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1 Introduction

“What is mathematics?
It is only a systematic effort
of solving puzzles posed by nature.”

Shakuntala Devi

In nature it is quite common to see particular species of animals forming groups and
moving together in an organized way; this phenomenon is particularly evident in flocks
of birds, or schools of fish. Every individual that takes part of a community acquires a
behaviour that depends on the whole group, not only on the single decision: the shift of
an agent affects on an other agent that is “close” to the previous one in a certain sense.
This fact occurs also in the society without realizing it, humans frequently influence each
others. This is the case of opinion dynamics, when for example consumers are influenced
towards a given good, or voters persuaded during political elections, or also the influence
of opinions over social networks. This kind of event can be seen in a mathematical way
by considering all the individuals with common characteristics as a unique set and the
behaviours as the interactions between elements of that set. With his quote “The laws
of nature are but the mathematical thoughts of God”, the famous mathematician Euclid
underlines the idea that mathematical relationships reflect real aspects of the physical
world, that science relies on the assumption that we live in an ordered Universe that is
subject to precise mathematical laws.

Figure 1.1: On the left, a school of fishes. On the right, starlings of birds.

The beauty of these phenomena in nature and the development of several application
may justified the increased level of activity over the last years of the study of collective
behaviour phenomena from a multiscale modelling perspective. Classical examples in
socio-economy, biology and robotics are given by self-propelled particles, such animals
and robots, see e.g. (4, 32, 61, 74, 113, 90). Those particles interact according to a
nonlinear model encoding various social rules as for example attraction, repulsion and
alignment. A particular feature of such models is their rich dynamical structure, which
include different types of emerging patterns, including consensus, flocking, and milling
(102, 147, 69, 88, 138).
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Understanding the impact of control inputs in such complex systems is of great rele-
vance for applications. Results in this direction allow to design optimized actions such
as collision-avoidance protocols for swarm robotics (57, 140, 144, 100), pedestrian evacu-
ation in crowd dynamics (6, 66, 87, 45), supply chain policies (117, 72), the quantification
of interventions in traffic management (148, 108, 146) or in opinion dynamics (13, 101).
From a mathematical point of view, a description of self-organized models is provided
by complex system theory, where the overall dynamic is depicted by an ODEs system.
Here, we will consider the control of high-dimensional nonlinear dynamics accounting
the evolution of N agents with state vi(t) ∈ Rd,

v̇i =
1

N

N∑
j=1

P (vi, vj)(vj − vi) + ui , vi(0) = v0
i , i = 1, . . . , N, (1.1)

where the control u = u(t) is given by the minimization of the cost functional

u∗ = arg min
u
J(u; v0) :=

∫ T

0

1

N

N∑
j=1

(|vj − ṽ|2 + ν|uj|2) dt , subject to (1.1) . (1.2)

The optimization horizon T expresses the time scale along which we minimize the running
cost, encodes our objective as a function of the state and control variables. The parameter
ν > 0 is a penalization for the control energy, and ṽ is a prescribed consensus point,
since in the context of this work, we are interested in consensus equilibrium, namely,
reaching a consensus velocity ṽ ∈ Rd such that v1 = . . . = vN = ṽ.
The original formulation of the interacting particle system (1.1) is at microscopic level
through a system of ODEs, but a direct evaluation of such sums involve a O(N2) cost,
therefore study of microscopic model for a large system of individuals implies a consider-
able effort in numerical simulations, as models on real data may take into account very
large number of interacting individuals. To reduce the computational complexity we
can consider a more general level of description, that is the derivation of a mesoscopic
approximation of the original dynamic. The basic idea is to analyse the density of parti-
cles, instead of focusing on the evolution of every single particle. Hence we will consider
continuous models in order to simulate the collective behaviour in case of analysing sys-
tems with a large number of agents N � 1. By passing to the mean-field limit N →∞
of the ODE system (1.1), we obtain a PDE problem which describes how the density of
the particles g = g(t, v) changes in time

∂tg = −∇v ·
[
g
(
P [g] + u(t, g)

)]
, g(v, 0) = g0(v), (1.3)

where P [g] denotes a nonlocal integral operator. The study of large particle limit has also
in many cases allowed to analyse emerging patterns or identifying relevant parameters.
The derivation of a model hierarchy starting from dynamical systems to kinetic equations
and fluid dynamic models has been studied intensively in the literature, for example in
(75, 93, 105, 73, 52).
Of particular interest for control design purposes is the study of mean-field control ap-
proaches where the control law obtain formal independence on the number of interacting
agents (97, 94, 95, 43). The construction of computational methods for mean-field op-
timal control is a challenging problem due to the nonlocality and nonlinearity arising
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from the interaction kernel (8, 2, 131). Furthermore, depending on the associated cost,
non-smooth and/or non-convex optimization problems might also arise (51, 24).
We want to circumvent these difficulties proposing new approaches with a main focus on
deriving robust numerical methods in the case of incomplete information, limited access
or disturbances in the state of the system.
The introduction of uncertainty in the mathematical modelling of real world phenomena
seems to be unavoidable for applications. In fact we can often have at most statistical
information of the modelling parameters, which must be estimated from experiments
or derived from heuristic observations (28, 36, 125). Therefore, to produce effective
predictions and to better understand physical phenomena, we can incorporate in (1.1) a
parameter reflecting the uncertainty in the interaction rules

Z∑
k=1

θk , θ ∈ Ω ⊆ RZ , with a given distribution ρ. (1.4)

Figure 1.2: On the left, a dog herding sheep. On the right, crowd of people inside Arena
in Verona.

The aim of this thesis is the construction of robust computational methods for mean-field
control problems dealing with difficulties caused by nonlocal and nonlinear dynamic, or
non-smooth and non-convex minimization functional, with particular attention to the
case of limited or disturbed access to the state of the model. Each chapter is self consis-
tent and refers to a research article, already published or almost ready to be submitted
in a journal.
In order to circumvent the mentioned difficulties we propose an approach where we
synthesize sub-optimal feedback-type controls through the linearization of the interaction
kernel and by solving the resulting linear-quadratic optimal control problem through
a Riccati equation, all based on the corresponding mean-field equations, similarly as
in (114, 112). This approach also avoids the limitations associated to the synthesis of
optimal feedback laws for high-dimensional nonlinear dynamics via the Hamilton-Jacobi-
Bellman PDE (81, 21). The proposed methodology yields a control law for the linear
model, which is later embedded into the non-linear dynamics (1.1). A sketch of this
control concept is given in Figure 1 where we show the microscopic formulation of our
approach. The main advantage of the proposed design is that unlike the classical control
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loop (1, left), we do not require a continuous measurement/estimation of the nonlinear
state, nor the synthesis of a nonlinear optimal feedback law. Instead, we only require
periodic measurements of the nonlinear state to update our linearized system.

However, using the linear optimal control within the nonlinear model does not necessarily
yield a stabilizing control law, since over time the nonlinear dynamics may be far from
the linearization point. Because of the latter, we aim at quantifying the impact of this
control and the number of linearization updates needed to stabilize the nonlinear system.
Hence, we propose different controls, distinguishing between closed-loop and open-loop
strategies: in the first case the control acts having access to the full information of the
non-linear system at each time. In the second case, the control only requires information
available at initial time. We quantify the performances of these control approaches by
estimating the decay of macroscopic quantities associated to (1.1) such as the first and
second moments of the particle ensemble.

In order to enhance open-loop strategies we introduce a novel Moment-driven Predictive
Control (MdPC) framework. Based on dynamic estimates of the moments decay, we
are able to perform a forward error analysis to estimate the next point in time where
we need to update the dynamics and its feedback law. This strategy can be seen as
model predictive control (MPC) technique (135, 47, 103, 22), where an open-loop control
signal is applied only up to a subsequent point in time, after which the optimization is
repeated. Moreover, the proposed control strategy is capable of treating efficiently high-
dimensional control problems, and is robust in the case of limited access to the state and
can be implemented with a small number of updates.

Figure 1.3: Left: the classical control loop for nonlinear dynamics. An often incomplete
measurement of the state is recovered through a nonlinear observation. This observed
state is inserted into a feedback law which requires the solution of a high-dimensional
HJB PDE. This task is often unaffordable, and this block is replaced by a sub-optimal
control law which is fed into the dynamics. Right: the Moment-driven predictive control
methodology (MdPC) we propose simplifies the control loop on the left by requiring
fewer measurements of the nonlinear state (every τ seconds), feeding this information
into a linearized system for which the optimal feedback law can be easily computed.

We will focus then on the case where uncertainty (1.4) acts in the dynamic (1.1) as an
additive random parameter constant in time. We will compare two different controls, one
obtained from the usual minimization (1.2) and the other minimizing the expectation
of J . With this last approach we will obtain a control independent from the noise and
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we will evaluate the controls robustness using the H∞ theory. H∞ control methods that
can effectively suppress the negative effects of disturbance have been proposed and have
been successfully applied. So far, a lot of results have been published on this issue,
works focused on first-order and higher-order multiagent systems with robustness for
the H∞ consensus problem under external disturbances (133, 129, 136, 130, 132). By
reformulating the consensus control problem as a robust H∞ control problem, we will
derive sufficient conditions in terms of linear matrix inequalities (LMIs) to ensure the
consensus performance and meanwhile the unknown feedback matrix of the proposed
protocol is also determined.
In general, at the numerical level, techniques for uncertainty quantification can be classi-
fied in non-intrusive and intrusive methods. In an non-intrusive approach, the underlying
model is solved for fixed samples with deterministic schemes and statistics of interest are
determined by numerical quadrature, typical examples are Monte-Carlo and stochastic
collocation methods (80, 139, 155). While in the intrusive case, the dependency of the
solution on the stochastic input is described as a truncated series expansion in terms
of orthogonal functions. Then, a new system is deduced that describes the unknown
coefficients in the expansion. One of the most popular techniques of this type is based
on stochastic Galerkin (SG) methods. In particular, generalized polynomial chaos (gPC)
gained increasing popularity in UQ, for which spectral convergence on the random field
is observed under suitable regularity assumptions (80, 120, 121, 154, 139).
The methods here developed makes use of the generalized polynomial chaos (gPC) ex-
pansion for the microscopic dynamic while in the mean-field case we combine a gPC
expansion in the random space with a Monte Carlo method in the physical variables.

Figure 1.4: On the left, a traffic jam. On the right, swarmbots performing a task.

In optimal control for multiagent systems, the question of a more parsimonious control
design remains open. Efficient controls strategies should target only few individuals
of the population, instead of wasting resources on the entire group at once. Taking
advantage of the mutual dependencies between the agents, they could use an effect that
would spread their influence to the whole system, thus indirectly controlling the rest of
agents. The property of control strategies to target only a small fraction of the total
population is known in the mathematical literature as sparsity (48, 82, 56, 59). For
example, in alignment models, the sparse control targeting at each instant only the
agent farthest away from the mean velocity was shown to possess this property, see (51).
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As an extension of the proposed methodology, we address the finite horizon optimal
control problem with a non-smooth, sparsity-promoting control penalisation, the sparse
control can indeed be obtained when the control cost is the `1-norm (51). This control
synthesis is sparse, acting on a few agents over a finite time frame, however its numerical
realisation is far more demanding due to the lack of smoothness in the cost functional.
To circumvent this difficulty, we propose a numerical realisation of the control synthesis
via proximal gradient method (31).
The final part of the thesis is devoted to applications, in particular we discuss the math-
ematical modelling of egressing pedestrians in an unknown environment with multiple
exits. Control methodologies for crowd motion are of paramount importance in real-life
applications for the design of safety measures and risk mitigation. The creation of virtual
models of a large ensemble of pedestrians is a first step for reliable predictions, otherwise
not easily reproducible with real-life experiments. We investigate different control prob-
lems to enhance the evacuation time of a crowd of agents, by few informed individuals,
named leaders. Leaders are not recognizable as such and consist of two groups: a set of
unaware leaders moving selfishly toward a fixed target, whereas the rest is coordinated
to improve the evacuation time introducing different performance measures. Pedestrians
have been properly modeled by means of different agent-based dynamics such as lattice
models (58, 104), social force models (111, 142), or cellular automata models (1, 151).
We initially describe follower-leader dynamics microscopically by an agent-based model,
subsequently a mean-field type model is introduced to approximate the large crowd of
followers. In the literature we can find different level of description, using mesoscopic
models (3, 7, 92) where the quantities of study are densities of agents; at a larger scale
macroscopic models (54, 78, 60) describe the evolution of moments such as mass and
momentum. Multiscale models have been also considered, to account for situations where
different scales coexist, we refer in particular to (65, 67).
In this thesis the mesoscopic scale is efficiently solved by a class of numerical schemes
based on direct simulation Monte-Carlo methods. Optimization of leader strategies
is performed by a modified compass search method in the spirit of metaheuristic ap-
proaches. Finally, several virtual experiments are studied for various control settings
and environments.
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2 Moments driven predictive control

2.1 Introduction

The study of collective behaviour phenomena from a multiscale modelling perspective
has seen an increased level of activity over the last years. Classical examples in socio-
economy, biology and robotics are given by self-propelled particles, such animals and
robots, see e.g. (4, 32, 61, 74, 116, 113, 90). Those particles interact according to
a nonlinear model encoding various social rules as for example attraction, repulsion
and alignment. A particular feature of such models is their rich dynamical structure,
which include different types of emerging patterns, including consensus, flocking, and
milling (102, 147, 69, 88, 138). Understanding the impact of control inputs in such
complex systems is of great relevance for applications. Results in this direction allow
to design optimized actions such as collision-avoidance protocols for swarm robotics
(57, 140, 144, 100), pedestrian evacuation in crowd dynamics (6, 66, 87, 45), supply
chain policies (117, 72), the quantification of interventions in traffic management (148,
108, 146) or in opinion dynamics (13, 17, 101). Here, we are concerned with the control
of high-dimensional nonlinear systems of interacting particles which can describe self-
organization patterns. We will consider dynamics accounting the evolution of N agents
with state vi(t) ∈ Rd, undergoing a binary exchange of information weighted by a kernel
P : Rd × Rd → R and forced by a control signal ui(t) ∈ Rn, represented as

v̇i =
1

N

N∑
j=1

P (vi, vj)(vj − vi) + ui , vi(0) = v0
i , i = 1, . . . , N. (2.5)

While the original formulation the interacting particle system (2.5) is at microscopic level
through a system of ODEs, the study of large particle limit has in many cases allowed
to analyse emerging patterns or identifying relevant parameters. The derivation of a
model hierarchy starting from dynamical systems to kinetic equations and fluid dynamic
models has been studied intensively in the literature, for example in (40, 75, 93, 105,
73, 52). Of particular interest for control design purposes is the study of mean-field
control approaches where the control law obtain formal independence on the number of
interacting agents (97, 94, 95, 43). The construction of computational methods for mean-
field optimal control is a challenging problem due to the nonlocality and nonlinearity
arising from the interaction kernel (8, 2, 131). Furthermore, depending on the associated
cost, non-smooth and/or non-convex optimization problems might also arise (51, 24).
In order to circumvent these difficulties we propose an approach where we synthesize
sub-optimal feedback-type controls through the linearization of the interaction kernel
and by solving the resulting linear-quadratic optimal control problem through a Riccati
equation , all based on the corresponding mean-field equations, similarly as in (114, 112).
This approach also avoids the limitations associated to the synthesis of optimal feedback
laws for high-dimensional nonlinear dynamics via the Hamilton-Jacobi-Bellman PDE
(81, 21). The proposed methodology yields a control law for the linear model, which is
later embedded into the non-linear dynamics (2.5). The main advantage of the proposed
design is that we do not require a continuous measurement/estimation of the nonlinear
state, nor the synthesis of a nonlinear optimal feedback law. Instead, we only require
periodic measurements of the nonlinear state to update our linearized system.
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However, using the linear optimal control within the nonlinear model does not necessarily
yield a stabilizing control law, since over time the nonlinear dynamics may be far from
the linearization point. Because of the latter, we aim at quantifying the impact of this
control and the number of linearization updates needed to stabilize the nonlinear system.
Hence, we propose different controls, distinguishing between closed-loop and open-loop
strategies: in the first case the control acts having access to the full information of the
non-linear system at each time. In the second case, the control only requires information
available at initial time. We quantify the performances of these control approaches by
estimating the decay of macroscopic quantities associated to (2.5) such as the first and
second moments of the particle ensemble.
In order to enhance open-loop strategies we introduce a novel Moment-driven Predictive
Control (MdPC) framework. Based on dynamic estimates of the moments decay, we
are able to perform a forward error analysis to estimate the next point in time where
we need to update the dynamics and its feedback law. This strategy can be seen as
model predictive control (MPC) technique (135, 47, 103, 22), where an open-loop control
signal is applied only up to a subsequent point in time, after which the optimization is
repeated. Moreover, the proposed control strategy is capable of treating efficiently high-
dimensional control problems, and is robust in the case of limited access to the state and
can be implemented with a small number of updates.
The rest of the paper is organized as follows. In Section 2.2 we derive different control
systems based on the linearization of the dynamics and the solution of the Riccati equa-
tion associated to the linear-quadratic optimal control problem. Section 2.3 is devoted
to the mean-field approximation of the microscopic dynamics and presents bounds for
the moments decay. In Section 2.4 the Moment-driven Predictive Control framework is
described and two different implementations are presented. Finally, in Section 2.5 we
assess the proposed design via numerical experiments, showing different applications in
the context of opinion formation and alignment dynamics.

2.2 Control of an interacting multi-agent system

In this section we present a linearization-based approach for the control of large-scale
interacting particle systems. We are concerned with the evolution of N interacting
agents, whose states vi(t) ∈ Rd evolve according to the following nonlinear model (2.5).
Further assumptions regarding the interaction kernel P (u, v) governing these interactions
will be discussed in the forthcoming sections. The term ui ∈ Rd represents an external
control variable acting over the i−th agent of the system. The complete set of control
variables is denoted by u = (u1, . . . , uN) ∈ RN×d. In order to synthesize this control
variable, we assume that u is the minimizer of a cost function J(u; v(0)), that is

u∗ = arg min
u
J(u; v0) :=

∫ T

0

`(v(t), u(t)) dt , subject to (2.5) . (2.6)

The optimization horizon T expresses the time scale along which we minimize the running
cost `(v, u), encodes our objective as a function of the state and control variables. In
the context of this work, we are interested in consensus equilibrium, namely, reaching a
consensus velocity ṽ ∈ Rd such that v1 = . . . = vN = ṽ. With a slight abuse of notation,
we shall denote indistinctively by ṽ the consensus state and the swarm configuration
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ṽ ∈ RN×d where all the agents share the same velocity. In order to promote consensus
emergence, we solve the optimal control problem (2.6) to determine a control law u
driving the system towards ṽ using the running cost

`(v, u) =
1

N

N∑
j=1

(|vj − ṽ|2 + ν|uj|2) (2.7)

where ν > 0 is a penalization parameter for the control energy, and ṽ is a prescribed
consensus point. The norm | · | is the usual Euclidean norm in Rd.

2.2.1 Linearization and LQR approach for collective dynamics

We are interested in the synthesis of a feedback control law for the control of the non-
linear dynamics (2.5). We begin by defining the vector-valued function F (v) : RN×d →
RN×d such that

Fi(v) =
1

N

N∑
j=1

P (vi, vj)(vj − vi), i = 1, . . . , N.

We linearize the dynamics around vi = v̄ for every agent, which corresponds to an
arbitrary equilibrium for the nonlinear dynamics (2.5), i.e. F (v̄) = 0, and which can
be different from the consensus state ṽ. We further assume that the communication
function P (vi, vj) is such that P (v̄, v̄) ≡ p̄ , with p̄ a bounded value. Computing the
first order approximation of F (v) around v̄, we have ∇vF (v̄)(v − v̄) = A(v − v̄) , where
A ∈ RN×N is the Laplacian matrix defined as follows

(A)ij =

{
ad = p̄(1−N)

N
, i = j,

ao = p̄
N
, i 6= j.

(2.8)

We observe that the structure of matrix A is such that A(v − v̄) = Av since v̄ is a
consensus point. To write the linearized system associated to (2.5) we further consider
the change of variables wi(t) := vi(t)− v̄, and we have

ẇi =
1

N

N∑
j=1

p̄(wj − wi) + ui, wi(0) = v0
i − v̄. (2.9)

For the linearized dynamics we cast as the Linear Quadratic Regulator (LQR) control
problem, where the functional (2.6) reads as follows

J(u,w(0)) =

∫ T

0

w>Qw + νu>Rudt (2.10)

in the matrix-vector notation with w = (w1, . . . , wN) and matrices Q ≡ R = 1
N

Id ∈
RN×N . The linear dynamics (2.9) are equivalent to

ẇ = Aw +Bu, w(0) = v0 − v̄ , (2.11)
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where B = Id ∈ RN×N is the identity matrix, impliying that the pair (A,B) is control-
lable for any consensus state v̄. Thus, in a neighbourhood of any constant state v̄ the non
linear system (2.5) admits a continuous stabilizing feedback, see e.g. (42). In order to
synthesize a stabilizing control law we solve the optimal control problem (2.10)–(2.11),
whose exact solution is given in feedback form by

u(t) = −N
ν
K(t)w(t) (2.12)

with K(t) ∈ RN×N fulfilling the Differential Riccati matrix-equation

−K̇ = KA+ A>K − N

ν
KK +Q, K(T ) = 0 ∈ RN×N , (2.13)

coupled to the evolution of the controlled system (2.11). For a general linear system we
need to solve the N × N differential system (2.13), which can be costly for large-scale
agent-based dynamics. However, in this case we can exploit the symmetric structure of
the Laplacian matrix A to reduce the Riccati equation.

Proposition 2.1 (Properties of the Differential Riccati Equation (DRE)). For the linear
dynamics (2.9), the solution of the Riccati equation (2.13) reduces to the solution of

−k̇d = 2kdad + 2(N − 1)koao −
N

ν

(
k2
d + (N − 1)k2

o

)
+

1

N
,

−k̇o = 2(N − 2)koao + 2koad + 2kdao −
N

ν

(
2kdko + (N − 2)k2

o

)
,

with terminal conditions kd(T ) = ko(T ) = 0. The solution K of the differential Riccati
equation (2.13) corresponds to (K)ij = δijkd + (1− δij)ko.

Proof. Given the structure of the matrices K, A and Q, solving the Riccati equation
(2.13) componentwise leads to the following identities:

Diagonal entries kii :
N

ν
(K2)ii =

N

ν

(
k2
d + (N − 1)k2

o

)
.

Off-diagonal entries kij:
N

ν
(K2)ij =

N

ν

(
2kdko + (N − 2)k2

o

)
.

We can further simplify the Riccati-matrix system (2.14) using the dependency of coef-
ficients ad, ao (2.8) and the parameter p̄. This leads to

−k̇d = −2p̄(N − 1)

N
(kd − ko)−

N

ν

(
k2
d + (N − 1)k2

o

)
+

1

N
, kd(T ) = 0 , (2.15)

−k̇o =
2p̄

N
(kd − ko)−

N

ν

(
2kdko + (N − 2)k2

o

)
, ko(T ) = 0. (2.16)

Since we are interested in the dynamics for large number of agents, we introduce the
following scalings

kd ← Nkd, ko ← N2ko, α(N) =
N − 1

N
.
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For the sake of simplicity, we keep the same notation also for the scaled variables kd, ko.
Under this scaling the system (2.15)–(2.16) reads

−k̇d = −2p̄α(N)

(
kd −

ko
N

)
− 1

ν

(
k2
d +

α(N)

N
k2
o

)
+ 1, kd(T ) = 0, (2.17)

−k̇o = 2p̄

(
kd −

ko
N

)
− 1

ν

(
2kdko + α(N)k2

o −
1

N
k2
o

)
, ko(T ) = 0 , (2.18)

and the Riccati feedback law (2.12) is given by

ui = −1

ν

((
kd −

ko
N

)
wi(t) +

ko
N

N∑
j=1

wj(t)

)
. (2.19)

Plugging the control into the linear dynamics (2.9) and rearranging the terms we have

ẇi =

(
p̄− ko

ν

)
1

N

N∑
j=1

wj −
(
p̄+

kd
ν
− ko
νN

)
wi, wi(0) = v0

i − v̄. (2.20)

The controlled dynamics (2.20) are non-autonomous as the coefficients kd(t), ko(t), have
to be determined offline by solving (2.17)–(2.18) backwards in time.

In order to analyse the large-scale behaviour of the system we introduce the average of
the agent states, and a weighted combination of the Riccati coefficients, respectively

mN
w (t) :=

1

N

N∑
j=1

wj(t), s(t) := kd(t) + α(N)ko(t).

From (2.20), (2.17) and (2.18), these quantities are governed by

ṁN
w (t) = −1

ν
s(t)mN

w (t), mN
w (0) = mN

v (0)− v̄,

−ṡ(t) = 1− 1

ν
s(t)2, s(T ) = 0.

The second equation has an explicit solution s(t) =
√
ν tanh((T − t)/

√
ν), always non-

negative for t ∈ [0, T ] (114). The average mN
v (t) follows a relaxation towards v̄

ṁN
v (t) = − 1√

ν
tanh

(
T − t√

ν

)
(mN

v (t)− v̄).

