops being self-similar, slows down, and approaches a classical equilibrium
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distribution [53] with a temperature 𝑇 (𝛬) that depends on the UV cutoff 𝛬 and is de-
termined by the equipartition theorem, 𝑓cl,th(𝒑)+1/2 ∝ 𝑘B𝑇 (𝛬)/𝜖𝒑 [108]. In particular,
mode occupancies drop to unphysical values below the vacuum noise of 1/2.

Here, we resort to analytical estimates for the reheating time and the reheating tem-
perature in our system based on the self-similar time evolution. Following Ref. [51], we
neglect the final stage of quantum relaxation to a Bose–Einstein distribution and con-
sider thermalization as complete once the occupancy of the characteristic momentum
dominating the kinetic energy budget becomes on the order of unity. More precisely,
we define the characteristic momentum ̄𝑝(𝑡) as the momentum that maximizes the inte-
grand in the expression (5.28) for the total kinetic energy. For an isotropic system with
dispersion relation 𝜖𝒑 ∝ 𝑝𝑧, where 𝑝 = |𝒑|, the characteristic momentum is given by

̄𝑝(𝑡) = arg max
𝑝

𝑝𝑑+𝑧−1𝑓(𝑡, 𝑝) . (5.40)

If the scaling exponents as well as the momentum distribution at some reference
time are known, the assumption of self-similar time evolution according to Eq. (5.25) is
sufficient to predict the time 𝑡f when the occupancy of the final characteristic momentum
𝑝f will reach unity. The time 𝑡f can be regarded as the best possible approximation to
the reheating time obtainable from classical–statistical simulations. However, Eq. (5.25)
is not directly applicable since the scaling exponents are not constant throughout the
entire time evolution. In fact, they take different universal values in the regimes of driven
and free turbulence, respectively, which are interpolated during a transient regime of
prescaling. Importantly, as shown in Section 5.4.2, the universal scaling form of the
distribution is preserved during prescaling, allowing us to describe the full evolution
solely in terms of time-dependent scaling exponents.

To properly account for time-dependent exponents 𝛼(𝑡) and 𝛽(𝑡), we use the gener-
alized scaling law in Eq. (5.34), while the original power-law form (5.25) is recovered
for constant exponents. This way, the evolution of the initial characteristic momentum
scale for turbulence 𝑝i is given by

̄𝑝(𝑡) = exp[− ∫
𝑡

𝑡i

𝛽(𝑡′)d𝑡′

𝑡′ ]𝑝i , (5.41)

where 𝑡i denotes the time when turbulence sets in. While the exponent 𝛽 determines
the scaling of the characteristic momentum, the evolution of its occupancy is governed
by the exponent 𝛼,

𝑓(𝑡, ̄𝑝(𝑡)) = exp[∫
𝑡

𝑡i

𝛼(𝑡′)d𝑡′

𝑡′ ]𝑓(𝑡i, 𝑝i) . (5.42)

By virtue of Eq. (5.42), it is in principle possible to compute the time 𝑡f by solving
𝑓(𝑡f , 𝑝f) = 1, given full knowledge of the time dependence of the exponent 𝛼. It is
instructive, however, to rewrite this formula using some simplifying approximations. To
this end, we assume that 𝛼 is approximately constant during the driven regime, taking
its universal value 𝛼driven, and that, after switching off the modulation at time 𝑡d, the
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relaxation to its universal value for free turbulence 𝛼free occurs fast compared to the
overall reheating time scale. We then recover power-law scaling for the occupancy of the
final characteristic momentum,

𝑓(𝑡f , 𝑝f) ≈ (𝑡d
𝑡i

)
𝛼driven

( 𝑡f
𝑡d

)
𝛼free

𝑓(𝑡i, 𝑝i) , (5.43)

and it reaches unity at the time

𝑡f = 𝑡d(𝑡d
𝑡i

)
−𝛼driven/𝛼free

[𝑓(𝑡i, 𝑝i)]
−1/𝛼free . (5.44)

Recall that a direct energy cascade is described by negative exponents 𝛼 and 𝛽 with large
initial occupancies 𝑓(𝑡i, 𝑝i), which decrease in time according to Eq. (5.43). Furthermore,
the condition 𝑡i ≤ 𝑡d ≤ 𝑡f requires 𝑡d ≤ 𝑡i[𝑓(𝑡i, 𝑝i)]−1/𝛼driven . If the latter inequality is
satisfied as an equality, the occupancy of the characteristic momentum reaches unity
already during driven turbulence before switching off the modulation, such that 𝑡f = 𝑡d.
Here, we focus on the situation where 𝑡d < 𝑡f such that the system spends a dominant
part of its evolution in the regime of free turbulence.

Using an analogous line of arguments, we can estimate the final characteristic momen-
tum scale from Eq. (5.41) as

𝑝f ≈ (𝑡d
𝑡i

)
−𝛽driven

( 𝑡f
𝑡d

)
−𝛽free

𝑝i = (𝑡d
𝑡i

)
−𝛽driven+𝛼driven/(𝑑+𝑧)

[𝑓(𝑡i, 𝑝i)]
1/(𝑑+𝑧)𝑝i , (5.45)

where the second equality follows after inserting our estimate for the reheating time (5.44)
and substituting the relation (5.29) between 𝛼free and 𝛽free imposed by energy conserva-
tion. The use of the latter identity makes the estimate (5.45) of the final characteristic
momentum independent of the scaling exponents in the regime of free turbulence, reflect-
ing the fact that 𝑝f is closely connected to the total energy in the system [51], which is
conserved after switching off the modulation. By contrast, the reheating time, according
to Eq. (5.44), is sensitive to the values of the scaling exponents in both regimes, and, in
particular, can be influenced by the non-universal behavior during prescaling.

Finally, we can obtain an order-of-magnitude estimate for the reheating temperature 𝑇f
in our system by identifying the latter with the typical kinetic energy of a particle with
momentum 𝑝f . For a dispersion relation of non-relativistic particles, this reads [108]

𝑘B𝑇f ∼ 𝑝2
f

2𝑚 . (5.46)

In order to complete the analogy to cosmological reheating, it is important to remem-
ber that the time variable 𝑡 in the estimate for the reheating time (5.44) denotes the
laboratory time and should be transformed back to the cosmic time 𝜏 by integrating the
relation (5.14). Likewise, taking into account the redshift of momenta, the final char-
acteristic momentum in Eq. (5.45) should be replaced as 𝑝f → 𝑝f/𝑎(𝑡f) [cf. Eq. (5.13)].
For the estimate of the reheating temperature (5.46), this means 𝑇f → 𝑇f/𝑎2(𝑡f) [108].
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Although Eqs. (5.44) to (5.46) are useful to estimate asymptotic quantities without
requiring to simulate the dynamics up to the point where the system thermalizes, the
outlined argumentation is based on the strong assumption that the neglected final stage
of the dynamics, which is dominated by quantum fluctuations, does not have a significant
impact on these estimates. The latter remains to be checked against physical reality,
which can be provided by comparison to an experiment.

Thermalization Versus Expansion

A peculiarity of the transformation of the time variable in Eq. (5.14) is that for certain
expansion scenarios, the cosmic time 𝜏 can become infinite within a finite laboratory
time 𝑡. For example, in case of a power-law expansion 𝑎(𝜏) = (1 + 𝐻0𝜏/𝜈)𝜈 with initial
conditions 𝑎(0) = 1 and 𝐻(0) = 𝐻0, one finds that for 𝜈 > 1/2, which includes the
case of matter-dominated expansion (𝜈 = 2/3), the laboratory time corresponding to
the asymptotic cosmic time 𝜏 = ∞ takes the finite value 𝑡(𝜏 = ∞) = 𝜈/(2𝜈 −1)𝐻0 [108].
Consequently, thermalization in the simulated cosmological system can only occur if
𝑡f < 𝑡(𝜏 = ∞), as otherwise the dynamics “freezes” and the system will never thermalize.

Recall that in two spatial dimensions, the fact that the scale factor 𝑎(𝑡) does not
explicitly enter the evolution equation (5.15) allows one to consider arbitrary expan-
sion scenarios in post-processing. This may be used to constrain the class of expansion
schemes that are consistent with an asymptotic thermal state of the simulated cosmo-
logical system, which in the simulating cold-atom system is always reached [108].

By contrast, in three spatial dimensions, the interaction in Eq. (5.15) depends ex-
plicitly on the scale factor and decreases as 𝑔 ∝ 𝑎−1, such that the simulating system
may become effectively non-interacting due to the expansion already before reaching
𝑡(𝜏 = ∞). In cosmology, such a behavior is known as freeze out, which occurs when
interaction rates of particles fall below the expansion rate 𝐻 = ̇𝑎/𝑎 of the universe and
explains the relic abundances of certain species today [49].

5.5. Experimental Perspectives
In this section, we summarize the experimental requirements for observing the salient
features of reheating dynamics discussed in this chapter.

The simulating system is a single-component BEC that is parametrically excited by
modulating the interaction according to Eq. (5.17) around some positive offset value.
This can be realized experimentally with the help of a Feshbach resonance, which al-
lows one to tune the 𝑠-wave scattering length using an external magnetic field [58,
342, 344, 347, 348]. The interaction strength 𝑔3D of a 3D Bose gas is related to the
𝑠-wave scattering length 𝑎𝑠 via Eq. (1.4). While the analog reheating scenario is inde-
pendent on dimensionality, for concreteness, we have focused here on 2D geometries,
which may be realized through a tight confinement of the atomic gas in the vertical
direction by a harmonic potential. In the quasi-2D regime, the effective interaction
strength 𝑔2D = ̃𝑔ℏ2/𝑚 is characterized by the dimensionless parameter ̃𝑔 =

√
8𝜋𝑎𝑠/𝑎HO,

where 𝑎HO = √ℏ/𝑚𝜔HO is the oscillator length of the confining harmonic potential with
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frequency 𝜔HO [see Eq. (1.29)]. Besides via Feshbach resonances, 2D Bose gases with
tunable effective interactions can therefore alternatively be realized by changing the
frequency of the harmonic trap [372].

The numerical simulations presented in this chapter have been conducted for the
fixed value 𝑁 ̃𝑔 = 2.5 × 103 of the product of the particle number 𝑁 and the interaction
strength ̃𝑔. This value is readily achievable in present-day experiments with uniform 2D
Bose gases [361]. On the classical level, the parameters 𝑁 and ̃𝑔 enter the equations of
motion only via the product 𝑁 ̃𝑔 (see Appendix B.2), but this no longer holds on the
quantum level. In fact, even classical–statistical simulations are sensitive to the individ-
ual values of 𝑁 and ̃𝑔 since they control the relative magnitude of mode occupancies with
respect to quantum fluctuations mimicked in form of vacuum noise. As discussed in Ap-
pendix B, classical–statistical simulations are restricted to large occupancies and weak
interactions, which is why the simulations of turbulent reheating dynamics in Section 5.4
have been conducted for a higher particle number than currently realizable in experi-
ments. To estimate characteristic quantities for more realistic experimental setups, we
rescale our numerical results to the reference parameters 𝑁ref = 106 and ̃𝑔ref = 2.5×10−3.
Pure BECs with almost 106 atoms can be reached in state-of-the-art experimental se-
tups, e.g., for 39K [373–375], where a wide range of interactions is accessible through
the broad Feshbach resonance at the magnetic flux 𝐵 = 560.7 G [376]. We emphasize
that extrapolating weak coupling results to stronger couplings is a priori not justified.
Yet, this procedure is often the only way to be consistent with experimental aspects
and commonly used, e.g., in the context of quantum chromodynamics (QCD) [377]. In
the field of ultracold atoms, a number of positive examples exist, where weak coupling
expectations of non-equilibrium quantum dynamics have been found experimentally at
strong couplings [46, 317].

