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Introduction

Torsion pairs were introduced by Dickson in 1966 as a generalisation of the concept of
torsion abelian group to arbitrary abelian categories. Using torsion pairs, we can divide
complex abelian categories in smaller parts which are easier to understand.

The central topic of this thesis is the theory of torsion pairs in the category of finitely
generated modules over an artin algebra.

These torsion pairs were thoroughly investigated in the last years from different view-
points:

In [I] it was shown that some nice torsion pairs, the functorially finite ones, can
be parametrized by means of particular objects: the support 7—tilting modules. These
objects are a generalisation of classical (1-)tilting modules and admit a particularly nice
theory of mutation.

Using the 7—tilting approach, in [31], it was proven a fundamental connection between
torsion pairs and bricks, that is modules whose endomorphism ring is a division ring. In
the same work, the authors introduced the concept of 7—tilting finite algebras, a class of
finite-dimensional algebras A with only a finite number of support 7—tilting modules: it
was shown that for these algebras all the torsion classes in A-mod are functorially finite
and that an algebra is T7—tilting finite if and only if it admits only a finite number of
torsion classes in A-mod.

More recently, the complete lattice structure of the set of torsion classes was in-
vestigated in [32], where it was shown to have several peculiar characteristics, such as
complete semi-distributivity, and once again it was shown the important role of bricks:
they can be used to label the arrows of the Hasse quiver of the lattice of torsion classes.
In fact, they control the covering relation between torsion classes.

This role of bricks as labels of the covering relation, is further investigated in [I1]
and [12], with particular emphasis on the interplay between torsion classes and wide
subcategories, and in [I7] through the concept of minimal extending modules.

A uniform approach to the study of torsion pairs, wide subcategory and the more
general ICE-closed subcategories is proposed in [35], where monobricks, special sets of
bricks with a poset structure, allow for a complete classification of torsion pairs in abelian
length categories. In the same paper we also find an interesting conjecture relating
T—tilting infiniteness with the existence of an infinite semibrick.

Among the most recent results on the structure of bricks over 7—tilting finite algebras
we find in [59] the proof of a modern analogue of the first Brauer-Thrall conjecture: a
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finite-dimensional algebra is 7—tilting finite if and only if there is a bound on the length
of its finitely generated bricks. In the same paper the authors present a possible analogue
of the second Brauer-Thrall conjecture: a finite-dimensional algebra is 7—tilting infinite if
and only if there exists an integer d such that there is an infinite family of non-isomorphic
bricks of length d. This last question is still open.

Inspired by the process which led to the solution of the classical second Brauer-
Thrall conjecture for finite-dimensional algebras through the classification of minimal
representation-infinite algebras, in [50] the authors introduced minimal 7—tilting infinite
algebras. In the same paper, we also find a proof of the modern first conjecture using a
geometrical approach.

Notice that the approaches to the study of torsion pairs and bricks proposed in the
quoted papers were mostly not taking advantage of the influence that infinitely generated
modules have on the “small” ones. In this thesis we will focus on the interplay between
large and small torsion pairs.

In particular, a fundamental observation is that the lattice of torsionfree classes in the
category of finitely generated modules is isomorphic to the lattice of definable torsionfree
classes in the category of (all) modules, see Theorem As every definable torsionfree
class is cogenerated by a cosilting module, which is essentially a not necessarily compact
support 7! —tilting module, we can access in this large setting to some tools which, in
the finitely generated world, are only available for functorially-finite pairs.

Moreover, passing to large modules fixes the lack of completeness which some re-
sults exhibit in the category of finitely generated modules. As an example consider the
existence of monobricks without maximal elements [35].

Further motivation for this “large modules” approach can be found in [6] where the
authors developed a general concept of mutation for not necessarily compact cosilting
objects. This operation controls certain inclusions of torsion classes: let t C u be torsion
classes in the category of finitely generated modules over an artin algebra A. Then we
have cosilting modules Cr, Cyy such that t = Y0C7 N A-mod and u = °Cy N A-mod.

We have that t-0 Nu is a wide subcategory of A-mod (i.e. it is closed under kernels,
cokernels and extensions) if and only if the cosilting module Cr is obtained as a mutation
of CU.

While working with arbitrary modules brings in a good amount of complications,
we hope to convince the reader that this approach can produce results worth of the
additional strain.

Structure of the thesis

Chapter [I]is a collection of most of the notions needed in the rest of the thesis: this in-
cludes both some basic categorical notions, like torsion pairs and localising subcategories,
and some more specialised material regarding purity, silting and cosilting modules and
T—tilting theory. This chapter does not contain any new result.

Chapter [2] is centred around the notion of torsionfree, almost torsion modules with
respect to some torsion pair, as introduced in [3].
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After showing some compatibility results with the finitely generated version of this
concept, the minimal extending modules of [I7], we proceed to prove that cosilting tor-
sionfree classes are determined by their torsionfree, almost torsion modules.

In the final part of the chapter, using the existence of locally maximal torsion classes
in the category of finitely generated modules on a 7—tilting infinite algebra, we prove
the following characterisation of T—tilting finiteness:

Theorem (2.4.4). An artin algebra A is T—{tilting finite if and only if every brick over
A is finitely generated.

Chapter [3| revolves around the notion of wide subcategory. In section [3.1], we revisit
the constructions associating wide subcategories with torsion pairs, discovered in [43] for
hereditary rings and extended in [48] to the general case.

Given any torsion pair (7,.F) in an abelian category A we have that

a(T)={XeT|foralTeT,f:T — X, ker(f) e T}
B(F)={XeF|foral FeF,f: X — F,coker(f) e F}

are wide subcategories of A. After recalling some known properties of these subcategories,
we notice that the simple objects of a(7T) are precisely the torsion, almost torsionfree
objects and that the simples of B(F) are the torsionfree, almost torsion objects with
respect to the torsion pair (7, F).

We conclude the section focusing on the case where the abelian category is the mod-
ule category R-Mod of some left noetherian ring and the torsion pair is cogenerated
by a cosilting module. In Proposition we give a compatibility result: the wide
subcategories a(t), B(f) obtained from the restriction (t, f) = (7N R-mod, FN R-mod)
are exactly the intersections of the large ones «(T), 8(F) with R-mod.

In section we give an alternative description of the wide subcategories in terms of
the approximation sequence 0 — C7; — Cy — E(R) induced by every cosilting module
C, where E(R) is an injective cogenerator. If we fix 7 = 1°C and F = Cogen(C) then

by Theorem and Theorem |3.2.13| we have that

Oé(T) = L”"C() nNT
B(F)="CNF

These categories are essentially perpendicular categories, as we can see more clearly in
the case where C' is a cotilting module. In fact under this stronger assumption we have
o(T) = 101Cy and B(F) = Lo1(y.

These new descriptions allow us to prove that S(F) is always a coreflective subcate-
gory of the module category, while a(7) is a wide subcategory closed under coproducts,
which is coreflective in the noetherian case. Moreover, we can show that the assignment
associating to a definable torsionfree class F the wide subcategory B(F) is injective. In
Proposition we also characterise 7—tilting finiteness in terms of the class of wide
subcategories closed under coproducts.
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In the final section we give further applications of these results: first we show
that non-trivial minimal cosilting torsion pairs always admit a mutation, in the sense of
[6]. Secondly, we explore the connection between minimal silting and minimal cosilting
modules and Ext-orthogonal pairs, as introduced in [46], over an hereditary left artinian
ring.

Chapter {] presents some ongoing work on mutation of torsion pairs.

In [I1], Asai gives bijections between the set of functorially finite torsion pairs and
certain simple-minded collections in the derived category. These collections are precisely
the simple objects of the length heart corresponding to a support 7—tilting module.

A first objective of the chapter is to extend this bijection to arbitrary torsion pairs.
However, as the heart obtained from a non-compact cosilting module is only locally
finitely presented, it is not determined by its simple objects. The idea is to replace sim-
ple objects with indecomposable injectives. As indecomposable injective objects in the
heart of a cosilting t-structure correspond with indecomposable pure-injective objects in
the derived category D(R) and with indecomposable pure-injective modules, our con-
structions will involve the Ziegler spectrum. This is a topological space whose points are
isomorphism classes of indecomposable pure-injective objects and whose closed sets are
in bijection with definable subcategories of the module category.

Inspired by [I] and [19], in section we give two possible notions: maximal rigid
systems in the derived category and cosilting pairs in the module category. We prove that
both these objects are in bijection, up to a suitable notion of equivalence, with cosilting
modules over an artin algebra.

The aim of section is to find a way to compute explicitely cosilting mutation in
the sense of [6] in terms of basic operations on cosilting pairs, mimicking the finite length
case from [I].

This requires a heavy machinery, involving the logical-topological notion of neg-
isolated point of the Ziegler spectrum, studied in [3] for cotilting modules. To adapt
the results to the cosilting case we need a further discussion of characteristic bricks, in
particular of torsion, almost torsionfree modules.

We are finally able to prove that mutation is possible and well-behaved when per-
formed at the so called “special” and “very critical” points of the cosilting pair which
are in bijection with torsion, almost torsionfree and torsionfree, almost torsion modules
respectively.

The final result of the chapter is Theorem which describes explicitely the
mutation operation in terms of exchange of elements of cosilting pairs.

Finally, the Appendix contains a brief overview of some pathologies happening in the
lattice of torsion pairs over the wild Kronecker algebra k/Cs.
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Notation

Whenever we consider an operator applied to some class S consisting of a single element
X, we will usually write X instead of {X}.

Unless specified, R is a ring, A is a (left) artinian ring, A is an artin algebra and
modules will be left modules.

e (A, B) : the category of additive functors and natural transformations, where A, B
are additive categories.

e add(S) : the class of objects isomorphic to direct summands of finite direct sums
of objects in S

e Add(S) : the class of objects isomorphic to direct summands of direct sums of
objects in S

e cogen(S) : the class of objects isomorphic to a subobject of some finite sum of
objects in &

e Cogen(S) : the class of objects isomorphic to a subobject of some product of objects
in$S

e Cogen,(S) : the class of objects isomorphic to a pure subobject of some product
of objects in S

e filt(S) : the extension closure of the set S

e Filt(S) : the class of objects admitting a transfinite filtration by objects in S

e gen(S) : the class of objects isomorphic to a quotient of some finite sum of objects
inS

e Gen(S) : the class of objects isomorphic to a quotient of some direct sum of objects
in S.

e Prod(S) : the class of objects isomorphic to direct summands of products of objects
inS

e F(S) : the smallest torsionfree class containing some subcategory S of a Grothendieck

category G

° I'N“(S ) : the smallest torsionfree class containing some subcategory S of an abelian
category A with artinian objects

e T(S) : the smallest torsion class containing some subcategory S of a Grothendieck
category G

. ’i‘(S) : the smallest torsion class containing some subcategory S of an abelian
category N with noetherian objects
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LS for I C Zand S C A, with A abelian, the subcategory consisting of the
objects X € A, such that Ext’,(X,S) =0, forallie I, Se€S.

Analogously, if S C T with T triangulated with shift functor X, the subcategory
consisting of the objects X € T, such that Homy(X,%/S) =0, foralli € I, S € S.

St for I C Zand S C .A,' with A abelian, the subcategory consisting of the
objects X € A, such that Ext%(S,X) =0, foralliel, SeS.

Analogously, if S C T with T triangulated with shift functor X, the subcategory
consisting of the objects X € T, such that Hom7(S,%'X) =0, foralli € I, S € S.

ligS : the direct limit closure of S in some cocomplete category
R-mod : the category of finitely presented left modules over a ring R.
mod- R : the category of finitely presented right modules over a ring R.
R-Mod : the category of left modules over a ring R.

Mod- R : the category of right modules over a ring R.

(8) : for a subcategory S of some Grothendieck category, the smallest definable
subcategory containing S.

TPair(R) : For a ring R, the collection of torsion pairs in R- Mod.
tpair(R) : For a left coherent ring R, the collection of torsion pairs in R-mod.
Tors(R) : For a ring R, the collection of torsion classes in R-Mod.
tors(R) : For a left coherent ring R, the collection of torsion classes in R-mod.

ftors(A) : For an artin algebra A, the collection of functorially finite torsion classes
in A-mod.

Torf(R) : For a ring R, the collection of torsionfree classes in R-Mod.
torf(R) : For a left coherent ring R, the collection of torsionfree classes in R - mod.

ftorf(A) : For an artin algebra A, the collection of functorially finite torsionfree
classes in A-mod.

Cosilt(R) : For a ring R, the collection of torsionfree classes in R-Mod cogen-
erated by a cosilting module, or equivalently the collection of torsion pairs whose
torsionfree class satisfies this condition.

Silt(R) : For a ring R, the collection of torsion classes in R-Mod generated by
a silting module, or equivalently the collection of torsion pairs whose torsion class
satisfies this condition.
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Wide(R) : For a ring R, the collection of wide subcategories of R-Mod.
wide(R) : For aleft coherent ring R, the collection of wide subcategories of R-mod.

Widej[(R) : For a ring R, the collection of wide subcategories of R-Mod closed
under coproducts.

C, : the class {X € R-— Mod‘ Homp(X,0) is surjective} for a given R—module

homomorphism o

D, : the class {X €R- Mod‘ Homp(o, X) is surjective} for a given R—module

homomorphism o

A(T) : the subcategory {X € A’ forallT € T,f : T — X, ker(f) € T} for a
torsion class 7 in an abelian category A

a(T): A(T)NT

B(F) : the subcategory {X € A’ forall F € F,f: X — F,coker(f) € .7-"} for a
torsionfree class F in an abelian category A

B(F): B(F)nF
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Chapter 1

Preliminaries

All the categories we consider are assumed to be locally small. All the subcategories will

be full and replete, we will not distinguish a subcategory from the corresponding class of

objects. We tacitly assume that all the abelian categories we deal with are well-powered.
None of the results appearing in this chapter is original.

1.1 Torsion pairs

Fix an abelian category A.
Definition 1.1.1. Let 7, F be subcategories of A. Then (7, F) is a torsion pair if:
(i) For all F € F, for all T € T, Homu (T, F) = 0.

(ii) For all M € A there is a short exact sequence:
0—=-T—-M-—F—0

with T'€ T and F € F.
In this case, T is a torsion class and F is a torsionfree class.

Remark 1.1.2. Notice that the concept of torsion pair is self-dual, while that of torsion
class is dual to that of torsionfree class.

The short exact sequences provided by a torsion pair are unique up to isomorphism
and functorial ( under the axiom of choice).

Proposition 1.1.3. Let (T,F) be a torsion pair and M € A. Then the short exact
sequence 0 — t7 M — M — M/(t7+ M) — 0 provided by the definition of a torsion pair
18 unique up to isomorphism.

Moreover, the assignments M — t7+ M and M — M/(t7 M) can be extended to
endofunctors on A. The functor t1 is known as the torsion radical and is right adjoint
to the inclusion functor T — A.
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We will usually omit the subscripts in the approximation sequences, unless they are
needed to avoid ambiguities.
The classes in a torsion pair determine each other:

Proposition 1.1.4. Let (T, F) be a torsion pair in A, then:
(i) T €T if and only if for all F € F, Homu(T, F) = 0.
(i) F € F if and only if for all T € T, Hom (T, F) = 0.

Under some additional hypotheses, torsion and torsionfree classes can be described
in term of closure conditions:

Proposition 1.1.5. Let A be a (well-powered) abelian category. Let T be a subcategory
of A. Assume that for every object M € A the posetl of subobjects of M belonging to T
admits a mazimal element. Then T is a torsion class if and only if it is closed under
extensions and quotients.

Proof. Any torsion class is closed under extensions and epimorphic images. Assume now
that 7 has such closure properties. It is enough to show that (77,7 10) is a torsion pair.

Since, by definition, we have no non-zero morphism between this two subcategories,
we have to show that every object M € A fits in a short exact sequence of the right
shape.

By hypothesis, M admits some maximal subobject in 7, but since 7T is closed under
finite direct sums and epimorphic images, this maximal subobject, say t7 M, must be
unique, thus a maximum.

Consider the short exact sequence 0 — t+ M — M — M/tr M — 0, assume we
have a map from 7 to M/t7 M which we might assume injective, using again that 7 is
closed under quotients.

This gives rise to the pullback diagram:

0 — t+ M P T 0
0 ——t+ M M M/tTMHO

Since T is closed under extension, P € T, but then by maximality of tM, we must
have t7 M = P and T = 0. So that M/t M € T1o. O

As a corollary of the previous proposition and of its dual we obtain the following
more practical result:

Corollary 1.1.6. Let G be a complete and cocomplete abelian category. Then a subcat-
egory T C G is a torsion class if and only if it is closed under extensions, quotients and
coproducts.

Dually, a subcategory F C G 1is a torsionfree class if and only if it is closed under
extensions, submodules and products.
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Proof. It is enough to show the existence of maximal subobjects in T for any M € G.
This is simply the join (i.e the sum) of all the subobjects of M lying in 7. (This is an
object in 7 using the closure under coproducts and quotients). O

Remark 1.1.7. Let C be a class of objects in a complete and co-complete abelian category
A.

We have the following two torsion pairs: the torsion pair generated by C, defined as
(+o(Ct0),C*0) and the torsion pair cogenerated by C, defined as (+°C, (+0C)+0).

We will use the symbols T(C) ( resp. F(C) ) for the torsion class generated by C (resp.
the torsionfree class cogenerated by C).

We also have a small version of the corollary above:

Corollary 1.1.8. Let N be an abelian category such that all the objects of N are noethe-
rian.

Then a subcategory t C N is a torsion class if and only if it is closed under extensions
and quotients.

Dually we have:

Corollary 1.1.9. Let A be an abelian category such that all the objects of A are artinian.
Then a subcategory £ C A is a torsionfree class if and only if it is closed under
extensions and submodules.

This also yields:

Corollary 1.1.10. Let L be an abelian cateqory where all the objects have finite length.

Then a subcategory t C L is a torsion class if and only if it is closed under extensions
and quotients and a subcategory £ C L is a torsionfree class if and only if it is closed
under extensions and submodules.

Remark 1.1.11. In the case of length categories, we use the symbols T(C) and F(C) for
the smallest torsion and torsionfree class generated by some subcategory C.

The proof of the existence of the two classes is the same as in the case of a complete
and cocomplete abelian category.

We conclude with a lemma dealing with couples of torsion pairs, for which we will
use the following notation:

Definition 1.1.12. Let C,D be two subcategories of some abelian category A.
We denote by C x D the full subcategory of A whose objects are the M with a short
exact sequence:
0—-C—-M-—=D—=0

with C € C and D € D.

Lemma 1.1.13. Let A be an abelian category and let (T, F), (T',F') be two torsion
pairs in A. Assume F C F', then F' = (T NF')* F.
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Proof. One of the two inclusions is trivial, as every torsionfree class is closed under
extensions. For the other, let M € F’. The approximation sequence 0 — t+ M — M —
M/t M — 0, with respect to (T, F), expresses M as an extension of (7 N F’) and
F. O

1.1.1 An explicit construction in well-behaved categories

In this section R will be an arbitrary ring.

As we have shown, in a complete and cocomplete abelian category it is possible to
form a minimal torsion and a minimal torsionfree class containing any given subcategory.

In the case of module categories, it is possible to give an explicit description of the
smallest torsion class generated by some category.

To this aim, we will need the concept of a transfinite extension. For an extensive
treatment of this topic and further applications to approximation theory we refer to [39]
Sections 6.1].

Definition 1.1.14. Let p be an ordinal, (A, | < ) a sequence in R-Mod. Let (fqp) :
Ay — Agla < B < p) be a sequence of monomorphisms, such that A = {(Aq, (fag))} is
a direct system of modules.

Then A is a continuous direct system if Ag = 0 and Ag = hﬂo&ﬁ A, for all limit
ordinals 5 < u.

