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Abstract

Two major medical applications have inspired this thesis: firstly, the potential link between the venous circulation
and several neurological pathologies, secondly arterial hypertension. The work presented in this thesis consists of a
multiscale model of the global, arterio-venous circulation in the entire human body. The present model represents
an enhanced version of the original Müller-Toro mathematical model. It includes one-dimensional, nonlinear PDE
systems for major blood vessels and zero-dimensional, differential-algebraic systems for the remaining components.
Highlights include the viscoelastic, rather than purely elastic, models for all blood vessels, arterial and venous; total
control of blood volume, including both the stressed and unstressed components; a physiological distribution of vas-
cular compliance; a nonlinear representation of venous resistances and compliances; myogenic mechanism of cerebral
blood regulation; baroreflex control of arterial pressure.

Concerning the first medical topic, we couple the circulation to a refined description of the cerebrospinal fluid (CSF)
dynamics in the craniospinal cavity. Two versions of the CSF model are presented; both versions account for deforma-
tions and interaction between the cerebral vasculature, brain parenchyma and CSF compartments during the cardiac
cycle. The first one includes all major CSF pathways and the brain parenchyma represented by zero-dimensional
lumped-parameter models. The linear character of intracranial compliant compartments is considered together with
a classical version of the Monro-Kellie hypothesis, which states that intracranial volume inside the skull is constant
over time. The second version comprises zero-dimensional lumped-parameter models for the cranial CSF and a one-
dimensional co-axial model for the spinal CSF and the spinal cord. The nonlinear behaviour of the pressure-volume
curves of the CSF compartments is introduced at the level of the spinal subarachnoid space and into a relaxed version
of the Monro-Kellie doctrine which admits almost constant intracranial volume in the cranial space; the exponential-
like character of the pressure-volume relationship is tested through an injection of fluid into the cranial subarachnoid
space. The coupled models are validated through comparison of computational results against published data and
MRI measurements. We present two medical scenarios: (i) transverse sinus stenoses and their relation to Idiopathic
Intracranial Hypertension; (ii) extra-cranial venous strictures, their impact in the inner ear circulation and its implica-
tions for Ménière’s disease. We will computationally show that intracranial pressure is the result of a dynamic inter-
action between the CSF production, the arterial pulsation, the venous reabsorption of CSF and the ability of the spinal
subarachnoid space in accommodating the displaced CSF from the cranial spaces. This interaction is reflected in the
intracranial pressure waveform with its physiological landmark peaks, both in healthy and pathological conditions.

The second topic of this thesis concerns a computational study on arterial hypertension in the context of a global
model. Such an approach poses the need of controlling the total amount of blood volume in the circulatory system,
as well as how it is distributed between different vascular districts by means of vascular compliance and unstressed
volumes. To this end, total effective vascular compliance is determined in silico in a healthy subject by performing
an infusion test of 500 ml of blood in four minutes. By means of presented computational results, we will show that
effective total vascular compliance is the result of the interaction between the assigned constant physical vascular com-
pliance and the capacity of the cardiovascular system to adapt to new situations via regulatory mechanisms. Focusing
on arterial hypertension, the global model of the entire circulation is adapted to reproduce alterations in the cardiovas-
cular system that are the cause and/or consequence of the hypertensive state. Adaptation does not only affect large
systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Using
a global closed-loop model allows us to establish the interplay between different blood compartments and their role
in the progression of the disease. We will observe that the hypertensive state is mainly determined by the combined
effects of increased arterial resistance and reduced venous compliance; the last one plays an essential role in preserving
cardiac output and stroke volume in case of left ventricular hypertrophy, as well as in blood volume distribution in the
hypertensive subject. Addressing arterial hypertension with a global closed-loop model of such complexity poses the
basis for a more comprehensive study of this pathology and opens the way to a wide range of potential applications.
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Chapter 1

Introduction

1.1 Motivation and goals

The living human body is a complex biological system, which involves the dynamic interaction of flu-
ids, gases and solids, all mediated through controls, membranes and intricate networks of conduits and
barriers. In this broad scenario it is becoming increasingly accepted that bodily fluid systems and their
interactive dynamics play a major role in human-body physiology and pathology [298, 152, 113]. Math-
ematical modelling of these systems has received great attention since it represents a useful tool to better
understand the complex physiological mechanisms of different diseases. The most complete mathematical
model for the human extracellular bodily fluids should include the complete circulatory system (arteries,
veins, microvasculature), interstitial fluid (ISF), the lymphatic system and the cerebrospinal fluid.

This thesis focuses on the modelling of the cardiovascular system and the cerebrospinal fluid system.
Two classes of pathological conditions have inspired this work. First, the cerebrospinal fluid (CSF) in the
craniospinal cavity is the centre of attention of many specialists concerned with a range of disorders of the
central nervous system (CNS), such as hydrocephalus, syringomyelia, spinal cord injury, Chiari malfor-
mations and spinal tumours. The work of Zamboni and collaborators [324] on the potential connection of
multiple sclerosis to anomalies of the extracranial venous system has stimulated increasing attention to the
venous district of the circulatory system and its potential link to several neurological pathologies. It has
become established that main venous draining routes may be affected by various types of anomalies, such
as stenoses, resulting in impaired draining of venous blood from the central nervous system to the heart.
Furthermore, it was observed that venous abnormalities affect cerebrospinal fluid dynamics [177, 326]; im-
paired venous drainage with consequent venous hypertension at the level of the dural sinuses reduces the
bulk flow of cerebrospinal fluid into the superior sagittal sinus from the subarachnoid space.

Second, arterial hypertension is by far one of the most important sources of morbidity and mortality
in the world, according to the World Health Organization [226]. It affects approximately 40-45% of the
world population aged >25 years (1.13 billion in 2015 [179]) with a global age-standardised prevalence of
24 and 20% in men and women, respectively [179]. Moreover, hypertension becomes progressively more
common with advancing age, with a prevalence > 60% in people aged > 60 years. It has been estimated
that complications of hypertension account for 9.4 million deaths worldwide every year [226]; examples of
hypertension-related diseases are ischaemic heart disease, heart failure, atrial fibrillation, chronic kidney
disease, peripheral artery disease, stroke and cognitive decline, to name but a few. The recent COVID-
19 pandemic has posed particular attention on possible risks associated with hypertension. The available
evidence suggests that hypertension increases the risk of acquiring SARS CoV-2 infection, admission to
intensive care units, severe disease and mortality [227]. Despite the evidence of treatment benefit, fewer
than half of all hypertensive patients have adequately controlled blood pressure.

Our goal is to provide some insights into the fluid dynamics of the aforementioned diseases in the con-
text of a global closed-loop model for the entire human cardiovascular system. Such a model departs from
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the original Müller-Toro model [201, 202]. For the first motivating class of pathologies, the blood circulation
will be coupled to cerebrospinal fluid dynamics in order to study their interaction in healthy and patholog-
ical situations. For the second disease, we will adapt the global model of the entire cardiovascular system
to the mechanical, structural and functional changes that are cause/consequence of arterial hypertension.

1.2 State of the art

1.2.1 Global mathematical models of the human cardiovascular system

The cardiovascular system includes a network of arteries and veins connected through the microcircu-
lation, which comprises arterioles, capillaries, venules, the heart and the pulmonary circulation. In the last
decades, mathematical modelling of the cardiovascular system has received great attention due to the in-
creasing impact of cardiovascular diseases worldwide. Early contributions in this field include the seminal
work of Otto Frank in 1899 [253], which was primarily concerned with the basic shape of the arterial pulse.
This is probably the first application of a mathematical model to successfully describe haemodynamics,
especially the exponential decay of the arterial pressure pulse in diastole.

Depending on the clinical application to be addressed, cardiovascular models of different dimensions,
from three-dimensional (3D) to zero-dimensional (0D), have been developed. Fluid-Structure Interaction
(FSI) models, which involve time-dependent, nonlinear systems of equations for the fluid and the vessel
wall mechanics in three space dimensions, have the advantage of addressing local details such as velocity
vectors and wall shear stresses. However, due to their complexity and computational cost, at the present
time, it is unrealistic to think of deploying FSI models for a full human bodily fluid system, not even
for the circulatory system alone. One-dimensional averaged models derived from 3D models represent a
trade-off between mathematical simplification of the reality and computational cost. Lumped-parameter,
or zero-dimensional, models constitute another option; these are governed by systems of ordinary differen-
tial equations in time, subject to algebraic constraints. Due to the complexity of the cardiovascular system,
most of the closed-loop models of the entire circulation are exclusively based on lumped-parameter models
that incorporate 0D models to simulate flow in the larger arteries, veins, pulmonary and cardiac circula-
tion. Another popular approach for constructing closed-loop models of the entire circulation is represented
by geometric multiscale models; in this case, 3D FSI models, 1D averaged models and lumped parameter
models, with appropriate matching conditions, are integrated together to create an heterogeneous mathe-
matical model of the entire cardiovascular system. A first example in this line is that of Liang [160]; in this
work, the arterial tree is described by 1D models, while the remainder, including the heart, the peripheral
circulation, the venous system, and the pulmonary circulation, is represented by lumped parameter mod-
els. Another example was proposed by Blanco [33]; this work presents a computational model of the entire
cardiovascular system including one-dimensional models for the arterial tree, lumped parameter models
for the remainder part of the circulatory system and 3D models for local haemodynamics in specific ves-
sels of interest. The resulting model is an integrated 3D-1D-0D coupled model which forms a closed loop
network capable of taking into account the interaction between the global circulation and the local haemo-
dynamics. Another relevant example is represented by the global closed-loop model developed by Müller
and Toro in 2014 [201], and then refined in [202]. This model includes a network of arteries and veins,
described by one-dimensional models, while the microcirculation, the heart, the pulmonary circulation,
venous valves and Starling resistors, and a very simple model for the cerebrospinal fluid are represented
by lumped-parameter models. A distinctive novelty of this work is the one-dimensional description of the
venous circulation, with emphasis on the neck and head venous system. Another work along these lines
is that of Mynard [215], wherein in addition to arterial/venous one-dimensional networks for systemic,
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pulmonary and coronary circulations, lumped-parameters models were adopted for peripheral circulation,
cardiac chambers and valves.

1.2.2 Mathematical modelling of cerebrospinal fluid dynamics

Cerebrospinal fluid (CSF) is a clear and colourless liquid that protects the brain and spinal cord from
chemical and physical injuries. It also carries oxygen, glucose, and other needed chemicals from the blood
to neurons and neuroglia [154]. CSF circulation through the cavities of the brain, as well as around the brain
and the spinal cord in the subarachnoid space, is a dynamic phenomenon; such movement is responsible for
the transport of the choroid plexus secretion products to their site of action, the balance of the electrolytes
and the elimination of catabolites. CSF provides homeostatic regulation of the brain’s parenchymal intersti-
tial fluid. The dynamics of cerebrospinal fluid flow are directly linked to those of the cardiovascular system
[113, 298, 121]. In fact, CSF is produced at the level of the choroid plexuses, that are networks of blood
capillaries in the walls of the ventricles where CSF is formed by filtration and secretion from blood plasma.
Then, CSF flows from the lateral ventricles to the third ventricle through the intraventricular foramina, and
from the third ventricle through the aqueduct of Sylvius into the fourth ventricle. CSF then circulates in
the cranial and spinal subarachnoid spaces around the surface of the brain and spinal cord. Finally, it is
gradually reabsorbed into the blood, mainly through arachnoid villi of the dural venous sinuses (especially
the superior sagittal sinus) or by travelling along cranial or spinal nerve sheaths to reach the peripheral
lymphatic drainage [268]. Cerebrospinal fluid pressure is the result of a dynamic equilibrium between
CSF secretion, absorption and resistance to flow. It varies with the systolic pulse wave, respiratory cycle,
abdominal pressure, jugular venous pressure and posture [68].

There is abundant literature on CSF modelling and its interaction with cerebral haemodynamics and
brain tissue dynamics; it ranges from simple lumped-parameter models which provide a circuit-based rep-
resentation of the fluid dynamics in one or more CSF compartments, to one-dimensional models that are
able to capture wave-propagation phenomena in the cerebrospinal fluid, to 3D models of selected cavities
containing CSF. Lumped-parameter models of CSF dynamics are represented by balance equations for pul-
satile volumetric deformations and compartmental pressures, fluid exchange, and bulk flows to quantify
system interactions among CSF flow, blood, and nervous tissue. An early contribution on mathematical
modelling of cerebrospinal fluid dynamics was due to Marmarou [181, 182]; in that work, the CSF sys-
tem was depicted by an equivalent electrical circuit wherein intracranial pressure dynamics was studied in
terms of nonlinear intracranial compliance, dural sinus pressure, CSF formation, and resistance to CSF ab-
sorption; however, this model did not explicitly incorporate brain vasculature or the porous parenchyma.
Ursino et al. [307] proposed a simple mathematical model to simulate the interactions between CSF and
cerebral blood flow, which accounted for cerebral venous pressure instability, cerebral blood volume, and
autoregulation. This CSF model was included in the global closed-loop model of the circulation by Müller
and Toro [202]. Linninger and collaborators [162] introduced a more complete dynamic model consisting
of the bi-phasic brain, arteries, arterioles, capillaries, venules, veins, venous sinus, ventricles, subarachnoid
space and the spinal canal with clinical relevance in normal and pathological conditions.

One-dimensional models are suitable for representing the spinal CSF compartment, wherein the CSF
dynamics are dominated by wave propagation. The spine was generally idealised by a co-axial geometry
composed of an inner cylinder for the spinal cord and an outer tube for the dura, with CSF flowing in be-
tween. Examples along those lines are the works by Berkouk [26], Carpenter [47], Cirovic [59], Toro [290].
Kim and Cirovic [139] proposed a computational model of the cerebrospinal fluid system incorporating
lumped-parameter cranial compartments for arteries and veins, and one-dimensional distributed spinal
CSF compartment. Martin et al. [183] coupled the cardiovascular and cerebrospinal fluid systems. Their
representation of the cardiovascular system was composed by a 1D network of viscoelastic arteries, linked
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to a varying elastance model of the left ventricle and coupled to three-element Windkessel models. The
cerebrospinal fluid system was modelled by a tube-like structure which represented the spinal subarach-
noid space; this kind of model allowed for studying the axial distribution of flow and pressure along the
spinal canal. However, the rest of the cranial space was described by a transfer function that delivers spinal
CSF flow from arterial flow curves.

To conclude this short review on cerebrospinal fluid mathematical models, we recall three dimensional
models of CSF; attempts along these lines include simulations of CSF flow patterns consistent with biome-
chanical principles such as the Navier-Stokes equations, porous media flow, and the FSI of fluid flow within
distensible boundaries. These models were often focused on partial aspects of CSF spaces, on a single CSF
compartment or a small group of CSF districts. Examples along these lines include those by Kurtucuoglu
et al. [145] and Gupta et al. [109]. In the first study, cerebrospinal fluid flow was studied in the third ven-
tricle and in the aqueduct of Sylvius, while Gupta et al. focused on the inferior cranial space, the superior
spinal subarachnoid space, and the fourth cerebral ventricle; in both cases, magnetic resonance imaging ex-
periments were used to reconstruct the patient-specific domain and its boundary conditions that was then
treated by means of a finite-volume computational fluid dynamics approach. Sweetman and Linninger
[278] developed a computational model from CINE-MRI that reproduced the three-dimensional flow field
in all regions of interest in the entire CSF-filled spaces of the central nervous system.

For a comprehensive review on the state of the art, refer to [165, 144, 255].

1.2.3 Arterial hypertension modelling

Essential, or primary, or idiopathic hypertension is historically defined as a rise in blood pressure of
unknown cause that increases risk for cerebral, cardiac, and renal adverse events. Computational models
can be a practical approach to better quantifying the haemodynamic effects of cardiovascular properties
in this medical condition. An early, seminal contribution in this field is due to Guyton in the early 70s
[112], which was concerned with a system analysis of arterial pressure regulation and hypertension. The
model consists of several hundred algebraic and ordinary differential equations that incorporate the main
ingredients of the vascular system, their interaction with extracellular fluid volume and detailed regulatory
mechanisms. Guyton’s work challenged the widely accepted view at that time of the primary role of the
heart in controlling cardiac output and that of the peripheral resistance in the determination of arterial
blood pressure. He explored the linkage between blood pressure and sodium balance and demonstrated
an overriding importance of renal salt and water balance in setting the long-term blood pressure level
[196]. From the pioneering work by Guyton, several mathematical works about physiological long-term
regulation model of the cardiovascular system have been developed, see for example [137, 136, 3].

One-dimensional models of the arterial system have been widely employed to study arterial haemody-
namics under various pathophysiological conditions; this kind of models are suitable for studying wave
propagation phenomena under hypertensive conditions. Examples on analysis of arterial pressure wave-
form in ageing and hypertension by means of mathematical models include [317, 157, 230, 10, 53, 91].
Westerhof et al. [317] used a passive linear electrical model of the human systemic arterial tree to study the
effects of reduced arterial distensibility in old age hypertension and those of induced vasoconstriction in
essential hypertension. In [157], the hypothesis that increased pulse wave reflection and altered backward
waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure was
tested with the help of numerical modelling (55-segment 1D arterial network model) to confirm the inter-
pretation of the experimental results. Another example on one-dimensional arterial models for hyperten-
sive studies was due to Blanco et al. [30]. In that work, an Anatomically Detailed Arterial Network (ADAN)
model was used to study the role of hypertension in cerebral small vessel disease; model parameters were
modified to consider structural changes in arterial vessels in the hypertensive scenario. Pagoulatou and
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Stergiopulos [230] studied the major ageing mechanisms in the arterial system and the heart using a math-
ematical one-dimensional model of the arterial tree, in order to assess the evolution of systolic and pulse
pressure during normal ageing. On the same topic, in [53] a one-dimensional computational model was
used to provide a complementary approach for research into the arterial pulse waves in healthy ageing and
to establish the main cardiovascular determinants of pulse wave indexes. Alfonso et al. [10] considered
a different approach than the traditional distributed 1D modelling of arterial segments to assess the main
features of the pulse pressure propagation, such as the pulse pressure amplification phenomena. They used
only one long tapering artery, composed of constant parameter vessels, placed in a simple cascading order;
in each of these segments, the pulse pressure wave dynamics were modelled by a non- linear Korteweg-de
Vries equation describing only forward soliton interactions. This type of model was able to reproduce the
pressure wave dynamics in an arterial network in healthy and hypertensive subjects, with the useful effect
of a reduced computational cost. Still on the pulse pressure amplification, in [91] the authors presented two
methods based on the physics of blood flow for estimating central pulse pressure from non-invasive mea-
surements of aortic flow and peripheral blood pressure; three blood flow models with decreasing level of
mathematical complexity were employed in this study: a full 116-artery one-dimensional model, a reduced
15-artery model containing the aortic-brachial arterial path of the full model and a single-vessel model of
the brachial artery. They tested these models on in silico data for different age groups and in vivo data
for normotensive and hypertensive subjects. However, all these studies focused only on the arterial tree in
ageing and hypertension. A first attempt towards a more global view of hypertension was due to Mynard
et al. [214], who studied the influence of hypertension on coronary conduit arterial and microcirculatory
flow patterns by means of a multiscale model of the human coronary circulation situated in a closed-loop
cardiovascular model. Such a model was adapted to the systemic hypertension scenario modifying the
systemic arterial resistance and compliance of vascular beds, systemic arteries wave speed and proximal
area and pulmonary venous reference pressure. However, this study mainly focused on effects of hyper-
tension on coronary circulation, hence it did not consider other aspects that commonly influence arterial
pressure, such as total blood volume. As pointed out by Liang [158], mechanical, structural and functional
changes may occur in the entire cardiovascular system as a cause or consequence of hypertension. In this
framework, Liang et al. [158] proposed a multiscale model which integrates the main cardiovascular com-
ponents prone to alterations in hypertension (such as the heart, large arteries, distal arteries and arterioles)
into a unique computational framework that enables to explore the determinant cardiovascular factors for
haemodynamic variables of concern in the treatment of hypertension. Both the global multiscale model
proposed by Mynard et al. [214] and Liang et al. [158] did not focus on the adaptation of the venous system
in hypertension; the venous circulation was represented by one- or zero-dimensional compartment and it
was included to close the cardiovascular system. However, the venous system is not only a passageway
for flow of blood to the heart, but it also contributes in regulating cardiac output and it serves as blood
reservoir for the circulation, which in turn plays a role in arterial blood pressure regulation. Hence, in a
closed system like the circulatory system, changes to the venous part of the circulation have an impact on
the heart function and on the arterial system and vice versa. As we will show in this thesis, accounting for
venous system adaptation to hypertension can have significant consequences on the characterization of the
major determinants of arterial blood pressure.

1.3 Contributions of this thesis

The work presented in this thesis can be divided into two main parts: 1) development in computational
modelling of global haemodynamics and its interaction with cerebrospinal fluid and brain dynamics, 2)
mathematical modelling for arterial hypertension. The common link to both parts is a global approach
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to cardiovascular modelling. Concerning the first part, previous works on the interaction between blood
and cerebrospinal fluid were performed using lumped-parameter models [307, 162], or multiscale mod-
els for the circulation and lumped-parameters model for the cerebrospinal fluid in the craniospinal cavity
[202] or models which included only some compartments for the cerebrospinal fluid [183]. The work pre-
sented in this thesis aims to couple a global multiscale model of the circulation and a detailed model of the
cerebrospinal fluid, which includes all the cranial and spinal spaces containing cerebrospinal fluid; such
a model has allowed to study the effects of impaired venous drainage, such as venous stenoses, to the
cerebrospinal fluid dynamics and its interaction with the cerebral circulation. Regarding the second part,
arterial hypertension was previously treated in the context of global closed-loop models, even if the adap-
tation of the cardiovascular system to this pathology was only partially modelled, without considering the
venous system. In this thesis we look at hypertension remodelling including also the contribution of the
venous circulation, as well as total blood volume and vascular compliance; these aspects influence arterial
pressure and need to be considered when a global closed-loop model of the circulatory system is used. This
work has allowed a more comprehensive view of the effects of hypertension remodelling and to computa-
tionally establish which factors contribute more significantly to the elevation of arterial pressure. Here, we
briefly discuss the work performed in these fields and the structure of the thesis.

Computational modelling of global haemodynamics and its interaction with cerebrospinal fluid and
brain dynamics

In [292], we substantially improved the original Müller-Toro mathematical model [201, 202] for the
global systemic and pulmonary circulations in the entire human body. The improvements concern physio-
logical aspects, underlying mathematical models, as well as the associated computational methods. On the
physiological aspects, we included the adoption of a viscoelastic tube law, not just for the arterial tree as
in [7, 241], but also for the venous circulation. The heart model was modified with respect to the original
global model [201, 202]; the cardiac valves are represented through a model based on [216]. Other additions
include the parametrization of the vascular beds and the introduction of the brainstem and cerebellar ves-
sels’ network, which together with the cerebral autoregulation model, is relevant when studying anatomical
malformations of the cerebral circulation. The physiology modelling improvements have resulted in new
mathematical problems to be solved, notably, the viscoelastic nature of all major blood vessels. The associ-
ated parabolic system of equations has been approximated by a hyperbolic system with stiff source terms
following a relaxation approach [295, 197, 199]. The resulting stiff system is solved numerically with the
same high-order ADER-type numerical scheme [294, 76], as in the original model [201, 202]. An additional
numerical improvement is the adoption of the local time stepping technique [78], first introduced for blood
flow in [204] for solving a simplified one-dimensional vessel network. This technique results in significant
computational savings, which are more evident when coupling the blood circulation to the CSF and brain
dynamics, as these two systems have different temporal scales and the computational time needed to reach
periodicity of the solution is considerably larger than the time scale of a cardiac cycle. An overview of the
global multiscale mathematical model of human circulation and the numerical methods can be found in
Chapter 2 of this thesis.

The main novelty of Chapter 3 is the coupling of the blood circulation to a refined mathematical de-
scription of the cerebrospinal fluid dynamics in the craniospinal cavity [162]. The CSF model includes all
major CSF pathways and it is described by nine zero-dimensional compartments representing the cere-
bral ventricles, the aqueduct of Sylvius, the cranial and spinal subarachnoid spaces and the bi-phasic brain
parenchyma. This model accounts for deformations and interaction between the cerebral vasculature, brain
parenchyma and cerebrospinal fluid compartments during the cardiac cycle. The full model is validated
through comparison of computational results against published data and bespoke MRI measurements. The
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applicability of our model is illustrated in two classes of fluid-dynamics related pathologies that involve
the close dynamical interaction of all major fluid compartments in the craniospinal space. The first class of
pathologies concerns transverse sinus stenoses and its relation to Idiopathic Intracranial Hypertension (IIH)
[20, 194, 4]. The second class of fluid-related pathologies concerns the altered haemodynamics of the in-
ner ear circulation resulting from extra-cranial venous outflow strictures, and its implications for Ménière’s
disease [96, 13, 40, 297]. This work can be found in Chapter 3 of this thesis.

In a successive paper [50], a revised version of the previous global model was presented. The main
improvement of the model proposed in [50] with respect to a previous version of the model (see [292]) re-
gards the introduction of a multiscale model of the cerebrospinal fluid and brain dynamics. Such a model
comprises zero-dimensional lumped-parameter models for the cranial CSF and brain dynamics based on
[162, 292] and a one-dimensional co-axial model for the spinal CSF and the spinal cord, based on [59, 290,
259]. Non-linear pressure-volume relationships for the cranial and spinal CSF were included in order to re-
produce the exponential-like behaviour and to well capture deviations from baseline condition. The model
was validated for a setup corresponding to a healthy subject, including a sensitivity analysis of the in-
tracranial pressure waveform to main model parameters. We determined the pressure-volume index and
the outflow resistance to CSF absorption through an injection of fluid into the cranial subarachnoid space.
As an example of the applicability of the model, we tested the effects of transverse sinus stenoses and
their relation to Idiopathic Intracranial Hypertension. Computational results are compared to published
data and MRI measurements, as well with computational results obtained with the previous version of the
model [292]. On the physiological aspects of the present work [50], two improvements deserve attention.
The first one regards the introduction of a spatially-resolved model for the spinal subarachnoid space that
is able to capture the wave propagation along the spine. The advantage of using this kind of model be-
comes evident in the computed intracranial pressure waveform that is characterised by three physiological
peaks. While average intracranial pressure is mainly determined by the production and absorption pro-
cesses, its waveform mainly depends on the spinal properties. The second consists in the introduction of
nonlinearity in pressure-volume relationships for both cranial and spinal cerebrospinal fluid systems. This
is necessary when large deviations from the baseline model state are introduced. As fluid is injected into
the craniospinal CSF system, intracranial pressure increases, as well as its pulse pressure. Obstructions in
the drainage pathway caused by transverse sinus stenoses lead to increased intracranial pressure, which
displays a progressive elevation of the second peak, a landmark of decreased intracranial compliance. The
one-dimensional model for the spine, along with the numerical method to solve it and its coupling to the
cranial cerebrospinal fluid model and the blood circulation, are included in Chapter 4.

Mathematical modelling for arterial hypertension

This part of the thesis is devoted to characterise the major determinants of essential hypertension by
means of a computational study based on a closed-loop model for the human circulation.

Since total effective compliance and total blood volume are the main determinants of arterial pressure,
we determined in silico the effective total vascular compliance of a global closed-loop model for the cardio-
vascular system. To this end, in [51], we reproduced the experiment of London et al. [171] which consists
of an infusion test of 500 ml of blood in four minutes. Changes in blood volume and changes in central
venous pressure were recorded during the infusion. We enriched the global mathematical model described
in Chapter 2 to better capture the main physiological processes involved in the infusion test as well as to
update modelling assumptions that needed to be improved in order to consider a deviation from the base-
line state. Main improvements regarded: 1) a physiologically sound parametrization of the mathematical
model in the baseline pre-infusion status, which includes a physiological distribution of vascular compli-
ance and total blood volume; 2) the introduction of nonlinear resistances and compliances in the venous 0D
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compartments to take into account the distension of the vasculature during volume expansion; 3) the cou-
pling to a model for short-term regulation of pressure that considers the activity of high- and low-pressure
baroreceptors. By means of a presented in silico experiment, we showed that effective total vascular com-
pliance is the result of the interaction between the assigned constant physical vascular compliance and the
capacity of the cardiovascular system to adapt to new situations via regulatory mechanisms. The computa-
tional results presented in [51] should contribute to raise awareness about the difference between effective
and physical parameters, as well as about the need to enrich the set of physiological processes included in
our model, especially if large deviations from the baseline model state are to be described. This piece of
work is presented in Chapter 5.

Finally, we adapted the global closed-loop multiscale model for the human circulation to reproduce
computationally the alterations in the cardiovascular system that are cause and/or consequence of the hy-
pertensive state and to assess the role played by different components of the model in the determination
of elevated diastolic and systolic arterial pressure [52]. There is clinical evidence showing that adaptation
in the hypertensive condition does not only affect large systemic arteries and the heart but also the mi-
crocirculation, the pulmonary circulation and the venous system. Model predictions in normotensive and
hypertensive conditions were validated and discussed with respect to clinical measurements reported in
the literature; moreover, we studied the distinctive effects of remodelling in different cardiovascular dis-
tricts to better quantify their impact on the determination of arterial pressure. Using a global closed-loop
model allows us to establish the interplay between different blood compartments and their role in the pro-
gression of the disease. We observed that the hypertensive state is mainly determined by the combined
effects of increased arterial resistance and reduced venous compliance; the last one plays an essential role
in preserving cardiac output and stroke volume in case of left ventricular hypertrophy, as well as in blood
volume distribution in the hypertensive subject. Details on this topic can be found in Chapter 6.
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Chapter 2

Computational modelling of global
haemodynamics: mathematical models
and numerical methods

2.1 Introduction

In this chapter, we present the mathematical models for describing the human circulatory system. As
already pointed out, the present global closed-loop model emerges from [201] and [202], with some signifi-
cant improvements. For the one-dimensional representation of the blood vessels we include viscoelasticity
of the vessel wall [7, 199]. The resulting partial differential equation system is solved numerically using the
high-order Arbitrary DERivative Riemann problem (ADER) framework [294] with a solver that allows for
local time stepping [207]. The microcirculation and heart models are also partially modified with respect
to [201]. Representation of pulmonary circulation follows the same models as in [201] and [202] wherein a
simple three-compartment (arteries, capillaries, veins) description for systemic microcirculation based on
the work by Sun et al. [276] is adopted. Venous valves and Starling resistors are modelled following [216].

Since in this thesis we are particularly interested in the cerebral dynamics, we incorporate into our
model one of the most important physiological control systems, the cerebral autoregulation. This process
aims at maintaining adequate and stable cerebral blood flow during changes in blood pressure working on
dilatation or contraction of arterioles and capillaries [319]. The model used to account for this phenomenon
is based on [305] and [234].

The chapter proceeds as follows. Section 2.2 presents the mathematical models for major arterial and
venous blood vessels, consisting of systems of partial differential equations (2.2.1) and the compartmental,
or 0-dimensional (0D), models consisting of systems of ordinary differential equations, for other districts
of the circulation (2.2.2). Section 2.3 introduces the numerical schemes for one-dimensional blood in vis-
coelastic vessels coupled to the local time stepping solver. Moreover, the coupling between 1D-0D models is
presented. Section 2.4 describes all the parameters needed for the implementation of the global closed-loop
model.

2.2 Mathematical Models

2.2.1 Equations for blood flow in major vessels

In this section we review the partial differential equations representing blood flow in major vessels,
along with closure laws and reformulations.



10 Chapter 2. Computational modelling of global haemodynamics

Conservation laws and closure conditions

The flow of blood in major arteries and veins is represented through one-dimensional (1D) cross-sectional
averaged models resulting in time-dependent systems of partial differential equations. We start from the
classical laws of conservation of mass and of balance of momentum∂t A + ∂xq = 0 ,

∂tq + ∂x

(
α̂

q2

A

)
+ A

ρ ∂x p = − f ,
(2.1)

where x is the axial coordinate along the longitudinal axis of the vessel and t is time. For details on the
derivation of (2.1) see [94], for example. The 2× 2 system (2.1) contains three unknowns, namely A(x, t),
the cross-sectional area of the vessel lumen; q(x, t), the blood flow rate and p(x, t), the cross-sectionally
averaged internal pressure. Parameters in the equations include α̂, the Coriolis coefficient, ρ the blood
density, assumed constant, and f the friction force per unit length of the tube. The Coriolis coefficient
depends on the assumed velocity profile; here we take α̂ = 1, which corresponds to a flat velocity profile.

The system of differential equations (2.1) has more unknowns than equations; hence, one extra closure
condition is required. Such extra condition, usually called tube law, attempts to couple the internal blood
flow distribution with the mechanical properties of the solid moving vessel wall. A comparative analysis of
various mathematical descriptions of elastic properties of vessel walls in modern one-dimensional models
of hemodynamics can be found in [311]. In the existing versions of our model [201, 202] we used elastic tube
laws for both arteries and veins. In the present thesis we improved upon this by adopting viscoelastic tube
laws for both arteries and veins in the entire circulation. To this end we follow recent works concerned with
approximating time-dependent parabolic systems with hyperbolic balance laws with stiff source terms [295,
197]. The approach was applied in [199] to a simplified arterial network. In the present work we deploy the
framework to the full human circulatory system, major arteries and veins. Following [199], the following
pressure-area relation (tube law) is adopted

p(x, t) = ψ(A(x, t); A0(x), K(x), P0) + ϕ(A(x, t); A0(x))∂t A + pext(x, t) . (2.2)

Here, the first term ψ(A(x, t); A0(x), K(x), P0) is the elastic part of the tube law, which in turn depends on
the reference pressure P0 and the parameters A0(x) and K(x) and can be written as

ψ(A(x, t); A0(x), K(x), P0) = K(x)Φ(A(x, t), A0(x)) + P0 , (2.3)

with

Φ(A(x, t); A0(x)) =
((

A(x, t)
A0(x)

)m
−
(

A(x, t)
A0(x)

)n)
. (2.4)

The term ϕ(A(x, t); A0(x))∂t A represents the viscoelastic part of the tube law; here we adopt a Voigt-type
viscoelastic model. pext(x, t) denotes the external pressure. As usual, the transmural pressure is defined as

ptransm ≡ p(x, t)− pext(x, t) = K(x)Φ(A(x, t), A0(x)) + P0 + ϕ(A(x, t); A0(x))∂t A . (2.5)

We now define geometric and mechanical parameters in the tube law. A0(x) defines the vessel cross-
sectional area at equilibrium; K(x) represents the vessel wall stiffness, while m and n are two real numbers,
to be specified. Note that A0(x) and K(x) are variable parameters, they depend on the spatial coordinate
x. Throughout this work, we adopt m = 0.5 and n = 0 for arteries, as was usually done in the literature;
the values of these parameters were derived from a mechanical model for the vessel-wall displacement,
considering a generalized string model [93]. For veins, we use m = 10 and n = −1.5; these parameter
values are related to veins collapse and stiffening [90, 38]. Moreover, K(x) is a positive function that was
obtained from the reference wave speed c0 assumed for each vessel, distinguishing arteries, veins and dural
sinuses.
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The viscoelastic term of the tube law depends on the time partial derivative of the cross-sectional area
of the vessel and is defined as

ϕ(A(x, t); A0(x))∂t A =
Γ

A0
√

A
∂t A . (2.6)

Γ is related to the viscous properties of the vessel wall, which following [7] is chosen as

Γ =
2
3
√

πγh0 , (2.7)

where γ is the wall viscosity. The wall viscosity is evaluated as the product of the viscoelastic parameter
KM and the volume fraction of smooth muscle. KM is chosen such that hysteresis behaviour of pressure-area
plots in peripheral arteries and veins lies within the physiological range. For arteries we take KM = 3× 105

dyn s /cm2 and a percentage of smooth muscle of 10% [31]. For veins we take KM = 5× 104 dyn s /cm2 and
a smooth muscle fraction of 8%. Concerning the wall thickness h0 we follow [31] and express it in relation
to the vessel radius at equilibrium. For arteries h0 = 10% r0, while for veins h0 = 5% r0.

The momentum equation in (2.1) contains the friction term f (x, t), which depends on the local velocity
profile (assumed a priori). Here we take

f =
8µπ

ρ

q
A

, (2.8)

with µ being the blood dynamic viscosity.

Variable material properties and augmented equations

As already pointed out, the material and geometric parameters K(x), A0(x) and pext(x, t) are in general
functions of x along the vessel. Computationally, in order to deal with this situation we adopt the variable-
parameter formulation of Toro and Siviglia [289], admitting now, viscoelastic tube laws for arteries and
veins [199]. System (2.1), along with the tube law (2.2), is then written as the following extended 5 × 5
system

∂t A + ∂xq = 0 ,

∂tq + ∂x

(
α

q2

A

)
= − A

ρ ∂x pext − A
ρ Φ∂xK− A

ρ (K∂AΦ− ∂A ϕ∂xq) ∂x A

− A
ρ

(
K∂A0 Φ− ∂A0 ϕ∂xq

)
∂x A0 +

A
ρ ϕ∂

(2)
x q− f ,

∂tK = 0 ,

∂t A0 = 0 ,

∂t pext = 0 .

(2.9)

In succinct form system (2.9) reads

∂tQ + A(Q)∂xQ = ∂xG(Q; ∂xQ) + S(Q) , (2.10)

where Q is the vector of unknowns

Q =
[

A q K A0 pext

]T
, (2.11)

A(Q) is the coefficient matrix

A(Q) =



0 1 0 0 0

c2 − u2 + ϕ∂xq
2ρ 2u A

ρ Φ A
A0

(
ϕ∂xq

ρ − c2
)

A
ρ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (2.12)



12 Chapter 2. Computational modelling of global haemodynamics

S(Q) is the source term vector

S(Q) =
[
0 − f 0 0 0

]T
(2.13)

and

∂xG (Q; ∂xQ) =
[
0 ϕA

ρ ∂
(2)
x q 0 0 0

]T
(2.14)

is a higher-order differential term emerging from the viscoelastic part of the tube law. This last differential
term in the advection-diffusion-reaction system defines a parabolic problem, no longer hyperbolic, as in the
case of a purely elastic tube law [289].

Hyperbolic approximation of a parabolic system

Toro and Montecinos [295, 197] proposed a method to approximate time-dependent parabolic problems
by hyperbolic systems with stiff source terms, by extending the Cattaneo relaxation approach [49]. Monte-
cinos and collaborators [199] applied the procedure to a network of arterial blood vessels and then Müller
et al. [204] proposed a coupling strategy for one-dimensional segments that compose a network of vis-
coelastic vessels, thereby setting the bases for its extension to the global, closed-loop circulation model of
this work, including arteries and veins.

To start with, a new variable ζ and a relaxation parameter ε > 0 are introduced. This new variable ζ is
constrained to satisfy an additional evolutionary PDE, namely the constitutive Cattaneo’s law, which reads

∂tζ =
1
ε
(∂xq− ζ) . (2.15)

From (2.15), it holds that

ζ → ∂xq as ε→ 0 . (2.16)

We now have an augmented 6× 6 system. Keeping the same notation for the vector of unknowns, the
coefficient matrix and the source term, we may write

∂tQ + A(Q)∂xQ = S(Q) , (2.17)

with

Q =
[

A q K A0 pext ζ
]T

, (2.18)

A(Q) =


0 1 0 0 0 0

c2 − u2 + aΓ
2 2u A

ρ Φ A
A0

(
aΓ − c2) A

ρ − A
ρ ϕ

0 0 0 0 0 0
0 0 0 0 0 0
0 − 1

ε 0 0 0 0

 , (2.19)

S =
[
0 − f 0 0 0 − 1

ε ζ
]T

, (2.20)

c2 =
A
ρ

K∂AΦ, u =
q
A

, aΓ =
ϕζ

ρ
. (2.21)

Here c is the wave velocity (analogous to the sound speed) associated to the elastic tube law. The 6× 6
system (2.17) with the state vector (2.18) and coefficient matrix (2.19) is hyperbolic [199, 295] provided the
relaxation parameter is chosen so as to satisfy

ε−1 ≥ − ζ

2A
− ρc2

ϕA
. (2.22)
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Under (2.22), all eigenvalues of the coefficient matrix (2.19) are real and given as

λ1 = u− c̃ , λ2 = λ3 = λ4 = λ5 = 0 , λ6 = u + c̃ , (2.23)

where now c̃ denotes the wave speed associated to the complete tube law.

c̃ =
√

c2 + ω, ω =
ϕA
ρε

+
aΓ

2
. (2.24)

The corresponding right eigenvectors are

R1 =
[
1 u− c̃ 0 0 0 − 1

ε

]T
,

R2 =
[
1 0 0 0 0 c2+aΓ/2−u2

ϕA ρ
]T

,

R3 =
[
0 0 1 0 0 Φ

ϕ

]T
,

R4 =
[
0 0 0 1 0 (aΓ−c2)

ϕA0
ρ
]T

,

R5 =
[
0 0 0 0 1 1

ϕ

]T
,

R6 =
[
1 u + c̃ 0 0 0 − 1

ε

]T
.



(2.25)

These eigenvectors associated to the real eigenvalues (2.23) can be shown to be linearly independent, and
hence system (2.17) is hyperbolic.

We now consider two fundamental properties of system (2.17), namely the nature of the characteris-
tic fields and the generalised Riemann invariants. It was observed that characteristic fields associated to
eigenvectors R1 and R6 are genuinely non-linear for parameters and state variables in physiological ranges.
Moreover, it is obvious that the remaining characteristic fields are linearly-degenerate. The generalised Rie-
mann invariants associated to R1 are

Γ1
1 = u +

∫ c̃
A

dA = constant , (2.26)

Γ2
1 = K = constant , (2.27)

Γ3
1 = A0 = constant , (2.28)

Γ4
1 = pext = constant , (2.29)

Γ5
1 = ζ +

A
ε
= constant ; (2.30)

similarly, Riemann invariants associated to R6 are

Γ1
6 = u−

∫ c̃
A

dA = constant , (2.31)

Γ2
6 = K = constant , (2.32)

Γ3
6 = A0 = constant , (2.33)

Γ4
6 = pext = constant , (2.34)

Γ5
6 = ζ +

A
ε
= constant . (2.35)

We also note that for constant pext, A0 and K, the generalised Riemann invariants for the linearly degenerate
fields associated with R2, R3, R4 and R5 are

ΓLD
1 = p̃ +

1
2

ρu2 = constant (2.36)
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and

ΓLD
2 = q = constant , (2.37)

where

p̃ = pext + ψ− ϕζ . (2.38)

More details about the hyperbolic reformulation of the problem and its eigenstructure are found in [197],
[199]. Next we present the 0-dimensional mathematical models, which consist of systems of Ordinary
Differential Equations (ODEs).

2.2.2 Equations for lumped-parameter models

In the previous section we described mathematical models for major arterial and venous blood ves-
sels, consisting of systems of partial differential equations. For other districts of the circulation, we present
compartmental, or 0-dimensional (0D) models which consist of systems of Ordinary Differential Equations
(ODEs). These include the microvasculature (arterioles, capillaries and venules/veins), the heart, the pul-
monary circulation, venous valves and Starling resistors. We also present a mathematical model for cerebral
autoregulation, which acts on the terminal portion of the cerebral arteries and on the cerebral vascular beds.

The microvasculature

Physiologically, the arterial system is connected to the venous system through arterioles, capillaries
and venules. To describe this connection, the microvasculature is represented by lumped-parameter, or
0-dimensional, models. This connection can be simple, such as between one artery and one vein, or entail
numerous compartments. The generic vascular bed model for all microvasculature beds, depicted in Figure
2.1, is inspired in the three-element Windkessel model. The model is characterized by

• Characteristic impedances. These couple any number of connecting 1D arteries/veins to lumped-
parameter models for the microvasculature (Rda or Rvn) and regulate the pressure drop between 1D
domains and vascular beds;

• Peripheral resistances and compliances divided into arterioles (Ral , Cal) and capillaries (Rcp, Ccp);

• Venous compartments with related compliance Cvn.

As illustrated in Figure 2.1, each connecting artery can be linked to one or both venous capacitors, while
each venous capacitor can be connected to any number of terminal veins. Note that the second artery splits
into both venous capacitors, while the other arteries supply only one of them. Moreover, any number of
veins can be connected to each venous capacitor. For each vascular bed, the variables to be computed are
volume, pressure and flow, denoted as follows: for arterioles Val , Pal , Qal ; for capillaries Vcp, Pcp, Qcp and
for venules Vvn, Pvn and Qvn. Thus, for each element of the vascular bed one has

dV
dt = Qin −Q ,

P = V
C + Pext ,

Q = P−Pout
R ,

(2.39)

where C is compliance and Pext is the external pressure, generally taken as zero (relative to atmospheric
pressure) or equal to the intracranial pressure in the case of intracranial peripheral beds. Qin and Pout

are flow and pressure in neighbouring compartments or obtained from the 1D models through boundary
conditions. Well-matched coupling to the connecting 1D arterial and venous segments is achieved via the
characteristic impedances, as suggested in [6].



2.2. Mathematical Models 15

FIGURE 2.1: Schematic representation of the generic vascular bed model. The red boxes in-
clude the terminal 1D arteries and the corresponding arterioles and capillaries compartments;
the green boxes represent the venous capacitors while the light blue boxes refer to terminal
venules/1D veins.

Rda Ral Rcp

Rvn

Cal

Pext

Ccp

Pext

Cvn,2

Pext

Rda Ral

Rcp

Rcp

Cal

Pext

Ccp

Pext

Rda Ral Rcp

Rvn

Rvn

Cal

Pext

Ccp

Pext

Cvn,1

Pext

Rvn

.

.

.

.

.

.

1D Artery 

1D Artery 

1D Artery 

1D Vein 

1D Vein 

1D Vein 

1D Vein 

Valves, Starling resistors and stenoses

Here we describe a valve model based on [216] that predicts valve motion on the basis of the instanta-
neous difference between upstream and downstream pressures. In the present thesis the model is applied
to describe cardiac valves, venous valves, Starling resistors in the cerebral circulation and stenoses. Here
we illustrate the general model, while for each specific application, more details are given in the following
subsections and in 3.4.

The valve dynamics are described by means of the function Ae(t) defining the effective cross-sectional
area, expressed as

Ae(t) = Aa[Msξ(t) + Mr(1− ξ(t))] , (2.40)

where Aa is the annulus area and the time-dependent function ξ(t) is the valve state, a dimensionless
number in the range [0, 1] and representing the rate of opening and closing of the valve. ξ(t) is given by the
solution of the following variable-coefficient ordinary differential equations

dξ
dt = Ko (∆p(t)− ∆po) (1− ξ(t)) if ∆p ≥ ∆po opening state ,
dξ
dt = Kc (∆p(t)− ∆pc) ξ(t) if ∆p < ∆pc closing state.

(2.41)

Here Ko and Kc are rate coefficients for opening and closing respectively; ∆po and ∆pc are opening and
closure threshold pressures. In (2.40), Mr and Ms are parameters representing regurgitating and stenotic
valves respectively. Specifically, a healthy valve corresponds to Mr = 0 and Ms = 1, an incompetent valve
is described by Mr > 0, while a stenotic valve is represented by Ms < 1. Flow variation in time across the
valve is given by a first-order, variable coefficients, ordinary differential equation

dq(t)
dt

=
1

L(t)
(∆p(t)− B(t)q(t)|q(t)|) . (2.42)

∆p(t) is the pressure difference across the valve length, defined as

∆p(t) = pup(t)− pdown(t) , (2.43)
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where pup(t) and pdown(t) are the upstream and downstream pressures at time t, with respect to valve
direction. pup(t) and pdown(t) are evaluated from other compartments of the global model, specified later.
L(t) and B(t) are time-dependent coefficients; L(t) is blood inertance, which accounts for the component
of the pressure difference related to blood acceleration; B(t) is the Bernoulli’s resistance, which governs
pressure differences related to convective acceleration and dynamic pressure losses due to diverging flow.
They are expressed as

L(t) =
ρle

Ae(t)
, (2.44)

and

B(t) =
ρ

2A2
e (t)

. (2.45)

Here ρ is the constant blood density and le is the effective length. More details on the valve model are found
in [216, 201, 202] and in the appendix of [293].

Heart and pulmonary circulation

In the present thesis we consider a heart model for the dynamics of the four chambers and the cardiac
valves. The chambers are denoted as ch = {RA, RV, LA, LV}, where RA and RV are the right atrium and
ventricle, while LA and LV represent the left atrium and ventricle. For the chambers we follow the time-
varying elastance model in [160, 276], while cardiac valves are modelled as presented in Subsection ’Valves,
Starling resistors and stenoses’ of 2.2.2 following [216]. Briefly, blood pressure in each cardiac chamber is
calculated as

Pch = Pperi + E(t)(Vch −Vch,0) + γPch
dVch

dt
, (2.46)

where Vch is the current cardiac volume; Vch,0 is the dead volume (assumed to be 0); γPch(t) is the viscoelas-
ticity coefficient of the cardiac wall and Pperi(t) is the external pericardial pressure defined by

Pperi = exp
(

VH −VPC
ΦPC

)
, (2.47)

where VH(t) is the sum of the volume of each heart chamber and VPC, ΦPC are constant parameters. E(t)
in (2.46) is the time-varying elastance, defined as

E(t) = EAe(t) + EB , (2.48)

where the constants EA and EB are the active and passive elastances, respectively, while e(t) is the normal-
ized time-varying elastance, taken as in [276] as

e(t) ≡ ea(t) =



1
2{1 + cos

[
π(t + T − tar)/Tarp

]
} , 0 ≤ t ≤ tar + Tarp − T ,

0 , tar + Tarp − T < t ≤ tac ,
1
2{1− cos

[
π(t− tac)/Tacp

]
} , tac < t ≤ tac + Tacp ,

1
2{1 + cos

[
π(t− tar)/Tarp

]
} , tac + Tacp < t ≤ T ,

(2.49)

for atria and as

e(t) ≡ ev(t) =


1
2
[
1− cos(πt/Tvcp)

]
, 0 ≤ t ≤ Tvcp ,

1
2{1 + cos

[
π(t− Tvcp)/Tvrp

]
} , Tvcp < t ≤ Tvcp + Tvrp ,

0 , Tvcp + Tvrp < t ≤ T ,

(2.50)
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for ventricles. T is the duration of a cardiac cycle; Tacp, Tvcp, Tarp and Tvrp represent the duration of
atrial/ventricular contraction/relaxation while tac and tar are the times within the cardiac cycle at which
atrial contraction and relaxation begin.

The modelling of cardiac valves is described in what follows. As each chamber of the heart contracts,
blood is pushed through a valve either into another chamber or out of the heart into an artery (aorta or pul-
monary). The four cardiac valves (tricuspid, pulmonary, mitral and aortic) ensure one-way blood flow by
(a) opening to let blood through and (b) closing to prevent backflow. The mechanism that leads to opening
or closure of a valve is driven by blood pressure changes as the heart contracts and relaxes. Such mecha-
nism is modelled here following what described in Subsection ’Valves, Starling resistors and stenoses’. The
pressure drop across each cardiac-valve length, defined as the pressure difference between the upstream
and downstream pressures with respect to the valve direction, depends on the pressure in the neighbour-
ing cardiac chambers and on the pressure in other compartments such as the aortic root and the pulmonary
arterial compartment. In particular, the tricuspid and mitral valves are atrioventricular valves that prevent
backflow of blood from the ventricles into the atria; in these cases, the upstream pressure is the pressure
of the atrium while the downstream pressure is that of the ventricle. The pulmonary valve is located at
the opening between the right ventricle and the pulmonary trunk, therefore its upstream and downstream
pressures are the right ventricle and the arterial pulmonary pressure, respectively. Finally, the pressure
drop across the aortic valve is determined by the difference between the left ventricle and the aortic root
pressure. In Eq. (2.41), ∆po and ∆pc are set to 0 for all the cardiac valves. Other parameters are defined later
in Section 2.4.

Venous valves and Starling resistors

The Müller-Toro global model [201, 202] is equipped with submodels for venous valves and Starling
resistors (SR) consisting of ideal diodes. In the present thesis, these elements are replaced with the model
described in Subsection ’Valves, Starling resistors and stenoses’ in Section 2.2.2.

Venous valves. Venous valves are placed at different locations of the venous network; each venous
valve is located between two venous vessels and governs flow across this interface. Location of valves
are reported in Table 2.5 and are related to the venous network depicted in Figures 2.2 and 2.3. We refer
the reader to Section 2.3.7 for more details about the numerical coupling between 1D vessels and 0D valve
models. In this case, the pressure drop which governs the flow rate across the valve is determined by
the pressure difference between the upstream and downstream vessels with respect to the valve direction.
Moreover, the annulus area Aa is assumed to be equal to the mean area between the reference areas of the
connecting vessels on the right and left side. In the same way, the effective length le is taken as the mean
diameter at equilibrium between the upstream and downstream vessels. Finally, ∆po and ∆pc are set to 0.

Starling Resistors. Venous cerebral blood flow is ensured by a Starling resistor (SR) mechanism, a fluid
dynamic construct which governs the flow in collapsible tubes exposed to variable external pressure. The
Starling resistors act at the confluence of cortical veins in the dural sinuses; these are located in the dura
mater and are more rigid than cerebral veins. During the large physiological fluctuations of the intracra-
nial pressure, the Starling resistor mechanism prevents the vein collapse maintaining the blood pressure
upstream the collapsed segment higher than the intracranial pressure.

In previous work, Starling resistors were described simply via ideal diodes [202]. Here we adopt a
model that allows for a richer description of opening/closing dynamics, as well as accounting for a better
description of underlying physical processes. In our venous network, Starling resistor behaviour is repre-
sented through the model proposed in Subsection ’Valves, Starling resistors and stenoses’ in Section 2.2.2.
The pairs of vessels between which each SR element is placed are reported in Table 2.5, where the left vessel
index represents the number of the cortical vein while the right vessel index indicates the corresponding
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venous sinus. As for the valves, we refer the reader to Section 2.3.7 for details on how the 1D vessels are
numerically coupled to 0D SR models. The annulus area Aa and the effective length le are assumed to
be the mean area and diameter, respectively, between the reference area and diameter at equilibrium of
the pair of vessels connected to the Starling resistor element. The flow across Starling resistors is limited
to that given by the pressure difference between the cerebral vein (upstream vessel) and the larger of in-
tracranial pressure and the downstream pressure. When the intracranial pressure is much higher than the
downstream pressure, the flow rate through the vessel becomes independent of the downstream pressure
and the driving pressure difference is given by the upstream and the external pressures. As for other in-
tracranial compartments, the external pressure is the intracranial pressure. Therefore, the valve state in
Equation (2.41) is determined by ∆p − ∆po = ∆p − ∆pc = pdown(t) − pext(t), where pext is the intracra-
nial pressure. If pdown(t) < pext(t), in Equation (2.42), the driving pressure difference ∆p is given by
∆p = pup − pext; on the other hand, if the downstream pressure is higher than the external pressure, the
flow across the Starling resistor element is determined by the pressure difference between the upstream
and downstream pressures ∆p = pup − pdown. Other parameters used in the valve and Starling resistor
models are reported in Section 2.4.