Remark 1 (Second order dynamics). This approach can be extended to second order
models (69, 88, 138). Here, the state space of a swarm of N agents is characterized by
position and velocities (xi(t), vi(t))i ∈ R2×d, evolving according to

ẋi = vi, v̇i =
1

N

N∑
j=1

P (xi, xj)(vj − vi) + ui, i = 1, . . . , N . (2.22)
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where u ∈ RN×d. We consider again a functional of type (2.7), where we enforce a
consensus point vi = vj = ṽ for every i, j. Linearizing around this point and introducing
the shift yi = xi − v̄t, wi = vi − v̄, the system is transformed into[

ẏ
ẇ

]
=

[
0 Id
0 A

] [
y
w

]
+

[
0
Id

]
u .

This second-order system system is controllable (112), and the associated DRE reads[
K̇11 K̇12

K̇21 K̇22

]
=

[
0 0
0 K21 +K22A

]
+

[
0 0

K11 + AK21 K12 + AK22

]
− N

ν

[
K12K21 K12K22

K22K21 (K22)2

]
+

[
0 0
0 Id

]
,

with terminal conditions Kij(T ) = 0, for i, j = 1, 2. This system is easily solved with
K11 = K12 = K21 = 0 and K22 satisfying a Riccati equation equivalent to (2.13). Hence,
the results we obtain for the first order system can be extended to second order systems.
We will further discuss this extension in the numerical section.

2.2.2 Riccati-based control laws for the non-linear system

In order to approximate the synthesis of feedback laws for the original nonlinear optimal
control problem (2.6), we study sub-optimal stabilizing strategies induced by the Riccati
control (2.12). Without loss of generality, we will consider the stabilization problem
towards ṽ = 0. We will focus on different ways to synthesize a control law based on the
information retrieved in the linearized case: a closed-loop control, an open-loop strategy,
and a simplified inexact open-loop control.

Closed-loop control A well-known local strategy for the control of nonlinear dynam-
ics is to use the optimal feedback control obtained from the linearized dynamics. In this
case, the controlled system reads

v̇i =
1

N

N∑
j=1

P (vi, vj)(vj − vi) +Ri[v](t), vi(0) = v0
i , (2.23)

where the operator Ri[·] is the feedback (2.12) applied directly to the state of the non-
linear system v(t) = (vi(t))

N
i=1, namely

Ri[v](t) = −1

ν

((
kd(t)−

ko(t)

N

)
vi(t) +

ko(t)

N

N∑
j=1

vj(t)

)
,

where kd(t), ko(t) are still obtained by solving the system (2.17)–(2.18). In general, such a
control law is expected to work only for initial states sufficiently close to the state around
which the dynamics have been linearised. We shall investigate in detail the properties
of the closed-loop in the following section.
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Open-loop control The open-loop strategy we propose applies the control signal
obtained from the linear synthesis ui(t; v

0) directly into the the non-linear dynamics
as follows

v̇i =
1

N

N∑
j=1

P (vi, vj)(vj − vi) +Ri[w](t), vi(0) = v0
i ,

ẇi =
1

N

N∑
j=1

p̄(wj − wi) +Ri[w](t), wi(0) = v0
i ,

where the control Ri[w](t) is computed according to (2.12). This approach is open-loop,
since all the information on the state of the non-linear system reduces to the initial state
of linearized system, assuming w0

i = v0
i . While this approach is clearly outperformed

by the closed-loop feedback law in terms of robustness, it has the advantage that it can
be implemented without requiring a continuous measurement of the full nonlinear state
v(t), making it appealing for systems where recovering the true state of the dynamics
can be expensive or time-consuming.

Inexact open-loop control An inexact, but simpler, implementation of the open-loop
approach (2.24) obtained when the control Ri[·] is evaluated only with respect to the
initial data v0

i , that is Ri[v
0](t), where the dependence on t is limited to ko(t) and kd(t).

This setting avoids the evaluation of system in (2.24), and only requires the computation
of

v̇i =
1

N

N∑
j=1

P (vi, vj)(vj − vi) +Ri[v
0](t), vi(0) = v0

i . (2.25)

The open-loop control laws are meant to be embedded in a Model Predictive Control
framework, ensuring a sufficiently frequent update of the state of the nonlinear system
ensuring stability of the resulting control system. This shall be further analysed in
Section 2.4. In the following section we will study the performance of these control
strategies when stabilizing the non-linear dynamics in the case N � 1.

2.3 Mean-field limits and moments estimates

The stabilization strategies (2.23) and (2.24) are clearly suboptimal with respect to the
original optimal control problem, and in general will not guarantee the stabilization of
the non-linear dynamics (2.5). In this section we quantify the discrepancy between the
desired target state and the final state obtained by the stabilization strategies (2.23)
and (2.24). In order to estimate these performances in the case where a large number of
agents is present, i.e. N � 1, we discuss our approaches in the mean-field limit. Here,
we consider the empirical density distribution of agents in order to describe the collective
behavior of a large ensemble of particles, and we retrieve upper and lower bounds for the
decay of the mean-field density towards the desired configuration. For further details on
mean-field derivation of particles systems we refer to (53, 52, 49).

Remark 2. Mean field limits of controlled interacting agent systems have been studied
from different perspectives. For example, mean field control models are obtainable in the

21



large particle limit by means of quasi-invariant limit of binary interactions, as shown in
(8, 13), or via a BBGKY hierarchy on the corresponding optimality systems, as studied
in (118). We also refer to (97, 94) for rigorous results on the convergence and existence
of minimizers for mean field optimal control problems.

2.3.1 Open-loop Riccati control

We introduce the empirical joint probability distribution of particles for the system (2.5)
and (2.9) is given by

λN(t, v, w) =
1

N

N∑
i=1

δ(v − vi(t))δ(w − wi(t)),

where δ(·) is a Dirac measure. We assume enough regularity on the interaction kernel,
assuming that particles remain in a fixed compact domain for all N and in the whole
time interval [0, T ]. We refer to (49, 52) for a rigorous treatment of the mean-field limit
of interacting particle systems. Hence, we introduce the test function φ(v, w) ∈ C1

0(R2d)
and by Liouville’s theorem we compute the time variation of the inner-product 〈λN(t), φ〉,
given by

d

dt
〈λN(t), φ〉 =

1

N

N∑
i=1

(∇vφ(vi, wi) · v̇i(t) +∇wφ(vi, wi) · ẇi(t)).

Denoting by λN(t) := λN(t, v, w), we define the marginal densities fN , gN , the average
m1[fN ] and the second moment m2[fN ] as follows

fN(t, w) :=

∫
Rd
λN(t, v, w)dv, gN(t, v) :=

∫
Rd
λN(t, v, w)dw;

m1[fN ](t) :=

∫
Rd
wfN(t, w)dw , m2[fN ](t) :=

∫
Rd
|w|2fN(t, w)dw .

(2.26)

With the standard derivation of the mean-field limit, we obtain in the strong form the
evolution equation for λN(t, v, w) as follows

∂tλ
N = −∇v ·

[
λN
(
P [gN ]− aN(t)w − bN(t)m1[fN ]

)]
−∇w ·

[
λN
(
p̄(m1[fN ]− w)− aN(t)w − bN(t)m1[fN ]

)]
,

where P [g] denotes the nonlocal integral operator

P [g](v, t) =

∫
Rd
P (v, v∗)(v∗ − v)g(v∗, t)dv∗,

and aN(t) and bN(t) are obtained from the scaled Riccati system (2.17)-(2.18). Since we
are interested in the limit of a large number of agents, for N →∞ we have

lim
N→∞

aN(t) =
kd(t)

ν
, lim

N→∞
bN(t) =

ko(t)

ν
,
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where kd and ko fulfill

−k̇d = −2p̄kd −
k2
d

ν
+ 1, −k̇o = 2p̄kd −

ko
ν

(2kd + ko) . (2.27)

Then, the joint mean-field model can be conveniently written as

∂tλ = −∇v ·
[
λ

(
P [g]− kd

ν
w − ko

ν
m1[f ]

)]
−∇w ·

[
λ

(
p̄ (m1[f ]− w)− kd

ν
w − ko

ν
m1[f ])

)]
,

(2.28)

with intial data λ(v, w, 0) = λ0(v, w). Integrating the mean-field equation (2.28) with
respect to v and w, the evolution of the marginals f(w, t) and g(v, t) is given by

∂tg = −∇v ·
[
g

(
P [g]− kd

ν
m1[h]− ko

ν
m1[f ]

)]
, g(v, 0) = g0(v) (2.29a)

∂tf = −∇w ·
[
f

((
p̄− ko

ν

)
m1[f ]−

(
p̄+

kd
ν

)
w

)]
, f(w, 0) = g0(w) (2.29b)

with m1[h](v, t) being the average of the conditional probabilty h(w|v, t) defined as

λ(t, v, w) = h(t, w|v)g(t, v), m1[h](t, v) =

∫
Rd
wh(t, w|v)dw.

We observe that equation (2.29b) is the mean-field equation associated to the linear
controlled model (2.20) (114). On the other hand, the equation for the non-linear model
(2.29a) is coupled to the solution of the linear model through the control.

Remark 3 (Inexact mean-field open-loop control). If we consider the inexact open-loop
control (2.25), where the control acts only on the information measured at the initial
time t0, we derive a consistent mean-field limit following the procedure described in this
section. The mean-field equation for λ(v, w, t) reads

∂tλ = −∇v ·
[
λ

(
P [g]− kd

ν
w − ko

ν
m1[g0]

)]
, λ(v, w, 0) = λ0(v, w).

The marginal distribution corresponds to the initial data g0(w) and g(t, v) respectively,
and the system (2.29) reduces then to the equation

∂tg = −∇v ·
[
g

(
P [g]− kd

ν
m1[h]− ko

ν
m1[g0]

)]
, g(v, 0) = g0(v). (2.30)

Bounds of decay moments We are interested in the evolution of the first moment
and variance of the nonlinear mean-field density g(t, v), denoted by m1[g](t) and σ2[g](t),
respectively. Stabilizing the system towards target consensus point v̄ = 0 requires es-
timates on the decay of moments towards zero. We assume the kernel P (·, ·) to be a
symmetric and bounded function, namely

P (v, v∗) = P (v∗, v), P (v, v∗) ∈ [−a, b], ∀v, v∗ ∈ Rd, a, b ≥ 0. (A)

Hence we have the following results
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Lemma 2.2. Let assumption (A) holds for the interaction kernel P (·), then the average
of non-linear model (2.29a) decays as follows

d

dt
m1[g] = −kd + ko

ν
m1[g], m1[g](0) = m1[g0], (2.31)

and the average of the linear model m1[f ](t) coincides with m1[g](t) for t ≥ 0.
The variance variance σ2[g](t) evolves according to

d

dt
σ2[g] = −

∫
R2d

|v − v∗|2P (v, v∗)g(v)g(v∗)dvdv∗ − 2
kd
ν
%[f, g]

√
σ2[f ]σ2[g], (2.32)

with intial data σ2[g](0) = σ2[g0], where %[f, g] is the correlation coefficient. Moreover
the variance of the linear model σ2[f ] satisfies

d

dt
σ2[f ] = −2

(
2p̄+

kd
ν

)
σ2[f ], σ2[f 0] = σ2[g0]. (2.33)

Proof. By construction of model (2.29) the first moment at time zero coincides, i.e.
m1[f 0] = m1[g0]. The first moment of g(t, v) satisfies

d

dt
m1[g] =

∫
R2d

P (v, v∗)(v∗ − v)gg∗dvdv∗ −
kd
ν

∫
Rd
m1[h](v)g dv − ko

ν
m1[f ]

= −kd
ν

∫
R2d

wλ(v, w) dvdw − ko
ν
m1[f ] = −kd + ko

ν
m1[f ],

where we omitted time dependencies and we denote by gg∗ the product of g(t, v) and
g(t, v∗). The last two equalities follow from the symmetry of P (·) and the definition of
joint distribution.
The second moment of g(t, v), m2[g](t) satisfies the following equation

d

dt
m2[g] =−

∫
R2d

|v − v∗|2P (v, v∗)gg∗dvdv∗ − 2
ko
ν
m1[g]m1[f ]− 2

kd
ν

∫
R2d

vwλ(v, w)dvdw,

=−
∫
R2d

|v − v∗|2P (v, v∗)gg∗dvdv∗ − 2
kd+ko
ν
|m1[g]|2− 2

kd
ν
%[f, g]

√
σ2[f ]σ2[g]

where we used the equivalence of m1[g] ≡ m1[f ] and the relation between the correlation
coeffiecient %[f, g] and the covariance between f and g, namely

%[f, g]
√
σ2[f ]σ2[g] =

∫
R2d

vwλ(v, w)dvdw −m1[f ]m1[g].

By observing that
d

dt
|m1[g]|2 = −2

kd + ko
ν
|m1[g]|2

and using the definition σ2[g] = m2[g]−|m1[g]|2, we obtain the equation for the variance
of the non-linear model (2.32). The variance for the linear model is obtained directly
from (2.32), imposing P (v, v∗) = p̄ and observing that the double integral becomes∫

R2d

|w − w∗|2ff∗dwdw∗ = 2σ2[f ]. (2.34)
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From the evolution equation of the variance σ[g](t) we retrieve the following estimates
on the decay.

Proposition 2.3. Under assumption (A) on the interaction kernel P (·), we have the
following lower and upper bounds for the evolution of the variance σ2[g]:

σ2[g0]e−2bt
(
1−B+

b (0, t)
)2 ≤ σ2[g](t) ≤ σ2[g0]e2at

(
1 +B−a (0, t)

)2
, where (2.35)

B±c (t0, t) =
1

ν

∫ t−t0

t0

β(s− t0)kd(s)e
±c(s−t0)ds,

β(t− t0) = exp

{
−2p̄(t− t0)− 1

ν

∫ t−t0

t0

kd(r)dr

}
.

(2.36)

Proof. Consider first the case P (v, w) ≥ −a. We bound from below the interaction
kernel in equation (2.32),

d

dt
σ2[g](t) ≤ 2a

∫
R2d

|v − v∗|2gg∗dvdv∗ − 2
kd
ν
%[f, g]

√
σ2[f ]σ2[g]

≤ 2aσ2[g]− 2
kd
ν

√
σ2[f ]σ2[g].

where we first used the identity (2.34) and |%| ≤ 1. In order to estimate the growth of
the right hand side we note that because of (2.33), σ[f ](t) is given by

σ2[f ](t) =σ2[g0] exp

{
−4p̄t− 2

ν

∫ t

0

kd(s)ds

}
=: σ2[g0]β(t)2.

Substituting the estimate in the previous equation we obtain

d

dt
σ2[g](t) ≤2aσ2[g](t) +

2kd
ν
β(t)

√
σ2[g0]σ2[g](t).

An estimate can be obtained using the change of coordinate z = σ2, for z 6= 0:

d

dt
z(t) =az(t) +

kd
ν
β(t)

√
σ2[g0].

This first-order linear differential equation admit an exact solution as follows

z(t) = z(0)eat
(

1 +
1

ν

∫ t

0

e−askd(s)β(s)ds

)
. (2.37)

Applying the Petrovitsch’s theorem (145), we obtain the upper variance bound

σ2[g](t) ≤ σ2[g0]e2at

(
1 +

1

ν

∫ t

0

e−askd(s)β(s)ds

)2

.

We continue with the case P (v, w) ≤ b. Bounding from above P (·, ·) in (2.32) we have

d

dt
σ2[g](t) ≥ −2bσ2[g](t)− 2

kd
ν

√
σ2[f ]σ2[g].
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Solving exactly (2.33), and substituting σ[f ](t) into the previous equation we obtain

d

dt
σ2[g](t) ≥− 2bσ2[g](t)− 2kd

ν
β(t)

√
σ2[g0]σ2[g](t).

Proceeding as in equation (2.37) leads to

σ2[g](t) ≥ σ2[g0]e−2bt

(
1− 1

ν

∫ t

0

ebskd(s)β(s)ds

)2

.

Figure 2.5 shows two examples for the decay of σ2[g] and the bounds for the kernel

P (v, w) = α +
K

(ς + |v − w|2)γ
, α, ς, γ ≥ 0, and K ∈ R , (2.38)

associated to Cucker-Smale consensus dynamics (69). On the left, we consider the attrac-
tive case where P (·) is positive and bounded in [0, 1], with α = 0, ς = 1, K = 1 and γ = 2.
On the right, we show an attraction-repulsion dynamics with kernel −1 ≤ P (·, ·) ≤ 9
where α = 9, ς = 0.1, K = −1 and γ = 1. The value of σ2

g is computed integrating nu-
merically a mean-field approximation of the nonlinear dynamic equation. In both cases,
the initial density of particle g0(v) is

g0(v) =
2

3
χ[1/4,7/4](v).

.

0 ≤ P (v, w) ≤ 1 −1 ≤ P (v, w) ≤ 9

Figure 2.5: Variance decay and bounds for the open-loop approach (2.24). On the left we
observe the decay for an attractive dynamics, on the right the attractive-repulsive case.

Remark 4 (Bounds for inexact open-loop Riccati control). For the inexact open-loop
Riccati control we observe that bounds on moments can be computed in similar fashion.
From (2.30), the first moment is given by

d

dt
m1[g](t) = −kd(t) + ko(t)

ν
m1[g0], m1[g](0) = m1[g0]. (2.39)
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A substantial difference with respect to the exponential decay of the average (2.31) is
observed since the exact solution to (2.39) is

m1[g](t) = m1[g0]

(
1− 1

ν

∫ t

0

(kd(s) + ko(s)) ds

)
. (2.40)

Bounds of the variance of g(v, t) are retrieved as a particular case of Proposition 2.3.
The time evolution of σ2[g] reads

d

dt
σ2[g] = −

∫
R2d

|v − v∗|2P (v, v∗)gg∗dvdv∗ − 2
kd
ν
%[g0, g]

√
σ2[g0]σ2[g],

and the bounds for σ2[g](t) correspond to the estimate in (2.35) with β(t) ≡ 1,

σ2[g0]e−2bt

(
1− 1

ν

∫ t

0

ebskd(s) ds

)2

≤ σ2[g](t) ≤ σ2[g0]e2at

(
1 +

1

ν

∫ t

0

e−askd(s) ds

)2

(2.41)
The loss of the exponential decay of the average (2.31) constitutes the main drawback of
this approach, although we can still steer the density towards a reference solution.

2.3.2 Closed-loop Riccati control

We perform the derivation of the mean-field limit and moment bounds for the system
(2.23). Given the mean-field density g(v, t), the mean-field limit of (2.23) is

∂tg = −∇v ·
(
g

(
P [g]− kd

ν
v − ko

ν
m1[g]

))
, g(v, 0) = g0(v) , (2.42)

where ko(t), kd(t) are obtained by a Riccati system (2.27).

Bounds of decay moments The first moment and variance equations are given in
the following Lemma.

Lemma 2.4. Under the assumption (A) the first moment of (2.42) evolves according
(2.31). The evolution of the variance σ2[g] satisfies the equation

d

dt
σ2[g] = −

∫∫
|v − v∗|2P (v, v∗)g(v)g(v∗)dvdv∗ −

2kd
ν
σ2[g]. (2.43)

We omit the computations of the proof, since they follow the same line of Lemma 2.2.
In particular, it is enough to observe that the variance equation of the open-loop Riccati
(2.32) collapses to (2.43) taking f(t, v) = g(t, v). The following estimates on the decay
of the variance hold.

Proposition 2.5. Under assumption (A) on the interaction kernel P (·), there exist
lower and upper bounds for the variance of g given by

σ2[g0]e−2btCν(0, t) ≤ σ2[g](t) ≤ σ2[g0]e2atCν(0, t), (2.44)

where

Cν(0, t) = exp

{
−2

ν

∫ t

0

kd(s)ds

}
.
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Proof. Since the interaction kernel is bounded and using the identity (2.34) for σ2[g], it
follows that

−2
(
b+

kd
ν

)
σ2[g] ≤ d

dt
σ2[g] ≤ 2

(
a− kd

ν

)
σ2[g]. (2.45)

In Figure 2.6 the decay of the variance σ2[g] and the bounds associated to kernel (2.38)
are shown. We choose the same parameters as reported in Figure 2.5. We observe
that bounds of the closed-loop control (2.23) are closer compared to equation (2.24).
Moreover, a stronger decay is observed. Hence, we expect a better performance of the
closed-loop control over the open-loop approaches. However, the open-loop approach
(2.24) is useful when dealing with incomplete information or limited access to the non-
linear dynamics.
We devote the next section to the development of a synthesis method based on predictive
horizons estimated a-priori through the bounds of the open-loop strategy (2.24).

0 ≤ P (v, w) ≤ 1 −1 ≤ P (v, w) ≤ 9

Figure 2.6: Variance decay and bounds for the open-loop approach (2.23). On the left we
observe the decay for an attractive dynamics, on the right the attractive-repulsive case.

2.4 Moments driven predictive control (MdPC)

In order to utilize the stabilization properties of the control loops proposed in the previous
sections, we discuss their implementation in a receding horizon framework. Here, we
prescribe a control horizon where the control signal is applied, after which there is an
update procedure including a re-calculation of the control law based on the current state
of the system. There exists a vast literature addressing the design of nonlinear model
predictive control (MPC) algorithms, we refer the reader to (119, 103) and references
therein.
In the general nonlinear MPC control algorithm, an open-loop optimal control signal
is synthesized over a prediction horizon [0, Tp], by solving a problem of the form (2.6).
Having prescribed the system dynamics and the running cost, this optimization problem
depends on the initial state v(0) and the horizon Tp only. The optimal signal u∗, which
is obtained for the whole horizon [0, Tp], is implemented over a shorter control horizon
[0, Tc]. At t = Tc the initial state of the system is re-calibrated to v(0) = v(Tc) and
the optimization is repeated. Relevant issues in the MPC literature are the selection of
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suitable horizons Tp and Tc which can ensure asymptotic stability of the closed-loop, as
well as the design of effective optimization methods to make this implementation suitable
for real-time control.
Here instead, we propose a novel class of MPC-type algorithms where instead of fix-
ing a prediction horizon, the re-calibration of the control laws (2.24)-(2.25) is triggered
adaptively in time based on a direct estimate of the moments decay. This is similar
in spirit to the literature on event-based MPC methods, see for example (89) where an
event-based framework for the control of a team of cooperating distributed agents and
(149) for networked systems is proposed.

Variance driven Predictive Control MdPC(σ2) Starting from the open-loop con-
trol (2.29) we consider densities at initial time given by g(v, 0) = g0(v), f 0(w) ≡ g0(w)
and the joint distribution λ0(v, w) ≡ λ(v, w, t0). To shorten the notation we introduce
the general semi-discretization of the mean-field dynamics (2.28) as follows

λn+1(v, w) = Φ∆t[λ
n;un[fn]](v, w), λ0(v, w) = λ(v, w, 0), n ≥ 0, (2.46)

coupled with the solution of the Riccati system (2.27). Here, Φ∆t defines the time
discretization, and un[fn] encodes the control dependency on the density, given by

un[fn](w, tn) =
1

ν
(kd(tn)w + ko(tn)m1[fn](tn)) .

Our goal is to predict the error in the variance decay σ2[g](t) directly from (2.35) by
computing the difference between the upper and lower bounds

∆σ(t0, t) = σ2[g(v, t0)]
[
(e2a(t−t0)

(
1 +B−a (t0, t)

)2 − e−2b(t−t0)
(
1−B+

b (t0, t)
)2
]
, (2.47)

where B±c (t0, t) are the quantities defined in (2.36). Then we can use ∆σ(t0, t) to control
the decay of the variance σ2[g](t) in order to keep the variance of g(v, t) below a fixed
threshold δ > 0. In this way, we can find time t1 > t0 such that ∆σ(t0, t1) > δ and evolve
the dynamics in the time interval [t0, t1]. The procedure is reinitialized updating the
state of the linearized dynamics at time t1 by setting f(t1, v) ≡ g(t1, v). We formalize
this procedure in Algorithm 1.

Algorithm 1 [MdPC(σ2)]

0. Set k ← 0, tk = 0, gk(v) = g(v, 0), fk(v) = g(v, 0) and tolerance δ
1. Solve the Riccati equation to obtain kd, ko on the time interval [0, T ]
2. Find the time tk+1 such that tk+1 := min{t|tk < t ≤ T,∆σ(tk, t) > δ}
while tk+1 ≤ T do

i. Evolve the dynamics (2.46) up to tk+1

ii. Set gk+1(v) = g(v, tk+1), fk+1(v) = g(v, tk+1)
iii. k ← k + 1
iv. Compute tk+1 from step 2.

end while
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Mean and variance driven Predictive Control, MdPC(m1, σ
2) For the inexact

open-loop control approach (2.30) it is necessary to modify the previous algorithm con-
trolling also the decay of the first moment of g = g(v, t). For this, we introduce the
semidiscretized mean-field model of (2.30)

λn+1(v, w) = Φ∆t[λ
n;un[g0]](v, w), λ0(v, w) = λ(v, w, 0), n ≥ 0 , (2.48)

where the control is given by

un[g0](w, tn) =
1

ν

(
kd(tn)w + ko(tn)m1[g0]

)
.

According to the bounds (2.41), the decay of the variance is controlled by ∆σ(t0, t) as in
(2.47) with

B±c (t0, t) =
1

ν

∫ t−t0

t0

kd(s)e
±c(s−t0)ds.

However, in this case the convergence towards the desired state is not guaranteed since
the decay of the first moment (2.40) does not match the moment of the linearized model
(2.29b). To guarantee consensus convergence we require (2.40) to be contractive. For
this, we introduce the control quantity

∆m(t0, t) =

∣∣∣∣1− 1

ν

∫ t−t0

t0

(kd(s) + ko(s)) ds

∣∣∣∣ ,
which we use to determine updates in Algorithm 2.