Given a subcategory C C R-Mod we say that a module M is C—filtered if there exists
a continuous directed system A = {(Aq, (fap)), 0 < B < p} with A, = M such that
coker foqt1 € C for all a < p.

We demnote by Filt(C) the class of C—filtered modules. The symbol filt(C) denotes the
subclass of Filt(C) of modules with a finite C—filtration.

Proposition 1.1.15 (|10, Lemma 3.2|). Let C C R-Mod, then:
T(C) = Filt Gen(C)

For torsion pairs in abelian length categories we have well-known explicit descriptions
for both the torsion and torsionfree class:

Proposition 1.1.16. ([}8, Lemma 3.1]) Let L be an abelian length category, C C L.
Then:

T(C) := filt gen(C)
F(C) := filt cogen(C)

1.2 Bireflective subcategories and ring epimorphisms

In this section we recall the correspondence between bireflective subcategories of module
categories and ring epimorphisms due to Gabriel and de la Pena [37].
For the basic categorical results in this section we refer to [23] Section 3.5].
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Definition 1.2.1. Let C be a full and replete subcategory of some category D. Let
1 : C — D be the inclusion functor. Then:

(i) C is a reflective subcategory if i admits a left adjoint r : D — C. The functor r is
then called the reflection.

(ii) C is a coreflective subcategory if ¢ admits a right adjoint ¢ : D — C. The functor ¢
is then called the coreflection.

(iii) A reflective and coreflective subcategory is called bireflective.

Reflective and coreflective subcategories have good properties with respect to limits
and colimits:

Proposition 1.2.2. Let D be a complete category and C o reflective subcategory of D.

Then C itself is a complete category and, more specifically, C is closed under limits in
D.

The dual result tells that co-reflective subcategories are closed under co-limits. We
also have:

Proposition 1.2.3. Let D be a cocomplete category and C a reflective subcategory of D.
Then C itself is a cocomplete category and, more specifically, colimits in C are com-
puted as reflections of the corresponding colimits in D.

We now recall the notion of ring epimorphism:

Definition 1.2.4. Let R, S be rings. A ring homomorphism f : R — S is a ring
epimorphism if for every ring T and every pair of ring homomorphisms hy, ho : S — T,
we have hy o f = hy o f if and only if hy = hs.

Examples 1.2.5. (i) Every surjective ring homomorphism is trivially a ring epimor-
phism.

(i) Let R be a commutative ring, S a multiplicative subset of R, then the localisation
R — Rg s a ring epimorphism. A special case is the inclusion of the integers in
the rational numbers.

(15i) Let k be a field. Then the inclusion of the triangular matriz algebra T, (k) into the
corresponding matriz algebra M, (k) is a ring epimorphism. This is a special case
of the universal localisation construction.

The following is a module-theoretic characterisation of ring epimorphisms:

Proposition 1.2.6. Let R, S be rings. f: R — S a ring homomorphism. Then f is a
ring epimorphism if and only if the restriction of scalars functor f* :.S-Mod — R-Mod
1s fully-faithful.
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Remark 1.2.7. Let f : R — S be a ring epimorphism. In this case S-Mod can be
wdentified with o full subcategory of R-Mod. Notice that the restriction of scalars functor

has both a left and a right adjoint, thus S-Mod is essentially a bireflective subcategory
of R-Mod.

We need the following notion of equivalence of ring epimorphisms:

Definition 1.2.8. Let R be aring. f1 : R — 51, fo : R — S be ring epimorphisms.
Then f1 is equivalent to fo if there exists an isomorphism ¢ : S; — Ss such that fo = gofi.

Theorem 1.2.9 ([37, Thm 1.2]). Let R be a ring. Then there is a bijective correspondence
between equivalence classes of ring epimorphisms starting at R and full replete abelian
subcategories of R-Mod closed under limits and colimits. This correspondence assigns
to each equivalence class of epimorphisms the essential image of the restriction of scalars
functor induced by a chosen representative.

In particular, a full abelian subcategory of R-Mod s bireflective if and only if it is
closed under limits and colimits.

1.2.1 Universal localisation
There are special ring epimorphisms with further homological properties:
Definition 1.2.10. Let f: R — S be a ring epimorphism. We say that f is:

(1) pseudo-flat if for all M, N € S-Mod, Ext}(M, N) = Exth(f*(M), f*(N)). Equiv-
alently f*(S-Mod) is an extension-closed bireflective subcategory of R-Mod.

(2) homological if for all M, N € S-Mod, for all i € N, Exty(M, N) = Extl(f*(M), f*(N)).
This is equivalent to requiring that the restriction of scalars functors f* induces a
fully-faithful embedding at the level of derived categories f* : D(S) — D(R).

Example 1.2.11. Let R be a ring, I = I? an idempotent ideal of R. The canonical map
p: R — R/I is a pseudo-flat ring epimorphism.

Many interesting pseudo-flat ring epimorphisms are obtained as universal localisa-
tioms:

Theorem 1.2.12 ( [58, Theorem 4.1, Theorem 4.7] ). Let R be a ring, ¥ a set of maps
between finitely generated projective (left) modules over R. Then there exists a ring Ry,
with a ring homomorphism py, : R — Ry, such that Ry, ®p a is an isomorphism for all
a€X.

For any other homomorphism f : R — S such that for alla € ¥, S®pa is invertible,
there exists a unique factorisation of f through py.

Moreover, px, is a pseudo-flat ring epimorphism.

Such a ring Ry, is called the universal localisation of R at 3.

Remark 1.2.13. One can also define universal localisations with respect to a set of
finitely presented modules M. In this case, we localise the ring at the set of projective
presentations of the modules in M.
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Let Xg,, be the essential image of Ry;- Mod in R - Mod under the restriction of scalars
functor.

Proposition 1.2.14 (|27, Proposition 3.2]). Let R — Ry, be the universal localisation
of R at ¥, let X € R-Mod. Then X € Xg, if and only if for all 0 € X the map
Hompg(o, X) is invertible.

Remark 1.2.15. [f the ring R s hereditary, then for any module X € R-Mod and for
any map between finitely generated projectives o, the morphism Hom(o, X) is invertible
if and only if X € {ker o, coker g}+01,

In particular, the category of modules over the universal localisation at some set of
modules M is equivalent to M0, as the projective presentations of the modules in M
can be chosen to be injective.

We conclude with a result showing that over an hereditary ring universal localisations
play a prominent role:

Theorem 1.2.16 ([46, Theorem 6.1]). Let R be an hereditary ring and let f: R — S
be a ring homomorphism. Then f is a homological (or equivalently psuedo-flat) ring
epimorphism if and only if it is equivalent to o universal localisation.

1.2.2 Covering and enveloping subcategories

We recall some terminology which will be useful later on.

Definition 1.2.17. Let A be a category, S C A a subcategory. Let M € A. A
morphism f : M — S is a S—preenvelope if S € S and for every S’ € S and every
morphism g : M — S’ there exists a map h : S — S’ such that g = ho f. The map f is
a S—enwvelope if in addition it is left minimal.
The subcategory S is called (pre)enveloping if every object in A admits an S—(pre)envelope.
Dually, we define S—(pre)covers and (pre)covering subcategories.

Remark 1.2.18. Preenvelopes and precovers are also known as left approximations and
right approximations respectively.

Moreover, in case the ambient category is essentially small and additive, preenveloping
classes are often called covariantly finite, precovering classes contravariantly finite and
classes which are both preenveloping and precovering are said to be functorially finite.

Example 1.2.19. Let (T,F) be a torsion pair in some abelian category. Then, by
definition, every object admits both a T —cover and an F—envelope.

Lemma 1.2.20. Let C be a reflective subcategory of D. Then C is an enveloping subcat-
egory with envelopes given by the unit of the adjoint pair.

Under some additional hypotheses we can determine when a preenveloping subcate-
gory is reflective by means of the following result:
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Proposition 1.2.21 ( [30, Corollary 3.2| ). Let A be a complete well-powered abelian
category. Then the following statements are equivalent for a full (replete) subcategory

FCA:
(i) F is a reflective subcategory.
(i) F is preenveloping and closed under kernels.

There is a dual result for precovering classes and coreflective subcategorties.

1.3 Definable classes and purity

We collect some well known facts about definable classes and purity. A comprehensive
reference can be found in [55].

Definition 1.3.1. A short exact sequence 0 - L - M — N — 0 in R-Mod is pure if
for every U € R-mod the sequence

0 —— Hom(U, L) —— Hom(U, M) —— Hom(U,N) —— 0

is an exact sequence of abelian groups. In this case, we say that L is a pure submodule
of M or that the map L — M is a pure monomorphism.

Lemma 1.3.2 ([b5, Lemma 2.1.2]). Let R be a ring, then in R-Mod:

(i) If A is a direct summand of B, then the canonical embedding of A into B is a pure
monomorphism.

(ii) The composition of two pure monomorphisms is a pure monomorphism.
(iv) Any direct limit of pure monomorphisms is a pure monomorphism.

(iii) A (set-indexed) product of pure monomorphisms is a pure monomorphism.

Definition 1.3.3. Let D C R-Mod. We say that D is definable if it is closed under
products, pure submodules and direct limits.

Let C C R-Mod. We denote by (C) the definable subcategory generated by C, that is
the smallest definable subcategory of R-Mod containing C.

Remark 1.3.4. Notice that a torsionfree class in R-Mod is definable if and only if it is
closed under direct limits, as closure under products and (pure) submodules is granted.

For artin algebras, we have the following:

Proposition 1.3.5 ([57, Section 1.F|). Let A be an artin algebra. A short exact sequence
0—L—>M-— N —0inA-Mod is pure if for every U € A-mod the sequence

0 —— Hom(N,U) —— Hom(M,U) —— Hom(L,U) —— 0

s an exact sequence of abelian groups.
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Examples 1.3.6. (1) Let M € R-mod. Then the torsionfree class M0 is a definable
subcategory of R-Mod.

(1°) Let M € A-mod. Then, as shown in [29, Evample 2.3/, the torsion class ~OM is
a definable subcategory of A-Mod.

(2) Given a set-indezed family of definable classes {D; }icy, the intersection D = (;c; D;
15 a definable class.

1.3.1 Pure-injective modules

Definition 1.3.7. A module FE is pure-injective if every pure exact sequence starting at
F is split exact. Dually, we have a notion of pure-projective module.

It turns out that there are enough pure-injective modules and in fact, that every
module has a pure-injective hull:

Definition 1.3.8. Let M be a module. Then a pure monomorphism f : M — N is a
pure-injective hull if N is pure-injective and f is left minimal.

Theorem 1.3.9 (|55, Theorem 4.3.18]). Every module M has a pure-injective hull, which
is unique up to isomorphism: iof f : M — N and f' : M — N’ are both pure-injective

hulls of M then there exists an isomorphism j: N — N’ such that f' = jo f.
We denote by PE(M) the pure-injective hull of the module M.

Moreover indecomposable pure-injective modules have a nice endomorphism ring:

Theorem 1.3.10 ([55, Theorem 4.3.43|). Every pure-injective indecomposable module
has local endomorphism ring.

We conclude with a result giving a decomposition of every pure-injective module

Definition 1.3.11. Let £ € R-Mod be a pure-injective module. We say that F is
superdecomposable if it has no (non-zero) indecomposable summands.

We say that a pure-injective module E has no superdecomposable part if every non-
zero direct summand of F has a non-zero indecomposable direct summand.

Theorem 1.3.12 (|55, Theorem 4.4.2|). Let N be a pure-injective module. Then

N ~PE(J[No) @ N
(6%

where each Ny is indecomposable pure-injective and where N, is superdecomposable. Both
the N, with their multiplicities and N, are determined up to isomorphism by N.
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1.3.2 The Ziegler spectrum

The collection of all the isoclasses of indecomposable pure-injective modules over a ring
can be equipped with an interesting topology. The resulting topological space is known
as the Ziegler spectrum.

We denote the collection of all the isomorphism classes of indecomposable pure-
injective left modules over some ring R by R- pinj.

We need the following result to ensure that our definition makes sense:

Theorem 1.3.13 (|55, Corollary 4.3.38]). Let R be a ring. Then R-pinj is a set whose
cardinality is bounded by 2°rd(F)+Ro

Now we can define the Ziegler spectrum:

Theorem 1.3.14 (|55, Theorem 5.1.1]). There exists a topology on R-pinj whose closed
sets are obtained as the “intersections” R-pinj N D, with D a definable subcategory of
R-Mod.

The resulting topological space is called the (left) Ziegler spectrum of R, denoted by

RrZg,

It turns out that a definable subcategory is completely determined by its indecom-
posable pure-injective modules, thus we have:

Theorem 1.3.15 (|55, Corollary 5.1.6]). There is a bijection between closed subsets C of
the Ziegler spectrum and definable subcategories D of R-Mod, given by the assignments:

D — DN R-pinj
C— (C)

We conclude this brief overview by identifying some of the closed points of the Ziegler
spectrum.

Theorem 1.3.16 (|55, Theorem 5.1.12]). Let N € R-Mod be an indecomposable module
of finite endolength (the length over its endomorphism ring), then N is a closed point of

RZg.

1.3.3 Pure-injective modules and localisation

Pure-injective modules and definable subcategories can also be described through functor
categories.

Definition 1.3.17. A torsion pair (7, F) in a Grothendieck category A is hereditary if
T is closed under submodules. It is of finite type if F is closed under direct limits.

Remark 1.3.18. Notice that in every hereditary torsion pair t = (T,F) the torsion
class is a Serre subcategory of A, i.e. a subcategory closed under subobjects, quotients
and extensions. Thus we can consider the abelian quotient Q : A — Ay := A/T.
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Proposition 1.3.19 (|55, Proposition 11.1.15]). Let G be a locally finitely generated
Grothendieck category and let t be an hereditary torsion pair of finite type in G.

Then Gy is a locally finitely generated Grothendieck category. Moreover, if C is a
generating set of finitely generated objects in G, then Q(C) is a generating set of finitely
generated objects in Gy.

Hereditary torsion pairs of finite type are completely determined by some set of
indecomposable injectives.

Proposition 1.3.20 (|55, Proposition 11.1.29]). Let A be a locally finitely presented
abelian category and let (T,F) be a hereditary torsion pair of finite type. Then F is
cogenerated by the set of indecomposable torsionfree injective objects.

Now we recall a fundamental embedding of the module category into the category of
additive functors.

Definition 1.3.21. Let R be a ring, we denote by (mod- R, Ab) the Grothendieck
category of additive functors from mod- R to the category of abelian groups, with their
natural transformations.

Theorem 1.3.22 ([55, Theorem 12.1.3, Theorem 12.1.6]). Let R be a ring, the functor
T : R-Mod — (mod- R, Ab) given on objects by the assignment M — — @ M is fully
faithful and preserves direct limits and products.

Moreover, a sequence of R—modules 0 — L — M — N — 0 is pure-exact if and only
if the sequence 0 — TL — TM — TN — 0 is exact. A module M is pure-injective if
and only if the functor — ® M 1s injective.

In fact all the injective functors can be obtained from a pure-injective module:

Theorem 1.3.23 (|55, Corollary 12.1.9]). There is a bijection between the set of iso-
morphism classes of indecomposable pure-injective modules in R-Mod and the set of
isomorphism classes of indecomposable injective functors in (mod- R, Ab), given by the
assignment E — (— @ E).

As we have seen hereditary torsion pairs of finite type in locally finitely presented
abelian categories are uniquely determined by their injective objects, in particular every
definable subcategory D of R-Mod corresponds to a hereditary torsion pair of finite type
in (mod- R, Ab), this is made precise in the following:

Proposition 1.3.24 (Consequence of |55, Proposition 12.3.2] ). Let D be a definable
subcategory of R-Mod. Then (-0T'D, Cogen(TD)) is a hereditary torsion pair of finite
type in (mod- R, Ab).

This ultimately means that we can localise the functor category at a definable sub-
category of R-Mod.

Theorem 1.3.25 ([55, Corollary 12.3.3]). Suppose that D is a definable subcategory of
R-Mod, let C C rZg be the correspondmg closed set and let (mod- R, Ab)p be
the corresponding localisation.

Then the assignment N — (— ® N)p ~ (— ® N) is a bijection between the points of
C and the isomorphism classes of indecomposable injective objects of (mod- R, Ab)p.
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1.3.4 Definable torsion and torsionfree classes

Definable torsion classes and definable torsionfree classes will be fundamental in the rest
of this work. Here we collect some useful results.

Since we will have a continuous interplay between torsion pairs in the small and in
the large module category, we fix the following terminology, for a left noetherian ring R:

Definition 1.3.26. Let (7,F) be a torsion pair in R-Mod and (t,f) a torsion pair in
R-mod. Then (T, F) extends (t,f) if t =T N R-mod and f = F N R-mod.
In the setting above, we will also say that (7, F) restricts to (t,f).

Example 1.3.27. For any torsion pair (t,f) in R-mod we have the following two, not
necessarily distinct, extensions to R-Mod:

(i) The extension with the largest torsion class (+0f, F(f))
(i) The extension with the largest torsionfree class (T(t),t+0)

For definable torsionfree classes, we have a result valid for any noetherian ring, using
[26], Section 4.4]:

Theorem 1.3.28. Let R be a left noetherian ring. There is a bijection between torsion
pairs in R-mod and torsion pairs in R-Mod with definable torsionfree class.

This bijection associates to a torsion pair (t,f) in R-mod the limit closure (T :=
limt, F := hﬂf) In this setting, T can also be described as Gen(t) and F as the
orthogonal class t0.

The inverse of this map sends a torsion pair (T, F) to its restriction (T NR-mod, FN
R-mod).

A dual version of this bijection holds true in the setting of artin algebras as a direct
consequence of the following observation [28, Section 2.2]:

Lemma 1.3.29. Let M € A-Mod. Then M is a pure submodule of the product of its
finitely generated quotients.

Proof. Let S be a chosen set of representatives of all the isomorphism classes of finitely
generated A—modules. Let M := [[gcs [1etom(rs,s) Im(f) and consider the map f :

M — M obtained through the universal property of products. Then by construction,
every map from M to a finitely generated module must factor through f.

In particular the map f is injective: we have some set I such that there exists an
embedding g : M — (DA)!, therefore, if f(m) = 0 for some m € M, then g;(m) = 0 for
all ¢ € I, which means m = 0.

Using Proposition we can conclude that f is a pure monomorphism. O

Theorem 1.3.30. Let A be an artin algebra. There is a bijection between torsion pairs
in A-mod and torsion pairs in A-Mod with definable torsion class.
This bijection associates to a torsion pair (t,f) in A—mod the torsion pair cogenerated

by £, (T := Lof, F := (+of)10). In this setting, T can also be described as Cogen,(t),



1.4. SILTING AND COSILTING MODULES 13

the class of modules obtained as pure submodules of arbitrary direct products of modules
n t.

The inverse of this map sends a torsion pair (T, F) to its restriction (T NA-mod, FN
A-mod).

Proof. We prove that the restriction map is bijective, with inverse as above.

Let (7, F) be a torsion pair in A-Mod with definable torsion class. Let (t,f) be the
corresponding restriction.

We want to show that 7 = 1of. The inclusion 7 C Lof is immediate.

For the opposite one, let M € +0f. By Lemma M can be obtained as a pure
subobject of a direct product of finitely generated objects in 1°f which are exactly the
modules in t.

Whence M is a pure submodule of a product of objects in T, so that by definability
it follows that M € T.

This proves the injectivity of the restriction map. Surjectivity follows form the fact
that for any torsion pair (t,f) in A-mod, the torsion pair (+°f, F(f)) is an extension to
A -Mod with definable torsion class. O

1.4 Silting and cosilting modules

We recall some fundamental results about silting and cosilting modules following the
presentation given in the survey [2]. The original results can be found in [4], [8], [24],
[25], [64].