Control system: cerebral autoregulation

We consider a model of the cerebrovascular regulation mechanisms, which acts by modifying resistances
and compliances of the arterial microcirculation; changes in these parameters are not independent but
are related through biomechanical and geometrical laws. The model is based on [305] and [234], with
appropriate modifications. Only one control mechanism is considered in this work, the myogenic response,
which is linked to changes in arterial pressure and cerebral blood flow. The original autoregulation model
proposed in [305] reproduces also the metabolic response of cerebral autoregulation, which is linked to
carbon dioxide reactivity and the amount of oxygen reaching the brain tissue. This mechanism is not
included in the present thesis, as the current version of our model does not yet include a submodel for the
transport of CO2 and oxygen in the brain.

Cerebral myogenic autoregulation is activated by changes in cerebral blood flow; its action on the arte-
rial microvasculature (arterioles and capillaries) includes a static gain G and first-order low-pass dynamics
with a time constant τ. An increase in cerebral blood flow (CBF) causes vasoconstriction and, consequently,
a decrease in compliance and an increase in resistance. The regulatory response is modelled by a sigmoidal
static relationship with upper and lower levels to account for the limits of vasodilatation and vasoconstric-
tion capacities.

The following differential equations describe the actions of autoregulation by means of first-order low-
pass dynamics, time constants and gains

τ
dxi
dt

= −xi + Gi

(
Qi −QT

i

QT
i

)
; (2.51)

xi is the state variable of cerebral autoregulation of the i−th cerebral terminal artery that responds to alter-
ation of cerebral blood flow. Gi is the static gain for the i−th cerebral terminal artery; it is evaluated from
the total static gain of autoregulation G (which value will be defined in Section 2.4 ) according to the flow
distribution inside the brain. Qi is the time averaged flow and QT

i is the reference flow at the i-th terminal
artery over the period [t− T, t], where t is the current time and T is the cardiac cycle duration.

Once the control actions xi of each i−th terminal artery are found solving the ordinary differential equa-
tion (2.51), arterial compliances are defined through a sigmoidal relationship

Ci =
Ci {(1− ∆Ci/2) + (1 + ∆Ci/2) exp[(−xi)/ki]}

1 + exp[(−xi)/ki]
, (2.52)
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with upper and lower saturation levels. In this section, Ci, Ri and Vi stand for compliance (Cal , Ccp), resis-
tance (Ral , Rcp) or volume of arteriolar and capillaries compartments (Val , Vcp) that are in the vascular beds
linked to the i−th terminal artery, ki is a constant parameter, inversely proportional to the central slope
of the sigmoidal curve, Ci and ∆Ci are the central value and the amplitude of the sigmoidal curve. ∆Ci

depends on whether vasodilation or vasoconstriction is considered and it is chosen for each terminal artery
as follows∆Ci = 2sat1 , ki = Cisat1 if xi > 0 ,

∆Ci = 2sat2 , ki = Cisat2 if xi < 0 ,
(2.53)

where sat1 and sat2 are constant parameters that define the upper and lower saturation levels of the sig-
moidal curve. According to the literature [147], the sigmoidal curve is not symmetrical; the increase in
blood volume induced by vasodilation is higher than the blood volume decrease induced by vasoconstric-
tion; therefore, two different values must be chosen for the parameter ∆Ci. From (2.52) and (2.53), it follows
that the upper and lower saturation levels of the sigmoidal curve are Ci +

sat2
2 and Ci − sat1

2 , respectively.
The cerebrovascular control mechanisms affects not only the compliances, but also the arterial resis-

tances. The variation of compliance in time changes the arterial volume. Since blood volume in a vessel, as
a first approximation, is proportional to the radius squared (V ∝ r2), for a given vessel length, and vessel
resistance is proportional to the inverse of radius to the power four (R ∝ 1/r4), volume varies according
to the inverse square root of the resistance (V ∝ 1/

√
R). Therefore, the following relationship is used to

update the resistances of regulating arteries

Vi

VT
i

=

√
RT

i
Ri

, (2.54)

where Vi is the mean volume of the i-th arterial compartment (arterioles and capillaries) in the interval
[t − T, t], while VT

i is the mean baseline condition volume, Ri is the current resistance of the arteriolar-
capillaries compartment and RT

i is the resistance under baseline conditions.

2.3 Numerical Methods

The 1D hyperbolic PDE system of blood flow equations (2.17) is solved using a high-order numerical
scheme based on the ADER (Arbitrary high-order DERivatives Riemann solver) framework [294]. For an
up to date review of ADER see [288] and references therein. The ADER scheme is based on three build-
ing blocks: nonlinear piecewise polynomial spatial reconstruction, solution of the generalized Riemann
problem (GRP) at each cell interface to compute numerical fluctuations and space-time integration of the
source term to compute the numerical source. In this work we apply the WENO spatial reconstruction
technique as presented in [77]. It is worth mentioning that during this thesis work a novel spatial recon-
struction scheme, called averaged-ENO (AENO) was developed. It results from a special averaging of
the ENO polynomial and its closest neighbour, while retaining the stencil direction decided by the ENO
choice. AENO turns out to be comparable to other well-known reconstruction technique, such as ENO and
WENO. The thesis’ author contributed to the development of AENO and its variant, called modified AENO
(m-AENO). These works were published in [291, 198] and are not included in this thesis. As the GRP solver
we use the Dumbser-Enaux-Toro (DET) solver proposed in [76] and extended to nonconservative systems
in [80, 81]. Moreover, for the computation of the first-order numerical fluctuations we adopt the Riemann
problem solver proposed in [205], which is a modification of the original Dumbser-Osher-Toro (DOT) [79]
for constructing well-balanced fluctuations for a first order non-oscillatory scheme in the framework of
path-conservative schemes. Full details of the schemes for the present appliaction are found in [205] .
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The ADER scheme is an explicit numerical scheme; therefore, the so-called Courant-Friedrichs-Lewy
(CFL) condition of stability must be satisfied defining the time step by ensuring that the CFL number is
smaller than a given threshold. In previous works [201, 199], the same fixed CFL number is used for each
1D domain but a local choice of the time step could improve the accuracy of the method. The first example
of local time stepping solver applied to blood flow can be found in [178] where each vessel is characterized
by its specific time step and the coupling between neighbouring vessels occurs at a given synchronization
step through an implicit Richardson-like iterative method. In [207], a local time stepping solver (LTS) for
solving blood flow equations combined with a high-order coupling strategy between neighbouring vessels
has been introduced. Here we follow [207], allowing an explicit local time-stepping temporal discretization
of the underlying finite-volume type ADER scheme.

2.3.1 Path-conservative scheme

We present here the numerical scheme for a single 1D domain, the j-th vessel. For sake of clarity, we
omit to evidence the dependence of the vessel index j, but we underline that all quantities defined in this
section are related to the j-vessel. Moreover, we stress the fact that this is true also for the time iteration
index n, since we apply a local time step strategy.

Each one-dimensional domain is divided into N computational cells Ti =
[
xi− 1

2
, xi+ 1

2

]
for i = 1, . . . , N.

The finite-volume type formulation of the problem obtained integrating the system of governing equa-
tions (2.9) in space and time in the control volume

[
xi− 1

2
, xi+ 1

2

]
× [tn, tn+1] is

Qn+1
i = Qn

i −
∆t
∆x
(
D−

i+ 1
2
+ D+

i− 1
2

)
+ ∆tSi − ∆tGn

i , (2.55)

where

Qn
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn) dx , (2.56)

Gn
i =

1
∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

A(Q)∂xQ dx dt , (2.57)

Si =
1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t)) dx dt , (2.58)

D±
i+ 1

2
=

1
∆t

∫ tn+1

tn
D±

i+ 1
2

(
Q−

i+ 1
2
(t), Q+

i+ 1
2
(t), Ψ(s)

)
dt , (2.59)

with ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn. Moreover, Q±

i+ 1
2

are limiting data states from left and right at the

cell interface xi+ 1
2
. Given Q−

i+ 1
2

and Q+
i+ 1

2
, D±

i+ 1
2

(
Q−

i+ 1
2
(t), Q+

i+ 1
2
(t), Ψ(s)

)
are fluctuations that depend on the

integration path Ψ(Q−
i+ 1

2
(t), Q+

i+ 1
2
(t), s).

2.3.2 The numerical fluctuation

Fluctuations D±
i+ 1

2
in (2.59) arise from the solution of a Riemann problem at computational cell inter-

faces. Here, we adopt the DOT Riemann solver [79] for constructing well-balanced fluctuations for a first
order non-oscillatory scheme in the framework of path-conservative schemes [205]. Fluctuations in the
DOT solver are computed as

D±
i+ 1

2
=

1
2

∫ 1

0

(
A
(

Ψ(Q−
i+ 1

2
, Q+

i+ 1
2
, s)
)
± |A

(
Ψ(Q−

i+ 1
2
, Q+

i+ 1
2
, s)
)
|
)

∂Ψ
∂s

ds , (2.60)
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with absolute value operator of a matrix defined as

|A(Q)| = R(Q)|Λ(Q)|R(Q)−1 , (2.61)

where

|Λ(Q)| = diag(|λ1|, |λ2|, . . . , |λ6|) , (2.62)

is the diagonal matrix formed by the eigenvalues of the underlying hyperbolic system of PDEs (2.17) while
R and R−1 is the matrix of right eigenvectors and its inverse, respectively.

Ψ = Ψ(Q−, Q+, s), with 0 ≤ s ≤ 1, is the integration path, a Lipschitz continuous function that connects
the left state Q− to the right state Q+ in phase-space, satisfying

Ψ(Q−, Q+, 0) = Q−, Ψ(Q−, Q+, 1) = Q+ . (2.63)

In order to obtain a well-balanced scheme that correctly reproduces steady and unsteady states, we adopt
the path proposed in [205], wherein a segment path is used for all variables except for the cross-sectional
area; the used path reads

Ψ(s) =



A(s)
q(s)
K(s)
A0(s)
pext(s)

ζ(s)


=



A(s)
q−

i+ 1
2
+ s(q+

i+ 1
2
− q−

i+ 1
2
)

K−
i+ 1

2
+ s(K+

i+ 1
2
− K−

i+ 1
2
)

A−
0,i+ 1

2
+ s(A+

0,i+ 1
2
− A−

0,i+ 1
2
)

p−
ext,i+ 1

2
+ s(p+

ext,i+ 1
2
− p−

ext,i+ 1
2
)

ζ−
i+ 1

2
+ s(ζ+

i+ 1
2
− ζ−

i+ 1
2
)


. (2.64)

A(s) is obtained from the arch joining two states A−
i+ 1

2
and A+

i+ 1
2
, through the curve defined by Riemann

invariant ΓLD
1 of the linearly degenerated field in Eq. (2.36). A(s) can be obtained as an implicit function of

Φ from (2.4), which in turn is computed as

Φ(s) =
ΓLD

1 (s)− pext(s)
K(s)

, (2.65)

with

ΓLD
1 (s) = ΓLD,−

1,i+ 1
2
+ s
(
ΓLD,+

1,i+ 1
2
− ΓLD,−

1,i+ 1
2

)
. (2.66)

The integral for the DOT solver using the proposed path is performed numerically and reads

D±
i+ 1

2
=

1
2

(
G

∑
j=1

ωj

{(
A
(
Ψ(sj)

)
± |A

(
Ψ(sj)

)
|
) ∂Ψ

∂s

∣∣∣∣
sj

})
, (2.67)

where ωj and sj are the j-th weight and coordinate of a Gaussian quadrature rule with G points. Note that,
because of this choice of the path, vector ∂Ψ

∂s cannot be taken out of the integral (2.60); derivatives for most
variables are easily computed, besides that for A(s), which is an implicit function of Φ so that its derivative
at each quadrature point s = sj is computed as

∂A
∂s

(sj) =

(
∂Φ
∂s

(sj)−
∂Φ
∂A0

∣∣∣∣
s=sj

∂A0

∂s
(sj)

)(
∂Φ
∂A

∣∣∣∣
s=sj

)−1

. (2.68)
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2.3.3 The ADER-DET scheme

We proceed with a brief explanation of the steps followed for the implementation of the ADER scheme
with the DET solver. For the spatial reconstruction, we use the WENO methodology proposed in [77]. We
introduce reference coordinates 0 ≤ χ ≤ 1 given by x = xi− 1

2
+ χ∆xi. For a scheme of order k, at time level

tn, a reconstruction operator is computed

wh = wh(χ, tn) =
M+1

∑
l=1

φl(χ)ŵl(tn) . (2.69)

M = k − 1 is the polynomial degree, φl(χ), l = 1, . . . , M + 1 are the corresponding basis functions and
ŵl(tn), l = 1, . . . , M + 1, are the expansion coefficients at time t = tn.
The spatial reconstruction is performed on a set of stencils defined as

Ss
i =

i+R⋃
e=i−L

Te , (2.70)

where L and R are the stencil extents to the left and to the right. In particular, for odd order schemes, we
use three stencils, central (s = 1, L = R = M/2), fully left-sided (s = 2, L = M, R = 0) and a fully-right
sided stencil (s = 3, L = 0, R = M); on the other hand, for even order schemes, we use four stencils, two
central stencils (s = 0, L = f loor(M/2) + 1, R = f loor(M/2), s = 1, L = f loor(M/2), R = f loor(M/2) + 1
) and the other ones fully left and right sided (s = 2, L = M, R = 0, s = 3, L = 0, R = M). For each element
Te inside the stencil Ss

i , the reconstructed polynomial is computed requiring integral conservation∫
Tj

ws
h(χ, tn) dχ = ŵs

l (t
n)
∫

Tj

φl(χ) dχ = Qn
j ∀Tj ∈ Ss

i . (2.71)

This equation leads to a linear system for unknown coefficients ŵs
l (t

n); we compute ŵl(tn) as

ŵl(tn) =
Ns

∑
s=1

ωsŵs
l (t

n) , (2.72)

where Ns is the total number of stencils used and ωs are nonlinear weights given by relations

ωs =
ω̃s

ω̃0 + ω̃−k + ω̃k
, (2.73)

ω̃s =
λs

(σs + ε)r , (2.74)

σs =
M

∑
l=1

∫ 1

0

(
∂l

∂χl ws
h(χ, tn)

)2

dχ . (2.75)

ε and r are constants, generally taken as ε = 10−14 and r = 8; for linear weights one usually takes λ0 = 105,
λ−k = 1 and λk = 1. When we apply the reconstruction procedure for any order of accuracy greater than
one, we need computational cells to both sides of the cell of the reconstruction stencil but in the case of
cells near the boundaries, the stencil will fall outside the 1D domain. Therefore, ghost cells are necessary.
This aspect was addressed in [203] and will be briefly illustrated in Section 2.3.6. Moreover, application of
WENO reconstruction operator is not straightforward if well-balancing is to be preserved. Full details for
how to address this issue are given in [207].

Once that the spatial reconstruction is available, we can define a generalized Riemann problem (GRP)
at the cell interface x = xi+ 1

2
(locally at x = 0) with initial data given by the piecewise polynomials at both

sides of the cell interface
∂tQ + A(Q)∂xQ = S(Q) x ∈ R , t > tn ,

Q(x, 0) =

wi(x, tn) if x < 0 ,

wi+1(x, tn) if x > 0 .

(2.76)
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The DET solver is characterized by a local data evolution at both sides of the cell interface in order to
obtain space-time predictions and the solution of the classical Riemann problems at points along x/t = 0.
A distinct feature of the DET solver is the time evolution of the initial data left and right of the interface
by a space-time local discontinuous-Galerkin scheme, which provides local space-time polynomial Qh =

Qh(x, t) to be later used to approximate integrals in (2.11) and (2.13).
We start by transforming system (2.17) to a reference space-time element TE = [0; 1]× [0; 1] with normal

coordinates χ and τ related to the physical domain by x = xi+ 1
2
+ ∆xiχ and t = tn + ∆tnτ. The resulting

system reads

∂tQh + A∗∂χQh = S∗, (2.77)

with modified coefficient matrix and source term vector

A∗ =
∆tn

∆x
A(Qh), S∗ = ∆tnS(Qh) . (2.78)

In order to simplify the notation, we introduce

[a, b]τ =
∫ 1

0
a(χ, τ)b(χ, τ) dχ , (2.79)

< a, b >TE=
∫ 1

0

∫ 1

0
a(χ, τ)b(χ, τ) dχ dτ . (2.80)

Multiplying by a space-time basis function θ(χ, τ) and integrating over the reference element, we obtain

[θ, Qh]
1− < ∂τθ, Qh >TE + < θ, A∗∂χQh >TE= [θ, wh]

0+ < θ, S∗ >TE . (2.81)

The same space-time basis functions θ are used for Qh, A∗∂χQh and S∗, so that

Qh(χ, τ) =
(M+1)2

∑
l=1

θlQ̂l ,

A∗∂χQh(χ, τ)
(M+1)2

∑
l=1

θlÂ∗∂χQl ,

S∗(χ, τ) =
(M+1)2

∑
l=1

θlŜ
∗
l ,

where Ŝ∗l = ∆tnS(Q̂l). At each iteration step m we solve the following system of non-linear algebraic
equations by the fixed point iteration procedure(

[θk, θl ]
1− < ∂τθk, θl >TE

)
Q̂m+1

l − < θk, θl >TE Ŝ∗
m+1
l = [θk, φl ]

0ŵl− < θk, θl >TE
̂A∗∂χQm

l , (2.82)

for k = 1, . . . , (M + 1)2.
Once that Q̂l are available for all computational cells, the solution to the GRP at time t ∈ [tn, tn + ∆tn]

is found by solving classical Riemann problems (as many as necessary according to the quadrature rule
used to approximate the integral in time) using the space-time reconstructed states at both sides of the cell
interface. The source term space-time average and the non-conservative product space-time average are
now computed by numerical integration using a quadrature rule of appropriate accuracy; as basis func-
tions θ we adopt a nodal basis function given by Gauss-Lobatto quadrature points and the corresponding
Lagrange polynomials.

In order to ensure that the local truncation error of the numerical solution of (2.17) with space-time order
of accuracy k is smaller than the formulation error with respect to the original advection-diffusion-reaction
problem, the following sufficiency criterion, proposed in [199], must be satisfied

∆ :=
ε

(∆x)k
1− 2

−1
2

2k− 1
2 − 1

= O(1) , (2.83)

where ∆x is the characteristic size of the computational cells and ε is the relaxation parameter.
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2.3.4 Local time stepping

Within the context of the ADER finite-volume type schemes, we adopt the high-order Local Time Step-
ping (LTS) scheme presented in [207]. As observed before, the numerical scheme used in this work is
explicit in time. Therefore, the Courant-Friedrichs-Lewy (CFL) condition must be satisfied in each compu-
tational cell to guarantee numerical stability. In the context of the LTS technique adopted here, each vessel
is allowed to evolve in time according to its local stability criteria.

Let us assume to work with a network of Nv vessels in which each one evolves with its local time step.
At the beginning of the simulation, we set the initial local time step for each j-th vessel

∆t0
j =

∆tmax

2k0
j

, (2.84)

where

k0
j =

 log(∆tmax/∆̃t
0
j )

log(2)

 , (2.85)

∆̃t
0
j is the vessel time step at t0

j , given by the CFL condition of the numerical scheme (in this work, CFL =
0.9), while ∆tmax is a user-defined value (fixed or changed adaptively during the simulation). We refer the
reader to [207] for a detailed description of the local time stepping procedure; here we briefly summarize
the main steps for updating the local time step of the j-th vessel at the general nj-th time iteration. At time
level t

nj
j , we evaluate

∆̃t
nj
j = CFL

λ̃
nj
j

∆xj
, (2.86)

where

λ̃
nj
j = max

i=1,...,Nj

(
|unj

j,i |+ c̃
(

A
nj
j,i , ζ

nj
j,i

))
, (2.87)

with Nj the total number of computational cells of the j-th vessel. Then, we calculate

∆t
nj
j =

∆tmax

2k
nj
j

, (2.88)

where

k
nj
j =


log(∆tmax/∆̃t

nj
j )

log(2)

 . (2.89)

Once these quantities are computed, we have to verify if the resulting time step fullfils the global CFL
condition. To that end, we set the local variables in this way

CFLloc = λ̃
nj
j

∆t
nj
j

∆xj
, (2.90)

∆tloc = ∆t
nj
j , (2.91)

kloc = k
nj
j . (2.92)

If CFLloc number exceeds the CFL condition of the numerical scheme, the time step must be reduced.
Therefore, we change it until CFLloc results equal or less than CFL, namely we iterate as follows until
CFLloc ≤ CFL:

kloc = kloc + 1 , (2.93)
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∆tloc = min
(

∆tmax,
∆tmax

2kloc

)
, (2.94)

CFLloc = λ̃
nj
j

∆tloc
∆xj

. (2.95)

On the contrary, if CFLloc < CFL, the local time step might be increased. Particular attention is needed
in this case for the synchronization of the solution at junctions. As long as CFLloc < CFL, we iterate as
follows:

kloc = kloc − 1 , (2.96)

∆tloc = min
(

∆tmax,
∆tmax

2kloc

)
, (2.97)

CFLloc = λ̃
nj
j

∆tloc
∆xj

. (2.98)

After that, we set

kloc = kloc + 1 , (2.99)

∆tloc = min
(

∆tmax,
∆tmax

2kloc

)
. (2.100)

The procedure used to update the local time takes into account the synchronization criteria of the solution
at junctions; for this reason the time step can be updated only if the new time level t

nj
j + ∆tloc is a multiple

of ∆tmax. If the condition is not satisfied, the time step is set to be equal to (2.84). In practice, for the j-th
vessel to evolve from t

nj
j to t

nj+1
j , the following criteria must be fulfilled

t
nj
j + ∆t

nj
j ≤ min

m=1,...,Nj,neigh
(tnm

m + ∆tnm
m ) , (2.101)

where Nj,neigh is the set of vessels that share a junction with the j-th vessel. This relation is necessary to
guarantee that the information to evaluate the fluctuations at the boundary of a vessel is available for the
entire time step, as explained in the following section.

2.3.5 The coupling of vessels

The coupling of several 1D vessels is treated using the methodology proposed in [203] and [207]; here
we formulate it for the case of NP vessels converging at node P. In the case of boundary cell interfaces at
junctions, the predicted states are only available at one side of the interface; in these cases, fluctuations for
the j-th vessel at time step nj are computed as

D+
j,1− 1

2
=

1

∆t
nj
j

∫ t
nj+1

j

t
nj
j

D+
j,1− 1

2

(
Q∗j,1− 1

2
(t), Qh

j,1(0, (t− t
nj
j )/∆t

nj
j ), Ψ

)
dt , (2.102)

for a cell located at xj = 0 and

D−
j,Nj+

1
2
=

1

∆t
nj
j

∫ t
nj+1

j

t
nj
j

D−
j,Nj+

1
2

(
Qh

j,Nj
(1, (t− t

nj
j )/∆t

nj
j ), Q∗j,Nj+

1
2
(t), Ψ

)
dt , (2.103)

for a cell interface located at xj = Lj. Qh
j,i are the predicted space-time polynomials for j-th vessel and i-th

cell obtained by the DET solver and evaluated at χ = 0 and χ = 1 for fluctuations computed at xj = 0
and xj = Lj, respectively. Lj and Nj are the length and number of computational cells of the j-th vessel,
respectively. Q∗

1− 1
2
(t) and Q∗N+ 1

2
(t) are still to be defined.
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Since each vessel is advancing in time with its own time step, integrals (2.102) and (2.103) have to
be computed as the sum of partial integrals. Each of these partial integrals at a given junction will be
performed using a Gauss-Lobatto integration rule. For each quadrature point at a junction shared by NP

vessels, we can define a Riemann problem at time tc as∂tQk + Ak(Qk)∂xQk = Sk(Qk), xk ∈ R, t > tc ,

Qk(tc) = Qh
k,îk

(χîk
, (tc − tnk

k )/∆tnk
k ) ,

(2.104)

for k = 1, ..., NP, with îk = 1 if the k-th vessel shares its first computational cell with the junction node
(xk = 0) or îk = Nk if the shared cell is the last one (xk = Lk). Consequently, χ1 = 0 and χNk = 1. This
system cannot be recast in conservative form, so we use a two-rarefaction type Riemann solver. Note that
in the case of system that admits a conservative form, appropriate wave relations for shocks (derived from
Rankine-Hugoniot conditions) can be enforced. The unknown state vectors Q∗k,îk

are computed solving a
system of 3NP non-linear equations that reads

∑NP
k=1 gk A∗

k,îk
u∗

k,îk
= 0 ,

p̃(A∗
1,î1

) + 1
2 ρ(u∗

1,î1
)2 − p̃(A∗

k,îk
)− 1

2 ρ(u∗
k,îk

)2 = 0 , k = 2, . . . , NP ,

u∗
k,îk
− uh

k,îk
(χîk

, (tc − tnk
k )/∆tnk

k ) + gkβk , k = 1, . . . , NP ,

ζ∗
k,îk

+
A∗

k,îk
εk
− ζh

k,îk
(χîk

, (tc − tnk
k )/∆tnk

k )−
Ah

k,îk
(χîk

,(tc−t
nk
k )/∆t

nk
k )

εk
= 0, k = 1, . . . , NP ,

(2.105)

where

βk =
∫ A∗

k,îk

Ah
k,îk

(χîk
,(tc−t

nk
k )/∆t

nk
k )

c(τ)
τ

dτ (2.106)

and

gk =

1, if xk = Lk ,

−1 if xk = 0 .
(2.107)

If space-time predictions for all NP vessels sharing a node are available at time tc, then a Riemann problem
at a junction can be defined and solved, so we can find the needed states for the computation of first-order
fluctuations at specified quadrature points for a partial integral of (2.102) and (2.103).

Remark. In order to ensure mass conservation at a discrete level, we replace the first component of
integrands in (2.102) and (2.103) by

D+
j,1− 1

2

(
Q∗j,1− 1

2
(t), Qh

j,1(0, (t− t
nj
j )/∆t

nj
j ), Ψ

)
[1] = qh

k,îk
(χîk

, (tc − tnk
k )/∆tnk

k )− q∗
k,îk

,

D−
j,Nj+

1
2

(
Qh

j,Nj
(1, (t− t

nj
j )/∆t

nj
j ), Q∗j,Nj+

1
2
(t), Ψ

)
[1] = q∗

k,îk
− qh

k,îk
(χîk

, (tc − tnk
k )/∆tnk

k ) .
(2.108)

Such approach enforces that mass exchange between vessels is based on flows q∗
k,îk

, which in turn satisfy
mass conservation according to first condition in (2.105). See [79] for further details.

2.3.6 Ghost cell for spatial reconstruction

The WENO reconstruction procedure requires, at each time step, the state variable value at M ghost
cells at each side for one dimensional domain. In order to obtain an accurate approximation of the solution
outside the domain used to evaluate the cell averages of ghost cells, we use a Taylor series expansion
around the vertex P shared by the j-th vessel [207]. So, given δ, a local spatial coordinate with origin in P,
the extrapolated state vector is

Qg
j (δ, t

nj
j ) = Q∗j,îj

(t
nj−1
j + ∆t

nj−1
j ) +

M

∑
r=1

1
r!

∂
(r)
x Q∗j,îj

(t
nj−1
j + ∆t

nj−1
j )δr , (2.109)
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where Q∗j,îj
(t

nj−1
j + ∆t

nj−1
j ) is the solution of the Riemann problem at a junction described in the previous

section. Spatial derivatives ∂
(r)
x Q∗j,îj

(t
nj−1
j + ∆t

nj−1
j ) are computed from a linearized version of the original

PDE system by a procedure inspired in the Titarev–Toro generalized Riemann problem solver [296]. The
following Riemann problem is solved∂t

(
∂
(r)
x Qk(t

nj−1
j + ∆t

nj−1
j )

)
+ Āk∂x

(
∂
(r)
x Qk(t

nj−1
j + ∆t

nj−1
j )

)
= 0 x ∈ R , t > t

nj−1
j + ∆t

nj−1
j ,

∂
(r)
x Qk(t

nj−1
j + ∆t

nj−1
j ) = ∂

(r)
x Qh

k,îk
(χîk

, (t
nj−1
j − tnk

k )/∆tnk
k ) ,

(2.110)

for k = 1, . . . , NP. Āk is the linearized coefficient matrix

Āk = A
(

Q∗k,îk

(
t
nj−1
j + ∆t

nj−1
j

))
. (2.111)

Note that we use index k to put in evidence the fact that in order to compute spatial gradients for the j-
th vessel we solve a linear Riemann problem involving the spatial gradients of the predicted space-time
polynomials of all vessels shared by junction P and evaluated at the time t

nj−1
j + ∆t

nj−1
j . Initial conditions

for this problem are directly taken from implicit discontinuous Galerkin prediction of the previous time
step by recursively considering

< θk, θl > ∂̂
(r)
χ Ql =< θk, ∂χθl >

̂
∂
(r−1)
χ Ql , (2.112)

with r = 1, . . . , M and l = 1, . . . , (M + 1)2. For a second order scheme, the computational cost of solving
the Riemann problem for linearized system is only one linear system of 3NP unknowns.

2.3.7 1D-0D coupling

First we address the case of a 1D vessel coupled to a 0D model of the microvasculature. Let’s suppose
that the j-th vessel shares the interface of its last computational cell Nj with a zero-dimensional sub-model
of the microvasculature, with a proximal resistance Rp connected to one dimensional domain, followed
by a compliant compartment with pressure Plumped(t). In order to compute fluctuations at the boundary,
Q∗j,Nj+

1
2
(t) must be known at each quadrature point tc for time integral (2.103), while Qh

j,Nj
(1, (t− t

nj
j )/∆t

nj
j )

is delivered by the DET prediction step. Q∗j,Nj+
1
2
(t) is obtained by solving the following system of equations
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nj
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(2.113)

with β j defined as in Equation (2.106). As for the case of coupling vessels at a junction, the first compo-
nent of the integrand in (2.103) is replaced by the flux difference form using obtained flow rate q∗

j,Nj+
1
2
=

A∗
j,Nj+

1
2
u∗

j,Nj+
1
2
, in order to ensure mass conservation at a discrete level. The case of a vessel sharing its

first computational cell with the microvasculature is analogous to this one, changing only the Riemann
invariants to be enforced.

Now we consider the case of a 1D vessel coupled to a valve or Starling resistor 0D model. This case
is analogous to the one presented in the previously. However, in this case the valve or Starling resistor
model is directly providing one of the state variables to be enforced at the interface, namely the flow rate.
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Therefore, in this case we only need to find the unknown area A∗
j,Nj+

1
2

and auxiliary variable ζ∗
j,Nj+

1
2
. For

example, for a vessel sharing its last computational cell with a valve or Starling resistor model we have
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(2.114)

where q0D is the flow rate provided by the 0D valve or Starling resistor model. Also in this case we re-
place the first component of the integrand in (2.103) by the flux difference form in order to ensure mass
conservation at a discrete level.

2.4 Parametrization of the model

In this section we present all the parameters needed for the implementation of the global closed-loop
model. The parameters assignment correspond to a healthy young male subject. We underline that the
parameters are, unless otherwise specified, the ones proposed in [201, 202].

Arteries and veins. The 1D vascular network contains 323 one-dimensional segments, of which 98 are
arteries and 209 are veins, all linked by 143 junctions. Figure 2.2 shows a schematic representation of such
networks, while Figures 2.3 (A) and 2.3 (B) provide a detailed description of head and neck arteries and
veins. Compared to the network used in [201, 202], in the present thesis we propose a detailed description
of the highly vascularized regions of the posterior part of the brain. Blood supply to the brainstem is crucial
for the function of sensory and motor pathways, as the nerve connections of these systems from the main
part of the brain to the rest of the body pass through it. More importantly, the brainstem plays a key role
in maintaining cardiac and respiratory functions, such as heart rate and breathing. Three main arteries
supply blood to the cerebellum: the superior cerebellar artery (SCA), the anterior inferior cerebellar artery
(AICA) and the posterior inferior cerebellar artery (PICA). AICA (No. 304, 305, 306, 307) was previously
included in our model for the ear circulation network [297]; the other arteries are added here using data
from the ADAN network [29] and from the literature [213]. PICA (No. 285, 286, 310, 311) arises from the
vertebral artery at about 15 mm from the vertebrobasilar junction. SCA (No. 287, 288) arises from the
basilar artery near the bifurcation of the basilar into the posterior cerebral artery. The brainstem is supplied
by the medullary branch of the posterior inferior cerebellar artery (No. 308, 309), the anterior spinal artery
(No. 312, 313), which arises from the terminal part of the vertebral artery and the pontine arteries (No. 316,
317, 318, 319), lateral branches from the basilar artery that supply the pons. All these arteries end in the
vascular beds of the cerebellum and brainstem.

According to experimental observations [314, 73, 131], the mean value of blood flow to the cerebellum
and the brainstem is about 10% of the total cerebral blood flow. Following [314], we estimate that flow to
the cerebellum and to the brainstem are 1.01 ml/s and 0.13 ml/s, respectively. The posterior part of the
brain is drained by the group of cerebellar veins, such as the superior cerebellar veins and the inferior cere-
bellar veins. In this work, the intricate venous vasculature is represented by three main veins: the superior
vermian vein (No. 289, 290), the superior petrosal vein (No. 298 299, 300, 301) in the superior part and
the inferior vermian vein (No. 291, 292, 295, 296) in inferior area. The superior vermian vein drains into
the vein of Galen (No. 106), the superior petrosal vein drains into the petrous sinus (No. 111, 112) while
the inferior vermian vein drains into the transverse sinus (No. 101, 102). The addition of the posterior
brain vasculature is essential to explore some medical conditions that affect the brainstem and the cerebel-
lum, such as the effect of vertebral artery hypoplasia in the ipsilateral posterior inferior cerebellar artery
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FIGURE 2.2: Arterial and venous network composed of 114 arteries and 209 veins; numbers
refer to those used in Tables A.1 and A.2.
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[286]. Moreover, in order to analyze better the implications of venous strictures in the pathophysiology of
Ménière’s disease, we redefine the ear vasculature previously included in [297]. The ear is mainly supplied
by the labyrinthine artery [188, 316, 269], which arises from the anterior inferior cerebellar artery, passes
through the internal acustic meatus and then perfuses the inner ear. More details about the complete vessel
network can be found in the appendix.

The coefficient K present in tube law (2.5) is obtained from the reference wave speed c0 assumed for each
vessel; in this work we estimate its value, distinguishing arteries, veins and dural sinuses. For arteries, this
wave speed is computed as proposed by Olufsen et al. [225], namely,

c2
0 =

2
3ρ

(k1 exp(k2r0) + k3) , (2.115)

where r0 is the artery’s radius at the reference configuration, k1, k2 and k3 are empirical constants and are
taken to achieve normal wave speeds in the large vessels for a young adult human and a reasonable increase
in smaller vessels. We set k1 = 3× 106 g/s2/cm, k2 = −7 cm−1 and k3 = 40× 104 g/s2/cm. Following
[201], the venous reference wave speed is estimated as follows

c0 = c0,max − (c0,max − c0,min)

(
r− rmin

rmax − rmin

) 1
2

, (2.116)

where c0,max = 400 cm/s, c0,min = 150 cm/s and rmax = 0.8 cm, rmin = 0.08 cm are the maximum and
minimum vein radii in the network. Due to the physiological rigid nature of the dural sinuses, for them we
set a constant reference wave speed equal to 1500 cm/s.

Vascular beds As a consequence of the addition of vessels to the original network presented in [201,
202], the present work includes four new terminal models representing the microvasculature of inner ear
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FIGURE 2.3: Detail of head and neck arteries (left) and veins (right); numbers refer to those
used in Tables A.1 and A.2.
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and brainstem-cerebellum. Table 2.1 summarizes the simple connections between one artery and one vein
while Figure 2.4 shows the complex vascular beds.

Parameters corresponding to the microcirculation are not always retrievable from the literature; there-
fore, we use the strategy proposed by [160] and [215]. Total arterial resistance, arterial compliance and
venous compliance are fixed up to a constant, according to literature data. Total arterial resistance is fixed
to 0.85 mmHg/(ml s−1) while arterial and venous compliances are 1.7 ml/mmHg and 146 ml/mmHg, re-
spectively. For each terminal artery, we set a total arterial resistance RT (taken as the equivalent resistance of
the circuit formed by distal arteries, arterioles and capillaries, using data from [201, 202], and then modified
to match the fixed arterial resistance). Then, each resistance is distributed between vascular districts accord-
ing to the general pressure distributions among vascular segments. Arterial characteristic impedance Rda is
set to be 15% of RT while the remaining part is partitioned between arterioles and capillaries as 70% for Ral

and 30% for Rcp; if an artery splits into two venous capacitors (as for the second artery in the Figure 2.1),
we divide the resistance of the capillaries part according to the flow distribution into venous capacitors.
In order to approximate the flow distribution of each venous capacitor, we use the Murray’s law, i.e. we
assume that the flow rate of a vessel is proportional to the cube of its radius; therefore, the flow rate of
each venous capacitor is proportional to the sum of the cube of the radii of 1D terminal veins draining from
this capacitor. As for the total arterial resistance, the total arterial compliance is fixed to a value taken from
[215] and then it is distributed among the respective vascular bed compartments (Cart) according to [160].
Finally, Cal is set equal to Cart and Ccp is set to be 0.15Cart. In Table A.1 we report the total arterial resistance
RT and compliance Cart for each terminal artery.

Concerning the venous compliances, we redistribute the venous compliance of each territory following
Liang et al. [160]. If a vascular bed is composed of two venous capacitors, we divide the venous compliance
of the entire vascular beds according to flow divisions among them. The venous impedance Rvn is taken
as in [201, 202]. In the appendix, Table A.2 shows the venous resistance Rvn of each terminal vein and the
value of the venous compliance Cvn of the venous capacitor associated to the vein.
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FIGURE 2.4: Complex vascular beds. Red rectangles refer to connecting arteries, green squares
to venous capacitors while blue rectangles to terminal veins, as depicted in Figure 2.1. Arrows
show if an artery is linked to one or both capacitors and the veins connected to each capacitor.
Vessel numbers refer to those used in Tables A.1 A.2.
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TABLE 2.1: Vascular beds - simple connections between one artery and one vein. Cvn index:
number of the venous capacitor.

Terminal index Artery index Cvn index Vein index

1 8 1 187
2 43 2 188
3 44 3 189
4 45 4 190
5 46 5 191
6 19 6 192
7 41 7 251
8 42 8 214
9 37 9 179
10 55 10 215
11 54 11 256
12 52 12 180
13 36 13 184
14 51 14 183
15 32 15 211
16 28 16 208
17 30 17 207
18 169 18 234
19 170 19 235
20 14 20 250

TABLE 2.2: Heart chambers parameters. RA: right atrium, RV: right ventricle, LA: left atrium,
LV: left ventricle.

RA RV LA LV

EA (mmHg/ml) 0.07 0.55 0.07 2.75
EB (mmHg/ml) 0.04 0.05 0.09 0.12

Tcp (s) 0.25 0.4 0.17 0.4
Trp (s) 0.17 0.15 0.17 0.15
tc (s) 0.7 0.3 0.8 0
tr (s) 0.97 0.0005 0.97 0.3

α 0.0005 0.0005 0.0005 0.001
Pini (mmHg) 5.09 5.06 6.56 8.6

Heart and pulmonary circulation Parameters for heart chambers and cardiac valves are taken from
literature [201] and [215] and then adjusted accordingly to our vessel network. The duration of a cardiac
cycle is set to 0.8 s. Other parameters are reported in Tables 2.2 and 2.3. Parameters for the pulmonary
circulation are the same as in the Müller-Toro model, previously taken from [276], and reported in Table 2.4.
Finally, concerning the pericardium parameters, we set VPC equal to 400 ml and ΦPC equal to 100 ml.

Venous valves and Starling resistors According to the vessel network extension, this work presents
additional valves and Starling resistors, for a total of 17 valves and 21 resistors. Table 2.5 shows the location
of these elements in the vessel network. Parameter values for venous valves are set to describe a normal
functioning valve and are given by Ms = 1, Mr = 0.001, Ko = 133.32 1

mmHg s , Kc = 40 1
mmHg s . Parameters

for Starling resistors are set to Ms = 0.5, Mr = 0.05, Ko = Kc = 133.32 1
mmHg s .

Autoregulation The cerebral autoregulation model works on twelve terminal cerebral arteries; the
baseline haemodynamic parameters of these arteries are set from the periodic solution obtained for a base-
line simulation and reported in Table 2.6.
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TABLE 2.3: Cardiac valves parameters. TriVal: tricuspid valve, PulVal: pulmonary valve,
MitVal: mitral valve, AorVal: aortic valve.

TriVal PulVal MitVal AorVal

Ms 1 1 1 1
Mr 0.00001 0.00001 0.00001 0.00001

Ko (cm2/dynes/s) 0.03 0.02 0.02 0.02
Kc (cm2/dynes/s) 0.04 0.02 0.04 0.02

le (cm) 2 1.5 2 1
Aa (cm2) 6 5.7 5.1 4.9

TABLE 2.4: Parameters for pulmonary circulation. E0: baseline elastance (mmHg/ml); Φ:
volume constant (ml); R: resistance (mmHg/s/ml); L: inductance (mmHg/s2/ml); S: vis-
coelasticity (mmHg/s/ml).

E0 Φ R L S

Artery 0.02 20.0 0.040 0.0005 0.01
Capillary 0.02 60.0 0.040 0.0005 0.01

Vein 0.02 200.0 0.005 0.0005 0.01

Other parameters of the model are taken from Ursino & Giannessi work [305] and adjusted to match
our cerebral vessel network values (Table 2.7). For each terminal artery, the gain of autoregulation Gaut,i is
computed from the total G, according to the flow distribution inside the brain.

2.5 Concluding remarks

We have described a global closed-loop multiscale mathematical model of the entire circulation that
departs from the original Müller-Toro model [201, 202]. We have in addition presented the numerical
methods for the solution of one-dimensional system of equations for blood flow in viscoelastic vessels.
Finally, all the parameters for the implementation of such a model are furnished. A complete validation of
the global model will be performed in Chapter 3.

This global model of the entire circulation constitutes the basis on which this thesis is constructed.
In the next two chapters, it will be coupled to the cerebrospinal fluid system while in Chapters 4, 5, it
will be adopted for arterial hypertension modelling. Unless specified otherwise in the next chapters, the
mathematical model of the human circulation and its parametrization, as well as the numerical methods to
solve it, are the same as the one reported in this chapter and in [292].
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TABLE 2.5: Location of venous valves (on the left) and Starling Resistors (on the right). Vessels
numbers refer to those used in Table A.2

No. Left vessel index Right vessel index

1 193 195
2 194 196
3 244 160
4 257 171
5 258 172
6 253 257
7 254 258
8 175 178
9 176 177
10 251 212
11 256 173
12 252 213
13 255 174
14 92 242
15 93 243
16 90 140
17 91 148

No. Left vessel index Right vessel index

1 158 261
2 159 262
3 161 263
4 162 264
5 237 265
6 238 266
7 239 267
8 249 268
9 245 269

10 260 270
11 271 106
12 150 272
13 151 273
14 276 281
15 277 282
16 279 283
17 280 284
18 291 295
19 292 296
20 298 300
21 299 301

TABLE 2.6: Baseline values of cerebral haemodynamic variables obtained from a periodic
baseline simulation.

No. Vessel Name QT [ml/s] RT [mmHg/ml/s] C [ml/mmHg] VT [ml]

58 Right posterior cerebral artery II 1.42 39.15 3.324E-06 0.26
61 Right middle cerebral artery 3.01 19.06 6.649E-06 0.55
63 Right anterior cerebral artery II 1.54 38.08 3.324E-06 0.28
65 Left anterior cerebral artery II 1.54 38.08 3.324E-06 0.28
67 Left middle cerebral artery 3.01 19.06 6.649E-06 0.55
70 Left posterior cerebral artery II 1.42 39.15 3.324E-06 0.26
287 Right SCA 0.30 132.55 6.649E-07 0.06
288 Left SCA 0.30 132.55 6.649E-07 0.06
306 Right AICA II 0.08 714.26 6.589E-07 0.058
307 Left AICA II 0.08 714.26 6.589E-07 0.058
308 Right PICA MB 0.005 11885.65 6.589E-07 0.058
309 Left PICA MB 0.005 11,887.52 6.589E-07 0.058
310 Right PICA II 0.13 449.13 6.589E-07 0.058
311 Left PICA II 0.13 449.13 6.589E-07 0.058
312 Right anterior spinal a. 0.06 1,048.93 6.589E-07 0.058
313 Left anterior spinal a. 0.06 1,048.93 6.589E-07 0.058
316 Right pontine a. I 0.001 63,752.68 6.589E-07 0.058
317 Right pontine a. II 0.001 63,669.28 6.589E-07 0.058
318 Left pontine a. I 0.001 63,726.28 6.589E-07 0.058
319 Left pontine a. II 0.001 63,668.30 6.589E-07 0.058
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TABLE 2.7: Parameters for the autoregulation model, taken from [305].

Parameter Value

τ (s) 20
G 0.9

sat1 0.55
sat2 2.0
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Chapter 3

Cerebrospinal fluid dynamics coupled to
the global circulation in holistic setting

3.1 Introduction

The present work results from the amalgamation of two substantial and independently developed
pieces of work and attempts to incorporate the major extracellular fluid compartments of the human body.
The first piece consists of a substantially improved version of the original Müller-Toro mathematical model
[201] for the global systemic and pulmonary circulations in the entire human body, described in detailed
in the previous chapter. Then, the second piece of work, a major novelty of this chapter, is the coupling
of the circulation as described, to a refined mathematical description of the cerebrospinal fluid dynamics
in the craniospinal cavity, building upon the model proposed by Linninger [162]. This includes all major
CSF pathways and the brain parenchyma, accounting for deformations and interaction between the cere-
bral vasculature, brain parenchyma and cerebrospinal fluid compartments during the cardiac cycle. The
present mathematical model is depicted in Fig. 3.1. Major fluid components are the arterial system (right)
and the venous system (left) for the entire body, comprising 323 major blood vessels. The craniospinal cav-
ity, in addition to the vasculature and the two-phase brain parenchyma, contains cerebrospinal fluid repre-
sented by 0-D compartments for the cranial subarachnoid space, the four cerebral ventricles, the aqueduct
of Sylvius and the spinal subarachnoid space. Additional components include the four heart chambers,
cardiac valves, three compartments for the pulmonary circulation, 31 compartmental models describing
the connections between terminal arteries and veins through the microcirculation, 17 venous valves, 21
Starling resistors. The potential medical applications of the resulting model are numerous. Here we have
chosen to illustrate the applicability of our model to two classes of fluid-dynamics related pathologies that
involve the close dynamical interaction of all major fluid compartments in the craniospinal space. The first
class of pathologies concerns transverse sinus stenoses and its relation to Idiopathic Intracranial Hyperten-
sion (IIH) [20, 194, 4]. The second class of fluid-related pathologies concerns the altered haemodynamics
of the inner ear circulation resulting from extra-cranial venous outflow strictures, and its implications for
Ménière’s disease [96, 13, 40, 297].

Even if the resulting model is suitable for the study of several physiological and pathophysiological
phenomena, it must be noted that its application for patient-specific simulations would be complex. Indeed,
it is characterized by many parameters that are difficult to be measured in the clinic, in particular for the
cerebrospinal fluid part. Thus, while the main goal of this model is to explore fundamental aspects of
physiological and pathological states, an attempt towards a patient-specific application was done with a
previous version of the Müller-Toro model [201]. In that work, major head and neck veins were modified
according to patient-specific MRI-derived geometrical information.
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FIGURE 3.1: Schematic representation of the global model for the full human circulatory sys-
tem coupled to the craniospinal fluids and brain parenchyma. The arterial 1D network is rep-
resented in the right dotted box with red vessels while the venous 1D network is displayed
in the left dotted box with blue vessels. The terminal arteries of the arterial network are con-
nected to draining veins of the venous circulation through 0D models representing arterioles,
capillaries, small arteries (red boxes) and venules, small veins (blue boxes). The dotted arrows
indicate the connection between 1D network and terminal vessels, depicted for simplicity as
dots in the yellow bar. Left and right cardiac chambers are displayed by red and blue boxes,
respectively, connected to green atrioventricular valves; the left ventricle is connected to aor-
tic root and venae cavae are linked to right atrium through black arrows. Cardiac chambers
are connected to the pulmonary circulation, comprising arteries, capillaries and veins, repre-
sented by the pink box, through the aortic and pulmonary valves (green arrows). The CSF
compartments are represented by cyan boxes. The arrows between cardiovascular system
and CSF circulation represent the fluid exchange between these systems through production
and absorption while the green dashed boxes indicate the mechanical interaction between
between all components in the cranial cavity through the Monro-Kellie hypothesis.
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The rest of the chapter is structured as follows. Section 3.2 presents the equations for cerebrospinal fluid
and brain dynamics (3.2.1), its numerical coupling to the blood circulation (3.2.2) and the parametriza-
tion of the cerebrospinal fluid model (3.2.3). Section 3.3 shows sample computations and validation of re-
sults against published data and MRI measurements for the systemic haemodynamics (3.3.1), the cerebral
haemodynamics (3.3.2) and the CSF and brain dynamics (3.3.3). In Section 3.4, we illustrate the potential
applicability of the full model to fluid-dynamics related pathologies. Discussion and conclusions are found
in Section 3.5.

3.2 Mathematical model for cerebrospinal fluid and brain dynamics

and its coupling to the blood circulation

3.2.1 Equations for cerebrospinal fluid and brain dynamics

A major aspect of the present work is the coupling of the circulatory system to a more refined descrip-
tion of the cerebrospinal fluid dynamics than in the first version of our model [201, 202]. We depart from
the model proposed by Linninger and collaborators [162]. The Linninger model [162] was chosen because it
integrated results of extensive MR imaging studies [167, 164, 236] with detailed two and three-dimensional
mathematical models into a comprehensive mathematical description of the major intracranial dynamics
with fluid structure interactions of blood, cerebrospinal fluid in the ventricular system, as well as cranial
and the spinal subarachnoid spaces and the deformable brain parenchyma. The version of the Linninger
model we present here differs somehow from the original version and includes nine CSF compartments: the
lateral (LV and RV), the third (3V) and the fourth (4V) ventricles; the cerebral aqueduct (aqueduct of Sylvius,
AoS), the cranial subarachnoid space (CSAS), the spinal subarachnoid space (SSAS) and the bi-phasic brain
parenchyma, comprising the left and right hemispheres. Each compartment is spatially idealised as a cylin-
der of length l and variable cross-sectional area A(t). Each brain parenchyma hemisphere is treated as an
incompressible, deformable medium composed of two phases, the solid cell matrix, representing neurons,
glial cells and axon fibers (70% of its total volume), and the extracellular fluid (remaining 30 %); the model
assumes that the volume of the solid matrix does not change and therefore brain parenchyma size changes
depend only on the extracellular fluid content variations, i.e. changes in porosity. All CSF compartments
are interconnected and contain CSF assumed to be a Newtonian and incompressible liquid, with a constant
viscosity of 0.001 kg/(ms) and a constant density of 998.2 kg/m3 [162].

In our model we assume that CSF is secreted by the choroid plexuses, a highly vascularized region
from the microcirculation of the anterior and posterior cerebral arteries, into the lateral ventricles. Also
included is a constant CSF production from arterioles to the ventricles and the diffuse capillary production
throughout the brain parenchyma to the ventricles. Then, CSF flows from the lateral ventricles to the
third ventricle and, through the cerebral aqueduct, to the fourth ventricle. Then CSF is assumed to enter
the subarachnoid space. Here CSF is absorbed into the venous system through arachnoid villi into the
superior sagittal sinus. Moreover, from the cranial subarachnoid space, CSF is displaced into another CSF
compartment, namely the SSAS.

Figure 3.2 shows the craniospinal compartments involved in the CSF system and their connectivity. The
arrows indicate fluid exchange between compartments driven by pressure differences, while dashed arrows
denote constant production of CSF, from the cerebral arterioles into the lateral ventricles qAl→LVs,const and
from the brain capillaries into the extracellular space of the parenchyma. The type of arrows identifies
whether the exchange of CSF between different compartments is unidirectional or bidirectional.

Flow of CSF in CSF compartments is governed by mass conservation and momentum balance. Such
equations are accompanied by a tube law, relating deformation state and pressure, as for 1D vessels. Other
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FIGURE 3.2: Schematic representation of the cerebrospinal fluid (CSF) compartments. RV:
right lateral ventricle; LV: left lateral ventricle; 3V: third ventricle; 4V: fourth ventricle; AoS:
aqueduct of Sylvius; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space;
SSS: superior saggital sinus Brain: fluid part of brain parenchyma; Al: cerebral arterioles;
Cp: cerebral capillaries. Solid double arrows denote fluid exchange between different com-
partments driven by pressure differences, while dashed arrows describe constant CSF produc-
tion. The combination of a single dashed arrow and a solid double arrow between the brain
parenchyma and the capillaries indicates that there are both fluid exchange driven by pres-
sure differences (qin

br driven by pCp − pbr) and constant CSF production (qCp→br,const). Single
solid arrow denotes CSF reabsorption into the venous system (SSS).

LV(R) LV(L))

3V

AoS

4V

CSAS

Brain (R) Brain (L)

SSAS

Cp(R) Cp(L)

equations are included in the model to account for fluid exchange between different compartments of the
CSF system or with the vasculature. The full CSF model is composed of 36 equations and 36 unknowns.
The continuity equations read

lRV
dARV

dt
= qin

RV − qout
RV , (3.1)

lLV
dALV

dt
= qin

LV − qout
LV , (3.2)

l3V
dA3V

dt
= qin

3V − qout
3V , (3.3)

lAoS
dAAoS

dt
= qin

AoS − qout
AoS , (3.4)

l4V
dA4V

dt
= qin

4V − qout
4V , (3.5)

lCSAS
dACSAS

dt
= qin

CSAS − qout
CSAS , (3.6)

lSSAS
dASSAS

dt
= qin

SSAS − qout
SSAS , (3.7)

lbr,R
dAbr,R

dt
= qin

br,R + qCp→br,const − qout
br,R − qbr→RV,const , (3.8)

lbr,L
dAbr,L

dt
= qin

br,L + qCp→br,const − qout
br,L − qbr→LV,const . (3.9)
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Equations (3.1) to (3.9) are continuity equations that ensure that cerebrospinal fluid is neither gained nor
lost. Equations (3.1) to (3.7) refer to continuity equations for ventricles, Aqueduct of Sylvius, cranial and
spinal subarachnoid space. Each equation guarantees that the volume change is given by the difference be-
tween the volumetric flow rates in and out of that compartment. Equations (3.8) and (3.9) are the continuity
equations for the right and left fluid part of the brain parenchyma, respectively. In this case, the right-hand-
side of the equations considers both the volumetric flow rate in and out of the compartment that is driven
by pressure differences and the constant mass transfer. Flow into the the brain parenchyma is the sum
of a constant CSF production from the brain capillaries into the extracellular space of the parenchyma,
qCp→br,const and the pressure driven seepage from the capillaries to the brain parenchyma, qin

br. Flow exiting
the brain parenchyma is the sum of a constant seepage from the extracellular space of the parenchyma into
the ventricles, qbr→LV,const, and a pressure driven exchange between brain parenchyma and lateral ventri-
cles qout

br,L.
The momentum equations are effectively Darcy’s law of flow and relate the pressure difference between

two compartments to the volumetric flow q exchanged between them and a resistance to flow R. For the
brain parenchyma compartments, there are two momentum equations, one refers to cerebrospinal fluid
exchange between the lateral ventricles and the extracellular fluid matrix of the brain, while the other one
relates to the secretion of CSF from cerebral capillaries. As seen in Figure 3.2, these exchange pathways
are bi-directional, depending on the hydrostatic pressure differences. When intracranial pressure exceeds
the capillary pressure, reverse flow occurs, that is, in the present model capillaries are a pathway for CSF
drainage. The equations for CSF flow are

qout
RV =

pRV − p3V
R3V

, (3.10)

qout
LV =

pLV − p3V
R3V

, (3.11)

qin
AoS =

p3V − pAoS
RAoS

, (3.12)

qin
4V =

pAoS − p4V
R4V

, (3.13)

qin
CSAS =

p4V − pCSAS
RCSAS

, (3.14)

qin
SSAS =

pCSAS − pSSAS
RSSAS

, (3.15)

qin
br,R =

pCp,R − pbr,R

Rbr
, (3.16)

qin
br,L =

pCp,L − pbr,L

Rbr
, (3.17)

qout
br,R =

pbr,R − pRV

Rbr,2
, (3.18)

qout
br,L =

pbr,L − pLV

Rbr,2
. (3.19)

The notation for pressures is obvious for most compartments; for example pCSAS denotes pressure in the
cerebral subarachnoid compartment. Just for clarity, in the last four equations pCp,R is pressure in the capil-
lary compartments of the right side of the brain, while pCp,L is pressure in the capillary compartments of the
left part of the brain; pbr,R is pressure in the extracellular fluid part of the right brain parenchyma and pbr,L

is pressure in extracellular fluid part of the left brain parenchyma. We note that Equation (3.16) attempts
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to account for the interacting dynamics of two major CSF compartments. We are currently investigating
these aspects as it has clearly some limitations, particularly regarding the omission of inertial terms that are
known to influence the timing of flow exchange between CSAS and SSAS [279].