For the above choice 𝑁 ̃𝑔 = 2.5 × 103 and a 2D system of 39K atoms in a square box
of length 𝐿 = 50 µm, one obtains the typical values 𝑥0 = 1 µm and 𝑡0 ≈ 0.6 ms for the
characteristic length and time scales 𝑥0 = ℏ/√𝑚𝑛0𝑔0 and 𝑡0 = ℏ/𝑛0𝑔0, respectively.
Here, 𝑔0 is the offset value around which the interaction is modulated and 𝑛0 = 𝑁/𝐿2

is the atomic density.
The analog reheating scenario can be subdivided into two distinct stages, namely, the

early preheating-like stage, where occupancies of resonant momenta grow exponentially
as a result of parametric instabilities, and the subsequent stage of turbulent thermaliza-
tion, characterized by a self-similar transport of energy towards higher momenta. The
time scales at which these phenomena can be observed depend on the choice of the mod-
ulation frequency 𝜔 and the relative modulation amplitude 𝑟 in Eq. (5.17). The choice
𝑟 = 1, i.e., modulating the scattering length with an amplitude close to its offset value,
is efficient for rapidly driving the system out of equilibrium. (Note that the perturbative
expression for the growth rate in Eq. (5.23) is no longer applicable in this case.) The di-
rect cascade is observed best if occupancies of the initial characteristic momentum, where
energy is injected in the system, are as high as possible. To this end, the modulation
frequency 𝜔 should be chosen close to the frequency of the lowest non-zero momentum
mode supported by the system, which is typically deep in the phonon regime where
the Bogoliubov dispersion is linear. In the simulations of reheating dynamics presented
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in Figs. 5.4 and 5.5, the modulation frequency has been chosen such that the primary
resonance occurs at the momentum 𝑝res = 3 × 2𝜋ℏ/𝐿, i.e., 𝜔 = 2𝜖𝑝res

/ℏ ≈ 2𝜋 × 199 Hz
for the example parameters mentioned above. The onset of turbulence, marking the end
of the preheating stage, occurs at around 𝑡/𝑡0 ≈ 80, corresponding to roughly 10 oscil-
lations of the scattering length. The subsequent turbulent scaling regime extends up to
times of about 𝑡f/𝑡0 ≈ 1500, which can be deduced from Figs. 5.4 and 5.5 with the help
of Eq. (5.44) after rescaling the occupancies to the reference particle number 𝑁 = 106

(cf. Appendix B.3). The estimated reheating time 𝑡f is well within the reach of modern
experiments, where typical lifetimes of BECs are on the order of a few seconds [374].

In our analysis, we have considered the momentum distribution 𝑓(𝑡, 𝒑) = ⟨ ̂𝛹†
𝒑(𝑡) ̂𝛹𝒑(𝑡)⟩

as the main observable. Experimentally, this quantity can be accessed in TOF mea-
surements [60]. In the case of driven turbulence [cf. Fig. 5.4a], by virtue of Eq. (5.45),
we find that the characteristic momentum at the reheating time 𝑡f is roughly given by
𝑝𝑓/𝑝𝜉 ≈ 1.5, which is on the order of the momentum corresponding to the healing length
𝜉. In general, this value depends on the duration of the regime of driven turbulence
and tends to be smaller in the case of free turbulence [cf. Fig. 5.4b] or in the prescaling
scenario [cf. Fig. 5.5], where less energy is injected into the system. It is a fortunate
circumstance that higher momenta, which are increasingly populated as the direct cas-
cade progresses, are typically easier to resolve in TOF measurements since they require
a shorter expansion time. As an alternative means of detection, in situ images of the
density profile may be used. In fact, all relevant signatures of both the parametric reso-
nance and the turbulent cascade can be extracted from the quantity ⟨𝑛̂†

𝒑(𝑡)𝑛̂𝒑(𝑡)⟩, where
𝑛̂𝒑(𝑡) is the Fourier transform of the operator 𝑛̂(𝑡, 𝒙) = ̂𝛹†(𝑡, 𝒙) ̂𝛹(𝑡, 𝒙) describing the
spatial density profile of the Bose gas.

Although we have put our main focus on uniform systems, nowadays available in many
laboratories [372, 378], the characteristic features of the dynamics can be expected to
be prevalent even in the presence of a harmonic trap. In general, such an external trap-
ping potential couples different momenta and thereby changes the nature of Bogoliubov
quasi-particles. However, within a local density approximation, a harmonically trapped
BEC in the Thomas–Fermi regime can be regarded as locally uniform around the cen-
ter [57]. Thus, while inhomogeneities of the trap may distort long-range correlations
in the system, the dynamics on small scales or at large momenta, relevant for the di-
rect cascade, remains unaffected. Separate GPE simulations of a harmonically trapped
system confirm that this is indeed the case (not shown).

We conclude this section with some remarks on dimensionality. The observation of a
turbulent cascade in a scalar BEC requires at least two spatial dimensions. This is owed
to the fact that in a strictly 1D system, due to kinematic constraints, there can be no
2 ↔ 2 scattering processes redistributing momenta. If, however, the system is elongated,
but not as strongly confined in the transversal direction to be considered in the quasi-1D
regime, turbulent energy transport sets in once transversal modes are excited. This is
confirmed by separate simulations of a 3D system in an elongated periodic box (not
shown).

Compared to the 3D case, the study of reheating dynamics in two dimensions is some-
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what simpler for at least two reasons. First, as discussed in Section 5.2, the effective
interaction in 2D is independent of the cosmic scale factor and there is no need to con-
tinuously adjust the scattering length according to the specific expansion model chosen.
Second, an absorption image of an atomic cloud, taken after a TOF expansion or in
situ, will always be a 2D projection on the plane transversal to the optical axis. In three
dimensions, this means that the distribution is integrated along the optical axis, thereby
mixing momenta of different magnitudes. As revealed separately by a simulation of a 3D
system in a periodic box, the scaling is robust with respect to integrating the momentum
distribution along one spatial dimension before performing the radial average. Thus, the
scheme can readily be applied to experimentally investigate reheating dynamics in three
dimensions, which is of fundamental interest from a cosmological point of view.

5.6. Summary
In this chapter, we have discussed how an ultracold Bose gas can be used for quantum-
simulating the characteristic stages of far-from-equilibrium reheating dynamics in the
early universe. The analogy builds on the identification of the inflaton field with an
atomic Bose–Einstein condensate, while excitations on top of the condensate play the
role of particles produced by the decaying inflaton. We have discussed how in the non-
relativistic limit, expanding spacetime can be encoded in the time dependence of the
atomic interaction, which can be controlled experimentally, e.g., via Feshbach reso-
nances. In addition, the oscillations of the inflaton are mimicked by a periodic modula-
tion of the interaction, which induces a resonant amplification of quantum fluctuations
in analogy to preheating in the early universe. Following the proliferation of secondary
instabilities due to non-linear effects, the system enters a turbulent state, characterized
by a self-similar transport of energy towards higher momenta. The universal scaling
exponents extracted from classical–statistical simulations of the analog reheating sce-
nario agree with predictions from kinetic theory for both driven and free turbulence.
The transition between these regimes, marked by the decay of the inflaton, is character-
ized by an extended prescaling regime of partial universality, where the scaling form of
the distribution is approximately preserved, while the scaling exponents gradually relax
to their universal values. The proposed implementation of analog reheating therefore
opens the door to an experimental observation of this phenomenon and provides a set-
ting for investigating universal far-from-equilibrium dynamics based on tools commonly
available in modern experiments. In particular, the final stage of relaxation to thermal
equilibrium is beyond the scope of classical–statistical simulations as it is dominated by
quantum fluctuations, and as such represents a question that can more efficiently be
answered in physical quantum simulators.
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Conclusion

In this thesis, we have developed protocols and scenarios that enable analog quantum
simulators to disclose previously elusive dynamics and correlations in quantum many-
body systems. We have illustrated these schemes for a variety of relevant applications
from the wide spectrum of the versatile platform of ultracold atoms, while extensions
to other platforms are in most cases immediate. The presented numerical benchmark
simulations demonstrate that the protocols as well as the physics they give access to are
within the reach of state-of-the-art experimental setups. In what follows, we summarize
the most important insights for the individual problems addressed in this thesis and give
an outlook on future research directions.

In Chapter 2, we have developed protocols based on non-Hermitian linear response
to measure the elusive unequal-time anti-commutator in quantum many-body systems.
Combined with a standard (Hermitian) linear response measurement of the unequal-time
commutator, this method allows one to independently probe both sides of the fluctua-
tion–dissipation relation (FDR). The concept of non-Hermitian linear response is general
and can be applied to any observable in any quantum system, irrespective of microscopic
details like particle statistics or interactions. To realize effective non-Hermitian pertur-
bations in cold-atom systems, we have introduced specific schemes that combine coupling
to an ancilla with a post-selection on realizations where no particles are detected in the
ancilla. By applying engineered dephasing noise to the ancilla, effective non-Hermitian
dynamics can be generated for an extended period of time via the continuous quan-
tum Zeno effect, which allows one to probe frequency-resolved responses. Moreover, the
system–ancilla coupling can be generalized to give access to a wide range of observables
beyond unequal-time density correlations. We have illustrated the framework for prob-
ing thermalization in isolated quantum systems through an independent measurement
of both sides of the FDR. Besides certifying that a given quantum state is thermal,
testing scenarios where the system fails to thermalize, e.g., due to integrability, localiza-
tion, or scar states, represents an application of at least equal importance. In addition,
the proposed methods of engineering effective non-Hermitian dynamics may not only be
used for measuring dynamical correlations, but also for exploring the intriguing realm
of non-Hermitian physics [137, 138].

The main challenges for an experimental implementation of the proposed non-Hermi-
tian linear response schemes are rooted in the optimization of the signal-to-noise ratio
in combination with the post-selection on the empty-ancilla subspace. On the one hand,
a stronger perturbation is favorable to increase the strength of the measurement sig-
nal, on the other hand, the perturbation must be sufficiently weak to stay within the
regime of linear response, such that errors due to non-linear effects are suppressed. As
the numerical benchmarks in Chapter 2 demonstrate, a good compromise between these
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objectives can be achieved within the capabilities of state-of-the-art experiments like
quantum gas microscopes. In addition, we have examined potential challenges for ex-
perimental implementations of the non-Hermitian linear response scheme in Rydberg
quantum simulators. As illustrated at the example of an XXZ Heisenberg spin model, a
perfect post-selection on the absence of ancilla occupancies is not necessary in all cases
and an accurate extraction of FDRs may still be possible despite systematic deviations
due to false negatives. It should be noted, however, that it must be checked a priori, e.g.,
via numerical simulations, whether the requirement of post-selection can be relaxed for
a particular application. Furthermore, we have shown that in case of multiple ancillas
a single noise process acting globally on all ancillas may be used when operating in the
linear regime. This represents an enormous practical simplification compared to engi-
neering independent noise processes for each ancilla locally. These insights thus extend
the scope of the protocols to experiments where single-site (or single-particle) addressing
is not available and where accurate post-selection is difficult to achieve. While prelimi-
nary experimental results successfully demonstrate building blocks of the non-Hermitian
linear response scheme for non-interacting systems [104], the next step will be to work
on the realization of such measurements also in interacting many-body systems.

In Chapter 3, we have introduced ancilla-based schemes for the measurement of cur-
rents as well as current correlations. The protocol can be executed as a non-invasive
measurement, involving only a marginal perturbation of the probed quantum state, or
as a projective measurement yielding a higher signal-to-noise ratio. We have numerically
benchmarked and illustrated the technique for probing chiral phases of quantum matter
in optical-lattice setups, demonstrating its feasibility within the capabilities of modern
experiments. The protocol can also flexibly be adapted to other platforms through a suit-
able choice of ancillas. For example, in a cavity setup [379], it is natural to represent the
ancilla by the cavity mode, while in a trapped ion system, collective vibrational modes of
the ion crystal may serve as ancillas. The method therefore enables the measurement of
transport properties in a wide range of synthetic quantum systems simulating strongly
correlated phases of matter. A promising extension consists in the combination of the
non-invasive and the projective scheme in order to measure dynamical current correla-
tions. In the light of our discussion in Chapter 2, this corresponds to a non-Hermitian
linear response protocol for measuring unequal-time anti-commutators of currents. In
combination with a standard linear response measurement of the corresponding unequal-
time commutator, this enables probing FDRs for currents. In addition, unequal-time
current correlations encode fundamental transport properties like conductivities [82]. In
particular, the outlined scheme may enable the direct measurement of quantum Hall
conductivities in Harper–Hofstadter optical-lattice models.