Fix a ring R. The definition of silting and cosilting modules relies on some special
classes. Let o be a left R—module homomorphism. We define

Dy := {X € R-Mod } Homp(o, X) is surjective}

Co = {X € R-Mod ‘ Homp(X,0) is surjective}

F, = {X € Mod- R ‘ X®ois injective}
We give a lemma with some straightforward properties of these classes:
Lemma 1.4.1. Let R € {D,C}. Let o be a left R—module morphism.
(i) If o is an R—module isomorphism, then R, = R-Mod.
(i1) If 0 = 01 @ 02, then Ry = Ry N Ry
(iii) If o = M — 0, then D, = M0,
(iv) If o =0 — N, then C, = *ON.

(v) If o is a map between projective modules, then the class Dy is closed under products,
quotients and extensions.
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Vi o s a map between injective modules, then the class Cy is closed under coproducts
) Ifo 1 p bet injecti dules, then the class Cy, is closed und products,
submodules and extensions.

(vii) If o is a map between projective modules, Dy C (coker o)t

(viii) If o is a map between injective modules, Co C 1 (ker o)

1.4.1 Cosilting modules

Definition 1.4.2. Let C' be an R—module. We say that C is cosilting if there exists an
injective copresentation w : Iy — I7 such that:

Cogen(C) = Cy,
Two cosilting modules Cy, Cy are equivalent if Prod(C}) = Prod(Cs).

Remark 1.4.3. Recall that a module C is (1-)cotilting if Cogen(C) = “1C. Thus, a
module is cotilting if and only if it is cosilting with respect to an injective copresentation
which 1s surjective.

Definition 1.4.4. Let £ € R-Mod and C C R-Mod. Then E € C is Fat-injective in C
if for every C € C, Extk(C, E) = 0.
E is split-injective in C if every monomorphism F — C with C € C splits.

Theorem 1.4.5. The following statements are equivalent for an R—module C':
(i) C is a cosilting module.
(i) Cogen(C) is a torsionfree class and C is a cotilting R/ Ann(C)—module.

(i1i) C is Ext-injective in Cogen(C) and there is an injective cogenerator E(R) of
R—Mod and an exact sequence:

0 Cy Co —— E(R)
such that Cy,Cy € Prod(C) and g is a Cogen(C)—precover.

We can say something more about the approximation sequence for a cosilting module:

Proposition 1.4.6. Let C be a cosilting module. Then every module admits a Cogen(C')—cover
with kernel in Prod(C). Moreover in the sequence obtained from the Cogen(C)—cover of
an injective cogenerator E(R):

0 Ci Co —— E(R)

Cy is split-injective for Cogen(C) and Coy @ C1 is a cosilting module equivalent to C.
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Lemma 1.4.7. Let C be a cosilting R—module, with approzximation sequence

0 Ch Co —— E(R)

Then
Im(g) = {z € E(R)| Ann(C)z = 0}

is an injective cogenerator of R/ Ann(C).
Moreover, Cogen(C) = +1C; N R/ Ann(C) - Mod.

Proof. Since C' is a (1-)cotilting R/ Ann(C)—module, every R/ Ann(C)— module ad-
mits a surjective Cogen(C')—cover and clearly all modules with a surjective cover are in
R/ Ann(C)-Mod (being annihilated by Ann(C)).

Let E = {z € E(R)| Ann(C)z = 0}. This is the largest submodule of E(R) belonging
to R/ Ann(C)-Mod. Thus Im(g) C E.

On the other hand, as recalled above, E admits a surjective Cogen C'—cover C' — E.
The induced map ¢! — E — E(R) must factor through g : Cp — E(R) showing that
E CIm(g).

Now, for any M € R/ Ann(C)-Mod there is a set I such that M embeds in E(R)?,
but since M is in R/ Ann(C) - Mod this embedding must factor through E’. This shows
that F is a cogenerator.

Injectivity over R/ Ann(C) is also immediate, using that E is a submodule of the
injective E(R) and that all maps from a module in R/ Ann(C)-Mod to E(R) must
factor through E.

To prove the last statement, notice that the sequence

0 Cy Co Im(g) —— 0

is an approximation sequence as in Theorem m(iii). In particular, a module M is
cogenerated by C precisely if it is annihilated by Ann(C) and Ext}%/ Ann(c)(M, C1) = 0.
However Cogen(C) C ker Exth(—,C;1) C ker Ext}%/Ann(C)(—,Cl) thus we obtain the
desired identity. O

We also have the following generalisation of Bazzoni’s result asserting that every
cotilting module is pure-injective [20]:

Theorem 1.4.8 (|24, Theorem 4.7]). Every cosilting module is pure-injective.

As a consequence of Proposition [1.4.6] the precover g in Theorem [I.4.5(iii) can be
chosen minimal and we obtain:

Theorem 1.4.9. The following statements are equivalent for a torsionfree class F C
R — Mod:

(i) F = Cogen(C) for some cosilting module C'.

(ii) F is covering.
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(i13) F is definable.

In light of the theorem above, we will denote by Cosilt(R) the set of definable
torsionfree classes of R-Mod ( or equivalently the set of torsion pairs with definable
torsionfree class) and refer to such classes as cosilting classes ( or cosilting torsion pairs).

Using Theorem [1.3.28| we obtain:

Corollary 1.4.10. Let R be a left noetherian ring, then we have a bijection:
tpair(R) = Cosilt(R)

1.4.2 Silting modules and duality

Definition 1.4.11. Let T be an R-module. We say that T is silting if there exists a
projective presentation o : P, — Py such that:

Gen(T) =D,
Two silting modules T1, Ty are equivalent if Add(T1) = Add(T2).

Remark 1.4.12. Recall that a module is (1-)tilting if Gen(T') = T+'. Thus, a module
1s tilting if and only if it 1s silting with respect to a monic projective presentation.

Every silting class is a definable torsion class, as D, is definable, however, unlike in
the cosilting case, over an arbitrary ring there might be definable torsion classes which
are not of this shape.

However, in the noetherian case, it is possible to parametrize definable torsion classes
by means of silting modules.

In general, for any definable subcategory D of Mod- R it is possible to define a dual
definable category (D)Y of R-Mod. As shown for instance in [55, Section 3.4.2|, this
assignment gives a bijection between definable subcategories of right and left modules.

When specialised to silting classes, this assignment enjoys the following properties,
where we denote by M+ := Homz(M,Q/Z) the character dual of M:

Theorem 1.4.13. Let 0 : P, — Py be a map between projective right modules. Then:
(1) o is a map between injective left modules and C,v = F,.
(ii) If D, is a silting class, then Dy = F,.

(111) If T is a silting module with respect to o then T is a cosilting module with respect

to o™,

Definition 1.4.14. A cosilting module C is of cofinite type if the associated cosilting
class Cogen(C') is the dual of a silting class.

The following lemma characterises cosilting classes of cofinite type:
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Lemma 1.4.15. A cosilting module C is of cofinite type if and only if the torsion class
LoC is generated by a set of finitely presented modules.

Over a noetherian ring, Theorem [1.3.28| shows that every torsion pair with definable
torsionfree class is generated by a set of finitely presented modules, thus we have:

Theorem 1.4.16. Let R be a left noetherian ring. Then the assignment D — DY yields a
bijection between silting classes in Mod - R and cosilting classes in R-Mod. In particular
there are bijections between.:

(i) Equivalence classes of right silting modules.
(i) Equivalence classes of left cosilting modules.
(i11) Definable torsionfree classes in R-Mod.
(1v) Definable torsion classes in Mod- R.

We will denote by Silt(R) the set of torsion classes of R-Mod generated by a silting
module ( or equivalently the set of the corresponding torsion pairs ). Over an artin
algebra, we can use Theorem [1.3.30] and Theorem [1.4.16] to obtain:

Corollary 1.4.17. Let A be an artin algebra, then we have a bijection:

tpair(A) — Silt(A)

1.4.3 Coherent torsion pairs

We collect in this section some results on torsion pairs whose torsion and torsionfree
classes are definable. Here R is an arbitrary ring.

Definition 1.4.18 ( [22] ). A torsion pair (7,F) in Mod- R is said to be coherent if
both 7 and F are definable subcategories.

Remark 1.4.19. Notice that a torsion pair is coherent if and only if the associated
torsion radical ( when composed with the forgetful functor to the category of abelian
groups ) is a coherent functor.

Corollary 1.4.20 ( [22, Corollary 1.7] ). If (T, F) is a coherent torsion pair in Mod- R
then all the Ext-projective objects in T are pure-projective.

Notice that, as every module is a pure quotient of a direct sum of finitely presented
modules, being pure-projective is equivalent to being in Add(mod- R).

Theorem 1.4.21 ( |22, Theorem 2.4| ). Let R be a right noetherian ring. Then the
following statements are equivalent for a torsion pair (T, F) in Mod - R, with T = Gen(S)
for some silting module S':

(1) (T,F) is a coherent torsion pair, that is F is definable.
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(2) The silting module S is pure-projective.

(8) There exists an exact sequence:

RR i) So — Sl —0
with f a T —preenvelope, Sp,S1 € Add(S) and Sy pure-projective.
(4) T = hg('r Nmod- R) and TNmod - R is a covariantly finite subcategory of mod - R.

Proof. The theorem in [22] is proved for (1-)tilting modules. We can extend it to silting
modules using the fact that every silting module S is tilting over the factor algebra
R/ Ann(S). Let T = Gen(S) a torsion class in Mod - R.

As a preliminary step, recall that, since R is noetherian, a module M annihilated
by some ideal [ is finitely presented in Mod- R if and only if it is finitely presented in
Mod- R/I. Thus an R/I—module is pure-projective in Mod- R/I if and only if it is
pure-projective in Mod - R.

"(1) = (2)" : If (T, F) is coherent in Mod - R, then, since by [55, Theorem 5.5.3]
the category Mod- R/ Ann(S) can be seen as a definable subcategory of Mod- R, the
torsion pair (7, F N Mod- R/ Ann(S)) is a coherent torsion pair in Mod- R/ Ann(S)
generated by a tilting module, thus we can apply [22] Theorem 2.4] to obtain that S is
a pure-projective R/ Ann(S)—module and consequently, a pure-projective R—module.

"(2) = (3)" : In this situation, as 7T is generated by a silting module, we have an
exact sequence:

Ri>50—>51—>0

with f a T —preenvelope, Sy, S1 € Add(S) (see [§, Proposition 3.14] ). As S is assumed
to be pure-projective, so is the module Sp.

"(3) = (1)" : The pure-projective T —preenvelope R — Sy in Mod - R induces a
special T —preenvelope 0 — R/ Ann(S) — So, see [8, proof of Proposition 3.2]. Moreover,
So is still pure-projective when seen as an R/ Ann(S)—module (for instance, if it was
a direct summand of [[, M;, with all M; finitely presented, it is also a summand of
[1,(R/ Ann(S) ©r M) ).

This means that S is pure-projective in Mod- R/ Ann(S), using again [22] Theo-
rem 2.4], and thus in Mod- R, and consequently S0 is closed under direct limits. In
conclusion, ST is a definable torsionfree class in Mod - R.

"(4) <= (1)" : is obtained combining Theorem and a result of Lenzing,
which can be found as [55, Corollary 3.4.37]. O

Remark 1.4.22. The result above tells us that not every silting module is pure-projective,
indeed over an artin algebra ( and in general over a Krull-Schmidt ring ) a pure-projective
silting module is equivalent to a finitely presented one.

This is a second striking difference with the well-behaved “dual” case: recall that every
cosilting module is pure-injective.
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1.5 t-structures

t-structures are the natural triangulated counterpart of torsion pairs in abelian categories.
We recall some basic properties and a construction, due to Happel-Reiten-Smalg, relating
torsion pairs in a Grothendieck category and t-structures in the corresponding derived
category.

The definition of a triangulated category and the proofs of the properties of a t-
structure presented in this section can be found in [49].

Definition 1.5.1. Let 7 be a triangulated category with suspension functor . A pair
of subcategories (U, V) is a torsion pair if:

(i) U,V are closed under direct summands
(ii) Hom7(U,V) =0
(iii) For all objects T' € T we can find a triangle

Ur T Vi Uy

with Upr € U and Vp € V.

A torsion pair (U, V) is a t-structure if in addition XU C U or equivalently =1V C V.
In a t-structure the class U is called the aisle and the class V is called the co-aisle.

Definition 1.5.2. A t-structure (U, V) is non-degenerate if
(U ==v=0
i€Z i€Z

The additional condition, requiring the closure of the aisle of a t-structure under
the action of the suspension functor, is introduced to obtain the functoriality of the
approximation triangle:

Proposition 1.5.3. Let (U,V) be a t-structure. The two assignments T — Ur and
T — Vr can be extended to endofunctors 1y and Ty of T, called the truncation functors.

We can associate an abelian category with every t-structure:

Proposition 1.5.4. Let T = (U, V) be a t-structure. The intersection Hr := XU NV
is an abelian category, called the heart of the t-structure.
Moreover, there is a cohomological functor H% =Ty oTy T — Hr.

1.5.1 t-structures in derived categories and their hearts

In this section we will work in the derived category D(R) of some ring R. We follow the
presentation of the subject given in [54].

Definition 1.5.5. Let T = (U, V) be a t-structure in D(R). Then we say that T is:
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(1) smashing if V is closed under coproducts.

(ii) compactly generated if there exists a set of compact objects C such that V = Co.
( Recall that an object C'is compact if Homp gy (C, ] X;) ~ [[Homp ) (C, X;) )

(iii) cosilting if there exists an object C' € D(R), called a cosilting complez, such that
T = (+=<0C,+>0C). Two cosilting complexes are equivalent if they determine the
same t-structure in D(R).

Theorem 1.5.6 ([64, Theorem 1.3|). There is a bijective correspondence between equiv-
alence classes of 2-term cosilting complezes in D(R) and equivalence classes of cosilting
modules in R-Mod, more specifically, given any 2-term cosilting complez o, the homology
H(0) is a cosilting module and conversely, given a module C, cosilting with respect to
an injective copresentation o, the map o is 2-term cosilting when seen as an object of

D(R).

We denote by D(R)-Mod the category of additive functors from the full subcate-
gory of compact objects of D(R) to the category of abelian groups. This is clearly a
Grothendieck category.

We have a concept of pure-injective object in D(R): namely an object is pure-injective
if its image under the Yoneda functor Y : D(R) — D(R) - Mod is injective.

Theorem 1.5.7 (|47, Theorem 4.6]). The following are equivalent for a non-degenerate
t-structure T = (U, V) in D(R):

(i) T is smashing and its heart is a Grothendieck category.
(ii) T is cosilting with respect to a pure-injective cosilting object.
Moreover, every compactly generated t-structure has the properties above.

The following theorem, describing the procedure known as HRS-tilt is of paramount
importance:

Theorem 1.5.8 ([40]). Let T = (U, V) be a t-structure in T with heart H =V N Y~ U.
Let t = (T, F) be a torsion pair in H. Then the pair:

TS0 =T xU
T =X Vs F
18 a t-structure in T with heart

M= {X eT ‘ HY(X) € F and HY(SX) € T,HY(SFX) = 0 for all k # 0, 1}

Example 1.5.9. We will apply the construction above in the special case of the standard
t-structure D := (D<Y, D20) in the category D(R) whose heart is the module category.

Before stating the main result, we recall the following:
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Definition 1.5.10. Let C be a cocomplete category. An object C' € C is finitely presented
if for every direct limit ligXi € C, the canonical map

@Homc(C, X;) — Home(C, thz)
is an isomorphism.

The following theorem ensures that the heart obtained from a cosilting torsion pair
is a locally coherent category. See [54, Theorem 2.16 (iii)] for this formulation.

Theorem 1.5.11 ( [51], [562, Theorem 1.2], [53, Theorem 7.1| ). Let R be a left noetherian
ring. Let t be a torsion pair in R-Mod. Let Dy be the HRS-tilt of the standard t-structure
at the torsion pair t. Then the following are equivalent:

(i) t € Cosilt(R)

(i1) Hy, the heart of Dy, is a locally coherent Grothendieck category whose subcategory
of finitely presented objects is Hy N D’(R-mod).

For a general ring, we can still say that the heart is locally finitely presented:

Theorem 1.5.12 ( [53, Theorem 6.1 ). Let R be a ring. Let t be a torsion pair in
R-Mod. Let D¢ be the HRS-tilt of the standard t-structure at the torsion pair t. Then
the following are equivalent:

(i) t € Cosilt(R)

(ii) Hy, the heart of Dy, is a locally finitely presented Grothendieck category.

1.6 7-tilting theory

Let A be an artin algebra. Denote by 7 the Auslander-Reiten translation on A-mod (see
[15, Section IV.1]). For any M € A-mod denote by |M| the number of non-isomorphic
indecomposable summands of M.

1.6.1 Functorially finite torsion pairs over artin algebras

For the definition of a functorially finite subcategory see Section [1.2.2] Over an artin
algebra, the following classical result of Smalg shows a special symmetry for torsion pairs:

Theorem 1.6.1 ([61]). Let A be an artin algebra. Let (t,f) be a torsion pair in A-mod.
Then t is functorially finite if and only if £ is functorially finite.

This result is crucial in all the theorems dealing with the notion of mutation of a
T—tilting module, in particular the assumption that the base ring is an artin algebra will
be necessary for many of the results in this thesis.



22 CHAPTER 1. PRELIMINARIES

Example 1.6.2. We give an example of a torsion pair in the category of finitely presented
modules over a commutative noetherian ring whose torsionfree class is functorially finite,
but whose torston class is not.

Consider the torsion pair (tors, add(Z)) in Z-mod consisting of the finitely generated
torsion groups and the finitely generated torsionfree groups.

Then add(Z) is functorially finite, but tors is not. In fact, assume we had a left
approzimation f : Z — T. Then [ is not a monomorphism, as any subgroup of a
torsion group is again torsion, so it has a non-zero kernel of the form nZ. Let p be a
prime number, such that p does not divide n. Then the map Z — Z/(pZ) can not factor
through f, a contradiction.

1.6.2 7—tilting modules

Note that, in the literature, 7—tilting theory was developed for finite dimensional alge-
bras. Here we only assume that our base ring is an artin algebra. The results we need
still hold, with the same proofs, in this slightly more general context.

Definition 1.6.3 (]I, Definition 0.1]). A module M € A-mod is 7—tilting if:
(i) Homp (M, 7M) =0 (i.e. M is 7—rigid )
(i) [M]=|A].

Moreover, M is support T—tilting if there exists some idempotent e € A such that M is
a T—tilting module over A/(e).

The results in this section have dual versions involving the concept of 7~ !—tilting
modules. We won’t give the dual statements.

Definition 1.6.4. A module M € A-mod is 77! -tilting if:
(i) Homp (77 1M, M) =0 (i.e. M is 7 1—rigid )
(i) [M] = [A].

Moreover, M is support 7~ —tilting if there exists some idempotent e € A such that M
is a 7~ 1 —tilting module over A/(e).

The following is the first fundamental result, showing that support 7—tilting modules
parametrise functorially finite torsion classes ( thus in view of functorially finite
torsionfree classes ).

Theorem 1.6.5 ([I]). The map assigning to a module M the smallest torsion class
containing it gives a bijection between:

(i) The set st — tilt(A) of isomorphism classes of basic support T—tilting modules over

A.

(i) The set ftors(A) of functorially finite torsion classes in A-mod.
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As a consequence of Theorem|1.4.16|, (arbitrary) torsion pairs in A - mod are parametrised
by silting modules. It turns out that support 7—tilting modules are precisely the finitely
generated silting modules:

Proposition 1.6.6 ([8]). A4 module M € A-mod is a support T—tilting module if and
only if it is a silting module.