Algorithm 2 [MdPC(m1, σ
2)]

0. Set k ← 0, tk = 0, gk(v) = g(v, 0) and tolerances δ, τ > 0
1. Solve the Riccati equation to obtain kd, ko on the time interval [0, T ].
2. Find the times tδ, tτ such that

tδ := min{t|tk < t ≤ T,∆σ(tk, t) > δ},
tτ := min{t|tk < t ≤ T,∆m(tk, t) > τ},

tk+1 := min {tδ, tτ}
(2.49)

while tk+1 ≤ T do
i. Evolve the dynamics (2.48) up to tk+1

ii. Set gk+1(v) = g(v, tk+1) and g0(v) = g(v, tk+1)
iii. k ← k + 1
iv. Compute tk+1 from (2.49);

end while

Remark 5. We observe that when an update is performed at each time step, that is
for values of δ small enough, the MdPC approaches is equivalent to a discretization of
the closed-loop control (2.42). Indeed, since for every n ≥ 0, we have fn ≡ gn , the
mean-field model (2.46) reduces to

gn+1(v) = Φ∆t[g
n;u[gn]](v), n ≥ 0, g0(v) = g(v, t0), (2.50)

where the control is given by u[gn](v, tn) = 1
ν

(kd(tn)v + ko(tn)m1[gn](tn)) .
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2.5 Numerical Experiments

In this section we present different numerical tests on microscopic and mean-field dy-
namics. We analyze three different cases: a first-order opinion dynamics, a second-order
alignment model, and first-order aggregation model. For the numerical solution of the
mean-field model (2.29) we employ mean-field Monte-Carlo methods (MFMCs) devel-
oped in (14). These methods fall in the class of fast algorithms developed for interacting
particle systems such as direct simulation Monte-Carlo methods (DSMCs) (34, 79, 23),
or most recently Random Batch Methods (RBMs) (122).
We consider Ns particles v0 ≡ {v0

i }i sampled from the initial distribution g0(v), and we
duplicate the sample defining w0 ≡ v0 for the linearized dynamics. We introduce the
following approximation for the mean-field dynamics

vn+1
i = (1−∆tP̂ n

i )vni + ∆tP̂ n
i V̂

n
i −∆tuni ,

wn+1
i = (1−∆tp̄)wni + ∆tp̄m̂n

1 −∆tuni ,
(2.51)

for n ≥ 0 and where the quantities P̂ n
i and V̂ n

i are computed from a sub-sample of M
particles randomly selected from the whole ensemble of Ns particles as follows

P̂ n
i =

1

M

M∑
k=1

P (vni , v
n
ik

), V̂ n
i =

1

M

M∑
k=1

P (vni , v
n
ik

)

P̂ n
i

vnik , i = 1, . . . , Ns.

For the open-loop mean-field dynamics (2.46) the control uni is defined as

uni = −1

ν
(kndw

n
i + kno m̂

n
1 ) , m̂n

1 =
1

Ns

Ns∑
j=1

wni .

The scheme (2.51) reduces to a set of equations for the mean-field dynamics for the
closed-loop (2.50) and inexact open-loop (2.48), respectively. In the closed-loop setting
(2.50) the control term is computed as

uni = −1

ν
(kndv

n
i + kno m̂

n
1 ) , m̂n

1 =
1

Ns

Ns∑
j=1

vni ,

and in the inexact open-loop approach (2.48) we have

uni = −1

ν

(
kndv

0
i + kno m̂

0
1

)
, m̂0

1 =
1

Ns

Ns∑
j=1

v0
i .

We report in Table 2.1 the different choices of parameters used for the numerical dis-
cretization of the mean-field dynamics and for each control approach, respectively. We
compare the performance of the control laws through the discretized cost

J∆t,Ns(u, g
0) :=

∆t

Ns

NT∑
n=0

Ns∑
j=1

(|vnj |2 + ν|unj |2), (2.52)

with time step ∆t and Ns Monte Carlo samples.
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Ns M ∆t ν T δ τ

Test 1: Opinion formation 1e4 100 1e-2 1e-2 1 1e-1 1
Test 2: Cucker-Smale dynamics 1e5 100 5e-2 1e-1 3 1 –
Test 3: Aggregation dynamics 1e5 10 1e-2 1 7 1e-1 –

Table 2.1: Simulation and optimization parameters for each test case.

2.5.1 Test 1: Opinion formation

We show an example in the context of opinion formation by Hegselmann and Krause
(110). We consider the positive interaction kernel defined as P (v, w) = C · χ(|w − v| <
η), where η = 0.25 represents the confidence level and with a constant C = 10, and
χ is an indicator function. The initial density of particle g0(v) is chosen such that
consensus towards the target v̄ = 0 would not be reached without control action, e.g.
g0(v) = 2

3
χ[1/4,7/4](v) . We use the forward scheme (2.51) with fixed time step ∆t = 0.01,

sampling size Ns = 10000 of the initial distribution g0(v) and fixed M = 100 for the
approximation of the non-local interactions. To compare the mean-field dynamics with
the microscopic we simulate N = 50 agents uniformly sampled from g0.

In the top row of Figure 2.7 the uncontrolled dynamics are shown, where clusters of
opinions emerge due to structure of the interaction kernel P . The second and third
rows of Figure 2.7 depict the controlled dynamics for the microscopic and the mean-field
dynamics. The left column of Figure 2.7 illustrates the convergence to the target when
the MdPC(m1, σ

2) is applied. Algorithm 2 is used with δ and τ chosen according to
Table (2.1). The vertical lines in the plots represent the times of the update. We have
a different situation with the MdPC(σ2) approach 1, depicted in the middle column of
Figure 2.7. In this case the control is applied by directly embedding the linear synthesis
into the the non-linear dynamics. As a consequence, we also require the evolution of
the linear state that we plot in a dashed green line for the microscopic case. The right
column of Figure 2.7 reports the closed-loop control results. To better interpret these
results, we perform a numerical analysis to study the decay of the variance σ2[g] using
different values of δ in Algorithm 1 and Algorithm 2. Figure 2.8 compares the variance
of the system as the values of the tolerance δ changes. It can be seen that as δ decreases,
the MdPC(σ2) approaches the closed-loop control. This numerical evidence is further
confirmed by Table 2.2. With decreasing values of δ we have an increasing number of
updates and the values of the functional J∆t,Ns computed in (2.52) is similar for the three
control approaches. We observe that the closed-loop control corresponds to a limit case
of the moment-driven MPC methods.

2.5.2 Test 2: Cucker-Smale dynamics

We study alignment in a second-order, 1D model with Cucker-Smale type interactions
(69). We consider a state characterized by (xi, vi) ∈ R2. The interaction kernel is
given by P (x, y) = 1

(1+|y−x|2)γ
, with γ ≥ 0, which is a decreasing function of the relative

distance, bounded to [0, 1]. Under the condition γ ≥ 1/2, the convergence to consensus
of the free dynamics depends on the initial state (69). We set γ = 2 and a suitable initial
state, such that the flocking state is not achieved without control action. To perform
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Uncontrolled

MdPC(m1, σ
2) MdPC(σ2) closed-loop

Figure 2.7: Test 1. Top: uncontrolled discrete and mean-field evolution of the model.
Middle: the controlled discrete case. Bottom: the controlled mean-field dynamics.

Figure 2.8: Test 1. Semi-log plot with a comparison between variance decay with different
values of the tolerance δ. Left: variance decays for MdPC(m1, σ

2). Right: decays for
MdPC(σ2) compared with respect to the closed-loop control.
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MdPC(m1, σ
2) MdPC(σ2)

δ 1 0.1 1e-8 1 0.1 1e-8
update (%) 4 % 8% 71 % 0 % 4 % 72 %
σ2[g](T ) 1.28e-11 1.26e-10 3.80e-12 5.04e-2 8.94e-9 2.22e-12
J∆t,Ns 1.8131 0.1306 0.1281 0.1777 0.1309 0.1281

Table 2.2: Test 1. We compare the different MdPC approaches with respect to the closed-
loop control. For MdPC(m1, σ

2) the tolerance for the mean is set τ = 1. The number
of updates indicates the percentage of control updates over the total number of time
steps NT = 100 (for reference, the closed-loop control would require a 100%). The final
value of the variance is denoted by σ2(T ), and J∆t,Ns corresponds to the value of the cost
functional (2.52). For the closed-loop control σ2(T ) = 3.80e− 12 and J∆t,Ns = 0.1281.

our analysis we refer to the second-order dynamics (2.22) and use Remark 1 to obtain
the Riccati equations. Unlike the first-order dynamics, the constrained mean-field has a
transport term

∂tg + v · ∇xg = −∇v · (g (P [g] + u(t))) , g(x, v, 0) = g0(x, v),

and the nonlocal operator P is defined as

P [g](x, v, t) =

∫
Rd×Rd

P (x, y)(w − v)g(y, w, t) dy dw.

We discretize the mean-field model employing the forward scheme (2.51) with fixed time
step ∆t = 0.05, sampling size of Ns = 100000 particles and fixed M = 100. In order
to treat the additional transport term in the dynamics, we use a splitting method to
perform the free transport step. The control is computed by means of MdPC(σ2). We
refer to Table (2.1) for the choice of parameters.
Figure 2.9 presents the initial data at the top, which is a bivariate distribution unimodal
in space and bimodal in velocity defined as follows:

g0(x, v) =
1

4πσxσv
exp

(
− x2

2σ2
x

)[
exp

(
−(v + v−)2

2σ2
v

)
+ exp

(
−(v + v+)2

2σ2
v

)]
,

with σx = 0.2, σv = 0.4 and v− = −1, v+ = 4. We compare the evolution of the density
distribution in the phase space (x, v), jointly with a set of N = 30 microscopic points
(xi(t), vi(t)) sampled from the initial distribution. The middle row depicts two time
frames of the uncontrolled dynamics, where alignment is not reached. In the bottom
row we report the constrained dynamics, where the alignment is reached at time T = 3
and the density g(x, v, t) concentrates at the target state v̄ = 0, whereas its support is
bounded in space.
We perform a numerical study for the variance decay σ2[g] using different tolerances δ in
Algorithm 1 for MdPC(σ2). Figure 2.10 compares the decay of the variance of the system
as the values of the tolerance δ changes. On the left we observe the decay for δ = 1
jointly with the update and the evolution of the variance bounds. On the right, it can be
seen that as δ decreases MdPC(σ2) is similar to the closed-loop control dynamics. Table
2.3 quantifies the performances of the MdPC(σ2) reporting the percentage of control
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Uncontrolled

MdPC(σ2)

Figure 2.9: Test 2. Comparison between the uncontrolled and controlled mean-field
evolution of the Cucker-Smale dynamics with MdPC(σ2) and δ = 1. Without control
intervention the alignment state is not reached.

Figure 2.10: Test 2.Left: variance and bounds for the second order attractive one-
dimensional mean-field dynamics with tolerance δ = 1. Right: variance decays with
different values of δ.

updates performed over NT = 60 steps, the variance σ2[g] at time T = 3, and the value
of the cost functional (2.52).
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MdPC(σ2) closed-loop

δ 1 1e-2 1e-8 - -
update (%) 13 % 40 % 99 % 100%
σ2[g](T ) 9.1393e-05 3.9247e-08 3.3374e-08 3.3371e-08
J∆t,Ns 3.0059 2.9976 2.9951 2.9951

Table 2.3: Test 2. Number of updates and final values of the variance using different
values of δ. We compare the different control approaches. The update percentage is
computed over NT = 60.

Remark 6. The synthesis of a control through the Riccati equation provides an optimal
control for L2−tracking type cost functionals with linear dynamics. However, for the
general non-linear case such control is sub-optimal, e.g. (8, 116). The MdPC approaches
furnish an adaptive synthesis of sub-optimal feedback controls for large-scale non-linear
dynamics. For the microscopic Cucker-Smale model with N = 30 agents, we compare
the performance of the sub-optimal control, computed with the MdPC(σ2) algorithm with
δ > 0, and the optimal control, computed solving the microscopic optimality system
arising from Pontryagin’s Maximum principle, as in (24). Hence, we consider the optimal
and suboptimal trajectories towards consensus, measured as

V(u(t)) :=
1

N

N∑
i=1

|vi(ui(t))|2 (2.53)

We report in Figure 2.11, on the left, the evolution in time of V(u(t)), observing faster
decay for decreasing values of δ, and faster decay for the optimal control.

Remark 7. In real applications, the number of agents is finite, and the mesoscopic
feedback control can be seen as an approximation to the finite-dimensional control law.
We quantify the discrepancy between two different feedback controls, when they are both
applied to the microscopic linear dynamics (2.9). In particular, we consider two controls
ui,micro, ui,meso defined as in (2.19), for i = 1, . . . , N

ui,s = −1

ν

((
kd,s −

ko,s
N

)
wi(t) +

ko,s
N

N∑
j=1

wj(t)

)
, s = {micro,meso},

where kd,micro, ko,micro satisfy the microscopic system (2.17)–(2.18), while kd,meso, ko,meso
satisfy the mean-field equations in (2.27). We report in Table 2.4 the values of the cost
functional J in 2.10, using the controls umicro, umeso for different numbers of agents,
while in Figure 2.11, on the right, we present the evolution of the error |JNmicro − JNmeso|
as a function of N . We can observe that as the number of agent increases, the mean-field
control becomes closer to the optimal microscopic control.

2.5.3 Test 3: Aggregation dynamics

The last example is a first-order aggregation model in 2D, where agents interact according
to an attraction-repulsion kernel. We consider the following interaction kernel P (v, w) =
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Agents N 5 25 50 75 100 500
JNmicro 0.927 0.637 0.724 0.715 0.739 0.776
JNmeso 0.987 0.646 0.729 0.719 0.741 0.777

Table 2.4: Values of functional J using the microscopic and mean-field control for dif-
ferent values of the number of agents N .

Figure 2.11: On the left, semilog plot of V(u(t)) in (2.53) for three suboptimal ap-
proaches: MdPC(σ2) with δ = 0.1, δ = 0.01 and δ → 0 (closed loop), and for the
optimal control case. On the right loglog plot of the decreasing quantity |JNmicro− JNmeso|
as the number of agents N increases.

|w − v|α−2 − |w − v|β−2, where α = 4 and β = 2. For these specific values of the
parameters it can be shown that the equilibrium configuration is an uniform distribution
on an annulus of radius R = 1√

3
, and same center of mass as the initial distribution. For

analytical and numerical characterizations of the equilbrium of these models we refer to
(27). We consider an initial density of particles uniformly distributed on the 2D disc of
radius R0 = 2√

3
centered in (−1, 1), that is

g0(v) =
1

|C|
χC(v) , C := {v ∈ R2 : |v − (−1, 1)>| ≤ R0} ,

and |C| denoting its volume. In order to simulate the dynamics we consider Ns = 100000
particles sampled from g0(v) and we implement the forward scheme (2.51) with fixed
time step ∆t = 0.01. We select M = 10 particles for the approximation of the non-local
interactions. We use the MdPC(σ2) approach with a penalization factor ν = 1 and a
stopping tolerance δ = 0.1. In Figure 2.12 we report the evolution of the mean-field and
the microscopic dynamics. The latter is sampled with N = 30 particles from g0. The
second row of Figure 2.12 shows the uncontrolled dynamics, where mass concentrates
towards a 2D annulus of radius R = 1/

√
3. While the third row depicts the open-loop

control case where MdPC(σ2) is applied. At time T = 7 the distribution is converged to
a concentration at v̄ = (v̄1, v̄2) = (0, 0).
As in previous tests we illustrates a comparison between different open-loop controls
varying tolerance δ in algorithms 1. Figure 2.13 and Table 2.5 highlight that with a very
small value of δ, the MdPC approach coincides with the closed-loop approach.
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Uncontrolled dynamics

MdPC(σ2)

Figure 2.12: Test 3. Comparison between the uncontrolled and controlled mean-field
evolution of the aggregation dynamics with MdPC(σ2) and δ = 0.1. Without control
intervention the alignment state is not reached.

MdPC(σ2) closed-loop

δ 1 1e-1 1e-9 - -
update (%) 1 % 4 % 99 % 100%
σ2[g](T ) 1.6875e-09 2.1253e-08 2.6151e-08 2.6187e-08
J∆t,Ns 3.0459 2.9751 2.9750 2.9750

Table 2.5: Test 3: Aggregation dynamics. Number of updates and final values of the
variance using different values of δ. The update percentage is computed over NT = 700.
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Figure 2.13: Test 3. Left: variance evolution and bounds for the first order attractive-
repulsive one-dimensional mean-field dynamics with tolerance δ = 0.1. Right: variance
decays with different values of δ.

2.5.4 CPU time analysis

We present a computational cost analysis of the proposed methods based on the setting of
Test 1 (opinion formation) in section 2.5.1. The main advantage of the control methods
presented in this paper is that they do not rely on a continuous measurement of the true
state of the system unlike classical feedback laws. Instead, we derive indicators which
trigger once a system measurement (and control signal update) is required, drastically
reducing the amount of instances in which a state estimation is necessary. Therefore,
to make a fair comparison of the various approaches in a realistic context, we include
an estimation time, X, which is the amount of time a black-box requires to recover a
one-step estimate of the true state of the system given a measurement. The estimation
time is independent from the feedback law. In this setting, the closed-loop approach will
estimate the state of the true dynamics nt times, with nt the total number of time steps.
For the MdPC approaches, the estimation time X contributes only for the number of
time steps required for the control update, p̄nt for 0 < p̄ ≤ 1. However, in these cases,
the CPU time spent flagging whether an update is required or not, i.e. q̄. Moreover,
for the specific case of MdPC(σ2) algorithm we also account the cost of evaluating the
linearized dynamics at each time-step, i.e. ntZ̄. Hence, we can estimate the total CPU
time for each of the proposed methods as follows:

Ycl = ntX, Yex = p̄exntX + ntZ̄ + q̄ex, Yin = p̄inntX + q̄in, (2.54)

where Ycl is associated to the closed loop approach, Yex to MdPC(σ2), and Yin to
MdPC(m1, σ

2). In Figure 2.14, on the left, we report the CPU times (2.54) as a func-
tion of the number of agents N , for a fixed value of the estimation time X = 0.2. In
Table 2.6 we show different numerical values for reference, note that the percentages of
update for the MdPC approach are insensitive to the number of agents and we have
p̄ex = 0.04, p̄in = 0.08. For this CPU analysis we consider the setting of Test 1, where
we fixed for MdPC(σ2) δ = 0.1, and for the MdPC(m1, σ

2) τ = 1 and δ = 0.1. In the
right plot, we report the CPU time for fixed N = 5000. In this regime, the cost of the
linear dynamics is Z̄ = 0.1 seconds per time step, computed as the time average over the
evolution of N = 5000 agents. While the cost to look whether an update is required is
q̄ex = q̄in = 0.01 seconds for the whole time interval. We observe that there exists a crit-
ical value above which the MdPC approaches become more efficient than a closed-loop
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feedback. In particular for very cheap estimates of the real dynamics, before the critical
point A, the closed-loop approach is faster than the open-loop ones. After the critical
value B, close to X = 0.1, the closed-loop becomes considerably more expensive than
the MdPC approaches.

Figure 2.14: CPU time in seconds for the three approaches. On the left as a function of
the number of agents N with fixed X = 0.2 seconds, on the right as a function of the
time X, which is the amount of time a black-box requires to recover a one-step estimate
of the non-linear model, with fixed N = 5000.

N–agents 50 100 500 1000 5000 10000 update (%)
closed loop 0.01 0.02 0.26 0.81 22.89 121.32 100%
MdPC(σ2) 0.004 0.006 0.098 0.392 12.873 52.501 4%

MdPC(m1, σ
2) 0.001 0.002 0.018 0.063 2.094 8.694 8%

Table 2.6: CPU time in seconds for N agents in the three control approaches with
X = 0.2. The last column shows the percentage of updates over the time range.

2.6 Conclusions

We have studied the design of control laws for interacting particle system based on the
solution of the optimal control problem associated to linearized dynamics. We have
assessed the impact of different sub-optimal control laws into the original non-linear dy-
namics deriving mean-field limits of the microscopic constrained systems and estimating
analytically and numerically the decay of the first and second moments. We proposed
a novel numerical technique based on the moments decay (MdPC). In particular, we
obtain a hierarchy of approximations from open-loop to closed-loop control by scaling
the tolerance level. These strategies have shown to be robust even with considerably
fewer updates of the control law for the non-linear dynamics. The proposed methodol-
ogy expands the existing NMPC literature by developing a new paradigm in which the
control laws are updated based on dynamic information of the system. Here, the use
of moments information is a particular example suitable in the context of mean-field
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dynamics. Further extensions and analysis will include the study of other dynamic indi-
cators for control update, in particular those that could be linked to a physical observable
of the system, and the incorporation of nonlinear state estimation in the control loop.
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3 Robust feedback stabilization of interacting multi-

agent systems with uncertainties

3.1 Introduction

In this manuscript we consider the mathematical modelling and control of phenomena of
collective dynamics under uncertainties. These phenomena have been studied in several
field such as socio-economy, biology and robotics where system of interacting particles
are given by self-propelled particles, such animals and robots, see e.g. (4, 32, 61, 74, 113,
90). Those particles interact according to a possibly nonlinear model, encoding various
social rules as for example attraction, repulsion and alignment. A particular feature of
such models is their rich dynamical structure, which include different types of emerging
patterns, including consensus, flocking, and milling (102, 147, 69, 88, 138).

Understanding the impact of control inputs in such complex systems is of great rele-
vance for applications. Results in this direction allow to design optimized actions such
as collision-avoidance protocols for swarm robotics (57, 140, 144, 100), pedestrian evacu-
ation in crowd dynamics (6, 66, 87, 45), supply chain policies (117, 72), the quantification
of interventions in traffic management (148, 108, 146) or in opinion dynamics (13, 101).

The introduction of uncertainty in the mathematical modelling of real world phenom-
ena seems to be unavoidable for applications, since often at most statistical information
of the modelling parameters is available. The later has typically been estimated from
experiments or derived from heuristic observations (28, 36, 125). To produce effective
predictions and to describe understand physical phenomena, we may incorporate pa-
rameters reflecting the uncertainty in the interaction rules, and/or external disturbances
(55).

Here, we are concerned with the robustness of controls influencing the evolution of a
collective motion of interacting agent system. The controls we are considering are aimed
to stabilize the system’s dynamic under external uncertainty. From a mathematical point
of view, a description of self-organized models is provided by complex system theory,
where the overall dynamics is depicted by a large scale system of ordinary differential
equations (ODEs).

More precisely, we consider the control of high-dimensional dynamics accounting N
agents with state vi(t, θ) ∈ Rd, i = 1, . . . , N , evolving according to

d

dt
vi(t, θ) =

N∑
j=1

aij(vj(t, θ)− vi(t, θ)) + ui(t, θ) +
Z∑
k=1

θk , vi(0) = v0
i , (3.55)

where A = [aij] ∈ RN×N defines the nature of binary interaction among agents, and
θ = (θ1, . . . , θZ)> ∈ RZ×d is a random input vector with a given probability density
distribution on Z as ρ ≡ ρ1 ⊗ . . . ⊗ ρZ . The control signal ui(t, θ) ∈ Rd is designed to
stabilize the state toward a target state v̄ ∈ RN×d, and its action is influenced by the
random parameter θ. This is also due to the fact, that later we will be interested in
closed–loop or feedback controls on the state (v1. . . . , vN) that in turn dependent on the
unknown parameter θ.

Of particular interest will be controls designed via minimization of linear quadratic
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(parametric) regulator functional such as

min
u(·,θ)

J(u; v0) :=

∫ +∞

0

[
v>Qv + νu>Ru

]
dτ, (3.56)

with Q positive semi-definite matrix of order N , R positive definite matrix of order N . In
this case, the linear quadratic dynamics allows for an optimal control u∗ stabilising the
desired state vd = 0, expressed in feedback form, and obtained by solving the associated
matrix Riccati -equations. Those aspects will be also addressed in more detail below.

In order to assess the performances of controls, and quantify their robustness we propose
estimates using the concept of H∞ control. In the H∞ consensus problem under external
disturbances, control methods have already been proposed and applied to first-order and
higher-order multiagent systems, see e.g. (133, 129, 136, 130, 132). Further, we refer to
(30) for a different approach for H∞ control problem interpreted as dynamic games.

We formulate the consensus problem as H∞ control problem, we derive sufficient condi-
tions in terms of linear matrix inequalities (LMIs) to ensure the consensus robustness,
and determine a feedback formulation for the control action. Additionally, we consider
the large–agent limit and show that the robustness is guaranteed independent of the
number of agents. Furthermore, we will discuss the efficient simulations of system (3.55)
by means of uncertainty quantification techniques. In general, at the numerical level,
techniques for uncertainty quantification can be classified in non-intrusive and intru-
sive methods. In an non-intrusive approach, the underlying model is solved for fixed
samples with deterministic schemes and statistics of interest are determined by numer-
ical quadrature, typical examples are Monte-Carlo and stochastic collocation methods
(80, 139, 155). While in the intrusive case, the dependency of the solution on the stochas-
tic input is described as a truncated series expansion in terms of orthogonal functions.
Then, a new system is deduced that describes the unknown coefficients in the expansion.
One of the most popular techniques of this type is based on stochastic Galerkin (SG)
methods. In particular, generalized polynomial chaos (gPC) gained increasing popular-
ity in uncertainty quantification (UQ), for which spectral convergence on the random
field is observed under suitable regularity assumptions (80, 120, 121, 154, 139).

The methods here developed makes use of the generalized polynomial chaos (gPC) ex-
pansion for the microscopic dynamics while in the mean-field case we combine a gPC
expansion in the random space with a Monte Carlo method in the physical variables.