As already pointed out, the distensibility equations play the role of the tube law; they relate the internal
pressure with the cross-sectional area of the compartment in a linear manner. They describe the dilation
and compression of a compartment; if the pressure of the compartment exceeds the external pressure, the
compartment is dilated with respect to the reference state ”0”; in the opposite case, the compartment is
compressed. For each compartment inside the cranial cavity, the external pressure is that of the brain
parenchyma; for the spinal subarachnoid space, the external pressure is taken equal to zero. For a generic
compartment z, the distensibility equation expresses pressure pz as a function of cross-sectional area Az

in the compartment and three additional parameters, namely an external pressure pext,z, baseline cross-
sectional area A0

z and a coefficient Ez denoting elastance, that is

pz = pext,z + Ez

(
Az

A0
z
− 1
)

, (3.20)

Therefore, for each specific compartment the equations are

pRV = pbr,R + ERV

(
ARV

A0
RV
− 1

)
, (3.21)

pLV = pbr,L + ELV

(
ALV

A0
LV
− 1

)
, (3.22)

p3V =
1
2
(pbr,R + pbr,L) + E3V

(
A3V

A0
3V
− 1

)
, (3.23)

pAoS = pbr + EAoS

(
AAoS

A0
AoS
− 1

)
, (3.24)

p4V =
1
2
(pbr,R + pbr,L) + E4V

(
A4V

A0
4V
− 1

)
, (3.25)

pCSAS =
1
2
(pbr,R + pbr,L) + ECSAS

(
ACSAS

A0
CSAS

− 1

)
, (3.26)

pSSAS = ESSAS

(
ASSAS

A0
SSAS

− 1

)
. (3.27)

Additional equations connecting different compartments are required to complete the description of
cerebrospinal fluid flow. Specifically, for the right lateral ventricle RV, the amount of CSF that enters the
right lateral ventricle RV is equal to the amount of CSF exiting the fluid part of the brain parenchyma plus
the constant production rate from arterioles qAl→RV,const plus the constant production rate from capillaries
qCp→br,const, namely

qin
RV = qout

br,R + qbr→RV,const + qAl→RV,const . (3.28)

Similarly for the left lateral ventricle LV,

qin
LV = qout

br,L + qbr→LV,const + qAl→LV,const . (3.29)

Then, CSF flows from lateral ventricles to the third ventricle

qout
RV + qout

LV = qin
3V , (3.30)
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from the third ventricle to the aqueduct of Sylvius

qout
3V = qin

AoS , (3.31)

from the AoS to the fourth ventricle

qout
AoS = qin

4V , (3.32)

and from the fourth ventricle to the cranial subarachnoid space

qout
4V = qin

CSAS . (3.33)

From the cerebral subarachnoid space CSAS, CSF is temporarily displaced into the spinal cavity and reab-
sorbed into the superior saggital sinus (SSS) through the arachnoid granulations [260, 162]. Reabsorption
is represented by a mass transfer flux, which is a function of the pressure difference between the CSAS and
CSAS and a reabsorption constant coefficient k

qout
CSAS = qin

SSAS + max (0, k(pCSAS − psinus)) . (3.34)

We take the maximum value between zero and the mass transfer flux to enforce the unidirectional flow
from the cranial SAS to the venous sinus. Previous MRI measurements [172] have shown that in a normal
subject CSF reabsorption in the spinal cavity is negligible, since almost the total flow into the spinal SAS
goes back into the cerebral SAS; for this reason, we set the CSF outflow from the SSAS equal to zero,

qout
SSAS = 0 . (3.35)

Finally, the Monro-Kellie hypothesis is enforced: all compartments, except the spinal subarachnoid space,
are enclosed inside the cranium and the volume of each cerebral hemisphere remains constant over time

VBlood,R + VRV +
1
2

V3V +
1
2

VAoS +
1
2

V4V +
1
2

VCSAS + Vbr,R + VSolid Parenchyma = constant , (3.36)

VBlood,L + VLV +
1
2

V3V +
1
2

VAoS +
1
2

V4V +
1
2

VCSAS + Vbr,L + VSolid Parenchyma = constant . (3.37)

The volume of each compartment is evaluated as product of its length and its cross-sectional area.

3.2.2 Numerical treatment of CSF equations and its coupling to the circulation

The description of CSF and brain dynamics leads to a system of 36 equations with 36 unknowns. The
unknowns for each CSF compartment are pressure, cross-sectional area (which defines a volume since each
compartment has an assigned length), inflow and efflux. The coupling between blood flow and CSF dy-
namics is explicit. The two systems are solved in a sequential manner. As we are using a local time stepping
technique in a vessel-wise fashion, each 1D vessel is allowed to evolve in time according to a local time step
given by its local stability criterion. All vessels have a common synchronization time defined by the pre-
scribed maximum time step ∆tmax allowed by the LTS procedure. Therefore, the coupling between blood
flow and the craniospinal systems is performed every synchronization time tn = t0 + n ∆tmax, with t0 the
initial time. Figure 3.3 describes the coupling procedure from time tn to time tn+1. At the beginning of each
time step, the vectors Sn and Bn are known. The vector Sn represents the unknowns for the blood circula-
tion system that includes area, flow and pressure in 1D vessels, as well as other 0D blood compartments.
The vector Bn represents the unknowns for the CSF and brain dynamics models. In the first step, the equa-
tions for the blood circulation models are solved. First, the system of ordinary differential equations for
the cerebral autoregulation model are solved by the explicit Euler scheme, in order to find the new cerebral
resistances and compliances, as described in Section 2.2.2. Then we solve the system of partial differential
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FIGURE 3.3: Schematic representation of the coupling between blood circulation and CSF and
brain dynamics models. Sn and Bn are the vectors of unknowns in the blood circulation mod-
els (1D vessels and other 0D blood compartments) and in the CSF and brain dynamics model
at time tn. From Bn, the pressures of the left and right fluid part of the brain parenchyma pn

br,R
and pn

br,L at time tn are used to find the solution Sn+1 for the hemodynamics equations and

the cerebral regulation. From Sn+1, the superior sagittal sinus pressure pn+1
sinus, the pressure of

capillaries pn+1
br,R , pn+1

br,L and the total cerebral blood volume Vn+1
blood,R, Vn+1

blood,L are used to find the
solution Bn+1 for the CSF and brain equations.
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equations for blood flow in 1D vessels and the 0D blood compartments for the heart and pulmonary circu-
lation, microvasculature, Starling resistors and venous valves. Each j-th vessel is evolved using the ADER
scheme according to its local time step until it reaches the next time step tn+1 = tn + ∆tmax. The 0D blood
compartments are solved by an explicit Euler scheme and coupled to the 1D vessels. The external pressure
for the intracranial 1D vessels and vascular beds, as well as for the Starling resistor models, is given by the
mean pressure between the left and right sides of the brain parenchyma (pbr,R and pbr,L) at time tn. Once
the blood circulation equations have been solved, the cerebral capillary pressures (pCp,R and pCp,L), the
superior sagittal sinus pressure (psinus) and the intracranial blood volume (Vblood,R, Vblood,L) are provided to
the CSF models. This determines the CSF production, reabsorption rates and the blood volume inside the
skull for the Monro-Kellie hypothesis. At this point, the system of differential and algebraic equations for
the CSF and brain dynamics are solved by an implicit Euler scheme.

At the beginning of the simulation, given the initial conditions for the blood circulation models, the
ODEs and systems of equations for the CSF and brain dynamics models are solved. In this way the initial
intracranial pressures are found and used as external pressure in the first time step update of the blood
circulation.

3.2.3 CSF model parametrization

Parameters for the CSF model are based on Linninger et al. [162]. Table 3.1 shows length and area at
rest of the cylindrical volume representing each cerebral compartment, and different values of elastance
taken from the literature. Table 3.2 reports flow resistance values; they account for the pressure drop in the
fluid along the length of a compartment due to viscous forces and they are obtained from the dynamic fluid
viscosity µ, the length of the compartment l and the square of the compartments’ cross-sectional area.

As already written in Section 3.2.1, the CSF model adopted here accounts for constant production
of cerebrospinal fluid, from capillaries qCp→br,const and from arterioles to lateral ventricles qAl→LV,const.
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Almost two-thirds of the total CSF production takes place in the choroid plexus of the lateral ventri-
cles; it was found clinically that this process is almost invariant to pressure changes suggesting an active
transport process [134]. As in [162], we fix a constant mass transfer independent from pressure equal to
qAl→LVs,const = 0.00583 ml/s. Moreover, there is CSF mass transfer from capillary beds into the brain
parenchyma; the constant diffuse CSF production is set equal to qCp→br,const = 0.0005 ml/s. The active
exchange between capillaries and brain parenchyma is governed by Equations (3.16) and (3.17), where CSF
seepage is governed by pressure differences.

CSF reabsorption is described in (3.34) by a mass transfer flux that is a function of the pressure difference
between the subarachnoid space and the superior sagittal sinus and a reabsorption constant k. In this work
we use k = 0.0027 mmHg/ml/s. We underline that variation of reabsorption constant could simulate
pathological situations; for example, an increase of the reabsorption resistance may be due to inflammation
of meninges while acute communicating hydrocephalus could be simulated by reducing k [162, 164].

TABLE 3.1: Hydraulic length, area at rest and elastance of each CSF compartment.

Compartment Length [cm] Area at rest [cm2] Elastance [mmHg]

LVs 0.75 12 7.55
3V 1 2.5 7.55

AoS 1.8 0.00785 7.55
4V 1 3.5 7.55

CSAS 1.69 17.76 80
SSAS 43 2 160

Brain parenchyma (Fluid) 14 30
Brain parenchyma (Solid) 14 70

TABLE 3.2: Flow resistances of CSF compartments.

Compartment Resistance [mmHg/ml]

3V - R3V 0.2
AoS - RAoS 5.5

4V - R4V 0.2
CSAS - RSSAS 0.2
SSAS - RCSAS 0.1

Brain - Rbr 81520
Brain - Rbr,2 500

3.3 Sample numerical results and validation

In this section we present computational results obtained with the presented model in order to perform
a comprehensive validation of the model’s outputs. 1D domains are divided into computational cells with
a reference length of ∆x = 1 cm, imposing a minimum of one computational cell in each vessel. Once that
the mesh spacing of a vessel is fixed, the respective relaxation time ε for each vessel is computed in order
to ensure that the accuracy criterion for the hyperbolic reformulation proposed in [199] is satisfied. The
CFL coefficient is set to CFL = 0.9 according to the linear stability limit of ADER finite volume schemes
for one-dimensional problems. A maximum time step of ∆tmax = 1 × 10−3 s is allowed. All computa-
tions are run using a second-order accurate version of the numerical scheme described in Chapter 2. Other
parameters linked to the blood characteristics are the blood viscosity taken as µ = 0.045 P and the blood
density ρ = 1.06 g/cm3. The reference pressures taken as initial conditions are reported in Table 3.3. Given
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TABLE 3.3: Initial pressure conditions for vascular compartments.

Compartment Pini [mmHg]

Arteries 70.0
Veins 5.0

Arterioles 45.0
Capillaries 25.0

Venules 10.0

the closed-loop nature of our model, such pressures are important since they determine the periodic so-
lution that the system will reach by defining the stretched blood volume. All the computational results
shown in this section are obtained with simulations of 2000 cardiac cycles. A periodic state is reached after
approximately 1600 cycles; compared to [201], the time used to reach the periodicity of the simulation is
higher due to coupling between two systems (blood and CSF) that have different time scales. Therefore, the
verification of convergence of the solution is mainly based on the equality of the CSF production and CSF
reabsorption, since CSF production involves the arterial pressure, and the CSF reabsorption rate is related
to intracranial venous pressure. While future work will regard a more efficient treatment of coupling for
the two systems under investigation, it is interesting to note that this difference in time scales poses severe
constrains as to the mass conservation properties of the numerical schemes used to solve this problem. In
fact, a discretization that is not able to enforce mass conservation at a discrete level would result in inability
to reach a periodic solution due to mass conservation error accumulation.

3.3.1 Validation of systemic haemodynamics

Arteries and veins. Figures 3.4 to 3.6 show computed pressure and flow rate at the midpoint of se-
lected vessels in the arterial and venous networks. In particular, Figure 3.4 shows the computed waveforms
along the aorta and major arteries of the lower limb. We can notice that, as the wave travels away from the
heart towards the periphery, the systolic peak pressure increases according to physiological patterns, with
a pulse pressure from 25 mmHg in ascending aorta to 45 mmHg in femoral artery. Moreover, the pressure
range covers normal values of a young subject. Along the aorta pathway, the peak flow decreases pro-
gressively. Flow distribution along systemic arteries is assessed by comparing computational results with
literature data and results obtained with the previous version of the model [201]; the corresponding bar
plots are reported in Figure 3.5 (left). We note that when using the terminology literature data we always
make reference to experimental data gathered in vivo and published by other research groups. Main car-
diovascular indexes, such as systolic, diastolic and mean blood pressure and pulse pressure are computed
and compared to literature data in Table 3.4. We conclude that waveform patterns in the arterial system
are in accordance with general physiological data and that blood flow distribution along the aorta is rea-
sonable. Concerning the venous circulation, Figure 3.6 shows the pressure and flow rate along the main
systemic veins while Figure 3.5 (right) depicts a comparison of the predicted flow at different locations of
the systemic venous circulation with literature data and results obtained in [201].

It is well known that blood flow in large to medium vessels is a convection-dominated process; there-
fore neglecting viscoelasticity of vessel walls in one-dimensional models is often chosen as compromise.
However, the viscoelastic behavior of arterial and venous walls is well-known. It has an impact on funda-
mental hemodynamic characteristics of the cardiovascular system and plays a determinant role in setting
the functional level of the cardiovascular system under physiological and under pathological conditions.
Previous works [7, 241, 215] have shown the benefits of considering viscoelastic properties of vessel walls
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in arterial circulation comparing model predictions and in vivo measurements of pressure and flow at dif-
ferent location. The effects of viscoelasticity become more significant in the periphery, especially on the
flow wave. The same happens in the venous circulation. Zòcalo et al. [327] showed the importance of
the dynamic process of veins walls to understand venous functioning under normal and pathological con-
ditions; pressures and diameters of anterior cava, jugular and femoral veins from sheep were registered
during cyclical volume-pressure pulses. The vein viscosity was higher in the peripheral segments and this
could be important in the response to acute overloads and in haemodynamic control. In this work, we in-
troduce a viscoelastic tube law not only for the arterial tree but also in the venous circulation. Both arteries
and veins are represented as a Voigt-type viscoelastic material (Eq. (2.7)). Figures 3.7 and 3.8 compare com-
puted pressure and flow rate when vessels are represented with elastic and viscoelastic behaviour of their
walls. Figure 3.7 refers to thoracic aorta, femoral and carotid artery while Figure 3.8 depicts superior vena
cava, femoral and jugular vein; the effect of the viscoelastic tube law is more evident in peripheral vessels
(femoral artery and vein, carotid artery and jugular vein) with respect to central vessels. In particular, it can
be seen that the solution obtained for viscoelastic vessels presents significantly less high-frequency com-
ponents with respect to the solution obtained for elastic vessels. This fact is consistent with the dissipative
capacity of real vessels, which, at least for physiological states, do not display pressure and flow waveforms
with very high-frequency components.

Vascular beds. Figure 3.9 shows the computed pressures during a cardiac cycle for three different
compartments. The pressure values display a physiologically behaviour in all compartments; from arteri-
oles to venules, the pressure slowly decreases. It ranges between 40-80 mmHg for arterioles, between 20-25
mmHg for capillaries and between 5-15 mmHg for venules. In particular, 3.9a refers to a simple connection
in the kidney, 3.9b is a vascular bed in the abdominal region with four supplying arteries and one draining
vein while 3.9c represents the microcirculation pressures in the left part of the posterior brain.

Heart. Figure 3.10 shows the computed pressures and volumes for the four cardiac chambers while
Figure 3.11 displays the pressure-volume relationship for the left and right ventricles. The heart model
well represents the physiological variations of pressure over the cardiac cycle for both atria and ventricles.
Moreover, Table 3.4 compares the predicted values for selected cardiovascular indexes to literature data,
showing overall satisfactory agreement.

3.3.2 Validation of cerebral haemodynamics

Figure 3.12 illustrates predicted pressure and flow waveforms in the head and neck arterial circulation.
Moreover, flow distribution among cerebral arteries is assessed via comparison to literature data and results
reported in [201] in Figure 3.13 (left). The functioning of cerebral autoregulation is verified by changing
arterial resistances of all but the cerebral arteries in order to cause a mean arterial pressure change, which
would cause an increment in cerebral flow if peripheral cerebral resistance would not adapt. Figure 3.14
shows the computed autoregulation curve compared with literature data from [305]. The autoregulation
curve relates mean arterial pressure (pressure of vessel No. 1) and the percentage change in cerebral blood
flow with respect to the baseline situation (evaluated as sum of mean flow over a cardiac cycle of internal
carotid arteries and vertebral arteries).

Particular attention is given to the head and neck veins; in this case, PC-MRI flow measurements were
available from [201]; these data were collected by the MR Research Facility at Wayne State University, De-
troit (USA) and were used in [201] to construct the head and neck venous network of the present model. For
details on the image acquisition procedure and a discussion on expected agreement between MRI-derived
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FIGURE 3.4: Computed blood pressure p (continuous black line) and blood flow q (dashed
red line) in the aortic tree at different locations a) to g). Cardiac-cycle averaged values are
denoted by p̄ and q̄.
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FIGURE 3.5: Blood flow distribution in selected systemic arteries (left frame) and veins (right
frame): computational results of the present model, computational results from [201] and
literature data (average and standard deviation).

Asc. Ao.: Ascending Aorta; Kidneys: sum of both Renal Arteries; Tho. Ao.: Thoracic Aorta;
Abd. Ao.: Abdominal Aorta; Ext. Il. A.: External Iliac Artery; Fem. A.: Femoral Artery; SVC:
Superior Vena Cava; IVC: Inferior Vena Cava; AzG V.: Azygos Vein; SCV: Subclavian Vein.
Literature: aMurgo et al. [211]; bWolf et al. [322]; cZitnik et al. [325]; dCheng et al. [54]; eItzchak
et al. [128]; f Lewis et al. [155]; g Be’eri et al. [22]; h Cheng et al. [54]; i Nabeshima et al. [217]; j

Fortune & Feustel [95].
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FIGURE 3.6: Computed blood pressure p (continuous black line) and blood flow q (dashed red
line) in selected systemic veins in different locations a) to d). Cardiac-cycle averaged values
are denoted by p̄ and q̄.
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FIGURE 3.7: Computed blood pressure p and blood flow q in selected arteries obtained with
viscoelastic (continuous black line, Visco) and elastic (dashed red line, Elas) model for vessels
wall. Cardiac-cycle averaged values are denoted by pVisco and qVisco for viscoelastic vessels
and by pElas and qElas for elastic vessels.
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FIGURE 3.8: Computed blood pressure p and blood flow q in selected veins obtained with
viscoelastic (continuous black line, Visco) and elastic (dashed red line, Elas) model for vessels
wall. Cardiac-cycle averaged values are denoted by pVisco and qVisco for viscoelastic vessels
and by pElas and qElas for elastic vessels.
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FIGURE 3.9: Computed pressure values for three vascular beds. p: pressure of supplying
artery; pAl: pressure in arterioles; pCp: pressure in capillaries; pVen: pressure in venules at
venous capacitor; pV: pressure of draining vein. Numbers for supplying arteries and draining
veins refer to numeration in Tables 2.1 and 2.4.
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FIGURE 3.10: Computed pressures p and volumes V in the heart. Continuous black line
denotes pressure, dashed red line refers to volume.
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FIGURE 3.11: Computed Pressure-Volume loop for the right and left ventricles.
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TABLE 3.4: Cardiovascular indexes. Num. Value: computed numerical value; Ref. Value: lit-
erature reference value with mean and standard deviation. (S/D)BP: systolic/diastolic aortic
blood pressure; MBP: mean blood pressure; PP: pulse pressure in aortic root and in brachial
artery; PPAmpli f ication: ratio between pulse pressure in brachial artery and aortic root; CO:
cardiac output; Ca: arterial compliance evaluated as the ratio between stroke volume and
brachial pulse pressure [9]; Ea: arterial elastance; Ees: left ventricle elastance; Ea/Ees: arterial-
ventricular coupling index; LVmax: maximum left ventricle volume; LVEF: averaged left ven-

tricle volume; max.
dPLV

dt
: maximum pressure rate of left ventricle; min.

dPLV
dt

: minimum
pressure rate of left ventricle.

Index Current Value Ref. Value Ref.
SBP [mmHg] 107.065 105 ± 8 [191]
DBP [mmHg] 76.126 71 ± 7 [191]
MBP [mmHg] 93.272 89 ± 8 [191]
PPAorta [mmHg] 30.939 30 ± 6 [191]
PPBrachial [mmHg] 37.382 49 ± 9 [191]
PPAmpli f ication [mmHg] 1.208 1.7 ± 0.14 [191]
CO [ml/s] 91.363
Ca [ml/mmHg] 2.001 1.7 [9]
Ees [mmHg/ml] 5.205 4.5 [218]
Ea [mmHg/ml] 2.746 2.3 [218]
Ea/Ees 0.528 0.58 [218]
LVmax 114.263 150 ± 67 [215]
LVEF 0.655 0.68 ± 0.12 [215]

max.
dPLV

dt
1546.419 1915 ± 410 [215]

min.
dPLV

dt
-2861.828 -2296 ± 530 [215]

flow and model predictions refer to [201]; flow waveforms are compared with the underlying patient-
specific MRI flow quantification data. Furthermore, the average flow rate is compared with phase-contrast
MRI data in Figure 3.13 (right). Predicted flow waveforms display characteristic features of cerebral venous
flow with a bi-phasic character. Moreover, agreement of PC-MRI-derived average flows and predicted ones
is reasonable.

Figure 3.16 depicts computed intracranial pressure and pressures of a dural sinus and a cerebral vein;
the effect of the Starling resistor is evident: pressure in cerebral veins is always higher than intracranial
pressure while dural sinus pressure is governed by downstream conditions. Figure 3.17 shows the changes



54 Chapter 3. Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting

FIGURE 3.12: Computed blood pressure p (continuous black line) and blood flow q (dashed
red line) in the main cerebral and neck arteries. Cardiac-cycle averaged values are denoted by
p̄ and q̄.
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FIGURE 3.13: Comparison between present computed results, other computed results [201]
and literature data (average and standard deviation) or MRI flow quantification data [201]
for blood flow in head and neck arteries and veins.

Brain: sum of average flow rate in both internal carotid and vertebral arteries; ICA: Internal
Carotid Artery; MCA: Middle Cerebral Artery; BA: Basilar Artery; VA: Vertebral Artery; SSS:
Superior sagittal Sinus; StS: Straight Sinus; TS: Transverse Sinus; IJV: Internal Jugular Vein.
Literature: aStoquart-ElSankari et al. [274]; bStock et al. [272]; cBoorder et al. [35].
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FIGURE 3.15: Comparison between computed blood flow q and PC-MRI flow quantification
[201] in dural sinuses and internal jugular veins. Full line denotes present model results, PC-
MRI flow quantification data is shown with symbols and full line. Cardiac-cycle averaged
values are denoted by q̄ and q̄MRI .
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FIGURE 3.16: Computed cerebral venous pressure p and CSF dynamics. CV: cerebral vein
(No. 158); SSS: superior sagittal sinus (No. 165); ICP: intracranial pressure (pressure of the
fluid parts of the brain parenchyma compartments).
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FIGURE 3.17: Variation in time of V − Vav where V is the volume of a compartment and Vav
is the averaged volume over a cardiac cycle. A: arteries; Al: arterioles; Cp: capillaries; Vn:
venules; V: veins.
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in volume of the main blood cerebral compartments: arteries, arterioles, capillaries, venules and veins.

3.3.3 Validation for CSF and brain dynamics

Here we analyse pressure, flow and volume of different CSF compartments and their interaction with
arterial and venous blood within the brain; see Figures 3.18 to 3.21. Physiological intracranial pressure
(ICP) values have been investigated extensively, ranging from 7 mmHg to 15 mmHg for an adult in supine
position [101]. Generally, ICP refers to the CSF pressure, regardless of where it is measured. In our sim-
ulation, slight differences are found between the mean pressure of the extracellular fluid part of the brain
parenchyma and other cranial and spinal CSF compartments. In this context, we call ICP the pressure of
CSF located in the brain parenchyma compartments; specifically, ICP is defined as 1

2 (pbr,R + pbr,L), that is
the average between the CSF pressure of the right and left extracellular fluid part of the brain parenchyma
compartments. Figure 3.18 reports the pressures of the CSF compartments. The ventricular pressure ranges
from 7.7 to 9.7 mmHg with a pulse pressure of about 2 mmHg. The cranial and spinal subarachnoid spaces
pressures values lie between 8.1/8.2 and 9.3/9.2 mmHg and the pulse pressure is around 1.0 mmHg. Com-
paring the left and right hemisphere, there are no distinct differences concerning pressures. The brain
parenchymal pressure varies from 7.8 to 9.8 mmHg, with a mean value of 8.42 mmHg on the right and left
sides.

Figure 3.19 shows an analysis of the intracranial pressure waveform according [45, 140, 48, 67]. We can
notice three physiological peaks: the first one, P1 or percussion wave, is the highest, followed by P2 or
tidal wave and finally there is P3 or dicrotic wave, which appears after the dicrotic notch. The peaks come
from the arterial pulse wave from the heartbeat on the brain which essentially floats in cerebrospinal fluid;
the ICP waveform can usually be seen in time-synchronized fashion relation to the arterial waveform. The
three typical peaks of the intracranial pressure can be observed in all CSF compartments but in the spinal
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FIGURE 3.18: Pressure in CSF compartments over a cardiac cycle. Mean pressure over the
cardiac cycle is reported in brackets. Brain: pressure in fluid part of brain parenchyma; LVs:
pressure in lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V: fourth ventri-
cle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space.
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FIGURE 3.19: Cerebrospinal fluid pressure. Left frame shows computed pressure of lateral
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shows computed intracranial pressure with present blood circulation model and the Lin-
ninger’s CSF model [162] with analysis of the peaks following [65] and computed intracranial
pressure with current blood circulation model and Ursino’s CSF model [307].
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FIGURE 3.20: Cerebrospinal fluid volumes. Variation in time of V − Vav, where V is the
volume of the compartment and Vav is the averaged volume over the cardiac cycle (value
reported in brackets). LVs: lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V:
fourth ventricle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space.
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canal they are less pronounced. P1 is caused by the arrival of the arterial flow pulse. P2 is caused by the
second arterial flow peak, which happens before the dicrotic notch, while the third peak, P3, is related to
the increased flow occurring right after the dicrotic notch.

Figure 3.19 compares the intracranial pressure waveform of the current CSF model based on [162] and
that evaluated considering the simple CSF model proposed by [307] and adopted in [202]. While mean ICP
depends on initial conditions for both models, in this second case, the waveform peaks are less well defined.
Figure 3.20 reports changes in volume of the CSF model compartments. The major part of CSF is contained
in the cranial and spinal subarachnoid spaces, about 30 and 90 ml respectively, where the changes over the
cardiac cycle take place.

Figure 3.21 shows the time variation of the volumes occupied by different compartments of the cran-
iospinal system, stressing the effect of the Monro-Kellie hypothesis. During systole, intracranial arterial
blood increases and arterial pulsations are transmitted directly into the incompressible CSF filled SAS. This
evokes a chain of events in the following temporal order: CSF shifts out of the skull into the spinal canal;
venous blood from the sinuses flows out of the brain mainly through the internal jugular veins and part of
the CSF from the ventricles is displaced out through the aqueduct of Sylvius. Figure 3.22 underlines the
relation between blood and CSF compartments’ flow. In Figure 3.22 (left), arterial inflow, venous outflow
through internal jugular veins, flow in aqueduct of Sylvius and inflow in spinal subarachnoid space are
depicted during a cardiac cycle. In Figure 3.22 (right), the CSF and blood normalized flow of the same
compartments is shown over a cardiac cycle. The lag in time between the systolic peaks is reported in
Table 3.5. The arterio-spinal CSF delay is underestimated by the mathematical model compared to the
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FIGURE 3.21: Time variation of V − Vav of fluid volumes within the cardiac cycle, where V
is the volume of the compartment and Vav is the averaged volume over the cardiac cycle. A:
cerebral 1D arteries, arterioles and capillaries; V: cerebral 1D veins and venules; C-CSF: cranial
CSF (CSF in all compartments inside the skull); SSAS: spinal CSF.
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FIGURE 3.22: Time variation of blood and CSF flow within a cardiac cycle. Left frame shows
blood and CSF flow within a cardiac cycle, where axis on the right refers to AoS flow. Right
frame shows CSF and blood normalized flow analysis over a cardiac cycle. To highlight the
temporal dynamic sequence in the four fluid compartments, each flow profile was normalized
between 0 and 1 such that all four systolic peaks correspond to 1. A: arterial flow of internal
carotid arteries and vertebral arteries at C2/C3 level; V: internal jugular veins flow at C2/C3
level; SSAS: flow of the spinal subarachnoid space; AOS: flow in the aqueduct of Sylvius.
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literature range, although the lag in time between arterial systolic peak and CSF peak in the Aqueduct of
Sylvius follows the literature data. This mismatch in the time lag of the flow of CSF into the spinal canal can
be attributed to the lack of inertia of the model describing flow in the spinal canal [42]. A one-dimensional
model for computing the flow of cerebrospinal fluid within the spinal subarachnoid space under the simpli-
fying assumption that it consists of two coaxial tubes representing the spinal cord and the dura [290] could
better capture the physiology and the interaction with other compartments. Despite this, the comparison
of arterial cerebral inflow and inflow of the spinal subarachnoid space with MRI data from [12], depicted
in Figure 3.23, shows a good match between numerical results and physiological behaviour. Finally, Fig-
ure 3.24 shows flow and CSF velocity through the aqueduct of Sylvius, featuring an oscillatory behaviour
with shape and amplitudes similar to those obtained from PC-MRI flow quantification studies [24].

3.4 Applications: impact of head and neck venous strictures on blood

and CSF dynamics

In order to show the applicability of the presented model to situations of clinical relevance, we carry out
a preliminary analysis of the effects of transverse sinus stenoses and of strictures in the main extra-cranial
venous outflow routes on the cerebral circulation, CSF and brain dynamics.
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TABLE 3.5: CSF and blood flow over a cardiac cycle. Literature range taken from [4]. Arte-
rial flow: flow in internal carotid arteries and vertebral arteries; Venous Flow: flow in internal
jugular veins at C2/C3 level; CSF flow: inflow of spinal subarachnoid space; tIJV/tA: ratio be-
tween total internal jugular veins flow and arterial flow at C2/C3 level; AV, Arterio-CSFSSAS,
Arterio-CSFAoS Delay: lag in time between arterial and venous, spinal CSF and AoS CSF sys-
tolic peaks represented as a percentage of cardiac cycle.

Index Current Value Ref. Value

Mean Arterial Flow [ml/s] 13.13 13.55±3.07
Mean Venous Flow [ml/s] 12.15 9.42±2.37
Mean CSF Flow [ml/s] 0.01 0.08±1.33
Mean AoS Flow [ml/s] 0.01 0.03±0.013
tIJV/tA [%] 92.52 71.1±22
AV Delay [%CC] 5.62 12.5±8.06
Arterio-CSFSSAS Delay [%CC] 0.625 5.35±2.36
Arterio-CSFAoS Delay [%CC] 28.12 22.1±74.66

FIGURE 3.23: Computed results compared to measured data. Left frame: normalized cerebral
arterial inflow (internal carotid arteries and vertebral arteries) over a cardiac cycle compared
with MRI data from [12]. Right frame: normalized inflow of spinal subarachnoid space at
C2/C3 level over a cardiac cycle compared with MRI data from [12].
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FIGURE 3.24: Computed flow and velocity in the aqueduct of Sylvius. Left frame: computed
CSF flow through the aqueduct of Sylvius over a cardiac cycle compared with MRI data (mean
and standard deviation) from [24]. Right frame: computed CSF velocity in the aqueduct of
Sylvius over a cardiac cycle compared with MRI data (mean and standard deviation) from
[24].
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3.4.1 Idiopathic intracranial hypertension patient with transverse sinus stenoses

The role of vascular abnormalities in the onset and course of neurological diseases has long been rec-
ognized. In the last decade, the influence of intra- and extra-cranial venous pathology as a trigger/cause
of certain neurological disorders has gained attention. Idiopathic intracranial hypertension (IIH) is a neu-
rological condition of unknown aetiology, which requires prompt diagnosis and if left untreated can result
in a rapidly progressive visual loss. As said before, how increased CSF pressure in the subarachnoid space
influences intracranial arterial and venous fluid dynamics within the framework of the Monroe-Kellie hy-
pothesis remains unclear. Bateman showed that in IIH, the total cerebral arterial inflow is increased by 21%
[20]. On the venous front, there is evidence that almost 93% of patients with IIH harbor some degree of
dural sinus stenosis [200].

Problem setup

We investigate the impact of bilateral transverse sinus stenosis on cerebral venous flow and CSF dynam-
ics, paying special attention to the role played by collateral flow pathways between deep cerebral vessels
and extra-cranial regions. We introduce stenoses to the reference venous network presented in Table A.2
dividing the vessels affected by the stricture (the right and left transverse sinuses, No. 101 and 102, Fig-
ure 3.25) in two segments and putting between them a stenosis model. This model is based on [323, 275]
and it evaluates the flow variation in time across the stenosis by means of a first-order ordinary differential
equation

dq(t)
dt

=
1
L
(∆p(t)− Rq(t)− Bq(t)|q(t)|) . (3.38)

where ∆p is the difference between the upstream and downstream pressures and L, R and B are defined by

L =
kuρls

A0
, R =

kvµ

2r0 A0
, B =

ktρ

2A2
0

(
A0

As
− 1
)2

. (3.39)

A0 and r0 are the mean reference area and radius of the vessels wherein the stenosis model is placed while
ls and As are the length and the minimum area of the stricture, taken equal to 1 cm and 10 % A0. Finally,
ku = 1.2, kt = 1.52 and kv = 16A2

0/(r0 A2
s )(0.83ls + 3.28rs) are empirical coefficients [323, 275].

Comparison between healthy and IIH patient

Figure 3.25 shows computed flow in the transverse sinuses for the healthy control (HC) and for the
stenotic case (ST), along with MRI data for a healthy subject; there is a reduction of average flow rate of
about 70%. Moreover, due to the stenosis, there is a re-distribution of flow in dural sinuses and an increase
in dural pressure (Figure 3.26). As a consequence, there is an increase in pressure in intracranial veins while
the arterial flow and pressure are not modified. The venous hypertension due to transverse sinuses steno-
sis leads to decreased CSF reabsorption via arachnoid granulation which depends linearly on the pressure
difference between intracranial pressure and superior sagittal sinus pressure. As a consequence, in order
to maintain the balance between CSF generation and absorption, the intracranial pressure rises; moreover,
following the Monro-Kellie hypothesis, a major amount of CSF is displaced into the spinal canal. For equal
narrowing of the transverse sinuses, the severity of intracranial hypertension depends on the ability of the
venous vascular network in developing collateral pathways to brain drainage. Occipital vein and sinus are
the main collateral routes for flow limited by stenosis; the flow through these vessels increases significantly,
in particular in the occipital vein (from 0.722 ml/s to 6.567 ml/s). We must consider that the venous net-
work for head and neck used here represents a best-case scenario, with all possible collaterals present. If the
collateral circulation is impaired, the consequences of a stenosis in the dural sinuses should be aggravated.
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In order to explore this hypothesis, we performed a simulation where blood is forced to flow exclusively
through the dural sinuses. Results are shown in Figure 3.27. There we show the computed intracranial
pressure for the healthy control and for the patient with stenotic transverse sinuses, when the collateral
routes are activated and also when they are compromised. In the first case, there is an increased intracra-
nial pressure from 8.42 to 9.83 mmHg in brain parenchyma and a comparable increase in other intracranial
compartments; on the other hand, when the collateral routes are excluded, the averaged intracranial pres-
sure over the cardiac cycle rises from 8.42 to 31.16 mmHg in the brain. Concerning the intracranial pressure
waveform, in Figure 3.28 (left) we observe that the pulse amplitude between the healthy subject and the one
with transverse sinus stenosis does not change, both in case of complete collateral circulation and without
collaterals. According to [45], if the ICP values were low, the pulse wave presents a descending saw-tooth
appearance, with a clearly distinct P1 component; as the mean ICP rises, there is a progressive elevation in
the magnitude of P2 and to a lesser extent of P3. Increase in the P2 component of the intracranial pressure
wave is thought to represent decreased intracranial compliance [65, 114]. Moreover, the increase in the
P2 and P3 components of the ICP waveform may result from retrograde transmission of venous pressures
to the CSF when there are changes in the cerebral venous system [140]. From the numerical experiments
shown here, we barely observe such changes in the ICP waveform. We attribute this fact to the linear char-
acter of intracranial compliant compartments. We consider it a limitation of our model in its current form,
that will be addressed in future work.

Table 3.6 reports the cardiac cycle-averaged cerebral arterial volume (1D arteries and arterioles), venous
flow (capillaries, venules and 1D veins), cranial CSF and spinal CSF. Arterial volume is 28.98 % of total
blood volume; this data is in line with [124] where the percentage of arterial blood volume with respect
to total cerebral blood volume was estimated to be approximately 20-30 %. When the collateral routes are
blocked, the spinal CSF volume increases from 90.42 ml to 100.90 ml without significant changes in cerebral
venous blood and cranial CSF. This rather insensitive behaviour of venous blood volume is thought to
be related to the modelling approach adopted for representing Starling resistors, which resistance to flow
is not influenced by transmural pressure, see Section 3.5 for more details. Figure 3.28 (right) shows flow
through the aqueduct of Sylvius. As for the case of ICP, we observe small changes in flow pulsatility for all
cases considered. This observation is not in line with experimental observations of flow across the aqueduct
of Sylvius in patients with venous obstructions to cerebral blood drainage, where visible increase in flow
pulsatility is observed [24, 119, 177]. As already remarked for ICP, we believe that this behaviour is due to
the lack of non-linear compliance in intracranial compartments.

Cerebral arterial inflow is similar between healthy and stenotic subjects with collaterals, 13.13 ml/s and
12.92 ml/s, showing that the cerebral autoregulation is maintaining the cerebral perfusion. The cerebral
arterial pressure evaluated in the middle cerebral artery is 85.49 mmHg in healthy subject and 85.64 mmHg
in the stenotic case. However, the ratio between total jugular veins flow and arterial inflow is decreased
from 93% in healthy control to 87% in subject with transverse sinuses stenosis; the outflow is deviated to
external jugular veins and vertebral veins. When the collateral circulation is blocked in the stenotic case,
the arterial inflow is decreased to 10.11 ml/s and the ratio between total jugular veins flow and arterial
inflow is 94 %. The pressure in main cerebral arteries is increased by 3 mmHg. In this case, the cerebral
blood flow is significantly lower than that of healthy control, since the cerebral autoregulation is not able
to fully compensate the drop in perfusion pressure (cerebral arterial pressure minus intracranial pressure)
by reducing peripheral arterial resistances. According to [20], standard MRI, MR venography and MR
flow quantification studies revealed that the mean arterial inflow in stenotic patient with IIH is 21 % above
normal, but the SSS outflow was within the normal range; this means that the mean outflow as a percentage
of the total inflow was reduced: this is evidence of collateral flow. In our mathematical model, we don’t
observe an increase in arterial inflow, both with and without collaterals circulation. However, when the
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FIGURE 3.25: Location of transverse sinus stenosis and computed flow in healthy control (HC)
and stenotic case (ST) compared with MRI data [201].
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FIGURE 3.26: Averaged pressure over a cardiac cycle of different dural sinuses: comparison
between healthy control (HC) and stenotic case (ST). HC: healthy control subject; ST - with
Cols.: subject with transverse sinus stenosis and complete collateral circulation; ST - no Cols.:
subject with transverse sinus stenosis without collateral circulation. TS: transverse sinus; SS:
straight sinus; SPS: superior petrosal sinus; IPS: inferior petrosal sinus; SSS: superior sagittal
sinus; ISS: inferior sagittal sinus.
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collaterals are present, the percentage of venous outflow to arterial inflow is decreased, as in [20]. When
the collateral circulation is reduced, the arterial inflow predicted by our model decreases. While this is
the expected behaviour if one analyses how our model is constructed, it contradicts observations in [20].
This disagreement could be due to the fact that we consider a sudden change from a baseline situation to
a pathological one. There certainly are short- and/or long-term mechanisms not considered in our model
that produce the above mentioned experimental observation of increase cerebral flow in IIH patients. This
aspect will be investigated in future work. Table 3.7 shows the flow coming in and out of the left and
right brain parenchyma (considering the pressure driven and the constant flow) and the brain porosity,
evaluated as the ratio between the volume of the fluid part of the brain parenchyma and its total volume.
The flow through the brain parenchyma decreases when there are stenotic transverse sinuses with respect
to the healthy control; when the collateral circulation is blocked, this decrease reaches 5 %, that is almost 16
% if we consider the pressure driven seepage of extracellular fluid flow from capillaries into the brain. The
brain porosity remains almost constant in all cases.
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TABLE 3.6: Computed averaged volume of blood and CSF over a cardiac cycle in main cere-
bral compartments. Arterial Blood: 1D arteries and arterioles; Venous Blood: capillaries,
venules, 1D veins; Cranial CSF: lateral, third and fourth ventricles, aqueduct of Sylvius, cra-
nial subarachnoid space and fluid part of the brain parenchyma; Spinal CSF: spinal subarach-
noid space. Comparison between healthy control and stenotic cases. HC: healthy control; ST
- with Cols.: stenotic case with collaterals; ST - no Cols.: stenotic case without collaterals.

HC ST - with Cols. ST - no Cols.

Arterial Blood [ml] 48.01 48.00 48.05
Venous Blood [ml] 117.84 118.12 119.83
Cranial CSF [ml] 469.55 469.86 471.53
Spinal CSF [ml] 90.42 91.18 100.90

FIGURE 3.27: Pressure in CSF compartments over a cardiac cycle: comparison between
healthy control (HC) and subject with transverse sinuses stenosis (ST). When the collateral
routes are blocked, the intracranial pressure rises by 30 mmHg. HC: healthy control subject;
ST - with Cols.: subject with transverse sinus stenosis and complete collateral circulation; ST -
no Cols.: subject with transverse sinus stenosis without collateral circulation. Brain: fluid part
of brain parenchyma; LVs: lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V:
fourth ventricle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space.
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FIGURE 3.28: Left frame Intracranial pressure waveform: comparison between healthy con-
trol (HC) and subject with transverse sinuses stenosis (ST) with and without collateral cir-
culation. We consider as intracranial pressure the pressure in the fluid part of the brain
parenchyma. p: computed intracranial pressure, p: averaged pressure over a cardiac cycle
(value written in brackets).
Right frame Variation in time of flow through the aqueduct of Sylvius for the healthy control
(HC), a patient with transverse sinus stenosis with collaterals (ST - with Cols.) and a patient
with transverse sinus stenosis without collaterals (ST - no Cols.).
HC: healthy control subject; ST - with Cols.: subject with transverse sinus stenosis and com-
plete collateral circulation; ST - no Cols.: subject with transverse sinus stenosis without collat-
eral circulation.
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TABLE 3.7: Cerebrospinal fluid exchange qin
br,L−R and qout

br,LR
and brain porosity Φbr (ratio be-

tween fluid part and total volume of brain parenchyma, considering a solid part of 980 ml):
Comparison between healthy control and subject with transverse sinuses stenosis with and
without collaterals. Percentage variation with respect to healthy case in brackets. HC: healthy
control; ST - with Cols.: stenotic case with collaterals; ST - no Cols.: stenotic case without
collaterals.

HC ST - with Cols. ST - no Cols.

qin
br,L × 10−4 [ml/s] 7.4 7.3 (-1.37) 7.0 (-5.4)

qin
br,R × 10−4 [ml/s] 7.4 7.3 (-1.37) 7.0 (-5.4)

qout
br,L × 10−4 [ml/s] 7.4 7.3 (-1.37) 7.0 (-5.4)

qout
br,R × 10−4 [ml/s] 7.4 7.3 (-1.37) 7.0 (-5.4)

Φbr 0.298 0.298 0.298
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3.4.2 Extracranial venous outflow strictures and their implication for Ménière’s dis-
ease

Chronic cerebrospinal venous insufficiency (CCSVI) has been described as a chronic syndrome, char-
acterized by extracranial venous malformations involving internal jugular veins, vertebral veins and the
azygos vein [324]. The narrowing of these veins hampers the normal outflow from the brain, causing an
impact on intracranial haemodynamics, as well as on CSF and brain dynamics. Some works on modelling
this condition are available in the literature. In [202] and [208], stenoses of the internal jugular veins were
studied, while [293] concerns stenotic venous valves. In [297], the neck venous strictures are associated
to Ménière’s disease, a pathology of the inner ear. These works reveal that CCSVI leads to a significant
increase in intracranial pressure; however, since in previous versions of our work, a single CSF compart-
mental model was used, no refined information about the CSF dynamics could be obtained. Here, we
investigate the impact on the CSF and brain dynamics resulting from the CCSVI condition, using a more
sophisticated multi-compartment model for CSF.

Problem setup

We consider two different malformations of the extracranial venous vessels. The first one (case A)
includes left and right stenotic internal jugular veins, symmetrically above the insertion of the middle
thyroid vein, and also a stenosis in the azygos vein. In order to account for these strictures in the model,
we introduce stenoses as represented in Section 3.4.1 for vessels No. 224, 225, 244. The minimum area of
the strictures is taken equal to 10 % of the reference cross-sectional area of the vessels where the stenosis
model is placed (Table A.2). As for transverse sinuses stenosis, this area, as well as the reference cross-
sectional area of the vessels, defines the parameters of the stenosis model in Equation (3.39). The second
configuration (case B) takes into account stenotic valves, symmetric in both left and right internal jugular
veins. The parameter Ms of Equation (2.40) is taken equal to 0.25, causing an obstruction of 75% of the
reference cross-sectional area.

Comparison between healthy and pathological patients

As expected, the CCSVI condition is related to a significant pressure drop across strictures. Pressure
drops between the pre- and post-stenotic locations are negligible in the case of the healthy control while
in case A it is almost 1.37 mmHg and in case B it is 2.25 mmHg. The pressure rise observed in the extra-
cranial venous strictures is transmitted to the intracranial circulation. Figure 3.29 (left) depicts the com-
puted cardiac-cycle averaged pressures in the main dural sinuses of the venous network. Moreover, Fig-
ure 3.29 (right) shows averaged pressures for veins of the right inner ear. As reported in [297], the venous
pressure in the ear veins is increased due to the extra-cranial venous stenoses; because of the functioning
of the Starling resistors located in the ear circulation, this rise is not caused by the backward transmitted
pressure waves from the obstructed sites, as occurs in dural sinuses, but it is due to the increased intracra-
nial pressure. As shown in Figure 3.30, in all intracranial compartments the pressure is raised by 1 mmHg
in case A and 2 mmHg in case B. By early animal experiments in [46], it was proved that the subarachnoid
space is linked to the endolymphatic space and the CSF pressure increase could be transmitted via the en-
dolymphatic duct and sac to the inner ear, leading to the formation of the endolymphatic hydrops, one of
the main anomalous conditions in Ménière’s disease patients.

As in the previous pathological setting, the ability of developing collateral routes for brain drainage are
important in determining the severity of intracranial hypertension. When there are stenoses in the internal
jugular veins, the flow is redirected to the extracranial jugular and vertebral veins. The arterial inflow and
the ratio between internal jugular vein flow and arterial inflow are 13.11 ml/s and 76.31 % for case A, while



68 Chapter 3. Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting

FIGURE 3.29: Computed cardiac-cycle averaged pressures p for the healthy control (HC) and
the CCSVI subjects with case 1 and case 2 with collateral circulation. Left frame Pressures p
in main dural sinuses. SPS: superior petrosal sinus, IPS: inferior petrosal sinus; TS: transverse
sinus; SSS: superior sagittal sinus; ISS: inferior sagittal sinus. Right frame Brain parenchyma
pressure and results in main veins of the right inner ear. VCAQ: vein of the cochlear aqueduct;
LABV: labyrinthine vein.
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for case B they are 13.10 ml/s and 62.64 %. When the collateral routes are blocked, the internal jugular veins
are the main drainage alternatives. We simulated such a situation where collateral pathways are blocked;
in this case the arterial inflow is 12.52 ml/s and the ratio between internal jugular veins outflow and ar-
terial inflow is 99.4 %. The intracranial pressure increases by 5.5 mmHg (see Figure 3.30). This raise in
pressure is of the same order of magnitude of the pressure drop through the stenosis (10.13 mmHg above
the stenosis and 4.48 mmHg below in the right internal jugular vein); in fact, the increase in venous pres-
sure is transmitted up the vessels into the superior sagittal sinus (from an averaged pressure of 5.31 mmHg
in the healthy control to 10.97 mmHg), causing a proportional reduction in CSF absorption and then an
increase in intracranial pressure until equilibrium between CSF generation and absorption is reestablished
[23]. Table 3.8 reports data about the CSF flow in the brain parenchyma; due to the presence of stenoses, the
pressure driven CSF seepage from the capillaries to the brain parenchyma is decreased. Figure 3.31 shows
flow through the aqueduct of Sylvius. Deviations in terms of pulsatility are very small, even for the con-
figuration featuring no collaterals. However, in [24] changes in pulsatility were observed for patients with
CCSVI. The fact that our model correctly captures the trend, i.e. increased pulsatility, but fails to capture
the magnitude of such increment, is certainly due to how well our model characterizes intracranial space
compliance in the pathological case. Clearly some modelling aspects have to be improved, specifically the
model of the Starling resistor (see discussion in next section), as well as mechanical properties of brain
dynamics model compartments for patients with CCSVI.
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FIGURE 3.30: Computed pressure p in CSF compartments over a cardiac cycle: compari-
son between the healthy control (HC) and CCSVI patient (ST). Brain: fluid part of brain
parenchyma; LVs: lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V: fourth
ventricle; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid space.
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FIGURE 3.31: Variation in time of flow through the aqueduct of Sylvius for the healthy control
(HC), the CCSVI patient with collaterals (ST - with Cols.) and the CCSVI patient without
collaterals (ST - no Cols.).
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TABLE 3.8: Cerebrospinal fluid exchange qin
br,L, qin

br,R, qout
br,L, qout

br,R and brain porosity Φbr (ratio
between fluid part and total volume of brain parenchyma, considering a solid part of 980 ml):
Comparison of results for a healthy control and subject with IJV stenoses (Case A) with and
without collaterals, and subject with IJV stenotic valves (Case B). Percentage variation with
respect to healthy case in brackets. HC: healthy control; ST - with Cols.: stenotic case with
collaterals; ST - no Cols.: stenotic case without collaterals.

HC ST - case A - with Cols. ST - case A - no Cols. ST - case B - with Cols.

qin
br,L [ml/s] 0.00074 0.00074 (-0.84) 0.00073 (-2.05) 0.00073 (-1.75)

qin
br,R [ml/s] 0.00074 0.00074 (-0.84) 0.00073 (-2.05) 0.00073 (-1.75)

qout
br,L [ml/s] 0.00074 0.00074 (-0.84) 0.00073 (-2.05) 0.00073 (-1.75)

qout
br,R [ml/s] 0.00074 0.00074 (-0.84) 0.00073 (-2.05) 0.00073 (-1.75)

Φbr 0.298 0.298 0.298 0.298

3.5 Concluding remarks

In the first chapters of this thesis (Chapters 2 and 3), we have presented a global, closed-loop, multiscale
model of the human circulation coupled with a multi-compartmental model for the cerebrospinal-fluid dy-
namics. The model comprises one-dimensional descriptions for medium to large blood vessels, arteries and
veins, accounting for the viscoelastic property of the blood vessel wall. Lumped-parameter descriptions
are used for other components of the full model that include the heart, the pulmonary circulation, the mi-
crovasculature, venous valves, Starling resistors and the dynamics of cerebrospinal fluid in the craniospinal
cavity, along with cerebral autoregulation. The present work departs from the Müller-Toro mathematical
model [201, 202] for the global systemic and pulmonary circulations in the entire human body. The main
improvements with respect to the original Müller-Toro model and other works fall into three categories: (a)
mathematical models for a better description of the physiology of the circulatory system, (b) the computa-
tional methods used to solve the governing equations and (c) the enlarged range of potential applications
of the resulting model.

On the physiological aspects of the present work, the improvements include the adoption of a viscoelas-
tic tube law, not just for the arterial tree as in [7, 241, 215], but also for the entire venous circulation. We
find that computed pressures and flow waveforms for the arterial and venous circulations are more real-
istic for the viscoelastic tube laws, than for the purely elastic case. The heart model in the present work is
also an improvement over that in the original global model [201, 202]; the cardiac valves are represented
through a model based on [216]. A novelty of the present thesis is the coupling of the blood circulation to a
refined mathematical description of the cerebrospinal fluid dynamics in the craniospinal cavity [162]. The
CSF model comprises the cerebral ventricles, the aqueduct of Sylvius, the cranial and spinal subarachnoid
spaces and the brain parenchyma. Other additions include the parametrization of the vascular beds, which
together with the cerebral autoregulation model, is relevant when studying anatomical malformations of
the cerebral circulation. The computational results for the arterial and venous circulation are compared
with literature data, while MRI measurements are used for assessing our results for the cerebral venous
circulation. Our results are in good agreement with literature and MRI data.