We can set a partial order on the set of isomorphism classes of support 7—tilting
modules:

Definition 1.6.7. Let M, N € st — tilt(A), then we set M > N iff gen(M) D gen(NV).

Support 7—tilting modules are well behaved with respect to mutation. However, in
order to describe this procedure, we need to keep track of some additional data.

Definition 1.6.8. Let (7, P) be a pair of finitely generated A—modules. Then (7', P) is
a (almost complete ) support T—tilting pair if:

(i) T is a T7—rigid module.
(ii) P is projective and Hom(P,T) = 0.
(iii) |T|+|P| =|A| (resp. [A|—1).

Definition 1.6.9. Two basic support T7—tilting pairs (T, P) and (7", P’) for A are mu-
tations of each other if there exists an almost complete support T7—tilting pair (U, Q)
which is a common direct summand of both.

In this case there is precisely one indecomposable direct summand X of (7, P) which
is not a summand of (7", P’) and we write T" = pux (T).

Remark 1.6.10. We will introduce in the following chapters a concept of mutation for
infinitely generated cosilting modules developed in [6].

The conditions to obtain this generalized mutation are weaker and related to some
properties of intervals of torsion pairs.

The mutations defined in[1.6.9 will be called irreducible in the new terminology.

Theorem 1.6.11 ( [I, Prop. 2.28] ). Let T = X & U and T' be support T—tilting A-
modules such that T" = pux (T) for some indecomposable A-module X . Then either T > T’
or T < T' holds. We say that T is a left mutation (respectively, right mutation ) of T
and we write T' = p (T) (respectively, T = py(T)) if X € gen(U) (resp. X ¢ gen(U)).

Mutation describes the covering relation in the poset of functorially finite torsion
classes.

Theorem 1.6.12 ( [I, Thm. 2.33] ). The following are equivalent for T,U € st — tilt(A):
(i) U is a left mutation of T

(1) T is a right mutation of U.
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(i) T > U and there is no V € st — tilt(A) such that T >V > U.
This result was strengthened in [31]:

Theorem 1.6.13 ([31]). Let t € ftors(A). If s is a torsion class with t 2 s then there
exists a mazimal torsion class t' with respect to the property t 2t D s.

Such a class is functorially finite and the corresponding support T—tilting module is
therefore a mutation of the support T—tilting module corresponding to t.

Remark 1.6.14. As an immediate consequence of the results above any class covered in
the poset tors(A) by a functorially finite class must be functorially finite.

Moreover, if there exists any non-functorially finite torsion class t in A-mod, an
iterated application of Theorem starting from the obvious inclusion A-mod D t
yields a countably infinite descending chain {w;} of functorially finite torsion classes

A-mod=ug2uy Qug---2u, 2+ Ot

=

1.6.3 r7-tilting finite algebras

The concept of a 7-tilting finite algebra was introduced in [3I]. In the same paper the
authors discovered the connection between 7-rigid modules and bricks. More recently,
T-tilting finite algebras were characterized in terms of the existence of infinitely generated
silting modules [10].

Definition 1.6.15. Let A be an artin algebra. We say that A is 7-tilting finite if there
are only finitely many isoclasses of basic 7-tilting modules.

Definition 1.6.16. A module B € A-Mod is a brick if its endomorphism ring is a
skew-field. A set S of bricks is a semibrick if for all B,B’ € S with B # B’ we have
Homy (B, B’) = 0.

Theorem 1.6.17 ([31]). The following statements are equivalent for an artin algebra A:
(i) A is T-tilting finite.
(i) There exists only a finite number of bricks, up to isomorphism, in A-mod.
(iii) Ewvery torsion, or equivalently torsionfree class, in A-mod is functorially finite.
The third item in the theorem above was given a large analogue in the following:

Theorem 1.6.18 ([10]). An artin algebra A is T-tilting finite if and only if every torsion
class in A-Mod is generated by some finitely generated silting module or, in other words,
if and only if every silting module is equivalent to a finitely generated one.

Examples 1.6.19. (1) Ewvery representation-finite algebra is in particular T—tilting fi-
nite.
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(2) Nonetheless, there are many easy examples of T—tilting finite algebras which are of
infinite representation type.

Consider the local algebra A = k[X,Y]/(X,Y)3, over some field k, which was shown
to be wild by Gelfand and Ponomarev [38].

By [1, Example 6.1], every local algebra is T—tilting finite. So A is a representation
wnfinite, but T—tilting finite algebra.
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Chapter 2

A brick version of a theorem of
Auslander

In this chapter we discuss the role of large bricks in the study of torsion pairs in the
category of finitely presented modules over an artin algebra A. In particular, we will
show that the existence of a large brick is equivalent to the existence of a non-functorially
finite torsion class.

The main result of this chapter (Theorem can be seen as a brick analogue of
the following result of Auslander:

Theorem 2.0.1 ([13]). An artin algebra A is representation-finite if and only if every
indecomposable module is finitely generated.

In the following, uniqueness or finiteness of some set of objects are always to be
intended up to isomorphism.

2.1 Characteristic bricks

The concept of torsionfree, almost torsion modules was already being used by Herzog in
2009, as a tool for studying critical summands of cotilting modules.
More recently, Barnard, Carroll and Zhu introduced the related concept of minimal
extending modules in their work on the lattice of torsion classes of the category A-mod.
In this section R will be a left noetherian ring.

Definition 2.1.1 ([42],[17]). Let (7, F) be a torsion pair in R-Mod ( resp. in R-mod
). Let B # 0 be a (finitely generated ) R module. We say that B is torsionfree, almost
torsion ( resp. minimal extending ) with respect to (T, F), if:

(1) BeF
(2) Every proper quotient of B is contained in 7.

(3) For every short exact sequence 0 - B — F — M — 0, if F' € F, then M € F.

27
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Condition (2) is equivalent to:
(2’) For any F' € F any nonzero morphism B — F' is a monomorphism
Moreover, assuming conditions (1)-(2), we have the following reformulation of (3):

(3’) For every non-split short exact sequence 0 - B — M — T — 0, if T € T then
MeT.

Dually, we can define torsion, almost torsionfree (and minimal co-extending) modules.

Remark 2.1.2. A note on the terminology: we will also use the expression torsionfree,
almost torsion in or for F in place of torsionfree, almost torsion with respect to (T, F)
when referring only to the torsionfree class.

Moreover, if the torsion pair we are considering is easily identifiable, we will omit an
explicit reference to it.

We will use the expression characteristic brick, when referring to a torsion, almost
torsionfree or torsionfree, almost torsion module. This name is justified, as all such
modules are bricks.

Lemma 2.1.3. For a module satisfying (1) and (2), condition (3) is equivalent to con-
dition (3’).

Proof. Fix a module B # 0 satisfying (1) and (2) with respect to some torsion pair
(T,F).
7(3) = (3')” : Assume B satisfies condition (3). Consider a short exact sequence
0—-B—M—T—0, with T torsion.

Take the short exact sequence given by the torsion pair

0—=tM—M— M/tM —0

with tM torsion, M /tM torsionfree.

Since B satisfies (2) the map g : B — M — M/tM is zero or injective. Assume it is
zero. Then we have the following commutative diagram, obtained by the snake lemma
and the universal property of the kernel:

0 B tM tM/B —— 0
| I

0 B M T 0
| |
0 — M/tM —~— M’ 0

Since T is torsion, the map T' — M’ must be zero, therefore M /tM = 0 and M is torsion.
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Assume now that g is injective. Consider the following commutative diagram:

0 0 tM = T 0
| / l

0 B M T 0
I

0 — B —— M/tM M’ 0

By (3) the module M’ is both torsion and torsion-free, therefore M’ = 0 and the sequence
is split. In conclusion, B satisfies (3’).

7(3") = (3)” : Assume now B satisfies (3’). Take a short exact sequence 0 — B —
F — M — 0, with F torsionfree. Consider the torsion, torsionfree sequence for M as
above and take the pullback to obtain the commutative diagram:

00— B —— M tM 0
[
0 B F M 0

Since M’ is a submodule of F it is torsionfree. Now applying the contrapositive of (3’)
it follows that the sequence above splits, whence tM = 0 and M is torsionfree. ]

2.1.1 A general notion

In [35] Enomoto studies torsion classes, torsionfree classes and wide subcategories by
means of relative simple objects.

These simple objects in general don’t satisfy Schur’s lemma in the module category,
one can thus consider the following notions of coherent-cocoherent ( see [44, Exercise
8.23] ) and simple objects:

Definition 2.1.4. Let C C A-Mod be an additive subcategory. Let M € C.
Then M is coherent in C if for all f: C' — M in C, ker(f) € genC.
Dually, M is cocoherent in C if for all f: M — C in C, coker(f) € cogenC.
A module 0 # S € C is C-simple if:

(S1) Forall 0 # f: S — C in C, we have ker(f) € C*o.
(S2) Forall 0 # f : C — S in C we have coker(f) € +°C.
The following lemma is an immediate consequence of the definition:

Lemma 2.1.5. Let C C A-Mod be an additive subcategory. Then the collection of all
coherent-cocoherent C-simple objects is a semibrick in A-Mod.

Examples 2.1.6. (1) If the category C is wide then every object is coherent and coco-
herent.
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(2) If C is a torsion class, then 0 # M is C-simple if and only if every proper submodule
of M 1is torsionfree.

(2°) Dually, if C is a torsionfree class, then 0 # M is C-simple if and only if every
proper quotient of M 1is torsion.

(8) If C is a torsion class, then every object is cocoherent, as torsion classes are closed
under quotients, and a coherent C-simple is precisely a torsion, almost torsionfree
module.

(8’) Dually, for a torsionfree class the cocoherent simples are the torsionfree, almost
torsion modules.

2.1.2 The small and the large ones

Since the definition of minimal extending modules for a torsion pair in R-mod is identical
to the definition of torsionfree, almost torsion modules for torsion pairs in R-Mod, we
rightfully expect to have a relation between the two notions.

This is indeed the case, if we choose torsion pairs related by the bijection in Theorem

L.3.28:

Proposition 2.1.7. Let R be a left noetherian ring. Let (t,f) be a torsion pair in R-mod
and (T = li_Ir;t,]-' = hgnf) the corresponding torsion pair in R-Mod with definable
torsionfree class.

Then the minimal extending modules with respect to (t,f) are precisely the finitely
generated torsionfree, almost torsion modules with respect to (T, F).

Moreover, all torsion, almost torsionfree modules with respect to (T,F) are finitely
generated and coincide with the minimal co-extending modules with respect to (t,f).

We will need the following lemma in the proof:

Lemma 2.1.8. Let (T,F) be a torsion pair with F € Cosilt(R). Then all the torsion,
almost torsionfree modules are finitely generated.

Over an artin algebra A, we can say dually that for a torsion pair in Silt(A) all
torsionfree, almost torsion modules are finitely generated.

Proof. By Theorem the torsion pair can be written as (Gen(t),t10) with t :=
T N R-mod a torsion class in R-mod.

Agsume T is torsion, almost torsionfree and T' ¢ R-mod. By assumption, all proper
submodules of T', in particular all possible images of morphisms from a finitely generated
module, must be torsionfree, whence T' € t0. This yields a contradiction.

For the second case proceed dually using Theorem [L.3.30] O

Now we can prove the proposition:
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Proof. 1t is clear that the finitely generated torsionfree, almost torsion modules with
respect to (7, F) are minimal extending with respect to (t,f) .

So suppose that S is minimal extending in f. We have immediately S € F and that
all its proper quotients are in t, so in particular in 7.

The only condition that we have to check is the last one: consider a short exact
sequence

f

0 S F M 0

with F € F. Recall that F = t'°. Hence suppose we have a map T — M with T € t
which we may assume to be injective; taking the pullback along ' — M we obtain the
commutative diagram:

O—S—os P —T ——0
L
0O——S —F —— M —0

Since the upper sequence is contained in R-mod, by the minimal extending property
(3’) of S, P must be torsion or the upper sequence must split.

Since P is a submodule of F' it must be torsionfree, so the sequence splits, and T' = 0,
proving that M € t1o.

The proof of the second statement is more involved, as the available description of T
is less practical to work with.

We need to check that every minimal co-extending module in t is torsion, almost
torsionfree in 7.

Let S be minimal co-extending. By definition S € t C 7.

The second property is immediately verified, as every proper submodule of S is an
element of f C F.

For the third property, consider a short exact sequence:

f

0 K T S 0

with T € 7. By Theorem [1.3.28| we can find a family {U;}ier of objects of t, with an
epimorphism h : [[,U; = T.

Since S is finitely generated, we can find a finite subset Iy C I such that f= fohouy,
is surjective (where ¢z, : [[; Ui — [[; Ui is the canonical inclusion ).

By definition, [[; U; € t, whence K' = ker f is a torsion module, as S is minimal
co-extending.

Consider the following pullback diagram:
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0 0

0 K T—IL .5 0
H 7

0 K P I, Ui — 0

00— 0 — K ——K —— 0
0 0

Notice that P € T since T and K’ are torsion modules.

Then consider the map h o ¢y, : Hlo U; — T. Using the universal property of the
pullback, we obtain the following commutative diagram:

T s

[

P— HIoUi

Thus the middle horizontal short exact sequence in the first diagram splits, hence K €

T. O

Given any torsion pair (7, F) in R-Mod, the corresponding torsion, almost torsion-
free and torsionfree, almost torsion modules have several orthogonality properties.

These follow immediately, once we have noticed that these modules are the simple
objects of a suitable abelian category.

Proposition 2.1.9 ([3]). Let (T,F) in R-Mod be a torsion pair, H the heart of the
associated HRS t-structure in D(R).

Then an object M € H is simple if and only if M = T[—1] for some torsion, almost
torsionfree module or M = F for some torsionfree, almost torsion module.

Corollary 2.1.10. Let (T,F) in R-Mod be a torsion pair. Let T be torsion, almost
torsionfree in T and F torsionfree, almost torsion in F.
Then ExtR(T, F) = 0.

Proof. In the HRS-heart H we have two distinct simple objects T'[—1] and F. It follows
that 0 = Homy (T[—1], F) = Homp g (T[-1], F) = Ext(T, F). O
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2.2 Torsionfree, almost torsion in cosilting classes

R will be a left noetherian ring. In this section we prove directly the existence of some
torsionfree, almost torsion module for any non-zero cosilting class.
We will obtain this as an application of Theorem [1.5.11}

Proposition 2.2.1. Let C' # 0 be a cosilting R—module. Then the class Cogen C admits
some torsionfree, almost torsion module.

Proof. Consider the HRS-t-structure constructed from Cogen C'. By Theorem its
heart is a locally coherent Grothendieck category and every finitely presented module in
Cogen C' gives a corresponding finitely presented object in the torsion class Cogen C' in
the heart.

Since CogenC' # 0 by assumption, Theorem implies the existence of some
non-zero module F € Cogen C' N R-mod.

When seen as an object in the heart F' is still finitely presented, in particular finitely
generated. Thus, we can find a maximal subobject of F' and a corresponding simple
quotient S. As Cogen C is a torsion class in the heart, S € Cogen C' and, by Proposition
[2.1.9] the corresponding module is torsionfree, almost torsion for Cogen C'. O

From the proof we can also deduce the following corollary:

Corollary 2.2.2. Let C be a cosilting R—module. Then for every finitely presented
module M € Cogen C' there exists a non-zero map f : M — F with I torsionfree, almost
torsion.

Over a left artin ring a cosilting module can be recovered from its torsionfree, almost
torsion modules. This is a direct consequence of the following observation due to Enomoto
(we include a proof for completeness):

Proposition 2.2.3 ([35]). Let L be an abelian length category. Let £ C L be a torsionfree
class. Then £ = filt(simp(f)), where simp(f) is the set of f-simples ( in this case the
objects of £ whose proper quotients are torsion).

Proof. Since f is closed under extensions, filt(simp(f)) C f is trivial.

For the other inclusion, let F' € f. Since every object of £ has finite length by
definition, we can proceed by induction on n the length of F.

For n = 1, the object is simple in £ thus it is also f-simple and therefore it is an
element of filt(simp(f)).

Assume every object of length less than some fixed n > 1 has a filtration by f-simples,
and let F' be an object of length n. Either F is f-simple, and in that case we are done,
or we can find a short exact sequence 0 - K — F — @ — 0 with all terms in f and
K,Q#0.

In particular, the lengths of K and @ will be strictly less than n, so, by induction
hypothesis, both K and @ are in filt(simp(f)). Since this class is closed under extensions,
F e filt(simp(f)). O
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Proposition 2.2.4. Let A be a left artinian ring. F,V € Cosilt(A). Then F =V if
and only if the torsionfree, almost torsion modules for F and V coincide.

Proof. One of the implications is trivial. So assume the second condition holds. By
Theorem it is enough to show that f = FN A-mod =v =V N A-mod.

Since A is left artinian, A-mod is a length category thus Proposition [2.2.3] yields that
it is sufficient to show that simp(f) = simp(v).

So let S be an f-simple object. By Corollary[2.2.2) we have a non-zero map f : S — F
with F' a torsionfree, almost torsion module for F. Since every proper quotient of S is
torsion, this map must be injective.

Now F' is also torsionfree, almost torsion for V), thus since this class is closed under
submodules, S € v. Therefore simp(f) C v and thus f C v. Inverting the roles of the
two torsionfree classes we obtain the reverse inclusion. O

Remark 2.2.5. Minimal extending modules (i.e. finitely generated torsionfree, almost
torsion modules ) are not enough to determine cosilting torsionfree classes: in fact there
are non-zero cosilting classes without minimal extending modules, the easiest example
being given by the torsion pair generated by the regular modules over the path algebra of
a representation-infinite quiver (e.g. the Kronecker quiver).

2.2.1 Extensions of functorially finite pairs

See Sections and for the terminology used in this section.

Let A be an artin algebra. Functorially finite torsion pairs in A-mod can be charac-
terized as those pairs admitting a unique extension to A-Mod, as observed in [63]. We
include a proof for completeness.

Proposition 2.2.6 ([63], Proposition 5.3]). Let (t,f) be a torsion pair in A-mod . Then
the following statements are equivalent:

(1) t is functorially finite.

(2) There exists a coherent torsion pair (T,F) in A-Mod eztending (t,f).
(8) There is a unique torsion pair extending (t,f) to A-Mod.

(4) ttonLof =0.

(5) For any silting module T generating the definable torsion class Cogen,(t) and
any cosilting module C cogenerating the definable torsionfree class %nf, we have
Hom(7',C) = 0.

Proof. "(1) = (2)" : By Theorem we find a support 7—tilting module 7" gener-
ating t. The torsion pair (T(T), 7+°) in A —Mod extends the original torsion pair and it
is definable on both sides: T(T) = Gen(gen(T')) = Gen(T') = lim(gen(T’)) by Theorem
To obtain definability of the last torsion class we can apply a result of Lenzing,
see [55, Corollary 3.4.37], since gen(7T') is functorially finite.
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"(2) = (1)" : Specialising Theorem to the artin algebra case, we obtain
that the torsion class is generated by a finitely presented silting module, that is a support
T—tilting module. Therefore the restriction is functorially finite.

"(2) = (3)": Using Theorems [1.3.28 and [1.3.30] it follows that 7 = *of and
F = tto. Let (U,V) be a torsion pair in A—Mod extending (t,f). Then, we have
V =Uto Ctto and U = LoV C Lof. From this we deduce that V = U0 = (Loy)to D
(Lof)J-0 = F. In conclusion V = F, proving that there is a unique extension.

"(3) = (2)" : Immediate, using the fact that the extension with definable torsion
class and the one with definable torsionfree class must coincide.

"(3) = (4)": By (3), Gen(t) = 1of, thus t'o n+of = 0.