Chapter 4 has been devoted to the investigation of dynamical probes of supersolidity
in spin–orbit-coupled Bose–Einstein condensates by exciting the Goldstone modes asso-
ciated with the spontaneous breaking of translational invariance. We have demonstrated
that a beating in the breathing oscillation, induced by a sudden change of the trap fre-
quency, signals the emergence of a Goldstone mode of spin nature once the transition to
the supersolid phase is crossed. This effect is a manifestation of the rich hybridization
phenomena between density and spin degrees of freedom typical of spin–orbit-coupled
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configurations. In addition, we have provided direct and indirect evidence for the ex-
istence of the crystal Goldstone mode associated with the translational motion of the
stripes, which can be excited by suddenly releasing a uniform spin perturbation. The
presented Gross–Pitaevskii simulations demonstrate that the predicted static and dy-
namic signatures of supersolidity are accessible under realistic experimental conditions
in both configurations with symmetric and asymmetric intraspecies interactions, leaving
the observation of these effects as a task for upcoming experiments. On the theory side,
it will be interesting to extend the analysis of collective oscillations in the supersolid
phase to transversal excitations like the scissors mode. In fact, there exists a hybridiza-
tion mechanism between the quadrupole operator 𝑥𝑦 exciting the scissors mode and the
transversal spin operator 𝑦𝜎𝑧 [380], similar to the hybridization of 𝑥2 and 𝑥𝜎𝑧 underly-
ing the beating effect discussed in Chapter 4. One may therefore expect to observe an
analogous beating in the modes excited by the operators 𝑥𝑦 and 𝑦𝜎𝑧 below the transition
to the supersolid phase. In addition, the transversal spin operator 𝑦𝜎𝑧 exhibits a non-
trivial coupling to the angular momentum, enabling the excitation vortices for strong
perturbations [381]. Thus, a promising future research direction is the exploration of
transversal excitations in both linear and non-linear regimes in the supersolid phase.

In Chapter 5, we have developed a scenario for quantum-simulating aspects of cosmo-
logical reheating dynamics in an ultracold Bose gas. We have demonstrated by means
of classical–statistical simulations that the dynamics of a parametrically driven atomic
Bose–Einstein condensate undergoes the characteristic stages of far-from-equilibrium
reheating, including a preheating phase of explosive particle production through para-
metric amplification of quantum fluctuations as well as the subsequent stage of turbu-
lent thermalization. The turbulent dynamics is characterized by universal self-similar
time evolution in form of a direct cascade transporting energy towards higher momenta.
Owing to universality, the proposed setup enables the experimental investigation of far-
from-equilibrium quantum dynamics relevant for a large class of physical systems at
vastly different energy scale. In addition, the analog reheating scenario opens promis-
ing prospects of experimentally observing a prescaling regime of partial universality,
which we have shown to emerge at the interface between driven and free turbulence. An
experimental implementation is feasible regarding the technical capabilities of modern
laboratories and motivated by the possibility to study aspects of the dynamics which
are not captured by currently available analytical and numerical methods, such as the
final relaxation to thermal equilibrium, which is dominated by quantum fluctuations.
Cold-atom quantum simulators are quantum mechanical by nature and not restricted
to weak couplings, enabling them to address these problems more efficiently.

While the proposed analog reheating scenario focuses on a generic single-field model of
cosmological reheating, there is plenty of room for extensions to more realistic situations.
For instance, in models involving a single scalar field, the inflaton decays only into its
own quanta of excitation, whereas for consistency with standard cosmology, it should
eventually decay into other forms matter, e.g., standard model particles. Such a pro-
duction of different particle species and their subsequent thermalization dynamics could
be simulated in multi-component Bose gases. Furthermore, future studies of analog re-
heating in three spatial dimensions, where in contrast to the investigated 2D setting
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the cosmological scale factor explicitly enters the dynamics, have the potential to reveal
effects arising from the competition between thermalization and expansion. While in the
proposed implementation the parametric driving mimicking the inflaton oscillations is
imposed externally, it is desirable to look for ways that provide a dynamical mechanism
of back reaction of the produced excitations on the cause of their creation. A promising
approach in this direction has been suggested in Ref. [341], where parametric resonances
are triggered by a breathing oscillation of the condensate, allowing the produced quasi-
particles to back-react on the oscillating condensate. It would be interesting to explore
whether this scenario also enables access to the far-from-equilibrium turbulent thermal-
ization scenario. As these discussions show, the proposed setup provides a solid base
that can be extended to develop more complete analog models of cosmological reheating.

In conclusion, the methods and applications presented in this thesis provide a plethora
of starting points to fork new lines of research from. These consist primarily in the exper-
imental realization of the introduced techniques, but also in their conceptual refinement
and extension to novel applications. We are currently at the threshold where quantum
simulators start to unfold their true potential and the years to come are likely to witness
new discoveries that today are unimaginable.
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A. Numerical Methods for Stochastic
Differential Equations

A.1. Introduction to Stochastic Differential Equations
Langevin’s equation for Brownian motion (1.88) can be seen as the historic prototype of
a stochastic differential equation (SDE) [382, 383]. Despite the elegance of Langevins’s
approach, the precise mathematical definition of the stochastic force acting on the Brow-
nian particle, in Langevin’s words, the “irregularity of the impacts of the surrounding
molecules” [383], has long remained vague. This changed when K. Itô introduced a rig-
orous mathematical framework for the theory of stochastic integration, now known as
Itô stochastic calculus [384]. Ever since, SDEs have been established as indispensable
tools in a variety of fields as diverse as statistical physics, molecular biology, climate
science, as well as mathematical finance [183, 184].

This appendix contains a brief introduction into the basic concepts and the math-
ematical foundations of SDEs, before discussing methods for their numerical solution.
An emphasis will be put on numerical methods for linear SDEs, which can directly be
applied to the solution of stochastic Schrödinger or von Neumann equations, as relevant
for the application presented in Section 2.3.3. A comprehensive introduction to the field
of SDEs can be found in Ref. [184], where the following overview is based on.

A.1.1. Markov Process
A stochastic process can be thought of as a time-dependent random variable 𝑿(𝑡), which
takes the values 𝒙1, … , 𝒙𝑛 at times 𝑡1, … , 𝑡𝑛. Such a system is completely described by
the joint probability distribution 𝑝(𝒙1, 𝑡1; … ; 𝒙𝑛, 𝑡𝑛). Alternatively, we can consider
the conditional probability 𝑝(𝒙𝑛, 𝑡𝑛 | 𝒙1, 𝑡1; … ; 𝒙𝑛−1, 𝑡𝑛−1) of measuring the value 𝒙𝑛 at
time 𝑡𝑛, given the results of all previous measurements. In general, this quantity depends
on the entire history of the stochastic process.

We call a process Markovian if the conditional probability depends only on the most
recent condition,

𝑝(𝒙𝑛, 𝑡𝑛 | 𝒙1, 𝑡1; … ; 𝒙𝑛−1, 𝑡𝑛−1) = 𝑝(𝒙𝑛, 𝑡𝑛 | 𝒙𝑛−1, 𝑡𝑛−1) , (A.1)

where 𝑡1 ≤ … ≤ 𝑡𝑛. As a consequence, the joint probability distribution of the entire
Markov process can be expressed as

𝑝(𝒙1, 𝑡1; … ; 𝒙𝑛, 𝑡𝑛) = 𝑝(𝒙1, 𝑡1)
𝑛

∏
𝑖=2

𝑝(𝒙𝑖, 𝑡𝑖 | 𝒙𝑖−1, 𝑡𝑖−1) , (A.2)
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where 𝑝(𝒙1, 𝑡1) describes the initial distribution. The sequence of outcomes 𝒙1, … , 𝒙𝑛
then forms a so-called Markov chain, which is completely determined by the transition
probability 𝑝(𝒙𝑖, 𝑡𝑖 | 𝒙𝑖−1, 𝑡𝑖−1) from the current outcome to the next.

In the context of SDEs, we are interested in Markov processes with continuous sample
paths. The time evolution of the probability density is then described by the Fokker–
Planck equation

𝜕
𝜕𝑡𝑝(𝒙, 𝑡) = − ∑

𝑖

𝜕
𝜕𝑥𝑖

[𝐴𝑖(𝒙, 𝑡)𝑝(𝒙, 𝑡)] + 1
2 ∑

𝑖,𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝐵𝑖𝑗(𝒙, 𝑡)𝑝(𝒙, 𝑡)] , (A.3)

where 𝑝(𝒙, 𝑡) ≡ 𝑝(𝒙, 𝑡 | 𝒙0, 𝑡0) with initial condition 𝑝(𝒙, 𝑡0) = 𝑝0(𝒙). The drift vec-
tor 𝑨(𝒙, 𝑡) and the diffusion matrix 𝐵(𝒙, 𝑡) determine the Markov process completely.
The significance of these quantities will become more transparent in the context of SDEs.

Wiener Process

The Wiener process, sometimes simply referred to as Brownian motion, is of fundamental
importance in the theory of SDEs. It describes a diffusion process and can be thought
of as the continuum limit of a random walk. The multivariate Wiener process 𝑾 (𝑡) =
[𝑊1(𝑡), … , 𝑊𝑑(𝑡)]⊺ can be defined via its conditional probability density 𝑝(𝒘, 𝑡 | 𝒘0, 𝑡0),
which satisfies the Fokker–Planck equation

𝜕
𝜕𝑡𝑝(𝒘, 𝑡 | 𝒘0, 𝑡0) = 1

2 ∑
𝑖

𝜕2

𝜕𝑤2
𝑖
𝑝(𝒘, 𝑡 | 𝒘0, 𝑡0) (A.4)

with initial condition 𝑝(𝒘, 𝑡0 | 𝒘0, 𝑡0) = 𝛿(𝒘 − 𝒘0). The solution is given by the multi-
variate Gaussian distribution

𝑝(𝒘, 𝑡 | 𝒘0, 𝑡0) = 1
[2𝜋(𝑡 − 𝑡0)]𝑛/2 exp[−(𝒘 − 𝒘0)2

2(𝑡 − 𝑡0) ] , (A.5)

whose first and second moments read

⟪𝑾 (𝑡)⟫ = 𝒘0 , (A.6a)
⟪[𝑊𝑖(𝑡) − 𝑤0𝑖][𝑊𝑗(𝑡) − 𝑤0𝑗]⟫ = 𝛿𝑖𝑗(𝑡 − 𝑡0) . (A.6b)

Since the variance grows linearly with time, the Wiener process is characterized by
highly irregular sample paths. Furthermore, the sample paths are continuous, but not
differentiable. If we sample the Wiener process at discrete times 𝑡1, … , 𝑡𝑛, then, by virtue
of Eq. (A.2), the increments 𝛥𝑊𝑖 = 𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1) are statistically independent,

𝑝(𝑤0; 𝛥𝑤1, … , 𝛥𝑤𝑛) = 𝑝(𝑤0, 𝑡0)
𝑛

∏
𝑖=1

1
√2𝜋𝛥𝑡𝑖

e−𝛥𝑤2
𝑖 /2𝛥𝑡𝑖 , (A.7)

where 𝛥𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1. The statistical independence of the Wiener increments is crucial
in the context of SDEs.
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A.1.2. Stochastic Integration
In order to define SDEs, it is necessary to introduce the notion of stochastic integration,
i.e., integration with respect to Brownian motion.

To this end, let 𝑡0 ≤ 𝑡1 ≤ … ≤ 𝑡𝑛 ≡ 𝑡 be a partition of the interval [𝑡0, 𝑡] into 𝑛
subintervals. For a given sample path 𝑊(𝑡) of the Wiener process and an arbitrary
function 𝐺(𝑡), we consider the partial sum

𝑆𝑛 =
𝑛

∑
𝑖=1

𝐺(𝜏𝑖)[𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)] (A.8)

with intermediate points 𝜏𝑖 ∈ [𝑡𝑖−1, 𝑡𝑖]. If 𝑊(𝑡) were a function of bounded variation,
we would recover the Riemann–Stieltjes integral in the limit 𝑛 → ∞ (for continuous 𝐺).
As is well-known, the Riemann–Stieltjes integral is independent of the intermediate
values 𝜏𝑖. However, for the Wiener process 𝑊(𝑡), whose sample paths are not of bounded
variation, it turns out that different choices of 𝜏𝑖 lead to different limits of 𝑆𝑛. The most
common choices in the literature correspond to evaluating the function 𝐺 at the left point
of each subinterval (𝜏𝑖 = 𝑡𝑖−1) or in the middle of each subinterval [𝜏𝑖 = (𝑡𝑖−1 + 𝑡𝑖)/2],
which lead to the Itô and Stratonovich definition of the stochastic integral, respectively.

Itô Stochastic Integral

The Itô stochastic integral of a function 𝐺(𝑡) with respect to the Wiener process 𝑊(𝑡)
is defined as

∫
𝑡

𝑡0

𝐺(𝑡′) d𝑊(𝑡′) = lim
𝑛→∞

𝑛
∑
𝑖=1

𝐺(𝑡𝑖−1)[𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)] . (A.9)

Here, convergence is to be understood in mean square, i.e., lim𝑛→∞⟪(𝑆𝑛 − 𝐼)2⟫ = 0,
where 𝐼 denotes the value of the Itô integral and 𝑆𝑛 the 𝑛-th partial sum. Note that the
integrand 𝐺(𝑡) is evaluated at the left boundary of each subinterval. This choice by Itô
leads to a couple of useful properties.