The physiology modelling improvements have resulted in new mathematical problems to be solved,
notably, the viscoelastic nature of all major blood vessels. The associated parabolic system of equations has
been approximated by a hyperbolic system with stiff source terms following a relaxation approach [295,
197, 199]. The resulting stiff system is solved numerically with the same high-order ADER-type numerical
scheme [294, 76], as in the original model [201, 202]. An additional numerical improvement is the adoption
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of the local time stepping technique [78], first introduced for blood flow in [204] for solving a simplified
one-dimensional vessel network. This technique results in significant computational savings, which are
more evident when coupling the blood circulation to the CSF and brain dynamics, as these two systems
have different temporal scales and the computational time needed to reach periodicity of the solution is
considerably larger than the time scale of a cardiac cycle.

The model as presented is applicable to many pathophysiological conditions associated to the circu-
latory system, involving both the arterial and the venous systems. In the present thesis we have placed
considerable emphasis on the central nervous system (CNS) fluids in the craniospinal cavity, in which
blood (arteries, microvasculature and veins) interact with the CNS fluids. To illustrate the applicability of
the present model that couples the blood circulation and the CSF dynamics in a holistic setting, we have
presented two specific medical applications, namely idiopathic intracranial hypertension as associated to
transverse sinus stenoses, and Ménière’s disease as associated to extracranial venous outflow strictures.
Our results reveal that obstructions in the cerebral venous network lead to intracranial hypertension and
disruption of the fluid dynamics in the entire craniospinal cavity. The severity of the consequences of in-
tracranial or extracranial venous outflow obstructions depends on the balance between CSF generation and
absorption, the displacement of CSF into the spinal cord and the ability of the venous network in devel-
oping collateral routes to respond to the venous outflow obstructions. These findings are relevant to the
study of a very important function of central nervous system fluids, namely the clearance of brain metabolic
waste and neurotoxins from the CNS. Impairment of the cerebral venous drainage will directly disrupt this
clearance function. Indirectly, CSF absorption into the venous system will be hampered, due to venous
hypertension, leading to decreased CSF turnover, which will also affect the clearance function.

In spite of the progress reported in this work, there are several limitations to be addressed in future de-
velopments. One limitation is the description of Starling resistors, which are major determinants of cerebral
venous dynamics; blood flow through these compliant vessels is controlled by sphincter-like structures,
which regulate discharge into the main dural sinuses. Another limitation is the absence of a model for
solute transport. This limitation prevent us at present from properly describing, via Starling forces [152],
the transport of fluid and selected solutes across the blood-brain barrier (BBB), for example. Overcoming
this limitation will be crucial for tackling the brain waste clearance function of the CNS, alluded to earlier.
Mathematical modelling steps in this direction are outlined in [41, 166]. Another limitation involves the
linear distenibility equations of the CSF model. Following [162], these equations link the internal pressure
with the cross-sectional area of the compartment in a linear manner. A simple linear pressure-volume re-
lationship is acceptable in the physiological pressure range, but could give under- and/or over-estimation
of pressure changes in case of large volume changes, especially when addressing pathological conditions.
Future work will address the non-linear behaviour of the pressure-volume relationship in the CSF com-
partments. Another potential improvement concerns the representation of CSF in the spinal canal, which
at present consists of a single 0D model; a possible improvement could be the adoption of a 1D model, as
proposed in [290], which is based on two coaxial compliant tubes representing the spinal cord and the CSF
between the cord and the dura. Potentially, such representation admitting spatial variations could provide
the bases for adding new potential routes for CSF reabsorption.

Addressing the modelling of the microcirculation is a challenging task. Here, the microcirculation was
simplified as a lumped resistor capacitor system. While this simplification gave acceptable system-wide
predictions, it is not able to account for biphasic blood flow phenomena [102] and network effects [118]
that occur in the microcirculation. Significant progress has been made to develop realistic microvascular
networks models [163, 103, 117] which could be integrated with the proposed system models in future
work.

On balance, the mathematical model presented here is a significant improvement of the original model
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[201, 202] published seven years ago, represents the current state of the art and could provide the bases
for realistic applications that require the representation of all extracellular body fluids in a holistic setting,
along with regulatory processes.



73

Chapter 4

A multiscale model for the dynamic of
the cerebrospinal fluid coupled to the
systemic circulation

4.1 Introduction

Cerebrospinal fluid (CSF) plays an essential role in homeostasis and metabolism of the central nervous
system. It is a clear, colorless fluid, that is composed mostly of water (99 %) and other substances, such as
proteins, glucose, lipids and hormones [154]. According to the classical theory [71, 37], CSF is produced
by choroid plexus in the ventricles and travels through the intraventricular foramina from the lateral ven-
tricles to the third ventricle and then to the fourth ventricle through the cerebral aqueduct; finally, it flows
into the subarachnoid space via the median aperture of the fourth ventricle. In the cranial subarachnoid
space, CSF circulates rostrally to the sites of absorption into the blood, the arachnoid villi, or caudally to
the spinal subarachnoid space [113, 298]. CSF circulation is a dynamic phenomenon; such movement is
responsible for the transport of the choroid plexus secretion products to their site of action, the balance
of the electrolytes and the elimination of catabolites. CSF provides homeostatic regulation of the brain’s
parenchymal interstitial fluid.

The dynamics of cerebrospinal fluid flow are directly linked to those of the cardiovascular system.
Expansion and contraction of cerebral blood vessels are at the origin of CSF pulsation. Moreover, cere-
brospinal fluid pressure is the result of a dynamic equilibrium between CSF secretion, absorption and resis-
tance to flow. It varies with the systolic pulse wave, respiratory cycle, abdominal pressure, jugular venous
pressure and posture.

CSF dynamics can be altered by diseases and conditions such as hydrocephalus, syringomyelia, spinal
cord injury, Chiari malformations, spinal tumors, to name but a few. In these pathological cases, it is neces-
sary quantifying critical parameters of normal intracranial dynamics as well as establishing the gravity of
deviations in diseases. Intracranial pressure (ICP) is generally measured invasively in the clinical practice,
since invasive methods are currently the most accurate ways of ICP monitoring. Its analysis can reveal fun-
damental information about the status of cerebral haemodynamics, cerebral perfusion, and autoregulation
reserve [114].

In this context, mathematical models describing intracranial fluid dynamics and its interaction with the
blood circulation have become important tools for this purpose. An early contribution includes the pio-
neering work by Marmarou and co-workers [181, 182]. In their work, an electrical model approximated the
hydrodynamics of the CSF system; the main aspects of the kinetics of ICP were included, such as nonlinear
cerebrospinal fluid production and absorption, as well as non linear intracranial elasticity. Ursino et al.
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[301, 302] proposed a simple lumped-parameter model of ICP which accounted for cerebral venous pres-
sure instability, cerebral blood volume and autoregulation; the aim of this kind of model is to improve the
comprehension of the physiological ICP time pattern and the interaction between CSF and cerebral blood
flow. The main simplification of this work is that all the CSF spaces, i.e. the entire craniospinal cavity,
are represented by only one compartment. Sorek et al. [270] introduced a lumped-parameter seven com-
partmental model of the intracranial cerebrovascular fluid system with CSF, blood, and a deformable brain
parenchyma. They calculated the amplitude and timing of volumetric expansion, intracranial pressures,
and volumetric fluid exchange as functions of arterial blood pressure pulsations. However, that model
did not include the spinal subarachnoid space, hence it did not consider the spinal compliance. In 2009,
Linninger at el. [162] incorporated the entire central nervous system with full interaction of the expanding
vasculature, the brain parenchyma, the ventricular system, and a compliant spine in a lumped-parameter
model which predicts intracranial pressure differences, blood and CSF flow, and deviations from normal to
pathological conditions (hydrocephalus).

Unlike the lumped-parameter approach, computational fluid dynamics models can provide spatially
resolved information on flow, pressure and mass transport, which opens the door to subject-specific calcu-
lations of intracranial dynamics based on medical imaging data. The description of the underlying mecha-
nisms stems from the basic principles of fluid dynamics and it is translated into systems of partial differen-
tial equations, supplied with suitable initial and boundary conditions of particular importance. Specifically,
CSF is often considered as an incompressible Newtonian fluid, therefore the Navier–Stokes equations are
employed. In addition, the fluid dynamics description can be enriched to take into account the combined
effects of flow and different structures from a multiphysics perspective including poroelasticity and fluid-
structure interaction. However, these models are demanding both as regards geometric and boundary
conditions setup than computational cost and complexity; therefore, the existing models focus on individ-
ual compartments or small groups of these instead of representing CSF space in its entirety. An example
includes the work by Kurtcuoglu et al. [145], who investigated the flow in the cerebral aqueduct and in the
third ventricle of normal and hydrocephalic patients using patient-specific geometries reconstructed from
magnetic resonance imaging scans.

There are several computational fluid dynamic works about the CSF flow in the spine. A first example
was proposed by Loth et al. [172], wherein CSF flow in the spine is assessed by means of a two-dimensional
model in small cross-sections of the spinal CSF space derived from imaging data. Bertram et al. [27]
used a two-dimensional axi-symmetric numerical model of the spinal cord, consisting of elastic cord tissue
surrounded by aqueous cerebrospinal fluid, in turn surrounded by elastic dura, to look quantitatively at
wave travel along the cord, also in the presence of a syrinx in the spinal cord [28]. Another option to study
the wave propagation in the spine is represented by one-dimensional models. In this case, the spine is
generally idealised by a coaxial geometry composed of an inner cylinder for the spinal cord and an outer
tube for the dura, with CSF flowing in between. Examples along those lines are the works by Berkouk
[26], Carpenter [47], Cirovic [59], Toro [290]. Concerning the coupling between cerebral heamodynamic
and one-dimensional models of the spine, Kim and Cirovic [139] proposed a computational model of the
cerebrospinal fluid system incorporating lumped-parameter cranial compartments for arteries and veins,
and one-dimensional distributed spinal CSF compartment. Martin et al. [183] coupled the cardiovascular
and cerebrospinal fluid systems. Their representation of the cardiovascular system was composed by a
one-dimensional network of viscoelastic arteries, linked to a varying elastance model of the left ventricle
and terminated by three-element Windkessel models. The cerebrospinal fluid system was modelled by one
tube-like structure which represents the spinal subarachnoid space; this kind of model is able to study the
axial distribution of flow and pressure along the spinal canal. However, the rest of the cranial space is
described by a transfer function that delivers spinal CSF flow from arterial flow curves.
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The present work departs from a global closed-loop model of the entire human circulation coupled
to a refined lumped-parameter description of the cerebrospinal fluid dynamics in the craniospinal cavity
[292]. The main addition consists of replacing the lumped-parameter model for the spinal compartment
with a one-dimensional coaxial model [59, 290, 259] which comprises an inner tube representing the spinal
cord and the spinal subarachnoid space encased in the dura mater. Moreover, cranial and spinal non-
linear behaviour of the pressure-volume relationship are introduced to better represent the deviation from
the normal craniospinal CSF dynamic in pathological conditions. The model will be validated in healthy
condition through comparison with published MRI data and computational results will be compared to the
previous version of the model [292]. We will focus on the ICP waveform through a sensitivity analysis of the
main parameters of the craniospinal CSF model. To stress the importance of the nonlinear pressure-volume
relation, cranial infusion of CSF will be tested and the pressure-volume index (PVI) will be evaluated, as
well as the outflow resistance to CSF reabsorption. Finally, as an example of the applicability of the model
in studying the interaction between blood and CSF dynamics, we will assess the effects of transverse sinus
stenoses on ICP.

4.2 Methods

4.2.1 A brief overview of the global mathematical model of the circulation

The entire human circulation is represented by means of a closed-loop model is fully described in [292].
See also [201, 202] for previous version of the model. It is a geometric multiscale type model which includes
one-dimensional models for blood flow in major vessels and zero-dimensional lumped-parameters models
describing blood flow in the remaining compartments. Figure 4.1 illustrates schematically the structure of
the model: it includes 323 vessels, comprising arteries and veins; four heart chambers and cardiac valves;
3 compartments for the pulmonary circulation; 31 compartmental models describing connections between
terminal arteries and veins through the microcirculation; 17 venous valves; 21 Starling resistors.

Blood flow in major vessels was modelled using a 1D system of partial differential equations. The
resulting system of equations is given by∂t A + ∂xq = 0 ,

∂tq + ∂x

(
α̂

q2

A

)
+ A

ρ ∂x p = − f .
(4.1)

The three unknowns of the problem are the cross-sectional area of the vessel’s lumen, A(x, t); the blood
flow rate through a section of the vessel, q(x, t); and the cross-sectionally averaged internal pressure, p(x, t).
α̂ is the Coriolis coefficient linked to the velocity profile, here taken equal to 1, ρ is the blood density, and
f = 8πµ/ρq/A is the friction force per unit length of the tube. To close the system, we adopted a pressure-
area relation which describes the viscoelastic nature of vessels wall

p(x, t) = pext(x, t) + K(x)
((

A(x, t)
A0(x)

)m
−
(

A(x, t)
A0(x)

)n)
+ P0︸ ︷︷ ︸

Elastic term

+
Γ

A0
√

A
∂t A︸ ︷︷ ︸

Viscoelastic term

. (4.2)

In this tube law, the internal pressure p(x, t) is expressed as a function of the cross-sectional area A(x, t)
and other parameters, A0(x), pext(x, t), m, n, K(x), P0, Γ, that account for mechanical and geometrical
properties of the vessel. For a discussion on the choice of these parameters, we refer to [292].

Other districts of the blood circulation are modelled by lumped-parameter models. The connection be-
tween arteries and veins through arterioles, capillaries, and venules is represented by generic vascular bed
models based on the three-element Windkessel model. The heart model considers time-varying elastance
model [160, 276] to describe the dynamics of relaxation/contraction of the four cardiac chambers, while
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FIGURE 4.1: Schematic representation of the global model used in this work [292]. 1D models
refer to networks of major arteries and veins and to the spine, which are modelled using
evolutionary partial differential equations, providing space- and time-resolved pressure and
flow. Rectangles represent lumped-parameter models, which are used to describe the heart
chambers, the pulmonary circulation, the microcirculation, as well as brain and cranial CSF
dynamics. Such compartments are modelled using ordinary differential equations, which
provide time-resolved haemodynamic variables.

cardiac valves were modelled as in [216]. The pulmonary circulation is divided into arteries, capillaries,
and veins, and is modelled as in [276]. Venous circulation was equipped by venous valves which governs
the flow across the interface between two vessels and Starling resistors were placed at the confluence of
cortical veins in the dural sinuses; both venous valves and Starling resistors were represented by the model
presented in [216]. Finally, a mathematical model for cerebral autoregulation, which works on the terminal
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portion of the cerebral arteries and on the cerebral vascular beds, was included; this model is based on [305]
and [234].

We refer the reader to the works in [201, 202, 292] for more details about the model description, the
numerical methods, parameter selection and validation.

4.2.2 Governing equations for the craniospinal CSF model

In [292], the blood circulation was coupled to a fully zero-dimensional (0D) model of the CSF and
brain dynamics (based on [162]) which includes nine compartments. In this work, we consider lumped-
parameters compartments for the cranial CSF and brain dynamics as in [292, 162], while a distributed
one-dimensional model [59, 290] (1D) is used to describe motion of the spinal cord and CSF flow in the
spinal subarachnoid space. Appropriate matching conditions are adopted to couple the zero-dimensional
models of the cranial CSF and the spinal 1D model.

FIGURE 4.2: Schematic representation of the cerebrospinal fluid (CSF) cranial compartments
and spinal model. With respect to previous work [292], here the spinal column is repre-
sented by means of a coaxial tube which includes the spinal cord and the spinal subarachnoid
space. RV: right lateral ventricle; LV: left lateral ventricle; 3V: third ventricle; 4V: fourth ventri-
cle; AoS: aqueduct of Sylvius; CSAS: cranial subarachnoid space; SSAS: spinal subarachnoid
space; SC:spinal cord; SSS: superior sagittal sinus Brain: fluid part of brain parenchyma; Al:
cerebral arterioles; Cp: cerebral capillaries. Solid double arrows denote fluid exchange be-
tween different compartments driven by pressure differences, while dashed arrows describe
constant CSF production. The combination of a single dashed arrow and a solid double arrow
between the brain parenchyma and the capillaries indicates that there are both fluid exchange
driven by pressure differences and constant CSF production. Single solid arrow denotes CSF
reabsorption into the venous system (SSS).
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Governing equation for the cranial CSF and brain dynamics

CSF and brain dynamics are represented by means of lumped-parameter models. The resulting system
of ordinary differential equations and algebraic equations is composed by 33 equations which comprise
continuity equations, momentum equations and distensibility equations for the lateral (LV, RV), third (3V)
and fourth (4V) ventricles, aqueduct of Sylvius (AoS), cranial subarachnoid space (CSAS). Left and right
brain parenchyma (br,R and br,L) hemispheres are described as a simplified bi-phasic material, with a
constant solid cell matrix and an extracellular fluid part which are represented by continuity equations and
momentum equations. Moreover, a nonlinear distensibility equation for each brain hemisphere is added
to describe the link between the intracranial pressure, that in this work is considered as the pressure in the
extracellular fluid part of the brain parenchyma, and the volume inside the skull. This is different with
respect to the original model proposed in [162] wherein the linear distensibility equation was represented
by the Monro-Kellie doctrine which states that the volume inside the skull is constant. Such nonlinear
equation was previously used in [166] and in [64] to represent the dynamic of the intracranial pressure as
function of the intracranial volume. Other equations of the system are algebraic equations that connect
different CSF cranial compartments. Finally, there is an additional momentum equation which relates the
pressure drop between the cranial and spinal subarachnoid space to the volumetric flow rate at the cranial
junction of the spinal subarachnoid space. Some equations are summarized here, but we refer the reader to
[292] for a complete description of the model equations.

The continuity equation for cranial CSF compartments reads

lj
dAj

dt
= qin

j − qout
j , j ∈ {LV, RV, 3V, AoS, 4V, CSAS} , (4.3)

where lj, Aj, qin
j , qout

j are the length, the cross-sectional area, the inflow and outflow of a compartment. The
continuity equations for the right and left fluid part of the brain parenchyma consider both the volumetric
flow rate in and out of the compartment that occurs in two ways: pressure-driven (qin

br, qout
br ) and constant-

rate transfer (qCp→br,const, from the brain capillaries into the extracellular space of the parenchyma, and
qbr→LV,const, from the parenchyma into the ventricles):

lbr,R
dAbr,R

dt
= qin

br,R + qCp→br,const − qout
br,R − qbr→RV,const , (4.4)

lbr,L
dAbr,L

dt
= qin

br,L + qCp→br,const − qout
br,L − qbr→LV,const . (4.5)

The momentum equations are effectively Darcy’s law of flow and relate the pressure difference between
two compartments to the volumetric flow q exchanged between them and a resistance to flow R:

qin
j =

pup − pdown

Rj
, j ∈ {LV, RV, 3V, AoS, 4V, CSAS, br,R , br,L} . (4.6)

For the brain parenchyma compartments, there are two momentum equations, one refers to cerebrospinal
fluid exchange between the lateral ventricles and the extracellular fluid matrix of the brain, while the other
one relates to the secretion of CSF from cerebral capillaries. Another momentum equation which regulates
the CSF exchange (qin

SSAS) between the cranial and the spinal (SSAS) subarachnoid spaces according to a
resistance (RSSAS) is added to link the 0D cranial models to the 1D spinal model:

qin
SSAS =

pCSAS − pSSAS,1D

RSSAS
. (4.7)

The distensibility equations play the role of the tube law relating the internal pressure with the cross-
sectional area of the compartment:

pj = pext + Ej

(
Aj

A0
j
− 1

)
, j = LV, RV, 3V, AoS, 4V, CSAS . (4.8)
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For each compartment inside the cranial cavity, the external pressure is that of the brain parenchyma, Ej

and A0
j are the elastance and the reference area of the compartment, respectively. Two additional pressure-

volume relationships are introduced to describe the relation between ICP, that is the pressure of the brain
parenchyma, and the intracranial volume:

pbr,R = pbr,0e
VR−VR,0

Φ , (4.9)

pbr,L = pbr,0e
VL−VL,0

Φ , (4.10)

where pbr,0 is the pressure at the reference volume V = V0 and φ is a parameter related to the intracra-
nial compliance. VR and VL are the intracranial volumes in the right and left hemisphere, respectively.
Specifically,

VR = VBlood,R + VRV +
1
2

V3V +
1
2

VAoS +
1
2

V4V +
1
2

VCSAS + Vbr,R + VSolid Parenchyma , (4.11)

VL = VBlood,L + VLV +
1
2

V3V +
1
2

VAoS +
1
2

V4V +
1
2

VCSAS + Vbr,L + VSolid Parenchyma . (4.12)

Equations (4.9) and (4.10) represent a relaxed version of the Monro-Kellie doctrine. In fact, here we
assume that the sum of all intracranial fluid compartments is almost constant and it is linked nonlinearly
to the ICP. The parameter Φ is chosen such that the intracranial volume variation during a cardiac cycle is
less than 0.1 % of the intracranial volume.

Additional algebraic equations are added to describe the cerebrospinal fluid flow in cranial cavity. The
CSF that enters the lateral ventricle is equal to the CSF flowing from the brain parenchyma plus the constant
production rate from arterioles. Then, CSF flows from lateral ventricles to the third ventricle, from the third
ventricle through the aqueduct of Sylvius to the fourth ventricle, and finally from the fourth ventricle to
the cranial subarachnoid space. From the cerebral subarachnoid space CSAS, CSF is displaced into the
spinal subarachnoid space (Eq. (4.7)) and reabsorbed into the superior sagittal sinus (SSS) through the
arachnoid granulations. Reabsorption is represented by a mass transfer flux, which is a function of the
pressure difference between the CSAS and SSS and a reabsorption constant coefficient k

qout
CSAS = qin

SSAS + max (0, k(pCSAS − psinus)) . (4.13)

Governing equation for the one-dimensional model of the spine

The spinal column is represented by the one-dimensional coaxial flexible pipe mathematical model,
firstly presented by Cirovic and collaborators [59] and then used in [290, 259]. The coaxial tube includes
a solid elastic inner tube, which represents the spinal cord encased by a relatively stiff pia mater, and an
outer tube, which plays the role of the dura mater. The spinal subarachnoid space between the pia mater
and the arachnoid is filled with CSF. The system of governing equations of the one-dimensional coaxial
model reads as follows

∂t Ac + ∂x(Acuc) = 0

∂t(Acuc) + (c2
c + u2

c )∂x Ac + 2uc Ac∂xuc +
Ac
Ad

c2
d∂x Ad = − f1

∂t(Ad − Ac) + ∂x((Ad − Ac)ua) = 0

∂t((Ad − Ac)ua) +
Ad−Ac

Ad
c2

d∂x Ad + u2
a∂x(Ad − Ac) + 2ua(Ad − Ac)∂xua = − f2 ,

(4.14)

where

f1 = 8πµc
uc

ρ
, (4.15)
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f2 = 8πµd
ua

ρ

Ad − Ac

Ad + Ac − Ad−Ac

log
(√

Ad
Ac

) . (4.16)

The unknowns of the system are Ad and Ac, cross-sectional areas of the dura mater and of the spinal cord, ua

and uc, axial velocities of the cerebrospinal fluid flowing in the spinal subarachnoid space and of the spinal
cord, and pd and pc, the pressure in the spinal subarachnoid space and the normal compressive stress in
the cord. The first and third equations of the partial differential equations system represent conservation
of mass for the spinal cord and for the spinal subarachnoid space, while the other equations describe the
balance of momentum, wherein the right hand sides are dissipation terms, modelled by a Poiseuille laminar
flow. In particular, the dissipation term for the last equation is modelled as the pressure drop per unit length
for laminar flow in a concentric annulus [130, 318]. To close the system, the following tube laws, that relate
the cross-sectional area to the pressures, are applied

pc = Elc

(
Ac

A0c
− 1
)
+ pd , (4.17)

pd,L = Êld

(
Ad

Â0d
− 1
)

(4.18)

pd,NL = p0deEld(Ad−A0d) . (4.19)

Equation (4.17) describes the linear pressure-area relationship of the spinal cord; Elc and A0c are the elas-
tance and the reference cross-sectional area, respectively, while the pressure of the CSF in the SSAS pd

is taken as external pressure. Equations (4.18) and (4.19) represent a linear (pd,L) and a nonlinear (pd,NL)
pressure-area relationship for the CSF in the SSAS. As for the spinal cord, the linear tube law relates the
pressure pd to the cross-sectional area of the dura Ad and Êld, Â0d, the elastance and the reference cross-
sectional area, respectively. Equation (4.19) describes a exponential-like behaviour that characterizes the
CSF pressure with respect to the CSF volume [17, 181]. (A0d, p0d) represents the reference set point of the
curve, obtained from a baseline simulation with linear tube law. Eld is the elastance coefficient and it is
defined such that the elastance at the reference point of the pressure-area curve is equal to the elastance of
the linear relationship: ∂pd,L

∂Ad

∣∣∣
A0d

=
∂pd,NL

∂Ad

∣∣∣
A0d

, hence Eld = Êld
Â0d p0d

. Wave speeds of spinal cord and cere-

brospinal fluid in the spinal subarachnoid space are defined as cc and cd; they link pressure p, area A and
density ρ as follows

c =

√
A
ρ

∂p
∂A

. (4.20)

The system (4.14) can be written in vector form as

∂tQ + A(Q)∂xQ = S(Q) , (4.21)

Q =


Ac

Ad − Ac

Acuc

(Ad − Ac)ua

 , (4.22)

A(Q) =


0 1 0 0

c2
c + Acc2

d/Ad − u2
c 2uc Acc2

d/Ad 0
0 0 0 1

(Ad − Ac)c2
d/Ad 0 (Ad − Ac)c2

d/Ad − u2
a 2ua

 , (4.23)
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S(Q) =



0
−8πµc

uc
ρ

0
−8πµcs f

ua
ρ

Ad−Ac

Ad+Ac−
Ad−Ac

log

(√
Ad
Ac

)


. (4.24)

Vector Q includes the unknowns of the problem, A(Q) is the coefficient matrix and S(Q) is the vector
of source terms. As pointed out in [259], it can be proved that system (4.14) can be either strictly hyper-
bolic or mixed elliptic-hyperbolic system. The sign of the discriminant of the characteristic polynomial of
system (4.14) depends on the two cross-sectional areas Ac and Ad, the velocity difference |uc − ua| and
the physical parameters A0c, A0d, ρ, Ec, Ed. As we move in the parameters’ space, the character of the
system changes; however, for parameter values within the physiological range, system (4.14) is always
hyperbolic [290]. Great care is required in choosing the numerical method, which should deal with the
non-conservative character of the advective part and with source term. The numerical strategy followed
here is a finite volume method based on the ADER approach [193] in combination with FORCE [287] for
non-conservative systems. The resulting scheme is nonlinear and second-order accurate in space and time.
The one-dimensional domain is divided into N computational cells Ti =

[
xi− 1

2
, xi+ 1

2

]
for i = 1, . . . , N.

The finite-volume type formulation of the problem obtained integrating the system of governing equa-
tions (4.14) in space and time in the control volume

[
xi− 1

2
, xi+ 1

2

]
× [tn, tn+1] is

Qn+1
i = Qn

i −
∆t
∆x
(
D−

i+ 1
2
+ D+

i− 1
2

)
+ ∆tSi − ∆tGn

i , (4.25)

where

Qn
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn) dx , (4.26)

Gn
i =

1
∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

A(Q)∂xQ dx dt , (4.27)

Si =
1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t)) dx dt , (4.28)

D±
i+ 1

2
=

1
∆t

∫ tn+1

tn
D±

i+ 1
2

(
QL

i+ 1
2
(t), QR

i+ 1
2
(t), Ψ(s)

)
dt , (4.29)

with ∆x = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn. Moreover, QL/R

i+ 1
2

are limiting data states from left and right at the

cell interface xi+ 1
2
. Given QL

i+ 1
2

and QR
i+ 1

2
, D±

i+ 1
2

(
Q−

i+ 1
2
(t), Q+

i+ 1
2
(t), Ψ(s)

)
are fluctuations that depend on the

integration path Ψ(QL
i+ 1

2
(t), QR

i+ 1
2
(t), s).

The first step of the ADER approach [193] consists in a nonlinear spatial reconstruction. For a second
order scheme, a first order reconstruction polynomial for each computing cell i reads as follows

Pi(x, tn) = Qn
i + (x− xi)∆i , (4.30)

where ∆i is a slope vector chosen with ENO criteria [116].
Then, at each cell interface, the following local generalized Riemann problem is defined

∂tQ + A(Q)∂xQ = S(Q) ,

Q(x, 0) =

Pi(x) if x < 0 ,

Pi(x) otherwise .

(4.31)
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The Harten, Engquist, Osher and Chakravarthy (HEOC) method [115] is followed to find the solution of
the generalized Riemann problem. From the reconstruction polynomial, two boundary extrapolated values
arise 

Q−
i+ 1

2
= Qn

i +
1
2 ∆x∆i ,

Q+
i+ 1

2
= Qn

i+1 − 1
2 ∆x∆i+1 ;

(4.32)

these boundary values are then evolved in time ( 1
2 ∆t) via a truncated Taylor expansion and by means of

the Cauchy-Kowaleskaya procedure, the time derivative is re-written in term of spatial derivative.The final
form of the evolved boundary extrapolated values up to time 1

2 ∆t is
QL

i+ 1
2
= Q−

i+ 1
2
+ ∆t

2

[
−A

(
Q−

i+ 1
2

)
∆i + S

(
Q−

i+ 1
2

)]
,

QR
i+ 1

2
= Q+

i+ 1
2
+ ∆t

2

[
−A

(
Q+

i+ 1
2

)
∆i+1 + S

(
Q+

i+ 1
2

)]
.

(4.33)

Fluctuations D±
i+ 1

2
in (4.29) arise from the solution of the following classical Riemann problem at compu-

tational cell interfaces xi+ 1
2

∂tQ + A(Q)∂xQ = 0 ,

Q(x, 0) =


QL

i+ 1
2

if x < 0 ,

QR
i+ 1

2
otherwise .

(4.34)

Here, we adopted the FORCE scheme [287] for non-conservative systems; therefore, the fluctuations read

D±
i+ 1

2
= A±

i+ 1
2

(
QR

i+ 1
2
−QL

i+ 1
2

)
, (4.35)

where the matrices are

A±
i+ 1

2
=

1
2

Âi+ 1
2
± 1

4
∆t
∆x

[
Â2

i+ 1
2
+

(
∆x
∆t

)2
I

]
. (4.36)

Here, I is the identity matrix and Âi+ 1
2

is a path integral of the coefficient matrix A, which is approximated
numerically as

Âi+ 1
2
=
∫ 1

0
A
(

Ψ(s; QL
i+ 1

2
, QR

i+ 1
2
)
)

ds ≈
M

∑
j=1

ωjA
(

Ψ(sj; QL
i+ 1

2
, QR

i+ 1
2
)
)

, (4.37)

where ωj and sj are weights and integration points of a Gauss quadrature rule. In particular, we use a
Gauss-Legendre quadrature rule with three integration points.

The high order term Gn
i is evaluated by means of a second-order approximation of integral in (4.27)

(mid-point integration rule in space and time); it reads

Gn
i ≈ A

(
QM

i

) QL
i+ 1

2
−QR

i− 1
2

∆x
, (4.38)

where QM
i is defined as

QM
i = Qn

i +
∆t
2

[−A (Qn
i )∆i + S (Qn

i )] . (4.39)

Concerning the source term, the mid-point integration rule in space and time is applied; it becomes

Si = S(QM
i ) . (4.40)

Appropriate boundary conditions are necessary for the determination of the numerical solution in the
spinal coaxial tube. At the sacral end, we impose a reflexive boundary condition, that is zero velocity of the
cord and CSF. At the cranial junction, the 1D spinal model is connected to the cranial subarachnoid space
of the 0D model imposing continuity of CSF flow. In the next subsection, the strategy for the coupling is
described in detail.
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4.2.3 Coupling between blood circulation, cranial CSF model, spinal CSF model

Figure 4.3 shows schematically the coupling between the blood circulation model, the cranial CSF 0D
model and spinal 1D CSF model. The three systems are solved in a sequential manner and the coupling
is explicit. Since we are using a local time stepping (LTS) technique in a vessel-wise fashion [207], each
1D vessel is allowed to evolve in time according to a local time step given by its local stability criterion.
All vessels have a common synchronization time defined by the prescribed maximum time step allowed
by the LTS procedure. Such global synchronization time is referred as tn and it is defined as tn = t0 +

n∆tmax, with t0 the initial time, ∆tmax the maximum time in the LTS procedure and n is a counter for the
global synchronization times. Therefore, the coupling between blood flow and the craniospinal systems is
performed at every synchronization time. At the beginning of each time step, the vectors Sn, Bn and Un are
known. The vector Sn represents the unknowns for the blood circulation system that includes area, flow and
pressure in 1D vessels, as well as other 0D blood compartments. The vector Bn represents the unknowns for
the cranial CSF and brain dynamics models. The vector Un consists of the vector of unknowns for the spinal
system of partial differential equations. In the first step, the equations for the blood circulation models are
solved. First, the system of ordinary differential equations for the cerebral autoregulation model are solved
by the explicit Euler scheme, then we solve the system of partial differential equations for blood flow in
1D vessels and the 0D blood compartments for the heart and pulmonary circulation, microvasculature,
Starling resistors and venous valves. The 0D blood compartments are solved by an explicit Euler scheme
and coupled to the 1D vessels. The external pressure for the intracranial 1D vessels and vascular beds, as
well as for the Starling resistor models, is given by the mean pressure between the left and right sides of the
brain parenchyma at time tn. Once the blood circulation equations have been solved, the cerebral capillary
pressures (pCp,R and pCp,L ), the superior sagittal sinus pressure (psinus ) and the intracranial blood volume
(Vblood,R , Vblood,L ) are provided to the cranial CSF model. This determines the CSF production, reabsorption
rates and the blood volume inside the skull for the intracranial pressure-volume relation. Then, the spinal
1D system of partial differential equations is solved using the numerical method described in Section 4.2.2.

FIGURE 4.3: Schematic representation of the coupling between blood circulation, cranial CSF
and brain dynamics models and spinal CSF dynamic. Sn, Bn, Un are the vectors of unknowns
in the blood circulation models (1D vessels and other 0D blood compartments), in the CSF and
brain dynamics model and in the spinal 1D model (Un = [An

c , An
c un

c , An
d − An

c , (An
d − An

c )un
a ])

at time tn, where n is a counter for the global synchronization time of the local time stepping
procedure.
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As previously stated, at the inlet of the coaxial tube, boundary conditions are implemented. We pre-
scribe flow at the inlet of the spinal subarachnoid space, obtained from Eq. (4.7) and the mean pressure
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between the left and right sides of the brain parenchyma (pbr,R and pbr,L) as the pressure in the cord at time
tn. Two additional conditions are required to resolve all of the unknowns. These are obtained using the
method of characteristics, as described in [59, 139, 290]. The original governing system of equations can
be linearised by assuming that each of the variables consists of a stationary state component (zero in case
of velocities) and a small disturbance; we define Ac = ac + A0c, Ad = ad + A0d, uc = vc + 0, ua = va + 0,
where ac, ad, vc, va are small perturbations. The four distinct real eigenvalues of the linearised hyperbolic
system are

λ2
1,4 = c2

2 =
1
2
(C2

d + C2
c ) +

√
1
4
(C2

d + C2
c )

2 − A0d − A0c

A0d
C2

dC2
c , (4.41)

λ2
2,3 = c2

1 =
1
2
(C2

d + C2
c )−

√
1
4
(C2

d + C2
c )

2 − A0d − A0c

A0d
C2

dC2
c , (4.42)

with λ1 < λ2 < λ3 < λ4 and Cc,d = c(Ad,c = A0,d,c). Moreover, four characteristic variables (each one
associated to one eigenvalue) can be written

W1,4 = ∓
c2(c2

1 − C2
c )

A0c(c2
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2
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For the linearized system, we have that characteristic variables Wi, i = 1, . . . , 4, remain constant on the
paths defined by dx/dt = λi, and hence it holds Wi(x, t) = W(0)

i (x− λit), where (0) indicates the state of the
system of decoupled equations for the characteristic variables at each time step tn. We use this information
to prescribe the missing conditions at the cranial junction of the model. Hence, the boundary conditions at
x = 0 can be summarized as follows

pc(0, t) = 1
2 (pbr,L + pbr,R)

(Ad(0, t)− Ac(0, t))ua(0, t) = qin
SSAS

W1(0, t) = W(0)
1 (−λ1∆t)

W2(0, t) = W(0)
2 (−λ2∆t) .

(4.45)

The first two equations of this system provide the boundary values of the variables pc and (Ad − Ac)ua.
The pressure in the brain parenchyma refers to the extracellular fluid part of the brain parenchyma. In the
other two equations, the missing information is obtained from the projection of the differential equations
of the linearized system along the outgoing characteristics (extrapolation of the characteristic variable). At
the boundary of the first computational cell x = 0 and time t, the characteristic is equal to the characteristic
evaluated in x− λi∆t, i = 1, 2 at the previous time step tn. The conserved properties required at positions
x−λi∆t are determined by second-order interpolation from the first two cells in the computational domain,
using the local values of λ1 and λ2. Solving system (4.45) provides the values of the vector of unknowns
[Ac, uc, Ad, ua] at the interface x = 0 of the coaxial tube; Ad is then used in Eq. (4.19) for the evaluation of
the pressure of the CSF in the spinal subarachnoid space at the interface between the 0D-1D models. This
value is then used in the momentum equation (4.7). At this point, the system of differential and algebraic
equations for the CSF and brain dynamics is solved by an implicit Euler scheme.

4.2.4 Assessment of normal and pathological conditions

Healthy subject: model setting

In order to test the validity of the present global closed-loop model coupled to the CSF and brain dy-
namics, we perform a baseline simulation that regards the physiology of a healthy young male subject. All
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the parameters for the blood circulation models, 1D models for arteries and veins and lumped-parameters
for the remaining districts, are the ones proposed in [292]. The same holds for the cranial CSF and brain
dynamics. Parameters for the spinal 1D model are reported in Table 4.1. Numerically, the spinal 1D model
is discretized with 100 computational cells to ensure mesh independence of the numerical solution. The
simulation was run until a periodic solution was reached.

TABLE 4.1: Parameters for the spinal one-dimensional model.

Parameter Value Reference

Elc [Pa] 125000 [290]
A0c [m2] 7.853×10−5 [290]
µc [Pa s] 1.5 [290]
Êld [Pa] 21331.2 [292]
Â0d [m2] 2.27 ×10−4 [290]
µd [Pa s] 0.0045 [290]
lSSAS [m] 0.43 [292]

Sensitivity analysis of the CSF system

Due to the paucity of data in the literature, most baseline parameters for the CSF and brain dynamics
were derived and estimated on the basis of normal physiological pressures and flows. In order to explore
the sensitivity of ICP to changes in parameters of the CSF models, we perform a local sensitivity analysis.
We compute sensitivities for some of the variables linked to the ICP with respect to a set of parameters of
both the cranial and the spinal CSF models. For a selected parameter P , we consider a deviation of 20%
above (P+) and below (P−) the reference value P̂ . Hence, the local sensitivity SVP of a variable V to changes
in parameter P can be approximated as

SVP ≈
P̂
V̂
V(P+)− V(P−)
P+ −P− , (4.46)

wherein V̂ is the reference value for the variable (obtained in the baseline simulation).

Analysis of pressure-volume relationship and outflow resistance of the CSF system

The introduction of nonlinear pressure-volume relationship for the spinal CSF and the cranial CSF al-
lows for a better quantification of the deviations in ICP due to volume variations. Clinically, the pressure-
volume index (PVI) is used as a measure of craniospinal compliance or CSF volume buffering capacity. It
was defined by Marmarou and collaborators [181] as the amount of volume that has to be added in the
craniospinal cavity to raise the ICP by a factor of 10. Experimentally, PVI was determined in animals and
humans by means of rapid bolus injection of CSF [181, 182, 262, 17, 283, 284, 185, 285, 313, 151, 277, 254,
141, 21, 309]. We computationally determine the PVI modelling a rapid CSF infusion at 1 ml/s of 2 to 7 ml
in the cranial subarachnoid space. Mathematically, the PVI is then defined as

PVI =
∆V

log10

(
ICPp

ICP

) , (4.47)

where ∆V is the amount of CSF injected in the craniospinal CSF system, ICP is the mean intracranial
pressure over a cardiac cycle in the baseline condition before the bolus injection and ICPp is the maximal
mean pressure reached at the end of the infusion.
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While the initial rise in pressure following bolus injection is used to calculate PVI, the rate of intracra-
nial pressure return toward baseline following injection provides data for calculating outflow resistance to
CSF absorption. Following Marmamou et al. [181, 182, 262], we evaluate the outflow resistance to CSF
absorption as

R =
t ICP

PVI log10

(
ICPt (ICPp−ICP)
ICPp (ICPt−ICP)

) , (4.48)

where t is the time (in minutes) after injection and ICPt the corresponding mean intracranial pressure.
Following [181, 182], we consider t = 1, 2 minutes.

Pathological condition: effects of transverse sinus stenoses on the blood and CSF systems

We show computations about the impact of transverse sinuses stenoses on cerebral venous flow and CSF
dynamics and its relation to Idiopathic Intracranial Hypertension. Our stenotic case study is reproduced by
introducing stenosis models based on [323, 275] into the right and left transverse sinuses. The flow variation
in time across the stenosis is modelled by means of a first-order ordinary differential equation. We suppose
that the strictures cause a reduction of 70 % the vessel equilibrium cross-sectional area. Special attention is
paid to the role played by collateral flow pathways between deep cerebral vessels and extra-cranial regions;
to this end, the simulations are run in two scenarios: the first one considers a best-case venous network for
head and neck veins wherein all the collateral routes for flow limited by the stenosis are present, while in
the second case the occipital vein and sinus are absent, hence the collateral circulation is eliminated.

4.3 Results

4.3.1 Baseline condition

In this section we present computational results obtained with the current closed-loop model of the
circulation coupled to a multiscale model of the CSF and brain dynamics. For a complete assessment of the
validity of the model, we compare three versions of the current model:

• Entire blood circulation coupled to 0D cranial CSF models and 1D spinal CSF model; the conventional
version of the Monro-Kellie hypothesis is adopted (contant volume inside the skull) [292] and a linear
tube law for the SSAS (4.18); we refer to this case as ’1dS’.

• Entire blood circulation coupled to 0D cranial CSF models and 1D spinal CSF model; the conventional
version of the Monro-Kellie hypothesis is adopted and a nonlinear tube law for the SSAS (4.19) is used;
we refer to this case as ’1dS + nlSSAS’.

• Entire blood circulation coupled to 0D cranial CSF models and 1D spinal CSF model; the relaxed
version of the Monro-Kellie hypothesis (Eq. (4.10), (4.9)) is adopted and a nonlinear tube law for the
SSAS (4.19) is used; we refer to this case as ’1dS + nlSSAS + rMK’.

Moreover, current computational results are compared with computational results obtained with the pre-
vious version of the model [292], wherein the global circulation is coupled to a fully 0D model of the
craniospinal CSF system. From now on we refer to computational results obtained with the current most
complete version of the model with ’Current model’ or ’1dS + nlSSAS + rMK’, while computational results
obtained with the previous version [292] is referred with ’Previous model’ or ’PM’.

A comparison between computational results and MRI and experimental data is performed. Figure 4.4
shows the intracranial pressure in different districts of the CSF circulation. Both versions of the model result
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in comparable average pressure values. The main difference between the two models becomes evident
in the ICP waveform. Thanks to the distributed model of the spinal column, the computed ICP better
captures the three physiological peaks that characterize the ICP. Figure 4.5 displays the computed ICP for
the different versions of the model considered here. Black dots show the physiological landmark peaks of
the ICP waveform [65].

FIGURE 4.4: Pressure in CSF compartments over a cardiac cycle. Mean pressure over a cardiac
cycle is reported in brackets. Brain: pressure in fluid part of brain parenchyma; LVs: pressure
in lateral ventricles; 3V: third ventricle; AoS: aqueduct of Sylvius; 4V: fourth ventricle; CSAS:
cranial subarachnoid space; SSAS: spinal subarachnoid space (C2/C3 level).
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FIGURE 4.5: Cerebrospinal fluid pressure. Computed ICP with different version of the current
model (1dS, 1dS + nlSSAS, 1dS + nlSSAS + rMK) and computed ICP with previous model (PM)
[292]. Analysis of the peaks following [65] is underlined by black dots. P1: percussion wave;
P2: tidal wave; P3: dicrotic wave.
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Figures 4.6 and 4.7 compare computational results of blood and CSF flow with respect to MRI data [12,
24]. In particular, Figure 4.6 (left) refers to normalized cerebral arterial inflow, evaluated as the sum of
internal carotid arteries and vertebral arteries normalized with respect to the maximum value. Figure 4.6
(right) shows the CSF flow at the C2/C3 level in the spinal subarachnoid space. Figures 4.7 (left) and 4.7
(right) refer to the aqueduct of Sylvius, in particular the CSF flow through the cerebral aqueduct and the
CSF velocity.

FIGURE 4.6: Computed results compared to measured data. Left frame: normalized cerebral
arterial inflow (internal carotid arteries and vertebral arteries) over a cardiac cycle compared
with MRI data from [12]. Right frame: normalized CSF inflow of spinal subarachnoid space
at C2/C3 level over a cardiac cycle compared with MRI data from [12].
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FIGURE 4.7: Computed flow and velocity in the aqueduct of Sylvius. Left frame: computed
CSF flow through the aqueduct of Sylvius over a cardiac cycle compared with MRI data (mean
and standard deviation) from [24]. Right frame: computed CSF velocity in the aqueduct of
Sylvius over a cardiac cycle compared with MRI data (mean and standard deviation) from
[24].
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Figure 4.8 stresses the interaction between the cerebral blood and the cerebrospinal fluid and brain
dynamics. Figure 4.8 (left) shows the time variation of the volume of different compartments of the cran-
iospinal system; an increase in intracranial arterial blood volume causes a displacement of CSF from the
cranial to the spinal district. This behaviour is underlined in Figure 4.8 (right) which illustrates the nor-
malized (with respect to maximum and minimum) arterial inflow, venous outflow through internal jugular
veins, flow in AoS and inflow in SSAS over a cardiac cycle. The lag in time between the systolic peaks is
reported in Table 4.2 and compared to the results obtained with the previous version of the model.

Adopting a coaxial model of the spinal column allows to assess the cranio-caudal spinal cord motion.
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FIGURE 4.8: Left frame: Time variation of V − Vav of fluid volumes within the cardiac cycle,
where V is the volume of the compartment and Vav is the averaged volume over the cardiac
cycle. A: cerebral 1D arteries, arterioles and capillaries; V: cerebral 1D veins and venules; C-
CSF: cranial CSF (CSF in all compartments inside the skull); SSAS: spinal CSF. Right frame:
Time variation of blood and CSF flow within a cardiac cycle. Each flow profile was normalized
between 0 and 1 such that all four systolic peaks correspond to 1. A: arterial flow of internal
carotid arteries and vertebral arteries at C2/C3 level; V: internal jugular veins flow at C2/C3
level; SSAS: flow of the spinal subarachnoid space; AOS: flow in the aqueduct of Sylvius.
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TABLE 4.2: CSF and blood flow over a cardiac cycle. Literature range taken from [4]. Arte-
rial flow: flow in internal carotid arteries and vertebral arteries; Venous Flow: flow in internal
jugular veins at C2/C3 level; CSF flow: inflow of spinal subarachnoid space; tIJV/tA: ratio be-
tween total internal jugular veins flow and arterial flow at C2/C3 level; AV, Arterio-CSFSSAS,
Arterio-CSFAoS Delay: lag in time between arterial and venous, spinal CSF and AoS CSF sys-
tolic peaks represented as a percentage of cardiac cycle.

Index Current Value Previous Value Ref. Value

Mean Arterial Flow [ml/s] 13.16 13.13 13.55±3.07
Mean Venous Flow [ml/s] 12.16 12.15 9.42±2.37
Mean CSF Flow [ml/s] 0.003 0.01 0.08±1.33
Mean AoS Flow [ml/s] 0.008 0.01 0.03±0.013
AV Delay [%CC] 5.62 5.62 12.5±8.06
Arterio-CSFSSAS Delay [%CC] 5.00 0.625 5.35±2.36
Arterio-CSFAoS Delay [%CC] 28.12 28.12 22.1±74.66

Figure 4.9 shows the spinal cord motion in each cervical segment during one cardiac cycle; over all seg-
ments, a cranio-caudal followed by a caudo-cranial movement of the spinal cord can be observed. Maxi-
mum cranial and caudal velocity, as well as velocity amplitude, are compared to literature data [126].

The 1D model of the spinal compartment predicts the wave propagation along the spine. Figure 4.10
reports contour plots for the main variables of the spinal model and the CSF flowing in the spinal SSAS,
pc, pd, Ac, Ad, uc, ua. The waves that travel from the cranial junction to the caudal end become evident.

4.3.2 Sensitivity analysis

Table 4.3 reports local sensitivities evaluated as in Equation (4.46); the first fifteen significant parameters
are ranked according to sensitivity absolute value. For a complete analysis of ICP, variables under consid-
eration are ICP, mean ICP over a cardiac cycle, PPICP, pulse amplitude of ICP waveform, and min ICP,
max ICP, the minimum and maximum value of ICP over a cardiac cycle. The analysed parameters of the
1D spinal model are spinal length, lSSAS, SSAS elastance, Eld, viscosity of the CSF in the SSAS, µd, spinal
cord elastance, Elc, spinal cord viscosity, µc. For the cranial zero-dimensional model, the following pa-
rameters are analysed: intracranial compliance, Φ, elastance of different CSF intracranial compartments,
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FIGURE 4.9: Spinal cord motion at the cervical level. Spinal cord velocity is displayed from
C2 to C7 level; amplitude, maximum cranial and caudal velocities are compared to literature
data from [126], whose values are reported as mean± standard deviation under the computed
values.
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ELV , ERV , E3V , EAoS, E4V , ECSAS, resistances which regulates fluid exchange between compartments,
R3V , RAoS, R4V , RCSAS,, resistance which regulates the exchange between the cranial and the spinal com-
partments, RSSAS, resistance for the exchange between capillaries and brain parenchyma, Rbr,1, resistance
to flow between brain parenchyma and lateral ventricles, Rbr,2, absorption coefficient to arachnoid villi of
superior sagittal sinus, k. Figure 4.11 shows the intracranial pressure waveform over a cardiac cycle ob-
tained by increasing the selected parameters by 20 %, P+, with respect to the baseline P̂ . Seven parameters
are considered: spinal length, lSSAS, viscosity of the CSF in the SSAS, µd, SSAS elastance, Eld, spinal cord
viscosity, µc, spinal cord elastance, Elc, absorption coefficient to arachnoid villi of superior sagittal sinus,
k, intracranial compliance, Φ. Figure 4.11 helps in identifying the parameters that mostly influence the
waveform and the three main peaks of the ICP waveform.

4.3.3 PVI and outflow resistance estimation

PVI is estimated with injection of CSF at the rate of 1 ml/s in the cranial subarachnoid space, while
recording the induce ICP rise. Figure 4.12 (left) shows the exponential-like behaviour of the mean ICP as
the volume increases. In turn, as ICP increases, its waveform amplitude increases, as shown in Figure 4.12
(right); the correlation between these quantities shows an almost linear relationship, underlined by the red
linear regression line. With a bolus infusion of 3 ml of CSF, the PVI calculated according to Eq. (4.47) gives a
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FIGURE 4.10: Contour plots in space and time of pressure, area and velocity in the cord and
in spinal CSF over a cardiac cycle.
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FIGURE 4.11: Sensitivity analysis of the intracranial pressure waveform. Computed intracra-
nial pressure when selected parameters are increased by 20 % is compared with reference
solution (Ref).
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value of 20.21 ml if linear pressure-volume relationships are used for both cranial and spinal compartments
and 15.95 ml if a nonlinear pressure-area relationship is adopted only in the spinal SAS (Eq. (4.19)). When
both the cranial and spinal tube law are nonlinear (Eq. (4.9), (4.10), (4.19)), a PVI of 17.83 ml is measured.
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TABLE 4.3: Sensitivity analysis results. Local sensitivities SVP of variables ICP, mean intracra-
nial pressure over a cardiac cycle, PPICP, pulse amplitude of intracranial pressure waveform,
min ICP, max ICP, minimum and maximum values of intracranial pressure over a cardiac
cycle. The first fifteen parameters are ranked according to sensitivity absolute value.

Rank ICP PPICP min ICP max ICP

1 k (-0.3222) Φ (-0.1827) k (-0.3474) k (-0.2767)
2 Rbr,1 (-0.0334) RSSAS (0.1683) lSSAS (0.039) lSSAS (0.0314)
3 Rbr,2 (0.0306) Eld (0.1241) Rbr,1 (-0.0363) RSSAS (0.0297)
4 RAoS (0.0047) ECSAS (0.1052) Eld (-0.0345) Rbr,1 (-0.0283)
5 Eld (-0.0026) RCSAS (0.0341) Rbr,2 (0.0337) Rbr,2 (0.0261)
6 ELV (-0.0024) E4V (-0.0081) Φ (0.0188) Φ (-0.0231)
7 ERV (-0.0024) k (-0.0077) ECSAS (-0.0169) E4V (-0.0114)
8 lSSAS (0.0016) Elc (-0.0077) E4V (-0.0123) ECSAS (0.0085)
9 E4V (-0.0009) µc (0.0058) RSSAS (-0.0067) RAoS (0.0037)
10 Φ (0.0007) µd (-0.0051) RAoS (0.0053) RCSAS (0.0031)
11 E3V (-0.0007) Rbr,2 (-0.0027) RCSAS (-0.005) ELV (-0.0019)
12 ECSAS (-0.0007) lSSAS (0.0026) ELV (-0.0026) ERV (-0.0019)
13 Elc (0.0003) RAoS (-0.0024) ERV (-0.0026) Eld (-0.0015)
14 RCSAS (0.0002) Rbr,1 (0.0022) µd (0.0025) µd (0.0009)
15 R4V (0.0002) ERV (0.0002) Elc (0.0016) µc (0.0006)

The bolus injection test is also used for the estimation of the absorption resistance, following Eq. (4.48).
After reaching the peak pressure, the ICP starts to decrease, displaying an hysteresis loop (Figure 4.13)
in the pressure-volume plot. The absorption resistance evaluated at 1 minute after the end of the bolus
infusion is 6.42 mmHg/ml/min.