"(4) = (5)" : The image of any morphism f : T — C lies in t-° N Lof which is 0
by (4).

"(5) = (3)" : By (5) we have limt C Cogen, (t) = Gen(T) C toC = Lo (hg f) =
liﬂt. Thus the largest and the smallest extensions of t coincide. O

2.3 The lattice of torsion classes

Let A be an artin algebra. There is a natural partial order on the collection of torsion
classes tors(A) of A-mod given by inclusion.

As shown in [32] the resulting poset has the structure of a complete lattice and enjoys
several nice lattice-theoretic properties.

More explicitely, we have the following description of the meet and join of a set
indexed family {t;};c; of torsion classes:

/I\ti = Oti ; \/ti = ’I‘(ijm)

We recall also some basic lattice theoretic terminology:
Definition 2.3.1. Let (L, <) be a poset, x,y € L:

(1) The interval [z,y] is the poset supported by those z € L with x < z < y. No-
tice that if L is a (complete) lattice, any non-empty interval in L is a (complete)
sublattice of L.

(2) We say that y covers x if x < y and for any z € L such that x < z < y, either
z=xorz=y.

(3) Let L be a lattice. An element x is meet irreducible if whenever z = y A z we must
have z =y or x = z. If L is complete, an element x is completely meet irreducible
if whenever x = A; y;, with y; € L, we must have z = y; for some j € I.

This condition can be restated as follows: there is a unique element x* covering x,
and for every y > x we have y > z*.
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(3’) Let L be a lattice. An element x is join irreducible if whenever x = y V z we must
have x = y or ¢ = z. If L is complete, an element = is completely join irreducible
if whenever = \/; y;, with y; € L, we must have z = y; for some j € I.

This condition can be restated as follows: there is a unique element z* covered by
x, and for every y < x we have y < x*.

(4) A poset L has finite length if every chain in L stabilizes.

We recall a result proven in [17], relating minimal extending modules with the covering
relation in tors(A).

Theorem 2.3.2 ([I7, Theorem 1.0.2]). Let t € tors(A), S be a collection of representa-
tives of the isoclasses of minimal extending modules with respect to (t,f).
Then the elements of S are in bijection with torsion classes covering t.

A typical phenomenon for the lattice of torsion pairs in the 7—tilting infinite case is
the presence of non-trivial locally maximal elements.

Definition 2.3.3. Let t € tors(A). We say that t is locally mazimal if there are no
elements of tors(A) covering t.

Remark 2.3.4. Any locally mazximal torsion class is obtained as the meet of all the
strictly larger torsion classes. In particular, such classes are never completely meet irre-
ducible.

Also, notice that there is a unique functorially finite locally mazimal element, namely
the torsion class A-mod, which is by definition the meet of the empty set.

In fact, for any functorially finite torsion class t properly contained in some other
class u, it is possible, by means of mutation, to find a class t* covering t such that t* < u.
See [31].

Lemma 2.3.5. Let t € tors(A) be a meet irreducible, but not completely meet irreducible
element, then t is locally mazimal.

Proof. Assume by contradiction t has some covering class. By meet irreducibility it has
precisely one, say t*.

As t is not completely meet-irreducible, but it has just one covering class, there must
be some torsion class u 2 t such that u 2 t*.

But this is absurd, since u A t* = t. So t is locally maximal. O

Example 2.3.6. We discuss the most common example of a torsion pair without minimal
extending modules. Let k be an algebraically closed field.

Let A = kK5 be the Kronecker algebra, obtained as the path algebra of the quiver
0—=1.

This is a finite-dimensional tame hereditary algebra, as such, we have that any in-
decomposable in A -mod is contained in the preprojective p, reqular r or preinjective q
component of the AR-quiver.
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Figure 2.1: Torsion pairs in kK2 — mod

Recall that the additive closure of the regular component r is a wide subcategory of
A -mod whose simple objects are called simple regular modules.

The torsion class generated by the modules in the reqular component ’i‘(r) contains
all the reqular and preinjective modules, but no preprojective module.

The preprojective component contains a countable collection of bricks P;, such that
T(P;) D T(Pyy1) fori > 1. Moreover, Ni>1 T(P) = T(r).

_ Any torsion class larger than 'i‘(r) 1s of the form ’T‘(PZ) for some P;, so it follows that
T(r) is locally mazimal.

Consider now the corresponding cosilting torsion pair in A-Mod. By Proposition
we know that there must be some torsionfree, almost torsion module for this torsion
pair, which is necessarily infinitely generated as the corresponding torsion pair in A -mod
has no minimal extending modules.

It is easy to compute the torsion, almost torsionfree modules for this torsion pair:
they are precisely the simple regular modules {S;}r.

By Corollary [2.1.10, it follows that the torsionfree, almost torsion modules must lie
in the orthogonal category ({S;}r)*01 which is known to be equivalent to the module
category k(X)-Mod.

Such a subcategory contains a unique brick, up to isomorphism, since k(X) is a field,
and this brick is the generic module G described by Ringel [57, Theorem 5.3, Section 5.7].

Since a torsionfree, almost torsion module must exist, we conclude that G is the unique
torsionfree, almost torsion module for the extended torsion pair.

2.3.1 Locally maximal torsion classes for 7—tilting infinite algebras

We need some preparations to show the existence of non functorially finite locally maxi-
mal torsion classes:
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Definition 2.3.7. Let L be a complete lattice. An element x € L is compact if for every
set-indexed family {;}icr such that < \/,.;y; there exists a finite subset J C I such
that 2 < \/,c; ;. Dually we have the notion of a co-compact element.

We will use the following observation ( the contrapositive of [31, Lemma 3.10] ).

Lemma 2.3.8. Let t € tors(A) be a functorially finite torsion class. Let {t;} be a chain
of torsion classes indexed by some ordinal.
If t =/, t;, then there exists some j such that t; =t.

Proof. Any functorially finite torsion class is both compact and co-compact |32, Propo-
sition 3.2|, in particular, there exists a finite subchain t;, such that t =\/, t;,. Whence,
t; =t for some j. O

Lemma 2.3.9. Let uy,us be functorially finite torsion classes in A-mod and I =
[uy, ug] C tors(A) be the corresponding interval.

Then if I has not finite length, it contains a mazximal and a minimal non functorially
finite torsion class tmaz and tyin-

Moreover, t,qq 15 meet irreducible in I but not completely meet irreducible, while t,,;,
15 join irreducible in I but not completely join irreducible.

Proof. We denote by nftors(A) C tors(A) the poset of non functorially finite torsion
classes.

By assumption, I must contain either an infinite strictly ascending chain or an infinite
strictly descending chain.

Since [ is a complete sublattice, the join of the first chain, or the meet of the second
one yields a non functorially finite class lying in I ( using compactness, or co-compactness
of functorially finite torsion classes ), proving that the poset nI = I N nftors(A) is not
empty.

This poset and its dual satisfy the hypotheses of Zorn’s lemma, in fact for any chain
in nl the join, or meet, of the chain in I is again a non functorially finite torsion class
by Lemma and its dual, giving the required upper, or lower, bound.

So we conclude that n/ has a maximal and a minimal element.

Now, if t is such a maximal element, then starting with the obvious inclusion t C
uy and applying inductively [31, Theorem 3.1] it is possible to construct an infinite
descending chain of functorially finite torsion classest C ... Ct, C--- C t; C tg = us.

Now, by co-compactness the meet of an infinite strictly descending chain is not func-
torially finite, whence we can conclude by maximality that t = /\,_yt;, proving that it
is not completely meet irreducible.

Agsume now that t =s; Ass , for some s; € 1.

By the definition of meet, t <'s;, so if any of the two is not functorially finite, we
must have equality, by maximality in nl.

So assume they are both functorially finite. By the argument above, t = A,y ti,
but by co-compactness of s; there is some index j, such that t; < si,s9, but this is a
contradiction, since t; > t. So maximal non functorially finite torsion classes are meet
irreducible in 1.
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Dual arguments yield the dual results. O

Corollary 2.3.10. Let A be a T—tilting infinite algebra, then there exists a mazimal non
functorially finite torsion class. Such torsion class is meet irreducible, but not completely
meet irreducible, hence locally mazimal.

Proof. Apply the lemma above to the interval [0, A - mod] which has infinite length, see
[31, Proposition 3.9], to obtain a maximal element t in nftors(A) with the required
properties. O

2.4 Large bricks

We need a last lemma before proceeding into the proof of the main theorem of this
chapter. This construction is already present in the literature, see [17] and [I8], we give
a proof for the convenience of the reader:

Lemma 2.4.1. Let B € A-Mod be a brick. Then B is the unique torsion, almost
torsionfree module for the torsion pair (T(B), B0).

Proof. We check the three conditions dual to those in Definition 2.1.1}

(1) B € T(B) by definition.

(2) Since B is a brick, for every proper submodule M of B we must have M € B1o,
that is, M is torsionfree.

(37) Consider a short exact sequence:

f

0 F M B 0

with '€ B0, If M ¢ B*0,let 0 # g: B — M. Since F is torsionfree, g can not factor
through F, in particular f o g # 0.

Since B is a brick this endomorphism must be invertible, which means that the
sequence splits. This proves that B is torsion, almost torsionfree.

Any other torsion, almost torsionfree module S, if not isomorphic to B, would be
orthogonal to it, in particular torsionfree. This is a contradiction, yielding uniqueness
(up to isomorphism). O

Lemma 2.4.2. Let A be a T—tilting finite algebra. Then every brick in A-Mod is finitely
generated.

Proof. Let B be a brick. By Lemma the module B is torsion, almost torsionfree
with respect to (T(B), B10).

The restriction of (T(B), BX°) to A-mod is necessarily functorially finite, as all
torsion classes in A - mod are functorially finite by hypothesis.

By Proposition m (T(B), B*°) is the unique extension of the functorially finite
torsion pair obtained above, thus it is a cosilting torsion pair.

Whence, by Lemma , all the torsion, almost torsionfree modules for (T(B), B+0)
are finitely generated. This means that the brick B is finitely generated. O
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Lemma 2.4.3. Let A be a T—tilting infinite algebra. Then there exists some infinitely
generated brick in A-Mod.

Proof. Apply Corollary to obtain a locally maximal non functorially finite torsion
class t in A-mod.
By Theorem [2.3.2] the torsion pair (t,f) has no minimal extending modules.
Consider now the corresponding torsion pair under the bijection in Theorem

(T =limt, F = lim f).

By Proposition there is some torsionfree, almost torsion module B for this torsion
pair.

If B were finitely generated, by Proposition 2.1.8] it would be minimal extending for
the original torsion pair (t,f) which gives a contradiction. O

Combining the two lemmas we can finally obtain:

Theorem 2.4.4. An artin algebra A is T—tilting finite if and only if every brick over A
18 finitely generated.

Several questions remain open at this point: can we characterise the bricks which can
be obtained as torsionfree, almost torsion modules with respect to a cosilting torsion pair?
We know that all such modules can be embedded in some indecomposable pure-injective
module, thus there is a bound on their cardinality.

We know that finitely generated bricks parametrize all the completely meet-irreducible
torsion classes. Is there any connection between large bricks and meet-irreducible, but
not completely meet-irreducible torsion classes?

Moreover, classically we have a connection between ring epimorphisms from A to
a divison ring and endofinite bricks. If it were possible to show the existence of some
endofinite infinitely generated torsionfree, almost torsion module in the 7—tilting infinite
case, this could give some further insight on the following conjecture proposed in [10]:

Conjecture 2.4.5. An artin algebra A is T—tilting infinite if and only if there exists a
pseudo-flat ring epimorphism A — T' such that T is not artinian.



Chapter 3

Wide subcategories and extending
modules

The content of this chapter is joint work with Lidia Angeleri-Hiigel.

In the previous chapter we studied characteristic bricks as simple objects in some
heart in the derived category.

In this chapter we consider them as simple objects in some wide subcategory of the
module category. This approach is not new: for every torsion class in the category of
finitely generated modules over an artin algebra, brick labels, in the sense of [32], were
shown to be simple objects in some special wide subcategory in [11], [12].

More closely to our terminology, minimal co-extending modules are shown to be the
simple objects in the wide subcategory of coherent objects of a torsion class in [I§].

The wide subcategories we are interested in were firstly introduced and studied for
arbitrary artin algebras in [48] to extend the Ingalls-Thomas bijections [43] holding for
hereditary algebras. Such subcategories were further investigated for “large” torsion
classes in [10].

In general, these categories consist of coherent/co-coherent objects in the sense of
Definition 2.T.4l

Focusing once again on the interplay between torsion pairs in the small and the large
module category we will give a compatibility result ( Proposition ) for cosilting
torsion pairs, extending Proposition from the simple objects to the whole wide
subcategories.

We then use the approximation sequence provided by every cosilting module, see
Proposition to give a description of these Ingalls-Thomas subcategories as some
orthogonal categories in Theorems [3.2.1] 3.2.13] From these two theorems we can im-
mediately deduce that all the wide subcategories obtained from a cosilting torsion pair
must be closed under coproducts.

In the last sections of this chapter we give applications of our results to 7—tilting
theory, Propositions [3.2.32] and [3.3.§], and Ext-orthogonal pairs, see Proposition [3.3.18]

Before starting we recall the definition of a wide subcategory:

41



42 CHAPTER 3. WIDE SUBCATEGORIES

Definition 3.0.1. Let A be an abelian category. A subcategory W C A is wide if it is
closed under kernels, cokernels and extensions.

3.1 Coherent and co-coherent objects

In this section we adapt to our terminology and dualize some already known results.

Definition 3.1.1. Let (7, F) a torsion pair in some abelian category A. We define:

AT)={XecA| foralTeT,f:T— X, ker(f) e T}
B(F)={Xe€A| forall FeF,f: X — F,coker(f) e F}
a(T)=TNA(T)

B(F) = FNB(F)

If Ais a small category in some sense, e.g. if it is the category of finitely presented objects
in some locally noetherian Grothendieck category G, then we will use the symbols A B,
o and B for these operators in A.

Remark 3.1.2. According to Definition the category o(T) consists of the coherent
objects of the torsion class. Dually, the category B(F) consists of the co-coherent objects
of the torsionfree class.

Lemma 3.1.3. Let (T,F) a torsion pair in A. Then:

(i) The subcategory A(T) is closed under subobjects and extensions. Moreover, F C
A(T).

(i) The subcategory B(F) is closed under quotients and extensions. Moreover, T C

B(F).

g‘“l

T) is a wide subcategory of A. It is closed under torsion subobjects.

(ii) a(T)
(iv) B(F) is a wide subcategory of A. It is closed under torsionfree quotients.
(v) A(T)
(vi) B(F) =T = B(F)
(vii) a(T)
(viii) B(F) =

Proof. We give a proof of (i), (iii), (v) and (vii), the other points having similar proofs.

ao(T)*F

0 if and only if A(T) = F.

0 if and only if B(F) =T.

(i) First, notice that if F' € F then for every T € T, Hompg (T, F) = 0. Thus, every
such object F' is trivially an element of A(7).
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Let X € A(T), consider Y < X. Then for every torsion object T" and every map
f:T =Y, the kernel of f is equal to the kernel of the composition of f with an
embedding of Y into X. Thus, Y is in A(T).

Let 0 X' y -2 x” 0 be ashort exact sequence with X/, X ¢

A(T). Let f: T — Y be some map. Consider the following commutative diagram:

0 ——> ker(gof) —— T —— Im(go f) —— 0

N

0 X’ Y 9 X" 0

By the previous point, Im(g o f) € A(T), thus ker(g o f) € 7. An application of
the snake lemma yields that ker(f) = ker(h) and this is a torsion module since
X' € A(T). Thus, A(T) is closed under extensions.

First, A(T) is closed under subobjects. So every subobject of an object in a(7)
which is in 7 is an element of «(T).

To see that «(7) is wide we need to check that it is closed under extensions,
kernels and cokernels. Closure under extensions is immediate as both 7 and A(T)
are extension-closed. For the same reason, a(7) is also closed under images, thus
it is enough to check that every monomorphism has a cokernel and that every
epimorphism has a kernel.

For kernels, consider a short exact sequence 0 —» K — T} — T — 0, with
T1,To € o(T). Then K € T and it is a subobject of an object in A(7T), thus
K € a(T).

For cokernels, consider the pull-back diagram:

ker(h) =——— ker(h)
| |
0 Ty P T 0
T
0 Ty T coker(f) —— 0

were T1,To € a(T) and T € T. P € T as it is an extension of two torsion objects,
and thus ker(h) € T since T € A(T). So coker(f) € A(T). It is also in T as it is
a quotient of a torsion object.

A(T) 2 a(T) = F is immediate as by the previous points we have that A(7) 2 F
and that it is closed under extensions.

For the reverse inclusion, given X € A(T), the approximation sequence 0 — tX —
X — X/tX — 0 with respect to the torsion pair (7, F) has the required shape.
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(vii) Immediate by point (v). O

Remark 3.1.4. Let L be a length category, (t,f) a torsion pair in L. In this situation,
by Corollary|1.1.10, closure under subobjects ( resp. quotients) and extensions is enough
to ensure that A(t) is a torsionfree class ( resp. B(f) is a torsion class ) in L.

The following result is due to Enomoto and Sakai, again we include a proof for
completeness. Following their terminology we call a subcategory ICE-closed (resp. IKE-
closed) if it is closed under images, cokernels (resp. kernels) and extensions.

Proposition 3.1.5 ([36]). Let (T,F) be a torsion pair in A. Then:

(i) Let (T',F') be a torsion pair, with F C F' and such that F' N'T is closed under
kernels ( thus IKE-closed). Then F' C A(T).

(it) Let (T',F') be a torsion pair, with T C T' and such that T' N F is closed under
cokernels ( thus ICE-closed). Then T' C B(F).

Proof. We prove (i). By Lemma F' can be written as (F' NT) = F. Hence to
show that F/ C A(T) is enough to show (F' NT) C A(T).

Let M €e FFNT. Let T € T, f: T — M. Without loss of generality we might assume
[ surjective (in fact ' NT is closed under submodules which belong to T ).

Notice that the map f factors through the torsionfree part of 7" with respect to
(T', F') so that we obtain the following commutative diagram:

0 — t7(T) — ker(f) — ker(h) —— 0

| | [

0 —— t7(T) T T/t (T) — 0
| J
M=——M

Now, h is a morphism in F' N 7T, which by hypothesis is closed under kernels, thus
ker(h) € T. Hence, ker(f) € T as an extension of two objects in 7. (Recall that by
hypothesis 7/ C T ). Thus 7' NT C A(T) as desired. O

Remark 3.1.6. From now on, we will work with module categories: notice that in this
setting not every result can be dualised.

The following result from [12] and [48] tells that for some special torsion pairs the
computation of coherent and co-coherent objects is particularly easy:

Theorem 3.1.7 ([12], [48]). Let R be a left artinian ring. Let W be a subcategory of
R-mod. Then:

(1) &(’T‘(W)) =W if and only if W is a wide subcategory.
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(ii) BEON)) =W if and only if W is a wide subcategory.

Remark 3.1.8. For part (i) of the theorem above it is enough to assume that the ring is
left noetherian. In fact, the proof of the result uses the description of’i‘ as filt gen .

Such a result is valid in any abelian category in which a torsion class is precisely a
subcategory closed under extensions and quotients. This holds for the category of finitely
generated left modules over a left noetherian ring (see Corollary .

A “large” partial version of this result was obtained for torsion classes:

Proposition 3.1.9 ([10]). Let R be a ring. Let W be a subcalegory of R-Mod. Then
a(TOWV)) =W if W is a wide subcategory closed under coproducts.