The manuscript is organized as follows, in Section 3.2 we introduce the problem setting
and propose different feedback control laws; in Section 3.3 we reformulate the problem
in the setting of H∞ control and provide conditions for the robustness of the controls
in the microscopic and mean-field case. Section 3.4 is devoted to the description of
numerical strategies for the simulation of the agent systems, and to different numerical
experiments, which assess the performances and compare different methods.

3.2 Control of interacting agent system with uncertainties

We are concerned with the control of high-dimensional systems of interacting agents
with random inputs. We consider the evolution of N agents with state v(t, θ) ∈ RN×d
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as follows

d

dt
vi(t, θ) =

1

N

N∑
j=1

p̄(vj(t, θ)− vi(t, θ)) + ui(t, θ) +
Z∑
k=1

θk (3.57)

with deterministic initial data vi(0) = v0
i for i = 1, . . . , N , and where θk ∈ Ωk ⊆ Rd

for k = 1, . . . , Z are random inputs, distributed according to a compactly supported
probability density ρ ≡ ρ1⊗· · ·⊗ρZ , i.e., ρk(θ) ≥ 0 a.e., supp(ρk) ⊆ Ωk and

∫
Ωk
ρk(θ) dθ =

1. For simplicity we also assume that the random inputs have zero average E[θk] = 0.
The control signal u(t, θ) ∈ RN×d is designed minimizing the (parameterized) objective

u∗(·, θ) = arg min
u(·,θ)

J(u; v0) :=

∫ +∞

0

exp(−rτ)

(
1

2N

N∑
j=1

(|vj(τ, θ)− v̄|2 + ν|uj(τ, θ)|2)

)
dτ,

(3.58)
with ν > 0 being a penalization parameter for the control energy, the norm | · | being
the usual Euclidean norm in Rd. The discount factor exp(−rτ) is introduced to have a
well–posed integral, however, for simplicity of the presentation we will consider the case
r = 0, see also the remarks below.

We assume that v̄ is a prescribed consensus point, namely, in the context of this work we
are interested in reaching a consensus velocity v̄ ∈ Rd such that v1 = . . . = vN = v̄, and
w.l.o.g. we can assume v̄ = 0. Note that v̄ = 0 is also the steady state of the dynamics
in absence of disturbances. Hence, we may view u(·, θ) as a stabilizing control of the
zero steady state of the system. Furthermore, we will be interested in feedback controls
u.

Recall that the (deterministic) linear model (3.57), without uncertainties, allows a feed-
back stabilization by solving the resulting optimal control problem through a Riccati
equations (115, 12). In this case the controlled dynamics (3.57) is reformulated in a
matrix-vector notation as follows

d

dt
v(t) = Av(t) +Bu(t), u(t) = −1

ν
Kv(t) (3.59)

where B = IdN is the identity matrix of order N , and

(A)ij =

{
ad = p̄(1−N)

N
, i = j,

ao = p̄
N
, i 6= j,

(K)ij =

{
kd, i = j,

ko, i 6= j,
(3.60)

are the matrices associated to the linear dynamics, and where kd(t), ko(t) are solutions
to the Algebraic Riccati Equations (ARE) for α(N) = N−1

N
:

0 = −2p̄α(N)

(
kd −

ko
N

)
− 1

ν

(
k2
d +

α(N)

N
k2
o

)
+ 1,

0 = 2p̄

(
kd −

ko
N

)
− 1

ν

(
2kdko + α(N)k2

o −
1

N
k2
o

)
.

(3.61)

Note that the previous set of equations also allows to consider the limit of infinitely many
agents N →∞ leading to a corresponding mean field control.
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The previous considerations motivate to extend formula (3.59) to the parameteric case
(3.57). Hence, in the presence of parameteric noise the feedback control is written
explicitly as follows

ui(t, θ) = −1

ν
(Kv(t, θ))i = −1

ν

((
kd −

ko
N

)
vi(t, θ) +

ko
N

N∑
j=1

vj(t, θ)

)
. (3.62)

The question now arise if the given feedback is robust with respect to the uncertainties
θ. In the following, we will provide a measure for the robustness of control (3.62) in the
framework of H∞ control. Some additional remarks are in order that allow to generalize
formula (3.62).

Remark 8 (Non-zero average). In presence of general uncertainties with known expec-
tation, we modify the control (3.62) for model (3.57) including a correction factor given
by the the expected values of the random inputs,

ui(t, θ) = −1

ν

((
kd −

ko
N

)
vi(t, θ) +

ko
N

N∑
j=1

vj(t, θ)

)
−

Z∑
k=1

µk, (3.63)

for µk = E[θk] for k = 1, . . . , Z.

Remark 9 (Noise-independent control). In case of a deterministic feedback control we
may consider the expectation of the objective (3.58) subject to the noisy model (3.57)

ū∗(·) = arg min
u(·)

E
[∫ +∞

0

1

2
(v>Qv + νu>Ru) dt

]
,

where we introduce the matrices Q = R = 1
N

IdN . In this case we have the following
deterministic optimal feedback control is deduced

ūi(t) = −1

ν

(
kdE [vi(t, θ)] +

ko
N

N∑
j 6=i

E [vj(t, θ)]

)
−

Z∑
k=1

µk, (3.64)

where µk = E[θk] for k = 1, . . . , Z, kd, ko satisfy equations (3.61). We refer to Appendix
3.6 for detail computations for the synthesis of (3.64).

Remark 10 (Unbounded objective). The objective (3.58) may be unbounded in the case
r = 0. Clearly, adding the exponential discount factor for the cost will be a remedy to
this problem, however, for the forthcoming presentation we excluded the discount factor
as simplification.

3.3 Robustness in the H∞ setting

In the context of H∞ theory, controllers are synthesized to achieve stabilization with
guaranteed performance. In this section we exploit the theory of Linear Matrix Inequal-
ity (LMI) in order to figure out the robustness of the control we take into account.
The introduction of LMI methods in control has dramatically expanded the types and
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complexity of the systems we can control, it is possible to use LMI solvers to synthe-
size optimal or suboptimal controllers and estimators for multiple classes of state-space
systems. We refer to (143, 126, 41, 83) as references for LMI methods in control. We
consider the linear system (3.57) with control (3.62) under the following reformulation

d

dt
v = Âv + B̂θ, (3.65)

where we consider the random input vector θ = (θ1, . . . , θZ)> ∈ RZ×d, and the matrices

Â = A− 1

ν
K, B̂ = 1N×Z .

with 1 a matrix of ones of dimension N×Z. We introduce the frequency transfer function
Ĝ(s) := (sIdN − Â)−1B̂, such that Ĝ ∈ RH∞, the set of proper rational functions with
no poles in the closed complex right half-plane, and the signal norm ‖ · ‖H∞ measuring
the size of the transfer function in the following sense

‖Ĝ‖H∞ = ess sup
ω∈R

σ̄(Ĝ(iω)), (3.66)

where given P , σ̄(P ) is the largest singular value of P . The general H∞-optimal control
problem consists of finding a stabilizing feedback controller u which minimizes the cost
function (3.66), we refer to Appendix 3.7 for a more general context, and to (85, 99) for a
more theoretical treatment and introduction to control state-space theory. However, the
direct minimization of the cost ‖Ĝ‖H∞ is in general a very hard task, and unfeasible with
direct methods. To reduce such complexity, a possibility consists in finding conditions
for the stabilizing controller that achieves a norm bound for a given threshold γ > 0,

‖Ĝ‖H∞ ≤ γ. (3.67)

Hence, robustness of a given control u is measured in terms of the smallest γ satisfying
(3.67). In order to provide a quantitative result we can rely on the following equivalency
result

Lemma 3.1. Given the frequency transfer function Ĝ, associated to (3.65), a necessary
and sufficient condition to guarantee the H∞ bound (3.67) is to prove that it exists a
positive definite square matrix of order N , X > 0, such that the following algebraic
Riccati equation holds

A>X +XA− 1

ν
K>X − 1

ν
XK +

Z

γ
XX +

1

γ
IdN = 0. (3.68)

with minimal value of γ > 0.

For the proof of this result we refer to the more general case reported in the Appendix
3.7.

Theorem 3.2. Consider system (3.65) with structure induced by (3.57), and consider a
square matrix X with the following structure

(X)ij =

{
xd, i = j,

xo, i 6= j.

47



Then for N sufficiently large and finite, control u (3.62) is H∞-robust, with cN > 0 and
γ > 1

cN
, where

cN = p̄+
1

ν
(kd −

ko
N

).

Proof. Under the hypothesis of the theorem, (3.68) reduces to the following system

0 =
2p̄(1−N)

N
xd +

2p̄(N − 1)

N
xo −

2

ν
kdxd −

2(N − 1)

νN
koxo

+
1

γ
x2
d +

N − 1

γ
x2
o +

1

γ
, (3.69)

0 =
2p̄(1−N)

N
xo +

2p̄

N
xd +

2p̄(N − 2)

N
xo −

2

ν
kdxo −

2

νN
koxd

− 2(N − 2)

νN
koxo +

2

γ
xdxo +

N − 2

γ
x2
o. (3.70)

Since we are interested in the dynamics for a large number of agents, and to capture
correctly a consistent description we scale the off-diagonal elements xo of X according
to

x̃o =
√
Nxo.

Under this scaling the previous system reads

0 =
2p̄(1−N)

N
xd +

2p̄(N − 1)

N
√
N

x̃o −
2

ν
kdxd −

2(N − 1)

νN
√
N

kox̃o +
1

γ
x2
d +

N − 1

γN
x̃2
o +

1

γ
,

0 =
2p̄(1−N)

N
√
N

x̃o +
2p̄

N
xd +

2p̄(N − 2)

N
√
N

x̃o −
2

ν
√
N
kdx̃o −

2

νN
koxd −

2(N − 2)

νN
√
N

kox̃o

+
2

γ
√
N
xdx̃o +

N − 2

γN
x̃2
o.

(3.71)

From the two equations of system (3.71), and setting

c = p̄+
kd
ν
, (3.72)

we obtain two second order equations for xd and x̃o

0 = x2
d − 2γcxd + x̃2

o + 2γαO
( 1√

N

)
x̃o + 1,

0 = x̃2
o − 2γ

(
β − xd

γ

)
O
( 1√

N

)
x̃o + 2γαO

( 1√
N

)
xd,

(3.73)

with solutions

x±d = γc±

√
γ2c2 − 1− x̃2

o − 2γαO
( 1√

N

)
x̃o,

x̃±o = O
( 1√

N

)(
γ
(
β − xd

γ

)
±
√
γ2
(
β − xd

γ

)2

− 2γαxd

)
,
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where

α = p̄− ko
ν

and β =
kd + ko
ν

.

We can write the matrix X as

X =
x̃o√
N

1N + (xd −
x̃o√
N

) IN ,

and the eigenvalues of X are

λi = λ = xd −
x̃o√
N

for i = 1, . . . , N − 1 and λN = xd + (N − 1)
x̃o√
N
.

If we subtract equations in (3.71) we find the following second order equation in the
variable λ = (xd − x̃o√

N
)

λ2 − 2γ
(
p̄+

1

ν
(kd −

ko
N

)
)
λ+ 1 = 0,

with solutions

λ± = (xd −
x̃o√
N

)± = γcN ±
√
γ2c2

N − 1,

with

cN = p̄+
1

ν

(
kd −

ko
N

)
. (3.74)

The diagonal elements of the matrix X are

xd =
x̃o√
N

+ λ±.

With the help of a symbolic calculus software, we can now compute x̃±o from (3.73)

x̃±o = ±
√
z̃±
(

2γ(
kd
ν
− p̄)− z̃±

)
− 1 · O

( 1√
N

)
,

with

z̃± = γc±
√
γ2c2 − 1,

and c as in Eq. (3.72). Therefore we have

λi = xd −
x̃±o√
N

= λ± for i = 1, . . . , N − 1

λN = xd + (N − 1)
x̃±o√
N

= λ± +N
x̃±o√
N
∈ O

(
1
)
.
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We first study the positivity of the eigenvalue λ± = γcN ±
√
γ2c2

N − 1 in terms of the
parameters γ and cN . First of all, we need γ ≥ 1

cN
to ensure existence of the square root.

In addition, if cN > 0

λ+ > 0 if γcN > −
√
γ2c2

N − 1 which is always true,

λ− > 0 if γcN >
√
γ2c2

N − 1 which is also always true.

On the contrary, if cN ≤ 0, λ± is never positive. Under the same assumptions γ ≥ 1
cN

,
and cN > 0 we have the last eigenvalue λN always positive too.

3.3.1 Mean-field estimates for H∞ control

In order to estimate these results when a large number of agents is present, i.e. N � 1,
we discuss our approaches in the mean-field limit, where the uncertainty is accounted
as . Here, we consider the density distribution of agents in order to describe the collec-
tive behavior of the ensemble of particles. We introduce the empirical joint probability
distribution of particles for the system (3.57), it is given by

fN(t, v, θ) =
1

N

N∑
i=1

δ(v − vi(t, θ)),

where δ(·) is a Dirac measure over the trajectories vi(t, θ) with θ = (θ1, . . . , θZ). We
consider enough regularity assuming that particles remain in a fixed compact domain for
all N and in the whole time interval [0, T ]. Computing the mean-field limit of dynamics
(3.57) we obtain

∂tf(t, v, θ) = −∇v ·

(
f(t, v, θ)

((
p̄− ko

ν

)
m1[f ](t, θ)−

(
p̄+

kd
ν

)
v +

Z∑
k=1

θk

))
,

with initial data f(0, v, θ) = f 0(v, θ), where m1[f ] denotes the average density

m1[f ](t, θ) =

∫
Rd
vf(t, v, θ)dv.

For the many particle limit, we can recover a mean-field estimate of the H∞ condition
similarly as in 3.2. Indeed, for N →∞ the nonlinear system (3.71) reads

0 = −2p̄xd −
2

ν
kdxd +

1

γ
x2
d +

1

γ
x2
o +

1

γ
,

0 =
1

γ
x2
o.

Hence, we observe that the structure of matrix X in (3.68), becomes diagonal with values

x±d = γ
(
p̄+

kd
ν

)
±
√
γ2
(
p̄+

kd
ν

)2

− 1, x±o = 0,
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and to ensure positivity of the eigenvalues is enough to require that

γ >
1

c
,

where γ is the bound of the H∞ norm, and c = p̄ + kd/ν corresponds to the limiting
value of cN , defined in (3.74).

Remark 11. We recall that we can choose a control where kd and ko satisfy system
(3.61). In particular if we let N → ∞ and we choose the infinite horizone case, (3.61)
reduces to

0 =
k2
d

ν
+ 2p̄kd − 1,

0 =
k2
o

ν
+

2

ν
kdko − 2p̄kd,

hence

k±d = −νp̄± ν
√
p̄2 +

1

ν
, k±o = kd ± ν

√
k2
d

ν2
+

2p̄kd
ν

.

In this particular case, and using k+
d , the condition becomes γ >

√
ν

p̄2ν+1
. Figure 11

shows the quantity

γ(ν, p̄) =

√
ν

p̄2ν + 1
,

for different values of ν and p̄. As expected, we have a smaller value of γ, hence more
robustness, when the penalization factor ν is smaller and when p̄ is bigger, this means
more attraction between particles.

Figure 3.15: Value of γ as a function of ν and p̄.

3.4 Numerical approximation of the noisy dynamics

In this section we present numerical tests based on linear noisy microscopic and mean-
field equations. In particular, we give numerical evidence of the robustness of the control
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Probability law of θ Expansion polynomials Support
Gaussian Hermite (−∞,+∞)
Uniform Legendre [a, b]

Beta Jacobi [a, b]
Gamma Laguerre [0,+∞)
Poisson Charlier N

Table 3.7: The different gPC choices for the polynomial expansions.

in (3.62) and we show a comparison with the noise independent control in (3.83). For
the numerical approximation of the noisy dynamics we use the Stochastic Galerkin (SG)
belonging to the class of generalized polynomial chaos (gPC) ((123, 128, 154)). In all
tests the time integration has been performed through a 4th order Runge-Kutta method.

3.4.1 gPC approximation for robust constrained interacting agent systems

We approximate the dynamics using a generalized polynomial chaos approach applied to
the interacting particle system with uncertainties (19, 55). Polynomial chaos expansion
provides a way to represent a random variable with finite variance as a function of
an M -dimensional random vector using a polynomial basis that is orthogonal to the
distribution of this random vector. Depending on the distribution, different expansion
types are distinguished, as shown in Table 3.7. We recall first some basic notions on gPC
approximation techniques and for the sake of simplicity we consider a one dimensional
setting d = 1. Let (Ω,F , P ) be a probability space where Ω is an abstract sample space,
F a σ−algebra of subsets of Ω and P a probability measure on F . Let us define a
random variable

θ : (Ω,F)→ (IΘ,B(RZ)) (3.75)

where IΘ ∈ RZ is the range of θ and B(RZ) is the Borel σ-algebra of subsets of RZ ,
we recall that Z is the dimension of the random input θ = (θ1, . . . , θZ) and where we
assume that each component is independent. We consider the linear spaces generated by
orthogonal polynomials of θj with degree up to M : {Φ(j)

kj
(θ)}Mkj=0, with j = 1, . . . , Z. As-

suming that the probability law for the function vi(θ, t) has finite second order moment,
the complete polynomial chaos expansion of vi is given by

vi(θ, t) =
∑

k1,...,kZ∈N

v̂i,k1...kZ (t)
Z∏
j=1

Φ
(j)
kj

(θj),

where the coefficients v̂i,k1...kZ (t) are defined as

v̂i,k1...kZ (t) = Eθ

[
vi(θ, t)

Z∏
j=1

Φ
(j)
kj

(θj)

]
where the expectation operator Eθ is computed with respect to the joint distribution
ρ = ρ1 ⊗ . . . ⊗ ρZ , and where {Φ(j)

k (θj)}k is a set of polynomials which constitute the
optimal basis with respect to the known distribution ρ(θj) of the random variable θj,
such that

Eθj
[
Φ

(j)
k (θ1)Φ

(j)
h (θj)

]
= Eθj

[
Φ

(j)
h (θj)

2
]
δhk,
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with δhk the Kronecker delta function. From the numerical point of view we have that
through a gPC-type method it is possible to achieve an exponential order of convergence
to the exact solution of the problem, unlike Monte Carlo techniques for which the order
is O(1/

√
M) where M is the number of samples. Considering the noisy model 3.57 with

control ui(t) in 3.62, we have

v̇i(θ, t) =
p̄

N

N∑
j=1

(
vj(θ, t)−vi(θ, t)

)
− 1

Nν

N∑
j=1

(
ko(t)vj(θ, t)+kd(t)vi(θ, t)

)
+

Z∑
j=1

θj. (3.76)

We apply the gPC decomposition to the solution of the differential equation vi(θ, t) in
(3.76) and to the stochastic variable θk, and for i = 1, . . . , N, l = 1, . . . , Z, we have

vMi (θ, t) =
M∑

k1,...,kZ=0

v̂i,k1...kZ (t)
Z∏
j=1

Φ
(j)
kj

(θj),

θMl (θ) =
M∑

k1,...,kZ=0

θ̂l,k1...kZ (t)
Z∏
j=1

Φ
(j)
kj

(θj),

(3.77)

with

θ̂l,k1...kZ = Eθ

[
θl

Z∏
j=1

Φ
(j)
kj

(θj)

]
= Eθl

[
θlΦ

(l)
kl

(θl)
] Z∏
j=1,j 6=l

Eθj
[
Φ

(j)
kj

(θj)
]
.

Then we obtain the following polynomial chaos expansion

d

dt

M∑
k1,...,kZ=0

v̂i,k1...kZ

Z∏
j=1

Φ
(j)
kj

(θj) =

=
1

N

N∑
h=1

M∑
k1,...,kZ=0

[(
p̄− ko

ν

)
v̂h,k1...kZ −

(
p̄+

kd
ν

)
v̂i,k1...kZ

] Z∏
j=1

Φ
(j)
kj

(θj)

+
Z∑
l=1

M∑
k1,...,kZ=0

θ̂l,k1...kZ (t)
Z∏
j=1

Φ
(j)
kj

(θj).

(3.78)

Multiplying by
∏Z

j=1 Φ
(j)
kj

(θj) and integrating with respect to the distribution ρ(θ), we
end up with

d

dt
v̂i,k1...kZ =

1

N

N∑
h=1

[(
p̄− ko

ν

)
v̂h,k1...kZ −

(
p̄+

kd
ν

)
v̂i,k1...kZ

]

+
Z∑
l=1

Eθl
[
θlΦ

(l)
kl

(θl)
] Z∏
j=1,j 6=l

Eθl
[
Φ

(j)
kj

(θj)
]
.

For the numerical tests we approximate the integrals using quadrature rules.

Remark 12. For model 3.64, where the control is noise-independent, as follows

ui = −1

ν

(
kdEθ [vi] +

ko
N

N∑
h6=i

Eθ [vh] + s
Z∑
j=1

Eθ [θj]

)
,
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the gPC approximation turns out to be

d

dt
v̂i,k1...kZ =

p̄

N

N∑
h=1

(v̂h,k1...kZ − v̂i,k1...kZ )

−

∏Z
j=1 Eθj

[
Φ

(j)
kj

(θj)
]

∏Z
j=1 Eθj

[(
Φ

(j)
kj

(θj)
)2
] (kdv̂i,00...0 +

ko
N

N∑
h6=i

kov̂h,00...0 + s

Z∑
j=1

µj

)

+
Z∑
l=1

Eθl
[
θlΦ

(l)
kl

(θl)
] Z∏
j=1,j 6=l

Eθj
[
Φ

(j)
kj

(θj)
]
.

(3.79)

We recover the mean and the variance of the random variable v(θ) as

Eθ[vi(θ)] =

∫
R2

vi(θ)dρ = v̂i,00...0,

Vθ[vi(θ)] =

∫
R2

(vi(θ)− v̂i,00...0)2dρ =
M∑

k1,...,kZ=0

v̂2
i,k1...kZ

− v̂2
i,00...0.

3.4.2 Numerical tests

In this section we present different numerical tests on microscopic and mean-field dynam-
ics, to compare the robustness of controls described in sections 3.2. We analyze one- and
two-dimensional dynamics, for every test we consider the attractive case with p̄ = 1. The
initial distribution of particles v0 is chosen such that consensus towards the target v̄ = 0
would not be reached without control action. We implement the gPC approximations in
(3.78) and (3.79) and we use the forward Euler scheme with fixed time step ∆t = 0.01
to integrate the resulting differential equations until the final time T = 1. We are taking
into account a dynamics with Z = 2 additive noises, a Gaussian noise θ1 with density
distribution ρ1 ∼ N (µ, σ2), and a uniform noise θ2 with ρ2 ∼ U(a, b). This assumption of
normal and uniform distributions for the stochastic parameter corresponds to the case of
an Hermite and Legendre polynomial chaos expansions, respectively, as shown in Table
3.7. For every test we have M = 10 terms of the gPC decomposition.

Test 1: one-dimensional consensus dynamics In the one-dimensional microscopic
case we take N = 100 agents, and a uniform initial distribution of particles, v0 ∼
U(10, 20). Figure 3.16 shows means, as continuous and dashed lines, and confidence
regions of the two noisy dynamics for different distributions ρ1, ρ2. The confidence
region is computed as the region between the values

1

N

N∑
i=1

(Eθ[vi(θ)]) ∓ max
i=1,...,N

(√
Vθ[vi(θ)]

)
.
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Figure 3.16: Test 1: comparison between the two controls in (3.62) and (3.83) applied
to the noisy model, in terms of dynamics mean and variance for different ρ1, ρ2.

Numerical results show that both introduced controls are capable to drive the particles
to a desired state even in case of a dynamic dependent by random inputs. Moreover we
can observe that, with the H∞ control, the variance of the noisy dynamics is stabilized
over time, while in the case of a noise-independent control the variance keeps growing.
This is due to the fact that the noise-independent control has information only on the
mean of state and noise while the H∞ feedback control directly depends on the state,
and as a consequence on the noise of the dynamics.

Test 2: two-dimensional consensus dynamics In the two-dimensional microscopic
case we take N = 100 agents, and an initial configuration of particles uniformly dis-
tributed on a 2D disc, as shown in Figure 3.17. 2D means and confidence regions of the
two noisy dynamics can be seen in Figure 3.18, for different values of the penalization
factor ν and different distributions ρ1, ρ2.

Figure 3.17: Test 2: Two-dimensional case. Initial distribution v0.

We recall that, for the control u in Eq. (3.62), the size of the transfer function Ĝ related
to the state-space system (3.65) in terms of the H∞ signal norm is

‖Ĝ‖H∞ ≤ γ.
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From Theorem 3.2 we know that the H∞ control u is robust with a constant γ > 1
cN

,
cN > 0. We compute the value cN for the two cases in Figure 3.18, and we have
cN = 14.29 for a penalization factor ν = 0.01, while cN = 4.55 for ν = 0.1. As expected,
we have more robustness for a smaller ν, interpreted as the control cost.

Figure 3.18: Two-dimensional case. Comparison between the two controls in (3.62) and
(3.83) applied to the noisy model, in terms of dynamics mean and variance for different
values of ν, ρ1, ρ2.