It can be shown that the Itô integral exists if 𝐺(𝑡) is continuous and non-anticipating.
A function 𝐺 is called non-anticipating of 𝑡 if 𝐺(𝑡) is statistically independent of 𝑊(𝑠)−
𝑊(𝑡) for all 𝑠 > 𝑡, i.e., if it is independent of the behavior of the Wiener process in
the future of 𝑡. From the definition (A.9), it is then immediately clear that for such a
function 𝐺 the expectation value of the Itô stochastic integral vanishes,

⟪∫
𝑡

𝑡0

𝐺(𝑡′) d𝑊(𝑡′)⟫ = ∫
𝑡

𝑡0

⟪𝐺(𝑡′)⟫⟪d𝑊(𝑡′)⟫ = 0 . (A.10)

Likewise, for two non-anticipating functions 𝐺 and 𝐻, one finds the correlation formula

⟪∫
𝑡

𝑡0

𝐺(𝑡′) d𝑊(𝑡′) ∫
𝑡

𝑡0

𝐻(𝑡′′) d𝑊(𝑡′′)⟫ = ∫
𝑡

𝑡0

d𝑡′ ⟪𝐺(𝑡′)𝐻(𝑡′)⟫ . (A.11)
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In the physical literature, it is common to write the Wiener increments symbolically as
d𝑊(𝑡) = 𝜉(𝑡) d𝑡, where 𝜉(𝑡) represents Gaussian white noise and formally plays the role
of the “derivative” of the Wiener process (which rigorously does not exist though). The
condition (A.11) is then implied by the requirement that the noise is delta-correlated,
⟪𝜉(𝑡)𝜉(𝑡′)⟫ = 𝛿(𝑡−𝑡′). A useful rule for practical computations is encoded in the relation

∫
𝑡

𝑡0

𝐺(𝑡′)[d𝑊(𝑡′)]2 = ∫
𝑡

𝑡0

d𝑡′𝐺(𝑡′) , (A.12)

which is often used in the form d𝑊 2 = d𝑡 when calculating differentials of non-anticipating
functions (see Itô formula below).

Stratonovich Stochastic Integral

As noted above, Stratonovich’s stochastic integral corresponds to choosing the inter-
mediate points in Eq. (A.8) as the midpoints of each subinterval. In the context of
SDEs, we will be dealing with Stratonovich integrals of functions of two variables in
the form 𝐺[𝑥(𝑡), 𝑡]. For mathematical reasons of convergence, in this case the defini-
tion slightly differs from the naive expectation. The Stratonovich integral of a function
𝐺[𝑥(𝑡), 𝑡] is defined as

∫
𝑡

𝑡0

𝐺[𝑥(𝑡′), 𝑡′] ∘ d𝑊(𝑡′) = lim
𝑛→∞

𝑛
∑
𝑖=1

𝐺[𝑥(𝑡𝑖−1) + 𝑥(𝑡𝑖)
2 , 𝑡𝑖−1][𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)] . (A.13)

Here, the limit again corresponds to the mean-square limit and the notation ∘ d𝑊 is
used to distinguish the Stratonovich integral from the Itô definition (A.9). For simpler
integrands of the form 𝐺[𝑥(𝑡), 𝑡] = 𝑥(𝑡), the above definition is equivalent to evaluating
the integrand at the midpoints of the subintervals [𝑡𝑖−1, 𝑡𝑖], provided the function 𝑥(𝑡) is
sufficiently smooth such that 𝑥[(𝑡𝑖−1 + 𝑡𝑖)/2] ≈ [𝑥(𝑡𝑖−1) + 𝑥(𝑡𝑖)]/2.

The Stratonovich integral is constructed such that it obeys the rules of ordinary calcu-
lus. We will make this statement more precise in the context of SDEs. As a consequence
of Stratonovich’s definition, the mean and correlation formulas Eqs. (A.10) and (A.11)
do not hold for Stratonovich integrals since the integrand and the Wiener increments
are no longer statistically independent at equal times. Intuitively, the Stratonovich in-
tegral retains some memory about the Wiener process during a time step, while the Itô
integral does not. From a physical point of few, the Stratonovich interpretation is thus
often more natural since physical noise processes always have a finite correlation time
(see Appendix A.2).

We now have all main ingredients at hand to introduce both the Itô and Stratonovich
form of SDEs and discuss how these two interpretations are related.

A.1.3. Itô Stochastic Differential Equations
A stochastic process 𝑥(𝑡) obeys an Itô SDE, written as

d𝑥(𝑡) = 𝑎[𝑥(𝑡), 𝑡] d𝑡 + 𝑏[𝑥(𝑡), 𝑡] d𝑊(𝑡) , (A.14)
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if it satisfies for all 𝑡 and 𝑡0 the integral equation

𝑥(𝑡) = 𝑥(𝑡0) + ∫
𝑡

𝑡0

d𝑡′ 𝑎[𝑥(𝑡′), 𝑡′] + ∫
𝑡

𝑡0

d𝑊(𝑡′) 𝑏[𝑥(𝑡′), 𝑡′] . (A.15)

The drift coefficient 𝑎[𝑥(𝑡), 𝑡] characterizes the deterministic part of the SDE, while
the stochastic part is described by the diffusion coefficient 𝑏[𝑥(𝑡), 𝑡]. Existence and
uniqueness of solutions to Eq. (A.14) can be shown similarly as in the theory of ordinary
differential equations (ODEs) by assuming suitable Lipschitz and growth conditions for
the coefficient functions. The solution 𝑥(𝑡) of an Itô SDE is also a Markov process.
Crucially, 𝑥(𝑡) is a non-anticipating function, to which the rules in Appendix A.1.2
apply.

We can now derive Itô’s formula for the change of variables, which is also known as
the stochastic chain rule. To this end, we compute the differential of a function 𝑓[𝑥(𝑡)]:

d𝑓[𝑥(𝑡)] = 𝑓[𝑥(𝑡) + d𝑥(𝑡)] − 𝑓[𝑥(𝑡)] = 𝑓 ′[𝑥(𝑡)] d𝑥(𝑡) + 1
2𝑓 ′′[𝑥(𝑡)] d𝑥(𝑡)2 + …

= {𝑎[𝑥(𝑡), 𝑡]𝑓 ′[𝑥(𝑡)] + 1
2𝑏2[𝑥(𝑡), 𝑡]𝑓 ′′[𝑥(𝑡)]} d𝑡 + 𝑏[𝑥(𝑡), 𝑡]𝑓 ′[𝑥(𝑡)] d𝑊(𝑡) .

(A.16)

The last line follows by using the SDE (A.14) and the rule d𝑊 2 = d𝑡 [see Eq. (A.12)],
as well as the fact that all other higher-order differentials d𝑡2, d𝑡 d𝑊 , etc. vanish. The
appearance of the second-order derivative as a consequence of d𝑊 2 = d𝑡 is what deeply
distinguishes Itô calculus from ordinary calculus.

A system of Itô SDEs for a 𝑑-dimensional stochastic vector 𝒙(𝑡) and an 𝑚-dimensional
Wiener process 𝑾 (𝑡) can be written as

d𝒙(𝑡) = 𝑨(𝒙, 𝑡) d𝑡 + 𝐵(𝒙, 𝑡) d𝑾 (𝑡) , (A.17)

where 𝑨(𝒙, 𝑡) is the 𝑑-dimensional drift vector and 𝐵(𝒙, 𝑡) is the diffusion matrix of
dimensions 𝑑 × 𝑚. Then, using d𝑊𝑖 d𝑊𝑗 = 𝛿𝑖𝑗 d𝑡, the Itô formula generalizes to

d𝑓(𝒙) = { ∑
𝑖

𝐴𝑖(𝒙, 𝑡)𝜕𝑖𝑓(𝒙) + 1
2 ∑

𝑖,𝑗
[𝐵(𝒙, 𝑡)𝐵⊺(𝒙, 𝑡)]𝑖𝑗𝜕𝑖𝜕𝑗𝑓(𝒙)} d𝑡

+ ∑
𝑖,𝑗

𝐵𝑖𝑗(𝒙, 𝑡)𝜕𝑖𝑓(𝒙) d𝑊𝑗(𝑡) .
(A.18)

This result can be used to establish a connection between SDEs and Fokker–Planck
equations. The former describe the time evolution of individual realizations of a stochas-
tic process 𝒙(𝑡), while the latter determine the evolution of the corresponding conditional
probability density 𝑝(𝒙, 𝑡 | 𝒙0, 𝑡). To see how these descriptions are connected, we con-
sider the time evolution of the expectation value of an arbitrary function 𝑓[𝒙(𝑡)], which
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can be expressed as

d
d𝑡⟪𝑓[𝒙(𝑡)]⟫ = ∫ d𝒙 𝑓(𝒙) 𝜕

𝜕𝑡𝑝(𝒙, 𝑡 | 𝒙0, 𝑡0)

= ∫ d𝒙 { ∑
𝑖

𝐴𝑖(𝒙, 𝑡)𝜕𝑖𝑓(𝒙) + 1
2 ∑

𝑖,𝑗
[𝐵(𝒙, 𝑡)𝐵⊺(𝒙, 𝑡)]𝑖𝑗𝜕𝑖𝜕𝑗𝑓(𝒙)} 𝑝(𝒙, 𝑡 | 𝒙0, 𝑡0) .

(A.19)

The first line uses the definition of the expectation value, while the second line is directly
obtained by taking the expectation value of Itô’s formula (A.18). Then, after integra-
tion by parts, assuming that the boundary terms vanish, we find that the conditional
probability density must satisfy the Fokker–Planck equation

𝜕
𝜕𝑡𝑝(𝒙, 𝑡) = − ∑

𝑖

𝜕
𝜕𝑥𝑖

[𝐴𝑖(𝒙, 𝑡)𝑝(𝒙, 𝑡)] + 1
2 ∑

𝑖,𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
{[𝐵(𝒙, 𝑡)𝐵⊺(𝒙, 𝑡)]𝑖𝑗𝑝(𝒙, 𝑡)} .

(A.20)
Thus, the Itô SDE (A.14) is completely equivalent to the Fokker–Planck equation (A.3)
with drift vector 𝑨(𝒙, 𝑡) and diffusion matrix 𝐵(𝒙, 𝑡)𝐵⊺(𝒙, 𝑡).

A.1.4. Stratonovich Stochastic Differential Equations
We have seen that the Itô SDE (A.14) is defined in terms of the corresponding integral
equation (A.15) involving the Itô stochastic integral. Alternatively, we may also use the
Stratonovich interpretation. That is, 𝒙(𝑡) is a solution of the Stratonovich SDE

d𝒙(𝑡) = 𝑨(𝒙, 𝑡) d𝑡 + 𝐵(𝒙, 𝑡) ∘ d𝑾 (𝑡) (A.21)

if it satisfies for all 𝑡 and 𝑡0 the integral equation

𝒙(𝑡) = 𝒙(𝑡0) + ∫
𝑡

𝑡0

d𝑡′ 𝑨[𝒙(𝑡′), 𝑡′] + ∫
𝑡

𝑡0

𝐵[𝒙(𝑡′), 𝑡′] ∘ d𝑾 (𝑡′) , (A.22)

where the underbar distinguishes the drift vector of a Stratonovich SDE from that of an
Itô SDE and the circle in the stochastic part indicates the use of Stratonovich integration.

It can be shown that the Stratonovich SDE (A.21) is equivalent to the Itô SDE (A.17)
with the same diffusion matrix 𝐵(𝒙, 𝑡), but a modified drift vector

𝐴𝑖(𝒙, 𝑡) = 𝐴𝑖(𝒙, 𝑡) + 1
2

𝑚
∑
𝑗=1

𝑑
∑
𝑘=1

𝐵𝑘𝑗(𝒙, 𝑡)𝜕𝑘𝐵𝑖𝑗(𝒙, 𝑡) . (A.23)

The extra contribution to the drift term is sometimes called a noise-induced drift. This
formula permits the conversion between SDEs in Itô and Stratonovich form depending
on which formulation is more convenient for a certain application. Remarkably, in the
case of additive noise, where the diffusion matrix does not depend on the solution 𝒙(𝑡),

204



𝐵(𝒙, 𝑡) ≡ 𝐵(𝑡), the Itô and Stratonovich interpretations give the same answer. Ac-
cording to Eq. (A.23), the difference between Itô and Stratonovich SDEs arises only for
multiplicative noise, where 𝐵 depends on the solution 𝒙(𝑡).