We will prove the equivalence of the two conditions above for cosilting torsion pairs

in Proposition [3.2.18

We conclude this section giving a name to such torsion pairs

Definition 3.1.10 ([I2]). Let R be a (left noetherian) ring. A torsion pair (7,F) in
R-Mod ( resp. (t,f) in R-mod ) is said to be widely generated if there exists a wide
subcategory W of the ambient category with T(W) =T (resp. T(W) =1t ).

3.1.1 The connection with characteristic bricks

We now give the announced connection with torsionfree, almost torsion and torsion,
almost torsionfree modules.

Proposition 3.1.11. Let R be a ring. Let (T,F) be a torsion pair in R-Mod. Then:

(i) The simple objects of a(T) are precisely the torsion, almost torsionfree modules in

T.

(i) The simple objects of B(F) are precisely the torsionfree, almost torsion modules in

F.

Proof. We give a proof of (i). Notice that an object S is torsion, almost torsionfree in 7
if and only if it is a coherent T —simple object (see Definition 2.1.4] ).

Now «(7T) consists precisely of the coherent objects in 7. Thus it is enough to show
that S is T—simple if and only if it is simple in « (7).

Since a(T) € T, we have that a T—simple is necessarily simple in «(7). So, it
remains to show that every simple object S of (7)) is T —simple.

Since 7 is a torsion class, it is enough to show that every proper submodule of S is
torsionfree. But this is immediate, as «(7) is closed under submodules in 7 and S is
simple in (7). O

In the case of a cosilting torsion pair over a left noetherian ring we have the following
compatibility result:
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Proposition 3.1.12. Let R be a left noetherian ring. Let (T,F) be a cosilting torsion
pair in R-Mod with restriction (t,f) to R-mod. Then:

(i) A(T)N R-mod = A(t) and thus a(T) N R-mod = a&(t)
(ii) B(F) N R-mod = B(f) and thus B(F) N R-mod = 5(f)

Proof. We can adapt the proof of to this situation. We show how to proceed for
case (ii).

First, notice that B(F) N R-mod C B(f) by definition. So assume X € B(f), let
F € Fand f: X — F with cokernel C. To show that X € B(F) we need to prove that
C is torsionfree. As F = t10, assume we have an injection T — C, with T € t, and
consider the following pull-back diagram:

X —P ——T
|1
X —F —~(C

By construction, P is a finitely generated torsionfree module, thus, using that X € ]§(f )
we must have that T" € f. Thus T" = 0 being both torsion and torsionfree. O

Over an artin algebra, we can prove the analogous result for the silting case by dual
arguments:

Proposition 3.1.13. Let A be an artin algebra. Let (T,F) be a silting torsion pair in
A-Mod with restriction (t,f) to A-mod. Then:

(i) A(T)NA-mod = A(t) and thus o(T) N A-mod = a(t)
(ii) B(F) N A-mod = B(f) and thus B(F) N A-mod = S(f)

Summarising what we discussed, we can say that the black diagram in the picture
below is commutative.
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TPair(A)
T
] F
Wide(A) " Silt(A) 5 Wide(A)
N A—mod T 1-1|Nn A—mod N A—mod
/\
wide(A) = tpair(A) 3 wide(A)
\/
N A—mod N A—mod |11 |lin F N A—mod
Wide(A) . Cosilt(A) 3 Wide(A)
: |
TPair(A) F

3.2 Wide subcategories from cosilting torsion pairs

For cosilting torsion pairs we can obtain an explicit description of the classes defined in
the previous sections. For the necessary preliminaries about cosilting modules we refer
back to section 4]

3.2.1 Wide subcategories from torsionfree classes

The following result is the basis for the following observations:

Theorem 3.2.1. Let R be a ring. Let C be a cosilting R—module, Cogen(C') the corre-
sponding definable torsionfree class. Let

0—Cy— Cy— E(R)
be the Cogen(C)—-cover of an injective cogenerator of R-Mod. Then:
B(Cogen(C)) = +°Cy
In particular, B(Cogen(C)) is a torsion class in R-Mod.
Proof. "C": As B(Cogen(C)) is closed under quotients ( by Lemma[3.1.3)), it is enough to

show that we can’t have a non-zero monomorphism from some object B € B(Cogen(C))
to Cl.
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Assume that we can find a monomorphism ¢ : B — C; and cousider the following
pushout diagram:

B B
1
0 e Co E(R)
Lol
0 —— coker(7) P —"— E(R)

Since B € B(Cogen(C)), we have that P € Cogen(C). Thus the map m : P — E(R)
must factor through f via some r : P — Cy. Whence we obtain that f = mol = (for)ol.
By right minimality of f, the map 7 ol is an isomorphism. Thus [ is a monomorphism.
This implies that B = 0.

"D": Let X € 10C;. We must show that every map X — F for F € Cogen(C) has
torsionfree cokernel. Since +0C; is closed under quotients, without loss of generality we
consider only injective maps.

Solet 0 = X — FF — M — 0 be a short exact sequence. The long exact se-
quence obtained applying the functor Hompg(—,C) shows that Exth(M,C1) = 0, as
Exth(F,C1) = 0 by Lemma .

Moreover, as M is a quotient of F', we have M € R/ Ann(C)-Mod. It follows that
M € Cogen(C) ( recall that Cogen(C) = +1C;NR/ Ann(C) - Mod again by Lemmam
). O

Corollary 3.2.2. Let R be a ring, C a cotilting R—module. Then, using the same
notation as in Theorem [3.2.1]

B(Cogen(C)) = 1010y
Proof. 1t is enough to notice that in this case Cogen(C) = 11Cj. O

Corollary 3.2.3. Let R be a ring, C' a cosilting R—module, then 3(Cogen(C)) is a wide
subcategory closed under coproducts.

Proof. B(Cogen(C)) is always wide by Lemma closure under coproducts comes
immediately noticing that 3(Cogen(C)) = +°C} N Cogen(C). O

In fact, using the following theorem, we obtain that these subcategories are always
coreflective:

Theorem 3.2.4 ( |21, Theorem 2.5] ). A class of modules is precovering, if it is closed
under coproducts and pure quotients.

Proposition 3.2.5. Let R be a ring, C a cosilting R—module, then S(Cogen(C)) is a
coreflective subcategory.
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Proof. The subcategory B(Cogen(C)) is a wide subcategory closed under coproducts,
moreover it is also closed under pure quotients, as it is the intersection of two classes
closed under such quotients. Thus Theorem gives that 5(Cogen(C)) is precovering.
We obtain the result using the dual of Proposition [I.2.21] O

Examples 3.2.6. (i) An example of a wide subcategory of the form B(F) for a cosilting
class F which is not closed under products is discussed in [5, Ezample 4.10[. This is the
perpendicular class 101G to the generic module G over the Kronecker algebra kK.

(11) For a torsion pair (T,F) € Cosilt(A) over some hereditary algebra A, we have
that B(F) is closed under products, if and only if the torsion class is generated by a wide
subcategory of A-mod. Further details are given in Section [3.5.5.

Proposition 3.2.7. Let A be a left artinian ring. Then the map

B: TPair(A) — Wide(A)
(T, F) = B(F)

restricts to an injection
B : Cosilt(A) — Wideyy(A)

between torsion pairs with definable torsionfree class and the class Wideyy(A) of wide
subcategories closed under coproducts.

Proof. By Corollary the map is well-defined. Moreover, by Proposition [3.1.11] if
B(F) = B(F'), then F and F' have the same torsionfree, almost torsion modules. At
this point, Proposition yields F = F'. O

Remark 3.2.8. By Proposition the map B : Cosilt(4) — Wide[(A) is an
injection, however in gemneral there is no hope of obtaining all the wide subcategories
closed under coproducts as images of some cosilting class under 3.

As an example, in case A = kKo is the path-algebra of the Kronecker quiver we
have, for each non-empty collection P of tubes in the AR-quiver, o wide subcategory YWp
of A-mod. The direct limit closure of any such subcategory is a wide subcategory of
A-Mod closed under coproducts.

However, if P is a proper subset of the set of all tubes, none of these categories is in
the image of 3.

Assume there exists a cosilting torsionfree class F such that B(F) = lim Wp. Then

é(]‘“ N kKy-mod) = Wp. The unique torsionfree class in kKo-mod with such B 18
FOWp). N
Therefore we have that the cosilting class F = @F(Wp) = WCJ?‘O, where Q) is the
complement of P. For such a torsionfree class in the hereditary setting, the subcategory
B(Wéo) = Wé'o’l by Lemma|3.3.10),
This is a bireflective subcategory, equivalent to the category of modules over a locali-
sation of the polynomial ring k[X|. As such B(F) # lim Wp, giving a contradiction.
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3.2.2 Wide subcategories from torsion classes

For the description of A(+°C) we give the following definition:

Definition 3.2.9. Let M € R-Mod. Then we define:
LM = {X € R-Mod | for all Y < X,Ext'(Y, M) =0}

Remark 3.2.10. In case the injective dimension of M is at most one, then 1M =
L.

The following property is well-known, the proof is short so we include it:

Lemma 3.2.11. Let M € R-Mod be a pure-injective module, then -1 M is closed under
direct limits.

Proof. Let {(X;, f;)}ier be a directed system in -1 M. Then we have a pure-exact se-
quence
0= K= [[Xi = limX; >0
I I

As M is pure-injective, the sequence

0 — Hompg(lim X;, M) — Homp(] [ Xi, M) — Hompg(K, M) — 0
I I

is exact, thus Extﬁ(li_n;l X;, M) is a subgroup of [[; Exth(X;, M) = 0. O

Lemma 3.2.12. Let M be an R—module. Then 112 M is closed under extensions and
submodules. Morevoer, if M is pure-injective, the class ~1h M is also closed under direct
unions ( and thus direct sums ).

Proof. Closure under submodules is immediate, by the definition. For the extensions,
notice that 1M is closed under extensions and that every submodule of a module Y
obtained as an extension 0 - X’ — Y — X” — 0 can be obtained as an extension of
submodules of X’ and X”.

In case M is pure-injective 11 M is closed under direct limits as seen in Lemma
If {X;, (c;;)} is a directed sequence of monomorphisms in -1 M | then any submodule
Y of |J, X; can be written as the union of the submodules Y; := Y N X; of the X;. Thus,
it is in L1 M. O

Theorem 3.2.13. Let R be a ring. Let C be a cosilting R—module and L0C' the corre-
sponding torsion class. Let

0—C1— Cy— E(R)
be the Cogen(C')—cover of an injective cogenerator of R-Mod. Then:

A(J-o C) = Lin C)
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Proof. " D" : Let X € 11nCy. We have to show that for every T € 1°C, and every map
f:T = X, ker(f) € toC.

Since 112 Cy is closed under submodules, we may assume, without loss of generality,
that f is an epimorphism.

Consider the short exact sequence 0 — ker(f) - 7 — X — 0. Applying Homp(—, Cp)
to the sequence, we obtain that Hom(ker(f),Cy) = 0. However, since Cy cogenerates
Cogen(C), by Proposition it follows that Hom(ker(f),C) = 0 as desired.

"C " Let X € A(toC). This class is closed under submodules, by Lemma [3.1.3] so
it is enough to show that Ext!(X,Cp) = 0.

Let 0 > Cy - M i> X — 0 be a short exact sequence. Applying the snake lemma
to the commutative diagram:

0 F &M FEM)=1 — 0
0 Co M f X 0
we obtain
0 r M I 0
0 Co M1 i x 0

$—

4—
>

&—

0 L M/tM —— X —— 0

Since I is a submodule of X it is in A(+°C), thus F' € +0C. But then F € Cogen(C) N
hog =0.

This forces L = Cy. Then, since Cj is split-injective in Cogen(C') and M/t M is in
Cogen(C), the third short exact sequence splits. Therefore we get amap g: M/t M — L.
Then the map g o h is a splitting epimorphism for the middle sequence. O

Corollary 3.2.14. With the same notation as in Theorem if the module C is

cotilting, we have:

a(toC) = o1y
Proof. The injective dimension of a cotilting module is less than 1 by definition. O

Corollary 3.2.15. Let R be a ring, C a cosilting R—module, then a(+°C) is a wide
subcategory closed under coproducts.

Proof. This class is wide by Lemma [3.1.3] It is closed under coproducts since it is an
intersection of coproduct-closed subcategories. O
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Proposition 3.2.16. Let R be a ring. Then the map
a: TPair(R) — Wide(R)
(T, F) = o(T)

restricts to a map
a: Cosilt(R) — Wideyy(R)

Example 3.2.17. In general, the subcategories a(T) are not closed under products. In
fact, we will see that over a left artinian ring A this can only occur if the restriction
a(T) N A-mod is functorially finite.

We can now complete a large version of Theorem [3.1.7i) for cosilting torsion pairs:

Proposition 3.2.18. Let R be a ring, W C R-Mod such that W' is a definable
torsionfree class, then:

a(T(W)) =W if and only if VW € Wide(R)

Proof. If W € Widey[(R) then o(T(W)) = W by Proposition [3.1.9; conversely, if the
equality holds, W is wide and closed under coproducts by Corollary [3.2.15] ]

3.2.3 Mutation of cosilting torsion pairs

There is a concept of mutation for cosilting objects and for cosilting torsion pairs, intro-
duced in [6].
We start with the definition of mutation for cosilting complexes in the derived cate-
gory:
Definition 3.2.19. Let 0,0’ € D(R) be cosilting complexes. Let £ = Prod(o)NProd(o’).
We say that o’ is a right mutation of o (with respect to &) if there is a triangle

o[—1] Yo v —2 o such that:
(i) ® is a E—precover of o in D(R)
(i) v @ 71 is a cosilting object equivalent to o”.

Let t,u be torsion pairs in Cosilt(R). Then, recalling the correspondence given in
Theorem[I.5.6] we can say that tis a right mutation of u if this holds for the corresponding
cosilting complexes in D(R).

Here we use the following equivalent characterisation, valid over left noetherian rings:

Definition 3.2.20 ([6]). Let R be a left noetherian ring. Let (7, F), (U, V) be torsion
pairs with definable torsionfree classes in R-Mod. We say that (7, F) is a right mutation
of (U, V) ifUd CT and TNV is a wide subcategory ( closed under coproducts ).

Remark 3.2.21. Notice that if (T, F) is a right mutation of (U, V) then the subcategory
T NV is both ICE and IKE-closed, in particular in this setting T C B(V) and V C A(T),
see Proposition |3.1.5]
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In the artinian case, we can always produce a maximal mutation (which might be
trivial) of every cosilting torsion pair.

Proposition 3.2.22. Let A be a left artinian ring. C a cosilting module in A-Mod.
Then A(+0C) is a definable torsionfree class.

Proof. Set V = A(+°C). We know that V is closed under extensions and submodules,
thus by Corollary [I.1.9] the restriction ¥V N A-mod is a torsionfree class in A-mod.
Therefore, F = hg(v N A-mod) is a definable torsionfree class by Theorem

To prove our claim, it is enough to show V = F. That V C F is immediate, as V is
closed under submodules, thus we concentrate on the opposite inclusion.

Let F' € F, then F' can be written as the union of its finitely generated submodules,
which are elements of V by construction.

Now by Lemma[3.2.12)and Theorem [3.2.13] the subcategory V is closed under directed
unions, thus F C V. 0

Since a(T) is wide, combining Proposition [3.2.22| with Remark |3.2.21{ we can obtain
the following

Corollary 3.2.23 ([0, Corollary 9.9]). Let A be a left artinian ring, (T,F) a cosilting
torsion pair in A-Mod.

Then V = A(T) is the largest torsionfree class such that (T,F) is a right mutation
of U,V).

We conclude this discussion of mutation for cosilting pairs with a result showing that
the alpha-subcategories are locally small:

Proposition 3.2.24. Let R be a left noetherian ring. (T,F) a cosilting torsion pair in
R-Mod with restriction (t,f). Then:

Proof. " O " : By Corollary we have that «(7) is wide and closed under coprod-
ucts, whence it is closed under direct limits. By Proposition B.1.12] a(t) € a(T) so we
obtain the first inclusion.

"C":Let X € a(T). Then X € TNA(T). In particular, by Proposition [3.1.12] all
its finitely generated submodules are in A(t).

Hence, we can write X = h%m(XZ) with X; € A(t). Since F is definable, the tor-
sion radical of the torsion pair commutes with direct limits, in particular X = t(X) =
t(thl) = hgt(X,)

Now, each t(X;) € (T NA(t)) = a(t). This proves the second inclusion. O

As an immediate application of the Proposition, we can identify the very special case
in which «(7) is also closed under products.
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Corollary 3.2.25. Let A be a left artinian ring. Let C be a cosilting module, T = +0C
and t =T N A-mod.

Then o(T) is closed under products ( and therefore it is a bireflective subcategory )
if and only if a(t) is functorially finite in A-mod.

Proof. a(t) is covariantly finite if and only if lig&(t) = «a(T) is a definable subcategory
by [26], Section 4.2].

In this case, we can show that it is also contravariantly finite. In fact, a(t) = B-mod
for some left artin ring B, finitely generated as A—module.

Indeed, assume a(7) is bireflective. Then, by Theorem [1.2.9] there exists a ring
epimorphism A — B with «(7) = B-Mod. Consider a small progenerator of «(7),
which we denote again by B. Then B can be written as a direct limit of objects B; in
a(t), in particular, it is a quotient of [[ B;. Since B is projective in the subcategory,
we have that B is actually a direct summand of [[ B;. But B is also compact in the
category, thus it is a summand of a finite direct sum of finitely generated modules. In
particular B is finitely generated.

This shows that a(t) = B-mod. O

We can restate the previous results without explicitly mentioning cosilting modules:

Corollary 3.2.26. Let A be a left artinian ring. For a wide subcategory W € wide(A),
fix W = hgﬂ/\/ Then:

(i) W € Widey(A) and WN A-mod = W.
(i) W is functorially finite if and only if W is bireflective.

Proof. For (i) notice that every W € wide(A) is obtained as a(T(W)) by Theorem
then apply Propositions [3.1.12| and Proposition [3.2.24] For closure under coproducts use

Corollary [3.2.15]
Point (ii) now follows immediately from Corollary |3.2.25 O

3.2.4 Coreflective subcategories from cosilting classes

We prove that over a left noetherian ring all the wide subcategories of the form «(7) for
a cosilting torsion pair (7, F) are coreflective.
We need the following theorem of El Bashir:

Theorem 3.2.27 ([33]). Let C be a full subcategory of some Grothendieck category. Then
C is a covering class if and only if C s closed under coproducts and directed colimits and
there is some set of objects S C C such that C = ligS,

Remark 3.2.28. Under the assumption of some sufficiently powerful large cardinal ax-
iom ( Vopenka’s principle ) every subcategory closed under coproducts and directed col-
imits is covering, see [33] for details.
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Theorem 3.2.29. Let R be a left noetherian ring, (T,F) a cosilting torsion pair in
R-Mod.
Then o(T) is a wide coreflective subcategory of R-Mod.

Proof. By Proposition , the wide subcategory «(7) is the limit closure of some
set, in particular it satisfies the hypotheses of Theorem and is therefore a covering
class.

Therefore a(T) satisfies the dual of the second condition of Proposition and is
therefore coreflective in R-Mod. [

3.2.5 Wide subcategories with coproducts and 7-tilting finiteness

The wide subcategory closed under coproducts W extending a given wide subcategory
W of A-mod given in Corollary [3.2.26]is not unique in general.
Recall the following result:

Lemma 3.2.30 (|48, Corollary 3.11]). Let A be an artin algebra and t be a functorially
finite torsion class in A-mod, then a(t) is a functorially finite wide subcategory. If A is
T—tilting finite every wide subcategory of A-mod is functorially finite.

Remark 3.2.31. Given a functorially finite wide subcategory W of A-mod, with A an
arbitrary artin algebra, it is not always true that T(W) is functorially finite, see [11,
Ezample 3.13].