FIGURE 4.12: Computational results from CSF bolus injection test. Left frame shows the
exponential-like behaviour of mean ICP as an amount ∆V of CSF volume is injected in the
cranial subarachnoid space. Right frame displays the relationship between mean ICP (ICP on
x axis) and intracranial pulse amplitude (PPICP on y axis); red dashed-dotted line is the linear
regression obtained from computational data.
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4.3.4 Transverse sinus stenoses

Stenoses in transverse sinuses causes a reduction of average flow rate of about 50 %; this is followed by
an increase in dural pressure and in pressure of intracranial veins. As a consequence, the CSF reabsorption
via arachnoid granulation is disrupted. Following the Monro-Kellie hypothesis, a major amount of CSF
is displaced into the spinal subarachnoid space, which causes an increase in ICP. In particular, ICP rises
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FIGURE 4.13: PVI and outflow resistance estimation: computational results from an infusion
of 3 ml of CSF at 1 ml/s in the CSAS. After reaching a peak ICP at the end of the infusion,
ICP starts to decrease and to return to its basal value according to the reabsorption resistance.
Left frame shows the CSF pressure-volume curve; it displays an hysteresis loop. Right frame
shows how the mean ICP decreases after the end of the infusion. Infusion begins at time 0 and
within 3 seconds, 3 ml of CSF are added; then, simulation is run for 500 s for the evaluation
of the absorption resistance. Both plots compare computational results obtained with the
current CSF model with linear pressure-volume equation for the spinal SAS (continuous black
line, 1dS), with nonlinear pressure volume relation in the spinal SAS (dashed red line, 1dS +
nlSSAS) and in case of nonlinear cranial and spinal pressure-volume relation (dashed-dotted
green line, 1dS + nlSSAS + rMK).
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from 8.40 mmHg to 10.75 mmHg with an optimal collateral venous vascular network; when the collateral
pathways to brain drainage are compromised, the ICP becomes 16.42 mmHg. Figure 4.14 shows the CSF
pressure in different compartments. The presence of transverse sinuses stenoses affects also the ICP wave-
form, as it can be observed in Figure 4.15. The pulse amplitude between the healthy subject and the one
with transverse sinus stenosis increases, especially in the case without collaterals routes. Moreover, there
is a progressive elevation in the magnitude of the second peak P2 that becomes higher than the first peak
when the venous collateral pathways are compromised.

4.4 Discussion

4.4.1 Comparison between computational results and literature data in healthy sub-
jects

In this chapter we have presented a global, closed-loop, multiscale model of the human circulation
coupled to a multiscale model for the cerebrospinal fluid and brain dynamics. The model comprises one-
dimensional descriptions for medium to large blood vessels, arteries and veins, accounting for the vis-
coelastic property of the blood vessel wall. Lumped-parameter descriptions are used for other components
of the full model that include the heart, the pulmonary circulation, the microvasculature, venous valves,
Starling resistors, along with cerebral autoregulation. The dynamics of cerebrospinal fluid in the cran-
iospinal cavity includes one-dimensional description of the spine, which comprises the spinal cord and the
CSF flowing in the spinal subarachnoid space, and lumped-parameter models for the cranial CSF and brain
dynamics, which include eight compartments (lateral, third and fourth ventricles, aqueduct of Sylvius, cra-
nial subarachnoid space and left/right brain parenchyma). This work departs from a previous version of
the model [292] wherein the blood circulation was coupled to a fully zero-dimensional model of the CSF
and brain dynamics based on [162]. The main improvement of this work with respect to the previous one
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FIGURE 4.14: Pressure in CSF compartments over a cardiac cycle: comparison between
healthy control (HC) and subject with transverse sinuses stenosis (ST). Mean pressure over
a cardiac cycle is reported in brackets. When the collateral routes are blocked, the ICP rises
by 8 mmHg. HC: healthy control subject; ST - with Cols.: subject with transverse sinus steno-
sis and complete collateral circulation; ST - no Cols.: subject with transverse sinus stenosis
without collateral circulation. Brain: fluid part of brain parenchyma; LVs: lateral ventricles;
3V: third ventricle; AoS: aqueduct of Sylvius; 4V: fourth ventricle; CSAS: cranial subarachnoid
space; SSAS: spinal subarachnoid space.
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involves the introduction of a distributed model of the CSF dynamic in the spinal subarachnoid space. Such
a model departs from [290, 139, 59] and it includes two coaxial tubes representing the spinal cord and the
spinal subarachnoid space encased by the dura mater. Comparing the computational results obtained with
the current version of the model and the previous one, it becomes evident the importance of including a
one-dimensional model for the spinal column, which is able to capture the wave propagation and reflection
along the spine. The ICP wave configuration is the sum of various components which have been named
percussion wave (P1), tidal wave (P2) and dicrotic wave (P3) [45]. The percussion wave has a sharp peak
and is almost constant in amplitude; the tidal wave is much more variable in shape and amplitude, and
ends on the dicrotic notch, which is followed by the dicrotic wave. After the dicrotic wave, the pressure
wave usually tapers down to its diastolic position, with some single or multiple minor waves during the
descending phase of the wave [45]. Analysis of the cerebrospinal fluid pressure can reveal information
about the compliance of the craniospinal system and also highlight pathological situations. With our pre-
vious version of the model [292], computed ICP exhibited three typical peaks, that can be observed in all
CSF compartments but in the spinal canal they are less pronounced. Moreover, the difference in amplitude
between the first and the second peaks is small. The introduction of a distributed model for the spinal
SAS improves the CSF pressure waveform: three peaks can be observed in all CSF compartments, both in
cranial and spinal districts. The first peak is more pronounced with respect to the others, especially in the
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FIGURE 4.15: Cerebrospinal fluid pressure waveform. Computed ICP normalized with repect
to its average value over a cardiac cycle. Comparison between healthy control subject (HC),
subject with transverse sinus stenosis and complete collateral circulation (ST - with Cols.)
and subject with transverse sinus stenosis without collateral circulation (ST - no Cols.). Mean
pressure over a cardiac cycle is reported in brackets. The tidal wave (P2), according to the
analysis in [65], is underlined by a green dot in the stenotic case without collateral circulation
in order to stress that it is the highest compared to other peaks.
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cranial compartments. P2 and P3 have similar amplitude in the pressure of the extracellular part of the
brain parenchyma and in the lateral ventricles; in the spinal SAS, the amplitude of the second peak is closer
to the first one. Concerning the total CSF pulse amplitude, it is comparable between the current and the
previous version of the model; it ranges between 2 mmHg in the brain parenchyma to about 1 mmHg in
the spinal SAS. Both versions of the model give similar mean CSF pressure value in all compartments, with
a mean value of 8.40 mmHg in the brain parenchyma. Observing the contour plot for the pressure in the
spinal subarachnoid space (Figure 4.10), the lightest regions highlight the waves and how they propagate
along the spine. At the craniospinal junction (x=0), three light regions can be noticed: the first one, before
0.2 s, which corresponds to P1, the second one at 0.4 s, which is related to P2 and the third one at 0.5 s. P1 is
caused by the arrival of the arterial flow pulse in the cerebral circulation, P2 is caused by the second arterial
flow peak, which happens before the dicrotic notch, while the third peak, P3, is related to the increased
flow occurring right after the dicrotic notch. The interaction between blood and CSF compartments can be
seen in Figure 4.8: during systole, intracranial arterial blood increases and arterial pulsations are transmit-
ted directly into the incompressible CSF filled SAS. Then, CSF shifts out of the skull into the spinal SAS,
venous blood from the sinuses flows out of the brain mainly through the internal jugular veins and CSF
from the ventricles is displaced out through the cerebral aqueduct. Even if we are adopting a relaxed ver-
sion of the Monro-Kellie hypothesis which aims at reproducing the nonlinear intracranial pressure-volume
relation, the interaction between blood and CSF systems is maintained as in the previous version of the
following model. Indeed, we can notice an improvement in the lag in time between the systolic peaks, that
are reported in Table 4.2: the arterio-spinal CSF delay is now in line with the literature range. This is due
to the one-dimensional spinal model, but mainly to the relaxed version of the Monro-Kellie doctrine. The
distributed spinal model permits to evaluate CSF flow at different locations of the spine. Here we consider
the C2/C3 level; as CSF travels along the spinal column, the CSF peak is delayed with respect to the peak
at the craniospinal junction. Moreover, the relaxed version of the Monro-Kellie introduces a small delay be-
tween the propagation of the arterial pulse to the CSF, that is not simultaneously shifted to the spinal SAS
(see Figures 4.6 and 4.8), as in the previous version of the model. The effect of the relaxed Monro-Kellie hy-
pothesis can be observed also in Figure 4.5: comparing the ICP waveform obtained with current CSF model
and linear pressure-volume relations (1D spinal) to the one obtained with the relaxed Monro-Kellie, it can
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be seen a small delay between P1, which is due to the transmission of arterial pulsation to the CSF. In order
to assess the validity of the coupled model, we compared computational results with respect to MRI data
from literature. Figures 4.6 and 4.7 show normalized cerebral arterial inflow, CSF flow at C2/C3 level and
CSF flow and velocity in the cerebral aqueduct, while Table 4.2 compares CSF and blood flow over a cardiac
cycle to the literature range. There is a good match between numerical results and MRI measurements; this
holds for both versions of the global model, proving that the introduction of the one-dimensional model
for the spinal column does not affect the physiological behaviour of the computational results.

Pulsatile movement of the spinal cord with the cardiac cycle has been studied by means of various tech-
niques [44, 88, 192, 126], and is generally believed to be mainly due to the transmission of the arterial pulse.
Multiple imaging modalities, such as sonography, ultrasound, and magnetic resonance imaging (MRI),
have been employed to measure spinal cord motion. Novel MRI techniques can measure the displace-
ment and velocity of spinal cord very accurately. Spinal cord movement can be in the anterior/posterior,
right/left and cranio-caudal directions. Cord motion is largest in the anterior/posterior direction [88].
However, the largest part of reported studies have focused on the cranio-caudal movement of the cervical
cord. It was proved that the cervical spinal cord moves with an oscillatory pattern in the cranio-caudal
direction, and the maximum velocity gradually decreases caudally along the cord. No definite cranio-
caudal motion was observed in the middle thoracic spinal cord or conus medullaris [192]. The coaxial
one-dimensional model for the spine adopted in this work allows to study the spinal cord motion only in
the cranio-caudal direction, while the other movements cannot be addressed. A three-dimensional model
of the spinal cord would permit a complete study of the cord motion, in all the three possible directions.
Figure 4.9 displays the spinal cord velocity at different locations of the cervical level. It can be observed
that the amplitude of the velocity decreases as we move from the cranial junction to the caudal direction;
this behaviour characterizes also the maximal cranial and caudal velocities. However, the computed veloc-
ity amplitude at the C2 level is higher that the measured one; moreover, data from [126] reveals that the
amplitude increases up to C5 level and then starts decreasing, while computational data show a maximum
amplitude at the craniospinal junction and then it decreases along the spine. A possible explanation can be
found in the boundary conditions. At the cranial junction, there are limited coupling options because we
coupled a zero-dimensional and a one-dimensional model. Moreover, at the end of the spine, we imposed
reflexive boundary conditions with zero velocity of the spinal cord; this could be an excessively strong im-
position since it does not allow any caudal displacement at the lumbar level; Mikulis et al. [192] observed
very little longitudinal motion at the conus medullaris, but this could depend on the accuracy of the MR
images method adopted in that study. More appropriate boundary conditions at the sacral end of the cord
could be introduced, but more available data are needed to this end. Cervical level velocity measurements
showed that the spinal cord moved first caudally and then this oscillation was followed by a cranial move-
ment of lower velocity [192, 126]. The mathematical model proposed in this work is able to reproduce this
motion. Another aspect which requires attention is the influence of cardiac cycle and respiration on spinal
cord movement [320]. The present version of the model does not incorporate the effects of the respiration;
variations of intrathoracic pressure affect the venous haemodynamics as well as the ICP, which is modu-
lated by the respiratory cycle. This represents a limitation of the current model that will be addressed in
future works.

4.4.2 Sensitivity analysis of the intracranial pressure

The multiscale model of the cerebrospinal fluid and brain dynamics adopted in this work is character-
ized by several parameters that describe the physical properties of each compartment and regulate the fluid
exchange. Each one of them contributes to the determination of model output variables. The sensitivity
analysis performed here aims to establish the main determinants of the ICP, its value and waveform. Data
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reported in Table 4.3 shows that the major significant parameter for the mean ICP is the reabsorption coeffi-
cient into the arachnoid villi of the superior sagittal sinus. For the same pressure difference between cranial
subarachnoid space and superior sagittal sinus, an increase in k leads to an increase in the cerebrospinal
fluid reabsorbed into the venous system, hence a reduction in the amount of CSF in the craniospinal sys-
tem, with a consequent decrease in the mean ICP. On the contrary, a decrease in k limits the reabsorption
of CSF into the venous circulation causing an increase in ICP. Physiologically, this is the case of communi-
cating hydrocephalus; infection, meningitis, and subarachnoid hemorrhage are pathological situations that
can result in an inflammatory response that affects arachnoid granulations with a resultant dysregulation
of CSF absorption [138]. The second relevant parameter for the mean ICP value is the resistance which
regulates the exchange between capillaries and brain parenchyma. Departing from the original CSF model
developed by Linninger et al. [162], there is CSF mass transfer from the capillary bed to the parenchyma,
which comprises the diffuse CSF production rate qCp→br,const and the CSF seepage qCp→br, which in turn
depend on Rbr,1 and the pressure difference between capillary bed and brain parenchyma. This pressure
driven exchange could be bidirectional; CSF could flow from brain parenchyma to capillaries if its pressure
is higher than capillaries’ pressure. An increase in Rbr,1 reduces the pressure driven exchange between cap-
illaries and brain parenchyma with a consequent reduction in circulating CSF and ICP. However, we can
notice that the sensitivity to Rbr,1 is small; in fact, only a small amount of CSF flows into the CSF system fol-
lowing the momentum equation Eq. (4.6) (about 6 % of total CSF production from the cerebral circulation).
According to our sensitivity analysis, we can conclude that mean ICP is mainly affected by alterations in
CSF reabsorption, secretion and then circulation, in particular between brain parenchyma and lateral ven-
tricle (Rbr,2) and between third ventricle and aqueduct of Sylvius RAoS. These processes are involved in the
pathogenesis of different pathologies of the central nervous system [268]. Elastances, resistances to flow
between other CSF compartments and parameters of the spinal 1D model do not significantly change the
mean ICP value.

Concerning the pulse pressure, a slightly different ranking of sensitivities can be observed. Reabsorp-
tion constant k and Rbr,1, resistance to flow between capillaries and brain parenchyma, are not significant for
the intracranial pulse pressure. Intracranial compliance parameter Φ wins over other cranial parameters
while elastance of spinal subarachnoid space overcomes other spinal 1D model parameters. Other rele-
vant parameters for the pulse pressure are the resistances to flow between cranial and spinal subarachnoid
spaces RSSAS, elastance of cranial SAS, ECSAS, and resistance to flow between fourth ventricle and cranial
subarachnoid space, RCSAS. Our computational results suggest that brain parenchyma and cranial/spinal
SAS are the most relevant CSF compartments for the intracranial pulse pressure; intracranial compliance, as
well as compliances of cranial and spinal SAS compartments and how CSF flows between them are the main
determinants for the pulsatility of ICP. Intracranial compliance parameter Φ is introduced in this work for
the description of the nonlinear exponential pressure-volume relationship of the brain parenchyma pres-
sure and intracranial volume inside the skull leading to a relaxed version of the Monro-Kellie doctrine,
which admits an intracranial volume variation of < 0.1 % over a cardiac cycle. This mathematical assump-
tion is in line with the observations in [11] about the misconception of constant intracranial volume that
arises from the Monro-Kellie hypothesis. Sensitivity analysis results support the importance of introducing
a compliance which regulates the ICP-volume curve and determines the pulsatility of the ICP.

To conclude our discussion on the sensitivity analysis results, we assessed which parameters are more
relevant ones for the ICP waveform. Elastances of intracranial compartment, as well as resistances to flow
exchange, do not affect the waveform which on the contrary is mainly determined by the spinal 1D model.
Elastances of dura mater and spinal cord and viscosity of CSF in the SSAS and of the porous tissue of the
cord play a major role in the determination of the localization of landmark ICP waveform peaks. This
stresses the importance of using a one-dimensional model for the CSF dynamics in the spinal column but
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also its interaction with the tissue of the spinal cord. Varson et al. [310] analysed the intraspinal pressure
and the spinal cord perfusion pressure after spinal cord injury, showing that the spinal pressure behaves in
a similar way of the ICP. In our computational results, changes in the viscosity of the spinal cord increases
the second and third peaks to a similar degree and exhibits an higher peak at the end of the cardiac cycle;
on the other hand, elastance of the dura rises the second peak, while maintaining the third peak to the
same level of the reference configuration. Elastance of the spinal cord slightly decreases the second peak,
that becomes lower than the third peak. Varson et al. [310] highlighted also the importance of the spinal
autoregulatory capacity and the blood supply to the spinal cord in the determination of spinal pressure in
case of spinal cord injury. One limitation of this mathematical work is that the vasculature of the spinal
cord is not considered; future works will address this aspect, posing attention on the interaction between
the spinal circulation, the spinal cord and the CSF in the SSAS, as well as on alternative routes of CSF
absorption at the spinal level.

4.4.3 Pressure-volume relationship and outflow resistance of the CSF system

Compliance of a distensible or elastic compartment is defined as the ratio between change in volume to
the corresponding change in pressure. For the craniospinal CSF compartments, compliance gives a mea-
sure of the CSF volume distensibility and it is particularly important in the context of the Monro-Kellie
hypothesis, since it determines the magnitude of CSF pressure variations required to return to the equi-
librium point when a change in volume of any intracranial compartments (blood, CSF, brain parenchyma)
occurs. If pressure varies linearly with volume, the slope of the volume-pressure curve, that is the com-
pliance, is constant. However, this is not the case for CSF compartments. The first demonstration of a
nonlinear volume-pressure relationship was due to Ryder et al. [246] in 1953, who described this relation
to be hyperbolic. Marmarou et al. [181, 182] confirmed this observation by means of invasive injection of
known quantities of saline into the cisterna magna or ventricles of adult cats while recording the rapid ICP
response. Moreover, since the nonlinear behaviour makes the quantification of compliance difficult, they
introduced the pressure-volume index (PVI), defined as the slope of the linear volume-log pressure plot or
equivalently as the change in volume necessary to raise the CSF pressure to a level 10 times the baseline
pressure (Eq. (4.47)). In the same papers, the authors observed that to a fast rise in ICP due to volume ad-
dition, it follows a return to equilibrium thanks to fluid absorption. This permits the evaluation of the total
resistance to CSF reabsorption, as expressed in Eq. (4.48); the proposed technique for the determination of
outflow resistance is a two-step process: firstly, the PVI is evaluated from the rise in pressure, and then
the resistance is calculated from the PVI and the values of baseline initial, peak and recovery pressures.
Shapiro et al. [262] used the experimental procedure proposed by Marmarou et al. [181, 182] for the evalu-
ation of PVI and outflow resistance in twenty-three children and seven adults (that underwent diagnostic
or therapeutic procedures). In order to inject a safe amount of CSF, they estimated the magnitude of bo-
lus injection from a previous estimation of PVI determined by withdrawal of CSF. In their measurements,
mean PVI for the 7 adults was 25.9± 3.7 ml with smaller values in young children. There was a statistically
significant variation (standard deviation/mean) of 13± 6 % in adults, which were attributed to intracranial
and spinal volumes differences. PVI was also estimated in a group of pathological patients, examples along
these lines include [141, 185, 285, 254], to name but a few. More recent studies provide estimation of PVI by
means of less invasive techniques. In [313], PVI was derived from lumbar CSF infusion tests and PC-MR
imaging flow measurements and compared to classical PVI estimation from bolus injection in the lumbar
space with lumbar pressure recording. They found that in 30 healthy elderly subjects the PVI was 10.2± 3.7
ml. Sundström et al. [277] compared three different methods for the evaluation of PVI (constant pressure
infusion, bolus injection, constant flow infusion methods) in patients with probable or possible idiopathic
normal-pressure hydrocephalus; the PVI derived from computerized fitting analysis of the bolus infusion
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method was 22.5 ± 15.9 ml, higher with respect to the values obtained with the other methods. Beck et al.
[21] evaluated a PVI in the range 5.46-23.04 by means of lumbar infusion test in patients with suspected
spontaneous intracranial hypotension without spinal CSF leakage. Vallet et al. [309] analysed results of
lumbar infusion study performed in adult patients suspected of normal pressure hydrocephalus and found
a mean PVI of 18.25 ± 7.23 ml. The range of PVI values in the literature is large, often evaluated in patho-
logical conditions, and could depend on methodological constrains and velocity of infusion. Geregele et
al. [100] reported that the pressure-volume compensatory reserve is insufficient when PVI <13 ml, while
the brain is over-compliant if PVI >26 ml, and these values are valid if PVI is calculated by means of slow
infusion while higher values are indicated for fast bolus infusion. Computational infusion tests give PVI
values between 15 and 20 ml in all considered situations when 3 ml of CSF are injected at 1 ml/s. PVI
is higher if both cranial and spinal CSF compartments are characterized by a nonlinear pressure-volume
relationship. We stress here that ICP-volume relations in Eq. (4.10), (4.9) are used for the determination of
pressure in brain parenchyma, while other cranial compartments are described by distensibility equations
of the form Eq. (4.3), that look like linear equations. However, pressure of a cranial CSF compartment is in-
fluenced by the extracellular fluid pressure, that is used as external pressure, hence it still exhibits nonlinear
exponential behaviour as volume increases in the infusion test. Testing different velocity of infusion (0.5, 1,
2 ml/s) or different amount of CSF injected at 1 ml/s (from 2 to 7 ml), we observed that PVI is not signifi-
cantly affected, giving values between 17.35 and 17.83 ml. This is valid if nonlinear pressure-volume tube
laws are adopted, but not in the case of linear relationships. Indeed, as the amount of CSF injected into the
subarachnoid space increases, the PVI increases significantly: it is 20.21 ml when 3 ml are injected while it
is 25.40 ml with an infusion of 10 ml. The linear pressure-volume relationship of the SSAS and the classical
Monro-Kellie hypothesis well capture the main features of the cerebrospinal system at the baseline set-
ting point; one can observe Figures 4.5, 4.6, 4.7 wherein computational results obtained with the nonlinear
tube law for the CSF in the SSAS and the relaxed MK are compared with those obtained with the previ-
ous completely linear version of the model. The mean intracranial pressure, as well as its waveform, are
not significantly modified by the introduction of nonlinearity in pressure-volume relationships. However,
the infusion test stresses the role of modelling the nonlinear behaviour: the use of linear pressure-volume
curves is acceptable as long as moderate blood volume changes are simulated. As the amount of volume
injected in the cerebrospinal system increases, that is, as large deviations from the baseline model state are
introduced, the model equipped with linear tube law models fails to reproduce the relations observed in
the literature. Another aspect that is influenced by the nonlinearity is the intracranial pulse pressure. Fig-
ure 4.12(right) shows the linear regression curve obtained from the relationship between mean intracranial
pressure and its pulse: as the pressure increases, its pulse pressure increases. When a linear tube law is
used, the intracranial pressure rise is not accompanied by a proportional increase in pulse pressure.

At the end of the infusion, ICP reaches a peak and then starts decreasing, as can be observed in Fig. 4.13.
The descending pressure is slightly higher than those of the ascending phase, displaying a mild hysteresis
effect. This behaviour is in line with that observed by Marmarou et al. [182] in cats. Resistance to absorption
evaluated at 1 minute is comparable to resistance evaluated at 2 minutes after the end of infusion. The
computational experiment gives a value of 6.42 mmHg/ml/min, that is in line with the literature range of
< 12 mmHg/ml/min [262, 66, 285, 309] regardless of the adopted method of infusion.

Computed results about estimation of PVI and total resistance to CSF absorption return reasonable
values compared to the literature. These indexes are strictly related to the compliance of the cerebrospinal
system, as well to production and reabsorption processes. The current mathematical model is limited to
well-known fluid exchange routes between the CSF space, brain parenchyma and blood; however, recent
insights into the biology of CSF posed the attention on the role of other possible pathways of exchange,
such as the meningeal lymphatic vessels associated with the dural sinuses throughout the cranium [16,
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173] and the glymphatic system [127, 268]. All these systems could influence the dynamic of CSF during
the infusion test; however, there are no quantitative data to allow for alternative models of fluid exchange
between different compartments into the current mathematical context.

4.4.4 Impact of transverse sinus stenoses on blood and CSF dynamics

Idiopathic intracranial hypertension (IIH) is a neurological condition of unknown aetiology, which re-
quires prompt diagnosis and if left untreated can result in a rapidly progressive visual loss. There is
emerging evidence of the influence of dural sinus stenosis as a trigger/cause of IIH [200, 4]. In order to
demonstrate an example of the applicability of the present model, we studied the effects of right and left
transverse sinus stenosis on blood and CSF dynamics. As a consequence of the 70 % reduction of reference
cross-sectional area in the stenotic vessels, the average flow rate of transverse sinuses decreases by 50 %;
this caused an increase in pressure in intracranial veins and the venous drainage from the cranial circu-
lation is disrupted with consequent reduced CSF reabsorption through the arachnoid granulation (which
depends linearly on the pressure difference between ICP and superior sagittal sinus pressure). Following
the Monro-Kellie hypothesis, a major amount of CSF is shifted into the spinal subarachnoid space leading
to ICP rising. Figures 4.14 and 4.15 show the CSF pressure in all CSF compartments in the healthy control,
in the stenotic case and when the stenoses affect a venous network without collateral pathways. In the
last case, the venous head network is missing the occipital vein and sinus. If the collateral circulation is
impaired, the severity of intracranial hypertension increases. CSF pressure rises in all compartments by 2.3
mmHg when the collateral circulation is complete, while it is doubled compared to the healthy case when
the collateral routes are compromised. Not only the mean ICP is affected by the transverse sinuses stenoses,
but also its waveform. Following the nonlinear pressure-volume relations that characterize both the cranial
and the spinal models, as the ICP rises, its amplitude increases and there are changes in the shape of the
pulse wave. When the collateral routes are activated, there is a progressive elevation in the magnitude of
P2 while P3 remains as in the healthy control. As the ICP rises due to the absence of the major collateral
pathways, P2 shows a disproportionate elevation, resulting in a pyramidal shape, with P2 the highest peak.
Moreover, P3 is delayed in time with respect to the healthy case. Increase in the P2 component of the ICP
wave is thought to represent decreased intracranial compliance. The previous version of the model [292]
was not able to capture the changes in pressure waveform as ICP rises due to the stenotic condition; this was
due to the linear pressure-volume relationships that characterize all craniospinal compartments. In order
to stress the differences with respect to the previous version of the model, we tested how the current model
behaves in the case of bilateral transverse sinus stenoses described by stenosis models with a reduction of
90% of vessel’s equilibrium cross-sectional area, the same reduction proposed in [292]. Figure 4.16 shows
the ICP waveform for the healthy control and in case of bilateral transverse sinus stenoses obtained with
the previous and current versions of the model. As previously observed, in the healthy condition the two
versions of the model result in comparable mean ICP, even if the current model better captures the land-
mark peaks of the ICP waveform. This is not true in the pathological condition of intracranial hypertension
due to transverse sinus stenosis: in this case, both the mean ICP value and its waveform display significant
differences. Due to the stenosis, there is an increase in dural pressure followed by a decreased CSF reab-
sorption via arachnoid granulation. Therefore, the ICP rises in order to maintain the balance between CSF
generation and absorption. How much ICP rises depends on the answer of the craniospinal CSF system
to volume variations; this is regulated by the compliance of the cranial and the spinal compartments and
their pressure-volume relationships. For the same CSF volume variation, computed ICP results in a lesser
increase when the previous model was used. Moreover, if the current version of the model is adopted, the
ICP waveform displays a significant increase in the second peak with respect to the healthy control that
was not observed when the previous version was used. This underlines that a linear tube law for the spinal
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subarachnoid space, as well as the classical Monro-Kellie hypothesis, underestimates the pressure changes
due to pathological conditions. The introduction of nonlinearity is an added value for this model, especially
when studying deviations from the baseline state.

FIGURE 4.16: Cerebrospinal fluid pressure waveform in subject with transverse sinus
stenoses. Computed ICP in healthy control subject (HC) and in subject with transverse sinus
stenoses (ST) with collateral circulation (With Cols.). Comparison between results obtained
with the current (CM) and the previous version of the model (PM) [292]. Values in brackets
refers to mean ICP over a cardiac cycle.
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4.5 Conclusions

In this work, we coupled a global closed-loop model of the entire circulation, which comprises one-
dimensional models for major arteries and veins and zero-dimensional models for other districts of the
circulation, to a multiscale model of the cerebrospinal fluid and brain dynamics. Such a model includes
zero-dimensional compartments for the cranial CSF representation and a one-dimensional coaxial model
for the spine. Moreover, the intracranial dynamics and the CSF in the spinal subarachnoid space were
enriched with a nonlinear pressure-volume relationship. Computational results were assessed through
comparison with literature data, sensitivity analysis on the ICP, pressure-volume index estimation and ap-
plication to the pathological condition of intracranial hypertension caused by transverse sinus stenoses.
Our results capture in a satisfactory manner the interplay between blood, CSF and brain parenchyma, both
in healthy and pathological condition. The introduction of the one-dimensional model for representing the
spinal dynamics improves the ICP waveform and the arterio-CSFSSAS delay, that both depend on the inter-
action between CSF and cerebral arterial volume and pulsation, as well as from the wave propagation along
the spine. The nonlinearity in the pressure-volume relationships of the cranial and spinal compartments
permits to resemble the exponential-like behaviour that physiologically characterizes the CSF dynamics
and well describes the modifications in pressure waveform in case of pathological condition. The model
as presented is applicable to many pathophysiological conditions associated to the circulatory system and
to the central nervous system fluids in the craniospinal cavity. Despite the progress reported in this work,
there are several limitations to be addressed in future developments. One limitation is represented by the
boundary conditions at the end of the spine, which need to be improved to well capture the spinal cord
motion. Spinal CSF dynamics are highly sensitive to respiratory performance and instantaneously reflect
intrabdominal and intrathoracic volume and associated pressure changes [5]. Evaluation of cardiac and
respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments
proved that breathing conditions have a considerably greater impact than cardiac activity on spinal cord
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motion [320]. Future work will focus on the effects of respiration on the ICP pulsatility and on the adapta-
tion of the CSF dynamics to abrupt changes of abdominal and thoracic pressures, like coughing. Moreover,
intracranial and spinal compliance contributes to the determination of ICP under postural changes [220,
279]; the CSF modelling elements introduced in this work open the way for future investigations on the
CSF dynamics in the upright position. Furthermore, the introduction of the one-dimensional model for the
spinal column provides the basis for including new CSF reabsorption routes; as previously discussed, CSF
can be reabsorbed also at the spinal level, hence a first step in this direction might address the blood supply
to the spinal cord.
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Chapter 5

Determination of the Total Effective
Vascular Compliance of a Global
Mathematical Model for the
Cardiovascular System

This chapter begins the second part of the present thesis, which refers to arterial hypertension mod-
elling. One of the major novelties of this work is addressing to this pathology in the context of a global
closed-loop multiscale mathematical model which aims to describe the entire cardiovascular system. This
global approach poses the need of controlling the total amount of blood that is in the circulation and its re-
lation to vascular compliance, since it can be proved that arterial pressure is highly sensitive to total blood
volume. This chapter reports a study that is preliminary to arterial hypertension modelling; it focuses on
total effective vascular compliance and total control of blood volume of a global closed-loop model of the
circulation. The following Chapter 6 will address to the adaptation of the global closed-loop model to
remodelling that is cause/consequence of arterial hypertension.

5.1 Introduction

The vascular compliance of the circulatory system is defined as the slope of the relationship between
intravascular volume and circulatory filling pressure; this property reflects the inherent elasticity of the vas-
cular system. Changes in vascular compliance are of primary importance in the control of cardiovascular
function and extracellular fluid volume regulation [249]. In animals, an estimation of total vascular com-
pliance can be obtained by determining Mean Circulatory Filling Pressure (MCFP)-blood volume curves.
MCFP refers to the pressure, constant in all vascular districts, that can be obtained by stopping the heart
and waiting for blood to redistribute in the vascular system according to the capacity of the different dis-
tricts [110]. Compliance is thus defined as the change in blood volume divided by the change in MCFP,
thus total vascular compliance (TVC) is

TVC =
V−Vu

MCFP
, (5.1)

where V is total blood volume and Vu is unstressed blood volume, i.e., the blood volume contained in
the vascular system for zero MCFP. Different methods were used to evaluate the TVC in different animal
species [110, 75, 256]; some of them imply stopping the circulation to measure MCFP, while others require
the use of anesthesia and extensive surgery, as in the constant cardiac output reservoir technique [265, 264],
to determine compliance as the ratio of a change in volume to a change in venous pressure. However, the
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values for total vascular compliance are very close whatever the method adopted; in dogs, values from 1.4
to 4.2 ml/kg/mmHg were observed with an average of 2.57 ml/kg/mmHg [265, 75, 120, 122].

Classical estimation of MCFP requires stopping systemic flow, posing ethical limitations to its applica-
tion to humans. To avoid this methodological limitation, a different index of capacitance was introduced
as a measure of total vascular compliance. This method was first presented in [82] and then used in [171,
169, 170, 251, 249, 99, 315, 142]; it involves simultaneous recording of right atrial pressure and volume
changes induced by transfusion, bleeding, or rapid iso-oncotic dextran infusion. Based on the experiment
first presented in [82], London et al. [171] determined the total effective vascular compliance (TEVC) using
an infusion of 500 ml of 6% dextran carried out within four minutes in a large forearm vein in control and
hypertensive patients in supine position. Dextran is an osmotically neutral fluid that is used in intravenous
solutions as volume expanders to replace lost blood in emergency situations; it is effective in expanding and
maintaining the plasma volume. According to the authors of [321], total blood volume after dextran infu-
sion increased only by the amount of solution administered. The slope of the relationship between central
venous pressure (CVP) and blood volume was called TEVC in order to differentiate it from the compli-
ance obtained from MCFP measurements [82]. CVP, usually considered as representative of the right atrial
pressure, depends on the venous return and the pumping ability of the heart, thus it does not rely exclu-
sively upon vascular volume and the elastic properties of the vascular bed [231]. Moreover, a four-minute
long infusion is not rapid enough to prevent the participation of some regulatory mechanisms such as the
short-term regulation of blood pressure, which occurs within seconds. Modification in CVP and also arte-
rial pressure due to blood volume variations activates various reflexes that modify specific cardiovascular
system properties like vascular compliance, vascular tone, heart rate, etc. [244]. In turn, such modifications
influence the final CVP change for a given blood volume variation and thus the estimated TEVC [264, 174].
Even if CVP is influenced by several factors during blood volume changes via transfusion or bleeding, Echt
et al. [82] showed that the pressure-volume relationship is practically linear; in normal men, it ranges from
2.1 to 2.7 ml/kg.

Arterial compliance was estimated in animals and men. Shoukas and Sagawa [264] used the constant
cardiac output reservoir method to determine arterial compliance in dogs by shifting blood between the
arterial system and the reservoir by a second roller pump while cardiac output, venous pressure and in-
trasinus pressure were maintained at constant levels; the ratio between the volume change measured in the
reservoir and the change in arterial blood pressure was considered as arterial compliance. In men, arterial
compliance was calculated as ratio between the time constant (derived from the analysis of the diastolic
pressure decay) and the total peripheral resistance (evaluated as ratio between mean arterial pressure and
cardiac output) [266]. Arterial compliance represents 1-3% of total vascular compliance. Compliance of
the cardiopulmonary circulation was estimated by Echt et al. [82] using lower body negative pressure and
norepinephrine infusion; they concluded that intrathoracic compliance is between 42 to 55% of total vascu-
lar compliance. More direct evaluation of the intrathoracic circulatory compliance was obtained in [170]. In
that work, in addition to total vascular compliance, the peripheral vascular compliance was determined as
the ratio between changes in peripheral volume (evaluated as difference between total blood volume and
cardiopulmonary blood volume) and central venous pressure. Assuming that peripheral and intrathoracic
compliance are connected in series in a lumped model, the effective compliance of the intrathoracic vas-
cular bed was obtained from the difference between total and peripheral compliances. This measurement
resulted in a value of 0.45 ml/mmHg/kg [170], i.e., about 20% of total vascular compliance. This value is
closer to those observed experimentally in animals.

In mathematical models of the human circulation, the vascular compliance, that is, the relationship
between stressed volume and the transmural pressure of a vascular segment, is generally represented by
either linear or nonlinear relationships that include physical parameters. The values assigned to these
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parameters are usually based on experimental evidence of effective compliance and blood volume distri-
bution among different vascular compartments. For example, in the lumped model of the entire circulation
proposed by Sun et al. [276], the elastance (the inverse of the compliance) and volume in each vascular ter-
ritory were estimated from the blood volume distribution in [113]. Ursino et al. [304] proposed a model of
the cardiovascular system represented as six lumped compartments arranged in series, which synthesizes
the main haemodynamic properties of the systemic arterial, systemic venous, pulmonary arterial, and pul-
monary venous, as well as of the left and right cardiac volumes. In that work, a total vascular compliance
was assigned based on human and animal TEVC [248], and then this value was distributed among different
compartments following literature data on blood flow distribution. Mynard and Smolich [215] adopted a
vascular compliance of 170 ml/mmHg for the entire circulation, that was distributed in the following way:
1.7 ml/mmHg in the arterial circulation, following [9], 146 ml/mmHg in the venous circulation, based on
[280], and 6.7 and 15.8 ml/mmHg in the arterial and venous pulmonary circulation respectively. The same
was done in the previous version of the global mathematical model adopted here [292]. As we can see
in these works, mathematical modellers set the total vascular compliance equal to a parameter. However,
this parameter value is usually based on the index of TEVC that is the result of an experiment wherein the
elastic properties of the vascular system interact with the pumping ability of the heart and the reflex control
of blood pressure. This choice is necessary to represent the vascular capacity, that is the amount of blood
held by the systemic vascular bed at a specific pressure. However, this assumption could lead to inappro-
priate results, especially if we move from the baseline status, i.e., the model state for which the model was
parametrized and validated.

The aim of this mathematical work was to determine in silico the effective total vascular compliance of
a global mathematical model for the cardiovascular system. To this end, we reproduced the experiment of
London et al. [171]. Changes in blood volume and changes in central venous pressure were recorded dur-
ing the infusion. The model used for this kind of test is based on the works in [201, 202, 292]. It is composed
of networks of major arteries and veins where blood flow is described by means of a mathematical model
consisting of a nonlinear hyperbolic PDE system. This system can be derived assuming axial symmetry of
flow [19] or using a more general framework based on mass and momentum balance, as well as a special-
ized version of Reynolds transport theorem, as proposed in [125]. Other cardiovascular compartments, i.e.,
heart, pulmonary circulation, microvasculature, venous valves, Starling resistors and cerebrospinal fluid
dynamics, are described by lumped parameter models. A high-order well-balanced nonlinear numerical
scheme based on the ADER [294] (Arbitrary high-order DERivatives) framework was used for discretiza-
tion of one-dimensional blood flow equations. Compared to previous versions of the mathematical model,
some changes were introduced to better capture the main physiological processes involved in the infusion
test as well as to update modelling assumptions that needed to be improved in order to consider a deviation
from the baseline state. First of all, we performed a physiologically sound parametrization of the mathe-
matical model in the baseline pre-infusion status: this required the introduction of the unstressed volume
in all vascular compartments. Assuming that each vascular compartment has an average pressure, a value
of compliance was assigned such that the stressed volume together with the unstressed volume gave the
desired total blood volume. As the major part of total blood volume is located in the lumped-parameters
model of the venules/distal veins, nonlinear resistances and compliances were introduced in the venous
0D compartments to take into account the distension of the vasculature during volume expansion. More-
over, the global mathematical model of the circulation was coupled to a model for short-term regulation
of pressure that considers the activity of high- and low-pressure baroreceptors. Such activity was repre-
sented by sigmoid functions, featuring a symmetric response to low/high arterial and/or venous pressure
deviations from baseline values, that generate efferent sympathetic and parasympathetic firing rates. Re-
sults reported here show that a good parametrization of the vascular compliance and blood volume of the



106 Chapter 5. Determination of the Total Effective Vascular Compliance

human body gives a reasonable representation of the vascular capacity in the baseline setting. However,
when total blood volume is changed with the infusion test, this parametrization becomes necessary but not
sufficient for reproducing the effective behaviour of the human circulation. The main short-term regula-
tory mechanisms of arterial pressure play an essential role in the capacity of the model to correctly describe
experimental results. In fact, TEVC reflects the interaction between the assigned parameters but also the
functioning of the regulatory mechanisms.

The rest of the chapter is structured as follows. In Section 5.2, we present the global closed-loop math-
ematical model of the human circulation and the modifications introduced in this work as well as the
baroreflex control mechanism. Section 5.3 presents the main results about the infusion test; the evalua-
tion of the TEVC; and how mean arterial pressure, cardiac output, heart rate, and cardiopulmonary blood
volume change during the blood volume expansion; moreover, a discussion on the modelling choices and
the main outcomes is provided. Section 5.4 summarizes the main findings and poses some directions for
further investigations.

5.2 Methods

In this section, we briefly describe the closed-loop model of the cardiovascular system used in this
work, focusing on the main improvements with respect to previous versions of the model. These include
the parametrization of the global model with the introduction of total blood volume and the nonlinear
relationship in venous resistances and compliances. Moreover, we present the equations that describe the
functioning of baroreflex control mechanisms considered in our work and how we performed the infusion
test reported in [171].

5.2.1 A global closed-loop model for the human circulation

The mathematical model used in this work is an extension of the closed-loop model for the entire human
circulation presented in [201, 202]. It is a geometric multiscale type model which includes one-dimensional
models for blood flow in major vessels and zero-dimensional lumped-parameters models describing blood
flow in the remaining compartments. Figure 5.1 illustrates schematically the structure of the model: it in-
cludes 323 vessels, comprising arteries and veins; four heart chambers and cardiac valves; 3 compartments
for the pulmonary circulation; 31 compartmental models describing the connections between terminal ar-
teries and veins through the microcirculation; 17 venous valves; 21 Starling resistors; and one cerebrospinal
fluid compartment.

Blood flow in major vessels - arteries and veins - was modelled using a 1D system of partial differential
equations. A complete derivation of the governing equations can be found in [94], where such equations
were derived from conservation principles. A vessel is represented as a single compliant rectilinear tube
with impermeable walls. Moreover, blood is assumed to be an incompressible Newtonian fluid. The result-
ing system of equations is given by∂t A + ∂xq = 0 ,

∂tq + ∂x

(
α̂

q2

A

)
+ A

ρ ∂x p = − f .
(5.2)

The first equation representsthe conservation of mass in the flexible tube, while the second one describes
momentum balance. The three unknowns of the problem are the cross-sectional area of the vessel’s lumen,
A(x, t); the blood flow rate across a section of the vessel, q(x, t); and the cross-sectionally averaged internal
pressure, p(x, t). α̂ is the Coriolis coefficient linked to the velocity profile, here taken equal to 1 to represent
a flat velocity profile, ρ is the blood density, and f is the friction force per unit length of the tube. The
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FIGURE 5.1: Schematic representation of the global model used in this work [292]. 1D models
refer to networks of major arteries and veins, which are modelled using evolutionary partial
differential equations, providing space- and time-resolved blood pressure and flow. Rect-
angles represent lumped-parameter models, which are used to describe the heart chambers,
the pulmonary circulation, the microcirculation, as well as intracranial dynamics. Such com-
partments are modelled using ordinary differential equations, which provide time-resolved
haemodynamic variables.
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problem has more unknowns than equations, thus an extra closure condition is required. This condition
couples the internal blood flow distribution with the mechanical properties of the solid moving vessel wall.
We adopted a pressure-area relation which describes the viscoelastic nature of vessels wall

p(x, t) = pext(x, t) + K(x)
((

A(x, t)
A0(x)

)m
−
(

A(x, t)
A0(x)

)n)
+ P0︸ ︷︷ ︸

Elastic term

+
Γ

A0
√

A
∂t A︸ ︷︷ ︸

Viscoelastic term

. (5.3)

In this tube law, the internal pressure p(x, t) is expressed as a function of the cross-sectional area A(x, t)
and other parameters. The first part of the tube law represents the elastic behaviour of the vessel wall. It
depends on A0(x), the vessel cross-sectional area for which the transmural pressure (p(x, t)− pext(x, t)) is
zero. The parameters m and n are two real numbers that can be derived from experimental measurements;
throughout this work, we assume m = 0.5 and n = 0 for arteries, while we assume m = 10 and n = −1.5 for
veins. Moreover, K(x) is a positive function representing the vessel stiffness, which accounts for mechanical
and geometrical properties of the vessel; in this work, K(x) was obtained from the reference wave speed c0

assumed for each vessel, distinguishing arteries, veins, and dural sinuses [292]. P0 is the reference pressure
while pext is the external pressure, generally prescribed. The second term of the tube law describes the
viscoelastic nature of vessel walls; it depends on the time partial derivative of the cross-sectional area of the
vessel and on Γ, a constant related to the viscoelastic properties of the vessel wall and expressed, following
the work in [7], as

Γ =
2
3
√

πγh0(x) , (5.4)

where γ is the wall viscosity and h0(x) is the wall thickness. The value of these parameters are chosen
such that the hysteresis behaviour of pressure-area plots in peripheral arteries and veins reproduces the
physiological behaviour. We refer the reader to [292] for more details about the chosen parameters of the
viscoelastic term in the tube law.

The friction term f (x, t) on the right hand side, which depends on the local velocity profile, is set as
follows

f =
8µπ

ρ

q
A

, (5.5)

with µ being the blood dynamic viscosity. This formulation is obtained by assuming a fully developed
laminar flow in an axially symmetric tube.

Note that A0(x), K(x), and pext(x, t) are variable material and geometrical parameters that depend
on x. To deal with parameters that vary in space, the system in Equation (5.2) is rewritten as in Toro and
Siviglia [289, 271], obtaining a 5× 5 first-order system whose vector of unknowns is Q = [A, q, K, A0, pext]

T .
When the tube law in Equation (5.3) is inserted in the momentum balance equation in system (5.2), the
problem becomes an advection-diffusion-reaction problem as a second-order spatial derivative of the flow
variable arises. Using a relaxation technique [49], one can obtain a nonlinear hyperbolic PDE system that is
solved using a high-order well-balanced nonlinear numerical scheme based on ADER [294] (Arbitrary high-
order DERivatives) framework for networks of elastic and viscoelastic vessels [197, 199] and an explicit
local time-stepping temporal discretization (LTS) approach [207]. We refer the reader to the works in [294,
288] for an up-to-date review of the ADER scheme, to the works in [205, 206] for full details about the
high-order well-balanced scheme in the framework of path-conservative schemes, to the works in [295,
197, 199] for clarification about the hyperbolic reformulation of the parabolic system incorporating the
viscoelastic nature of the vessel wall mechanics, and finally to the works in [207, 78] for the local time-
stepping procedure which is implemented so that the local time step is defined at the level of the vessels
(and not computational cells).
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Lumped-parameter models for the microcirculation describe the connection between arteries and veins
through arterioles, capillaries, and venules; the generic vascular bed model used for all microvasculature
beds is based on the three-element Windkessel model. This model is characterized by

• characteristic impedances that couple any number of connecting 1D arteries/veins to lumped-parameter
models for the microvasculature (Rda or Rvn) and regulate the pressure drop between 1D domains and
vascular beds,

• peripheral resistances and compliances divided between arterioles (Ral , Cal) and capillaries (Rcp, Ccp),
and

• venous compartments with related compliances (Cvn), which represent venules and distal veins not
included in the 1D network.

Figure 5.2 shows an example of a generic terminal vascular beds connecting three 1D arteries and mul-
tiple 1D veins.

The heart model considers the ’time-varying elastance’ model [160, 276] to describe the dynamics of
relaxation/contraction of the four cardiac chambers, while cardiac valves were modelled as in [216]. For
each heart chamber, the time-varying elastance E(t) is defined by

E(t) = EAe(t) + EB , (5.6)

where EA and EB are respectively the maximal elastance at systole and the baseline elastance, while e(t) is
the normalized time-varying elastance taken as in [276].

The pulmonary circulation is divided into arteries, capillaries, and veins, and it was modelled as in [276];
each compartment is characterized by a pulmonary resistance and a pulmonary inertance that are used for
the evolution of the fluid exchange between compartments and by an exponential pressure–volume rela-
tionship describing vascular capacitance. Venous circulation was equipped by venous valves which gov-
erns the flow across the interface between two vessels. Starling resistors were placed at the confluence of
cortical veins in the dural sinuses; they prevent the vein collapse maintaining the blood pressure upstream
the collapsed segment higher than the intracranial pressure. Both venous valves and Starling resistors were
represented by the model presented in [216]. Finally, the blood circulation model was coupled to a simple
cerebrospinal fluid model. This model, based on the works in [307, 202], is characterized by a simple com-
partment representing the cranial and spinal cavity with elastic behaviour. An ordinary differential equa-
tion which depends on cerebral blood volume (cerebral arteries, arterioles, capillaries, venules, and veins),
capillaries, and superior sagittal sinus pressures was used for the evaluation of the intracranial pressure
that was then adopted as external pressure in cerebral 1D vessels and lumped-parameters compartments.

The parameters needed for the implementation of the global closed-loop model were defined in order
to simulate a young healthy subject. Unless specified otherwise in this work, the parametrization is the
same as the one reported in [292]. We refer the reader to the works in [201, 202, 292] for more details about
the model description, parameter selection, and validation of the baseline state.

5.2.2 Compliances, unstressed volumes, and total blood volume distribution

As in this work we would like to describe a change in blood volume through an infusion test, we first
defined basal parameters describing total blood volume and total vascular compliance. Following the work
in [249], the total vascular compliance is ∼2.1 ml/mmHg/kg for humans; ∼70% of this value may char-
acterize the systemic circulation, while the remaining part is ascribed to the pulmonary circulation [244].
Moreover, the systemic vascular compliance may be divided between systemic arterial and venous com-
pliances, assuming that ∼3% of the systemic compliance is in the arterial side [265]. For the pulmonary



110 Chapter 5. Determination of the Total Effective Vascular Compliance

TABLE 5.1: Basal value for model parameters of compliance and unstressed volume in the
main vascular compartments.

Vascular Territory Compliance [ml/mmHg] Unstressed Volume [ml]

Systemic arterial circulation 4 615
Systemic venous circulation 111 2500
Pulmonary arterial circulation 6.56 90
Pulmonary venous circulation 25.37 490
Cardiac circulation 50

circulation, few data are available about the distinction between arterial and venous compliances; we con-
sidered here that 20% of total pulmonary compliance is in the arterial side, as in [304]. Table 5.1 reports the
compliance value for each vascular territory. As in [292], arterial and venous compliance were distributed
in 1D vessels following the work in [160]. Moreover, after determination of 1D vessel vascular compliance,
the remaining part of the arterial compliance was distributed among Cal in arterioles according to [160] and
15% of the arterioles compliance was assigned to the capillaries Ccp (see Figure 5.2). The remaining part of
the venous compliance was assigned to venule compartments according to blood flow distribution. For the
heart circulation, atria and ventricular baseline elastances were set as in previous works [292].

Total blood volume was reported to be in the range of 75 to 80 ml/kg body weight for a normal male
subject [83, 72]. Stressed volume is usually approximately 30–40% of total volume [176, 106]. The unstressed
volume is the volume in a compartment when the transmural pressure is equal to zero. In previous version
of the model [201, 202, 292], only the stressed component of the total blood volume was considered in
lumped-parameters models of the microcirculation, heart, and pulmonary circulation. We added here the
unstressed part in order to have complete control on total blood volume.

Using assigned compliances as in Table 5.1 and pressures as in previous works [292], we set for each
vascular territories the amount of unstressed volume such that the total blood volume distribution among
different vascular compartments follows those reported in the literature. For the heart circulation, we fixed
50 ml of unstressed volume (one sixth of the cardiac blood volume), 20 ml for each atrium, and 5 ml in
each ventricle, as suggested in [304, 70]. In the pulmonary circulation, we set 70 ml of unstressed volume,
divided between arteries and capillaries, and 490 ml of unstressed volume in venous compartment [70].
Concerning the systemic circulation, we considered 715 ml of arterial unstressed volume, distributed be-
tween 1D arteries and arterioles, and 2500 ml of venous unstressed blood that was assigned to capillaries,
venules, and 1D veins [70]. In the arterial part, we evaluated the unstressed volume of 1D arteries as the
volume in each vessel at zero-transmural pressure according to tube law in Equation (5.3), and then sub-
tracted it to the total amount of arterial unstressed volume; the remaining part was distributed between
arterioles compartments of vascular beds according to flow distribution in venous capacitors (Cvn, see Fig-
ure 5.2). The same was done for the venous circulation; after subtracting 1D venous unstressed volume
from total venous unstressed volume, the remaining part was distributed between capillaries (15%) and
venules (85%) following the flow distribution in venous capacitors. Table 5.1 summarizes the assigned
compliances and unstressed volume distribution.

5.2.3 Nonlinear venous resistances and compliances

In order to take into account the distension of the vasculature during the infusion test, we modified the
resistances that characterize the venous vascular beds in a nonlinear manner according to blood volume
variation. The resistances that are located between capillaries and venules compartments and the char-
acteristic impedances that couple 1D veins to venules compartment (Rcp and Rvn, see Figure 5.2) in the
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FIGURE 5.2: Example of a generic complex vascular bed connecting three 1D arteries to mul-
tiple 1D veins [292]. Each connecting artery can be linked to one or both venous capacitors
Cvn, while each venous capacitor can be connected to any number of terminal veins. Each 1D
artery is connected to arterioles compartments (Ral , Cal), that in turn is connected to either
one or two capillaries compartments (Rcp, Ccp). The pressure drop between 1D arteries and
the vascular beds is regulated by Rda while on the venous side by Rvn.
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vascular beds were modified at each time step according to the following relationship:

R(t) = Rre f

( Vre f

V(t)

)2

, (5.7)

where R(t) stands for Rcp or Rvn at time t, Rre f is the corresponding reference resistance in the baseline con-
dition, V(t) is the current volume in the capacitor, and Vre f is the reference volume of the venous capacitor
at the baseline condition.

In order to account for the nonlinear pressure–volume relation of the venous system during the blood
infusion test, we applied a nonlinear pressure–volume relation to zero-dimensional venules compartments.
The equation describing this behaviour is the following:

P(t) = K

((
V(t)
Vre f

)m

−
(

V(t)
Vre f

)n)
+ Pre f + Pext , (5.8)

where m and n are set to be 10 and −3/2, respectively, as it is usually done for 1D veins. Pre f and Vre f con-
stitute the basal point of the pressure-volume relationship with the basal value of compliance Cre f as in the
linear case. The value of the parameter K is assigned by imposing the passage of the curve through Pre f and

Vre f , that is,
(

dV
dP

)
V=Vre f

= Cre f . Given this nonlinear pressure–volume relationship, the unstressed vol-

ume Vun in the venules compartments was modified imposing zero transmural pressure in Equation (5.8).
Figure 5.3 compares the linear and nonlinear pressure-volume relation of one venule compartment of the
right forearm. As a result of this parametrization procedure we recover the linear compliance case if we set
m = 1 and n = 0.