The Fokker–Planck equation corresponding to the Stratonovich SDE (A.21) can be
written in the form

𝜕
𝜕𝑡𝑝(𝒙, 𝑡) = − ∑

𝑖

𝜕
𝜕𝑥𝑖

[𝐴𝑖(𝒙, 𝑡)𝑝(𝒙, 𝑡)] + 1
2 ∑

𝑖,𝑗,𝑘

𝜕
𝜕𝑥𝑖

{𝐵𝑖𝑗(𝒙, 𝑡) 𝜕
𝜕𝑥𝑘

[𝐵𝑘𝑗(𝒙, 𝑡)𝑝(𝒙, 𝑡)]} .

(A.24)
Using the conversion formula between Itô and Stratonovich SDEs (A.23) as well as the

Itô formula for the change of variables (A.18), it can be shown that in the Stratonovich
case the same rules as in ordinary calculus apply.

When modeling real systems by SDEs, the natural question arises whether to choose
the Itô or Stratonovich interpretation. While the “right” choice varies between differ-
ent applications, physical systems where the stochastic description arises as the white-
noise idealization of a noise process with finite correlation time are usually described by
Stratonovich SDEs. One reason for this is that in most realistic physical systems the
noise process actually corresponds to an effective description of a rapidly fluctuating,
yet smoothly varying variable, e.g., an electric field. The “true” physical system natu-
rally obeys ordinary calculus and so should the effective stochastic description, which
requires the Stratonovich interpretation. In the next section, we will illustrate this at
the example of a quantum mechanical two-level system subject to frequency noise.

A.2. Example: Qubit Subject to Frequency Noise
As an instructive example of relevance for the applications presented in Section 2.3.3,
we consider a two-level quantum system (qubit) subject to frequency noise. We will
show that for each noise realization, the system evolves unitarily under a stochastic
Schrödinger equation in Stratonovich form, while the ensemble average over all noise
realizations obeys a Lindblad master equation.

For concreteness, we take the qubit states to be the ground state |𝑔⟩ and excited
state |𝑒⟩ of an atom. The Hamiltonian of a two-level atom coupled to a classical electric
field 𝐸(𝑡) = 𝐸0 cos 𝜙(𝑡) in the rotating wave approximation is given by

𝐻(𝑡) = ℏ𝜔0|𝑒⟩⟨𝑒| + ℏ𝛺
2 (e𝑖𝜙(𝑡)|𝑔⟩⟨𝑒| + e−𝑖𝜙(𝑡)|𝑒⟩⟨𝑔|) , (A.25)

where 𝜔0 is the atomic transition frequency, 𝛺 is the Rabi frequency (proportional to 𝐸0),
and 𝜙(𝑡) = ∫𝑡

𝑡0
d𝑡′ 𝜔(𝑡′) is the phase of the light field with instantaneous frequency 𝜔(𝑡).

We can transform a state |𝜓(𝑡)⟩ to a rotating frame via a unitary transformation
𝑈(𝑡) as |𝜓𝐼(𝑡)⟩ = 𝑈(𝑡)|𝜓(𝑡)⟩. The interaction picture Hamiltonian is then given by
𝐻𝐼 = 𝑈𝐻𝑈† + 𝑖ℏ(𝜕𝑡𝑈)𝑈†. The choice

𝑈(𝑡) = exp{𝑖𝜑𝑔(𝑡)|𝑔⟩⟨𝑔| + 𝑖𝜑𝑒(𝑡)|𝑒⟩⟨𝑒|} (A.26)
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with

𝜑𝑔(𝑡) = 𝜔0(𝑡 − 𝑡0) − 𝜙(𝑡)
2 and 𝜑𝑒(𝑡) = 𝜔0(𝑡 − 𝑡0) + 𝜙(𝑡)

2 (A.27)

leads to
𝐻𝐼(𝑡) = ℏ𝛥(𝑡)

2 𝜎𝑧 + ℏ𝛺
2 𝜎𝑥 , (A.28)

where 𝜎𝑧 = |𝑔⟩⟨𝑔| − |𝑒⟩⟨𝑒|, 𝜎𝑥 = |𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|, and 𝛥(𝑡) = ̇𝜙(𝑡) − 𝜔0 is a time-dependent
detuning.

Consider now a monochromatic laser field of frequency 𝜔L subject to Gaussian white
noise 𝜉(𝑡) with ⟪𝜉(𝑡)⟫ = 0 and ⟪𝜉(𝑡)𝜉(𝑡′)⟫ = 𝛿(𝑡 − 𝑡′), i.e., 𝜔(𝑡) = 𝜔L + √𝜅𝜉(𝑡). The
noise process 𝜉(𝑡) may be considered as the white-noise idealization of a physical colored
noise process with a spectrum that is approximately flat for all relevant frequency scales
in the system. As will become clear further below, 𝜅 plays the role of a dephasing rate.
The phase of the electric field then becomes

𝜙(𝑡) = 𝜔L(𝑡 − 𝑡0) + √𝜅[𝑊(𝑡) − 𝑊(𝑡0)] , (A.29)

where 𝑊(𝑡) is a Wiener process (Brownian motion). That is, the phase of the electric
field performs a random walk subject to a constant drift determined by the carrier
frequency 𝜔L.

The Schrödinger equation in the rotating frame thus becomes an SDE,

𝑖ℏ d|𝜓(𝑡)⟩ = 𝐻0|𝜓(𝑡)⟩ d𝑡 + ℏ√𝜅𝜎𝑧|𝜓(𝑡)⟩ ∘ d𝑊(𝑡) , (A.30)

where 𝐻0 = ℏ𝛥𝜎𝑧/2 + ℏ𝛺𝜎𝑥/2 is the deterministic Hamiltonian with detuning 𝛥 =
𝜔L − 𝜔0. We will now argue that the Stratonovich interpretation is the correct one to
use in this scenario.

Let us assume the Stratonovich interpretation for Eq. (A.30) and transform this equa-
tion to an Itô SDE via the Itô–Stratonovich conversion formula (A.23), yielding

d|𝜓(𝑡)⟩ = (− 𝑖
ℏ𝐻0 − 𝜅

2 𝜎2
𝑧)|𝜓(𝑡)⟩ d𝑡 + ℏ√𝜅𝜎𝑧|𝜓(𝑡)⟩ d𝑊(𝑡) . (A.31)

Since the solution to an Itô SDE is non-anticipating, the state |𝜓(𝑡)⟩ and the Wiener
increment d𝑊(𝑡) are uncorrelated at equal times. We may therefore take the noise
average of the above equation,

d⟪|𝜓(𝑡)⟩⟫ = (− 𝑖
ℏ𝐻0 − 𝜅

2 𝜎2
𝑧)⟪|𝜓(𝑡)⟩⟫ d𝑡 , (A.32)

with solution ⟪|𝜓(𝑡)⟩⟫ = e−𝜅𝑡/2e−𝑖𝐻0𝑡/ℏ|𝜓0⟩. Although this average probability am-
plitude is not a physically useful observable, the exponential decay of this quantity
reflects the dephasing of different realizations due to the frequency noise and is intu-
itively expected. In contrast, by interpreting Eq. (A.30) as an Itô SDE, we would obtain
⟪|𝜓(𝑡)⟩⟫ = e−𝑖𝐻0𝑡/ℏ|𝜓0⟩ and the effect of dephasing would be absent.
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Physically relevant observables are generally quadratic in the state. To this end, we
consider the time evolution of the expectation value of an observable 𝑂. By virtue of
Itô’s formula (A.16), using d𝑊 2 = d𝑡, one easily finds

d⟨𝜓(𝑡)|𝑂|𝜓(𝑡)⟩ = (d⟨𝜓(𝑡)|)𝑂|𝜓(𝑡)⟩ + ⟨𝜓(𝑡)|𝑂(d|𝜓(𝑡)⟩) + (d⟨𝜓(𝑡)|)𝑂(d|𝜓(𝑡)⟩)

= ⟨𝜓(𝑡)|( 𝑖
ℏ[𝐻0, 𝑂] + 𝜅[𝜎𝑧𝑂𝜎𝑧 − 1

2{𝜎2
𝑧 , 𝑂}])|𝜓(𝑡)⟩ d𝑡

+ ⟨𝜓(𝑡)|(𝑖√𝜅[𝜎𝑧, 𝑂])|𝜓(𝑡)⟩ d𝑊(𝑡) .

(A.33)

For 𝑂 = 𝟙, this equation describes the change of the norm of the state. In fact, we
have d⟨𝜓|𝜓⟩ = 0, i.e., the state evolves unitarily on the stochastic level. If we had not
started from the Stratonovich interpretation, but used the Itô one, the anti-commutator
term {𝜎2

𝑧 , 𝑂} would be missing in Eq. (A.33). We would then find d⟨𝜓|𝜓⟩ = 𝜅⟨𝜓|𝜓⟩ d𝑡,
implying an unphysical exponential growth of the norm of the state. Consequently, de-
manding unitary time evolution for each stochastic realization requires the Stratonovich
interpretation of Eq. (A.30).

After taking the ensemble average of Eq. (A.33), the deterministic part can be rewrit-
ten as

d Tr[𝑂𝜌(𝑡)] = Tr(− 𝑖
ℏ[𝐻0, 𝜌(𝑡)] + 𝜅[𝜎𝑧𝜌(𝑡)𝜎𝑧 − 1

2{𝜎2
𝑧 , 𝜌(𝑡)}]) , (A.34)

where 𝜌(𝑡) = ⟪|𝜓(𝑡)⟩⟨𝜓(𝑡)|⟫ is the noise-averaged density operator. Since the observ-
able 𝑂 is arbitrary, this implies that 𝜌(𝑡) obeys the Lindblad master equation

̇𝜌(𝑡) = − 𝑖
ℏ[𝐻0, 𝜌(𝑡)] + 𝜅(𝐿𝜌(𝑡)𝐿† − 1

2{𝐿†𝐿, 𝜌(𝑡)}) (A.35)

with the Hermitian Lindblad operator 𝐿 = 𝐿† = 𝜎𝑧. Of course, this result could have
been directly obtained by applying the Itô formula to the stochastic density matrix
|𝜓(𝑡)⟩⟨𝜓(𝑡)| and then taking the ensemble average.

A.3. Numerical Solution of Stochastic Differential
Equations

There exists a vast number of accurate, robust, and efficient numerical methods for inte-
grating ODEs [385]. Although many approaches can also be applied to their stochastic
counterparts, the numerical solution of SDEs is in general much more demanding. In
particular, higher-order general-purpose integrators for SDEs are difficult to construct
and available schemes are often restricted to a certain class of problems with a special
structure. In what follows, after briefly reviewing basic integration schemes for gen-
eral SDEs, we will discuss higher-order Taylor methods as well as Magnus integrators
for linear SDEs, relevant for the applications discussed in Chapter 2. A comprehensive
overview of numerical methods for SDEs can be found in Ref. [183], where large parts
of this section are based upon.
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Weak and Strong Convergence

Before considering concrete schemes, we introduce the notion of weak and strong con-
vergence of approximations to solutions of SDEs.

Strong convergence means that the approximation converges path-wise to the solution.
Let 𝑥(𝑡) be the solution of an SDE (in either Ito or Stratonovich form) for a given sample
path 𝑊(𝑡) of the Wiener process and denote by 𝑦𝛥𝑡(𝑡) a time discrete approximation
of 𝑥(𝑡) with (maximum) time step size 𝛥𝑡. Then, the approximation 𝑦𝛥𝑡(𝑡) converges
strongly with order 𝛾 > 0 to the solution 𝑥(𝑡) at time 𝑡 if [183]

⟪‖𝑥(𝑡) − 𝑦𝛥𝑡(𝑡)‖⟫ = 𝒪(𝛥𝑡𝛾) . (A.36)

In the deterministic case, the left-hand side is known as the global truncation error.
In some applications, one is only interested in approximating the moments of the solu-

tion ⟪𝑥𝑝(𝑡)⟫ rather than individual trajectories. In this case, the convergence conditions
for a numerical approximation can be relaxed, which leads to the notion of weak con-
vergence. The time discrete approximation 𝑦𝛥𝑡(𝑡) with (maximum) time step size 𝛥𝑡
converges weakly with order 𝛽 > 0 to the solution 𝑥(𝑡) at time 𝑡 if [183]

‖⟪𝑔[𝑥(𝑡)]⟫ − ⟪𝑔[𝑦𝛥𝑡(𝑡)]⟫‖ = 𝒪(𝛥𝑡𝛽) , (A.37)

for all functions 𝑔 within a suitable function space, which, for simplicity, we take as the
space of all polynomials. Thus, weak convergence of a numerical approximation implies
the convergence of all moments at weak order 𝛽.

Strong convergence at order 𝛾 implies weak convergence at order 𝛽 ≥ 𝛾. In general,
both the weak and strong convergence order of a numerical scheme for SDEs are less
than or equal to the deterministic convergence order of its counterpart for ODEs.