Test 3: mean-field consensus dynamics In the mean field limit, the Monte Carlo
(MC) method is employed for the approximation of the distribution function f(t, v, θ) in
the phase space whereas the random space at the particles level is approximated through
the gPC technique.
Considering this MC-gPC scheme, we work on particles system thanks to Monte Carlo
using a sample of Ns = 104 agents, then we consider the gPC scheme at the micro-
scopic level and the density f(t, v, θ) is reconstructed as the histogram of v(t, θ). The
reconstruction step of the mean density has been done with 50 gridpoints.
Mean and variance of the statistical quantity are computed as

Eθ[f(t, v, θ)] =

∫ ∫
f(t, v, θ)dρ1(θ1)dρ2(θ2)

=
L∑

l,h=1

f(t, v, θlh)ρ1(θl1)ρ2(θh2 )ωl1ω
h
2 ,

Vθ[f(t, v, θ)] =

∫ ∫
f(t, v, θ)2dρ1(θ1)dρ2(θ2)− (Eθ[f(t, v, θ)])2

=
L∑

l,h=1

f(t, v, θlh)2ρ1(θl1)ρ2(θh2 )ωl1ω
h
2 − (Eθ[f(t, v, θ)])2 ,

(3.80)

where for l, h = 1, . . . , L and v̂k,j ∈ RNs , f(t, v, θlh) is computed as the histogram of

v(θlh) =
M∑

k,j=0

v̂k,jΦk(θ
l
1)Ψj(θ

h
2 ).
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Figure 3.19: Meanfield one-dimensional case. Mean and standard deviation over time for
the H∞ control in (3.62), with parameters p̄ = 1, ν = 0.01, ρ1 ∼ N (0, 5), ρ2 ∼ U(−5, 5).

Figure 3.20: Meanfield one-dimensional case. Mean and standard deviation over time
for the noise independent control in (3.83), with parameters p̄ = 1, ν = 0.01, ρ1 ∼
N (0, 5), ρ2 ∼ U(−5, 5).

We consider the same parameters as in the left plot of the one dimensional microscopic
case in Figure 3.16, and since θ1, θ2 are a Gaussian and a uniform noise respectively, we
approximate the integrals in (3.80) using a Gauss-Hermite and Legendre-Gauss quadra-
ture rules with L = 40 quadrature points.
Figures 3.19 and 3.20 show the consistency with the microscopic case in Figure 3.16, on
the left.

3.5 Conclusions

The introduction of uncertainties in multiagent systems is of paramount importance for
description of realistic phenomena. We concentrated in this chapter with the mathemat-
ical modelling and control of collective dynamics with uncertainties and we investigated
the robustness of controls proposing estimates based on H∞ theory. We reformulated the
control problem as a robust H∞ control problem, and we derived sufficient conditions
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in terms of linear matrix inequalities (LMIs) to ensure the control performance. We did
the robustness analysis also in a meanfield framework obtaining a consistent result with
the microscopic scale. Some numerical tests were proposed to compare the H∞ control
with another control found minimizing the expectation of a functional with respect to
the noise. The numerical methods here developed makes use of the generalized polyno-
mial chaos (gPC) expansion for the microscopic dynamics while in the mean-field case
we combine a gPC expansion in the random space with a Monte Carlo method in the
physical variables. Both controls are capable to drive the particles to a desired state
even in case of a dynamic dependent by random inputs, but we generically observed that
only the H∞ control, is able to stabilize over time the variance of the noisy dynamics.

3.6 Appendix A. Noise-independent control

In this section we look for a new control, minimizing the expectation of the cost functional
(3.58) subject to the noisy model (3.57). Hence, we consider the expected value of the
quadratic cost

ū∗(·) = arg min
u(·)

E
[∫ T

0

1

2
(v>Qv + νu>Ru) dt

]
,

where we introduce the matrices Q = R = 1
N

IdN . We claim that in this case an optimal
feedback control is obtained as follows

ū(t) = −N
ν

(
K Eθ [v] + S Eθ [θ]

)
, (3.81)

where K ∈ RN×N and S ∈ RN×Z fulfill the Riccati matrix-equations
−K̇ = KA+ A>K − N

ν
K2 + 1

N
IN , K(T ) = 0N ,

−Ṡ = KB + A>S − N
ν
KS, S(T ) = 0N×M .

(3.82)

Theorem 3.3. Assume matrices K and S have the following structures

(K)ij =

{
kd, i = j,

ko, i 6= j,
(S)ij = s · 1N×Z .

Matrices K and S are denfined by 2 and 1 element respectively.
Then the i− th component of the control u is given by

ui = −1

ν

(
kdE [vi] +

ko
N

N∑
j 6=i

E [vj] + s

Z∑
j=1

E [θj]

)
, (3.83)

where kd and ko, after a scaling, turn out to be the same as in equations (3.61), while s
satisfies

−ṡ = kd + α(N)ko −
s

ν
(kd + α(N)ko) , s(T ) = 0, (3.84)

with α(N) = N−1
N

.
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Proof. From Proposition 2.1 of (12), we can prove that kd, ko satisfy equations (3.61).
Given the structure of the matrices S, K and B, and solving the second equation in
(3.82) componentwise leads to the following identities:

(KB)ij = kd + (N − 1)ko,

(A>S)ij = s (ad + (N − 1)ao) ,

(KS)ij = s (kd + (N − 1)ko) .

We can further simplify the Riccati-matrix system (3.82) using the dependency of coef-
ficients ad, ao. And since we are interested in the dynamics for large number of agents,
we introduce the following scalings

s← Ns, kd ← Nkd, ko ← N2ko, α(N) =
N − 1

N
. (3.85)

For the sake of simplicity, we keep the same notation also for the scaled variables s, kd, ko.
Under this scaling, the second equation in (3.82) reads

−ṡ = kd + α(N)ko −
s

ν
(kd + α(N)ko) , s(T ) = 0 ,

and the Riccati feedback law (3.81) is given by Eq. (3.83) The coefficients s(t), kd(t), ko(t),
have to be determined integrating backwards in time.

Remark 13. Since the H∞ theory is based on the infinite horizone case, (3.84) reduces
to

0 = kd + α(N)ko −
s

ν
(kd + α(N)ko) ,

hence s = ν.

3.7 Appendix B. H∞ control setting

Define a state-space system G : L2 → L2 by y = Gθ, with θ a random input as defined
in (3.75), if

d

dt
v(t) = Ãv(t) + B̃θ,

y(t) = Cv(t) +Dθ,

where v(t) is the system state, and y(t) is the observed output. It is proved (see e.g.
(85, 41)) that for any stable state-space system, G, there exists a frequency transfer
function Ĝ ∈ RH∞ such that

Ĝ(s) =

[
Ã B̃
C D

]
= D + C(sIN − Ã)−1B̃. (3.86)

where s is a complex number and RH∞ is the set of proper rational functions with
no poles in the closed right half-plane, in particular RH∞ = R ∩ H∞, where R is the
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space of rational functions and H∞ is a signal space of “transfer functions” for linear
time-invariant systems, we refer to (41, 83, 99) for the theoretical details .

State space Ã, B̃, C,D or the transfer function is a representation of a system and these
formats uses matrices or complex-valued functions (a signal) to parameterize the repre-
sentation. The signal norm ‖ · ‖H∞ measures the size of the transfer function in a certain
sense and the H∞-optimal control problem consists of finding a stabilizing controller
u = Ky which minimizes the cost function

‖Ĝ‖H∞ = ess sup
ω∈R

σ̄(Ĝ(iω)).

The direct minimization of the cost ‖Ĝ‖H∞ turns out to be a very hard problem, and
it is therefore not feasible to tackle it directly. Instead, it is much easier to construct
conditions which state whether there exists a stabilizing controller which achieves the
norm bound

‖Ĝ‖H∞ ≤ γ,

for a given γ > 0.
We want now to reduce a problem arising in system and control theory to a standard
linear matrix inequalities.
The history of LMIs in the analysis of dynamical systems goes back more than 100 years.
The story begins in about 1890, when Lyapunov published his seminal work introducing
what we now call Lyapunov theory. Then, in the 1940’s Lur’e, Postnikov, and others
in the Soviet Union applied Lyapunov’s methods to some specific practical problems
in control engineering. The next major breakthrough came in the early 1960’s, when
Yakubovich, Popov, Kalman, and other researchers succeeded in reducing the solution of
the LMIs that arose in the problem of Lur’e to simple graphical criteria, using what we
now call the positive-real (PR) lemma, that shows how LMIs can be used to constrain
the eigenvalues of a system:

Lemma 3.4. Given the frequency transfer function Ĝ, the following are equivalent:

• ‖Ĝ‖H∞ ≤ γ.

• ∃ a positive definite square matrix of order N , X > 0 s.t. (3.87) holds.[
Ã>X +XÃ XB̃

B̃>X −γIZ

]
+

1

γ

[
C>

D>

] [
C D

]
< 0. (3.87)

By 1970, it was known that the LMI appearing in the PR lemma could be solved not only
by graphical means, but also by solving a certain algebraic Riccati equation (ARE). In
a 1971 paper ((152)) on quadratic optimal control, J. C. Willems is led to the following
Lemma with equivalent characterization through a Riccati equation

Lemma 3.5. The following are equivalent:

• ∃X > 0 s.t. (3.87) holds.
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• ∃X > 0 s.t. (3.88) holds.

Ã>X+XÃ−(XB̃+C>D)(−γIZ+
1

γ
D>D)−1(B̃>X+D>C)+

1

γ
C>C = 0. (3.88)

Proof. The structure of of Eq. (3.87) is[
Â B̂

B̂> D̂

] [
x1

x2

]
=

[
0
0

]
,

this system can be solved using the Schur-complement theory. Provided that D̂−1 exists,
we have {

Âx1 + B̂x2 = 0,

B̂>x1 + D̂x2 = 0,

→ x2 = −D̂−1B̂>x1 →
(
Â− B̂D̂−1B̂>

)
x1 = 0.

Hence, provided that exixts X such that (3.88) has a solution, then for all ξ

ξ>
(
Ã>X +XÃ− (XB̃ + C>D)(−γIZ +

1

γ
D>D)−1(B̃>X +D>C) +

1

γ
C>C

)
ξ = 0.

Further, (3.88) is the Schur-complement of

Msc :=

[
Ã>X +XÃ+ 1

γ
C>C B̃>X +D>C

XB̃ + C>D 1
γ
D>D − γIZ

]
.

Hence for η = −D̂B̂>ξ and ∀ξ, we have that

[
ξ η

]
Msc

[
ξ
η

]
= 0.

For a general vector [ξ %]>, we compute[
ξ
%

]
=

[
ξ
η

]
+

[
0

%− η

]
,

and then

[
ξ %

]
Msc

[
ξ
%

]
= 0 +

[
0 %− η

]
Msc

[
0

%− η

]
=
[
%− η

]> [ 1
γ
D>D − γIZ

] [
%− η

]
< 0

for γ sufficiently large.
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4 Proximal gradient approaches for optimal control

of interacting agent systems

4.1 Introduction

This chapter addresses control problems for second-order, nonlinear, multi-agent sys-
tems. In such dynamics, the state of each agent is characterised by position and velocity,
and these agents interact according to a nonlinear model that can encode various social
rules as for example attraction, repulsion and alignment. From a mathematical point
of view, a description of self-organized models is provided by complex system theory,
where the overall dynamic is depicted by an ODEs system, and the control is given by
the minimization of a cost functional. In this context, we focus on the design of control
laws enforcing consensus emergence, we understand consensus as a travelling formation
in which every agent has the same velocity. We show the use of such control strategy in
the case of the Cucker-Smale model (71, 24).

In optimal control for multiagent systems, the question of a more parsimonious control
design remains open. Efficient controls strategies should target only few individuals
of the population, instead of wasting resources on the entire group at once. Taking
advantage of the mutual dependencies between the agents, they could use an effect that
would spread their influence to the whole system, thus indirectly controlling the rest of
agents. The property of control strategies to target only a small fraction of the total
population is known in the mathematical literature as sparsity (48, 82, 56, 59). For
example, in alignment models, the sparse control targeting at each instant only the
agent farthest away from the mean velocity was shown to possess this property, see (51).
As an extension of the proposed classical control, we address the finite horizon optimal
control problem with a non-smooth, sparsity-promoting control penalisation, the sparse
control can indeed be obtained when the control cost is the `1-norm (51). This control
synthesis is sparse, acting on a few agents over a finite time frame, however its numerical
realisation is far more demanding due to the lack of smoothness in the cost functional.
To circumvent this difficulty, we propose a numerical realisation of the control synthesis
via proximal gradient method (31).

Since the study of microscopic model for a large system of individuals implies a consider-
able effort in numerical simulations, to reduce the computational complexity we consider
also a more general level of description, that is the derivation of a mesoscopic approxi-
mation of the original dynamic. Hence we will consider continuous models in order to
simulate the collective behaviour in case of analysing systems with a large number of
agents. A numerical section will end the chapter, with tests on sparse control at micro-
scopic and meanfield level, a CPU time analysis of the proposed algorithm, and finally
a comparison between the sparse control and another type of sparsity realised using a
leader-follower model.
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4.2 Constrained interacting agents systems

We consider a set of N agents with states (xi(t), vi(t)) ∈ Rd×Rd, where d is the dimension
of the physical space, interacting under the second-order dynamics

dxi
dt

= vi, i = 1, 2, . . . , N

dvi
dt

=
1

N

N∑
j=1

P (xi, xj)(vj − vi) + ui, i = 1, 2, . . . , N
(4.89)

with initial conditions xi(0) = x0
i and vi(0) = v0

i . P (xi, xj) = P (‖xi − xj‖2) is a radial
interaction kernel that describes binary symmetric interactions between particles.
Now, suppose we have an interest in having the N particles composing our system to
reach a certain state. The control is determined as the external forcing term u(t) :=
(u1(t), u2(t), . . . , uN(t))T whose components are

ui : R+ → U

with U compact subset of Rd. In order to synthesize this control variable, we assume
that u is the minimizer of a cost function J (u;x(0), v(0)), that is

u∗ = arg min
u∈C
J (u;x0, v0) :=

∫ T

0

`(x(t), v(t), u(t)) dt , subject to (4.89) . (4.90)

The optimization horizon T expresses the time scale along which we minimize the running
cost `(x, v, u), encodes our objective as a function of the state and control variables. C is
a nonempty closed and convex set. And in our case we take C = [−M,M ]N×d, M ∈ R+,
i.e. for every agent i and component j we want |uij| ≤M .
In this context, we focus on the design of control laws enforcing consensus emergence, we
are interested in having the particles composing our system to reach a consensus state,
which is the state where all particles have the same velocity

v̄ :=
1

N

N∑
j=1

vj.

The minimizing functional we considered is

J (u; v0) :=

∫ T

0

1

N

N∑
i=1

(
‖v̄ − vi‖2

2 + ν ‖ui‖2
2 + β ‖ui‖1

)
dt, (4.91)

where the scalars ν, β are weights representing how much expensive is the control. As
you can see in Eq. (4.91), the consensus is penalised along a quadratic control and a
non-smooth, sparsity-promoting term. In this way we address the problem of enforcing
sparsity on an optimal consensus strategy, by adding the `1-norm ‖·‖1 in the minimisation
problem, as done in (11, 35, 50, 124). While existence of a minimiser u∗ of (4.90) follows
from the smoothness and convexity properties of the system dynamics and the cost,
the Pontryagin Minimum Principle Pontryagin et al. (1962) yields first-order necessary
conditions for the optimal control. However, the choice of a non-differentiable control
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cost, gives raise to the non-smooth cost functional J of Eq. (4.91), for this reason we
must resort to subdifferntial theory (31).
In order to find u, we start exploiting the Pontryagin maximum principle. For the sake
of simplicity, in the following computations we consider M = +∞, hence we don’t have
to take into account the projection of the control u inside the set C. To begin with,
let (pi(t), qi(t)) ∈ Rd × Rd be adjoint variables associated to (xi, vi) and consider the
Hamiltonian

H(x, v, u, p, q) :=
1

N

N∑
i=1

(
‖v̄ − vi‖2

2 + ν ‖ui‖2
2 + β ‖ui‖1

)
+

1

N

N∑
i=1

〈pi, vi〉

+
1

N

N∑
i=1

〈qi,
1

N

N∑
j=1

P (xi, xj)(vj − vi) + ui〉.
(4.92)

We can compute the following adjoint equations, componentwise for every i ∈ {1, 2, . . . , N}

−ṗi = ∇xiH =
1

N

N∑
j=1

P ′(‖xi − xj‖2)〈qj − qi, vj − vi〉(xj − xi),

−q̇i = ∇viH = pi +
1

N

N∑
j=1

P (‖xi − xj‖2) (qj − qi)− 2(vi − v̄),

(4.93)

with final conditions pi(T ) = 0 and qi(T ) = 0. We now need to compute ∇uiH in order
to find the optimality conditions

0 = ∇uiH = −qi + 2νui + βD(‖·‖1)(ui), (4.94)

since the `1-norm is non differentiable in zero, we have to look for the subdifferential D,
computed at zero, of the `1-norm.
The subdifferential of ‖u‖1 for agent i and component j in (4.94) turns out to be

(
D(‖·‖1)(ui)

)
j

=


−1 if uij < 0,

[−1, 1] if uij = 0,

1 if uij > 0,

(4.95)

with j = 1, . . . , d, and i = 1, . . . , N . We prove this result with the following Lemma 4.1.

Lemma 4.1 (Subdifferential of `1-norm at 0). Given ‖·‖1 : Rd → R the `1-norm on Rd,
the subdifferential of ‖·‖1 at 0 is the dual norm unit ball

D(‖·‖1)(0) = B‖·‖∞ [0, 1].

Proof. By definition of subdifferential we have

D(‖·‖1)(0) ≡ {g ∈ Rd : ‖y‖1 ≥ 〈g, y − 0〉 for all y ∈ Rd}.

The latter holds true if and only if ‖g‖∞ ≤ 1. Indeed, if ‖g‖∞ ≤ 1, then by the
generalized Cauchy-Schwarz inequality
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〈g, y〉 ≤ ‖g‖∞ ‖y‖1 ≤ ‖y‖1 for any y ∈ Rd,

implying

‖y‖1 ≥ 〈g, y〉 for all y ∈ Rd. (4.96)

In the reverse direction, assume that (4.96) holds. Taking the maximum of both sides
of (4.96) over all y satisfying ‖y‖1 ≤ 1, we get

‖g‖∞ = max
y:‖y‖1≤1

〈g, y〉 ≤ max
y:‖y‖1≤1

‖y‖1 = 1.

We have thus proved that the subdifferential of the `1-norm at zero is the dual norm
unit ball

D(‖·‖1)(0) = B‖·‖∞ [0, 1] = {g ∈ Rd : ‖g‖∞ ≥ 1〉 = [−1, 1]d.

In particular, when d = 1, then ‖·‖1 = | · |, and we have D(| · |)(0) = [−1, 1].

Remark 14 (Graphic representation in one dimensional case). Take into account a one
dimensional physical space d = 1, we can minimize componentwise the Hamiltonian H
in (4.92) with respect to u, and this corresponds to finding the minimum of the sum of
the two functions

y(u) = νu2 − qu, z(u) = β |u| .

Figure 4.21: Graphic representation of y, z and y + z in function of u for a positive
Lagrange multiplier q.

In Figure 4.21, we depict the functions y, z and the sum z + y in the case of a positive
Lagrange multiplier q, for q < 0 we have the symmetric case. Depending on the different
values of the parameters ν, β, q the minimum u∗ will be a value between 0 and the the
vertex of the parabola y(u), but taking into account the projection over the set C, i.e.,
|u∗| < M .
In particular, computing (z + y)′(u) = 0, we can find a componentwise relation between
the optimal control u∗ and the Lagrange multiplier q∗
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u∗ =


q∗−β

2ν
if u > 0 and q∗ > β,

q∗+β
2ν

if u < 0 and q∗ < −β,
0 if u = 0 and |q∗| ≤ β.

4.2.1 A multi-population interacting system

We can consider a more general framework than system (4.89), in particular suppose we
are dealing with a N -particles swarm whose positions are x1, x2, . . . , xN and velocities
are v1, v2, . . . , vN , with xi, vi ∈ Rd, i = 1, 2, . . . , N . Suppose further that we can control
only NJ < N agents, say those whose indexes are collected in the set J . Then we
consider a collection of sets of indexes Ik, k = 1, . . . , K, and every set corresponds to
a population with NIk agents that interact according a particular interaction rule, that
can be different for every set. For i = 1, 2, . . . , N , and initial conditions

xi(0) = x0
i , vi(0) = v0

i ,

the dynamic ruling this system of particles takes the form

dxi
dt

= vi,

dvi
dt

=

NIk∑
j∈Ik, j=1

mjPk(xi, xj)(vj − vi) +

NJ∑
j∈J, j=1

mjQ(xi, xj)(vj − vi) + χJ(i)ui,
(4.97)

where Q and Pk are some interaction kernels and, for any given set of indexes A, the
function χA(i) returns 1 if i ∈ A, 0 otherwise. The scalars mj instead, are weights such
that m1 +m2 + . . .+mN = 1 and mj ≥ 0.

Example 1 (Leader-Follower model). As an example of Eq. (4.97) we look at a leader-
follower model with

P (xi, xj) = P (‖xi − xj‖2) :=
1

(1 + ‖xi − xj‖2
2)γ

, γ ≥ 0. (4.98)

For simplicity we consider Q = Pk = P , hence only two different populations, a set J of
leader that we can control, and a set I of follower that have to reach the consensus

v̄ :=
N∑
j=1

χI(j)

|I|
vj

where |I| is the number of indexes belonging to the set I. Notice that in this case the
sets of indexes I and J have empty intersection and |I|+ |J | = N .
We enforce consensus by means of the following functional

J (u; v0) :=

∫ T

0

N∑
i=1

(
χI(i) ‖v̄ − vi‖2

2 + χJ(i)
(
νi ‖ui‖2

2 + βi ‖ui‖1

) )
dt,

where the scalars νi represent how expensive it is to control the i-th particle, if that is
controllable. The adjoint equations for this case turn out to be
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−ṗi = (∇xH)i = −
N∑
j=1

〈qimj − qjmi, vi − vj〉P ′(xi, xj)(xi − xj)

−q̇i = (∇vH)i = pi +
N∑
j=1

(qjmi − qimj)P (xi, xj)− 2χI(i)(vi − v̄)

0 = (∇uH)i = −qiχJ(i) + χJ(i) (2νiui + βiD(‖·‖1)(ui)) .

The last set of equalities gives an explicit definition of our desired control u, with D(‖·‖1)(ui)
as in Eq. (4.95).

Clearly, the functions p(t) = (p1(t), p2(t), . . . , pN(t)) and q(t) = (q1(t), q2(t), . . . , qN(t))
are to be determined first. It is evident that performing this optimization process is
computationally very demanding. This paper also aim to deal with this in the numerical
realisation of the models.

4.3 Proximal gradient method

Since usually a controller act differently on every agent at every instant, we asked for
a more parsimonious control design and we address the finite horizon control problem
with a non-smooth, sparsity-promoting control penalisation. As shown in the previous
section, this choice gives rise to a non-smooth cost functional J , for which gradient-
based numerical solvers are not directly suitable. To circumvent the non-smoothness of
J , we consider the class of iterative proximal gradient algorithms, which can be viewed
as an extension of the classical gradient method.

Consider the minimization problem of the function F :

min
u∈C
{F (u) ≡ h1(u) + h2(u)}, (4.99)

wheree C = [−M,M ]N×d, and h2 is a possibly nonsmooth function. For the model in
Section 4.2, we have F : RN×d → R with

h1(u) =

∫ T

0

1

N

N∑
i=1

(
ν ‖ui‖2

2 − qiui
)

dt, h2(u) =

∫ T

0

1

N

N∑
i=1

β ‖ui‖1 dt.

A method for numerically solving the minimization problem (4.99) is the projected sub-
gradient algorithm which generates a sequence {u(k)} via

u(0) ∈ RN×d, u(k) = PC
(
u(k−1) − αk∇F (u(k−1))

)
,

where αk > 0 is a suitable stepsize. This gradient iteration can be viewed as a proximal
regularization of the linearized function h1 at u(k−1)

uk = arg min
u∈C

{
h1(u(k−1)) + 〈u− u(k−1),∇h1(u(k−1))〉+

1

2αk

∥∥u− u(k−1)
∥∥2

2
+ β ‖u‖1

}
,
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we compute some simple algebraic manipulation and cancellation of constant terms

h1(u(k−1)) + 〈u− u(k−1),∇h1(u(k−1))〉+
1

2αk

∥∥u− u(k−1)
∥∥2

2

= h1(u(k−1)) + 〈u,∇h1(u(k−1))〉 − 〈u(k−1),∇h1(u(k−1))〉+
1

2αk
〈u, u〉+

− 1

αk
〈u, u(k−1)〉+

1

2αk
〈u(k−1), u(k−1)〉

=
1

2αk
〈u, u〉 − 1

αk
〈u, u(k−1)〉+ 〈u,∇h1(u(k−1))〉+

1

2αk
〈u(k−1), u(k−1)〉+

− 〈u(k−1),∇h1(u(k−1))〉+
αk
2
〈∇h1(u(k−1)),∇h1(u(k−1))〉,

and we obtain

uk = arg min
u∈C

{
1

2αk

∥∥u− (u(k−1) − αk∇h1(u(k−1))
)∥∥2

2
+ β ‖u‖1

}
. (4.100)

We recall the definition of proximal operator

Definition 4.1 (proximal mapping). Given a function f : A→ B, the proximal mapping
of f is the operator given by

proxf (x) = arg min
y∈A

{
1

2
‖y − x‖2

2 + f(y)

}
for any x ∈ A,

the proximal mapping takes a vector x ∈ A and maps it into a subset of B of A, which
might be empty, a singleton, or a set with multiple vectors.