5.2.4 The baroreflex regulation

The baroreflex model adopted in this work is based on [69, 32, 306]. It includes the activity of high- and
low-pressure receptors. The set of parameters undergoing regulation is ε = { H, Emax, Ra, Cv, Vu }, where
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FIGURE 5.3: Comparison between linear and nonlinear pressure–volume relationship in one
venule/vein compartment of the right forearm. (Vre f , Pre f ) is the basal point of the pressure-
volume relationship with linear basal value of compliance Cre f and reference unstressed vol-

ume Vre f
un . Following the nonlinear pressure–volume relationship, the unstressed volume Vun

was calculated imposing zero transmural pressure.
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H is the heart rate, Emax is the maximum value of elastance of the four cardiac chambers, Ra is the arterial
resistance, and Cv and Vu are the venous compliance and unstressed volume (i.e., the venous tone). In
our closed-loop model, Ra refers to the proximal resistance of 1D terminal arteries and to the resistance
of arteriolar compartment of vascular beds for all vascular districts, except for the brain, which is directly
regulated by cerebral autoregulation with the model presented in [292]. Cv and Vu refers to compliance
and unstressed volume of venules compartment of non-intracranial vascular beds and 1D veins; changes
in compliance and unstressed volume of 1D veins are reflected in variation of reference area A0 and stiffness
K of these vessels, as explained later at the end of this section.

The arterial baroreflex is activated by the mean arterial pressure (over a cardiac cycle) in the aortic
arch and in both carotid arteries. We assumed that the receptors located in all these arteries behave in the
same manner [32]. The low-pressure baroreceptors are activated by the right atrial pressure. The level of
activation of the afferent nervous system is evaluated as

P̄a =
1
3
(P̄rc + P̄lc + P̄aa) , (5.9)

P̄v = P̄ra , (5.10)

where P̄rc, P̄lc, P̄aa, and P̄ra are the mean pressure over the previous cardiac cycle of right carotid artery, left
carotid artery, aortic arch, and right atrium, respectively.

Alterations in the arterial pressure P̄a and/or in the venous pressure P̄v affect the firing rates of affer-
ent fibers. These fibers reach the central nervous system which in turn generates efferent sympathetic and
parasympathetic nerve activity. An enhanced firing rate results in an enhanced parasympathetic response
and a reduced sympathetic activity. It was experimentally proved in vagotomized animals that the efferent
responses in heart rate and arterial resistances follow a sigmoid relationship. For this reason, the sym-
pathetic and parasympathetic firing rates are modelled via sigmoid functions that depend on arterial and
venous pressure changes [69, 32, 306]. The sympathetic and parasympathetic activity are described by the
following expressions:

ns,i =
1

1 + eyi/ki
, (5.11)
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np,i =
1

1 + e−yi/ki
, (5.12)

where yi is a linear combination of pressure changes

yi = ga,i(P̄a − µ) + gv,i(P̄v − δ) , (5.13)

and the index i ranges the set ε. µ and δ are the baseline arterial and venous activation, respectively. The
values of the sympathetic and parasympathetic responses range between 0 and 1; when yi is equal to 0, i.e.,
when the model is operating in the baseline setting with P̄a = µ and P̄v = δ, both ns and np assume the
value 0.5. ns approaches 1 when yi is less than 0 while it tends to 0 when yi is larger than 1; this implies that
the sympathetic nerve activity is reduced when the relative change of arterial and/or venous pressure from
the baseline values increases. By contrast, the parasympathetic response np assumes its maximum value 1
when yi tends to infinity. ga and gv are the maximum open loop gains of the arterial and cardiopulmonary
baroreceptor mechanisms, each evaluated when the other mechanism is not operating. gv is set equal to
zero for all variables in ε, expect for Ra and Vu, on which both arterial and low-pressure baroreceptors work
in synergism; in this case, the total open loop gain results from a nonlinear superimposition of the action
of the two classes of receptors [306]. Finally, ki is a parameter which determines the slope of the sigmoidal
characteristic at its central point, chosen to be equal to −1 as in [306]. The efferent responses are governed
by first order ordinary differential equations. These equations read as

dxi
dt

=
1
τi
(−xi + σi) , (5.14)

where

σi = αins,i − βinp,i + γi , i ∈ ε . (5.15)

τi is the characteristic time constant, while αi, βi, and γi are defined using physiologically admissible thresh-
old values. Table 5.2 reports parameters for the baroreflex model, which were taken from [69, 32, 306].
Following the works in [69, 32], a symmetric response to deviations was assumed by setting minimum and
maximum threshold values at equal distance from the central point of the sigmoid function.

The baroreflex regulation changes venous compliance and unstressed volume; in order to maintain
constant total blood volume, we reset the venous pressure in 0D venules compartments modifying the
reference pressure Pre f in Equation (5.8), according to the modified compliance and unstressed volume
given by the baroreflex model. The same is done in one-dimensional veins. The venous pressure is reset
by changing reference area and stiffness of 1D veins. In each computational cell of a vein, given Âus and
Ĉ the unstressed area and compliance determined by the baroreflex regulation, the modified reference area
Â0 and vessel stiffness K̂ are evaluated solving the following nonlinear system:Ψ̂(Âus) + P0 = 0∫ L

0

(
∂Ψ̂(A)

∂A |A=Â0

)−1
dx = Ĉ ,

(5.16)

where

Ψ̂(A) = K̂
((

A
Â0

)m
−
(

A
Â0

)n)
. (5.17)

The first equation of system (5.16) is derived from the definition of unstressed area, that is, the area for
which the transmural pressure is equal to zero; the second equation relies upon the definition of compliance
in a one-dimensional vessel, that is the integral average over the length of the domain of the inverse of the
pressure changes with respect to area variation, when area is the reference area of the vessel.
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TABLE 5.2: Parameters for the efferent pathways of the baroreceptors and for the arterial and
venous gain in Equation (5.15) for all i ∈ ε.

Actuator τi [s] αi βi γi ga,i [mmHg−1] gv,i [mmHg−1]

H 4 1.15 0.34 0.595 0.02 0
Emax 10 0.4 0 0.8 0.02 0
Ra 15 0.8 0 0.6 0.02 0.7
Cv 30 −0.2 0 1.1 0.02 0
Vu 60 −0.2 0 1.1 10.8 417

5.2.5 Determination of total effective compliance

The TEVC of the above-described computational model was computed by reproducing in silico the
experiment reported in [171]. A 500 ml blood infusion in four minutes was simulated adding a flow source
at the level of the left atrium, starting from a periodic solution in the baseline setting. In all the simulations,
the infusion started at 80 s and ended at 320 s; after the expansion, the new periodic state was reached in 40
s and the simulations were stopped at 400 s. Main cardiovascular indexes were recorded after completion
of the infusion’s generated transient, i.e., after a periodic state was reached for the new situation with
increased blood volume. During the simulated infusion test, the mean central venous pressure (right atrial
pressure) over a cardiac cycle was plotted against changes in total blood volume. The effective compliance
was evaluated in the following three scenarios:

(1) Linear case: linear resistances and compliances in 0D venous compartments were applied. The use
of linear resistances implies that R(t) = Rre f in Equation (5.7) during the entire simulation. With
linear compliance, pressure in 0D venules compartments is evaluated with m = 1 and n = 0 in
Equation (5.8); this is equivalent to

P(t) =
V(t)−Vre f

un (t)
Cre f

+ Pext , (5.18)

where Vre f
un is the unstressed volume of the linear pressure–volume relationship (see Figure 5.3) and

Cre f is the basal value of compliance in Equation (5.8).

(2) Nonlinear case: in case of nonlinear resistances and compliances in 0D venous compartments, Equa-
tion (5.7) was applied for the evaluation of nonlinear resistances, while (5.8) was used for nonlinear
compliances.

(3) Baroreflex case: in this case, the model presented in Section 5.2.4 was applied with parameters of
Table 5.2 in conjunction with nonlinear resistances and compliances in venules/distal veins compart-
ments.

The numerical results were compared to experimental results reported in [171].

5.3 Results & Discussion

5.3.1 Control of vascular blood volume

The mathematical model adopted in this work departs from the Müller–Toro mathematical model [201,
202, 292] for the systemic and pulmonary circulations in the entire human body. In previous versions of
the model, the unstressed component of blood volume was included only in vessels described by one-
dimensional models according to the nonlinear relationship between area and pressure described by the
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FIGURE 5.4: Total blood volume distribution. In the left pie chart, distribution among different
vascular compartments, while in the right frame distribution between stressed and unstressed
volume. In square brackets, reference blood volume distribution [113]. Total blood volume
is set to be 5520 ml. Arterial blood: 1D arteries and arterioles; Venous Blood: 1D veins and
venules; Heart: sum of volume of the four cardiac chambers; Pulmonary circulation: arterial,
capillaries and venous blood of pulmonary compartments.
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tube law in Equation (5.3). By contrast, in the models for heart, pulmonary circulation, and microvascula-
ture, only the stressed component (that determines flow in the circulation) of blood volume was considered.
While this modelling assumption was sufficient in previous applications of the model, in this case a com-
plete control of the total blood volume in the circulation became necessary as we were interested in the
total capacitance of the vascular system and the short-term cardiovascular homeostasis. The introduction
of the unstressed volumes was generally adopted in fully lumped-parameters models of the circulation
[304, 308, 161, 159]. This is the first global model with one-dimensional representation of major arteries and
veins with total control of blood volume. The presence of the unstressed volumes in the venous part of the
circulation is of primary importance when the baroreflex control of the arterial pressure is considered.

Vascular compliance (for the evaluation of the stressed volumes) and unstressed volume for each vas-
cular territory had to be assigned for the determination of the capacitance of the vascular system. The
mathematical model proposed here was parametrized with values of compliances and unstressed volumes
based on literature data for humans and animals, as described in Section 5.2.2. Total blood volume was
set to 5520 ml, of which about 70% is unstressed blood volume (3745 ml). Figure 5.4 shows the total blood
volume distribution in different vascular territories; this distribution agrees with literature observations
[152, 113]. The same happens for the main cardiovascular indexes and the pressures of different vascular
compartments. Table 5.3 reports main cardiovascular indexes computed on model results and general lit-
erature data, as well as London et al. [171]. The first part of the table refers to variables of the systemic
circulation, mean arterial pressure, pulse pressure, cardiac output, and central venous pressure. Arterial
compliance was evaluated as the ratio between stroke volume and brachial pulse pressure, as routinely
performed in clinical practice [9]. We can observe that even if the arterial compliance parameter is assigned
to be 4 ml/mmHg (Table 5.1), the effective value of the arterial compliance evaluated as proposed in [9] is
in the physiological range. The second part of Table 5.3 shows the main cardiac indexes, heart rate, arterial
elastance, left ventricle elastance, arterial–ventricular coupling index, maximum left ventricular volume,
and minimum pressure rate of left ventricle. The computed values are in line with literature observations
and the model is able to represent a normal functioning heart.

Figure 5.5 shows the relationship between changes in blood volume and changes in central venous
pressure for the three scenarios considered here, as well as experimental results reported by London et al.
[171]. As in the literature, this relationship is practically linear. The value of TEVC is expressed in brack-
ets in ml/mmHg and then normalized to the body weight, considered to be 75 kg. Even if the physical
parametrization of the model concerning compliance distribution and total blood volume was assigned
following physiological measurements based on the literature, the TEVC of the computational model is not



116 Chapter 5. Determination of the Total Effective Vascular Compliance

TABLE 5.3: Cardiovascular indexes. Current Value: computed numerical value; Ref. Value:
literature reference value with mean and standard deviation. (S/D)BP: systolic/diastolic aor-
tic blood pressure; MBP: mean blood pressure; PP: pulse pressure in aortic root and in brachial
artery; PPAmplitude: ratio between pulse pressure in brachial artery and aortic root; CO: cardiac
output; Ca: arterial compliance evaluated as the ratio between stroke volume and brachial
pulse pressure [9]; CVP: central venous pressure; H: heart rate; Ea: arterial elastance; Ees: left
ventricle elastance; Ea/Ees: arterial-ventricular coupling index; LVmax: maximum left ventri-

cle volume; LVEF: averaged left ventricle volume; max.
dPLV

dt
: maximum pressure rate of left

ventricle; min.
dPLV

dt
: minimum pressure rate of left ventricle.

Index Current Value Ref. Value Ref.

SBP [mmHg] 107.48 105 ± 8, 129 ± 3 [191, 171]
DBP [mmHg] 76.18 71 ± 7, 76 ± 2 [191, 171]
MBP [mmHg] 91.19 89 ± 8, 97 ± 2 [191, 171]
PPAorta [mmHg] 31.31 30 ± 6 [191]
PPBrachial [mmHg] 38.01 49 ± 9 [191]
PPAmplitude [mmHg] 1.21 1.7 ± 0.14 [191]
CO [ml/s] 88.64
Ca [ml/mmHg] 1.91 1.7 [9]
CVP [mmHg] 4.21 4.2 ± 0.8 [171]
H [beats/min] 75 76 ± 4 [171]
Ees [mmHg/ml] 4.61 4.5 [218]
Ea [mmHg/ml] 2.80 2.3 [218]
Ea/Ees 0.60 0.58 [218]
LVmax 116.66 150 ± 67 [215]
LVEF 0.62 0.68 ± 0.12 [215]

max.
dPLV

dt
1511.27 1915 ± 410 [215]

min.
dPLV

dt
−2632.04 −2296 ± 530 [215]
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FIGURE 5.5: Computed TEVC by means of an infusion test of 500 ml of blood in 4 min.
Changes in mean central venous pressure are plotted against changes in total blood volume
and the inverse of the slope of their linear relationship is the value of the effective compli-
ance. CLinear: linear relationship for resistances and compliances in venules compartments;
CNonlinear: nonlinear resistances and compliances in venules compartments; CBarore f lex: non-
linear resistances and compliances and baroreflex control; CLiterature: London et al. [171] ex-
perimental results on 9 controls subjects (mean value of the group and ± 1 standard devia-
tion).
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comparable to literature data if one considers the model setup with linear venule resistance and compli-
ance and no baroreflex (Figure 5.5): 5.13 ml/mmHg compared to 2.55± 0.11 ml/mmHg in [171], 2.7 in [99],
and 2.3 in [82]. A reasonable value of TEVC can be reached changing the physical parameter for the venous
compliance. According to sensitivity analysis not reported here, venous compliance and unstressed volume
are the main determinants of the TEVC of the global model in case of linear resistances and compliances
and without regulation; variations in these parameters could improve the effective behaviour of the math-
ematical model. Reducing the compliance of the systemic venous circulation from Cv = 111 ml/mmHg to
Cv = 36 ml/mmHg and the total blood volume to 4800 ml, the resulting TEVC was 2.7 ml/mmHg when
we considered linear resistances and compliances in the venous lumped parameters compartments and we
neglected the autonomic nervous system control by the baroreceptors. In this case, the capacitance of the
vascular system was changed by modified venous compliance, i.e., stressed volume, without changes in un-
stressed volume. With this setting, the unstressed volume was 78% of total blood volume, while the blood
distribution between vascular compartments was the following: 19.3% of arterial blood, 6.1% of blood in
capillaries, 53.7% of venous blood, 7.3% of blood in cardiac circulation, and 13.2% in lungs. In the baseline
condition, the mean arterial pressure and cardiac output were 92.53 mmHg and 90.87 ml/s, respectively,
while the baseline central venous pressure was 4.28 mmHg. We observed that this parametrization led to
a physiological status of the mathematical model in the baseline setting, and the numerical effective com-
pliance was comparable to the literature. However, the changes in main cardiovascular indexes during the
infusion were unreasonable: the mean arterial pressure and the cardiac output increased by more than 35%
and the cardiopulmonary blood volume changed by 25%. Even if the baroreflex control was activated, the
authors did not find physiological parameters for the baroreflex model that were able to control the main
cardiovascular indexes as in [171]. These observations highlight the importance of including both, realistic
physical parameters, appropriate mathematical models for physical processes and relevant physiological
processes regarding the adaptation of the cardiovascular system to deviations from baseline conditions.
These elements are essential in order to reproduce experimental observations that imply large deviations of
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the model with respect to the baseline condition for which the model was parametrized (and/or conceived).

5.3.2 Nonlinearities in venous compartments

Another modelling improvement of this work regards the introduction of nonlinear equations for the
determination of venous resistances and compliances. As shown in Figure 5.5, when linear venous com-
pliances and constant resistances were considered, the computed TEVC was higher with respect to experi-
mentally measured compliance. During the infusion test, the central venous pressure evaluated in the right
atrium increased by 1.3 mmHg, while in terminal veins and venules compartments, the change in venous
pressure was twice the one observed in central veins. Echt et al. [82] evaluated changes in central and
peripheral venous pressures during infusion of 500 ml of 6% dextran solution within 3 min. The central
venous pressure was recorded in the right atrium while the peripheral pressure was measured in a vein
in the distal third of the left forearm. The central venous pressure rose from 6.6 mmHg to 9.8 mmHg after
infusion of 500 ml of blood while the peripheral venous pressure increased from 10.2 mmHg to 12.9 mmHg.
A comparable increase in pressure was measured in both vascular locations. During the infusion test, the
increased blood volume distends the blood vessels, thus reducing their resistance and the resistance to
venous return. Guyton et al. [111] studied the effect of blood transfusion or hemorrhage on the venous
return curve. The slope of the curve which relates venous return and right atrial pressure is a measure of
the resistance to venous return; the more vertical the slope, the less is the resistance to the return of blood
to the heart. In dogs, it was observed that blood transfusion modified the slope of the venous return-right
atrial pressure relation: increased blood volume distended the blood vessels and hence it decreased the
resistance to blood flow. These considerations lead to the introduction of a nonlinear relationship between
compartment volume and resistance of the post-capillary compartments. Vessel resistance is proportional
to the inverse of radius to the power four and volume is proportional to the radius squared; thus, for a given
vessel length, volume behaves as the inverse square root of the resistance; according to Equation (5.7), if the
volume increases with respect to the reference volume, the resistance will decrease. This kind of relation
was previously used by [234] to describe the biomechanics of the arterial–arteriolar cerebrovascular bed,
while in [60] it was used also for the venous cerebral compartments. In [292], this relation was adopted
to describe changes in cerebral arterial vasculature caused by an autoregulation model. In this work, we
applied this nonlinear relation between resistance and volume to all venous compartments. The use of non-
linear resistances in venous compartments decreased the effective compliance of the mathematical model
of the human circulation by 18.8% (from 5.133 ml/mmHg/kg to 4.168 ml/mmHg/kg).

According to the work in [244], the relationship between total contained volume in the vasculature and
the transmural pressure is nonlinear. As most of the total blood volume is contained in the venous cir-
culation, a good approximation of the behaviour of the venous compartments is essential for obtaining
reasonable results in the determination of TEVC. The 1D venous network adopted in this work contains
all the main large veins. However, most of the venous blood volume and the larger portion of venous
compliance were assigned to the 0D compartments which represent venules/distal veins. For this reason,
a nonlinear relationship between volume and pressure based on 1D veins tube law was applied to 0D ve-
nous compartments. The law that represents venous compliance (Equation (5.8)) is such that the actual
compliance is similar to the reference linear compliance in baseline volume condition. If the volume in
the compartment is higher than the reference volume, the transmural pressure evaluated according to the
nonlinear pressure–volume relationship will be higher with respect to linear compliance case. Ursino et
al. [304] showed how the nonlinear behaviour of the relationship between pressure and volume influenced
the computational results on the hemorrhage test; the use of linear pressure–volume curves is acceptable
provided that moderate blood volume changes are simulated. As pointed out by Drees and Rothe [75],
the use of linear compliances is probably adequate in the physiological pressure range, but in the context
of highest blood volume changes the extrapolation of the results may produce unacceptable errors. The
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FIGURE 5.6: Comparison between linear and nonlinear resistances and compliances of
venule compartments. CLinear: linear relationship for resistances and compliances in venules
compartments; CNonlinearR: nonlinear resistances in venule compartments (Equation (5.7));
CNonlinearC: nonlinear compliances in venule compartments (Equation (5.3)); CNonlinear: non-
linear resistances and compliances in venules compartments; CLiterature: London et al. [171]
experimental results on 9 controls subjects (mean value of the group and ± 1 standard devia-
tion).
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presence of nonlinear compliances in venous compartments improved the computational effective com-
pliance by 13.78% (from 5.133 ml/mmHg/kg in linear case (1) to 4.426 ml/mmHg/kg). Compared to the
case of nonlinear resistances, the sensitivity of the effective compliance to nonlinear compliances is lower
than to nonlinear resistances. When both resistances and compliances are nonlinear, the effective compli-
ance improved from 5.133 ml/mmHg/kg in scenario (1) to 3.835 ml/mmHg/kg in scenario (2). Figure 5.6
compares the computed effective compliance in case of: linear resistances and compliances of venule com-
partments (scenario (1)), variable resistances according to volume variation and linear compliances, con-
stant resistances and nonlinear compliances, nonlinear resistances and compliances (scenario (2)). It can be
observed that when both resistances and compliances are nonlinear, the computed effective compliance is
closer to the literature value of TEVC.

5.3.3 Baroreflex

London et al. [171] performed the infusion test of 500 ml of 6% dextran within 4 min in 9 control patient
in supine position. They found that an increase in total blood volume changes the mean arterial pressure
by 3%. Even if the study was carried out in the shortest possible time, short-term cardiovascular regulation
is considered to play a role in maintaining arterial blood pressure. Figure 5.7 shows the variation in main
cardiovascular indexes during the expansion compared to London’s data (mean error and standard devi-
ations) [171]. The variables under consideration are mean arterial pressure (MAP), cardiac output (CO),
heart rate (HR), and cardiopulmonary blood volume. Heart rate is evaluated as the inverse of the duration
of the cardiac cycle while cardiopulmonary blood volume is the sum of blood in heart and lungs. Mean
arterial pressure and cardiac output increased by more than 20% (23.20% and 22.72%, respectively) in case
of linear venules resistances and compliances. The increment in these quantities was even higher in the
case of nonlinear venules resistances and compliances. The cardiopulmonary blood volume increased by
16.07% during the infusion test. Computational results revealed the need for baroreflex control to limit
the changes in mean arterial pressure. The baroreflex represents the main neural mechanism involved in
short-term regulation of arterial pressure. Two categories of baroreceptors can be distinguished accord-
ing to their location: high-pressure arterial baroreceptors and low-pressure baroreceptors (also known as
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FIGURE 5.7: Changes in haemodynamic parameters before and after expansion. Compari-
son between computational results for scenario (1) with linear resistances and compliances,
scenario (2) with nonlinear relationship in venous compartments, and scenario (3) with non-
linearities and baroreflex control. Computed results are compared to literature data from
[171]. Parameters under consideration are MAP, mean arterial pressure; CO, cardiac output;
H, heart rate; CPBV, cardiopulmonary blood volume.
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cardiopulmonary or volume receptors). The first group of baroreceptors is located in the carotid arteries
and the aortic arch, and they are activated by a variation in systemic blood pressure. Afferent signals will
then be processed; the response to deviations from a nominal state will be conveyed by efferent fibers and
ultimately result in changes in vascular resistance, heart rate and cardiac contractility and venous tone. Car-
diopulmonary receptors compose an heterogeneous group of sensors [237]. Despite their heteromorphism,
cardiopulmonary receptors tonically inhibit the vasomotor center in analogy to arterial baroreceptors. Low-
pressure baroreceptors are located in large systemic veins and the atria of the heart (at the junction of the
venae cavae and the pulmonary veins). They act on arterial resistance, venous tone, and heart rate [180].
These low-pressure receptors minimize arterial pressure changes when the blood volume variation is too
small to be detected by high-pressure receptors; they activate reflexes parallel to the arterial baroreflexes to
ensure a stronger control of arterial pressure. Moreover, they participate in the control of renin release and
vasopressin secretion, with effects on salt and water retention, production of urine and long-term control of
arterial pressure. However, as the goal of this chapter was to simulate an infusion of blood in four minutes,
only the short-term pressure regulation by high- and low-pressure baroreceptors was considered.

In this work, the mathematical function representing the nervous responses for both high- and low re-
ceptors was a sigmoid function, which ranges between the low and high saturation values symmetrically
with respect to the baseline central point. It was experimentally proved in anesthetized dogs [62] that the
firing rate of high-pressure receptors acted in an asymmetrical way in response to increasing or decreasing
carotid pressure, like in an hysteresis loop. Moreover, this asymmetry was more evident in the parasym-
pathetic activity than in the sympathetic one [237]: the parasympathetic firing rate response is faster when
the blood pressure increases than in response to a decrease in pressure. For simplicity, the asymmetrical be-
haviour of the firing rate was neglected in this work; however, other mathematical models of the baroreflex
activity considered the asymmetry of the firing rates, in particular in the control of the heart rate, where the
parasympathetic nerve activity plays a role [229, 242].

The control of heart rate by atrial receptors is called the Bainbridge reflex. In 1915, Bainbridge [18] re-
ported that if 200 to 400 ml of blood or saline was injected into a 10 kg dog over a period of 1.5 to 4 min
then its heart rate increased; this increase did not seem to be tied to arterial blood pressure because the
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heart rate rose regardless of whether arterial blood pressure changed, but it increased whenever central
venous pressure increased sufficiently to increase ventricular end-diastolic pressure and cause ventricular
dilation. The Bainbridge reflex occurs especially if the initial heart rate is low [244]; on the other hand, with
more rapid heart rate, the infusion ordinarily slows the heart. Several studies have failed to demonstrate
a Bainbridge effect in humans [281]. This reflex might be poorly developed or less sensitive in humans
than in dogs, thus species-dependent. Moreover, a 10% volume expansion stimulates also the aortic re-
ceptors; it has been shown that the reflex generated by aortic receptors was able to reverse the tachycardic
Bainbridge reflex into a bradycardic response [244]. The resulting effect could maintain constant heart rate.
In view of these considerations, we applied the effects of cardiopulmonary receptors to arterial resistance
and venous unstressed volume, neglecting the Brainbidge reflex on the heart rate, in agreement with work
done in [306]. According to the sigmoid function, which describes the heart rate variation by means of
the sympathetic and parasympathetic activity from arterial baroreceptors, the assumption of omitting the
low-pressure receptors control of heart rate may lead to insignificant changes in heart rate if the changes in
arterial pressure are small.

Mathematical models of human cardiovascular system [32, 303, 69] were applied to study the effects
of short-term regulation of arterial pressure during hemorrhage. These works included only the high-
pressure baroreceptors which were sufficient to appropriately control the arterial pressure. We performed
an hemorrhage test for the validation of the parameters of the arterial baroreflex model, obtaining reason-
able results in comparison with animals and humans data [123, 143], as well as other mathematical models
[69]. There is literature evidence on the activation of cardiopulmonary receptors when there are variations
in total blood volume. Gupta et al. [108] demonstrated in dogs that the firing rate from the low-pressure
receptors decreased in proportion to the loss of blood volume, concluding that the low-pressure receptors
are primarily responsible for the reflex maintenance of arterial pressure. Abboud et al. [1] stressed that
both arterial pressure and cardiac filling pressure increase with expansion of blood volume and activate the
arterial baroreceptors as well as cardiopulmonary baroreceptors with vagal afferents. The mathematical
model presented in Section 5.2.4 was first validated for a hemorrhage test; even if the underlying model
with high-pressure receptors alone was able to reproduce physiological variation in mean arterial pressure
during hemorrhage test, this was not the case for the infusion test. According to a sensitivity analysis study,
arterial resistance is positively correlated to arterial pressure while negatively correlated to right atrial pres-
sure. This means that a decrease in arterial resistance might decrease the arterial pressure and increase the
central venous pressure. Therefore, the effect of the baroreflex control on arterial resistance is twofold: it
helps controlling the arterial pressure during the infusion and it increases the central venous pressure, de-
creasing the total effective compliance. As reported in [171], the infusion test did not significantly change
the arterial pressure, so the variation in arterial resistance might be due to the action of the low-pressure
receptors. Figure 5.8 compares the percentage change in mean arterial pressure and other cardiovascular
indexes during the infusion test under the action of either high-pressure baroreceptors (gv,i = 0 for all i ∈ ε)
or low-pressure receptors alone (ga,i = 0 for all i ∈ ε). In the first case, the mean arterial pressure increases
by 9%, leading to 20% variation in heart rate. On the contrary, under the action of the low-pressure re-
ceptors alone, the value of the mean arterial pressure is almost equal to the pre-infusion one due to the
variation in arterial resistance and venous unstressed volume. When the two types of receptors work to-
gether, the mean arterial pressure increases only by 1.03% after the volume expansion; the cardiac output
and the cardiopulmonary blood volume increase by 24.11% and 16.98%, respectively, while the heart rate
decreases by 2.44% (as shown in Figure 5.7). As blood volume is infused in the circulation, the pressure in
carotid arteries and aortic arch increases and activates the sympathetic control of the high-pressure barore-
ceptors; the low-pressure receptors are in turn activated by changes in right atrial pressure. The variation
in arterial resistance and the unstressed volume was modified mainly by the receptors in the low-pressure
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FIGURE 5.8: Changes in haemodynamic parameters before and after expansion. Comparison
between simulation with high-baroreceptors alone (gv,i = 0 for all i ∈ ε) and simulation with
complete baroreflex control with both high- and low-pressure receptors. Computed results
are compared to literature data from [171]. Parameters under consideration are MAP, mean
arterial pressure; CO, cardiac output; H, heart rate; CPBV, cardiopulmonary blood volume.
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system while the other variables undergoing regulation remain almost constant during the infusion, as we
see in the efferent responses (Figure 5.9). The 39% variation in arterial resistance increased the right atrial
pressure up to 6.3 mmHg, decreasing the TEVC to 2.806 ml/mmHg/kg. This change in arterial resistance
is such that the variation in total systemic vascular resistance evaluated as ratio between mean arterial
pressure and cardiac output reflects the one observed in [171].

Concerning the unstressed volume, few data are available about the entity of changes in venous tone
during infusion or hemorrhagic events. Even if there are several techniques for the determination of body
venous tone, all of them present technical limitations; in whole animals, information on body venous tone
or capacitance cannot be obtained with intact cardiovascular reflex system. The MCFP method was used
for the evaluation of whole body venous tone or venoconstrictor influence; however, this method is un-
able to obtain reliable readings of compliance and unstressed volume. First, the amount of unstressed
volume was linearly extrapolated from the blood volume/MCFP relationship; however, this relies on the
assumption that there is a linear volume–pressure relationship, but this is not generally valid. Moreover,
changes in blood volume activate cardiovascular reflexes that modify the unstressed volume, which in turn
initiate other regulatory mechanisms. The volume/MCFP relationship has been obtained in animals with
suppressed autonomic reflex [299] and even then the effects of vasoactive agents, such as angiotensin II, va-
sopressin or endothelium-derived relaxing and contracting factors modified the volume of blood, leading
to over- or underestimation of changes in compliance and/or unstressed volume. There is evidence that
a change in blood volume induced a larger change in unstressed volume than compliance [75]. Echt et al.
[82] measured venous tone in the arm during blood volume changes by means of venous occlusion plethys-
mography in the left forearm. Using forearm volume and pressure, the volume elasticity coefficient at an
intravenous pressure of 15 mmHg was used as measure of venous tone. Their observations failed to reveal
changes in venous tone with moderate (±10%) changes in central blood volume; they did not excluded the
possibility of venous tone variation, probably these changes took place in other parts of the capacitance
system. Figure 5.9 shows the percentage alteration of the parameters controlled by the baroreflex model
during blood infusion. The venous compliance remained almost constant during the infusion, while the
unstressed volume varied by less that 10%, according to venous pressure changes and the threshold and
saturation points given by previous works [306]. From literature evidence, it is difficult to establish the real
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FIGURE 5.9: Efferent response of the baroreflex model during the volume expansion evaluated
at the beginning of the cardiac output by a first order differential Equation (5.14). Infusion
starts at 80 s and it ends at 320 s. The parameters undergoing regulation are H, heart rate,
Emax, maximum elastance of cardiac chambers, Ra, arterial resistance in terminal arteries and
arterioles’ compartments, Cv, venous compliance, Vu, venous unstressed volume.
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variation of unstressed volume or compliance per se, without combining the baroreceptors activity with
other reflex control mechanisms. However, we are aware that such variation in unstressed volume is neces-
sary to control the mean arterial pressure and cardiac output as in the physiological experiment, especially
when other cardiovascular regulatory system are not taken in consideration. The local sensitivity analysis
(not reported here) of the principal parameters of the global mathematical model with linear relationship
for resistances and compliances and without baroreflex control revealed that the venous unstressed volume
is one of the major determinants of computed mean arterial pressure and mean central venous pressure.
Both arterial and venous pressures were negatively correlated to venous unstressed volume; an increase
of 20% in venous unstressed volume caused a decrease of 10.11% in mean arterial pressure and 13.32% in
mean central venous pressure.

5.4 Conclusions

A mathematical model of the human circulation was used to estimate the TEVC of a mathematical
model for human circulation, evaluating the changes in central venous pressure with respect to changes in
blood volume during an infusion test. In order to perform this experiment the original model was mod-
ified. The main changes regarded (i) the introduction of total blood volume, including both stressed and
unstressed volume, (ii) the parametrization of vascular compliance and its distribution between different
vascular compartments, (iii) the use of nonlinear pressure-volume relations for venule compartments, and
(iv) the use of resistances for capillaries and venules featuring a nonlinear dependence from compartment
volume. We showed that a physiological parametrization of the mathematical model, in particular the as-
signment of physical compliance and unstressed volume in different vascular compartments, is necessary
but not sufficient for obtaining a TEVC in agreement with experimental data. In fact, major physiological
mechanisms must be considered, such as, for example, the short-term control of arterial pressure by barore-
ceptors which is crucial for obtaining modelling results that are in agreement with observed variations in
mean arterial pressure, cardiac output, heart rate, and cardiopulmonary blood volume during the infusion
test.
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As we pointed out previously, other reflex mechanisms are activated to control volume homeostasis
and to re-establish baseline cardiovascular variables after blood volume changes. Increased blood volume
leads to increased cardiac output, which in turn increases the capillary pressure; due to the capillary fluid
shift mechanism, fluid starts to flow out of the circulation through the tissue capillary walls to readjust the
blood volume. Moreover, increased venous pressure gradually distend the veins by the reflex called stress-
relaxation; the venous blood reservoirs (the unstressed volume in the liver and spleen) distend or contract,
modifying the mean systemic pressure. Finally, excess blood flow in the peripheral tissues activates au-
toregulatory mechanisms of blood flow control. This kind of local control occurs within seconds to minutes
and provide rapid regulation of tissue blood flow by means of local vasodilation or vasoconstriction of
small terminal vessels (arterioles and pre-capillaries), thus modifying the peripheral vascular resistance
and resistance to venous return. Drees and Rothe [75] measured variation in mean circulatory pressure at
0.5, 2, and 5 min after randomized changes in blood volume in dogs; they showed the reflexogenic control
of vascular capacity evaluating the changes in effective compliance with time. They concluded that the
compensation after about 30 s was mostly from passive viscoelastic creep and fluid shifts; less than half of
the compensation for hemorrhage during the first 5 min came from the stress-relaxation venoconstriction.
Even if the infusion considered in this work was performed in the shortest possible time, four minutes are
long enough to start reflex mechanisms other than the baroreflex control. This is one of the main limita-
tions of the present work. In future work, all these mentioned mechanisms should be taken into account to
better represent the physiology of this infusion test. This will imply the introduction of a model for solute
transport that permits to study the transcapillary fluid shift during the infusion experiment.

London et al. [169, 248] showed the strong positive relationships between compliance and cardiopul-
monary, interstitial and extracellular fluid volumes. As demonstrated by animal experiments and by im-
mersion in man, the filling pressure of the heart is monitored through cardiac mechanoreceptors controlling
renal function, extracellular fluid volume and thirst via the autonomic nervous system. Thus, even if the
effective compliance was evaluated by an infusion within four minutes, a complete control of the volume
in the circulation should be obtained only if other body fluid compartments are added to the mathemat-
ical model and the main regulatory mechanisms that participate in the long-term regulation of arterial
pressure are included. This link with other body fluids was stressed in the evaluation of effective com-
pliance in arterial hypertensive patients. It has been shown [248, 249, 169, 170] that hypertensive patients
are characterized by decreased TEVC, mainly in the venous compartment, due to complex haemodynamic
abnormalities with alterations in main fluid volume control mechanisms. A decreased venous compliance
could increase the cardiac output, causing the activation of regulatory mechanisms that modify the total
peripheral resistance; this could be an initiating factor in hypertension. Future work will focus on the
estimation of the effective compliance in the context of remodelling that is cause/consequence of arterial
hypertension.

A further aspect that leaves room for improvement is that of local autoregulation. Previous versions of
this model included the myogenic response of cerebral autoregulation. In this work, we did not consider
the local control, but a global regulation of venous resistances. One should differentiate regulation with
local mechanisms to brain and heart and global control to the remaining vascular territories, as proposed
in [8]. Finally, note that even if the short-term control of arterial pressure by baroreceptors adopted in this
work produced results in agreement with experimental observations available in the literature, an aspect
that could be addressed in future developments is to consider a more refined baroreflex model that would
account for the asymmetrical response of receptors and that would be able to generate an hysteresis loop
for the nervous receptors activity, first of all in the cardiac regulation.

While the parametrization of the mathematical model provided in this work and the consequent adap-
tation of the cardiovascular system to the infusion test might not be totally accurate, especially because of
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lack of experimental data available for model parametrization, we believe that the results presented here
should contribute to raise awareness about the difference of effective and physical parameters, as well as
about the need to enrich the set of physiological processes that models like the one considered here need to
incorporate, especially if large deviations from the baseline model state are to be described.
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Chapter 6

Major determinants of essential
hypertension: a computational study
based on a closed-loop model for the
human circulation

6.1 Introduction

Arterial hypertension is by far one of the most important sources of morbidity and mortality in the
world [226]. It affects approximately 40-45% of the world population aged >25 years (1.13 billion in 2015
[179]) with a global age-standardized prevalence of 24 and 20% in men and women, respectively [179].
Moreover, hypertension becomes progressively more common with advancing age, with a prevalence >

60% in people aged > 60 years. As populations age and adopt more sedentary lifestyles, prevalence of
hypertension continues to rise and is expected to affect more than 1.5 billion people by 2025 [179]. It has
been estimated that complications of hypertension account for 9.4 million deaths worldwide every year
[226]; examples of hypertension-related diseases are ischaemic heart disease, heart failure, atrial fibrillation,
chronic kidney disease, peripheral artery disease, stroke and cognitive decline, to name but a few. The
recent COVID-19 pandemic has posed particular attention on possible risks associated to hypertension. The
available evidence is consistent overall in suggesting that hypertension increases the risk of acquiring SARS
CoV-2 infection, admission to intensive care units, severe disease and mortality. Whether these increased
risks were independent of other risk factors, however, has not been fully elucidated [227].

Essential, or primary, or idiopathic hypertension is historically defined as a rise in blood pressure; ac-
cording to the guidelines of the European Society of Hypertension [179], hypertension is defined as an office
systolic blood pressure > 140 and/or diastolic blood pressure > 90 mmHg, which is equivalent to a 24 h
ambulatory blood pressure monitoring average of > 130/80 mmHg or a home blood pressure monitoring
average of > 135/85 mmHg. Blood pressure can be highly variable, hence the diagnosis of hypertension
should not be based on a single office measurement (unless blood pressure is substantially increased), but
on repeated office blood pressure measurements during a number of visits and/or out-of-office blood pres-
sure measurement using 24 h ambulatory or home blood pressure monitoring. Moreover, depending on
the severity of blood pressure elevation, the assessment of the presence of other cardiovascular risk fac-
tors (such as dyslipidaemia and metabolic syndrome) or hypertension-mediated organ damage (such as
left ventricle hypertrophy, chronic kidney disease or advanced retinopathy) are necessary to establish the
severity in the progression of arterial hypertension. Multiple risk factors for high blood pressure have been
identified, including genetic variations, obesity, insulin resistance, high alcohol intake, and stress. When a
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potential cause of high blood pressure is identified (especially in people with young onset of hypertension),
it is referred as secondary hypertension. However, hypertension is a highly heterogeneous disorder with
a multifactorial aetiology and its cause remains enigmatic in 95% of cases [39]. While precise causes of
increased arterial blood pressure are rarely determined, it was demonstrated that lowering blood pressure
can substantially reduce premature morbidity and mortality [179]. There are two well-established strate-
gies to reach this goal: lifestyle interventions and antihypertensive drugs. Lifestyle modifications include
increased physical activity, weight control, sodium restriction, alcohol moderation, healthy eating, and
smoking cessation; all these factors delay the onset of drug therapy. Two general classes of drugs are used
to treat hypertension: vasodilator drugs that relax the smooth muscle cells to reduce systemic vascular
resistance and natriuretic or diuretic drugs that decrease tubular reabsorption of salt and water to reduce
blood volume; ACE inhibitors, ARBs, calcium channel blockers, and thiazide or thiazide-like diuretics are
usually recommended as drug treatment. Despite the evidence of treatment benefit, fewer than half of
all hypertensive patients have adequately controlled blood pressure. Poor patient adherence to treatment
(especially when based on multiple pills) is now recognised as the major factor contributing to poor blood
pressure control [179].

The body is endowed with many interrelated arterial pressure regulating mechanisms. Each one of
them performs a specific function to provide both short-term and long-term arterial pressure regulation
[113, 112]. The first line of reaction against acute changes in arterial pressure is the nervous control system;
this class of regulatory mechanisms that respond in seconds to pressure changes includes the barorecep-
tor feedback mechanism, the central nervous system ischaemic mechanism and the chemoreceptor mech-
anism. The nervous mechanisms act on constriction/dilation of most peripheral arterioles, on contrac-
tility of the heart and on vein reservoir properties to almost instantly reset arterial pressure into a nor-
mal range. After few minutes following acute arterial pressure changes, other mechanisms are activated:
the renin-angiotensin vasoconstrictor mechanism, stress-relaxation of the vasculature, and shift of fluid
through the tissue capillary walls in and out of the circulation to readjust the blood volume as needed. The
long-term (over days, months, and years) pressure regulation is achieved mainly by kidney’s mechanisms
through renal-body fluids pressure-volume control and its interaction with other factors, such as the renin-
angiotensin system with the aldosterone mechanism. How these regulatory mechanisms contribute in the
development and progression of the hypertensive disease remains subject of debate [112, 233].

In this unclear and board scenario, computational models can be a practical approach to better quanti-
fying the haemodynamic effects of cardiovascular properties in this medical condition. An early, seminal
contribution in this field is due to Guyton in the early 70s [112], which was concerned with the system
analysis of arterial pressure regulation and hypertension. The model presented in [112] consists of several
hundred algebraic and ordinary differential equations that incorporate the main ingredients of the vascular
system, their interaction with extracellular fluid volume and detailed regulatory mechanisms. The original
Guyton’s model includes many simplifications, that were mandatory to accommodate a large number of
cardiovascular relationships and to create a model that requires a reasonable computational cost. From
the pioneering Guyton’s contributions, other mathematical models have been developed to provide a more
comprehensive representation of the entire circulation and its control by other influences, including the
central nervous system [137, 136, 3]. Other approaches in mathematical modelling of arterial hypertension
focused on particular districts of the cardiovascular system. An example was proposed by Segers et al.
[261], who studied heart-arterial interaction in hypertension-induced left ventricular hypertrophy using a
left ventricle time-varying elastance model coupled to a 4-element lumped parameter model of the sys-
temic arterial system. One-dimensional models of the arterial system have been widely employed to study
arterial haemodynamics under various pathophysiological conditions; this kind of models are suitable for
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studying wave propagation phenomena under ageing and hypertensive conditions. Two exemplary pa-
pers along these lines are [157] and [53]. In the first one, the hypothesis that increased pulse wave reflection
and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher
pulse pressure was tested with the help of numerical modelling (55-segment 1D arterial network model) to
confirm the interpretation of the experimental results. In the second paper, one-dimensional computational
modelling was used to provide a database of arterial pulse waves to span a range of cardiovascular condi-
tions, representative of a population of healthy adults. Another example was due to Blanco et al. [30]. In
that work, an Anatomically Detailed Arterial Network (ADAN) model was used to study the role of hyper-
tension in cerebral small vessel disease; model parameters were modified to consider structural changes in
arterial vessels in the hypertensive scenario. All these 1D models are open-loop and do not consider the
closed-loop case. A first step in this direction was proposed by Liang [158]; as pointed out by the authors
of that work [158], mechanical, structural and functional changes may occur in the entire cardiovascular
system as a cause or consequence of hypertension, hence traditional 1D models are not sufficient to well
describe the remodelling due to hypertension. In this framework, Liang et al. [158] proposed a multiscale
model which integrates the main cardiovascular components prone to alterations in hypertension (such as
the heart, large arteries, distal arteries and arterioles) into a unique computational framework that enables
to explore the determinant cardiovascular factors for haemodynamic variables of concern in the treatment
of hypertension. The model provided by Liang et al. includes a one-dimensional network for major ar-
teries, structured-tree models for small arteries and arterioles while other cardiovascular components are
described by zero-dimensional models, included the venous circulation, which is represented by two com-
partments, one for the upper-body and another one for the lower-body. The role played by venous system
changes was not explored.

In the present work, we use a global closed-loop mathematical model for the entire human circula-
tion to investigate the hypertensive condition. Such a model departs from the original Müller-Toro model,
firstly proposed in 2014 [201, 202] and then improved in 2021 [292]. It is a geometric multiscale type model
which includes one-dimensional models for blood flow in major vessels and zero-dimensional lumped-
parameters models describing blood flow in the remaining compartments. It includes 323 vessels, compris-
ing arteries and veins; four heart chambers and cardiac valves; 3 compartments for the pulmonary circula-
tion; 31 compartmental models describing the connections between terminal arteries and veins through the
microcirculation; 17 venous valves; 21 Starling resistors. Moreover, it is coupled to a simple model based
on [307] which describes the intracranial pressure as function of the cerebral blood volume; this intracra-
nial pressure serves as external pressure of all the intracranial districts. Concerning physiological control
systems, this global mathematical model incorporates a cerebral autoregulation model, which aims at main-
taining adequate and stable cerebral blood flow during changes in blood pressure working on dilatation or
contraction of arterioles and capillaries [305, 234], and a model for short-term regulation of pressure, which
considers the activity of high- and low-pressure baroreceptors [32, 51]. Figure 6.1 summarizes schemat-
ically the structure of the work. Based on clinical studies, we reproduce computationally the structural
changes that are causes and/or consequences of high-blood pressure. There is clinical evidence showing
that the hypertensive setting does not affect only large arteries, but also the microcirculation, the heart,
the pulmonary circulation and the ’low-pressure’ system (the venous circulation). This requires to change
our model parameters to reflect how the cardiovascular system adapts to this new state. Using a global
closed-loop model allows us to establish the interplay between different blood compartments and to have
a more complete description of the role played by different hypertension-induced/inducing alterations of
the baseline setting in the determination of arterial pulse pressure.
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FIGURE 6.1: Schematic representation of the global model of the circulation and its adaptation
in hypertensive condition. 1D model refers to networks of major arteries and veins, which
are modelled using evolutionary partial differential equations, providing space- and time-
resolved blood pressure and flow. Rectangles represent lumped-parameter models, which are
used to describe the heart chambers, the pulmonary circulation, the microcirculation, as well
as valves, Starling resistors and intracranial pressure dynamics. Two regulatory systems are
also incorporated: cerebral autoregulation and baroreflex control. Such compartments and
regulatory processes are modelled using ordinary differential equations (0D model), which
provide time-resolved haemodynamic variables.



6.2. Methods 131

The rest of the chapter is structured as follows. Section 6.2 summarizes the main features of the cardio-
vascular model on which this work is based and then it describes the modifications on the model parame-
ters to simulate the hypertensive condition. Section 6.3 presents main computational results on normoten-
sive and hypertensive conditions. Computed data are validated and discussed with respect to clinical
measurements reported in the literature; moreover, an assessment of the effects of remodelling in different
cardiovascular districts is performed to better quantify their role in the progression of the disease. Finally,
Section 6.4 includes concluding remarks with comments on limitations and possible future works.

6.2 Methods

In this section, we present the global closed-loop mathematical model of the entire human circulation
and its adaptation to arterial hypertension remodelling. All the main ingredients of the global model were
described in detail in previous works and are here briefly summarized. We refer the reader to [201, 202, 292,
51]. Concerning the remodelling due to hypertension, we describe how the model parameters are changed
based on clinical measurements reported in the literature.

6.2.1 Mathematical model of the cardiovascular system

We model blood flow in the entire human circulation by means of a geometric multiscale type model
which includes one-dimensional averaged models for major vessels and compartmental models for the
remaining components.

Arteries and veins Blood flow in major vessels, arteries and veins, is modelled using a 1D system of par-
tial differential equations based on averaging the incompressible Navier-Stokes equations over the vessel’s
cross-sectional area. The resulting system expressing conservation of mass and balance of momentum is
given by∂t A + ∂xq = 0 ,

∂tq + ∂x

(
α̂

q2

A

)
+ A

ρ ∂x p = − f .
(6.1)

The three unknowns are A(x, t), the cross-section’s area of the vessel’s lumen, q(x, t), the blood flow rate
and p(x, t), the cross-sectionally averaged internal pressure. α̂ is the Coriolis coefficient linked to the veloc-
ity profile, here taken equal to 1, ρ is the blood density and f is the friction force per unit length of the tube.
To close the system, we adopt a pressure-area relation which aims the viscoelastic nature of vessels wall

p(x, t) = pext(x, t) + K(x)
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Γ
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√

A
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Viscoelastic term

, (6.2)

where A0(x) is the vessel cross-sectional area at equilibrium, K(x) the vessel stiffness, P0 the reference
pressure, pext the external pressure. Γ is a constant related to the viscoelastic properties of the vessel wall
and it is chosen following [7], as

Γ =
2
3
√

πγh0(x) , (6.3)

where γ is the wall viscosity and h0(x) is the wall thickness. The value of these parameters are chosen
such that the hysteresis of pressure-area plots in peripheral arteries and veins reproduces physiological
observations. We refer the reader to [292] for more details about the chosen parameters of the viscoelastic
term in the tube law. The vessel stiffness accounts for mechanical and geometrical properties of the vessel
and it is obtained from the reference wave speed c0 assumed for each vessel, distinguishing arteries, veins,
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and dural sinuses [292]. For arteries, this wave speed is computed as proposed by Olufsen et al. [225],
namely,

c2
0 =

2
3ρ

(k1 exp(k2r0) + k3) , (6.4)

where r0 is the artery’s radius at the reference configuration, k1, k2 and k3 are empirical constants and are
taken to achieve normal wave speeds in the large vessels for a young adult human and a reasonable increase
in smaller vessels. We set k1 = 3× 106 g/s2/cm, k2 = −7 cm−1 and k3 = 40× 104 g/s2/cm. The parameters
m and n are two real numbers that can be derived from experimental measurements; throughout this work,
we assume m = 10 and n = −1.5 for both arteries and veins. In previous versions of this mathematical
work [201, 292, 51], we usually assumed m = 0.5 and n = 0 for arteries; generally one needs to choose m > 0
and n in [−2, 0] in order to preserve desirable mathematical properties of the PDE system [289]. However,
in [63], direct estimation of m and n in ovine and human arteries revealed that values of m greater than 4
and values of n smaller than -0.4 are more appropriate for the representation of the hyperelastic nature of
the vessels wall and their collapsing behaviour; real vessels tend to become stiffer as deformations grow,
which is not satisfied if the value m = 0.5 is adopted. Since we are interested in hypertension remodelling
and hence vessels’ deformations over a wide blood pressure range, we believe that more realistic values of
these constants need to be used.

When the vessel wall viscoelasticity is incorporated in the model, a second-order spatial derivative of the
flow variable in the momentum balance equation arises, turning the problem into an advection-diffusion-
reaction problem. Using a relaxation technique, firstly proposed by Cattaneo [49], we obtain a non-linear
hyperbolic PDE system that is solved using a high-order well-balanced non-linear numerical scheme in
space and time based on the ADER (Arbitrary high-order DERivatives) [294] finite volume scheme [197,
199, 295, 205, 206] and a local time stepping (LTS) approach [207, 78], which is implemented so that the local
time step is defined at the level of the vessels. We refer the reader to the works in [294, 288] for an up-to-
date review on ADER schemes, to the works in [205, 206] for full details about the high-order well-balanced
scheme in the framework of path-conservative schemes, to the works in [295, 197, 199] for clarification about
the hyperbolic reformulation of the parabolic system incorporating the viscoelastic nature of the vessel wall
mechanics, and finally to the works in [207, 78] for the local time-stepping procedure.

Microcirculation Lumped-parameter models for the microcirculation describe the connection between
arteries and veins through arterioles, capillaries and venules; the generic vascular bed model used for all
microvasculature beds is based on the three-element Windkessel model. This model is characterized by

• characteristic impedances that couple any number of connecting 1D arteries/veins to lumped-parameter
models for the microvasculature (Rda or Rvn) and regulate the pressure drop between 1D domains and
vascular beds;

• peripheral resistance and compliance divided between arterioles (Ral , Cal) and capillaries (Rcp, Ccp);

• venous compartment characterized by a nonlinear pressure-volume relation with related compliance
(Cvn) at its basal point [51].

Moreover, the resistances that are located between capillaries and venules’ compartments and the charac-
teristic impedances that couple 1D veins to venules’ compartment (Rcp and Rvn) are nonlinearly related to
blood volume variation as described in [51].
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Heart and pulmonary circulation The heart model uses the ‘time-varying elastance’ model [160, 276]
to describe the dynamics of relaxation/contraction of the four cardiac chambers, while cardiac valves are
modelled as in [216]. For each heart chamber, the time-varying elastance E(t) is defined by

E(t) = EAe(t) + EB , (6.5)

where EA and EB are respectively the maximal contractility at systole and the baseline elastance, while e(t)
is the normalized time-varying elastance taken as in [276].

The pulmonary circulation is divided into arteries, capillaries and veins; each compartment is charac-
terized by a pulmonary resistance and a pulmonary inertance that are used for the evolution of the fluid
exchange between compartments.

Venous valves and Starling resistors Venous circulation is equipped with venous valves. Starling resistor
models are placed at the confluence of cortical veins in the dural sinuses and they prevent the vein collapse
maintaining the blood pressure upstream the collapsed segment higher than the intracranial pressure. Both
venous valve and Starling resistor are represented by ideal diodes using the model presented in [216].

Total blood volume Since total blood volume is of primary importance in the determination of arterial
pressure, it is crucial to include a total blood volume control in the global model. To this end, we consider
both the stressed and unstressed component of blood volume in both 1D vascular networks and lumped-
parameters models for the microcirculation, heart and pulmonary circulation. The unstressed volume is
the volume in a compartment when the transmural pressure is equal to zero, while the stressed volume
creates an elastic recoil pressure that is an important factor in the generation of blood flow and depends on
the vascular compliance of a specific compartment. The reader is referred to [51] for a comprehensive de-
scription of the blood volume distribution between different vascular districts, which includes assignment
of compliances and unstressed volume.

Cerebrospinal fluid model The blood circulation model is coupled to a simple cerebrospinal fluid model.
This model, based on [307, 202], is characterized by a single compartment representing the cranial and
spinal cavity with elastic behaviour allowing for volume changes. Variations in cerebral blood volume
produce fluctuations in intracranial pressure.