A.3.1. Euler–Maruyama Scheme
The simplest scheme for integrating the Itô SDE (A.17) is obtained by discretizing the Itô
stochastic integral in a straightforward way via the partial sums in the definition (A.9).
This leads to the so-called Euler–Maruyama scheme (or simply Euler scheme), which for
a 𝑑-dimensional system with an 𝑚-component Wiener process reads [183]

𝒚𝑛+1 = 𝒚𝑛 + 𝑨(𝒚𝑛, 𝑡𝑛)𝛥𝑡𝑛 + 𝐵(𝒚𝑛, 𝑡𝑛)𝛥𝑾𝑛 . (A.38)

Here, 𝒚𝑛 = 𝒚(𝑡𝑛) represents the approximate solution at time 𝑡𝑛 with given initial
value 𝒚0, 𝛥𝑡𝑛 = 𝑡𝑛+1 − 𝑡𝑛 is the time step size (which from now on we assume to be
the same for all time steps), and 𝛥𝑾𝑛 = 𝑾 (𝑡𝑛+1) − 𝑾 (𝑡𝑛) is the vector of Wiener
increments.

The Wiener increments can be sampled as independent Gaussian random variables
of zero mean and variance 𝛥𝑡 for each component and at each time step (see Ap-
pendix A.1.1). The sum of the Wiener increments then yields a discretized sample
path of the Wiener process, 𝑾 (𝑡𝑛) = ∑𝑛

𝑖=1 𝛥𝑾𝑖, with 𝑾 (𝑡0) = 0. To compare strong
approximations at different time step sizes, e.g., for adaptive step size control, it is
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often necessary to refine an existing Brownian path in a consistent way. This can be
achieved by sampling the Wiener process at a finer step size to begin with or by sampling
intermediate values according to

𝑾 (𝑡𝑛+ 1
2
) = 𝑾 (𝑡𝑛) + 1

2𝛥𝑾𝑛 +
√

𝛥𝑡
2 𝒛 , (A.39)

where 𝒛 is a vector of independent standard Gaussian random variables [386].
It can be shown that the Euler scheme generally converges with strong order 𝛾 = 0.5

and weak order 𝛽 = 1. The advantage of the Euler scheme is its simplicity and the fact
that it works for any Itô SDE of any noise type. On the downside, due to the low order
of convergence, the scheme is not very efficient, especially if accurate strong solutions
are sought. In addition, as is well-known for ODEs, the explicit Euler scheme suffers
from numerical stability issues for stiff problems, which can only be avoided by choosing
a very small time step up to the point that computation becomes unfeasible.

A.3.2. Milstein Scheme
By virtue of stochastic Taylor expansion, it is possible to derive higher-order schemes. To
this end, we consider the integral version of Itô’s formula (A.18) in the multi-dimensional
case [183],

𝑓[𝒙(𝑡), 𝑡] − 𝑓[𝒙(𝑡0), 𝑡0] = ∫
𝑡

𝑡0

d𝑡′ 𝐿0𝑓[𝒙(𝑡′), 𝑡′] +
𝑚

∑
𝑗=1

∫
𝑡

𝑡0

d𝑊 𝑗(𝑡) 𝐿𝑗𝑓[𝒙(𝑡′), 𝑡′] (A.40)

with the definitions

𝐿0 = 𝜕
𝜕𝑡 +

𝑑
∑
𝑘=1

𝑎 𝜕
𝜕𝑥𝑘

+ 1
2

𝑑
∑

𝑘,𝑙=1

𝑚
∑
𝑗=1

𝑏𝑘,𝑗𝑏𝑙,𝑗 𝜕2

𝜕𝑥𝑘𝜕𝑥𝑙
, (A.41a)

𝐿𝑗 =
𝑑

∑
𝑘=1

𝑏𝑘,𝑗 𝜕
𝜕𝑥𝑘

, (A.41b)

where for brevity we have omitted the arguments of the coefficient functions1 𝑎[𝒙(𝑡), 𝑡]
and 𝑏[𝒙(𝑡), 𝑡]. The stochastic Taylor expansion of the solution to an Itô SDE follows by
iteratively applying Itô’s formula in the form (A.16) to the coefficient functions 𝑎[𝒙(𝑡), 𝑡]
and 𝑏[𝒙(𝑡), 𝑡] in the intergral equation (A.15). Keeping only terms up to first order in
𝛥𝑡 = 𝑡 − 𝑡0 (which includes single and double stochastic integrals since d𝑊 2 = d𝑡), we
arrive at

𝑥𝑘
𝑡 = 𝑥𝑘

𝑡0
+ 𝑎𝑘

𝑡0
∫

𝑡

𝑡0

d𝑡′ +
𝑚

∑
𝑗=1

𝑏𝑘,𝑗
𝑡0

∫
𝑡

𝑡0

d𝑊𝑡′ +
𝑚

∑
𝑗1,𝑗2=1

𝐿𝑗1𝑏𝑘,𝑗2
𝑡0

∫
𝑡

𝑡0

∫
𝑡′

𝑡0

d𝑊 𝑗1
𝑡′′ d𝑊 𝑗2

𝑡′ + 𝒪(𝛥𝑡3/2) ,

(A.42)
1In this section, we use lower-case letters to denote the coefficient functions of SDEs for a consistent

notation with Ref. [183].
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where we have written time arguments as subscripts for conciseness. This Taylor expan-
sion to first order in 𝛥𝑡 immediately yields the famous Milstein scheme

𝑦𝑘
𝑛+1 = 𝑦𝑘

𝑛 + 𝑎𝑘𝛥𝑡 +
𝑚

∑
𝑗=1

𝑏𝑘,𝑗𝛥𝑊 𝑗 +
𝑚

∑
𝑗1,𝑗2=1

𝐿𝑗1𝑏𝑘,𝑗2𝐼(𝑗1,𝑗2) , (A.43)

where 𝐼(𝑗1,𝑗2) denotes the double Itô integral appearing in Eq. (A.42). For 𝑗1 = 𝑗2, the
double Itô integrals can generally be computed as [183]

𝐼(𝑗,𝑗) = 1
2[(𝛥𝑊 𝑗)2 − 𝛥𝑡] . (A.44)

Unfortunately, for 𝑗1 ≠ 𝑗2, the quantity 𝐼(𝑗1,𝑗2) cannot simply be expressed in terms of
Wiener increments and must be approximated otherwise, e.g., using truncated Fourier
series [183]. However, if the noise is commutative, i.e., if it fulfills the commutativity
condition

𝐿𝑗1𝑏𝑘,𝑗2 = 𝐿𝑗2𝑏𝑘,𝑗1 , (A.45)
one can use the relation 𝐼(𝑗1,𝑗2) + 𝐼(𝑗2,𝑗1) = 𝛥𝑊 𝑗1𝛥𝑊 𝑗2 [183] such that the Milstein
scheme simplifies to

𝑦𝑘
𝑛+1 = 𝑦𝑘

𝑛 + 𝑎𝑘𝛥𝑡 +
𝑚

∑
𝑗=1

𝑏𝑘,𝑗𝛥𝑊 𝑗 + 1
2

𝑚
∑

𝑗1,𝑗2=1
𝐿𝑗1𝑏𝑘,𝑗2(𝑊 𝑗1𝛥𝑊 𝑗2 − 𝛿𝑗1𝑗2

𝛥𝑡) . (A.46)

A similar procedure can be applied to derive Taylor schemes for Stratonovich SDEs. If
𝒙(𝑡) is a solution to the Stratonovich SDE (A.21), the formula for the change of variable
takes a similar form as in Eq. (A.40) [183],

𝑓[𝒙(𝑡), 𝑡] − 𝑓[𝒙(𝑡0), 𝑡0] = ∫
𝑡

𝑡0

d𝑡′ 𝐿0𝑓[𝒙(𝑡′), 𝑡′] +
𝑚

∑
𝑗=1

∫
𝑡

𝑡0

∘ d𝑊 𝑗(𝑡) 𝐿𝑗𝑓[𝒙(𝑡′), 𝑡′] (A.47)

with

𝐿0 = 𝜕
𝜕𝑡 +

𝑑
∑
𝑘=1

𝑎 𝜕
𝜕𝑥𝑘

, (A.48a)

𝐿𝑗 =
𝑑

∑
𝑘=1

𝑏𝑘,𝑗 𝜕
𝜕𝑥𝑘

. (A.48b)

The simpler structure of 𝐿0 as compared to the Itô case in Eq. (A.41a) reflects the
fact that Stratonovich SDEs obey the rules of ordinary calculus. As a consequence, the
Stratonovich Taylor expansion has fewer terms than the Itô Taylor expansion, which is
an advantage for deriving numerical schemes.

The Milstein scheme for solving a general system of SDEs in Stratonovich form
reads [183]

𝑦𝑘
𝑛+1 = 𝑦𝑘

𝑛 + 𝑎𝑘𝛥𝑡 +
𝑚

∑
𝑗=1

𝑏𝑘,𝑗𝛥𝑊 𝑗 +
𝑚

∑
𝑗1,𝑗2=1

𝐿𝑗1𝑏𝑘,𝑗2𝐽(𝑗1,𝑗2) , (A.49)
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where 𝐽(𝑗1,𝑗2) denotes the double Stratonovich integral. For 𝑗1 = 𝑗2, we have 𝐽(𝑗,𝑗) =
(𝛥𝑊 𝑗)2/2, while 𝑗1 ≠ 𝑗2 requires some kind of approximation in general. For commu-
tative noise, the Milstein scheme for Stratonovich SDEs simplifies to

𝑦𝑘
𝑛+1 = 𝑦𝑘

𝑛 + 𝑎𝑘𝛥𝑡 +
𝑚

∑
𝑗=1

𝑏𝑘,𝑗𝛥𝑊 𝑗 + 1
2

𝑚
∑

𝑗1,𝑗2=1
𝐿𝑗1𝑏𝑘,𝑗2𝑊 𝑗1𝛥𝑊 𝑗2 . (A.50)

The Milstein scheme has strong and weak order of convergence 𝛾 = 𝛽 = 1. Higher or-
der Taylor schemes can be constructed by computing the Taylor expansion in Eq. (A.42)
to the desired order. A general formula can be found in Ref. [183]. Since the number of
terms generally increases rapidly when going to higher orders, such schemes are mostly
practical if the SDE has a certain simplifying structure. In addition, the multiple stochas-
tic integrals arising in higher-order Taylor schemes cannot be computed analytically and
generally require some kind of approximation, which increases the computational cost.
Finally, implementing the Milstein scheme (or higher-order Taylor schemes) requires the
explicit specification of derivatives of the coefficient functions, which can be inconve-
nient in practice. This can be remedied by approximating derivatives through finite
differences, which leads to explicit or implicit Runge–Kutta schemes [183].

A.3.3. Magnus Integrators for Linear Stochastic Differential Equations
Linear SDEs are common in many applications. They arise, for instance, from the spa-
tial discretization of partial differential equations describing many models in continuum
mechanics [385]. Furthermore, the play an important role for diffusive unravelings of
quantum master equation in the theory of open quantum systems [186]. In the engineered
dephasing scenario discussed in Section 2.3.3, the dynamics is governed on a fundamen-
tal level by a linear stochastic Schrödinger or von Neumann equation. The purpose of
this section is to discuss accurate and robust schemes for the numerical integration of
such systems.