Multiplying (4.100) by αk and using definition 4.1, we obtain

uk = proxβαk‖u‖1

(
u(k−1) − αk∇h1(u(k−1))

)
.

In order to underline the dependence on parameters αk, β, and M we identify the nota-
tions proxβαk,M ≡ proxβαk‖u‖1 . This method is known as the proximal gradient method
(31), and it consists of a gradient step followed by a proximal mapping, where numerically
we have

proxa,b : RN×d → RN×d, (proxa,b(x))ij = min{max{|xij| − a, 0}, b}sgn(xij).

This particular proximal map is called the iterative shrinkage-thresholding algorithm
(ISTA) in the literature, since at each iteration a soft-thresholding operation (also known
as “shrinkage”) is performed.
The gradient iteriation is presented in Algorithm 3. After having chosen an initial guess,
each iteration consists in the integration of the forward-backward optimality system
given by the differential equations (4.89) and (4.93), followed by a step of the proximal
gradient method. In the numerical tests we will chose the step αk as in the Barzilai-
Borwein method (see (29))

αk =
〈u(k) − u(k−1),∇h1(u(k))−∇h1(u(k−1))〉

‖∇h1(u(k))−∇h1(u(k−1))‖2
2

, (4.101)

where
∇h1(u(k−1)) = −q(k−1) + 2νu(k−1). (4.102)
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Algorithm 3 [Proximal Gradient Descent]

0. Set tol > 0, kmax, u(0), u(−1) and k = 0
while

∥∥∇h1(u(k))
∥∥

2
> tol & k < kmax do

i. Obtain (x(k), v(k)) from (4.89) with u(k)

ii. Obtain (p(k), q(k)) from (4.93) with (x(k), v(k))
iii. Evaluate the gradient ∇h1(u(k)) as in (4.102)
iv. Compute the step αk as in (4.101)

v. Update u(k+1) = proxβαk,M

(
u(k) − αk∇h1(u(k))

)
vi. k := k + 1

end while

4.3.1 Asymptotic Monte Carlo algorithm

We present now a mean-field modelling approach for the control problem when the
number of agents is sufficiently large. We start taking into account the continuous
control problem that results in the limit of the discrete problem from Section 4.2 as
N → ∞. Formally, the second order dynamics (4.89) can be written as a Vlasov-type
transport equation

∂tf + v · ∇xf = −∇v · [f (P [f ] + u)] , f(0, x, v) = f 0(x, v), (4.103)

where P [f ] denotes the nonlocal integral operator

P [f ](t, x, v) =

∫
R2d

P (x, x∗)(v∗ − v)f(t, x∗, v∗)dx∗dv∗,

f : [0, T ] × Rd × Rd → R is the probability density for the state and u : [0, T ] → Rd

is a forcing term. We can pose an equivalent minimization problem with respect to the
discrete functional (4.91):

min
u
J (u; f 0) :=

∫ T

0

∫
R2d

(∥∥∥∥∫
R2d

w df(y, w)− v
∥∥∥∥2

2

+ ν ‖u(t)‖2
2 + β ‖u(t)‖1

)
df(x, v) dt.

We know that the solutions of the discrete control problem converge to that of the
continuous problem, as discussed in (97, 8).
For the numerical solution of the mean-field model we employ the mean-field Monte-
Carlo methods (MFMCs). These methods fall in the class of fast algorithms developed
for interacting particle systems such as direct simulation Monte-Carlo methods (DSMCs).
We consider Ns particles v0 ≡ {v0

i }i sampled from the initial distribution f 0(x, v), and
we introduce the following approximation for the mean-field dynamics

vn+1
i = (1−∆tP̂ n

i )vni + ∆tP̂ n
i V̂

n
i + ∆tuni , (4.104)

for n ≥ 0 and where the quantities P̂ n
i and V̂ n

i are computed from a sub-sample of Ms

particles randomly selected from the whole ensemble of Ns particles as follows

P̂ n
i =

1

Ms

Ms∑
k=1

P (xni , x
n
ik

), V̂ n
i =

1

Ms

Ms∑
k=1

P (xni , x
n
ik

)

P̂ n
i

vnik , i = 1, . . . , Ns.

70



In order to treat the transport term in the dynamics (4.103), we use a splitting method
to perform the free transport step. We compare the performance of the control laws
through the discretized cost

J∆t,Ns(u, g
0) :=

∆t

Ns

NT∑
n=0

Ns∑
j=1

(
∥∥v̄ − vnj ∥∥2

2
+ ν

∥∥unj ∥∥2

2
+ β

∥∥unj ∥∥1
),

with time step ∆t and Ns Monte Carlo samples.
For the numerical realization of the meanfield limit of the adjoint equations in (4.93),
we still use the Monte-Carlo method and we end up with the following approximation

pn+1
i = pni −

∆t

Ms

Ms∑
k=1

P ′(xni , x
n
ik

)〈qnik − q
n
i , v

n
ik
− vni 〉(xnik − x

n
i ),

qn+1
i = qni −∆t(pni − 2(vni − v̄))− ∆t

Ms

Ms∑
k=1

P (xni , x
n
ik

)(qnik − q
n
i ).

(4.105)

For details on meanfield derivation of the adjoint system we refer to (8, 118, 44).
We summarize in Algorithm 4 the steps to find the control u(t) using the proximal
gradient method described in Section 4.3, in the meanfield case. By using this Monte
Carlo algorithm we can reduce the computational cost due to the computation of the
interaction terms from the original O

(
Ns

2
)

to O (MsNs).

Algorithm 4 [Prox. Grad. Descent for the Monte-Carlo Meanfield Approximation]

0. Set tol > 0, kmax, u(0), u(−1) and k = 0
1. Given Ns particles v0 = {v0

i }i, with i = 1, . . . , Ns, sampled from the initial distri-
bution f 0(x, v), and Ms ≤ Ns

while
∥∥∇h1(u(k))

∥∥
2
> tol & k < kmax do

for n = (0 : 1 : ntot) do
i. Sample Ms particles uniformly without repetition among all Ns particles
ii. Obtain vn(k) according to (4.104) with un(k)

iii. Compute xn(k) with a forward Euler step given vn(k)

iv. Obtain (pn(k), qn(k)) from (4.105) with (xn(k), vn(k))
end for
i. Evaluate the gradient ∇h1(u(k)) as in (4.102)
ii. Compute the step αk as in (4.101)

iii. Update u(k+1) = proxβαk,M

(
u(k) − αk∇h1(u(k))

)
vi. k := k + 1

end while

4.4 Numerical tests

In this section we focus on the numerical realisation of the model, and we propose some
numerical tests to show a comparison between controls with different levels of sparsity.
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It is evident that whenever the dimension of the control space is very large, that is,
either d,N or the number of timesteps ntot are large, the optimization process is compu-
tationally very demanding, and the problem suffers from the curse of dimensionality. To
mitigate this difficulty, we start with the use of a compact formulation in order to deal
with the high dimensional control problem.

4.4.1 Efficient implementation and comptuational cost

We take x(t), v(t), p(t), q(t), and u(t) as elements of RN×d, and we consider the imple-
mentation of the dynamics (4.89) and adjoint equations (4.93) described in Section 4.2.
Let P be the matrix such that

Pij := P (‖xi − xj‖2)

and dP be the matrix such that

dPij := P ′(‖xi − xj‖2).

Now, we can write (4.89) more compactly as

dx

dt
= v,

dvi
dt

=
1

N

N∑
j=1

Pij(vj − vi) + u, i = 1, 2, . . . , N

which is

dx

dt
= v,

dv

dt
=

1

N
(Pv − v ·P1N×d) + u

where 1N×d is the element of RN×d of only ones and · is the componentwise scalar
product. In a totally analogous manner, we rewrite the equations 0 = ∇viH appearing
in (4.93):

dq

dt
= −p− 1

N
(Pq − q ·P1N×d) + 2(v − v̄).

The tricky part now is in the equations 0 = ∇xiH from (4.93). Let us begin by calling

Qij := 〈qj − qi, vj − vi〉dPij.

Then we have that
dp

dt
= − 1

N
(Qx− x ·Q1N×d).

Now, one can write as

Q =
d∑

k=1

((qek)11×N − 1N×1 (qek)
T ) · ((vek)11×N − 1N×1 (vek)

T ) · dP
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where ek is the k-th canonical vector of RN and, we stress, · is the componentwise
multiplication.
What we did is actually rewrite the operations in order to exploit the power of BLAS
(Basic Linear Algebra Subroutines), used to perform massive operations such as matrix-
matrix or matrix-vector products. We exploited the fact that a rank 1 matrix has the
advantage that it can be written as the product of a column vector by a row vector. This
makes it possible to reduce the space allocated to store these matrices from N2 to 2N
and the computational complexity of the matrix-vector product from O(N2) to O(N).
Using this compact implementation we are able to reach the computation CPU time
shown in Table 4.4.1, which also indicates the evolution of the number of optimisation
iterations, i.e. loops on Algorithm 3. We used the same data and parameters as in
(24), a Runge-Kutta 4th order scheme was used to integrate the differential equations
for the state and the adjoint with final time T = 10, time step ∆t = 0.1, and a stopping
tolerance for the gradient norm of tol = 10−3. As a result, the time required to evolve
and control a system of 1550 agents, was reduced from 49 hours (in (24)) to 10 minutes.
This allowed not only to consider larger scale problems but also to implement a more
satisfactory mean field approach.

Agents (N) 50 100 1550 5000
Iterations (I) 25 25 28 28

Time (T ) 0.0004 0.0008 0.2013 2.0585

Table 4.8: Number of iterations (I) and CPU time (T ) in hours for N agents for the
discrete optimisation problem.

4.4.2 Controls’ comparison between different sparsity levels

Now we present different numerical tests on microscopic and mean-field dynamics, in
order to compare the sparse (β 6= 0) and classical (β = 0) controls. We consider first the
model of Section 4.2 and then the leader-follower model in Example 1.
For all the tests we take the Cucker-Smale interaction kernel

P (r) :=
1

(1 + r2)γ
, γ = 1,

and the initial distribution of particles (x0, v0) is chosen such that consensus towards the
target v̄ would not be reached without control action, i.e.

x0 ∼ N

([
0
0

]
,

[
0.16 0

0 0.16

])
, v0 ∼ N

([
4
−1

]
,

[
1.44 0

0 1.44

])
.

We use a Runge-Kutta 4th order scheme with fixed time step ∆t = 0.1 to integrate
the differential equations for the state and the adjoint until the final time T = 5. In
Algorithm 3 we consider a stopping tolerance tol = 10−3 for the gradient norm. In the
microscopic model we take N = 50 agents, while in the meanfield case, the Monte Carlo
method is employed for the approximation of the distribution function f(t, x, v) in the
phase space using a sample of Ns = 104 agents and a sub-sample of Ms = 102 agents for
the approximation of the non-local integral operator.
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Test 1: Micro and meso uncontrolled and controlled dynamics. Figure 4.22
shows a comparison of the free two-dimensional state x on the left and the positions under
an approximation to the optimal control u found with the gradient descent algorithm,
on the right. The evolution of the particles states in time is depicted with a blue line,
while in red we indicate the final positions at time T . On the right, the classical control
with a penalization factor ν = 0.1 is shown, the control is forced to be bounded in a
set C = [−M,M ]N×d with a constant M = 0.5, and alignment is reached rapidly as
expected.

Figure 4.22: Test 1. Position of particles over time in the microscopic framework (N =
50). On the left the uncontrolled dynamics, on the right the controlled (ν = 0.1, β =
0,M = 0.5) ones.

Figure 4.23: Test 1. Velocity of particles over time in the uncontrolled case. On the top
the microscopic dynamics (N = 50), on the bottom the mesoscopic (Ns = 104,Ms = 102)
ones for three time frames t = 0, T

2
, T .

Figures 4.23, 4.24, and 4.25 show the two-dimensional velocities v in the no control,
classical control, and sparse control case, respectively. In the first row of every figures
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Figure 4.24: Test 1. Velocity of particles over time in the controlled case (ν = 0.1, β =
0,M = 0.5). On the top the microscopic dynamics (N = 50), on the bottom the
mesoscopic (Ns = 104,Ms = 102) ones for three time frames t = 0, T

2
, T .

Figure 4.25: Test 1. Velocity of particles over time in the controlled case (ν = 0.1,M =
0.5) with the additional non-smooth terms β ‖ui‖1 , β = 2. On the top the microscopic
dynamics (N = 50), on the bottom the mesoscopic (Ns = 104,Ms = 102) ones for three
time frames t = 0, T

2
, T .

the microscopic velocities over time are presented, while in the second row there are
three snapshots of the meanfield velocities taken at times t = 0, T

2
, T .
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We can observe that in the uncontrolled case the particles cannot reach the desired mean
velocity v̄. The other two controlled cases show that both controls are capable to drive
the velocities to the desired target, in particular when we add the non-smooth term
β ‖ui‖1 , β = 0.5, the velocities reach a square shape, due to the fact that we are cutting
the smallest controls using the proximal operator. The cross shape in figures 4.24 and
4.25 is caused by the projection of the control over the set C.

Test 2: Different levels of sparsity. We compare different levels of sparsity, i.e.
different values of β, with a penalization factor ν = 0.01 in Figure 4.26, and ν = 0.0001
in Figure 4.27.

β = 0 β = 0.5 β = 1.5

V (T ) 1.339e-8 0.009 0.059

β = 0 β = 0.5 β = 1.5

Figure 4.26: Test 2. Comparison of the microscopic control action (ν = 0.01,M = 0.5)
for different values of β. On the top a table with the values of the Lyapunov functional
V (t) at final time T and a figure with the decays of V (t). On the bottom the on-off
control actions in time for each agent in terms of `1 norm.

In both figures, on the top we show a table with the values of the Lyapunov functional
V (t) at final time T and a figure with the decays of V (t), where

V (t) =
1

2N2

N∑
i,j=1

‖vi − vj‖2
2 ,

while on the bottom the on-off control actions are depicted for each agent i and for
each timestep tn, in terms of the `1 norm ‖ui(tn)‖1. In the x-axis label, the number
of non-zero components are specified. We can observe that, as expected, the value of
the Lyapunov functional and the number of non-zero controls components decrease as β
increases. This leads to a more parsimonious but still suitable control.
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β = 0.05 β = 0.1 β = 0.5

V (T ) 8.053e-5 3.557e-4 0.008

β = 0.05 β = 0.1 β = 0.5

Figure 4.27: Test 2. Comparison of the microscopic control action (ν = 0.0001,M = 0.5)
for different values of β. On the top a table with the values of the Lyapunov functional
V (t) at final time T and a figure with the decays of V (t). On the bottom the on-off
control actions in time for each agent in terms of `1 norm.

Test 3: Comparison with a leader-follower model. We end the numerical section
with a test using the leader-follower model in Example 1. In particular we take |I| = 37
leaders, |J | = 13 followers, and the parameters mj equal 1

N
for every agent j. We want

to manually add sparsity controlling only the leaders. The result is in Figure 4.28, and
in this test the value of the Lyapunov functional V (t) at final time T is V (T ) = 0.1886.
This proves the fact that sparsity obtained with the non-smooth control penalisation
is better, since it allows to reach a lower value of V (T ) even with more zero control
components.

Figure 4.28: Test 3. Leader-follower dynamics. Velocity of particles over time and on-off
control actions in the microscopic controlled case (ν = 0.0001, β = 0,M = 0.5). The
control is not applied to 13 agents over a total number of N = 50 agents. On the left,
the uncontrolled velocities are depicted with dashed red lines.
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4.5 Conclusions

In optimal control for multiagent systems, the question of a more parsimonious control
is of paramount importance especially when the number of agents is very large. Efficient
controls strategies should target only few individuals of the population, instead of wasting
resources on the entire group at once. We concentrated in this chapter with control
problems for second-order, nonlinear, multiagent systems and we focused on the design
of control laws enforcing consensus emergence. As an extension of the proposed classical
control, we addressed the finite horizon optimal control problem with a non-smooth,
sparsity-promoting control penalisation, obtained with an `1-norm term in the control
cost. To circumvent the resulting lack of smoothness in the cost functional we relied
theoretically on sub-differential theory and we proposed a numerical realisation of the
control synthesis via proximal gradient method. To reduce the computational complexity
for an increasing number of agents, we discussed the approximation of the problem
by following a mean-field modelling approach. We presented different numerical tests
to show a substantial reduction of the computational costs and a comparison between
classical and sparse controls both at microscopic and meanfield level.
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5 Optimized leaders strategies for crowd evacuation

in unknown environments with multiple exits

5.1 Introduction

Control methodologies for crowd motion are of paramount importance in real-life appli-
cations for the design of safety measures and risk mitigation. The creation of virtual
models of a large ensemble of pedestrians is a first step for reliable predictions, otherwise
not easily reproducible with real-life experiments.

Pedestrians have been properly modeled by means of different agent-based dynamics
such as lattice models (58, 104), social force models (111, 142), or cellular automata
models (1, 151). A different level of description is obtained using mesoscopic models (3,
7, 92) where the quantities of study are densities of agents; at a larger scale macroscopic
models (54, 78, 60) describe the evolution of moments such as mass and momentum.
Multiscale models have been also considered, to account for situations where different
scales coexist, we refer in particular to (65, 67). Such a hierarchy of models is able to
capture coherent global behaviors emerging from local interactions among pedestrians.
These phenomena are strongly influenced by the social rules, the rationality of the crowd,
and the knowledge of the surrounding environment. In the case of egressing pedestrians
in an unknown environment with limited visibility we expect people to follow basically
an instinctive behavior (54, 58, 104, 26), whereas a perfectly rational pedestrian will
compute an optimal trajectory towards a specific target (the exit), forecasting exactly
the behavior of other pedestrians (1, 127).

In this manuscript, we focus on the evacuation problem in an unknown environment
with multiple exits. We aim at influencing their behavior towards the desired target
with minimal intervention. Starting from the seminal work (7) we consider a bottom-up
approach where few informed agents are acting minimizing verbal directives to individu-
als and preserving as much as possible their natural behavior. This approach is expected
to be efficient in situations where direct communication is impossible, for example in the
case of very large groups, emergencies, violent crowds reluctant to follow directions; or
in panic situations where rational behavior is overtaken by instinctive decisions. Fur-
thermore, we consider few additional agents, who are informed about the position of
some exit and acting as unaware leaders. Hence, their dynamics will influence the global
behavior of the crowd, introducing inertia that may constitute an additional difficulty
in the optimization problem, for example increasing congestions next to the exits or
increasing the level of uncertainty.

The control problem associated to the evacuation of a crowd falls in the larger research
field aimed at investigating the control of self-organizing agents. From the mathematical
view point, this type of problem is challenging due to the presence of non-local interaction
terms and their high dimensionality. Control of alignment-type dynamics, such as the
Cucker-Smale model (70), have risen a lot of interest in the mathematical community,
where several strategies have been explored to enforce the emergence of consensus, see
for example (25, 37, 9, 115). At the same time, to cope with the high dimensionality of
such optimal control problems, reduced approaches have been explored (50, 98, 96, 38),
promoting sparsity of the control acting only on few agents. In biological models, it
has been shown that a small percentage of individuals can influence the whole group
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towards a desired target, see (62). Similarly, leaders in crowd can act as control signals to
enforce alignment towards a desired direction as recognizable leaders (5, 18, 39, 86, 137),
or moving undercover (7, 62, 84, 106, 107), or even in a repulsive way (46). These
strategies heavily rely on the power of the social influence (or herding effect), namely
the natural tendency of people to follow other mates in situations of emergency or doubt.
Alternative control methodologies consist in optimal design of the surrounding enviro-
ment such as obstacles (64, 63, 10), or evacuation signage (156, 153), or exit locations
(151).
The manuscript is organized as follows in Section 5.2 we introduce the mathematical
framework for the microscopic dynamics of leader-follower type and we formulate dif-
ferent scenarios for the optimal control problem to be solved. In particular, we will
distinguish between minimum time of evacuation, total mass evacuated, and optimal
mass splitting among the multiple exits. In this work the word mass denotes the total
amount of pedestrians. Section 5.3 is devoted to the description of the mesoscopic scale,
first we introduce the mean-field type model, second we sketch an efficient Monte Carlo
algorithm for its simulation. In Section 5.4 we focus on the numerical realization of the
optimized strategies. We start introducing the algorithmic procedure used for the solu-
tion of the large-scale optimization problem, and we compare microscopic and mean-field
dynamics in several scenarios and with different target functionals. Finally in Section
5.7 we outline possible extensions and further perspectives.

5.2 Control of pedestrian dynamics through leaders

In this section, we focus first on the mathematical description of pedestrian dynamics
in complex environments. We consider an ensemble of agents, followers, in an unknown
environment trying to reach exit locations, at the same time the crowd population in-
cludes few informed agents, leaders, acting as controllers but not distinguishable from
followers. In particular, we account for a mixed approach where leaders are either aware
of their role, then responding to an optimal force as the result of an offline optimiza-
tion procedure, optimized leaders, or unaware of their role and moving with a greedy
strategy towards a target exit position, selfish leaders. The main mechanisms ruling
the behaviors among the followers are isotropic interactions with other agents based on
metrical short-range repulsion, induced by social distancing and collisional avoidance,
and topological long-range alignment dynamics. Leaders instead consider only short-
range repulsion. Additionally, for followers, we account self-driving forces describing
the exploration phase, preferential direction, and desired speed. The overall dynamics
will be influenced by the surrounding environment when the exits are visible or close to
obstacles.
In the following sections, we describe first the microscopic dynamics of the follower-leader
system and later different control tasks for different applications.

5.2.1 Microscopic model with leaders and multiple exits

Following the approach proposed in (7, 10) we model leaders by a first-order model and
followers by a second-order one, where both positions and velocities are state variables.
We denote by d the dimension of the space in which the motion takes place (typically
d = 2), by Nf the number of followers and by N l � Nf the number of leaders. We also
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denote by Ω ≡ Rd the walking area, and we identify the different exits by xτe ∈ Ω with
e = 1, . . . , Ne.
To define each target’s visibility area, we consider the set Σe, with xτe ∈ Σe ⊂ Ω, and
we assume that the target is completely visible from any point belonging to Σe and
completely invisible from any point belonging to Ω\Σe, namely we also assume that
visibility areas are disjoint sets, i.e Σei ∩ Σej = ∅ for all ei, ej ∈ {1, .., Ne} .
For every i = 1, . . . , Nf, let (xi(t), vi(t)) ∈ R2d denote position and velocity of the agents
belonging to the population of followers at time t ≥ 0 and, for every k = 1, . . . , N l, let
(yk(t), wk(t)) ∈ R2d denote position and velocity of the agents among the population of
leaders at time t ≥ 0. Let us also define x := (x1, . . . , xNf) and y := (y1, . . . , yNl).
The microscopic dynamics described by the two populations is given by the following set
of ODEs for i = 1, . . . , Nf and k = 1, . . . , N l,

ẋi = vi,

v̇i = S(xi, vi) +
∑Nf

j=1m
F
j H

f(xi, vi, xj, vj; x,y) +
∑Nl

`=1 m
L
`H

l(xi, vi, y`, w`; x,y),

ẏk = wk =
∑Nf

j=1m
F
j K

f(yk, xj) +
∑Nl

`=1m
L
`K

l(yk, y`) + ξku
opt
k + (1− ξk)uself

k ,

(5.106)
with initial data for followers (xi(0), vi(0)) = (x0

i , v
0
i ) and leaders (yk(0), wk(0)) = (y0

k, w
0
k).

The quantities mF
i ,m

L
k weight the interaction of followers and leaders, in what follows we

will assume that mF
1 = . . . = mF

Nf = mL
1 = · · · = mL

Nl and the following mass constraint
holds

mF
i =

ρF

Nf
, mL

k =
ρL

N l
, ρF + ρL = 1, (5.107)

for ρF , ρL positive quantities.

1. S is a self-propulsion term, given by the relaxation toward a random direction or the
relaxation toward a unit vector pointing to the target (the choice depends on the
position), plus a term which translates the tendency to reach a given characteristic
speed s ≥ 0 (modulus of the velocity), i.e.,

S(x, v) := Cs(s
2 − |v|2)v +

Ne∑
e=1

ψe(x)Cτ

(
xτe − x
|xτe − x|

− v
)
, (5.108)

where ψe : Rd → [0, 1] is the characteristic function of Σe, and Cτ , Cs are positive
constants.

2. The interactions follower-follower and follower-leader account a repulsion and an
alignment component, as follows

Hf(x, v, x′, v′; x,y) := −Cf
rRγ,r(x, x

′)(x′ − x) + (1− ψ(x))Cf
alA(x, x′; x,y) (v′ − v) ,

Hl(x, v, y, w; x,y) := −Cl
rRγ,r(x, y)(y − x) + (1− ψ(x))Cl

alA(x, y; x,y) (w − v) ,
(5.109)

for given positive constants Cf
r , C

f
al, C

l
al, Cat, r, γ, and where 1 − ψ(x) is the char-

acteristic function of the unknown environment Ω\ ∪e Σe, such that

ψ(x) :=
Ne∑
e=1

ψe(x).
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The first term on the right hand side of (5.109) represents the metrical repulsion
force, where the intensity is modulated by the function Rγ,r defined as

Rγ,r(x, y) =

{
e−|y−x|

γ

|y−x| if y ∈ Br(x)\{x},
0 otherwise,

(5.110)

where Br(x) is the ball of radius r > 0 centered at x ∈ Ω. The second term
accounts for the (topological) alignment force, which vanishes inside the visibility
regions, and where

A(x, y; x,y) := χBN (x;x,y)(y), (5.111)

and by BN (x; x,y) the minimal ball centered at x encompassing at least N agents.