Cerebral autoregulation Cerebral autoregulation is a mechanism which aims to maintain stable cerebral
blood flow despite changes in arterial pressure. Three key mechanisms, the myogenic, metabolic and neu-
rogenic, play a role in the cerebral autoregulation. The myogenic process refers to the active behaviour of
the vasculature in response to changes in arterial blood pressure; changes in strain of the walls of the small
arteries results in vasoconstriction or vasodilatation, hence modifications in the resistance to blood flow.
The metabolic response results from any local mismatch between supply and demand for oxygen while
the neurogenic response is the least well understood since sympathetic activity has been proved to be the
hardest both to interpret and to measure [235]. In this work, cerebral arterial circulation is controlled by
a cerebral autoregulation model which works on resistances and compliances of terminal arteries, arteri-
oles and capillaries compartments in response to changes in cerebral blood flow. The action of myogenic
regulation includes a static gain and first-order low-pass dynamics. An increase in cerebral blood flow
causes vasoconstriction, with consequently decrease in compliance and increase in resistance of cerebral
arterioles/capillaries. The regulatory response is modelled by a sigmoidal static relationship with upper
and lower levels which account for limited vasodilatation and vasoconstriction capacities [292, 305, 234].
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Baroreflex control The baroreceptor system is one of the major short-term pressure regulation mecha-
nisms. Baroreceptors in carotid arteries in the neck and in the arch of the aorta are stimulated by stretch
of the arterial wall due to alterations in arterial blood pressure, while low-pressure baroreceptors are acti-
vated by the right atrial pressure. Alterations in the arterial pressure and/or in the venous pressure affect
the firing rates of afferent fibers; such rates are modelled via sigmoid functions that depend on arterial and
venous pressure changes [69, 32, 306]. The averaged responses mediated by the sympathetic and parasym-
pathetic systems are a combination of pressure changes. Baroreflex acts on heart rate, maximum value of
elastance of the four cardiac chambers, arterial resistance (which comprises proximal resistance of 1D ter-
minal arteries and resistance of arteriolar compartment of vascular beds for all vascular districts, except
for the brain), and venous compliance and unstressed volume (i.e., the venous tone) of venules compart-
ment of non-intracranial vascular beds and 1D veins. A detailed description of the model and how it is
incorporated in the present global model can be found in [69, 32, 51].

Parametrization of the model The parameters needed for the implementation of the global closed-loop
model are defined in order to simulate a young healthy subject. Unless specified otherwise in this work,
the parametrization is the same as the one reported in [292] and [51]. We refer the reader to the works in
[201, 202, 292, 51] for more details about the model description, parameter selection, and validation of the
baseline state.

6.2.2 Hypertensive scenario

Pathophysiological studies have extensively investigated the remodelling and functional changes in
hypertension. Here, we modify our model in order to reproduce main changes experienced by the car-
diovascular system for the hypertensive condition. As previously said, this medical condition is more
prevalent in middle-aged and old patients; during 2015-2016 in United-States [97], the prevalence of hy-
pertension was 29.0% and increased with age: age group 18-39, 7.5%, 40-59, 33.2% and 60 and over, 63.1
%. Therefore, we focused on middle-aged untreated subject with mild to moderate hypertension (systolic
pressure 130-159 mmHg, diastolic pressure 85-99 mmHg) and we adjusted the model parameters according
to observations reported in the literature. Main modifications involve large arteries stiffness, peripheral
resistance of small arteries and arterioles, decrease in capillary density, left ventricular hypertrophy of the
heart and distensibility of the venous system.

Large arteries remodelling Large arteries alterations associated with hypertension may involve both
structural and mechanical properties of arterial wall. Moreover, ageing mainly affects large arteries by
the arteriosclerosis process [191, 189]. The remodelling due to ageing and hypertension is not homoge-
neous along the aortic tree. Arteries can be subdivided into two types: elastic and muscular; the first group
has relatively large diameters and are located close to the heart (thoracic aorta, common carotid artery, aor-
tic root), while muscular arteries are located at the periphery (femoral, brachial, and radial arteries). It has
been observed that elastic arteries of hypertensive subjects are characterized by an increase in intima-media
thickness and lumen enlargement [43, 148, 85]. On the other hand, muscular arteries are characterized by
increased thickness but no change in lumen diameter; moreover, the elastic response is maintained despite
hypertrophy of the arterial wall [150]. In view of this evidence, we divide the network of arteries into
elastic (along the aortic branch) and muscular vessels. According to [150], the ratio between wall thickness
and internal radius increases by 40 % in muscular peripheral arteries while it is not significantly changed
in elastic arteries [43]. On the contrary, the elastic modulus increases by 45% in elastic arteries and re-
mains unchanged in the other group. Radius of elastic arteries increases by 10% since it was proved that
aortic root size increases with ageing [84]; in order to maintain normal ratio between wall thickness and
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internal radius, the wall thickness increases proportionally. These modifications do not affect the stiffness
K(x). However, since we are interested in middle-aged hypertensive subjects, the intrinsic stiffness of elas-
tic arteries is augmented due to the ageing process. This physiological behaviour is translated into the
mathematical model in order to generate a 40% increase in pulse wave velocity. For muscular arteries we
consider an augmented wall thickness for the evaluation of the stiffness K(x) to match the carotid-femoral
pulse wave velocity increase by 40%.

In this work, we are considering a viscoelastic behaviour of the vessels wall, which depends on Γ; this
parameter describes the viscoelastic properties of the wall and it is proportional to the vessel wall thickness,
as described in Eq. (6.3). Therefore, in the hypertensive scenario, we increase Γ for both elastic and muscular
arteries proportionally to the increase in wall thickness.

Microcirculation Vasoconstriction, eutrophic remodelling with increased media-to-lumen ratio, decreased
vasodilation reserve, and rarefaction characterize small resistance arteries in patients with essential hyper-
tension [148]. According to the literature, the main site for structural elevation of resistance is the proximal
part of the microcirculation; for this reason, Rda and Ral increase by 40 % to account for a decrease in small
vessel radii of about 7-8 % and an increase in blood viscosity [153, 148, 187, 243]. On the other hand, the
capillaries, that are crucially important for local flow distribution, are partly protected from pressure el-
evation by a raised resistance upstream. Resistance vessels ensure that the mean intra-capillary pressure
remains within a tightly controlled range well below the arterial level for preservation of the structural in-
tegrity of the fragile capillary wall. Therefore, Rcp increases by only 10 % in order to consider the reduction
of capillary density that characterizes the ageing process [153, 129].

Heart and pulmonary circulation Elevated systemic load induced by hypertension lead to left ventricular
hypertrophy in the heart. Enlargement and thickening of the heart muscle of the left ventricle maintain the
systolic wall stress at normal values despite increased load. Both active and passive elastance increases by
30 % to match literature data [261].

Concerning the heart rate, there is no appreciable difference between the normo- and hypertensive
patients. McEniery et al. [190] reported an heart rate of 69 ± 12 beats/minute in an healthy group of 5648
patients and 70 ± 12 beats/minute in an hypertensive group of 3420 subjects. Abdelhammed at el. [2]
found that normal subjects (19 people) have an heart rate of 68 ± 12 beats/minutes while hypertensive
patients at stage I of the disease (systolic blood pressure 140-159 mmHg, diastolic blood pressure 90-99
mmHg) with uncontrolled blood pressure (44 subjects) have an heart rate of 70.6 ± 10.6 beats/minutes.
They also observed that heart rate tended to be higher in the pre-hypertensive group, but this difference
was not statistically significant. For this reason, the same cardiac cycle duration (0.8 s) has been adopted
for simulations of both the normotensive and hypertensive subjects.

As in the systemic circulation, the arterial pulmonary pressure and resistance increase in hypertension.
Hence, the resistance of the arterial compartment of the pulmonary circulation increases by 40% [224, 175].
On the other hand, pulmonary compliance remains unchanged since it was observed that intrathoracic
vascular compliance is comparable between normotensive and hypertensive patients [170, 249].

Total blood volume and vascular compliance It has been observed that total intravascular volume is
normal or decreased in hypertension [175]. In contrast, human and animal studies revealed that vascular
compliance is reduced [171, 169, 170, 168, 247, 248, 251]. In view of these considerations, we set up the same
total blood volume in both normotensive and hypertensive subjects while venous compliance is reduced
by 25 %. Increased stiffness in 1D arteries leads to decreased total arterial compliance. Hence, the parame-
ter for total arterial compliance, which includes both 1D arteries compliance and arterial miscovasculature
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compliance, is modified such that the arterial part of the vascular beds is characterized by the same com-
pliance of the normotensive case. For the assessment of the total effective vascular compliance, we perform
a blood infusion test of 500 ml in four minutes in normotensive and hypertensive context, following the
experimental procedure proposed in [82, 171]. We refer the reader to [51] for a complete discussion on how
to perform this test, the mathematical modelling implications and a comparison with the existing literature
in normotensive case.

Regulatory systems Hypertension results in chronic adaptation of the cerebral circulation to higher lev-
els of blood pressure, such that the autoregulated curve of cerebral blood flow is shifted to the right with
respect to the setting point used for normotensive individuals [58]. This implies that, if blood pressure is
lowered to a level that would be safe in nonhypertensive individuals, the brain would be more suscep-
tible to hypoperfusion. This right shifting of the autoregulation curve, first described in animals model
and then verified in a limited number of hypertensive individuals, has been attributed to the increase in
vascular resistance induced by remodelling in cerebral resistance vessels [58]. In our model, we reproduce
the shift of this curve resetting the baseline values of arterial resistances and volumes to the hypertensive
status determined by means of a simulation in the hypertensive scenario without the action of regulatory
mechanisms.

The same happens with the baroreceptors regulation. According to literature data [212], the barorecep-
tor reflexes are reset towards a higher blood pressure level. Therefore, the baseline levels of activation for
both high- and low-pressure baroreceptors are reset to the new hypertensive states, evaluated by means
of a simulation in the hypertensive scenario without the action of regulatory mechanisms. Moreover, the
baroreflex seems to operate with reduced sensitivity in hypertension; there is evidence that this occurs in
sustained hypertensive patients and it is secondary to elevated blood pressure rather than playing a role in
early stage of the disease [212]. Since we are considering a mild to moderate class of hypertensive subjects,
we do not consider this aspect.

6.3 Results & Discussion

In this section, we report and discuss the main computational results comparing normotensive and hy-
pertensive states. The discussion focuses on large and small arteries remodelling, the heart in hypertension,
total blood volume, effective vascular compliance and the venous system in hypertension. Computational
results, as well as the modelling assumptions to obtain them, are compared and discussed with respect
to existing literature. The final part of this discussion compares the effects of the remodelling in different
compartments of the cardiovascular system, one by one; this analysis could be helpful in understanding
which cardiovascular elements are more significant in the determination of arterial pressure.

6.3.1 Large and small arteries remodelling

The first part of this discussion assesses the arterial circulation, which comprises 1D arteries and 0D
arterioles and capillaries. Table 6.1 shows main cardiovascular indexes linked to arterial circulation; we
refer to systolic, diastolic, mean and pulse pressure in brachial, carotid and aortic arteries, as well to pulse
pressure indexes (augmentation index and pulse pressure amplification), pulse wave velocities and arterial
compliance index. Computed values in normotensive and hypertensive subjects are compared with liter-
ature data. In the hypertensive scenario, systolic, diastolic and mean blood pressures values in brachial,
carotid and aortic arteries well reproduce the pressure rise that was clinically observed in patients at stage
I of the disease. Figure 6.2 compares the computed waveforms over a cardiac cycle along the aorta and ma-
jor arteries of the lower limb in normotensive and hypertensive subjects. Cardiac-cycle averaged pressure
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values are reported for each analysed arteries above the corresponding plot in Figure 6.2; a comparable
increase in mean arterial pressure can be observed along the aortic tree.

TABLE 6.1: Cardiovascular indexes: comparison between normo- and hypertensive subject.
(S/D)BP: systolic/diastolic blood pressure; MBP: mean blood pressure; PP: pulse pressure; cf-
PWV: carotid-femoral pulse wave velocity; baPWV: brachial-ankle pulse wave velocity; Aug-
mented P: augmented pressure; Ca index: total arterial compliance index [2]. Details on how
to evaluate these indexes can be found in the Appendix B.

Index Normotensive Hypertensive Ref.

Value Ref. Value Value Ref.Value

Brachial SBP [mmHg] 111.52 115 ± 11 162.98 153 ± 22 [43]
Brachial DBP [mmHg] 73.14 71 ± 7 90.41 99 ± 10 [43]
Brachial MBP [mmHg] 89.74 86 ± 8 124.28 119 ± 12 [43]
Brachial PP [mmHg] 38.38 38 ± 2.8 71.24 49 ± 1.7 [232]
Carotid SBP [mmHg] 109.46 118 ± 14 162.84 166 ± 24 [43]
Carotid DBP [mmHg] 73.59 70 ± 7 91.14 95 ± 12 [43]
Carotid PP [mmHg] 35.96 48 ± 15 71.70 71 ± 24 [43]
Aortic SBP [mmHg] 108.15 108 ± 12 161.72 140 ± 17 [190]
Aortic DBP [mmHg] 74.05 75 ± 8 91.61 88 ± 11 [190]
Aortic PP [mmHg] 34.10 33 ± 10 70.10 52 ± 17 [190]
Augmented P [mmHg] 3.72 7 ± 7 12.56 16 ± 10 [190]
Augmentation Index [%] 10.91 18 ± 18 17.91 28 ± 14 [190]
PPAmpli f ication 1.12 1.44 ± 0.25 1.03 1.30 ± 0.2 [190]
cfPWV [m/s] 9.27 8.5 ± 1.5 14.21 11.8 ± 2.7 [15]
baPWV [m/s] 11.46 14.84 ± 3.4 16.05 16.7 ± 3.6 [282] [135]
Ca index [ml/mmHg/m2] 0.97 1.08 ± 0.25 0.55 0.61 ± 0.19 [2]

A brief review on large arteries remodelling Over the last decades noninvasive and invasive tech-
niques allowed a better quantification of vascular changes in hypertensive humans and experimental an-
imals. Large arteries undergo outward hypertrophic remodelling (increase wall thickness with limited
changes in vessel’s radius) and increased stiffness with aging and hypertension. In elderly patients, stiffen-
ing of central large (thoracic aorta, carotid) arteries is associated with increased aortic diameter and wall
thickness, elastic fragmentation and calcification, as well as elevated collagen content. Even if age and hy-
pertension both alter the structure of arterial wall and stiffness, the anatomical and functional changes are
not the same; structural modifications in hypertension are accelerated with respect to age-related changes.
Increased stiffness in hypertension is associated to hypertrophy of arterial wall and changes in the extra-
cellular matrix, mainly an increase in collagen [25]. However, the major determinant of arterial stiffness
remains the increase in blood pressure [247, 249, 25].

High blood pressure increases circumferential wall stress unless the change in pressure is matched by
a proportional decrease in vessel’s radius or thickness. According to the Laplace’s equation, the circum-
ferential wall stress σ is proportional to radius r, pressure p, and inversely proportional to thickness h:

σ =
pr
h

. (6.6)

The elevated circumferential stress is the fundamental trigger for the adaptive response of the vessel wall.
Wall thickening results from both cellular growth and synthesis of new extracellular material. All these
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FIGURE 6.2: Computed blood pressure p in the aortic tree at different locations a) to g) in nor-
motensive (blue line) and in hypertensive (orange line) state. Cardiac-cycle averaged values
are denoted by p̄N (normotensive) and p̄H (hypertensive).
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changes alter the biomechanical properties of the arterial wall, and therefore wall-material stiffness, a pa-
rameter usually evaluated from the determination of incremental elastic modulus. For the evaluation of
arterial structural changes in subjects with clinical hypertension, two different arteries have been widely
studied: the common carotid and the radial artery. The latter is composed almost exclusively of vascular
smooth muscle and serves as a model of a peripheral muscular artery, while the first one represents a cen-
tral musculo-elastic artery. Laurent et al. [150] performed the first non-invasive study for the determination
of the elastic characteristics of radial artery wall material in hypertensive patients. It was observed that the
intima-media thickening compensates for the rise in blood pressure (lumen diameter is not enlarged), and
circumferential wall stress is maintained within normal ranges [148]. Moreover, elastic response of the ra-
dial artery is maintained despite hypertrophy of the arterial wall. The authors concluded that at the site
of distal, muscular, medium-size arteries, thanks to their hypertrophy, normal compliance is maintained
despite the increase in intravascular pressure through the normalization of the Young’s elastic modulus
(the slope of the stress-strain relationship of vascular wall). This means that in these arteries any increase
in stiffness in hypertensive subjects always returns to the normal range when pressure is reduced to the
normal range. Furthermore, muscular arteries dilate in hypertensive subjects such that their compliance
(absolute volume change with change in pressure) may appear to be normal or even increased [250, 267,
150, 219]. At the site of hypertensive proximal elastic arteries, the intima-media thickening is insufficient
to compensate for both the enlargement of internal diameter and the rise in blood pressure: circumfer-
ential wall stress is significantly increased compared to the one observed in normotensive subjects. The
evaluation of the Young’s elastic modulus of the common carotid artery [43] revealed that it is increased
only in younger hypertensive patients, while in middle-aged and older patients, the mechanical properties
of the carotid arterial wall material are unchanged. In [149], the distensibility of the carotid artery was
determined in hypertensive patients and compared to age and sex-matched normotensive subjects. It was
shown that distensibility decreases as blood pressure increases; moreover, evaluation of distensibility at the
same blood pressure level revealed that it is not significantly different between hyper- and normotensive
patients after adjustment for age, but it decreases with ageing. This suggested that the decreased distensi-
bility in large elastic arteries in hypertensive subjects is due primarily to the increased distending pressure
and that age-independent structural modifications of the arterial wall play only a minor role [149]. In this
case, the stiffness results in increased pulse-wave velocity and alterations of amplitude and timing of wave
reflections and thus causes a disproportionate increase in systolic and pulse pressure [252].

Computational pressure-area relationship of large arteries

Keeping in mind these physiological and experimental evidence on large arteries remodelling, we now
focus on computational results. Figure 6.3 compares the pressure-diameter curves of these exemplary ar-
teries with respect to literature data [149, 150]. In case of common carotid artery, we are considering a 10
% enlargement of vessel’s diameter, according to data in [43]. Comparing the computed pressure-diameter
curve with respect to [149], computational results for the hypertensive subject are at the limit of the phys-
iological range; this is probably due to the fact that in [149] middle-aged matched normotensive and hy-
pertensive patients (50 ± 5 and 51 ± 3 years old, respectively) were compared. As stressed by Farasat et
al. [84], age accounts for dilation of large arteries, rather than hypertension; for adjustment with age, dif-
ferences between aortic diameter of normotensive and hypertensive patients were not observed. In view
of these considerations, since we are considering two groups of normotensive and hypertensive patients
at different age, we believe that it is reasonable to observe an higher increase in diameter with respect to
[149]. Anyway, we can notice that the lumen enlargement is more pronounced in the elastic artery, while
in the muscular artery the area is slightly increased, as observed in the experimental data. Moreover, the
modelling pressure-area relationship, the so called tube law in Eq. (6.2), is able to satisfactorily reproduce
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FIGURE 6.3: Computed diameter-pressure curve in right common carotid artery and in right
radial artery in normotensive (N) and hypertensive (H) subjects. Computational results are
compared to literature data in [149, 150] (mean ± SEM) for both normotensive (NLit) and
hypertensive (HLit) states. Diameter is normalized with respect to the average value over a
cardiac cycle.
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the physiological behaviour of the vessel’s wall deformation. As previously said, Eq. (6.2) depends on m
and n, two experimental parameters that are usually taken m > 0 and n in the range [−2, 0]. The choice
of m = 1/2 and n = 0 results in a tube law that does not reproduce the stiffening in the high blood pres-
sure range; therefore, in this work we imposed m = 10, n = −3/2 in order to simulate a more realistic
and physiological behaviour. To stress the effect of this choice, we compare in Figure 6.4 the computed
pressure-area curve (A, B) and the computed pressure waveforms (C,D) when m = 1/2, n = 0 (classical
choice) and when m = 10, n = −3/2 obtained from simulations in normotensive and hypertensive con-
ditions. In the normotensive case, both choices give comparable results; the differences are more evident
in the hypertensive results. For m = 10, n = −3/2 one can see how the stiffening behaviour results in
higher pulse amplitude. In Figure 6.4 (C,D), arterial pressure curves over a cardiac cycle obtained with
the two parametrizations of the tube law are displayed. The mean arterial pressure values are not signifi-
cantly different: in hypertensive cases, radial artery mean pressure is 90.1 mmHg when m = 1/2, n = 0,
while it is 93.9 mmHg when m = 10, n = −3/2 (percentage difference of 4 %). On the other hand, pulse
pressure is significantly affected: from 55.27 mmHg to 71.52 mmHg in the radial artery of hypertensive
scenario (percentage difference of 29.4 %). If we consider the hypertensive scenario without imposing the
stiffening of large arteries changing K(x) in Eq. (6.2), but simply a stiffer pressure-area relation given by
m = 10, n = −3/2, the results reveal that this would be enough to match what observed in hypertension.
In fact, mean aortic pressure is 121.16 mmHg, while systolic and diastolic pressures are 150.43 mmHg and
93.24 mmHg, respectively. Pulse pressure at the aortic level is 57.19 mmHg while at the brachial level it is
60.58 mmHg.

Assessment of arterial stiffening by means of pulse wave velocity, augmentation and arterial compliance
indexes

Large artery stiffening is the most important pathophysiological determinant of hypertension and age-
dependent increase in pulse pressure. As the wave travels away from the heart towards the periphery, the
systolic peak pressure increases according to physiological patterns. PPAmpli f ication is an index representing
the disparity between central and peripheral pressure and is calculated as the ratio between brachial and
aortic pulse pressure. As reported in the literature [190], this index is reduced in the hypertensive scenario
(Table 6.1); one of the most determining factors of the central-to-peripheral pressure gradient is ageing
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FIGURE 6.4: Pressure-area curves and pressure waveforms for two exemplary arteries: the
right radial artery and the right common carotid artery. Normotensive state (N) is compared
to the hypertensive one (H), with two different values for the parameters m and n in the tube
law Eq. (6.2). m = 1/2, n = 0 refer to the classical tube law usually adopted in previous work
[201, 202, 292], while m = 10, n = −3/2 are chosen based on experimental evidences [63].
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process. The measurement of pulse wave velocity is generally accepted as the most simple, noninvasive,
robust, and reproducible method with which to determine regional arterial stiffness [148]. Pulse wave
velocity (PWV) is a measure of the speed at which the pressure waveform propagates along a segment of the
arterial tree; the stiffer the vessel, the faster the wave travels. Carotid-femoral PWV (cfPWV) is evaluated
as the distance between carotid and femoral artery divided by the transit time of the wave (evaluated with
the foot-to-foot method). A cfPWV >10 m/s is considered a conservative estimate of significant alterations
of aortic function in middle-aged hypertensive patients [179]. The pulse wave velocity can be measured
also at the brachial-ankle level, considering the brachial and the tibial arteries [210, 282]. Both computed
PWV are in line with literature data about young normotensive patients and elderly hypertensive subjects
(Table 6.1). Augmentation pressure (Augmented P) is calculated as the difference between the second
and first systolic peaks of aortic pressure, and augmentation index is calculated as augmentation pressure
expressed as a percentage of the pulse pressure [190]. Augmentation index has been proposed as a measure
of wave reflection; arterial stiffening increases the pulse wave velocity and hence causes an early return
of the reflected wave [263]; computed augmentation index goes from 10.91 % in normotensive subject to
17.91 % in hypertension (Table 6.1). As a consequence of increased arterial stiffness, arterial compliance is
reduced. Total arterial compliance index is evaluated as the ratio between stroke index and pulse pressure,
as suggested in [9, 2], and compared to clinical data from [2]. Hypertensive subject has a significantly
lower total arterial compliance index (0.55 ml/m2/mmHg vs 0.97 ml/m2/mmHg in healthy condition,
see Table 6.1). Abdelhammed et al. [2] found that total arterial compliance index is lower in hypertensive
patients at stage I and II of the disease, in both controlled and uncontrolled subjects; moreover, they stressed
the correlation between this index and age.

The arterioles and capillaries compartments

The increase in pulse pressure that characterizes the 1D arterial vessels is reflected also in the arterioles
compartments but it is attenuated in the capillaries compartments. Figure 6.5 shows the pressure wave-
forms along the vascular system of right arm: from radial artery to capillary beds. It can be observed that
the main sites of elevation of blood pressure are 1D arteries and arterioles. We consider all the vascular
beds of the model and evaluate the pressure variations in the arterial compartments between healthy and
pathological case; data about mean pressure over a cardiac cycle are presented as mean ± standard de-
viation of all vascular beds. Terminal arteries pressure rises from 88 ± 1.44 in normotensive to 122.78
± 5.32 mmHg in hypertension, while mean arterioles pressure is increased from 74.77 ± 6.66 to 99.40 ±
11.35 mmHg. Structural changes of small resistance arteries in patients with essential hypertension are
usually a consequence of inward eutrophic remodelling [148], that is a greater media thickness, a reduced
lumen and external diameter with increased media-to-lumen ratio, without any significant change of the
total amount of wall tissue. Eutrophic remodelling is accompanied by structural elevation of resistance; the
main site for vasoconstriction are the proximal resistance arteries, while the most distal resistance artery
sites are partly protected from pressure elevation by a raised resistance upstream. The computed capillary
pressure increases from 29.99 ± 2.62 to 34.23 ± 3.42 mmHg from normotensive to hypertensive case; its
pulse rises from 5.24 ± 2.48 mmHg in normotensive to 6.47 ± 2.82 mmHg in hypertension with a good
agreement with the literature range [129]. The term rarefaction indicates the reduction in the number of
interconnected small arteries and capillaries [153, 14]; increased number of non perfused microvessels can
progress in anatomic absence of microvessels [148]. Capillary rarefaction could represent an early struc-
tural abnormality in borderline hypertension and in offspring from hypertensive parents. Antonios et al.
[14] studied capillaries of the skin of the dorsum of the fingers by intravital capillary microscopy in people
with borderline hypertension and proved that rarefaction may precede high blood pressure and it could be
an early abnormality in the progression of hypertension.
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FIGURE 6.5: Computed pressure variations along the vascular system of the right arm. N:
normotensive subject; H: hypertensive subject. Cardiac-cycle averaged values are reported in
brackets.
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Pulsatility and resistive indexes

A close relationship was established between microvascular damage in brain and kidney and indices
of age and hypertension [228]. Exposure of small vessels to highly pulsatile pressure and flow explains
microvascular damage and resulting renal insufficiency and intellectual deterioration. Pulsatility index
(PI) is defined as the difference between the peak systolic and minimum diastolic flow rate, divided by
the mean flow rate over a cardiac cycle, or equivalently, as the difference between the peak systolic and
minimum diastolic flow velocity, divided by the mean velocity over a cardiac cycle. It can be measured
with non-invasive methods and it is widely used for the assessment of vascular resistance as well as for the
determination of end-organ damage. Chuang et al. [56] observed a strong association between the PI in
the common carotid artery and the possibility of future stroke. Cho et al. [55] measured flow velocities and
PI of the middle cerebral and internal carotid arteries in 94 hypertensive patients; they observed decreased
flow velocity with increased flow pulsatility in patients with a longer duration of hypertension, while no
significant differences were found in patients with < 5 years of hypertension. PI was also studied in the
renal circulation; Petersen et al. [238] observed an association between renal artery PI and renal function
parameters, such as creatinine clearance, in patients with renal failure and hypertension. In light of the
role played by the PI, we focused on its evaluation along the circulation in computational simulations of
normotensive and hypertensive subjects. In the 1D arterial network, PI ranges between 0.71 and 7.3 and
in general it is lower in the hypertensive scenario with respect to the normotensive one. The percentage
difference is -4.64 ± 16.9, evaluated as mean and standard deviation over the complete arterial 1D net-
work. However, some 1D arteries present higher pulsatility indexes: these includes mainly arteries of the
abdominal region, such as abdominal, gastric, hepatic arteries, as well as cerebral arteries.

Regarding the kidney’s circulation, we compared the pulsatility index of the renal artery to literature
measurements from [238, 223]. Petersen et al. [238] measured PI and resistive index (RI) from blood flow
velocities of renal arteries in normotensive and hypertensive patients; RI was calculated as the difference of
peak systolic velocity and peak diastolic velocity over peak systolic velocity. They reported an increase in
PI from 1.19 (0.93-1.25) to 1.65 (1.31-1.86) in hypertensive patients compared to normotensive controls; the
RI increased from 0.67 (0.64-0.70) to 0.76 (0.69-0.81). Okura et al. [223] measured PI and RI from blood flow
velocity in interlobar arteries; they found PI equal to 1.30 ± 0.29 and RI equal to 0.65 ± 0.08 in a cohort of
patients with essential hypertension. In our computational results, there are no significant changes between
computed PI in normotensive and hypertensive subjects: the renal arteries PI is 1.52 and 1.53 while the RI
is 0.70 and 0.75, respectively, in normotensive subject and in hypertensive scenario. In the vascular bed of
the splanchnic circulation, computed PI from the flow waveform of the arterioles’ and capillaries’ compart-
ments increases by about 13 % while in the vascular bed of the renal circulation PI increases by about 6.3
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%. Computed indexes are in line with values reported in the literature; however, computational results do
not reproduce the significant rise in PI of renal arteries observed in clinical measurements. This is probably
due to the fact that we do not differentiate the hypertension remodelling of the renal circulation from other
vascular territories. Nevertheless, the kidneys play an inextricable role in hypertension; abnormalities in
kidneys’ function and sequential changes in renal hemodynamics were observed in hypertensive patients
[61]. Moreover, the kidney, as the brain, are characterized by a pronounced blood flow regulation based on
two mechanisms, the myogenic response and the tubuloglomerular feedback [133]. These kidney-specific
changes in renal circulation were not included in our model and could be the cause for observed discrep-
ancies between our computational results and clinical observations.

Concerning the cerebral circulation, previous works mainly focused on carotid and middle cerebral ar-
teries to study the haemodynamic changes associated with hypertension. Ferrara et al. [87] used ultrasound
images for the evaluation of PI and a RI in the proximal segment of the internal carotid arteries and the mid-
dle cerebral arteries. Comparing normotensive and hypertensive patients, they found a PI equal to 0.84 ±
0.11 and 0.88 ± 0.19 and RI equal to 0.79 ± 0.12 and 0.81 ± 0.12, respectively, in internal carotid arteries; in
middle cerebral arteries, they measured PI to be 0.54 ± 0.05 and 0.55 ± 0.07 and RI equal to 0.52 ± 0.05 and
0.52 ± 0.05 in normotensive and hypertensive patients, respectively. No significant differences were found
between the healthy and the pathological groups of patients. From our computational model, computed PI
and RI in internal carotid arteries are 1.02 and 0.58 in normotensive condition, while 0.84 and 0.54 in hy-
pertension; concerning the middle cerebral artery, PI and RI are 0.74 and 0.48 in healthy subject, while 0.69
and 0.49 in hypertensive scenario. In these arteries PI tends to decrease from normotensive condition to
hypertension, even if their values are comparable to literature measurements. A different behaviour can be
observed at the level of 0D arterioles/small arteries and capillaries. In cerebral vascular beds, PI computed
on flow rate waveforms increases by about 25-29 % in both arterioles and capillaries from normotensive to
hypertensive condition.

6.3.2 The heart in hypertension

Left ventricle hypertrophy and its effect on elastance

Chronically increased left ventricular workload due to arterial stiffness in hypertensive patients can
result in left ventricular hypertrophy, impaired relaxation, left atrial enlargement, an increased risk of ar-
rhythmias, especially atrial fibrillation, and an increased risk of heart failure with preserved ejection fraction
and heart failure with reduced ejection fraction. Structural changes of left ventricle in hypertension can be
classified as concentric hypertrophy (increase in left ventricular mass and relative wall thickness), concen-
tric remodelling (normal left ventricular mass, abnormal relative wall thickness), or eccentric hypertrophy
(increased mass with normal relative wall thickness) [187, 98]. Remodelling usually characterizes normal
aging without hypertension and it is probably an adaptation to preserve ejection fraction [187]. In case
of concentric hypertrophy, the cardiac muscle cells increase in thickness by building more contractile pro-
teins in parallel. According to the Laplace’s law (6.6), the thicker wall with normal lumen normalizes peak
systolic wall stress despite higher blood pressure. Cardiac hypertrophy acts to maintain a normal stroke
volume and cardiac output through increased intraventricular pressure. Table 6.2 presents some of the
main cardiac indexes in normotensive and hypertensive scenarios compared to literature measurements;
assigned heart rate and then computed values of cardiac index, stroke index are reported. The cardiac index
(the ratio between cardiac output and body surface area) is comparable between normotensive and hyper-
tensive state, as well as the stroke index, evaluated as stroke volume over body surface area. We stress that
the same body surface area of 1.92 m2 has been adopted in the healthy and patholocigal subjects for the
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evaluation of cardiac and stroke indexes; Abdelhammed at el. [2] reported 1.93 ± 0.25 m2 in an healthy
group while 1.91 ± 0.20 m2 in an hypertensive group at stage I of the disease.

Figure 6.6 (A) shows the pressure-volume relationship evaluated during a cardiac cycle in the left ventri-
cle for normotensive and hypertensive subjects; compared to the normotensive pressure-volume loop, the
hypertensive one is traslated to the right as effect of left ventricle hypertrophy. Considering arterial elas-
tance, Ea, and left ventricle elastance, Ees, Table 6.2 shows that they increase by the same ratio in the hyper-
tensive group compared to the normotensive one, meaning that left ventricular-arterial coupling (Ea/Ees)
is similar in both groups. Borlaug et al. [36], in a large cohort of hypertensive patients, concluded that
arterial stiffening is matched with left ventricle systolic stiffening, with a concordant increase in Ea and Ees;
moreover, they observed that left ventricle hypertrophy is associated with enhanced myocardial contractil-
ity. Antihypertensive therapies could improve the ventricular-arterial coupling, by reducing both Ea and
Ees, as pointed out by Lam et al. [146].

The right heart and the pulmonary circulation

The right heart and the pulmonary circulation are not immune to the effects of systemic hypertension.
Table 6.2 reports maximum volume, ejection fraction, maximum and minimum pressure rate, systolic and
end-duiastolic pressures of right ventricle, as well as pulmonary arterial pressure (systolic, diastolic and
mean). Computational results show that the right-heart pressures among the hypertensive patients in-
crease significantly with respect to the values in the normotensive controls. In the same way, pulmonary
arterial pressure increases in hypertensive patients with respect to values observed in the normotensive
scenario. Olivari et al. [224] presented the first comprehensive study on the pulmonary circulation and
right ventricular function in uncomplicated hypertensive patients, comparing 16 hypertensives with left
ventricle hypertrophy and 17 without it. They observed that pulmonary vascular resistance is increased
compared to controls; this is unrelated to left ventricle filling pressures and it could be due to the fact that
pulmonary vessels experience similar structural changes as those observed in systemic vessels. The same
conclusion has been reported by Guazzi et al. [107]. Moreover, Olivari et al. [224] showed decreased stroke
volume as a function of right atrial pressure in patients without left ventricle hypertrophy while a pre-
served relation between stroke volume and right atrial pressure in patients with hypertrophy. Established
cardiac hypertrophy could lead to a reduction in stroke volume in the absence of effective compensation;
such compensation can be found in the form of increased cardiac filling pressure. In a previous mathe-
matical model of arterial hypertension, Liang et al. [158] reproduced ventricular hypertrophy increasing
the elastance of left ventricle without considering modifications of the pulmonary or venous systems. This
leads to decreased cardiac index and stroke volume, as observed in Ganau et al. [98] in case of concentric
remodelling of left ventricle in hypertensive patients. However, observing patients with concentric hyper-
trophy, Ganau et al. [98] found slightly increased stroke volume and cardiac index. As shown in [261] by
means of a simple mathematical model of the heart-arterial coupling, in case of concentric hypertrophy,
the increased venous filling pressure normalizes the end-diastolic wall stress, still while normalizing the
systolic wall stress; as a consequence, stroke volume and cardiac output are preserved in hypertension.
Computed central venous pressure, evaluated as mean right atrial pressure, increases from 4.16 mmHg in
normotensive subject to 5.15 mmHg in hypertension, in line with the increase observed by Safar et al. [251]
(from 4.4 ± 0.6 mmHg in normotensive controls to 5.0 ± 0.6 mmHg in hypertensive patients). Changes in
venous filling pressure could be caused by reduced venous compliance in order to produce an adequate
driving pressure for the hypertrophied heart. This theory was supported by Safar and London [247]. In a
more recent review on right heart and pulmonary circulation in hypertension [312], the authors concluded
that right ventricle function may be altered at an early stage of hypertension when left ventricle hyper-
trophy is still not evident. However, as the left ventricle remodelling progresses and pulmonary arterial
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FIGURE 6.6: Computed volume-pressure relationship of the left and right cardiac ventricles.
Comparison between normotensive subject (N) and hypertensive patient (H).
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pressure increases, the right ventricle becomes hypertrophic in a parallel way than those of the left ventri-
cle. Figure 6.6 shows the computed volume-pressure relationship of the right ventricle in normotensive and
hypertensive subjects, displaying a translation on the right of the curve in hypertensive. Even if the param-
eters that characterize the model of the right ventricle are not modified in the hypertensive scenario, our
computational results display an hypertrophic behaviour as a consequence of left ventricle hypertrophy
and increased pulmonary arterial resistance.

6.3.3 Total blood volume and vascular compliance

As discussed in the previous section, cardiac hypertrophy leads to a reduction in stroke volume in the
absence of normalization of diastolic wall stress. This normalization is due to increased venous filling
pressure, that could be the result of decreased venous compliance.

The vascular compliance of the circulatory system is defined as the slope of the relationship between
intravascular volume and circulatory filling pressure; this property reflects the inherent elasticity of the vas-
cular system. In animals, total vascular compliance can be obtained by determining mean circulatory filling
pressure-blood volume curves. Mean circulatory filling pressure can be extrapoled by stopping the heart
and waiting for blood to redistribute in the vascular system according to the capacity of the different dis-
tricts. To avoid this methodological limitation, a different index of capacitance was introduced as a measure
of total vascular compliance. This method was first presented in [82]; it involves simultaneous recording
of right atrial pressure and volume changes induced by transfusion, bleeding, or rapid iso-oncotic dextran
infusion. London et al. [171] determined the total effective vascular compliance (TEVC) using an infusion
of 500 ml of 6% dextran carried out within four minutes in a large forearm vein in control and hypertensive
patients in supine position. The slope of the relationship between central venous pressure (CVP) and blood
volume was called TEVC in order to differentiate it from the compliance obtained from mean circulatory
filling pressure measurements. Several studies have shown that effective total vascular compliance in nor-
mal man has the character of a biological constant with values ranging from 2.1 to 2.7 ml/mmHg/kg [82,
171, 249]. Total effective vascular compliance is the sum of compliances of the arterial system, which is very
low in man (1-3% of the total compliance), and the venous system, which accounts for 97-98% of the total
compliance. In patients with uncomplicated sustained essential hypertension, it was proved that total ef-
fective compliance is significantly reduced by 25% in comparison with normal subjects of the same age and
sex [171, 169, 251]. For the same volume expansion as in normotensive controls, central venous pressure
is significantly higher in hypertensive subjects. On the other hand, effective cardiopulmonary vascular
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TABLE 6.2: Cardiac and pulmonary indexes: comparison between normo- and hypertensive
subject. HR: heart rate; CI: cardiac index; SI: stroke index; Ea: arterial elastance; Ees: left ven-
tricle elastance; Ea/Ees: arterial-ventricular coupling index; LV/RVmax: maximum volume of

ventricle; LV/RVEF: ejection fraction of ventricle; max/min
dP
dt

: maximum/minimum pres-
sure rate; RV-SP: right ventricle systolic pressure; RV-EDP: right ventricle end-diastolic pres-
sure; M/S/D PAP: mean/systolic/diastolic pulmonary artery pressure. Details on how to
evaluate these indexes can be found in the Appendix B.

Index Normotensive Hypertensive Ref..

Value Ref. Value Value Ref.Value

HR [beats/min] 75 75 ± 12 75 77 ± 9 [86]
CI [L/min/m2] 2.76 2.9 ± 0.8 2.97 3.1 ± 0.8 [98]
SI [ml/m2] 37.48 43 ± 9 40.22 45 ± 11 [98]
Ea [mmHg/ml] 1.32 1.52 ± 0.1 1.83 1.8 ± 0.17 [34]
Ees [mmHg/ml] 2.14 2.03 ± 0.2 2.80 2.43 ± 0.2 [34]
Ea/Ees 0.61 0.77 ± 0.04 0.65 0.73 ± 0.06 [34]
LVmax [ml] 116.25 150 ± 67 127.59 [215]
LVEF 0.62 0.68 ± 0.12 0.61 [215]
RVmax [ml] 126.96 173 ± 95 149.15 [215]
RVEF 0.56 0.57 ± 0.10 0.51 0.59 ± 7 [215] [86]

max.
dPLV

dt
[mmHg/s] 1505.59 1915 ± 410 2139.55 [215]

min.
dPLV

dt
[mmHg/s] -2505.36 -2296 ± 530 -4253.05 [215]

max.
dPRV

dt
[mmHg/s] 262.08 248 ± 25 322.60 [215]

min.
dPRV

dt
[mmHg/s] -306.79 -232 -459.90 [215]

RV-SP [mmHg] 25.31 22 ± 6 34.57 27 ± 5 [86]
RV-EDP [mmHg] 2.42 3 ± 2 3.36 5 ± 2 [86]
MPAP [mmHg] 16.14 12 ± 3 21.97 17 ± 5 [86]
SPAP [mmHg] 24.68 20 ± 6 33.87 26 ± 6 [86]
DPAP [mmHg] 10.61 8 ± 2 14.22 11 ± 5 [86]

compliance (evaluated as the ratio between changes in cardiopulmonary blood volume and central venous
pressure during infusion) is comparable between normotensive and hypertensive patients [170]. As ob-
served in animals [82], these findings reflect a reduced distensibility in the systemic vessels of hypertensive
humans [171] and not in the cardiopulmonary circulation. The venous function can be modified by struc-
tural or functional changes, or both [248]. In animal models of hypertension [104], venous wall hypertrophy
was found in the portal vein which creates a stiffer framework on which the active contractile process is
able to develop greater tension. These observations are translated into our mathematical model of arterial
hypertension by reducing the venous compliance value. We observe that this modelling assumption af-
fects only the compliance of small veins and venules, without modifying the structural properties of larger
caliber veins. However, the major part of total venous compliance is distributed in the venules compart-
ments and hence modifications of 1D veins compliance will have slight effects on total vascular compliance.
Moreover, in this mathematical framework, venous compliance is reduced in hypertensive scenario without
considering venous unstressed volume that is maintained equal to that of the normotensive case. Venous
tone is determined by the interaction between venous compliance and unstressed volume, hence changes
in unstressed volume could influence the total effective compliance determination. We chose to reduce
venous compliance instead of changing unstressed volume because there is evidence of stiffening in rats’
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veins [104]. Total effective vascular compliance was computationally estimated in our model by means of
an infusion of 500 ml of blood, as described in [51]. Figure 6.7 (left) shows the computed linear relation
between volume and right atrial pressure modifications due to the rapid infusion of blood. The value of
TEVC is expressed in mL/mmHg and then normalized to the body weight, considered to be 75 kg in the
normotensive state and 85 kg in the hypertensive subject. We consider the same percentage increase in
body weight between normo- and hypertensive groups reported by London et al. [171]. Computational
results show that TEVC is significantly reduced in hypertensive subjects (2.02 vs 2.82 ml/mmHg/kg in
normotensive scenario).

The role of the veins in modelling hypertension had received little attention. However, since approxi-
mately two-thirds of the systemic blood is normally contained in venous circulation, this variation in vascu-
lar compliance has important consequences on the venous vasculature, as well as on the overall circulation.
The decreased venous distensibility produces a redistribution of blood volume; since total blood volume is
normal or reduced and there is no decrease in the compliance of the cardiopulmonary circulation [247, 170,
82], this results in a shift of blood to the central circulation (heart and lungs). Figure 6.8 shows the blood
volume distribution in the main districts of the circulation: arterial blood (1D arteries, small arteries and
arterioles), capillaries, venous blood (venules, small veins and 1D veins), heart and pulmonary circulation.
It can be observed that in the hypertensive case, the arterial and capillaries percentages of blood volume
are comparable to the normotensive state, but there is a slight increase in heart and pulmonary circulation
amount of blood (+3 %), matched by a small decrease in venous blood. London et al. [169] reported that
the percentage of cardiopulmonary blood volume with respect to total blood volume was 23 ± 1 in nor-
motensive group while 25 ± 1 in hypertensive group; in another study by the same leading author [170],
the cardiopulmonary blood volume was increased by about 7% in hypertesive subjects with respect to the
healthy controls. The shift to central blood volume is caused by the reduced venous compliance, which
decreases the capacity of the venous system to accomodate enough blood volume. As a consequence of
the shift of blood to the central circulation, filling pressure and cardiac output slightly increases. Ulrych
et al. [300] showed that the increase in cardiac output following an intravenous volume load was exagger-
ated in hypertensive patients, suggesting a reduction in peripheral vascular capacity. Moreover, there is an
inverse correlation between cardiac output and vascular compliance in hypertensive subjects: the greater
the reduction in the compliance, the higher the cardiac output.

Figure 6.7 (right) shows the percentage variation in main haemodynamic parameters (mean arterial
pressure, cardiac output, heart rate, cardiopulmonary blood volume) before and after expansion. Com-
puted results are compared to [171]. We can observe that cardiac output and cardiopulmonary blood vol-
ume increases with a similar percentage between normotensive and hypertensive patients, proving that the
cardiopulmonary capacity of accommodating blood volume remains comparable between normo- and hy-
pertensive subjects. Heart rate decreases in normotensive case, while it increases in hypertension; however,
changes in heart rate are not significantly. The variation in mean arterial pressure during volume expansion
is controlled by the baroreceptors located in the high- and low-pressure systems. Baroreflex control plays
an essential role in the short-term regulation of arterial pressure. In this mathematical model of hyperten-
sion, the set points of the level of activation of the high- and low- baroreceptors are shifted to higher values
to account for increased arterial and venous pressures. The abnormalities of the baroreflex function have
been discussed in numerous studies; there is evidence that dysfunctions of baroreceptors could precede
the onset of arterial hypertension and influence its pathogenesis. When arterial pressure increases after ma-
nipulation of baroreceptor afferent nerve signaling, it is referred to as neurogenic hypertension; this term
includes both the case wherein the true origin of the hypertension is neural (i.e., the primary underlying
issue is in the brain or in afferent or efferent nerves) or the case whose origin is non-neural but results in
neurally mediated increase in blood pressure [273]. Dysfunction in sympathetic activity could affect heart
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FIGURE 6.7: Left frame: computed total effective vascular compliance by means of an infu-
sion test of 500 ml of blood in 4 minutes. Changes in mean central venous pressure are plotted
against changes in total blood volume and the inverse of the slope of their linear relationship
is the value of the effective compliance. Computed results are compared to literature data
reported in [171].
Right frame: Changes in haemodynamic parameters before and after expansion. Computed
results are compared to literature data from [171]. Parameters under consideration are MAP,
mean arterial pressure; CO, cardiac output; H, heart rate; CPBV, cardiopulmonary blood vol-
ume.
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rate, cardiac output, peripheral resistance, venous tone, as well as plasma and urinary levels.

6.3.4 The venous system in hypertension

For years, it was thought that the main role of the venous circulation was returning blood to the heart;
it is now recognized that systemic veins perform other important functions. As stressed in the previous
section, the venous system serves as a blood reservoir for the entire circulation; it is able to store a highly
variable amount of blood and to make it available when required for several reasons, such as cardiac output
regulation.

Beyond the role played by the decreased venous distensibility, the behaviour of the venous system in
essential hypertension has not been often considered in clinical studies on arterial hypertension. Novo et al.
[221] showed that the arm venous pressure in hypertensive patients and in elderly patients with systolic hy-
pertension is higher compared to that measured in healthy controls; the authors concluded that in essential
hypertension, both the arterial and the venous circulatory systems are characterized by increased pressure.
In a recent study on chronic venous insufficiency [240], the authors supported the thesis of an interdepen-
dence of venous and arterial hypertension. Rubira et al. [245] showed that endothelial dysfunction that
usually characterized arteries was also present in the venous system of hypertensive patients. Moreover,
a recent review [195] stressed the importance of cellular and molecular mechanisms of aging processes of
veins and their similarities with those of the arterial system.

In this section, we present computational results about the venous circulation. Pressure, flow and PIs of
some one-dimensional veins are compared between hypertensive and normotensive scenarios. Figure 6.9
shows the computed pressure waveforms over a cardiac cycle in selected veins at different locations. One
can observe that venous pressure increases by about 20 % in all selected veins. The venous pulse pressure
increases in the hypertensive scenario with respect to that obtained the normotensive state. In the inferior
vena cava, it is 2.15 mmHg in the normotensive case while 2.94 mmHg in hypertension (percentage differ-
ence of 36.13 %). In dural sinuses, the change is more significant: in the superior sagittal sinus, venous pulse
pressure increases from 2.10 mmHg in normotensive subject to 3.35 mmHg in hypertensive condition (per-
centage difference of 59.03%). Accordingly to the pressure-area relationship of large veins, higher venous
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FIGURE 6.8: Computational blood volume distribution in normotensive and hypertensive
subject. Arterial blood: 1D arteries and arterioles’ compartments. Venous blood: 1D veins
and venules’ compartments. Value in brackets refers to literature blood volume distribution
in [113].
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pressure range results in higher pulse amplitude. However, this holds if we model reduced venous com-
pliance without considering unstressed volume changes; indeed, unstressed volume modification would
translate the pressure-area curve, resulting in higher venous pressure without significant changes in pul-
satility. Taking in mind our modelling assumption, computational results reveal that arterial hypertension
leads to venous hypertension and increased venous pulse pressure, both in systemic and cerebral venous
circulation. Chung et al. [57] hypothesized that chronic elevated cerebral venous pressure might cause
cerebral venule hypertension, resulting in reduce cerebral blood flow, altered microvessel structures, im-
pair cerebral autoregulation; these consequences would lead to chronic cerebral ischemia and leukoaraiosis
pathology. Moreover, increased cerebral venous pressure may impair the cerebrospinal fluid system dy-
namics [23].

Concerning flow rate, Figure 6.10 shows the computed mean flow rate in selected systemic veins and in
some head and neck veins. Computational results obtained in the hypertensive scenario are compared with
computational results of the normotensive case, as well as with literature data or MRI flow quantification
data of normotensive patients. In systemic veins, average flow rate is slightly increased (up to 10 %) in
hypertension with respect to values obtained in the normotensive subject. The same can be observed in
head and neck veins, wherein average flow rate increases by 10-13 % with respect to what measured in
veins of normotensive subject. The PI, evaluated from the flow waveform, also increases by about 30 %
along the entire venous network.

Despite little evidence on the characteristics of the venous circulation in essential hypertension, our
computational results show that this vascular district is also affected, displaying venous hypertension, in-
creased flow rate and increased pulsatility of both pressure and flow waveforms. Chung et al. [57] stressed
that only a compliant vein can accommodate the increased venous pressure by effective distension to main-
tain a normal venous pressure; decreased venous compliance and distensibility was found in normotensive
men with positive family histories of hypertension and in borderline hypertension. This might indicate that
reduced venous compliance is present before hypertension is developed, contributing to the pathogenesis
of hypertension.
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FIGURE 6.9: Computed blood pressure p in selected veins at different locations a) to g) in nor-
motensive (blue line) and in hypertensive (orange line) state. Cardiac-cycle averaged values
are denoted by p̄N (normotensive) and p̄H (hypertensive).
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FIGURE 6.10: Blood flow distribution in selected systemic veins (left frame) and in head and
neck veins. Computational results obtained in the hypertensive scenario are compared with
computational data of the healthy subject and with literature data (average and standard de-
viation) or MRI flow quantification data [201].
Left frame: Mean flow rate in systemic veins. SVC: Superior Vena Cava; IVC: Inferior Vena
Cava; AzG V.: Azygos Vein; SCV: Subclavian Vein. Literature: aMurgo et al. [211]; bWolf et al.
[322]; cZitnik et al. [325]; dCheng et al. [54].
Right frame: Mean flow rate in head and neck veins. SSS: Superior sagittal Sinus; StS: Straight
Sinus; TS: Transverse Sinus; IJV: Internal Jugular Vein.
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6.3.5 Analysis of distinctive effects of remodelling

Up to now, computational results, as well as modelling construction of the hypertensive setup, have
been validated and discussed through comparison with literature observations. The hypertensive scenario
well represents the main characteristics of an hypertensive patient at stage I of the disease. In this section,
our goal is to determine what is the impact of changes in single model districts/parameters on the arterial
pulse wave. We ran nine simulations, each one with only one modified parameter/compartment as in the
hypertensive scenario. We considered: 1) Active elastance of left ventricle (EA), 2) Passive elastance of left
ventricle (EB), 3) Pulmonary arterial resistance (Rpul,A), 4) Venous compliance (Cvn), 5) Arterial characteris-
tic impedance (Rda), 6) Arteriolar resistance (Ral), 7) Capillaries resistance (Rcp), 8) Remodelling of muscular
arteries (increased stiffness by means of increased pulse wave velocity), 9) Stiffness of elastic arteries (en-
larged radius and increased pulse wave velocity). Figure 6.11 shows the percentage change with respect
to the normotensive subject in mean arterial pressure (MBP), systolic (SBP) and diastolic (DBP) pressures
evaluated in the aortic root and pulse pressure (PP) of brachial artery. Figure 6.15 compares the percentage
change in cardiac index (CI), arterial elastance (Ea), left ventricular elastance (Ees) and the ratio Ea/Ees. In
both pictures, the last bar of each analysed variable refers to the complete hypertensive scenario.

Effects on arterial pressure

Mean aortic pressure is mainly affected by arterial stiffening of both elastic and muscular arteries,
venous compliance and arteriolar resistance. The same trend can be observed in systolic and diastolic pres-
sures. The larger contribution to pulse pressure is given by arterial stiffening and to a comparable degree
by venous compliance. In a previous mathematical work of arterial hypertension [158], Liang et al. per-
formed a sensitivity analysis on the parameters representing the major cardiovascular properties involved
in the development of hypertension. They observed that stiffness of central elastic arteries has a remarkable
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influence on pulse pressure, a moderate influence on systolic pressure and a negligible influence on mean
pressure and cardiac index; on the contrary, stiffening of peripheral arteries resulted in mild haemodynamic
changes. Our computational results show that stiffening of both, elastic and muscular, arteries contributes
in a similar way to the elevation of arterial pressure. Moreover, Liang et al. observed that arteriolar radius
and heart period mainly affect mean pressure, while pulse pressure is mainly determined by central arteries
stiffness and heart period.