A general homogeneous linear Itô SDE for a 𝑑-dimensional stochastic process 𝑥(𝑡) and
an 𝑚-component Wiener process takes the form

d𝒙(𝑡) = 𝐴(𝑡)𝒙(𝑡) d𝑡 +
𝑚

∑
𝑗=1

𝐵𝑗(𝑡)𝒙(𝑡) d𝑊(𝑡) , (A.51)

where the 𝑑 × 𝑑 matrices 𝐴(𝑡) and 𝐵𝑗(𝑡) characterize the deterministic and stochastic
evolution, respectively. If all of these matrices commute with each other at arbitrary
times, the solution is given by [183]

𝒙(𝑡) = exp[∫
𝑡

𝑡0

d𝑡′ [𝐴(𝑡′) − 1
2

𝑚
∑
𝑗=1

(𝐵𝑗)2(𝑡′)] +
𝑚

∑
𝑗=1

∫
𝑡

𝑡0

d𝑊 𝑗(𝑡′) 𝐵𝑗(𝑡′)]𝒙(𝑡0) . (A.52)

In the non-commutative case, however, there is no known explicit solution of Eq. (A.51)
in general.
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By means of Eq. (A.23), the linear Itô SDE can be transformed into the equivalent
linear Stratonovich SDE

d𝒙(𝑡) = 𝐴(𝑡)𝒙(𝑡) d𝑡 +
𝑚

∑
𝑗=1

𝐵𝑗(𝑡)𝒙(𝑡) ∘ d𝑊(𝑡) , (A.53)

where the Stratonovich drift term is related to that of the equivalent Itô SDE via

𝐴(𝑡) = 𝐴(𝑡) − 1
2

𝑚
∑
𝑗=1

(𝐵𝑗)2(𝑡) . (A.54)

The solution of the linear Stratonovich SDE (A.53) in the commutative case, [𝐴(𝑡), 𝐵𝑗(𝑡′)] =
[𝐵𝑗1(𝑡), 𝐵𝑗2(𝑡′)] = 0, reads

𝒙(𝑡) = exp[∫
𝑡

𝑡0

d𝑡′ 𝐴(𝑡′) +
𝑚

∑
𝑗=1

∫
𝑡

𝑡0

d𝑊 𝑗(𝑡′) 𝐵𝑗(𝑡′)]𝒙(𝑡0) , (A.55)

which takes the same form as in ordinary calculus.
The Euler–Maruyama scheme and the Milstein scheme presented in the previous sec-

tions can in principle also be applied to linear SDEs. For linear SDEs, commutative
noise means that the noise matrices all commute, [𝐵𝑗1 , 𝐵𝑗2 ] = 0. However, in many
applications, the dimension 𝑑 of the linear system is large and the problem tends to
become stiff as the spectral width of the matrices on the right-hand side grows. Under
such conditions, explicit schemes like the Euler or Milstein method are known to perform
poorly because numerical stability enforces a very small time step size. This issue due
to numerical stiffness also arises for higher-order explicit schemes. Therefore, numerical
integration of stiff equations generally requires the use of implicit schemes. However, this
can be problematic for SDEs if the stiffness is in the noise term: implicit schemes require
the solution of a linear system at each time step, which can become poorly conditioned
due to the unboundedness of the Wiener process [183]. Another strategy to handle nu-
merical stiffness in linear SDEs is the use of exponential integrators. This approach often
allows one to construct symplectic integrators, which respect certain conservation laws
of the underlying system, e.g., unitarity in case of a stochastic Schrödinger equation.
In what follows, we discuss stochastic Magnus integration [387, 388] as a powerful and
robust method for solving time-dependent linear SDEs.

Stochastic Magnus Integration

The solution of a homogeneous linear system of ODEs
d
d𝑡𝒚(𝑡) = 𝐴(𝑡)𝒚(𝑡) (A.56)

with a time-dependent matrix 𝐴(𝑡) can formally be expanded in a Dyson series, which
leads to the formal representation in terms of the time-ordered exponential

𝒚(𝑡) = 𝒯 exp [ ∫
𝑡

𝑡0

d𝑡′ 𝐴(𝑡′)]𝒚0 , (A.57)
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where 𝒯 is the time-ordering operator.
A different approach is to express the solution as

𝒚(𝑡) = exp[𝛺(𝑡)]𝒚0 , (A.58)

in terms of a suitable matrix 𝛺(𝑡). This matrix can be written as an infinite series of
integrals over nested commutators, known as the Magnus expansion, whose first few
terms are given by [388]

𝛺(𝑡) = ∫
𝑡

𝑡0

d𝜏 𝐴𝜏 + 1
2 ∫

𝑡

𝑡0

d𝜏 ∫
𝜏

𝑡0

d𝜎 [𝐴𝜏 , 𝐴𝜎]

+ 1
6 ∫

𝑡

𝑡0

d𝜏 ∫
𝜏

𝑡0

d𝜎 ∫
𝜎

𝑡0

d𝜌 {[𝐴𝜏 , [𝐴𝜎, 𝐴𝜌]] + [[𝐴𝜏 , 𝐴𝜎], 𝐴𝜌]} + …
(A.59)

This approach can be extended to linear SDEs. For the linear Stratonovich SDE (A.53),
we can formally replace 𝐴(𝑡) d𝑡 → 𝐴(𝑡) d𝑡 + ∑𝑗 𝐵𝑗(𝑡) ∘ d𝑊 𝑗(𝑡) in the standard Magnus
formula to arrive at the stochastic Magnus expansion [387]

𝛺(𝑡) = ∫
𝑡

𝑡0

(𝐴𝜏 d𝜏 + 𝐵𝑗
𝜏 ∘ d𝑊 𝑗

𝜏 ) + 1
2 ∫

𝑡

𝑡0

[𝐴𝜏 d𝜏 + 𝐵𝑗1𝜏 ∘ d𝑊 𝑗1 , ∫
𝜏

𝑡0

(𝐴𝜎 d𝜎 + 𝐵𝑗2𝜎 ∘ d𝑊 𝑗2𝜎 )]

+ 1
4 ∫

𝑡

𝑡0

[𝐴𝜏 d𝜏 + 𝐵𝑗1𝜏 ∘ d𝑊 𝑗1𝜏 , ∫
𝑡

𝑡0

[𝐴𝜎 + 𝐵𝑗2𝜎 ∘ d𝑊 𝑗2𝜎 , ∫
𝜎

𝑡0

(𝐴𝜌 d𝜌 + 𝐵𝑗3𝜌 ∘ d𝑊 𝑗3𝜌 )]]

+ 1
12 ∫

𝑡

𝑡0

[[𝐴𝜏 d𝜏 + 𝐵𝑗1𝜏 ∘ d𝑊 𝑗1𝜏 , ∫
𝑡

𝑡0

(𝐴𝜎 + 𝐵𝑗2𝜎 ∘ d𝑊 𝑗2𝜎 )], ∫
𝜎

𝑡0

(𝐴𝜌 d𝜌 + 𝐵𝑗3𝜌 ∘ d𝑊 𝑗3𝜌 )]

+ … ,
(A.60)

where a sum over repeated indices is implied.
As shown in Ref. [387] for constant matrices 𝐴 and 𝐵𝑗, further evaluation of Eq. (A.60)

leads to an expansion in terms of nested commutators involving multiple stochastic inte-
grals, which, in order to arrive at a practicable scheme, must be approximated in a suit-
able way [183]. Here, we follow the strategy pointed out in Ref. [389] and use integration
by parts to avoid the necessity to approximate certain stochastic integrals. To arrive at a
practicable scheme, we first make some simplifying assumptions appropriate for our pur-
poses. We assume the time-dependent matrix to have the structure 𝐴(𝑡) = 𝐴0 + 𝑓(𝑡)𝐴1,
where 𝐴0 and 𝐴1 are constant (and in general non-commuting) matrices. (In what fol-
lows, we only consider the Stratonovich interpretation and omit the underbar indicating
the Stratonovich drift coefficient.) Furthermore, we assume the noise matrices 𝐵𝑗 to be
time-independent and mutually commuting, [𝐵𝑗1 , 𝐵𝑗2 ] = 0, i.e., we assume commutative
noise, as well as [𝐴0, 𝐵𝑗] = 0. These assumptions are fulfilled in the engineered dephas-
ing scenario of Section 2.3.3, where 𝐴0 = −𝑖𝐻0/ℏ and 𝐴1 = −𝑖𝐻cpl/ℏ play the role of
the unperturbed and coupling Hamiltonian, respectively, and the noise is commutative
because each noise process acts locally on each ancilla individually or there is only a
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single scalar noise process which globally acts on all ancillas. The commutativity condi-
tion on the noise represents a crucial simplification since all commutators in Eq. (A.60)
involving only noise matrices vanish. Keeping only terms with simple, but not nested
commutators, the stochastic Magnus expansion simplifies to

𝛺(𝑡) = 𝐴0 ∫
𝑡

𝑡0

d𝜏 + 𝐴1 ∫
𝑡

𝑡0

d𝜏 𝑓(𝜏) + ∑
𝑗

𝐵𝑗 ∫
𝑡

𝑡0

∘ d𝑊 𝑗(𝜏)

+ [𝐴0, 𝐴1]{ ∫
𝑡

𝑡0

d𝜏 ∫
𝜏

𝑡0

d𝜎 𝑓(𝜎) − ∫
𝑡

𝑡0

d𝜏 𝑓(𝜏) ∫
𝜏

𝑡0

d𝜎}

+ 1
2

𝑚
∑
𝑗=1

[𝐴1, 𝐵𝑗]{ ∫
𝑡

𝑡0

d𝜏 𝑓(𝜏) ∫
𝜏

𝑡0

∘ d𝑊 𝑗(𝜎) − ∫
𝑡

𝑡0

∘ d𝑊 𝑗(𝜏) ∫
𝜏

𝑡0

d𝜎 𝑓(𝜎)} + …

(A.61)

Using integration by parts, the stochastic integral in the last term can be rewritten as

∫
𝑡

𝑡0

𝐹(𝜏) ∘ d𝑊 𝑗(𝜏) = 𝑊 𝑗(𝑡)𝐹(𝑡) − ∫
𝑡

𝑡0

𝑊 𝑗(𝜏)𝑓(𝜏) d𝜏 , (A.62)

where 𝐹(𝑡) = ∫𝑡
𝑡0

𝑓(𝜏) d𝜏 . We then arrive at

𝛺(𝑡) = 𝐴0(𝑡 − 𝑡0) + 𝐴1 ∫
𝑡

𝑡0

d𝜏 𝑓(𝜏) + ∑
𝑗

𝐵𝑗[𝑊 𝑗(𝑡) − 𝑊 𝑗(𝑡0)]

+ 1
2[𝐴0, 𝐴1] ∫

𝑡

𝑡0

d𝜏 [ ∫
𝜏

𝑡0

d𝜏 𝑓(𝜏) − 𝑓(𝜏)(𝜏 − 𝑡0)]

+
𝑚

∑
𝑗=1

[𝐴1, 𝐵𝑗]{ ∫
𝑡

𝑡0

d𝜏 𝑓(𝜏)𝑊 𝑗(𝜏) − 1
2[𝑊 𝑗(𝑡0) + 𝑊 𝑗(𝑡)]𝐹(𝑡)} + …

(A.63)

Higher-order terms of the stochastic Magnus expansion can be obtained following a
similar procedure [389]. Crucially, Eq. (A.63) does not contain any stochastic integrals
any more, but merely ordinary Riemann integrals where components of the Wiener
process appear in the integrand. These integrals can conveniently be approximated
using standard quadrature techniques.

All in all, the stochastic Magnus scheme amounts to the iteration

𝒚𝑛+1 = exp(𝛺𝑛)𝒚𝑛 , (A.64)

where the matrix 𝛺𝑛 is given by Eq. (A.63) for 𝑡0 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1. At each time
step, the current solution is multiplied by the matrix exponential of 𝛺𝑛, which can be
computed, for instance, using eigen decomposition or by means of the scaling and squar-
ing algorithm [390]. However, this procedure not only costs a lot of computing power,
but also requires large amounts of memory since the matrix exponential is typically a
dense matrix (even if the exponent is sparse), which makes it unfeasible for large prob-
lems. Fortunately, a computation of the full matrix exponential is not required, but
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it is sufficient to compute the action of the matrix exponential on a vector. This can
efficiently be achieved using Krylov subspace techniques, which require only (sparse)
matrix–vector multiplications [80, 171–173]. Moreover, each time step requires the ap-
proximation of the integrals in Eq. (A.63). Since this involves only ordinary Riemann
integrals, standard numerical integration techniques, e.g., Gaussian quadrature, can be
used. The integrals should be approximated using a finer step size than 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛,
the time step size for the Magnus iteration in Eq. (A.64). It should be noted that the
computational costs of one Magnus step are usually dominated by the computation of
the action of the matrix exponential rather than by the approximation of the integrals.

The Magnus scheme (A.64) for commutative noise is of strong order 𝛾 = 1.5 and
weak order 𝛽 = 2. The higher computational costs of a single time step compared to
explicit Taylor schemes of the same order are outweighed by the increased numerical
stability, which allows one to choose larger time steps. In particular, when applied to
a stochastic Schrödinger or von Neumann equation describing unitary time evolution,
the Magnus scheme preserves the norm of the state up to machine precision. These
properties make stochastic Magnus scheme an accurate, efficient, and robust method for
solving linear SDEs like those appearing in the engineered dephasing scenario discussed
in Section 2.3.3.
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B. Classical–Statistical Simulations and
Their Range of Validity

In this appendix, we elaborate on the classical–statistical (or truncated Wigner) method
employed in Chapter 5 to numerically study the analog reheating scenario in an ultracold
Bose gas. After introducing the basic method and describing technical details, we assess
the range of validity of classical–statistical simulations for studying reheating dynamics.