3. The interactions leader-follower and leader-leader reduce to a mere (metrical) re-
pulsion, i.e., Kf = Kl = −Cl

rRζ,r, where Cl
r > 0 and ζ > 0 are in general different

from Cf
r and γ, respectively.

4. uopt
k , uself

k : R+ → RdNl
characterize the strategies of the leaders and are chosen in a

set of admissible control functions. The parameter ξk ∈ {0, 1} identifies for ξk = 1
leaders aware of their role, whose movements are the result of an optimization
process, and alternatively for ξk = 0 leaders moving “selfishly” towards a specific
exit. A specific description of leaders’ strategy will be discussed in Section 5.4.
Hence we account for situations where a small part of the mass is informed about
exit positions, but policymakers have no control over them.

Remark 15.

• Differently from the model proposed in (7, 10) the dynamics do not include random
effects. However, we consider this uncertainty by assuming that the initial velocity
directions of followers are distributed according to a prescribed density v0

i ∼ pv(Rd),
for example, a uniform distribution over the unitary sphere Sd−1 .

• The choice Cf
al = Cl

al leads to Hf ≡ Hl and, therefore, the leaders are not recognized
by the followers as special. This feature opens a wide range of new applications,
including the control of crowds not prone to follow authority’s directives.

• The pedestrian microscopic model (5.106) allows agent movements in space without
any constriction. However, in real applications, dynamics are constrained by walls
or other kinds of obstacles. There are several ways of dealing with this feature in
agent-based mode and we refer to (63, Sect. 2) for a review of obstacles handling
techniques such as repulsive obstacle, rational turnaround, velocity cut-off. The
choice for obstacle handling will be discussed in Section 5.4.

5.2.2 Control framework for pedestrian dynamics

In order to define the strategies of optimized leaders, we formulate an optimal control
problem to exploit the tendency of people to follow group mates in situations of emer-
gency or doubt. The choice of a proper functional to be minimized constitutes a modeling
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difficulty, and it is typically a trade-off between a realistic task and a viable realization
of its minimization. In general we will set up the following constrained optimal control
problem

min
uopt(·)∈Uadm

J (uopt),

s.t. (5.106),
(5.112)

where uopt = (uoptk (·)) is the control vector associated to the optimized leaders, given
a set of admissible controls Uadm. In what follows we will specify different functionals
for different type of applications. For later convenience we introduced the empirical
distributions defined as follows

fN
f

(·, x, v) =
Nf∑
i=1

mF
i δ(x− xi(·))δ(v − vi(·)), (5.113)

gN
l

(·, x, v) =
Nl∑
j=1

mL
j δ(x− yj(·))δ(v − wj(·)). (5.114)

• Evacuation time. In a situation where egressing pedestrians are in an unknown
enviroment the most natural functional is the evacuation time, that we may define
as follows

J (x,y,uopt) =
{
t > 0 | (xi(t), yj(t)) /∈ Ω ∀i = 1, . . . NF ,∀j = 1, . . . , N l

}
,

(5.115)
where we explicit the dependency on the states vector of follower positions x ∈
RdNf

. This cost functional is extremely irregular, therefore the search of min-
ima is particularly difficult, additionally the evacuation of the total mass in some
situations can not be completely reached.

• Total mass with multiple exits. Instead of minimizing the total evacuation, we fix
a final time T > 0 and we aim to minimize the total mass inside the computational
domain Ω \ ∪eΣe, which coincides with maximizing the mass inside the visibility
areas. The functional reads

J (x,y,uopt) =

∫
Rd

∫
Ω\∪eΣe

(fN
f

(T, x, v) + gN
l

(T, x, v))dxdv. (5.116)

• Optimal mass splitting over multiple exits. In complex environments, it may hap-
pen that total mass does not distribute in an optimal way between the target exits.
This may lead to problems of heavy congestions and overcrowding around the exits
that, in real-life situations, can cause injuries due to overcompression and suffoca-
tion. Hence we ask to distribute the total evacuated mass at final time T among
the exits according to a given desired distribution. To this end we set

J (x,y,uopt) =
Ne∑
e=1

∣∣MF
e (T )−M des

e

∣∣2 , (5.117)

whereMdes
e is the desired mass to be reached in the visibility area Σe andMF

e (T )
is the total mass of followers and leaders who reached exit xτe up to final time T .
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5.3 Mean-field approximation of follower-leader system

Mean-field scale limit for large number of interacting individuals has been investigated in
several directions for single and multiple population dynamics, see for example (53, 77),
and it is a fundamental step to tame the curse of dimensionality arising for coupled
systems of ODEs.
In the current setting, we want to give a statistical description of the followers-leaders
dynamics considering a continuous density for followers and maintaining leaders micro-
scopic. Hence, we introduce the non-negative distribution function of followers f =
f(t, x, v) with x ∈ Rd, v ∈ Rd at time t ≥ 0, the meso-micro system corresponding to
(5.106) reads as follows

∂tf + v · ∇xf = −∇v ·
(
f
(
S(x, v) +HF [f, gN

l

] +HL[f, gN
l

]
))
,

ẏk = wk =

∫
R2d

Kf(yk, x)f(t, x, v) dx dv +
Nl∑
`=1

mL
`K

l(yk, y`)

+ ξku
opt
k + (1− ξk)uself

k ,

(5.118)

where the followers dynamics is described by a kinetic equation of Vlasov-type, and
where we use the corresponding empirical distribution for leaders gN

l
. Furthermore we

assume that the follower and leader densities are such that their number densities are

%F =

∫
R2d

f(t, x, v) dx dv, %L =

∫
R2d

gN
l

(t, x, v) dx dv.

We observe that the terms S(·), Kf(·) and Kl(·) are defined respectively as in the mi-
croscopic setting, whereas the non-local operators HF ,HL correspond to the following
integrals

HF [f, gN
l

](t, x, v) = −Cf
r

∫
Rd

∫
Br(x)

Rγ,r(x, x
′)(x′ − x)f(t, x′, v′) dx′dv′

+ Cf
al(1− ψ(x))

∫
Rd

∫
Br∗ (t,x)

(v′ − v)f(t, x′, v′) dx′dv′, (5.119)

HL[f, gN
l

](t, x, v) = −Cl
r

∫
Rd

∫
Br(x)

Rγ,r(x, x
′)(x′ − x)gN

l

(t, x′, v′) dx′dv′

+ Cl
al(1− ψ(x))

∫
Rd

∫
Br∗ (t,x)

(v′ − v)gN
l

(t, x′, v′) dx′dv′, (5.120)

where the first term corresponds to the metrical repulsion as in (5.110), and the second
part accounts the topological ball Br∗(t, x) ≡ Br∗(t, x; f, gN

l
) whose radius is defined for

a fixed t ≥ 0 by the following variational problem

r∗(t, x) = arg min
α>0

{∫
Rd

∫
Bα(x)

(
f(t, x, v) + gN

l

(t, x, v)
)
dx dv ≥ %top

}
, (5.121)

where %top > 0 is the target topological mass.

Remark 16.
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• Rigorous derivation of the mean-field limit (5.118) from (5.106) is a challenging
task due to the strong irregularities induced by the behavior of topological-type inter-
actions. We refer to (109) for possible regularization in the case of Cucker-Smale
type dynamics, and to (33, 76) for alignment driven by jump-type processes.

• Alternative derivation of mesoscopic models in presence of diffusion has been ob-
tained in (7), where the authors derived a Fokker-Planck equation of the original
microscopic system via quasi-invariant scaling of binary Boltzmann interactions.
This technique, analogous to the so-called grazing collision limit in plasma physics,
has been thoroughly studied in (150) and allows to pass from a Boltzmann descrip-
tion to the mean-field limit, see for example (141).

• For optimal control of large interacting agent systems, the derivation of a mean-
field approximation involves the convergence of minimizers from microscopic to
mesoscopic scale. This problem has been addressed from different directions, and
we refer to (98, 38).

Remark 17. In order to obtain a closed hydrodynamic system for (5.118) a standard
assumption is to assume the velocity distribution to be mono-kinetic, i.e. f(t, x, v) =
ρ(t, x)δ(v−V (t, x)), and the fluctuations to be negligible. Hence, computing the moments
of (5.118) leads to the following macroscopic system for the density ρ and the bulk velocity
V , 

∂tρ+∇x · (ρV ) = 0,

∂t(ρV ) +∇x · (ρV ⊗ V ) = Gm [ρ, ρl, V, V l] ρ,

ẏk = wk =

∫
Rd
Kf(yk, x)ρ(t, x) dx+

Nl∑
`=1

Kl(yk, y`)

+ξku
opt
k + (1− ξk)uselfk ,

(5.122)

where ρl(x, t), V l(x, t) represent the leaders macroscopic density and bulk velocity, re-
spectively, and Gm the macroscopic interaction operator associated to the followers, we
refere to (16, 53) for further details.

5.3.1 MFMC algorithms

For the numerical solution of the mean-field followers dynamics in (5.118) we employ
mean-field Monte-Carlo methods (MFMCs) generalizing the approaches proposed in (15,
141). These methods fall in the class of fast algorithms developed for interacting particle
systems such as direct simulation Monte-Carlo methods (DSMCs), and they are strictly
related to more recent class of algorithms named Random Batch Methods (RBMs) (122).

In order to approximate the evolution of the followers density, first we sample NF
s parti-

cles from the initial distribution f 0(x, v) in the phase space, i.e. {(x0
i , v

0
i )}

NF
s

i=1. Further-
more we consider a subsample of M particles, j1, . . . , jM uniformly without repetition
such that 1 ≤M ≤ NF

s . In order to approximate the non-local terms HF ,HL we evalu-
ate the interactions with a subsample of size M at every time step. Hence we define the
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discretization step as

vn+1
i = vni + ∆tS(xni , v

n
i )−∆t

[
R̂F,n
i (X̂n

i − xni ) + R̂L,n
i (Ŷ n

i − xni )
]

+ ∆t(1− ψ(xni ))
[
ÂF,ni (V̂ n

i − vni ) + ÂL,ni (Ŵ n
i − vni )

]
, (5.123)

where we defined the following auxiliary variables for the repulsion term (5.110),

R̂F,n
i =

Cf
r%

F

M

M∑
k=1

Rγ,r(x
n
i , x

n
jk

), X̂n
i =

Cf
r%

F

M

M∑
k=1

Rγ,r(x
n
i , x

n
jk

)

R̂F,n
i

xnjk ,

R̂L,n
i =

Cl
r%

L

N l

Nl∑
`=1

Rγ,r(x
n
i , y

n
` ), Ŷ n

i =
Cl
r%

L

N l

Nl∑
k=1

Rγ,r(x
n
i , y

n
` )

R̂L,n
i

yn` .

(5.124)

For the topological alignment we have

ÂF,ni =
Cf
al%

F

M

M∑
k=1

χBr∗
M

(xi;x,y)(xjk), V̂ n
i =

Cf
al%

F

M

M∑
k=1

χBr∗
M

(xi;x,y)(xjk)

ÂF,ni
vnjk ,

ÂL,ni =
Cl
al%

L

N l

Nl∑
`=1

χBr∗
M

(xi;x,y)(xjk), Ŵ n
i =

Cl
al%

L

N l

Nl∑
k=1

χBr∗
M

(xi;x,y)(xjk)

ÂL,ni
wn` ,

(5.125)

where, the topological ball Br∗M (x) is the topological ball defined over the subsample of
M agents, with radius such that

r∗M(t, xi) = arg min
α>0

{
%F

M

M∑
k=1

χBα(xi)(xjk) +
%L

N l

Nl∑
`=1

χBα(xi)(y`) ≥ %top

}
. (5.126)

From the above considerations we obtain the following Algorithm in the time interval
[0, T ].

Algorithm 1 (MFMC follower-leader).

1. Given NF
s samples v0

i , with i = 1, . . . , NF
s computed from the initial distribution

f(x, v) and M ≤ NF
s ;

2. for n = 0 to ntot

(a) for i = 1 to NF
s

i. sample M particles j1, . . . , jM uniformly without repetition among all par-
ticles;

ii. compute the quantities R̂L,n
i , R̂F,n

i , X̂n
i and Ŷ n

i from (5.124);

iii. compute the quantities ÂL,ni , ÂF,ni , V̂ n
i and Ŵ n

i from (5.125);

iv. compute the velocity change vn+1
i according to (5.123);

v. compute the position change

xn+1
i = xni + ∆tvn+1

i .
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end for

end for

Remark 18.

• By using this Monte Carlo algorithm we can reduce the computational cost due to

the computation of the interaction term from the original O
(
NF
s

2
)

to O
(
MNF

s

)
.

For M = NF
s we obtain the explicit Euler scheme for the original NF

s particle
system.

5.4 Numerical optimization of leaders strategies

In this section we focus on the numerical realization of the general optimal control
problem of type

min
uopt(·)∈Uadm

J (uopt), (5.127)

constrained to the evolution of microscopic (5.106) or mean-field system (5.118). We
observe that the minimization task for evacuation time or total mass can be extremly
difficult, due to the strong irregularity and the presence of many local minima.
In order to optimize (5.127) we propose instead an alternative suboptimal, but compu-
tationally efficient strategy, named modified Compass Search (CS). This method falls in
the class of metaheuristic algorithms, it ensures the convergences towards local minima,
without requiring any regularity of the cost functional (20).
We use the CS method in order to optimize the trajectory of the aware leaders. The idea
is to start from an initial guess u

opt,(0)
k which produces an admissible trajectory toward

a target exit, for example as follows

u
opt,(0)
k (t) = β

Ξk(t)− yk(t)
‖Ξk(t)− yk(t)‖

+ (1− β)(mF (t)− yk(t)), (5.128)

where Ξk(t) is the target position at time t, depending on the environment and such
that Ξk(t) = xτe for t > t∗ . The parameter β ∈ [0, 1] measures the tendency of leaders
to move toward the target Ξk(t) or staying close to followers center of mass mF (t).
We will refer to (5.128) as “go-to-target” strategy. Then CS method iteratively modifies
the current best control strategy found so far computing small random piecewise constant
variation of points on the trajectories. Then, if the cost functional decreases, the variation
is kept, otherwise it is discarded. We consider piecewise constant trajectories, introducing
suitable switching times for the leaders controls.
We summurize this procedure in the following algorithm.

Algorithm 2 (Modified Compass Search).

1. Select a discrete set of sample times SM = {t1, t2, . . . , tM}, the parameters j = 0,
jmax and JE.

2. Select an initial strategy u∗ piecewise constant over the set SM , e.g. constant di-
rection and velocity speed towards a fixed target Ξk(t), k = 1, . . . , NL, see Equation
(5.128). Compute the functional J (x,u∗).
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3. Perform a perturbation of the trajectories over a fixed set of points P ∗(t) on current
optimized leader trajectories with small random variations over the time-set SM ,

P (j)(tm) = P ∗(tm) +Bm, m = 1, . . . ,M, (P)

where Bm ∼ Unif([−1, 1]d) is a random perturbation and set for m = 1, . . . ,M,

uopt,(j)(t) =
P ∗(tm+1)− P ∗(tm)

‖P ∗(tm+1)− P ∗(tm)‖
, t ∈ [tm, tm+1].

Finally compute J (x,u(j)).

4. while j < jmax AND J (x,u∗) < JE

(a) Update j ← j + 1.

(b) Perform the perturbation (P) and compute J (x,u(j)).

(c) If J (x,u(j)) ≤ J (x,u∗)
set u∗ ← u(j) and J (x,u∗)← J (x,u(j)).

repeat

Remark 19.

• Compass search does not guarantee the convergence to a global minimizer, on the
other hand it offers a good compromise in terms of computational efficiency.

• Alternative metaheuristic schemes can be emploied to enanche leader trajectories
and improbing the convergence towards the global minimizer, among several possi-
bilities we refer to genetic algorithms, and particle swarm based optimizations.

• The synthesis of control strategies via compass search for the microscopic and the
mean-field dynamics can produce different results, due to the strong non-linearities
of the interactions, and the non-convexity of the functional considered, such as the
evacuation time. However, in any case, the solutions retrived by this approach
statisfy a local optimality criteria by construction.

5.5 Numerical experiments

We present three different numerical experiments at microscopic and mesoscopic levels,
corresponding to the minimization of cost functionals presented in Section 5.2.2.
Numerical discretization. The dynamics at microscopic level is discretized by a forward
Euler scheme with a time step ∆t = 0.1, whereas the evolution of the mean-field dynamics
is approximated by MFMCs algorithms. We choose a sample of O(103) particles for the
approximation of the density and we reconstruct their evolution in the phase space
by kernel density estimator with a multivariate standard normal density function with
bandwidth h = 0.4. Table 5.5 reports the parameters of the model for the various
scenarios unchanged for every test. The number of leaders instead changes and it will
be specified later.
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Table 5.9: Model parameters for the different scenarios.
NF N CF

r CL
r CL

a CF
a Cτ Cs s2 r ≡ ζ γ

150 20 2 1.5 3 3 1 0.5 0.4 1 1

Obstacles handling. In order to deal with obstacles we use a cut-off velocity approach,
namely we compute the velocity field first neglecting the presence of the obstacles, then
nullifying the component of the velocity vector which points inside the obstacle. This
method is used in, e.g., (7, 65, 68) and requires additional conditions to avoid situations
where pedestrians stop walking completely because both components of the velocity
vector vanish, e.g. in presence of corners, or when obstacles are very close to each other.
We refer to (63) for more sophisticated approaches of obstacles handling.

5.5.1 Test 1: Minimum time evacuation with multiple exits

In this first test, leaders aim to minimize the time of evacuation (5.115), hence try-
ing to enforce crowd towards the exit avoiding congestion and ease the outflux of the
pedestrian. We assume that leaders informed about exits position follow ‘go-to-target’
strategy defined as in (5.128), where the target is defined by the different exits and
will be specified for each leader. In what follows we account for two different settings
comparing microscopic and mesoscopic dynamics.

Setting a) Three exits We consider the case of a room with no obstacles and three
exits located at xτ1 = (35, 10), xτ2 = (16, 20), xτ3 = (10, 10) with visibility areas Σe =
{x ∈ R2 : |x− xτe | < 5}. We consider two different types of leaders, we call selfish leaders
yself the agents who do not care about followers and follow the direction that connects
their positions to the exits. While the optimized leaders yopt are aware of their role
and they move with the aim to reach the exits and to maintain contact with the crowd,
only the trajectories of this type of leaders will be optimized. The admissible leaders
trajectories are defined as in Equation (5.128), we choose β = 1 for selfish leaders,
β = 0.6 for optimized leaders and the target position as Ξk(t) = xτe ∀t and for every
leader k. At initial time leaders and followers are uniformly distributed in the domain
[17, 29]×[6.5, 13.5] where followers velocities are sampled from a normal distribution with
average −0.5 and variance 0.1, hence biased towards the wrong direction. We report in
Figure 5.29 the initial configuration for both microscopic and mesoscopic dynamics.
Microscopic case. We consider NL = 9 leaders, three optimized and six unaware leaders.
Each leader is associated with an exit: unaware leaders move towards the nearest exit,
whereas each optimized leader is assigned to a different exit.
Figure 5.30 shows the evolution of the agents with the go-to-target strategy on the left
and with the optimal strategy obtained by the compass search algorithm on the right.
As it can be seen in Figure 5.30 with the go-to-target strategy the whole crowd reaches
the exit, after 850 time steps. We distinguish optimized leaders yopt with a dashed black
line. Optimized movements for leaders are retrived by means of Algorithm 2, with initial
guess go-to-target strategy, we report in Figure 5.31 the decrease of the performance
function (5.115) as a function of the iterations of compass search. Eventually optimized
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Figure 5.29: Test 1a. Minimum time evacuation with multiple exits, initial configuration.

Table 5.10: Test 1a. Performance of leader strategies over microscopic dynamics.
uncontrolled go-to-target CS (50 it)

Evacuation time (time steps) > 1000 850 748
Evacuated mass (percentage) 46% 100% 100%

leaders influence the crowds for a larger amount of time and the total mass is evacuated
after 748 time steps, as shown in Table 5.10. Figure 5.32 compares the evacuated mass

Figure 5.30: Test 1a. Microscopic case: minimum time evacuation with multiple exits.
On the left the uncontrolled case, in the centre the go-to-target and on the right the
optimal compass search strategy.

and the occupancy of the exits visibility zone as a function of time for the uncontrolled
case, the go-to-target strategy and the optimal compass search strategy. Dashed lines
indicate times of total mass evacuation.
Mesoscopic case. We consider now a continuous density of followers, in the same setting
of the previous microscopic case: we account for NL = 9 microscopic leaders moving in a
room with no obstacles and three exits. Hence we compare uncontrolled dynamics, go-to-
target strategies, and optimized strategies with compass search. In Table 5.11 we show
that without any control followers are unable to reach the total evacuation reaching 84%
of total mass evacuated. Go-to-target strategy improves total mass evacuated, however,
a small part of the mass spreads around the domain and is not able to reach the target
exit. Eventually, with optimized strategies, we reach the evacuation of the total mass in
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Figure 5.31: Test 1a. Microscopic case: decrease of the value function (5.115) as a
function of compass search iteration.
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Figure 5.32: Test 1a. Microscopic case: minimum time evacuation with multiple exits.
Evacuated mass (first row), occupancy of the visibility area Σ1 (second row, left), Σ2

(second row, centre) and Σ3 (second row, right) as a function of time for uncontrolled,
go-to-target and optimal compass search strategies. The dot line denotes the time step
in which the whole mass is evacuated, the line is black for the go-to-target and red for
the optimal compass search strategy.

897 simulation steps. The better performance of the optimized strategy can be observed
directly from Figure 5.33, where functional (5.115) is evaluated at subsequent iterations
of Algorithm 2. In Figure 5.34 we show three snapshots of the followers density comparing
leaders with different strategies and the uncontrolled case. In the upper row, we report
the evolution without any control. The middle row shows leaders driven by a go-to-target
strategy promoting evacuation of followers density. At time t = 50 leaders are moving to
influence the followers towards the three exits. At time t = 100, the followers mass splits
and starts to reach the exits. At time t = 1000, complete evacuation is almost reached.
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Table 5.11: Test 1a. Performance of leader strategies over mesoscopic dynamics.
uncontrolled go-to-target CS (50 it)

Evacuation time (time steps) > 1000 > 1000 897
Evacuated mass (percentage) 84% 99% 100%

Figure 5.33: Test 1a. Mesoscopic case: minimum time evacuation with multiple exits.
Decrease of the value function (5.115) as a function of attempts.

The bottom row depicts improved strategies of leaders, where total mass is evacuated at
time step 912.
Finally in Figure 5.35 we summarize the results showing the evacuated mass as the
cumulative distribution of agents who reached the exit, and the occupancy of the visibility
areas in terms of total mass percentage for the various exits. Dashed red line indicates
time of complete evacuation.

Setting b) Two exits in a closed environment. Assume now to have a room with
walls that contains two exits, xτ1 = (50, 0) and xτ2 = (30, 50). Followers are uniformely
distributed in [0, 10] × [0, 10]. Assume that initially two unaware leaders yself move
towards exit xτ1 with selfish strategy, i.e. β = 0 in (5.128). Hence the goal is to minimize
the total evacuation time as reported in (5.115) introducing two additional leaders yopt

moving towards exit xτ2, for this two leaders we choose the parameter β = 0.6 in (5.128).
The target position is Ξk(t) = xτe ∀t and for every leader k. Figure 5.36 shows the initial
configuration in the microscopic and mesoscopic case, and with an initial position of
NL = 4 unaware and aware leaders.
Microscopic case. In Figure 5.37 we report the crowd’s evolution in various scenarios:
left plot shows the trajectories where only unaware leaders are present, in this case, the
whole crowd reaches the exit xτ1; central and right plots show the influence of two aware
leaders moving to xτ2 respectively with fixed and optimized strategies. Unaware leaders
influence the whole crowd to move towards the exit, however generating overcrowding
at xτ1 and leaving some agents getting lost. Introducing two aware leaders with fixed
strategies the whole mass is evacuated in 1966 time steps, with optimized strategies
evacuation time is further reduced to 1199 time steps. In these last cases, the mass is split
between the two exits and hence overcrowding phenomena are reduced. In Table 5.12
the total evacuation time and the corresponding evacuated mass for the three scenarios
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Figure 5.34: Test 1a. Three snapshots taken at time t = 50, t = 100, t = 1000 of the
mesoscopic densities for the minimum time evacuation with multiple exits. In the upper
row the uncontrolled case, in the central row the three aware leaders follows a go-to-
target strategy, whereas in the bottom row their trajectories are optimized according to
CS algorithm.

are reported, where we indicate that optimized strategy is obtained after 50 iterations of
compass search. Finally, in Figure 5.38 we report the occupancy of the visibility areas
and the cumulative distribution of the mass evacuate as a function of time for the various
scenarios.