Differences between observations made in [158] and results presented here can be interpreted as fol-
lows. Firstly, we did not considered heart rate since it is comparable between the class of hypertensive
patients under study and normotensive controls, as previously stated. Secondly, Liang et al. performed
a sensitivity analysis wherein all the analysed parameters are modified by ±20 %; in our results, each pa-
rameter is modified in the same way as in the hypertensive scenario, hence different percentage variations
are applied depending on the parameter (for example, arteriolar resistance increases by 40% while venous
compliance decreases by 25%) since the aim of this work is to establish the contribution of each cardio-
vascular change to the complete hypertensive scenario. Results shown in Figure 6.11 reveal that cardiac
hypertrophy, increased pulmonary resistance, as well as capillaries resistance do not affect significantly
the change in arterial pressure. These results suggest that cardiac hypertrophy is a consequence of high
blood pressure which chronically increases left ventricle workload. Changes in passive elastance of the
left ventricle and pulmonary arterial resistance result in a reduced brachial pulse pressure. Comparing the
increase in pressure obtained with the modification of one haemodynamic variable and that obtained in the
complete hypertensive scenario, it can be observed that the combined action of all alterations results in a
larger effect compared to what observed for individual changes. This means that established high blood
pressure is the result of the interplay between various modifications; after the initial rise in blood pressure
in the pre-hypertensive state, the advance in cardiovascular remodelling worsens the hypertensive state.
In order to delve into the relative importance of different remodelling aspects, we studied the impact of
all the possible combinations of the four main alterations: stiffening of either elastic or muscular arteries,
arterial resistance and venous compliance. Figures 6.12 and 6.13 display pressure variables obtained com-
bining two changes of the hypertensive scenario. Upper triangular part of Figure 6.12 refers to systolic
pressure while lower part reports diastolic pressure at the aortic level; in Figure 6.13, the upper triangular
part displays mean pressure evaluated in the aortic root and the lower part shows brachial pulse pres-
sure. Computed values are compared to the complete hypertensive setup and percentage differences are
reported. It can be observed that the combined effect of increased arterial resistance and reduced venous
compliance rises systolic blood pressure in a comparable way as the complete hypertensive setup, while
diastolic pressure is higher when only arterial resistance and venous compliance are modified compared to
the fully hypertensive scenario. Stiffening of elastic or muscular arteries combined to either arterial resis-
tance or venous compliance results in a lower effect on systolic and diastolic pressures. Compared to the
complete scenario, systolic pressure is about 15 % lower in all these cases while diastolic pressure is about
6 % lower when stiffening of either elastic or muscular arteries is combined to arterial resistance and 12
% lower when stiffening is applied in combination with reduced venous compliance. Similar observations
can be drawn for mean arterial pressure and pulse pressure: the combined effect of increased arterial resis-
tance and reduced venous compliance leads to a mean pressure comparable to the complete hypertensive
scenario, while pulse pressure is 6% lower. Other combinations modify mean arterial pressure to a lower
degree; the same holds for pulse pressure. One can observe that stiffening of elastic and muscular arteries
together has the lowest effect on pulse pressure if not combined with venous compliance. Figure 6.14 dis-
plays systolic, diastolic, mean and pulse pressures obtained when three of the most relevant modifications
of the hypertension scenario are combined. These scenarios are compared to the computational normoten-
sive and hypertensive conditions and to normotensive, pre-hypertensive and hypertensive data from the
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FIGURE 6.11: Percentage change in mean arterial pressure (MBP), systolic (SBP) and diastolic
(DBP) pressures evaluated in the aortic root and pulse pressure (PP) of brachial artery with
respect to the healthy control. Nine scenarios are considered, each one refers to the adaptation
of only one parameter/compartment of the hypertensive scenario.
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literature [2]. It can be observed that all combinations result in increased pressure, which results to be
higher than the one observed in the pre-hypertensive state; scenarios that include elevation of arteriolar
resistance and reduced venous compliance produce the highest elevation in blood pressure compared to
the normotensive case. Combining stiffness of elastic and muscular arteries with increased arteriolar resis-
tance, computed values of pressure are placed at the lower limit of the literature range for hypertension at
stage I. Stiffening of elastic and muscular arteries combined with reduced venous compliance results in the
lowest increase in systolic, diastolic and mean blood pressure compared to the other analysed scenarios, it
mainly affects the pulse pressure. We can conclude that the most relevant parameters for elevation of arte-
rial pressure is stiffening of both elastic and muscular arteries if considered alone, but when combined with
other parameters its effect is attenuated. The major role in the hypertensive setup is played by the combi-
nation of modified arteriolar resistance and venous compliance, which returns pressure values similar to
those of the complete hypertensive scenario.

Effects on arterial elastance and left ventricle elastance

Arterial elastance (Ea), evaluated as the ratio between end systolic pressure of left ventricle and stroke
volume, is mainly increased by arterial stiffening and arteriolar resistance, followed by distal arterial re-
sistance, venous compliance and capillaries resistance (Figure 6.15). Figure 6.16 shows arterial elastance
(lower triangular part) and cardiac index (upper triangular part) obtained from simulations wherein two
of the most relevant parameters of the hypertension scenario are combined together. From Figure 6.16 it
can be observed that arterial elastance is mainly affected by arterial resistance: the values of Ea obtained
with simulations wherein increased arterial resistance is combined with arterial stiffening of elastic or mus-
cular arteries, or reduced venous compliance are modified to a similar degree of the simulation wherein
the complete hypertension scenario is applied. Left ventricle elastance (Ees) increases when parameters EA

and EB of left ventricle are changed, with the former giving the larger contribution. If remodelling due
to hypertension causes disproportionate changes in Ea and Ees, then their ratio would be affected. It de-
creases when cardiac and pulmonary circulation are involved while it increases in other cases; the highest
increase is caused by arterial stiffening which impairs arterial elastance without significantly modifying
the ventricular elastance.
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FIGURE 6.12: Systolic and diastolic blood pressures (SBP and DBP) at the aortic level obtained
from simulations wherein two of the most relevant parameters of the hypertensive scenario
are combined together. Computed value and percentage difference with respect to the com-
plete hypertensive setup are reported for each studied case. In the main diagonal, values for
the adaptation of only one parameter/compartment of the hypertensive scenario are reported.
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FIGURE 6.13: Mean blood pressure (MBP) and pulse pressure (PP) at the aortic level obtained
from simulations wherein two of the most relevant parameters of the hypertension scenario
are combined together. Computed value and percentage difference with respect to the com-
plete hypertensive setup are reported for each studied case. In the main diagonal, values for
the adaptation of only one parameter/compartment of the hypertensive scenario are reported.
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FIGURE 6.14: Systolic, diastolic, mean and pulse pressure at the aortic level. Normoten-
sive condition is compared with complete hypertensive setup and four different scenarios
wherein most relevant modifications are combined into three by three: stiffness of elastic ar-
teries (SE), stiffness of muscular arteries (SM), increased arterioles resistance (Ral), reduced
venous compliance (Cvn). Computational results are compared to literature data about nor-
motensive group (NLit), pre-hypertensive (Pre-HLit) and stage I hypertensive patients (HLit)
patients from [2].
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Effects on cardiac index: the role of reduced venous compliance

Concerning cardiac index, it is decreased in all configurations, except for reduced venous compliance,
which causes a significant increase in cardiac output, and for variation of active elastance of the heart, which
slightly modifies it. Considering two changes applied together (Figure 6.16), we can observe that cardiac
index is higher than in the complete hypertensive scenario when reduced venous compliance is combined
with other changes. Stiffening of elastic or muscular arteries combined with arterial resistance results in
lower cardiac index. As already pointed out, the scenarios which include increased arterial resistance and
reduced venous compliance return values of pressure similar to the complete hypertensive scenario. This
consideration holds also for the cardiac index. When stiffening of elastic and muscular arteries is combined
with increased arteriolar resistance the cardiac index is reduced by 5.5% with respect to the normotensive
case; on the other hand, when it is combined with reduced venous compliance the cardiac index increases
by 16.0%. Liang et al. [158] observed that cardiac index was dominated by heart period and moderately
influenced by arteriolar radius; in that analysis, the venous compliance was not considered but our results
poses attention on its role. The negative correlation between cardiac output and venous compliance is in
line with [300]. Mean arterial pressure is the product between cardiac output and systemic vascular resis-
tance; hence, high blood pressure is the result of an increase in cardiac output, or in systemic resistance,
or both. Following the theoretical observations by Folkow [92], that in turn are based on Guyton’s system-
analysis [112], the initial elevation of resistance can ensue from either an initial increase of smooth muscle
activity in the resistance vessels, followed by structural autoregulation or by an initial structural alteration.
On the other side, increased cardiac output as hypothetical hypertension precursor could ensue from se-
lective chronotropic-inotropic cardiac stimulation, but more likely it follows from elevated venous return,
which in turn could be caused by increased filling of the system and/or reduced capacitance/compliance
of the system. The increased cardiac output is then followed by an overall resistance elevation, according
to the "whole-body autoregulation" mechanisms proposed by Guyton. Schmieder [258] analysed haemo-
dynamic, volume and cardiac structural differences between a normotensive control group and patients
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FIGURE 6.15: Percentage change in cardiac index (CI), arterial elastance (Ea ), left ventricular
elastance (Ees) and the ratio Ea/Ees. Nine scenarios are considered, each one refers to the
adaptation of only one parameter/compartment of the hypertensive scenario.
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with different degrees of arterial hypertension. He found that borderline hypertensive patients were char-
acterized by increased central blood volume, stroke volume and cardiac output without significant changes
in vascular resistance. On the other hand, in established hypertension, total peripheral resistance was sig-
nificantly increased while cardiac output is normal compared to the normotensive control group. From
our computational results, we can conclude that decreased venous compliance contributes in increasing
cardiac output and hence it could play a role in the early phase of hypertension, but also in established
hypertension, to compensate the decrease caused by increased vascular resistance. There is evidence in the
literature about the role of venous tone in the development of hypertension. Martin et al. [184] studied the
initial stages of spontaneously hypertensive rats and compared them to normotensive Wistar-Kyoto rats in
order to test the hypothesis that venous tone is elevated in the early stage of hypertension. They observed
that mean circulatory filling pressure was elevated in hypertensive rats at an early stage; moreover, impair-
ment of autonomic function by ganglionic blockade abolished the elevated venous tone, suggesting that
these differences were neurally mediated. Delaney et al. [74] observed that limb venous compliance was
similar between hypertensive humans and healthy controls; however, venous capacitance was reduced in
pathological subjects. In addition, in order to examine venous tone and its responsiveness in hyperten-
sive humans, they found that venous compliance was not acutely altered by endothelium-independent
venodilation or non-baroreflex-mediated sympatho-excitation in the hypertensive group, while forearm
volume was significantly increased in response to nitroglycerin, which may suggest chronically increased
venous tone. Decreased vascular capacitance is most marked in the veins outside the central compart-
ment, and is particularly notable in the splanchnic circulation [222]. Small veins and venules in this body
region represent the major part of peripheral venous circulation and exhibit the highest degree of active
venoconstriction [105]. Therefore, factors regulating venomotor tone in the entire circulation, and in par-
ticular sympathetic venoconstrictor activity in these vessels, are critical in determining active changes in
capacitance. Venous smooth muscle tone and vascular capacitance contribute to long-term blood pressure
regulation [89]; moderately increased sympathetic nervous system activity could contribute to the devel-
opment of hypertension by reducing vascular capacitance. This hypothesis has been supported both in
humans [132] and animals studies [184].
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FIGURE 6.16: Arterial elastance (Ea) and cardiac index (CI) obtained from simulations
wherein two of the most relevant parameters of the hypertensive scenario are combined to-
gether. Computed value and percentage difference with respect to the complete hypertensive
setup are reported for each studied case. In the main diagonal, values for the adaptation of
only one parameter/compartment of the hypertensive scenario are reported.
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6.4 Conclusions

We have introduced the functional and structural changes that are cause/consequence of arterial hyper-
tension into a global multiscale closed-loop model of the entire circulation in order to theoretically establish
the interplay between different vascular compartments in the pathological state. To the best of our knowl-
edge, this is the first time that this disease is studied in a global closed-loop context by means of a model
which comprises both one-dimensional representation of main large to medium size arteries and other ma-
jor compartments of the blood circulation, in particular the venous system, that is represented by means
of one-dimensional sytems of equations for major veins and zero-dimensional models for small veins and
venules. In a previous mathematical work [158], the authors focused on one-dimensional network of
arteries to assess the wave propagation and the increase in wave velocity that is usually observed in hy-
pertensive patients; even if they used a closed-loop model, they did not considered the effect of reduced
venous compliance. Another completely lumped-parameter approach was adopted in global models for
system analysis of arterial pressure, such as the work by Guyton [112]. The work presented in this chapter
permits to study both the wave propagation in the arterial system and the function of the venous circulation
in developing high blood pressure and controlling cardiac output. To this end, we have assessed the con-
tribution of individual modifications to the cardiovascular system on the arterial pressure; computational
results sustain experimental evidences on the influence of reduced total effective vascular compliance in
the early stage of the disease. Moreover, the assessment of combined modifications in the hypertensive
scenario revealed that increased arterial resistance combined with reduced venous compliance leads to the
highest increase in arterial pressure with slightly increased cardiac index. Regarding cardiac index in hy-
pertension, we observed that it slightly increases when both the systolic and end-diastolic wall stresses of
left ventricle are normalized; this happens when cardiac remodelling is combined with reduced venous
compliance which increases venous filling pressure. An important aspect of this work is the introduction of
total blood volume, which comprises both stressed and unstressed components, that together with vascular
capacitance, play a role in the determination of arterial pressure. The short-term regulation of pressure due



6.4. Conclusions 159

to baroreflex has been introduced in the global model and reset to high blood pressure levels in the hy-
pertensive scenario. The leading role of the baroreflex in short-term regulation of arterial pressure is well
established in the literature; more recent studies have raised doubts about its complex and long-term role
in hypertension. Its introduction in the global model of circulation represents an added value for the study
of hypertension. In fact, its role is crucial for estimating total effective vascular compliance. As pointed
out in a previous work [51], the physiological parametrization of the mathematical model, in particular
the assignment of physical compliance and unstressed volume in different vascular compartments, is nec-
essary but not sufficient for the determination of total effective vascular compliance in agreement with
experimental data [171]; major physiological mechanisms, in particular the short-term control of arterial
pressure, are needed to obtain modelling results that are in agreement with observed variations in mean
arterial pressure, cardiac output, heart rate, and cardiopulmonary blood volume during the infusion test.
A major limitation of this work is that haemodynamic changes on the global model due to hypertension
were calibrated to population-averaged data or previous mathematical studies. However, haemodynamic
conditions largely differ among patients, due to age, weight, to name but a few; patient-specific character-
istics and remodelling could improve the model-based theoretical insights on specific hypertensive status.
To be viable, large data support from in vivo studies would be required. A step forward could be done
considering different hypertensive scenarios, at different ages and stages of the disease. Another aspect
which deserves attention is the role played by other regulatory systems of arterial pressure, in particular
the body fluids control in long-term regulation and its implication in the hypertension of renal origin. Fu-
ture works could address the interaction between blood volume and extracellular fluids, as well as their
regulation. The role played by the microcirculation in hypertension, as well as in ageing, is a popular
topic in the clinical literature [257, 239, 232, 209, 156, 129]. In this work, the microcirculation was simpli-
fied as lumped resistor-capacitor compartments. Remodelling in the microcirculation due to hypertension
involves structural modifications and rarefaction processes that are simply translated into an increase in
vascular resistance. However, a more realistic microvascular networks model would better capture the
consequence of the remodelling. In the clinic, an open question remains about the microcirculation: is it
affected in the same way in all vascular sites? Especially for capillaries, it can be possible to measure their
pressure only in the skin. Mathematical models could help in elucidating this issue. Furthermore, little
attention has been given to the cerebral circulation in this work; even if we are including the cerebral au-
toregulation and the shift on the right of the its curve, we did not focus on a detailed analysis on the effects
of hypertension in this crucial region of the circulation. Future work will address this topic.
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Chapter 7

Conclusions

In this chapter we will discuss the achievements reached through the results presented in this thesis.
Furthermore, we will suggest several aspects that could be improved motivated by the encountered limita-
tions of the current works, as well as possible topics to be considered in future development.

7.1 Achievements

The discussion in this section is divided in three parts: the first one focuses on computational modelling
of global haemodynamics, the second part stresses the achievements about mathematical modelling for
the interaction between blood and cerebrospinal fluid dynamics, while the last part is centred on arterial
hypertension modelling.

7.1.1 Computational modelling of global haemodynamics

The work developed during this PhD project is based on a global closed-loop multiscale mathematical
model of human circulation. This model departs from the Müller-Toro mathematical model [201, 202] for
the global systemic and pulmonary circulations in the entire human body. It includes a one-dimensional
representation of large to medium arteries and veins and lumped-parameter description of other districts
of the circulation (microvasculature, heart and pulmonary circulation). With respect to the original Müller-
Toro model, several improvements were introduced, both on physiological aspects of the circulatory system
as well as on numerical strategies to solve the governing equations. Concerning the physiological processes
considered in the present thesis, the improvements regard the application of viscoelastic tube laws for both
the arterial and venous circulations, a more complete heart model, the parametrization of the vascular beds
with the introduction of nonlinear behaviour of resistances and compliances in the venous microvascula-
ture, the physiological parametrization of vascular compliances and total distribution of blood volume and
the introduction of short-term mechanisms of pressure and flow regulation.

When the arterial and venous networks are equipped with viscoelastic tube laws, rather than the elas-
tic ones, computational results of pressure and flow waveforms are more realistic. The heart model was
improved by the introduction of new cardiac valves models, based on [216]. The parametrization of vas-
cular beds was made more general, based on total resistance and compliance distribution along different
vascular territories; in this way, other vascular beds can be easily added to the network. Moreover, the
introduction of the nonlinear behaviour of the pressure-volume curve of the venous 0D compartments, as
well as the nonlinear characterization of the resistances according to blood volume, enables to better repro-
duce the physiological deviations of the venous system from the baseline situation, as in the case of a blood
infusion test. In order to have a physiological quantification of the amount of blood in the vasculature,
we introduced the unstressed components of blood volume in all vascular compartments together with a
physiological distribution of vascular compliances; to the best of the author’s knowledge, this is the first
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multiscale model of the human cardiovascular system that poses attention on the total amount of blood
volume and its distribution. Two regulatory mechanisms were introduced in this thesis: the cerebral au-
toregulation and the high- and low-pressure baroreceptors for the short-term regulation of arterial pressure.
The cerebral autoregulation model is relevant when studying anatomical malformations of the cerebral cir-
culation while the effects of the baroreflex in controlling main cardiovascular indexes, such as mean arterial
pressure and cardiac output, are evident when hemorrhage or blood infusion tests are simulated.

Regarding the numerical methodology adopted in this work, the physiological introduction of the vis-
coelastic nature of all major blood vessels implies dealing with parabolic systems of equations, that are
approximated by hyperbolic systems with stiff source terms. A numerical improvement regards the in-
volvement of the local time stepping technique; as shown in [207], the local time step selection in a vessel-
wise fashion with respect to a global time step reduces the computational cost of a simulation. The benefit
of using this strategy is of particular importance when coupling the blood circulation to the CSF and brain
dynamics, as the computational time needed to reach periodicity of the solution is large due to different
time scales of the coupled systems.

In light of the physiological aspects considered in this thesis and of the computational results, some
general considerations on cardiovascular modelling in the global context can be done. Our global multi-
scale model of the entire human circulation is characterized by a large number of parameters that aim to
reproduce the circulatory physiology; generally these parameters are based on the effective behaviour of
the cardiovascular system. However, good estimation of physical parameters is necessary but not sufficient
to obtain computational results in agreement with medical evidence, especially when considering medical
experiments or pathological conditions that introduce large deviations from the baseline healthy condi-
tion. In these situations, it becomes necessary to reproduce the nonlinear behaviour of the physiological
processes to avoid a wrong response of the model with respect to the actual sensitivity of physiological
processes to the modelled situation. Moreover, the human body is endowed with several regulatory mech-
anisms that act at different temporal scales and locations to maintain the normal physiological equilibrium.
Major physiological mechanisms must be considered in the mathematical framework to well capture the
physiology of our body. Our mathematical model represents a step forward in the understanding of the
global haemodynamics and it represents a useful tool to address many pathophysiological conditions as-
sociated with the circulatory system, involving both the arterial and the venous systems. In this thesis,
we focused on the effects of abnormalities in the venous circulation on the cerebral dynamics and arterial
hypertension; in the following, we discuss each one of these fields.

7.1.2 Mathematical modelling of the cerebrospinal fluid system and its interaction
with the blood circulation

One of the main novelties of this thesis is the coupling of the blood circulation to refined mathemat-
ical models of the cerebrospinal fluid dynamics in the craniospinal cavities. The CSF model comprises
the cerebral ventricles, the aqueduct of Sylvius, the cranial subarachnoid space and the brain parenchyma,
represented by means of lumped-parameter models. Concerning the spinal column, we considered two
models with different mathematical complexity: the first one comprises a single lumped-parameter com-
partment while the second version includes a coaxial one-dimensional model representing the spinal cord
surrounded with the subarachnoid space. The Monro-Kellie hypothesis, which states that the intracranial
volume inside the cranial cavity is constant, was considered in its classical form and also in a relaxed ver-
sion which admits small variations in time and reproduces the exponential-like behaviour of intracranial
pressure with respect to volume changes. Moreover, the nonlinearity of the pressure-volume relationships
was introduced also at the level of the spinal subarachnoid space.
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Our mathematical model helps in providing useful insight into the cerebrospinal fluid dynamics and its
interaction with the cerebral circulation. We simulated healthy and pathological scenarios to understand
the main determinants of intracranial pressure waveform, as well as the temporal coupling and dynam-
ics of variables of interest of arterial, venous and CSF compartments. Computational results confirm that
intracranial pressure is the result of a dynamic interaction between the CSF production, the arterial pulsa-
tion, the venous reabsorption of CSF and the ability of the spinal subarachnoid space in accommodating the
displaced CSF from the cranial spaces. This interaction is reflected in the intracranial pressure waveform
with its physiological landmark peaks, both in healthy and pathological conditions. Particular emphasis
was placed on the consequences of abnormalities in the head and neck venous network which impair the
normal venous drainage from the brain back to the heart. Due to venous hypertension, CSF absorption
into the venous system is hampered, leading to intracranial hypertension in order to maintain the balance
between CSF generation and absorption. The severity of the consequences of venous outflow obstructions
depends on the balance between CSF generation and absorption, the compliance of the craniospinal CSF
systems and the ability of the venous network in developing collateral routes.

The mathematical model presented in this thesis provides the basis for a more general holistic, multi-
scale closed-loop mathematical model which includes networks of arteries, veins, the cerebrospinal fluid
system and the representation of all other extracellular body fluids.

7.1.3 Mathematical modelling of arterial hypertension

Hypertension remains a major and growing global public health issue; it is a silent, invisible killer, one of
the key risk factors for cardiovascular diseases, stroke, kidney failure and premature mortality and disabil-
ity. Despite the wide range of available pharmacological approaches and/or device-based and procedural
interventions to blood pressure lowering, the high variability in response to these therapies indicates that
the pathophysiology is still not completely understood.

One of the goals of this thesis was that of contributing to a better understanding of the pathophysiolog-
ical mechanisms in hypertension. To this end, we adapted the global closed-loop model of the entire circu-
lation to an hypertensive scenario which includes the main hypertension-induced/inducing alterations in
the cardiovascular system. The main novelty of this work with respect to previous published mathematical
models of hypertension is the global approach to the study of the disease. This implied dealing with the
contribution of the venous system, the introduction of total blood volume and the determination of total ef-
fective vascular compliance. Moreover, we also considered how the cerebral autoregulation and baroreflex
control are reset in hypertensive condition. Computational results showed the predominant role of arterial
resistance and vascular compliance in determining blood pressure increase, with the venous compliance
contributing in the normalisation of cardiac index in hypertension. The computational study presented
in this thesis is an initial step to deepen our knowledge on the pathophysiology of essential hypertension
through mathematical models; other improvements need to be considered to enhance the predictive char-
acter of this tool. To this end, a big issue is the lack of large data support from in vivo studies; more detailed
physiological experiments would be required to better parametrize the model and/or include additional
physiological aspects.

7.2 Future works

Mathematical models are useful tools to improve the understanding of the interactive dynamics be-
tween body fluid systems. During this PhD project, we focused on the cardiovascular and the cerebrospinal
fluid systems, in healthy and pathological states, and we explored the arterial hypertension condition;
both topics were treated in the context of a global multiscale modelling approach. Although the adopted
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model offers a wide range of applications as it is, several aspects can be improved or introduced to enlarge
the number of physiological processes included in the model, as well as the possibility of studying the
pathophysiology of several medical conditions. A first improvement would be the modelling of postural
changes. Viscoelastic properties in the venous circulation represent an added component for the project
of simulating transient phases during postural changes. Indeed, when standing from supine position, the
veins below the right atrium are exposed to positive hydrostatic pressure and are distended by the pres-
sure within them while veins above heart level experience negative transmural pressure and will collapse;
under this condition, the wave speed for veins in the collapse region will lead to transcritical flows. The
algorithm used to treat junctions in case of elastic vessels [201] is unable to deal with Riemann problems
for trans/supercritical flow regime. As a work-around, one can exploit the introduction of viscoelasticity.
Indeed, the wave speed associated to the viscoelastic tube law depends on the relaxation parameter and it
tends to infinity as such parameter tends to zero. Therefore, sufficiently small relaxation parameter should
avoid to fall into situations of regime changes. Adopting viscoelastic properties in the venous circulation,
as well as considering the short-term regulation of arterial pressure, poses the basis for future investigations
about the cardiovascular system and its interaction with the cerebrospinal fluid in upright position. The
second aspect to be introduced in the model is the modelling of temporal variation of intrathoracic and ab-
dominal pressures; the fluctuations caused by the respiration affect the pulsatility of the venous blood flow
and the cerebrospinal fluid pressure. Another aspect that would deserve attention is to provide nutrients,
oxygen, carbon dioxide and solutes to the body; to this end, a model for solute transport and exchange,
as well as metabolism model, should be incorporated in a global multiscale framework. Some topics that
could be deepened in this context are brain waste clearance and how it is disrupted by impaired venous
drainage, as well as the metabolic mechanism of cerebral autoregulation which depends on the concentra-
tion of cerebral carbon dioxide. Of particular interest for a more complete analysis of arterial hypertension
would be the introduction of different regulatory mechanisms, such as the long-term control of arterial
pressure (the renal-body fluid system) and the interaction between blood volume and extracellular fluid.
The kidneys have a primary role in long-term control of arterial pressure and abnormal kidney function
is a key feature of all forms of chronic hypertension; therefore, a first step towards this direction would
be including a refined description of the kidney’s vasculature with its blood flow regulation based on two
mechanisms, the myogenic response and the tubuloglomerular feedback. A last but not least point regards
the brain in hypertension; in this thesis, little care was given to this particular region of the circulation.
However, the brain is known to be an early target for organ damage due to hypertension: small vessel
disease, white matter lesions, lacunar infarcts, cognitive impairment, accelerated atrophy are some of the
effects on brain functioning caused by hypertension. Moreover, recent medical breakthrough [314] showed
that congenital cerebral vascular variations, such as decreased vertebral artery diameters and variants in
the posterior circle of Willis, are tightly coupled to the development of arterial hypertension and may play
an important role in triggering high blood pressure. The mathematical model presented in this thesis offers
a practical tool to quantify the cause/consequences of arterial hypertension on cerebral circulation.
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Appendix A

Geometry of 1D vessels’ networks

Tables A.1 and A.2 report geometrical data for arteries and veins networks. The first columns refer to
number, name, length and radii of each vessel while the last one show the location of the vessel in the
human body (using the same location codes of [201], 1=Dural sinuses, 2=Extracranial, 3=Neck, 4=Thorax,
5=Abdomen, 6=Upper limbs, 7=Lower limbs, 8=Pelvis, 9=Intracranial). Geometrical data are the same of
[201, 202, 297] while, for vessels added or changed in this work, the geometry is estimated from literature
data [29, 186].

TABLE A.1: Geometrical and mechanical parameters of the arterial network. RT is given in
mmHg s/ml while Cart in ml(s mmHg)−1.

No Vessel name L (cm) r0 (cm) r1 (cm) RT Cart Loc

1 Ascending aorta 2 1.525 1.42 - - 4
2 Aortic arch 3 1.42 1.342 - - 4
3 Brachiocephalic a. 3.5 0.65 0.62 - - 4
4 R. subclavian a. 3.5 0.425 0.407 - - 6
5 R. carotid a. 17.7 0.4 0.37 - - 3
6 R. vertebral a. 13.5 0.15 0.136 - - 3
7 R. subclavian a. 39.8 0.407 0.23 - - 6
8 R. radius 22 0.175 0.14 40.3876 0.0059 6
9 R. ulnar a. 6.7 0.215 0.215 - - 6
10 Aortic arch 4 1.342 1.246 - - 4
11 L. carotid a. 20.8 0.4 0.37 - - 3
12 Thoracic aorta 5.5 1.246 1.124 - - 4
13 Thoracic aorta 10.5 1.124 0.924 - - 4
14 Intercostal a. 7.3 0.3 0.3 10.7761 0.0586 4
15 L. subclavian a. 3.5 0.425 0.407 - - 6
16 L. vertebral a. 13.5 0.15 0.136 - - 3
17 L. subclavian a. 39.8 0.407 0.23 - - 6
18 L. ulnar a. 6.7 0.215 0.215 - - 6
19 L. radius 22 0.175 0.14 40.8837 0.0059 6
20 Celiac a. 2 0.35 0.3 - - 5
21 Celiac a. 2 0.3 0.25 - - 5
22 Hepatic a. 6.5 0.275 0.25 27.8243 0.0089 5
23 Splenic a. 5.8 0.175 0.15 41.2558 0.0059 5
24 Gastric a. 5.5 0.2 0.2 18.0678 0.0139 5
25 Abdominal aorta 5.3 0.924 0.838 - - 5
26 Sup. mesenteric a. 5 0.4 0.35 7.1584 0.0342 5



166 Appendix A. Geometry of 1D vessels’ networks

27 Abdominal aorta 1.5 0.838 0.814 - - 5
28 R. renal a. 3 0.275 0.275 8.8134 0.0287 5
29 Abdominal aorta 1.5 0.814 0.792 - - 5
30 L. renal a. 3 0.275 0.275 8.8134 0.0287 5
31 Abdominal aorta 12.5 0.792 0.627 - - 5
32 Inf. mesenteric a. 3.8 0.2 0.175 52.3507 0.0075 5
33 Abdominal aorta 8 0.627 0.55 - - 5
34 R. com. iliac a. 5.8 0.4 0.37 - - 8
35 R. ext. iliac a. 14.5 0.37 0.314 - - 8
36 R. int. iliac a. 4.5 0.2 0.2 42.8843 0.0077 8
37 R. deep femoral a. 11.3 0.2 0.2 25.902 0.0485 7
38 R. femoral a. 44.3 0.314 0.275 - - 7
39 R. ext. carotid a. 4.1 0.2 0.15 - - 2
40 L. int. carotid a. 17.6 0.25 0.2 - - 3
41 R. post. tibial a. 34.4 0.175 0.175 57.3809 0.0211 7
42 R. ant. tibial a. 32.2 0.25 0.25 25.7857 0.0485 7
43 R. interosseous a. 7 0.1 0.1 644.368 0.0018 6
44 R. ulnar a. 17 0.203 0.18 40.9859 0.0059 6
45 L. ulnar a. 17 0.203 0.18 40.9859 0.0059 6
46 L. interosseous a. 7 0.1 0.1 644.368 0.0018 6
47 R. int. carotid a. 17.6 0.25 0.2 - - 3
48 L. ext. carotid a. 4.1 0.2 0.15 - - 3
49 L. com. iliac a. 5.8 0.4 0.37 - - 8
50 L. ext. iliac a. 14.5 0.37 0.314 - - 8
51 L. int. iliac a. 4.5 0.2 0.2 42.8843 0.0077 8
52 L. deep femoral a. 11.3 0.2 0.2 25.902 0.0485 7
53 L. femoral a. 44.3 0.314 0.275 - - 7
54 L. post. tibial a. 34.4 0.175 0.175 57.3809 0.0211 7
55 L. ant. tibial a. 32.2 0.25 0.25 25.7857 0.0485 7
56 Basilar a. 0.96 0.162 0.162 - - 1
57 R. post. cerebral. a. 0.5 0.107 0.107 - - 1
58 R. post. cerebral. a. 8.6 0.105 0.105 46.3595 0.0029 1
59 R. post. communicating a. 1.5 0.073 0.073 - - 1
60 R. int. carotid a. 0.5 0.2 0.2 - - 1
61 R. mid. cerebral a. 11.9 0.143 0.143 22.5727 0.0059 1
62 R. ant. cerebral a. 1.2 0.117 0.117 - - 1
63 R. ant. cererbal a. 10.3 0.12 0.12 45.0952 0.0029 1
64 Ant. communicating a. 0.3 0.1 0.1 - - 1
65 L. ant. cerebral a. 10.3 0.12 0.12 45.0952 0.0029 1
66 L. ant. cerebral a. 1.2 0.117 0.117 - - 1
67 L. mid. cerebral a. 11.9 0.143 0.143 22.5727 0.0059 1
68 L. int. carotid a. 0.5 0.2 0.2 - - 1
69 L. post. communicating a. 1.5 0.073 0.073 - - 1
70 L. post. cerebral a. 8.6 0.105 0.105 46.3595 0.0029 1
71 L. post. cerebral a. 0.5 0.107 0.107 - - 1
72 L. ext. carotid a. 6.1 0.2 0.2 - - 3
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73 R. ext. carotid a. 6.1 0.2 0.2 - - 3
74 L. sup. thyroid a. 10.1 0.1 0.1 228.82 0.0016 3
75 R. sup. thyroid a. 10.1 0.1 0.1 228.82 0.0016 3
76 L. superf. temporal a. 6.1 0.16 0.16 - - 2
77 R. superf. temporal a. 6.1 0.16 0.16 - - 2
78 L. maxillary a. 9.1 0.11 0.11 190.278 0.0016 2
79 R. maxillary a. 9.1 0.11 0.11 190.278 0.0016 2
80 L. superf. temp. fron. bran. 10 0.11 0.11 11379.1 0.0016 2
81 R. superf. temp. fron. bran. 10 0.11 0.11 190.278 0.0016 2
82 L. superf. temp. pari. bran. 10.1 0.11 0.11 190.278 0.0016 2
83 R. superf. temp. pari. bran 10.1 0.11 0.11 11379.1 0.0016 2
169 R. facial a. 11.6 0.13 0.13 207.502 0.0063 2
170 L. facial a. 11.6 0.13 0.13 207.502 0.0063 2
274 Basilar a. II 0.386 0.162 0.162 - - 1
275 R. Labyrinthine artery 1 0.01 0.01 377411 0.0006 1
278 L. Labyrinthine artery 1 0.01 0.01 377421 0.0006 1
285 R. PICA I 1 0.0433 0.0433 - - 1
286 L. PICA I 1 0.0433 0.0433 - - 1
287 R. SCA 1 0.0558 0.0558 111.364 0.0006 1
288 L. SCA 1 0.0558 0.0558 111.368 0.0006 1
293 L. Vertebral artery II 0.75 0.15 0.136 - - 3
294 R. Vertebral artery II 0.75 0.15 0.136 - - 3
304 R. AICA I 1.4 0.0366 0.05 - - 1
305 L. AICA I 1.4 0.0366 0.05 - - 1
306 R. AICA II 2.35 0.0366 0.05 468.13 0.0006 1
307 L. AICA II 2.35 0.0366 0.05 468.23 0.0006 1
308 R. PICA MB 1 0.0216 0.0216 17099.13 0.0006 1
309 L. PICA MB 1 0.0216 0.0216 17099.13 0.0006 1
310 R. PICA II 1 0.0433 0.0433 646.13 0.0006 1
311 L. PICA II 1 0.0433 0.0433 646.13 0.0006 1
312 R. ASA 1 0.048 0.048 1509.03 0.0006 1
313 L. ASA 1 0.048 0.048 1509.03 0.0006 1
314 R. VA III 0.75 0.15 0.136 - - 3
315 L. VA III 0.75 0.15 0.136 - - 3
316 R. pontine a. I 1 0.012 0.012 91716.93 0.0006 1
317 R. pontine artery II 1 0.012 0.012 91596.94 0.0006 1
318 L. pontine a. I 1 0.012 0.012 91716.93 0.0006 1
319 L. pontine artery II 1 0.012 0.012 91596.94 0.0006 1
320 BA III 0.386 0.162 0.162 - - 1
321 BA IV 0.386 0.162 0.162 - - 1
322 BA V 0.386 0.162 0.162 - - 1
323 BA VI 0.386 0.162 0.162 - - 1



168 Appendix A. Geometry of 1D vessels’ networks

TABLE A.2: Geometrical and mechanical parameters of the venous network. Rvn is given in
mmHg s/ml while Cvn in ml(s mmHg)−1.

No Vessel name L (cm) r0 (cm) r1 (cm) Rvn Cvn Loc

84 Sup. vena cava 1.5 0.8 0.8 - - 4
85 Sup. vena cava 2 0.8 0.8 - - 4
86 R. brachiocephalic v. 4 0.564 0.564 - - 4
87 L. brachiocephalic v. 7.5 0.535 0.535 - - 4
88 L. subclavian v. I 3 0.564 0.564 - - 6
89 R. subclavian v. I 3 0.564 0.564 - - 6
90 R. ext. jugular v. 10 0.252 0.252 - - 3
91 L. ext. jugular v. 10 0.252 0.304 - - 3
92 R. int. jugular v. 2.5 0.399 0.399 - - 3
93 L. int. jugular v. 2.5 0.564 0.618 - - 3
94 L. vertebral v. 11 0.138 0.16 - - 3
95 R. vertebral v. 11 0.138 0.16 - - 3
96 R. deep cervical v. 13 0.16 0.16 - - 3
97 L. deep cervical v. 13 0.16 0.16 - - 3
98 Vertebral venous plexus 71 0.368 0.368 - - 3
99 R. sigmoid sinus 3.5 0.252 0.252 - - 1
100 L. sigmoid sinus 3.5 0.357 0.378 - - 1
101 R. trans. sinus 3.5 0.178 0.252 - - 1
102 L. trans. sinus 3.5 0.309 0.357 - - 1
103 Sup. sagittal sinus 2.5 0.35 0.367 - - 1
104 Straight sinus 4 0.25 0.25 - - 1
105 Inf. sagittal sinus 3.67 0.16 0.16 - - 1
106 Vein of Galen 0.6 0.366 0.4 - - 9
107 L. int. cerebral v. 5 0.126 0.126 5.369 0.0539 9
108 R. int. cerebral v. 5 0.126 0.126 5.369 0.0539 9
109 L. basal v. of Rosenthal 1 0.126 0.126 5.369 0.0539 9
110 R. basal v. of Rosenthal 1 0.126 0.126 5.369 0.0539 9
111 R. sup. petrosal sinus 3.7 0.149 0.149 - - 1
112 L. sup. petrosal sinus 3.7 0.149 0.149 - - 1
113 R. inf. petrosal sinus 3.2 0.08 0.16 - - 1
114 L. inf. petrosal sinus 3.2 0.08 0.16 - - 1
115 R. post. auricular v. 5 0.08 0.08 15.817 0.0119 2
116 L. post. auricular v. 5 0.08 0.08 15.817 0.0119 2
117 R. post. retromandibular v. 3.52 0.25 0.25 - - 2
118 L. post. retromandibular v. 3.52 0.25 0.25 - - 2
119 R. ant. retromandibular v. 3.15 0.235 0.235 - - 2
120 L. ant. retromandibular v. 3.15 0.235 0.235 - - 2
121 R. retromandibular v. 4.5 0.26 0.26 - - 2
122 L. retromandibular v. 4.5 0.26 0.26 - - 2
123 R. facial v. 6 0.132 0.178 - - 2
124 L. facial v. 6 0.132 0.178 - - 2
125 R. com. facial v. 0.9 0.18 0.18 - - 2
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126 L. com. facial v. 0.9 0.18 0.18 - - 2
127 R. superf. temp. v. 5 0.19 0.19 2.119 0.5042 2
128 L. superf. temp. v. 5 0.19 0.19 2.119 0.5042 2
129 R. maxillary v. 1 0.175 0.175 - - 2
130 L. maxillary v. 1 0.175 0.175 - - 2
131 R. deep facial v. 0.9 0.25 0.25 - - 2
132 L. deep facial v. 0.9 0.25 0.25 - - 2
133 R. emissary v. 3 0.1 0.1 - - 2
134 L. emissary v. 3 0.1 0.1 - - 2
135 R. pterygoid plexus 0.9 0.15 0.15 - - 2
136 L. pterygoid plexus 0.9 0.15 0.15 - - 2
137 R. marginal sinus 4 0.1 0.1 - - 1
138 L. marginal sinus 4 0.1 0.1 - - 1
139 Occipittal sinus 3.5 0.235 0.235 - - 1
140 R. ext. jugular v. 10 0.252 0.252 - - 3
141 R. mastoid emissary v. 7.2 0.175 0.175 - - 2
142 L. mastoid emissary v. 7.2 0.175 0.175 - - 2
143 R. post. condylar v. 3 0.315 0.315 - - 2
144 L. post. condylar v. 3 0.315 0.315 - - 2
145 R. subocc. sinus 1 0.45 0.45 - - 2
146 R. lat. ant. condylar v. 3 0.315 0.315 - - 2
147 L. lat. ant. condylar v. 3 0.315 0.315 - - 2
148 L. ext. jugular v. 10 0.304 0.357 - - 3
149 Sup. sagittal sinus 4.33 0.229 0.258 - - 1
150 R. Labbe v. 5 0.15 0.15 3.622 0.0539 9
151 L. Labbe v. 5 0.15 0.15 3.622 0.0539 9
152 Sup. sagittal sinus 4.33 0.258 0.287 - - 1
153 Sup. sagittal sinus 2.5 0.334 0.35 - - 1
154 L. cavernous sinus 1.5 0.1 0.1 - - 1
155 R. cavernous sinus 1.5 0.1 0.1 - - 1
156 Occipittal v. 5 0.126 0.126 - - 2
157 Sup. sagittal sinus 5 0.3 0.334 - - 1
158 Cerebral vein 5 0.15 0.15 3.622 0.0207 9
159 Cerebral vein 5 0.15 0.15 3.622 0.0207 9
160 Azygos v. 2 0.425 0.425 - - 4
161 Cerebral vein 5 0.15 0.15 3.622 0.0207 9
162 Cerebral vein 5 0.15 0.15 3.622 0.0207 9
163 R. vertebral v. 5 0.16 0.16 - - 3
164 L. vertebral v. 5 0.16 0.16 - - 3
165 Sup. sagittal sinus 4.33 0.2 0.229 - - 1
166 L. subocc. sinus 1 0.45 0.45 - - 2
167 R. anastomotic v. 2 0.1 0.1 - - 3
168 L. anastomotic v. 2 0.1 0.1 - - 3
171 R. great saphenous v. 7.5 0.2215 0.23 - - 7
172 L. great saphenous v. 7.5 0.2215 0.23 - - 7
173 L. post. tibial v. 17.3 0.15 0.15 - - 7
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174 L. ant. tibial v. 16 0.15 0.15 - - 7
175 R. popliteal v. 19 0.34 0.34 - - 7
176 L. popliteal v. 19 0.34 0.34 - - 7
177 L. femoral v. 25.4 0.35 0.35 - - 7
178 R. femoral v. 25.4 0.35 0.35 - - 7
179 R. deep femoral v. 12.6 0.35 0.35 0.51 2.8741 7
180 L. deep femoral v. 12.6 0.35 0.35 0.51 2.8741 7
181 R. ext. iliac v. 14.4 0.5 0.5 - - 8
182 L. ext. iliac v. 14.4 0.5 0.5 - - 8
183 L. int. iliac v. 5 0.15 0.15 3.622 3.5692 8
184 R. int. iliac v. 5 0.15 0.15 3.622 3.5692 8
185 R. com. iliac v. 2 0.575 0.575 - - 8
186 L. com. iliac v. 2 0.575 0.575 - - 8
187 R. radial v. 40.6 0.2 0.2 1.885 0.651448 6
188 L. interosseous v. 7 0.1 0.1 9.069 0.0372 6
189 R. ulnar v. 30.6 0.2 0.2 1.885 0.6514 6
190 L. ulnar v. 30.6 0.2 0.2 1.885 0.6514 6
191 L. interosseous v. 7 0.1 0.1 9.069 0.0372 6
192 L. radial v. 40.6 0.2 0.2 1.885 0.6514 6
193 L. subclavian v. 27 0.52 0.52 - - 6
194 R. subclavian v. 27 0.52 0.52 - - 6
195 L. subclavian v. 3 0.52 0.52 - - 6
196 R. subclavian v. 3 0.52 0.52 - - 6
197 L. ulnar v. 10 0.2 0.2 - - 6
198 Inf. vena cava 15.3 0.7625 0.7625 - - 5
199 Hepatic v. 6.8 0.485 0.485 0.229 82.3232 5
200 Inf. vena cava 1.5 0.7625 0.7625 - - 5
201 inf. vena cava 1.5 0.7625 0.7625 - - 5
202 Inf. vena cava 12.5 0.7625 0.7625 - - 5
203 Inf. vena cava 8 0.7625 0.7625 - - 5
204 R. com. iliac v. 3.8 0.575 0.575 - - 8
205 L. com. iliac v. 3.8 0.575 0.575 - - 8
206 R. ulnar v. 10 0.2 0.2 - - 6
207 L. renal v. 3.2 0.25 0.25 1.128 11.6388 5
208 R. renal v. 3.2 0.25 0.25 1.128 11.6388 5
209 Ascending lumbar v. 23 0.2 0.2 - - 5
210 hemiazygos v. 23 0.28 0.28 - - 5
211 Inf. mesenteric v. 6 0.45 0.45 0.276 4.5795 5
212 R. post. tibial v. 17.3 0.15 0.15 - - 7
213 R. ant. tibial v. 16 0.15 0.15 - - 7
214 R. ant. tibial v. 2 0.6 0.6 0.132 0.5787 7
215 L. ant. tibial v. 2 0.6 0.6 0.132 0.5787 7
216 R. lumbar v. 3.8 0.1 0.1 - - 5
217 L. lumbar v. 3.8 0.1 0.1 - - 5
218 R. sup. thyroid v. 4 0.15 0.15 - - 3
219 L. sup. thyroid v. 4 0.15 0.15 - - 3
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220 R. mid. thyroid v. 3 0.1 0.1 - - 3
221 L. mid. thyroid v. 3 0.1 0.1 - - 3
222 Inf. thyroid v. 7 0.126 0.126 - - 3
223 Thyroid connection 2 0.16 0.16 3.131 0.2585 3
224 R. int. jugular v. 3 0.357 0.357 - - 3
225 L. int. jugular v. 3 0.564 0.564 - - 3
226 R. int. jugular v. 2.7 0.252 0.357 - - 3
227 L. int. jugular v. 2.7 0.564 0.564 - - 3
228 R. int. jugular v. 6.8 0.252 0.252 - - 3
229 L. int. jugular v. 6.8 0.399 0.564 - - 3
230 R. sigmoid sinus 1.5 0.252 0.252 - - 1
231 L. sigmoid sinus 1.5 0.378 0.399 - - 1
232 R. trans. sinus 3.5 0.218 0.178 - - 1
233 L. trans. sinus 3.5 0.437 0.309 - - 1
234 R. facial v. 2 0.113 0.132 6.256 0.284 2
235 L. facial v. 2 0.113 0.132 6.256 0.284 2
236 Sup. sagittal sinus 2 0.287 0.3 - - 1
237 Cerebral vein 5 0.15 0.15 3.622 0.1652 9
238 Cerebral vein 5 0.15 0.15 3.622 0.1652 9
239 Cerebral vein 5 0.15 0.15 3.622 0.1652 9
240 Intra-cavernous sinus 2 0.126 0.126 - - 1
241 Inf. sagittal sinus 3.67 0.16 0.16 - - 1
242 R. int. jugular v. 1 0.399 0.399 - - 3
243 L. int. jugular v. 1 0.618 0.618 - - 3
244 Azygos v. 28 0.425 0.425 - - 4
245 Cerebral vein 3 0.15 0.15 3.622 0.1652 9
246 L. basal v. of Rosenthal 7 0.126 0.126 - - 9
247 R. basal v. of Rosenthal 7 0.126 0.126 - - 9
248 Inf. sagittal sinus 3.67 0.16 0.16 - - 1
249 Cerebral vein 3 0.15 0.15 3.622 0.1652 9
250 Intercostal v. 2 0.4 0.4 0.369 1.395 4
251 R. post. tibial v. 17.3 0.15 0.15 3.622 0.6805 7
252 R. ant. tibial v. 16 0.15 0.15 - - 7
253 R. great saphenous v. 37.5 0.145 0.1875 - - 7
254 L. great saphenous v. 37.5 0.145 0.1875 - - 7
255 L. ant. tibial v. 16 0.15 0.15 - - 7
256 L. post. tibial v. 17.3 0.15 0.15 3.622 0.6805 7
257 R. great saphenous v. 30 0.1875 0.2215 - - 7
258 L. great saphenous v. 30 0.1875 0.2215 - - 7
259 Confluence of sinuses 1 0.1 0.1 - - 1
260 Cerebral vein 3 0.15 0.15 3.622 0.1652 9
261 Terminal cerebral vein 1 0.15 0.15 - - 1
262 Terminal cerebral vein 1 0.15 0.15 - - 1
263 Terminal cerebral vein 1 0.15 0.15 - - 1
264 Terminal cerebral vein 1 0.15 0.15 - - 1
265 Terminal cerebral vein 1 0.15 0.15 - - 1
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266 Terminal cerebral vein 1 0.15 0.15 - - 1
267 Terminal cerebral vein 1 0.15 0.15 - - 1
268 Terminal cerebral vein 1 0.15 0.15 - - 1
269 Terminal cerebral vein 1 0.15 0.15 - - 1
270 Terminal cerebral vein 1 0.15 0.15 - - 1
271 Terminal cerebral vein 1 0.309 0.366 - - 9
272 Terminal cerebral vein 1 0.15 0.15 - - 1
273 Terminal cerebral vein 1 0.15 0.15 - - 1
276 R. v. of cochlear aq. I 0.65 0.01 0.01 253.077 2.33E-05 9
277 R. labyrinthine v. I 0.43 0.037 0.037 71.986 2.33E-05 9
279 L. v. of cochlear aq. I 0.65 0.01 0.01 253.077 2.33E-05 9
280 L. labyrinthine v. I 0.43 0.037 0.037 17.997 2.33E-05 9
281 R. v. of cochlear aq. II 0.65 0.01 0.01 - - 1
282 R. labyrinthine v. II 0.43 0.037 0.037 - - 1
283 L. v. of cochlear aq. II 0.65 0.01 0.01 - - 1
284 L. labyrinthine v. II 0.43 0.037 0.037 - - 1
289 R. Sup. Vermian vein 1 0.08 0.08 15.817 0.006 9
290 L. Sup. Vermian vein 1 0.08 0.08 15.817 0.006 9
291 R. Inf. Vermian vein 1 0.09 0.09 11.577 0.008 9
292 L. Inf. Vermian vein 1 0.09 0.09 11.577 0.008 9
295 R. Inf. Vermian vein II 1 0.09 0.09 - - 1
296 L. Inf. Vermian vein II 1 0.09 0.09 - - 1
297 Cerebral vein 1 0.309 0.36 - - 9
298 R. Sup. Petrosal vein 1 0.08 0.08 15.817 0.008 9
299 L. Sup. Petrosal vein 1 0.08 0.08 15.817 0.008 9
300 R. Sup. Petrosal vein II 1 0.08 0.08 - - 1
301 L. Sup. Petrosal vein II 1 0.08 0.08 - - 1
302 R. Sup. Petrosal sinus II 2 0.149 0.149 - - 1
303 L. Sup. Petrosal sinus II 2 0.149 0.149 - - 1
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Cardiovascular indexes

In this appendix, we summarize the main cardiovascular indexes adopted throughout this work, how
they are defined and calculated. All the indexes were evaluated from the numerical solution in the last
cardiac cycle of a simulation that was converged to periodic solution. Therefore, in the following list we
refer to maximum, minimum and mean values over a cardiac cycle. For one-dimensional vessels computed
values are extracted from pressure, flow or velocity waveforms evaluated at the middle-point of the vessel’s
length.

• SBP: systolic blood pressure; maximum blood pressure.

• DBP: diastolic blood pressure; minimum blood pressure.

• MBP: mean blood pressure; average blood pressure.

• PP: pulse pressure; difference between maximum and minimum blood pressures.

• PPAmpli f ication: pulse pressure amplification; it is evaluated as ratio between pulse pressure in brachial
artery and aortic root.

• cfPWV: carotid-femoral pulse wave velocity; it is evaluated with the ’foot-to-foot’ method as

c f PWV =
∆L
∆t

,

where ∆t is the time delay between the arrival of pulse at the right common carotid artery and at the
right femoral artery and ∆L is the distance between the two measurement points.

• baPWV: brachial-ankle pulse wave velocity; it is evaluated with the ’foot-to-foot’ method as

baPWV =
∆L
∆t

,

where ∆t is the time interval between the arrival of pulse at the right brachial artery and at the right
tibial artery and ∆L is the distance between the two measurement points.

• Augmented P: augmented pressure; it is calculated as the difference between the second and first
systolic peaks of aortic pressure.

• Augmentation index; it is calculated as the ratio between augmentation pressure and pulse pressure
of aortic root.

• Ca: total arterial compliance index; arterial compliance index is evaluated as the ratio between stroke
volume and brachial pulse pressure.
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• Ca index: total arterial compliance index; arterial compliance index is evaluated as the ratio between
stroke volume and brachial pulse pressure, divided by body surface area, taken as 1.92 m2 for both
normotensive and hypertensive subjects.

• HR: heart rate.

• CO: cardiac output.

• CI: cardiac index; it is calculated as cardiac output divided by body surface area, taken as 1.92 m2 for
both normotensive and hypertensive subjects.

• SI: stroke index; it is evaluated as stroke volume (end-diastolic volume - end-systolic volume of left
ventricle) divided by body surface area.

• Ea: arterial elastance; it is calculated as the ratio between left ventricle end-systolic pressure and stroke
volume. In Chapter 3, it was normalized by body surface area.

• Ees: left ventricle elastance; it is evaluated as left ventricle end-systolic pressure divided by left ven-
tricle end-systolic volume. In Chapter 3, it was normalized by body surface area.

• Ea/Ees: arterial-ventricular coupling index.

• LV/RVmax: maximum volume of left/right ventricle.

• LV/RVEF: ejection fraction of left/right ventricle; it is calculated as the ratio between stroke volume
and end-diastolic volume.

• max/min
dP
dt

: maximum/minimum pressure rate.

• RV-SP: right ventricle systolic pressure.

• RV-EDP: right ventricle end-diastolic pressure.

• M/S/D PAP: mean/systolic/diastolic pulmonary artery pressure, evaluated in the zero-dimensional
compartment of the arteries in the pulmonary circulation.

• PI: pulsatility index. It is evaluated from flow waveform or velocity waveform as the difference
between the peak systolic and minimum diastolic value, divided by the mean value.

• RI: resistive index. It is calculated from velocity waveform as the difference between peak systolic
and peak diastolic velocities divided by peak systolic velocity.
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