We present a further categorical characterisation of 7-tilting finiteness:
Proposition 3.2.32. Let A be an artin algebra. The following statements are equivalent:
(i) A is T-tilting finite.

(ii) For every wide subcategory W of A-mod there exists a unique wide subcategory VW
of A-Mod closed under coproducts with W =W N A-mod.

(i) If W € Widey(A), then W N A-mod = 0 if and only if VW = 0.

If any of the equivalent conditions above holds, then every W € Widey[(A) is of the form
hg(W N A-mod) and is a bireflective subcategory.

Proof. " (i) = (ii) " : For existence, let W be a wide subcategory of A-mod. Con-

sider the cosilting torsion pair (T(W), W'°). By Theorem and Proposition
a(TOW)) N A-mod = W and by Corollary a(T(W)) is wide and closed under
coproducts.

For uniqueness, let W be a wide subcategory closed under coproducts which restricts
to W. Since A is 7-tilting finite, every torsionfree class is definable by Proposition [2.2.6]
thus the torsion class T(W) generated by W is part of a cosilting torsion pair.

In particular, using Proposition We obtain that W = «(T(W)), which by Propo-

sition3.2.24)is equal to the limit closure lim a(T(W)NA-mod). Now by means of Propo-

sition|3.1.12} we have lim a(TOW)NA-mod) = @[Q(T(W))HA— mod], so that using once
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again Proposition we conclude that hg[a(T(W)) NA-mod] = hg[W NA-mod] =
lim W

" (ii) = (iii) " : Since the zero subcategory has a unique extension to A-Mod,
(iii) is immediate.

" (iii)) = (i) " : By (iii) for every cosilting module C, 5(Cogen(C)) N A-mod =0
if and only if 5(Cogen(C)) = 0. Now recall that a torsion class is locally maximal if
there are no finitely presented torsionfree, almost torsion modules with respect to the
corresponding torsion pair. Since the torsionfree, almost torsion modules are precisely
the simple objects of B(Cogen(C)), there is no locally maximal non functorially-finite
torsion class in A-mod. This means that A is 7-tilting finite by Corollary [2.3.10]

For the last part use condition (ii) with Lemma [3.2.30[and Corollary |3.2.26 O

The proposition above can be restated as follows:
Corollary 3.2.33. Let A be an artin algebra. The following statements are equivalent:
(i) A is T-tilting finite.
(i) The class of wide subcategories closed under coproducts is a finite set.

Proof. "(i) = (i#9)" : notice that every wide subcategory of A-mod is obtained as
a(t) for some torsion class t, by Theorem Since A is 7—tilting finite, this implies
that the set of wide subcategories of A -mod is finite, thus the class of wide subcategories
of A-Mod closed under coproducts is also finite by Proposition [3.2.32{ii).

"(ii) = (i)" : notice that the cardinality of the set of cosilting torsion pairs is
bounded by the cardinality, if it exists, of the class of wide subcategories closed under
coproducts (by Proposition . Thus finiteness of the second class implies finiteness
of the first. Now use Theorem to conclude. O

As observed earlier, for a 7—tilting finite algebra all wide subcategories closed under
coproducts must be bireflective.
Moreover, we have that from Corollary [3.2.26}

Corollary 3.2.34. Let A be an artin algebra, assume every wide subcategory closed
under coproducts of A-Mod is also closed under products. Then every wide subcategory
of A-mod is functorially finite.

However, it is not clear to the author if the following holds:

Conjecture 3.2.35. An artin algebra A is T—tilting finite if and only if every wide
subcategory of A-mod is functorially finite.

This would also imply the following:

Conjecture 3.2.36. An artin algebra A is 7—tilting finite if and only if every wide
subcategory closed under coproducts of A-Mod is bireflective.
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3.3 Minimal cosilting modules

Recall the definition of a minimal cosilting module given in [5, Definition 4.12, Remark
4.18|:

Definition 3.3.1. A cosilting module C over some ring R is minimal if the sequence
0— C1 — Cy 2 E(R)
with g the Cogen(C)-cover, C € Prod(C) satisfies:
(i) B(Cogen(C)) = Cogen(C) N1oC; is a bireflective subcategory of R-Mod
(ii) Homp(Cp,C1) =0

Minimal cosilting modules are connected with ring epimorphisms. Before we recall
the result, we need a further piece of terminology:

Definition 3.3.2. Let R be aring, C' € R-Mod. An injective copresentation 0 — C' —
Io % I of the module C is called a precosilting copresentation if Cogen(C) C C,,.

For a module M € R-Mod we denote by M := Homgz (M, Q/Z) its character dual.

Theorem 3.3.3 (|5, Theorem 4.17|). The map assigning a ring epimorphism A : R — S
to the class Cogen(S™) yields a bijection between.:

(1) Equivalence classes of ring epimorphisms X\ : R — S such that ST has a precosilting
copresentation.

(i1) Equivalence classes of minimal cosilting R—modules.

3.3.1 Torsion, almost torsionfree modules for minimal cosilting mod-
ules

We will prove that, over an artin algebra, all minimal cosilting modules (with the excep-
tion of injective cogenerators) admit some torsion, almost torsionfree module.

Lemma 3.3.4. Let R be a ring. Let C' be a minimal cosilting module with approzimation
sequence 0 — C1 — Cy — E(R).
Assume that the module Cy is cosilting, then Cp = 0.

Proof. By Proposition we have that Cogen(Cpy) = Cogen(C'), thus the two cosilt-
ing modules are equivalent and Prod(C) = Prod(Cp). Therefore, C; € Prod(Cp).
However, by assumption, Prod(Cy) C B(Cogen(C)). But, by Theorem we have
B(Cogen(C)) C +oCy, thus C; = 0. O

Lemma 3.3.5. Let R be a ring, let C be a cosilting module. If a(+0C) = 0 then Cy is
cosilting.
Moreover if C is cotilting, then Cy is cotilting if and only if a(+°C) = 0.
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Proof. We must show that there is some injective copresentation w of Cp, such that
C. = Cogen(Cp) = Cogen(C).
Notice that, for every copresentation w, the class C, is closed under submodules.
Moreover, C,, C 1Cq : let M € C,,, then M is also in C, where 7 : Iy — Im(w). In
particular, applying the Hom (M, —) functor to the short exact sequence

0 Co Iy —= Im(w) —— 0

we obtain that Ext!(M, Co) = 0.

Thus, C, C +1»Cy = A(+0C) = a(+°C) x Cogen(C) = Cogen(Cp), as a(+°C) = 0 by
assumption.

Moreover, by Proposition Cp is a summand of a cosilting module equivalent to C,
thus by [64, Lemma 4.13|, Cogen(C) C C,,, with w the minimal injective copresentation
of Co.

Then Cogen(Cy) C C,, C Cogen(Cyp). Thus Cj is cosilting with respect to w.

For the cotilting case, notice that a(+0C) = 1010y, thus a(+°C) = 0 if and only if
Cogen(Cp) = +1Cy, that is, if and only if Cy is cotilting. O

Remark 3.3.6. The dual case, with the condition 3(Cogen(C)) = 0, is not interesting:
by the injectivity of B this assumption forces Cy = C1 = 0 and trivially they are both
cosilting modules.

Proposition 3.3.7. Let A be an artin algebra. Let C be a minimal cosilting module,
with Cogen(C') # A-Mod.
Then a(+°C) # 0 and the torsion pair has some torsion, almost torsionfree module.

Proof. Let 0 — C1 — Cy — DA be the approximation sequence.

If a(+0C) = 0, then Cj is a cosilting module and thus C; = 0. This implies that C
is a finitely generated cosilting module, thus Cy is support 7~ —tilting.

Since a(+°C) = 0 the (functorially finite) torsionfree class cogenerated by Cj in
A-mod does not have any covering torsionfree class (by the dual of Theorem .
Thus, we must have A-mod = cogen(Cy), which contradicts our hypothesis (Theorem
Remark .

Hence a(+°C) # 0. But, by Proposition this implies &(+°C N A-mod) # 0.
Now, every wide subcategory of A-mod is completely determined by its simple objects,
in particular, we can find some simple object S € a(+°C' N A-mod).

By Proposition S is a torsion, almost torsionfree module for the torsion pair
(+oC, Cogen(C)). O

3.3.2 An application to 7—tilting theory

Proposition 3.3.8. Let A be an artin algebra. Then the following statements are equiv-
alent:

(1) A is T—tilting-finite.
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(ii) Every cosilting module which is not equivalent to a finitely generated one is minimal.

Proof. " (i) = (i1) " : By Proposition every torsion pair in A-Mod is the
extension of a functorially finite one, this means that every cosilting module is equivalent
to a support 7! —tilting module and all such modules are finitely generated.

" (i1) = (i) " : Assume the algebra were T—tilting infinite. By the dual of
Corollary we have some non functorially-finite locally minimal torsion class t in
A -mod. Recall that a torsion class is locally minimal if and only if it does not have any
torsion, almost torsionfree module. This is equivalent to the condition a(t) = 0.

However, the cosilting extension of the corresponding torsion pair (t,f), satisfies
the conditions of Proposition since every infinitely generated cosilting module is
assumed to be minimal and lim f 7 A-Mod. Thus a(lign t) = ligl&(t) # 0, a contradic-
tion. 0

Remark 3.3.9. From the proof of the Theorem above and of Theorem |2.4.4), we can see
that the “pathological” behaviour of the lattice of torsion classes in A -mod in the T—tilting
mnfinite case is directly connected with pathological behaviour of the corresponding cosilting
modules: in one case it ensures the existence of large torsionfree, almost torsion modules,
in the other the non-minimality of the cosilting class.

3.3.3 Minimal cosilting modules over hereditary algebras

In general, it is not easy to understand if a certain cosilting class is cogenerated by a
minimal cosilting module, however over an hereditary algebra there is a handy criterion.
First we give a small lemma simplifying some computations:

Lemma 3.3.10. Let A be a left artinian ring, VW a wide subcategory of A-mod whose
simple objects have projective dimension less than one. Then:

IB(WJ-O) — Wlo,l

Proof. Notice that T(W) = hﬂ’i‘(W), thus W C o(T(W)) by Proposition .

We can immediately verify that a module M in W+ is in B(W"9) once we have
noticed that it is enough to check the condition for injective maps 0 — M — F with
F € Wto (here we need that W1 is closed under quotients ).

For the other inclusion, take M € B(W+0) = WronB(W=0). Consider a short exact
sequence:

0—+M-—=>N—-W-=0

with W € W. Then, taking the torsion part of N we obtain the following commutative
diagram:

YN S
1]
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then since M € B(W-0) and this class is closed under quotients, L € B(W-0). Therefore,
Wisin Who as N € wo, but Wis a quotient of W, thus it must be zero.

Thus I = W, and since W C a(T(W)) we have that K € T(W). However, K is also
a submodule of M which is in W0, therefore, K = 0 as it is both torsion and torsionfree.
This shows that the middle sequence splits. ]

Proposition 3.3.11. Let A be an hereditary artin algebra. Then a cosilting module C' is
equivalent to a minimal one if and only if there exists a wide subcategory VW C A-mod

such that Cogen(C) = W0,

Proof. Assume C' is a minimal cosilting module. Then, it arises from a pseudo-flat
ring epimorphism, which, since A is hereditary, must be homological. By [46, Theorem
6.1] every such epimorphism is a universal localisation. The corresponding bireflective
subcategory is 3(Cogen(C)).

By [60, Theorem 2.3|, every universal localisation is obtained as the perpendicular
category of a unique wide subcategory W of A-mod and we claim that ~0C' = T(W).

This follows immediately from the injectivity of 5, Proposition as B(W+o) =
Wot = B(Cogen(C)), by Lemma .

On the other hand, assume we have a torsion pair (T(W), W*0). The torsionfree
class is definable, therefore, this is a cosilting torsion pair.

Moreover, B(W=+0) = W01 i a bireflective subcategory. Since we are in the hered-
itary case, we can obtain a corresponding minimal cosilting module, by [3, Proposition
4.6], with torsionfree class F(8(Cogen(C'))) = Cogen(8(Cogen(C))).

Applying once again Proposition we conclude that this new torsion pair is the
original one, and thus it is cogenerated by a minimal cosilting module as required. [

Example 3.3.12. Let A = kQ be a representation-infinite (hereditary) algebra. Then we
always have an easy example of a non-minimal cosilting torsion pair: let q be a collection
of iso-classes of all the preinjective modules in A-mod, then (T(q),q™°) is a cosilting
torsion pair in A-Mod which is not widely generated, thus not minimal.

3.3.4 Torsion pairs and Ext-orthogonal pairs

We give some applications to Ext-orthogonal pairs over an hereditary algebra, following
[46].

Definition 3.3.13 ( [46] Def. 2.1 | ). Let R be a ring, then (X,)) a pair of full
subcategories of R-Mod is said to be an Fzt-orthogonal pair if:

XeX < VneZ Ext"(X,))=0
YeY < VneZ Ext"(X,Y)=0

An Ext-orthogonal pair is complete if for all M € R-Mod we have an exact sequence:

0 Yu X M yM ), G —|
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with Xp7, XM € X and Yy, Y™ € Y.
The following two results will be used several times in the rest of the section:

Proposition 3.3.14 (|46, Proposition 3.1]). Let R be an hereditary ring, f : R — S
a homological ring epimorphism. Let Y = f*(S-Mod) and set X = +01), Z = Yto1,
Then (X,)) and (Y, Z) are complete Ext-orthogonal pairs in R-Mod with ) = (ker f @&
coker f)101 and Z = Sto1,

Proposition 3.3.15 (J46l Theorem 5.1]). Let R be an hereditary ring and (X,Y) an
Ext-orthogonal pair in R-Mod. The following statements are equivalent:

(i) Y is closed under coproducts.
(i) X = hﬂ(é\f’ N R-mod)

(iii) There exists a subcategory C C R-mod such that C+01 =Y.

Minimal cosilting modules and Ext-orthogonal pairs

One can show that, over an hereditary ring every complete Ext-orthogonal pair is ob-
tained from a torsion pair:

Proposition 3.3.16. Let R be an hereditary ring, (X,Y) a complete Ext-orthogonal
pair. Then there is a (uniquely determined) torsion pair (T,F) in R-Mod such that

(X, ) = (T), B(F))-

Proof. As noticed in [46], (X,)) gives rise to a torsion and a cotorsion pair, from which
it can be recovered.

So, let (T(X), X*0) be the torsion pair generated by X.

We have that Cogen()) C X0, since the second is a torsionfree class containing ).

Moreover, if L € X1, the approximation sequence of the Ext-orthogonal pair, gives
an embedding L — Y* with Y* € ). Thus Cogen()) = X*0. In a similar way we can
obtain that T(X) = Gen(X).

Now, being the left part of an Ext-orthogonal pair, X is a wide subcategory closed
under coproducts. Thus, Proposition gives a(T(&X)) = X.

Moreover, ) is a wide subcategory closed under products. We prove that §(Cogen())) =
V.

"C": Let B € 5(Cogen())), then there is some element Y € ) and a short exact
sequence 0 - B - Y — F — 0, with F' € Cogen()). In particular, as F' also can be
embedded in some Y/, B can be realized as the kernel of a map in ).

"O":LetY €Yand Y - F — M — 0 a short exact sequence with F' € Cogen()).
Once again, we can embed F in some Y’ € ). The cokernel C of the composite Y —
F — Y is then a module in ). Applying the snake lemma to the diagram

y I . F M 0

l o

0 —— Im(io f) Y’ C 0
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we can see that M embeds in C. Thus M € Cogen()) and Y € 3(Cogen())).

For uniqueness, let (7,F) be a torsion pair with (X,Y) = (a(T),5(F)). Then,
obviously T(X) C 7 and Cogen()) C F. But for a couple of torsion pairs, the inclusion
of the torsion classes is equivalent to the reverse containement for the torsionfree class,
thus we can conclude. O

Corollary 3.3.17. Let A be a hereditary left artin ring. (X,)) a complete Ext-orthogonal
pair. Then the corresponding torsion pair is cosilting if and only if X = hﬂ(XﬁA— mod).

All the cosilting torsion pairs obtained in this way are minimal, therefore Y is a
bireflective subcategory of A-Mod.

Proof. If the torsion pair is cosilting then the wide subcategory X has the required form

by Proposition
For the other implication, 7 = Gen(&X) = Gen(%n(% N A-mod)) = Gen(X N

A-mod) = ling(X N A-mod), which is a torsion class in a cosilting pair.
It is minimal, since the torsion class is widely generated (see Proposition|3.3.11)). [

The Corollary above ultimately yields the following bijection by means of Theorem
3.3.15]

Proposition 3.3.18. Let A be a hereditary left artin ring. Then there is a bijection
between minimal cosilting torsion pairs and (complete) Ext-orthogonal pairs (X,)) with

Y bireflective.

Proof. Tt is enough to show that for every minimal cosilting torsion pair (7, F) the pair
(a(T), B(F)) is complete Ext-orthogonal.

Since we are working over an hereditary ring, the minimal cosilting module corre-
sponds to an homological epimorphism A : A — B and (F) = \*(B-Mod). Thus
by Proposition we have a complete Ext-orthogonal pair (X,5(F)), with X =
lig(.?\f N A-mod) ( Theorem Im‘)

By Corollary [3.3.17| there is some cosilting module C, with §(Cogen(C)) = B(F).
Since f is injective Cogen(C) = F and X = (7). O

Minimal silting modules and Ext-orthogonal pairs

Dually, there is a concept of minimal silting modules. Minimal silting modules are defined
for general rings, but here we will use the following, more accessible, definition:

Definition 3.3.19 (|7, Definition 5.4] ). Let R be an hereditary ring. Let T" be a silting
R—module.
Then T is minimal silting if R admits an Add(7T")—envelope.

For a minimal silting module T', the wide subcategory a(Gen(T")) is bireflective |7,
Remark 5.7].
Moreover, we have the following lemma:
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Lemma 3.3.20. Let T be a minimal silting module over an hereditary ring R. Let
R — Ty — T1 — 0 be the exact sequence induced by the Add(T)— envelope.

Then B(T0) = T,

Proof. Dualise the arguments in the proof of Theorem [3.2.13] O

Proposition 3.3.21. Let A be a hereditary ring. Then there is a bijection between min-
imal silting torsion pairs and (complete) Ext-orthogonal pairs (X,Y) with X bireflective.

Proof. As a preliminary observation, notice that for any minimal silting module T we
have a ring epimorphism A : A — B such that \*(B-Mod) = a(Gen(T")) and Gen(B) =
Gen(T).

In particular, the induced A—module map A — 4B is a Gen(B)—envelope, thus we
must have that 4B ~ Tj, where Tj is the Gen(T")—envelope of A.

This shows that the map T + (a(Gen(T)), 3(T+°)) = (A\*(B-Mod), B0:1) assigns a
complete Ext-orthogonal pair to each minimal silting module (Lemma [3.3.20|and Propo-
sition .

Moreover this map is surjective : If (X,))) is any complete Ext-orthogonal pair with
X bireflective, then X' = A\*(B-Mod) for some ring epimorphism.

Thus, once again by Proposition [3.3.14] this pair is obtained via the map defined
above from the minimal silting torsion pair (Gen(B), B+).

The map is also injective, as « induces a bijection between equivalence classes of
minimal silting modules and epiclasses of homological ring epimorphisms starting at A (
[7, Theorem 5.8]). O

Almost complete Ext-orthogonal pairs

Weakening the completeness requirement as follows we can obtain a general bijection:

Definition 3.3.22. Let R be an hereditary ring. An Ext-orthogonal pair (X,)) in
R-Mod is almost complete if for all M € R-Mod we have an exact sequence:

0 Fy X M yM ™ 0

with Fry € X0, Xy € X, YM ¢ Y and TM € Loy,

Definition 3.3.23. A torsion pair (7,F) in R-Mod is coherently determined if T =
Gen(a(T)) and F = Cogen(3(F)).