Mesoscopic case. We consider now the mean-field approximation of the microscopic
setting. We report in Figure 5.39 three snapshots of followers density and trajectories of
leaders, for each scenerio. In this case, unaware leaders moving selfishly towards exit xτ1
are able to influence followers and evacuate 81% at final time, whereas the rest of the
mass is congested around the exit. Introducing two aware leaders with a fixed strategy
toward xτ2 is not sufficient to reach total evacuation at final time which is and at final time
95% of the mass is evacuated. The bottom row depicts the case with optimized leaders
strategies, in this case, the total mass is evacuated at time step 1750. We summarize the
performances of the results in Table 5.13, and in Figure 5.40 we report the occupancy
of the visibility areas and the cumulative distribution of mass evacuated as a function of
time.
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Figure 5.35: Test 1a. Mesoscopic case: minimum time evacuation with multiple exits.
Evacuated mass (first row), occupancy of the visibility area Σ1 (second row, left), Σ2

(second row, centre) and Σ3 (second row, right) as a function of time for go-to-target
and optimal compass search strategies. The dot line denotes the time step in which the
whole mass is evacuated with the optimal compass search strategy.

Figure 5.36: Test 1b. Minimum time evacuation with multiple exits and obstacles, initial
configuration for microscopic and mesoscopic case.

5.5.2 Test 2 : Mass evacuation in presence of obstacles

We consider two rooms, one inside the other, where the internal room is limited by
three walls while the external one is bounded by four walls. We assume that walls
are nonvisible obstacles, i.e. people can perceive them only by physical contact. This
corresponds to an evacuation in case of null visibility (but for the exit points which are
still visible from within Σ1 and Σ2). Consider the case of two exits, xτ1 = (2, 78) and
xτ2 = (45, 2) positioned in the external room. Figure 5.41 provides a description of the
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Figure 5.37: Test 1b. Microscopic case: minimum time evacuation with multiple exits
and obstacles. Go-to-target NL = 2 (left), go-to-target NL = 4 (centre), optimal com-
pass search (right).

Table 5.12: Test 1b. Performance of leader strategies over microscopic dynamics.
go-to-target NL = 2 go-to-target NL = 4 CS (50 it)

Evacuation time (time steps) >2000 1966 1199
Evacuated mass (percentage) 99% 100% 100%

Figure 5.38: Test 1b. Microscopic case: minimum time evacuation with multiple exits
and obstacles. Evacuated mass (left), occupancy of the visibility area Σ1 (centre) and
Σ2 (right) as a function of time for go-to-target and optimal compass search strategies.
The black and red dot lines denote the time step in which the whole mass is evacuated
with the go-to-target (NL = 4) and optimal compass search strategy, respectively.

initial configuration. Note that in order to evacuate, people must first leave the inner
room, in which they are initially confined, and then search for exits. Evacuation in
presence of obstacles is not always feasible. Instead of minimizing the total evacuation
time as in section 5.5.1, we aim to minimize the total mass inside the domain as reported
in (5.116) and hence to maximize the total evacuated mass.

Each leader will move toward one of the exits following a go-to-target, similar to (5.128),
and such that it is admissible for the configuration of the obstacles. We choose β = 1 for
every leader. The target position is Ξk(t) = xτe for t > t∗, while for t < t∗ we consider
one intermediate point in order to let the leaders to evacuate the inner room.

Microscopic case. We consider NL = 6 leaders, with two aware leaders. Initially, follow-
ers have zero velocity. Three leaders, only one aware, will move towards exit xτ1, and the
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Figure 5.39: Test 1b. Mesoscopic case: minimum time evacuation with multiple exits
and obstacles. Three snapshots taken at time t = 50, t = 500, t = 2000 with the go-
to-target strategy in the case NL = 2 (upper row), NL = 4 (central row) and with the
optimized compass-search strategy (lower row).

Figure 5.40: Test 1b. Mesoscopic case: minimum time evacuation with multiple exits
and obstacles. Evacuated mass (left), occupancy of the visibility area Σ1 (centre) and
Σ2 (right) as a function of time for go-to-target and optimal compass search strategies.
The red dot line denotes the time step in which the whole mass is evacuated with the
optimal compass search strategy.
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Table 5.13: Test 1b. Performance of leader strategies over mesoscopic dynamics.
go-to-target NL = 2 go-to-target NL = 4 CS(50 it)

Evacuation time (time steps) >2000 >2000 1750
Evacuated mass 81% 95% 100%

Figure 5.41: Test 2. Maximization of mass evacuated in presence of obstacles, initial
configuration.

remaining towards exit xτ2. We report in Figure 5.42 the evolution with the go-to-target
strategy on the left, and with optimized strategies for the two aware leaders on the right.
With go-to-target strategy leaders first leave the room and then move towards the exits.
Since leaders move rapidly towards the exits, their influence over followers vanishes after
a certain time. Indeed, part of the followers hits the right boundary wall and does not
reach the exits. Instead, with optimized strategies, leaders are slowed down, as conse-
quence followers are influenced by leaders for a larger amount of time. Table 5.14 reports
the comparison between two strategies in terms of evacuated mass, where with only three
iterations of the optimization method total evacuation is accomplished. In Figure 5.43
we compare the cumulative distribution of evacuated mass and the occupancy of the ex-
its visibility areas as a function of time for go-to-target strategy and optimized strategy.
We remark that with minimal change of the fixed strategy we reach evacuation of the
total mass.

Mesoscopic case. Consider now the case of continuous mass of followers, and the equiv-
alent setting as in the microscopic case. Initial configuration is reported in Figure 5.41.
We report the evolution of the two scenarios in Figure 5.44, where in the upper row we

Table 5.14: Test 2. Performance of various strategies for obstacle case with two exits in
the microscopic case.

go-to-target CS (3 it)

Evacuation time (time steps) >3000 2948
Evacuated mass (percentage) 42% 100%
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Figure 5.42: Test 2. Microscopic case: mass maximization in presence of obstacles. On
the left, go-to-target. On the right, optimal compass search.
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Figure 5.43: Test 2. Microscopic case: mass maximization in presence of obstacles.
Evacuated mass (left), occupancy of the visibility area Σ1 (centre) and Σ2 (right) as a
function of time for go-to-target and optimal compass search strategies.

depict three different time frames of the dynamics obtained with go-to-target strategy.
Once leaders have moved outside the inner room, at time t = 1400, followers mass splits
into two parts. However, only leaders moving towards the lower exit xτ2 are able of steer-
ing the followers towards the target, the rest of the followers moving upwards get lost
and at final time t = 3000 is located close to the left wall. Hence, partial evacuation of
followers is achieved, as shown in Table 5.15 we retrieve 78.8% of total mass evacuated.
Only one exit is used, this may cause problems of heavy congestion around the exits.
Bottom row of Figure 5.44 shows the situation with optimized leaders strategy. Differ-
ently from the previous case at time t = 2380 the whole mass has been evacuated, part
of the followers mass reaches the lower exits and the remaining mass reaches xτ1 after a
while. In Table 5.15 we reported the performances of the two approaches. In Figure
5.45 we compare the evacuated mass and the occupancy of the exits visibility zone as
a function of time for go-to-target strategy and opitmized strategy after 5 iterations of
compass search method.
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Table 5.15: Test 2. Performances of total mass evacuation problems in the mesoscopic
case.

go-to-target CS (5 it)

Evacuation time (time steps) >3000 2380
Evacuated mass (percentage) 78,8 % 100 %

Figure 5.44: Test 2. Mesoscopic case: mass maximization in presence of obstacles. Upper
row: three snapshots taken at time t = 100, t = 1400, t = 3000 with the go-to-target
strategy. Lower row: three snapshots taken at time t = 100, t = 1400, t = 3000 with the
optimized compass search strategy.
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Figure 5.45: Test 2. Mesoscopic case: mass maximization in presence of obstacles.
Evacuated mass (left), occupancy of the visibility area Σ1 (centre) and Σ2 (right) as a
function of time for go-to-target and optimal compass search strategies.

5.5.3 Test 3: Optimal mass splitting over multiple exits

Problems of heavy congestions and overcrowding around the exits arise naturally in
evacuation and, in real-life situations, they can cause injuries due to over-compression
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Table 5.16: Test 3a. Performances of mass splitting in the microscopic case.
go-to-target CS (50 it)

Evacuation time (time steps) > 3000 2704
Mass evacuated from E1 0% 45%
Mass evacuated from xτ2 72% 55%

Total mass evacuated 72% 100%

and suffocation. Instead of maximizing the total evacuated mass or the minimum time,
we ask to distribute the total evacuated mass at final time T between all the exits as
reported in (5.117). The choice of mass redistribution among the different exits can be
done according to the specific application and environment. In what follows we consider
two different examples, both with two exits, and we will require that mass splits uniformly
between the two targets.

Setting 1) Two exits in a close enviroment. As first example we consider the
same setting of Test 2, where complete evacuation was achieved, but all followers were
directed toward a single exit. In this case we aim to optimize leaders strategies in order
to equidistribute the total mass of follower among the two exits.
Microscopic case. In Figure 5.46 we depict the scenario for the fixed strategy and the
optimized one. We observe that again with go-to-target strategy the complete evacuation
is not achieved. Moreover, since the vast majority of followers reach the lower exit xτ2,
heavy congestion is formed in the visibility area Σ2. On the other hand with an optimized
strategy two aware leaders slow down their motion spending more time inside the inner
room. In this way, followers are split between the two exits, and the entire mass is
evacuated at final time. In Table 5.16 we report the performances of the two strategies,
where for optimized strategy we have 45% of mass in xτ1 and 55% in xτ2. In Figure 5.47

Figure 5.46: Test 3a. Microscopic case: mass splitting in presence of obstacles. On the
left, go-to-target. On the right, optimal compass search.

we report the evacuated mass and the occupancy of the exits visibility zone as a function
of time for go-to-target strategy and optimal compass search strategy. Note that, with
the compass search strategy, the whole mass is split between the two exits reducing the
overcrowding in the visibility region.
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Figure 5.47: Test 3a. Microscopic case: mass splitting in presence of obstacles. Evacu-
ated mass (left), occupancy of the visibility area Σ1 (centre) and Σ2 (right) as a function
of time for go-to-target and optimal compass search strategies.

Table 5.17: Test 3a. Performances of mass splitting in the mesoscopic case.
go-to-target CS (50 it)

Evacuation time (time steps) > 3000 > 3000
Mass evacuated from xτ1 0% 49%
Mass evacuated from xτ2 78, 8% 50%

Total mass evacuated 78,8% 99%

Mesoscopic case. We report now the case of a continuum density of followers. For the
go-to-target strategy, we consider the same dynamics of the previous test, in this case
the mass of followers does not split between the two exits, as shown in Figure 5.44, and
the 78, 8% reaches exit xτ2. In Figure 5.48, three snapshots were taken at three different
times with the compass search strategy. At time t = 100, leaders move to evacuate the
followers mass out of the inner room. At time t = 1400, the followers mass splits in two
masses, one moving towards the upper and the other towards the lower exits. At time
t = 3000, almost all the followers mass is evacuated. The mass is split between the two
exits as shown in Table 5.17. In Figure 5.45 we compare the evacuated mass and the

Figure 5.48: Test 3a. Mesoscopic case: mass splitting in presence of obstacles. Three
snapshots taken at time t = 100, t = 1400, t = 3000 with the optimal compass search
strategy. For the go-to-target case we refer to the first row of Figure 5.44.

occupancy of the exits visibility zone as a function of time for go-to-target strategy and
optimal compass search strategy. With the compass search technique the occupation of
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the visibility areas is reduced since the splitting of the total mass between the two exits
is optimized. Hence, the risk of injuries due to overcrowding in real-life situations should
be reduced.
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Figure 5.49: Test 3a. Mesoscopic case: mass splitting in presence of obstacles. Evacuated
mass (left), occupancy of the visibility area Σ1 (centre) and Σ2 (right) as a function of
time for go-to-target and optimal compass search strategies.

Setting b) Two exits with staircases. Consider two rooms and two exits, limited
by walls, positioned at different floors, and connected by a staircase. Each room has an
exit located in the bottom right corner. We assume followers and leaders to be uniformly
distributed in a square inside the first room. Similar to the previous case, we assume
that the model includes eight unaware and two aware leaders in total NL = 10. The
admissible leaders trajectories are defined as in Equation (5.128), we choose β = 1 for
every leaders. The target position is Ξk(t) = xτ1 ∀t for the leaders moving towards the
exit in the first room. While for the others is Ξk(t) = xτ2 for t > t∗ and for t < t∗ we
select two intermediate points in such a way that first leaders reach the staircases and
then the second room. Indeed, to evacuate, agents must either reach the exit in the first
room, called exit xτ1, or move towards the staircase, reach the second room and then
search for the other exit, called exit xτ2. The initial configuration is shown in Figure
5.50.
Microscopic case. Consider NL = 10 leaders. Assume that two leaders are aware of
their role while the remaining are selfish leaders. Exits for every leader are chosen at time
t = 0 in such a way that five unaware leaders move toward exit xτ1 and the remaining
toward exit xτ2. Among them, one of the two aware leaders moves towards one exit and
the other towards the other exit.
In the case of go-to-target strategy, leaders drive some followers to exit xτ1 and some
others to the staircase. The ones that reach the staircase move from the upper to the
lower room and then are driven by leaders to exit xτ2. As shown in Figure 5.51 on the
left, some followers are able to reach exit xτ1 and some others to reach the second room.
However, since the vast majority of leaders are unaware and move selfishly towards the
exits, followers do not evacuate completely. Hence the only exit useful for evacuation is
the one placed in the first room, exit xτ1, whose visibility area is overcrowded. On the
right of Figure 5.51 leaders movement follows an optimized strategy allowing followers
to split between the two exits. In this case, complete evacuation is achieved. Table 5.18
reports the performances of the two strategies. With the go-to-target strategy, all the

102



Figure 5.50: Test 3b. Mass splitting in presence of staircases, initial configuration.

Table 5.18: Test 3b. Performances of mass splitting in the microscopic case.
go-to-target CS (50 it)

Evacuation time (time steps) > 3000 2627
Mass evacuated from xτ1 57% 62%
Mass evacuated from xτ2 0% 38%

Total mass evacuated 57% 100%

evacuated followers reach the visibility area Σ1 and hence are evacuated from exit xτ1.
With an optimized strategy instead, a larger amount of followers is evacuated and the
overcrowding of the visibility areas is reduced.
In Figure 5.52 we compare the evacuated mass and the occupancy of the exits visibility
zone as a function of time for go-to-target strategy and optimal compass search strategy.
Note that, with the compass search strategy, the whole mass is split between the two
exits while with the go-to-target strategy the evacuated mass reaches only exit xτ1.

Figure 5.51: Test 3b. Microscopic case: mass splitting in presence of staircases. On the
left, go-to-target. On the right, compass search.

Mesoscopic case. Consider the case of a continuous mass of followers. Similar to the
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Figure 5.52: Test 3b. Microscopic case: mass splitting in presence of obstacles. Evacu-
ated mass (left), occupancy of the visibility area Σ1 (centre) and Σ2 (right) as a function
of time for go-to-target and compass search strategies.

Table 5.19: Test 3b. Performances of mass splitting in the mesoscopic case.
go-to-target CS (50 it)

Evacuation time (time steps) > 3000 > 3000
Mass evacuated from xτ1 46, 6% 51%
Mass evacuated from xτ2 1, 2% 48%

Total mass evacuated 47, 8% 99%

microscopic case we observe in Figure 5.53 the evolution of the dynamics with fixed
strategy and with the optimized one. The upper row shows that with the go-to-target
strategy the total evacuated mass is not split between the two exits since just the 1, 2%
of mass reaches exit xτ2. However, as shown in Table 5.19 a larger percentage of followers
reaches exit xτ1 and the remaining part spreads in the second room without evacuate.

The lower row of Figure 5.53 shows the dynamics obtained with the optimized compass
search strategy. At the time t = 500 a larger follower mass is moving towards the
staircase. At time t = 3000 almost all the mass is evacuated and split between the two
exits. In Table 5.19 we compare the two strategies showing that with the compass search
technique it is possible to improve the mass splitting.

In Figure 5.54 we compare the evacuated mass and the occupancy of the exits visibility
zone as a function of time for go-to-target strategy and optimal compass search strategy.
Note that, with the compass search strategy a larger percentage of mass reaches exit xτ2
than with the go-to-target strategy.

5.6 Discussion and comparision

In the previous tests we have considered different scenarios to create more complex
situations in relation to the functionals chosen, (157). In general, given a ceratin setting,
it is difficult to choose the optimal number of leaders that guarantee evacuation, and
a high number of leaders does not necessarily imply better evacuation efficiency, see
for example (134). Another challenging aspect is to give an uniform measure of the
performance of the different strategies in such different contexts. A viable option is to
quantify the congestion around the exits to exclude dangerous situations. Following the
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Figure 5.53: Test 3b. Mesoscopic case: mass splitting in presence of staircases. Upper
row: three snapshots taken at time t = 500, t = 1400, t = 3000 with the go-to-target
strategy. Lower row: three snapshots taken at time t = 500, t = 1400, t = 3000 with the
optimized compass search strategy.

Go-to-target

Compass search

Go-to-target

Compass search

Go-to-target

Compass search

Figure 5.54: Test 3b. Mesoscopic case: mass splitting in presence of obstacles. Evacuated
mass (left), occupancy of the visibility area Σ1 (centre) and Σ2 (right) as a function of
time for go-to-target and optimal compass search strategies.

idea in (91) we consider the congestion value

congΣi(t) = ρΣi(t)varΣi(v(t))

where ρΣi(t) is the number of agents (mass) in the microscopic (mesoscopic) case inside
Σi at time t and

varΣi(v(t)) =
1

ρΣi(t)

∑
j∈Σi

(|vj(t)| − s)2 .

We consider also mΣi the maximum number of pedestrians over time inside the visibility
area Σi and lΣi the percentage of time in which the visibility area Σi is not empty, finally
we denote by MΣi the percentage of mass inside Σi in the mesoscopic case.
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In this way we can compare the congestion of the various exits for different settings,
showing that the more desiderable situations are when congΣi and mΣi (MΣi) are small
and lΣi is high.
We reported in Table 5.20 and Table 5.21 respectively the values for the microscopic and
the mesoscopic setting.

Table 5.20: Comparison of the congestion in the visibility areas for the microscopic case.
In red the maximum value of congΣi among the visibility areas Σi.

congΣ1 congΣ2 congΣ3 mΣ1 mΣ2 mΣ3 lΣ1 lΣ2 lΣ3

Test 1a 0.039 0.011 0.012 40 19 17 0.73 0.51 0.33
Test 1b 0.013 0.009 - 27 16 - 0.36 0.22 -
Test 2 0.009 0.056 - 20 54 - 0.13 0.31 -

Test 3a 0.035 0.027 - 43 26 - 0.19 0.29 -
Test 3b 0.024 0.006 - 41 20 - 0.28 0.16 -

Table 5.21: Comparison of the congestion in the visibility areas for the mesoscopic case.
In red the maximum value of congΣi among the visibility areas Σi.

congΣ1 congΣ2 congΣ3 MΣ1 MΣ2 MΣ3 lΣ1 lΣ2 lΣ3

Test 1a 0.025 0.005 0.016 0.22 0.6 0.16 0.88 0.79 0.75
Test 1b 0.010 0.005 - 0.1 0.08 - 0.51 0.26 -
Test 2 0 0.009 - 0 0.12 - 0 0.36 -

Test 3a 0.005 0.011 - 0.07 0.12 - 0.3 0.32 -
Test 3b 0.013 0.004 - 0.2 0.1 - 0.41 0.3 -

Finally, Figures 5.55-5.56 show the mean velocity and the congestion level for the case of
evacuation with three exits (Test 1a) in the microscopic and mesoscopic case respectively.
These plots underline that if the congestion level is higher then the mean velocity is lower.

Figure 5.55: Test 1a. Microscopic case: number of agents and mean velocity of the
visibility areas.

5.7 Conclusions

This work has been devoted to the study of optimized strategies for the control of egress-
ing pedestrians in an unknown environment. In particular, we studied situations with
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Figure 5.56: Test 1a. Mesoscopic case: mass of agents and mean velocity of the visibility
areas.

complex environments where multiple exits and obstacles are present. Few informed
agents act as controllers over the crowd, without being recognized as such. Indeed it
has been shown that minimal intervention can change completely the behavior of a large
crowd, and at the same time avoiding adversarial behaviors. On the other hand, we
observed that if part of the informed agents moves without coordinated action, this
may cause critical situations, such as congestion around the exit. Hence it is important
to have a clear understanding of different strategies to enhance the safe evacuation of
the crowd. To this end, we explored various optimization tasks such as minimum time
evacuation, maximization of mass evacuated, and optimal mass distribution among exits.
We investigated these dynamics at the various scales: from the microscopic scale of
agent-based systems to the statistical description of the system given by mesoscopic
scale. Numerically we proposed an efficient scheme for the simulation of the mean-
field dynamics, whereas we use a meta-heuristic approach for the synthesis of optimized
leaders strategies. The proposed numerical experiments suggest that the optimization
of leaders movements is enough to de-escalate critical situations.
Different questions arise at the level of control through leaders with multiple exits and
obstacles. In such a rich environment several research directions can be explored, such
as optimal positioning and amount of leaders within the crowd, or different type of coop-
erative strategies among different groups of leaders to optimally distribute the followers
crowd.
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ed Eleonora, perché anche se ci vediamo poco, la nostra amicizia e pazzia è sempre la
stessa che avevamo tra i banchi del liceo, grazie perché con voi rido sinceramente come
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[103] L. Grüne and J. Pannek. Nonlinear model predictive control. In Nonlinear model
predictive control, pages 45–69. Springer, 2017.

[104] R.-Y. Guo, H.-J. Huang, and S. C. Wong. Route choice in pedestrian evacuation
under conditions of good and zero visibility: experimental and simulation results.
Transportation Res. B, 46(6):669–686, 2012.

[105] S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descrip-
tions of flocking. Kinet. Relat. Models, 1(3):415–435, 2008.

[106] J. Han, M. Li, and L. Guo. Soft control on collective behavior of a group of
autonomous agents by a shill agent. Jrl. Syst. Sci. & Complexity, 19(1):54–62,
2006.

[107] J. Han and L. Wang. Nondestructive intervention to multi-agent systems
through an intelligent agent. PLoS ONE, 8(5):e61542, 2013.

[108] Y. Han, A. Hegyi, Y. Yuan, S. Hoogendoorn, M. Papageorgiou, and C. Roncoli.
Resolving freeway jam waves by discrete first-order model-based predictive con-
trol of variable speed limits. Transportation Research Part C: Emerging Tech-
nologies, 77:405–420, 2017.

[109] J. Haskovec. Flocking dynamics and mean-field limit in the Cucker-Smale-type
model with topological interactions. Phys. D, 261:42–51, 2013.

[110] R. Hegselmann, U. Krause, et al. Opinion dynamics and bounded confidence
models, analysis, and simulation. Journal of artificial societies and social simul.,
5(3), 2002.

[111] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape
panic. Nature, 407:487–490, 2000.

[112] M. Herty and D. Kalise. Suboptimal nonlinear feedback control laws for col-
lective dynamics. In 2018 IEEE 14th Intern. Conf. on Control and Automat.
(ICCA), pages 556–561, 2018.

[113] M. Herty and L. Pareschi. Fokker-Planck asymptotics for traffic flow models.
Kinet. Relat. Models, 3(1):165–179, 2010.

[114] M. Herty, L. Pareschi, and S. Steffensen. Mean–field control and Riccati equa-
tions. Netw. Heterog. Media, 10(3):699, 2015.

[115] M. Herty, L. Pareschi, and S. Steffensen. Mean-field control and Riccati equa-
tions. Netw. Heterog. Media, 10(3):699–715, 2015.

[116] M. Herty and C. Ringhofer. Averaged kinetic models for flows on unstructured
networks. Kinet. Relat. Models, 4(4):1081–1096, 2011.

118



[117] M. Herty and C. Ringhofer. Feedback controls for continuous priority models in
supply chain management. Comput. Methods Appl. Math., 11(2):206–213, 2011.

[118] M. Herty and C. Ringhofer. Consistent mean field optimality conditions for in-
teracting agent systems. Communications in Mathematical Sciences, 17(4):1095–
1108, 2019.

[119] M. Herty and M. Zanella. Performance bounds for the mean-field limit of con-
strained dynamics. Discrete Contin. Dyn. Syst., 37(4):2023, 2017.

[120] J. Hu and S. Jin. Uncertainty quantification for kinetic equations. In Uncertainty
quantification for hyperbolic and kinetic equations, pages 193–229. Springer,
2017.

[121] J. Hu, S. Jin, and D. Xiu. A stochastic galerkin method for hamilton–
jacobi equations with uncertainty. SIAM Journal on Scientific Computing,
37(5):A2246–A2269, 2015.

[122] S. Jin, L. Li, and J.-G. Liu. Random Batch Methods (RBM) for interacting par-
ticle systems. J. Comput. Phys., 400:108877, 2020.

[123] S. Jin, D. Xiu, and X. Zhu. A well-balanced stochastic galerkin method for
scalar hyperbolic balance laws with random inputs. Journal of Scientific Com-
puting, 67(3):1198–1218, 2016.

[124] D. Kalise, K. Kunisch, and Z. Rao. Infinite horizon sparse optimal control. Jour-
nal of Optimization Theory and Applications, 172(2):481–517, 2017.

[125] Y. Katz, K. Tunstrøm, C. C. Ioannou, C. Huepe, and I. D. Couzin. Inferring
the structure and dynamics of interactions in schooling fish. Proceedings of the
National Academy of Sciences, 108(46):18720–18725, 2011.

[126] I. Khalil, J. Doyle, and K. Glover. Robust and optimal control. prentice hall, new
jersey, 1996.

[127] A. Lachapelle and M.-T. Wolfram. On a mean field game approach modeling
congestion and aversion in pedestrian crowds. Transportation research part B:
methodological, 45(10):1572–1589, 2011.
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