The contents of this appendix are taken from Appendix C of Ref. [108]. Most of the
text has been quoted verbatim up to minor modifications for a better embedding in the
context of this thesis. See List of Publications for a statement of contributions.

B.1. Truncated Wigner Method

In Chapter 5, the dynamics of an ultracold Bose gas, governed by the Heisenberg
equations of motion (5.15), has been simulated by means of classical–statistical sim-
ulations [324, 325], known in the literature also under the name truncated Wigner sim-
ulations [326, 327]. This method takes into account quantum fluctuations in form of
stochastic initial conditions, but relies on a deterministic time evolution governed by
semi-classical equations of motion. Quantum expectation values are obtained as sta-
tistical averages over multiple realizations. The following summary of the truncated
Wigner method is mainly based on Refs. [326, 327].

For each realization, the initial field configuration is sampled from the Wigner distri-
bution of the corresponding quantum state, which is commonly taken as the Bogoliubov
state in equilibrium. For our purposes, we consider a homogeneous scalar BEC of 𝑁
atoms at zero temperature in a box of volume 𝑉 with periodic boundary conditions.
The initial wave function is sampled as

𝛹cl(0, 𝒙) = √𝑛0e𝑖𝜃0 + ∑
𝒑≠0

[𝛼𝒑𝑢𝒑(𝒙) − 𝛼∗
𝒑𝑣∗

𝒑(𝒙)] . (B.1)

Here, the first term represents the condensate with particle density 𝑛0 = 𝑁/𝑉 and
phase 𝜃0. Due to the large occupancy of the condensate mode, the finite width of its
Wigner function can be neglected, and thus the same value of the density can be used
in each realization. To preserve the 𝑈(1) symmetry, the phase is randomly sampled
from the uniform distribution over the interval [0, 2𝜋) for each realization. The mode
functions

𝑢𝒑(𝒙) = 1√
𝑉 𝑢𝒑e𝑖𝒑𝒙/ℏ and 𝑣𝒑(𝒙) = 1√

𝑉 𝑣𝒑e𝑖𝒑𝒙/ℏ (B.2)
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are solutions of the Bogoliubov–de Gennes equations for a uniform system in a periodic
box, with real coefficients

𝑢𝒑 = √𝜖𝒑,0 + 𝑛0𝑔0
2𝜖𝒑

+ 1
2 (B.3)

and 𝑣𝒑 determined by the normalization 𝑢2
𝒑 − 𝑣2

𝒑 = 1 (cf. Section 5.3.2 for details of
the notation) [391]. In order to mimic quantum fluctuations, the quasi-particle ampli-
tudes 𝛼𝒑 are sampled as complex Gaussian random variables with zero mean, satisfying
𝛼∗𝒑𝛼𝒒 = 𝛿𝒑,𝒒/2 at zero temperature. Here, (… ) denotes the ensemble average over all
realizations. This vacuum noise corresponds to an average occupancy of half a particle
per mode, which is also known as the “quantum half”. In the simulations presented in
Chapter 5, the vacuum noise is cut off at the highest lattice momentum unless stated
otherwise.

For the purposes of Chapter 5, a simplified approach has been used, setting 𝑢𝒑 = 1
and 𝑣𝒑 = 0, such that the mode functions reduce to ordinary plane waves. Effectively,
this corresponds to preparing the Bogoliubov ground state of an ideal gas, which is ap-
propriate for the analog reheating scenario since the precise nature of the quasi-particles
seeding the parametric resonance is unimportant. As a side effect, we observe a transient
growth of population at low momenta at early times (see Fig. 5.2). The resulting 𝑝−1

behavior of the momentum distribution at low momenta matches the behavior of 𝑢2
𝒑 and

𝑣2
𝒑 for |𝒑| → 0. Therefore, the observed growth can be interpreted as an artifact of the

effective quench from an ideal Bose gas to a system with finite interaction at time 𝑡 = 0.
In the truncated Wigner method, quantum expectation values are replaced by statisti-

cal averages over the Wigner distribution. The latter correspond to expectation values of
symmetrically ordered quantum operators. Thus, the momentum distribution obtained
from classical–statistical simulations corresponds to the one defined in Eq. (1.8) plus
an extra contribution in form of the “quantum half” stemming from the commutation
relations,

1
𝑉 |𝛹cl(𝑡, 𝒑)|2 = 𝑓(𝑡, 𝒑) + 1

2 . (B.4)

Here, 𝛹cl(𝑡, 𝒑) = ∫ d𝑑𝑥 𝛹cl(𝑡, 𝒙)e−𝑖𝒑𝒙/ℏ denotes the Fourier transform of the classical field
𝛹cl(𝑡, 𝒙).

The classical–statistical simulations presented in Chapter 5 have typically been av-
eraged over at least 64 runs. The statistics is even further enhanced through radial
averages due to the isotropy of the system. The statistical error bars are thus typically
smaller than the line width in the plots.

B.2. Dimensionless Gross–Pitaevskii Equation
Each realization is propagated in time according to the GPE (1.14). To cast this equation
into a dimensionless form suitable for numerical simulations, we express time and length
in units of the characteristic scales 𝑡0 = ℏ/𝑛0𝑔0 and 𝑥0 = ℏ/√𝑚𝑛0𝑔0, respectively. In
terms of the dimensionless time ̃𝑡 = 𝑡/𝑡0, position 𝒙̃ = 𝒙/𝑥0, and field ̃𝛹cl = 𝑥𝑑/2

0 𝛹cl, the
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GPE takes the form
𝑖𝜕 ̃𝑡 ̃𝛹cl = (−1

2∇̃2 + ̃𝑔( ̃𝑡)∣ ̃𝛹cl∣
2) ̃𝛹cl , (B.5)

with the dimensionless coupling ̃𝑔 = 𝑔𝑡0/ℏ𝑥𝑑
0.

In a quasi-2D system (and in the absence of time-dependent modulations), the di-
mensionless coupling is, up to logarithmic corrections, given by ̃𝑔 =

√
8𝜋𝑎𝑠/𝑎HO, where

𝑎𝑠 is the 𝑠-wave scattering length and 𝑎HO is the oscillator length of the confining har-
monic potential in vertical direction [60]. If the wave function is normalized to unity,
the coupling changes as ̃𝑔 → 𝑁 ̃𝑔, where 𝑁 is the particle number. This shows that
the parameters 𝑁 and ̃𝑔 enter the classical equations of motion (B.5) only through the
product 𝑁 ̃𝑔 as the single relevant model parameter. Moreover, also the dimensionless
box length 𝐿/𝑥0 = √𝑁 ̃𝑔 is fixed by this quantity as a consequence of scale invariance.
By contrast, on the quantum level, the relative magnitudes of the parameters 𝑁 and ̃𝑔
do play a role (see Appendix B.3).

The GPE (B.5) has been discretized in space by means of a Fourier pseudospectral
discretization and propagated in time using the well-known split-step method [309]. The
accuracy of the time evolution has further been enhanced with the help of the optimized
fourth-order time splitting scheme given in Table 2 of Ref. [392].

In the 2D simulations of turbulent reheating dynamics in Section 5.4, a spatial 𝑁𝑔 × 𝑁𝑔
grid with at least 𝑁𝑔 = 512 grid points per dimension has been used, while 𝑁𝑔 = 256
turns out to be sufficient for simulating early-time preheating dynamics (see Section 5.3).
For a system of size 𝐿 × 𝐿 with 𝐿/𝑥0 = 50, the corresponding grid spacing 𝛥𝑥 = 𝐿/𝑁𝑔
ensures that the healing length 𝜉 = 𝑥0/

√
2, which is the smallest physical length scale in a

uniform system, is well-resolved. Numerical stability for late-time dynamics is achieved
by choosing the numerical time step 𝛥 ̃𝑡 such that 𝛥 ̃𝑡𝑘̃2

max ≲ 2𝜋, where 𝑘̃max = 𝜋/𝛥 ̃𝑥
with 𝛥 ̃𝑥 = 𝛥𝑥/𝑥0 is the maximum numerical wave number supported by the grid [393].

B.3. Validity of Classical–Statistical Simulations
Quantum dynamics is well described by classical–statistical simulations in the regime of
large occupancies and weak couplings [325, 371]. In particular, the truncated Wigner
method is known to produce unphysical results if the number of virtual particles added
to mimic quantum fluctuations becomes comparable to the number of real particles in
the system [326, 327]. At zero temperature, the failure of the classical–statistical ap-
proximation is indicated by the instability of the vacuum and a resulting unphysical
dependence of observables on the UV cutoff [371]. This decay of the “quantum half”,
which inevitably occurs at sufficiently late times, naturally restricts the classical–sta-
tistical method to the weak coupling regime, where the instability is mitigated via a
separation of scales. Moreover, if the coupling is too strong, physical observables risk
attaining a dependence on the UV cutoff already at relatively early times through the
spurious quantum pressure generated by the decaying vacuum. This is because the cou-
pling controls the relative magnitude of mode occupancies with respect to the vacuum
noise, which, in turn, is regulated by the UV cutoff [371].
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Figure B.1.: Snapshot of the radially averaged, rescaled momentum distribution for the driven
turbulent cascade (cf. Fig. 5.4a) at time 𝑡/𝑡0 = 640 for different values of the coupling ̃𝑔. The
particle number is chosen according to 𝑁 = 𝑁ref( ̃𝑔/ ̃𝑔ref)−1, such that the product 𝑁 ̃𝑔 = 𝑁ref ̃𝑔ref
remains constant. The vertical dashed line marks the characteristic momentum (5.40), calculated
for the distribution corresponding to the smallest value of ̃𝑔. The horizontal dotted lines mark
the location of the “quantum half” after rescaling. Within the range of validity of classical–
statistical simulations, the rescaled distributions are expected to collapse to a single curve. Visible
undershooting of the quantum half can be observed for ̃𝑔/ ̃𝑔ref ≳ 0.1, indicating a breakdown of
the method for larger values of the coupling.

To ensure that the numerical simulations of reheating dynamics in Chapter 5, in
particular, in the turbulent scaling regime at late times, lie within the range of validity of
the classical–statistical method, we follow a similar procedure as presented in Ref. [371].
Formally, the classical statistical limit is given by 𝑁 → ∞ and 𝑔 → 0, where 𝑁 is
the particle number and 𝑔 is the coupling, such that 𝑁𝑔 = const. To approach this
limit numerically in 2D, we fix the value 𝑁 ̃𝑔 = (𝐿/𝑥0)2 by the choice 𝐿/𝑥0 = 50 and
consider the same simulation repeated for different values of the coupling ̃𝑔, using the
parametrization 𝑁 = 𝑁ref( ̃𝑔/ ̃𝑔ref)−1 with reference parameters 𝑁ref = 106 and ̃𝑔ref =
2.5 × 10−3. Figure B.1 shows the radially averaged momentum distribution for the
driven turbulence scenario in Fig. 5.4a at time 𝑡/𝑡0 = 640 for different values of the
coupling ̃𝑔. All configurations have been averaged over at least 25 single runs. To
assess up to which value of the coupling the simulations are valid, the curves have been
rescaled by ̃𝑔/ ̃𝑔ref , in which case they are expected to lie on top of each other in the
region 𝑓(𝑡, 𝑝) ̃𝑔/ ̃𝑔ref ≳ 1. (Note that regions where the occupancy drops below unity are
outside of the range of validity per se.) The vertical dashed line marks the position of
the characteristic momentum (5.40), calculated for the distribution with the lowest value
of ̃𝑔, around which the UV scaling properties of the distribution are most sensitive. It
can be seen that deviations occur for ̃𝑔/ ̃𝑔ref ≳ 0.1. For larger values of the coupling,
the shape of the power law changes and the distribution hits the UV cutoff, such that
cutoff-independence of the results is no longer guaranteed. Furthermore, the distribution
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at large momenta drops below the “quantum half”, as indicated by the horizontal dotted
lines, which formally corresponds to the unphysical situation of negative occupancies.
It has been checked, using a similar approach as in Ref. [371], that the contribution
of the vacuum noise to the total energy budget of the system becomes significant for

̃𝑔/ ̃𝑔ref ≳ 0.1, which coincides with the values of the coupling for which deviations in the
momentum distribution are observed.

While the early-time preheating dynamics presented in Section 5.3 is only insignifi-
cantly affected by these deficiencies for the reference parameters 𝑁ref = 106 and ̃𝑔ref =
2.5×10−3, this is no longer true for the late-time turbulent reheating dynamics, as illus-
trated in Fig. B.1. The results presented in Section 5.4 have therefore been computed
for ̃𝑔/ ̃𝑔ref = 0.01, which safely lies within the range of validity of classical–statistical
simulations.
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