Proposition 3.3.24. Let R be an hereditary ring. Then there is a bijection between
coherently determined torsion pairs and almost complete Ext-orthogonal pairs.

Proof. From the proof of Proposition [3.3.16] we obtain that the map
(X,Y) — (Gen(X), Cogen()))

is well-defined and injective.
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Moreover, given any coherently determined torsion pair (7,F) we can see that
(X,Y) = (a(T),B(F)) is an Ext-orthogonal pair: we obtain that X101 = ) using
that F = X1 and adopting the strategy used in the proof of Lemma . We can
dualise these arguments for X = o1,

Assume we have a torsionfree module M, then there is some Y € ) (which is closed
under products), such that M embeds in Y. This allows us to build the following com-
mutative diagram:

0 M F t7rC —— 0
H [ [
0 M Y C 0
| |
C/t7C ——= C/t7 C

with F' the pull-back along the embedding of the torsion part of C' with respect to (T, F).

Now Y € Y = X+o1 C X1, therefore C/t+ C € X+ as this subcategory is closed
under quotients, since the ring is hereditary. This gives C'/t7C € ). Now Y is a wide
subcategory, thus F' € ), being the kernel of a map in ).

In conclusion, for every torsionfree module M, we can find a short exact sequence
starting at M with the middle term in ) and the third term in T = Loy,

With dual arguments we can find, for every torsion module M, a short exact sequence
ending at M with first term in F = X0 and middle term in X.

For a general module, we can construct the required 5-term exact sequence applying
the two special cases to the torsion and torsionfree part of it.

This proves that every such pair (a(7), 5(F)) is an almost complete Ext-orthogonal
pair.

It is immediate to verify that the assignment (7,F) — (a(T), B(F)) is the inverse
of the first map. O



Chapter 4

Computing mutations:
approximations and cosilting pairs

The content of this chapter is joint work with Lidia Angeleri-Hiigel and Rosanna Laking.
In this chapter we introduce several tools to understand minimal inclusions of torsion
classes in A-mod in terms of mutation of the corresponding cosilting modules. We will
see that this will amount to some operation on the Ziegler spectrum of A.
The rigid systems and the cosilting pairs we consider in this chapter were inspired by
the theory developed in [I] and [19].

4.1 Rigid systems and cosilting pairs

Let R be a ring. We start recalling some preliminary results on cosilting modules and
complexes. This first part of the section is intended as a reference and does not contain
any new result.

Lemma 4.1.1 (|6, Proposition 2.5] ). Let o be a cosilting complex in D(R). Then the
homological functor HO : D(R) — H, to the heart of the cosilting t-structure induces an
equivalence: HO : Prod(o) ~ Inj(H,) where Inj(Hy) is the category of injective objects
in the heart. Moreover we have a natural tsomorphism

Homip gy (— o) = Homa, (H2(—), HY(0))

Lemma 4.1.2. Let M be a pure-injective module with injective copresentation 0 — M —
Iy 5 L.
Then C, is closed under hﬂ

Proof. Note that Cy, = 11 M N C,, where o : Im(c) — I;. Since M is pure-injective 11 M
is closed under h%m by Lemma [3.2.11] thus it is enough to show that C, is closed under
li

This is true for any monomorphism p, in fact, let (X, {¢;;}) be a directed system in
CQ. Let f : hAle =X = 1.

65



66 CHAPTER 4. COMPUTING MUTATIONS

Then for each ¢ € I we obtain a commutative diagram:

X, % X

i hi Jf

Im(c) —2— I
Moreover, we have :
(ohj)eij = fejpi; = fei = ohi

and since p is a monomorphism, hjp;; = h;, thus {h;} is compatible with the directed
system and it induces, by the universal properties of colimits, a factorisation A : X —

Im(o).
Now ohy; = oh; = fy;, for all ¢ € I, thus, by uniqueness of factorisation ph = f and
X €0C,. O

Corollary 4.1.3. If o : Iy — I is a pure-injective 2-term complex of injectives in D(R),
then C, € R-Mod is closed under lim.
Moreover, if R is left artinian, then C, is a cosilting torsionfree class in R-Mod.

Proof. By Theorem [55], 17.3.19], the zeroth homology of ¢ is a pure-injective R—module.
Thus we can apply Lemma to H%(o) and obtain the closure under direct limits.
Assuming R left artinian, it remains to show that C, is a torsionfree class, but this
is immediate as it coincides with the limit closure of C, N R-mod, which is a torsionfree
class in R-mod as C, is closed under submodules and extensions. O

In the artin algebra case we can also choose a ‘“nice” injective copresentation of any
given cosilting module:

Proposition 4.1.4. Let A be an artin algebra, C € A-Mod a cosilting module.

Then C' is cosilting with respect to w = @& (0 — I) where p is the minimal injective
copresentation of C and I is the direct sum of a collection of representatives of the
isomorphism classes of indecomposable injective modules in C0.

Proof. Let o be an injective copresentation of C such that Cogen(C) = C,.

Then o0 ~ p®v @ (0 — J), with v an isomorphism and J an injective module. Since
C, =A-Modand C; =C,NC, N Lo0J by Lemma , we may assume that v = 0.

We claim that J € Prod(I), with I as above. In fact, since Cogen(C) C +0.J, it must
be the case that every indecomposable summand of J occurs as a summand of 1.

Thus C, € Cogen(C) ( as I C +o.J ). Moreover, Cogen(C) C +0I by assumption
(since I is a finitely generated module over an artin algebra, -1 is definable [29, Example
2.3] ) and Cogen(C) =C, C C,.

We can thus conclude that C, = Cogen(C'). O

We now recall a couple of results from the literature for the convenience of the reader:
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Lemma 4.1.5 (|2, Lemma 3.3]). Let C be an R—module with injective copresentation
0—C — Iy 1, then:

(i) A module X belongs to Cy if and only if Hompgy(X,w[l]) = 0, if and only if
Homp gy (o, w[l]) = 0 for any injective copresentation 0 — X — Ey % .

(i) Assume that w is a minimal injective copresentation of C. Then Cogen(C) C +1C if
and only if Homp g, (w!,w([1]) = 0 for any set I, if and only if Homp gy (X, w[l]) =
0 for all X € Cogen(C).

We need the following adaptation of Lemma the proof is already found in [64]
Lemma 4.13]:

Lemma 4.1.6. Let M, N € R-Mod and let w : Ey — E7 be a minimal injective copre-
sentation of N. Then: Cogen(M) C YN if and only if M' € C,, for all sets I.

Proof. " <= ": Recall that C,, C ** N and it is closed under submodules, thus if it contains
all the direct products of copies of M, then it must also contain Cogen(M).

" = " If we assume that Cogen(M) € 1N, then we can proceed as follows: let
0 —= N — Ey — E1 — E5 be an injective coresolution of N and assume we have a map
g:M! — E;. We must find a map t : M! — Ej, such that wot = f.

We start with the following commutative diagram:

0 K - i M 29 gy
s e b
0 N By —— E, - B,
N
Im(w)

where K is the kernel of wyg and the map « is obtained through the universal property
of kernels. We obtain a using the hypothesis, in fact since K € Cogen(M), we have that
K € 11N, thus the map Hom(K, Ey) — Hom(K, Im(w)) is surjective.

We can then produce the following diagram:

0 K —* 5 Mt - N O
“ t g Im(w1g) //
-
0 N Ey —— £ o By

the map t : M! — Ej is obtained extending a along k, using that the module Ejy is
injective, and satisfies @ = tk. The map h is obtained applying the universal property of
the cokernel to the map 3 = (g — wt) : M — Ey. Then h is the extension of h along the
embedding i : Im(w1g) — Eo, using the injectivity of Ej.
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Now, we have that hwif = hwi(g — wt) = hwig = h(ip) = hp = B. However,
Im(:) NIm(B) = 0, in fact if e € Im(:) N Im(B), then e = B(y) = hw1B(y) = hwie(z) =0
as ¢(x) is in the kernel of w;.

By assumption, w is a minimal injective copresentation, thus the inclusion ¢ : Im(w) —
E; is essential, therefore Im(5) = 0 and g = wt. O

Definition 4.1.7. An R—module C' is precosilting if there is an injective copresentation
w of C such that C € C, and C,, is a torsionfree class.

Proposition 4.1.8 ([64, Proposition 3.10] ). Every precosilting module M with respect
to an injective copresentation o is a direct summand of a cosilting module M = M & N

such that Cogen(M) = C,.
We conclude with an obvious observation:

Lemma 4.1.9. Let C be a precosilting module. Assume C' is a cosilting module with
Prod(C) = Prod(C’), then C' is cosilting.

Proof. In this setting, Cogen(C) = Cogen(C") is a torsionfree class and C is cotilting
over R/ Ann(C') = R/ Ann(C’). Thus it is cosilting by Theorem [1.4.5] O

4.1.1 Rigid systems and cosilting objects

We introduce the concept of a rigid system in the derived category of a ring and show that
over a left artinian ring A such systems are in bijection with 2-term cosilting complexes,
or equivalently, cosilting modules.

Definition 4.1.10. Let NV = {0;};c; be a set of 2-term complexes of injectives, such
that each o; is an indecomposable pure-injective object in D(R).
Then N is called a rigid system if:

Homp g (04, 04[1]) =0, for all i,j € I

A rigid system N is mazimal if for every rigid system £ with Prod(N) C Prod(L) we
have Prod(N') = Prod(L).
Two rigid systems £, N are equivalent if Prod(L£) = Prod(N).

We will use the following notation

Notation 4.1.11. Let o be a 2-term cosilting complex in D(R). We denote by N, the
set of indecomposable objects in Prod(o).

Moreover, consider {S;}icr the set of simple objects in H,.

By Lemma , each of their injective envelopes E(S;) in the heart, corresponds to
an element of Ny which we denote by os,. We fit 0 = [[;c;0s,-

We proceed with some small observations:
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Lemma 4.1.12. Let 0 : Iy — I be a 2-term cosilting complex in D(R) and H the heart
of the corresponding t-structure (+<00,+>00). Then:

Prod(c) = Prod(c) = Prod(N)

Proof. Recall that the heart H is a locally finitely presented Grothendieck category,
by Theorem . In particular, every object X has a (non-zero) finitely generated
subobject Y. This can be used to show that [[,.; E(S;) is an injective cogenerator of the
heart: Y has some simple quotient S thus the induced map Y — E(S) can be extended
to a non-zero map f: X — [[;c; E(S;).

Now we can obtain the equality using the equivalence in Lemma [L.I.I} we have
H(Prod(e)) = Inj(H) = Prods([[, E(S)) = Produ([], H(0s,)) = HO(Prod(3)),
thus:

Prod(c) = Prod(c) C Prod(N,) C Prod(o)

O

Lemma 4.1.13. Let A be a left artinian ring and let N be a rigid system in D(A). Then
for all 01,05 € Prod(N) we have Homp4(01, 02[1]) = 0.

Proof. As Homp(4) (X, [[; Y:) = [[; Homp4)(X,Y;), it is enough to show that for o €
Prod(N) and w € N Homp4)(o,w[1]) = 0.

As every element of Prod(N) is a 2-term complex of injectives, by Lemma we
have that Homp4)(o,w([1]) = 0 if and only if H(0) € C,.

Since w is pure-injective, by Corollary [f.1.3] we have that C,, is closed under products.

Assume o is a direct summand of []; w; with wj € N Then HOw;) = [ HO%w;) €
C, as Homp(4)(wj,w[1]) = 0 by hypothesis and consequently o € C,,. O

Proposition 4.1.14. Let A be o left artinian ring and o a 2-term cosilting complex in
D(A). Then N; is a mazimal rigid system in D(A).

Proof. Since every 2-term cosilting complex in D(A) is pure-injective, for instance by
Theorem [I.5.7] every element of N, is automatically pure-injective.

Since Hompa)(c’,0[1]) = 0 for all I, we have Homp4)(N1, No[1]) = 0 for all
N1, Ny € N, showing that N, is a rigid system.

It remains to show maximality. Let £ be a rigid system, with Prod(N,) C Prod(L).

Let L € L. Since ¢ € Prod(N,), we have that Homp4)(L,5[1]) = 0 by Lemma
and since these are 2-term complexes of injectives, L € +>05 = 1>04.

Since L € +>°0, by means of [64, Lemma 2.12], we can find the two following triangles
in D(A):

L=1Lg Ty Ly Lo[1]

Ll Tl L2 Ll[l]

with Ty, T1 € Prod(c) = Prod(N,) and Ly € DZ°(A).
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Applying Homp4)(—, L) to the second triangle we obtain the exact sequence
Homp(4)(T1, L[1]) = Hompay(L1, L[1]) — Homp 4 (L2, L[2])

where Homp4) (71, L[1]) = 0 since T1 € Prod(N,) € Prod(£) and Homp 4 (L2, L[2]) =
Homye 1mj(ay) (L2, L[2]) = 0 since L is 2-term.

It follows that Homp4)(L1, L[1]) = 0 so that the first triangle must split and L is a
summand of Ty € Prod(N,), thus £ C Prod(N5). O

Lemma 4.1.15. Let N be a rigid system in D(A), on = [[,cp v, then on is a direct
summand of a 2-term cosilting complez .
Moreover, if N is mazimal the complex opr is cosilting.

Proof. By Corollary the class C,, is a torsionfree class in A-Mod and N :=
H%op) € Cs) by Lemma Thus N is a precosilting module with respect to oas.
In particular, we can apply Proposition to find a module M with injective
copresentation o, such that N & M is cosilting with respect to v = on @ ¢ and with
cosilting class C,,,. In particular, vy is a cosilting complex.
Assuming N maximal, we have:

Prod(N) C Prod(WV,) = Prod(N) = Prod(N,)

thus:
Prod(oyr) = Prod(N) = Prod(N,) = Prod(v)

and oy is a cosilting complex equivalent to . O

Theorem 4.1.16. Let A be a left artinian ring. The assignments

o— N,

N = oy = Hw
weN

are mutually inverse bijections between:
e FEquivalence classes of 2-term cosilting complezes in D(A)

e FEquivalence classes of mazimal rigid systems in D(A)

Proof. The maps are well-defined by Proposition [4.1.14] and Lemma [4.1.15
Verifying that they are mutually inverse is an easy computation. O

4.1.2 Cosilting pairs in module categories

In the last section we considered rigid systems in the derived category. Here we propose
an analogous notion at the level of the module category. Ideally, this will be a large
version of the concept of support 7~ —tilting pair from [I].

Throughout this section, A will be an artin algebra. We will use some properties of
the Ziegler spectrum of A, see Section for a brief overview.
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Notation 4.1.17. We denote by pux a minimal injective copresentation of the module
X. Denote by inj(A) the collection of some chosen representatives of all the isoclasses of
indecomposable injective modules in A - Mod.

To make the statements more readable, we will often consider, with an abuse of no-
tation, points of the Ziegler spectrum as modules, instead of isomorphism classes.

Definition 4.1.18. Let Z C 5Zg be a closed subset, Z C inj(A). Then we say that
(Z,7) is a rigid pair if:

(i) Forall X,Y € Z, we have X € C,,,,.
(i) For all X € 2,1 € T, Homy (X, I) = 0.

If moreover, for all the rigid pairs (2',Z') with Z2 C Z’ and Z C Z' we have (£,7) =
(Z',7), then we say that (Z,7) is a cosilting pair.

Remark 4.1.19. Every finitely generated indecomposable A—module is both open and
closed in nZg. For the first, see [55, 5.3.87]; for the second, notice that any such module
is endofinite, [55, Remark 4.5.84], thus we can apply [55, Theorem 5.1.12].

Moreover, for any X, Y € A-mod, Ext} (cogen(X),Y) = 0 if and only if Homy (771Y,
X) = 0 by [106, Proposition 5.6[; thus, using Lemma we have that Homp (77Y, X) =
0 if and only if X € Cp, .

It follows that the cosilting pairs with [[,.5 Z finitely generated are precisely the
support T~ —tilting pairs.

Before stating the main result, we need some preliminary work:

Definition 4.1.20. A pure-injective module E is an elementary cogenerator if the sub-
category Cogen, (FE) is definable or, equivalently, if (E) = Cogen, (E).

Remark 4.1.21. Notice that if E is an elementary cogenerator in R-Mod, then (E) N
R-pinj is precisely Prod(E) N R- pinj.

In fact, since E is an elementary cogenerator Cogen,(E) = (E). If I is any in-
decomposable pure-injective module in Cogen,(E) it must be in Prod(E), as any pure
monomorphism starting at I splits, thus Prod(E) N R-pinj s a closed set and coincides
with (E) N R - pinj

Proposition 4.1.22 (|47, Theorem 5.12, Remark 5.13| ). Let R be a left noetherian ring,
C € R-Mod a cosilting module. Then C' is an elementary cogenerator.

Proof. Since for any ideal I the subcategory R/I-Mod is definable in R-Mod and every
cosilting module is cotilting in a subcategory of this form, it is enough to show that every
cotilting module is an elementary cogenerator.

By means of the results in [47] this is equivalent to require that the heart of the
corresponding t-structure in D(R) is locally coherent.

So we conclude using Theorem O

We also need the following lemma (see Theorem |1.3.12|for the context ):
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Lemma 4.1.23 (|19, Lemma 1.12|). Let R be a left noetherian ring and C a cosilting
R—module. Then there ezxists a direct summand D of C such that D has no superdecom-
posable part and is a cosilting module equivalent to C'.

In particular, Prod(C) = Prod([[,.z Z) where Z = Prod(C) N R - pinj.

Proof. Let R = R/ Ann(C) and consider C' as an R—cotilting module. Then using [19]
Lemma 1.12] we obtain an R—cotilting module D equivalent to C' without a superde-
composable part.

Now Cogenp(D) = Cogeng(D) = Cogeng(C) = Cogenp(C) are all torsionfree classes
in R-Mod.

Thus using Theorem [1.4.5] D is a cosilting R—module equivalent to C' without a
superdecomposable part.

For the last statement, notice that D ~ PE(]] D;) with each D; being an indecom-
posable pure-injective summand of D by Theorem Thus we have Prod(C) =
Prod(D) 2 Prod(Prod(D) N R-pinj) 2 Prod([[, D;) 2 Prod(PE([[ D;)) = Prod(D) as
PE(][ D;) is a direct summand of [], D;. O

Lemma 4.1.24. Let A be an artin algebra, C € A-Mod a cosilting module. Let T :=
C+o Ninj(A) and Z¢ := Prod(C) N A - pinj.
Then (Z¢,Z¢) is a cosilting pair in A-Mod.

Proof. By Proposition C is an elementary cogenerator, so Z¢ is a closed subset
of the Ziegler spectrum.

Moreover, for every Z € Zc, we have Z € 0Zs by definition and for every pair
X,Y € Z¢, we have X € C,, as there is a cosilting module C7 such that X and Y are
both summands of C! and py is a summand of every injective copresentation of C'.

This shows that (Z¢,Z¢) is a rigid pair.

Now we show maximality: let (Z’,Z’) be a rigid pair containing (Z¢,Z¢).

By Lemma there is a cosilting module equivalent to C' with no superdecom-
posable part, that is the class Cogen(C) is completely determined by the modules in
Zc, namely we can chose a cosilting copresentation o of the product of the modules in
Z¢ such that C, = Cogen(C). Thus, any Z € Z’ must be an Ext-injective module in
Cogen(C), so that Z € Z¢.

In the same way, using that all the indecomposable injective modules are finitely
generated and that the class -0 M is closed under products for every such module over an
artin algebra, we obtain that Zc = CoNinj(A) = (Z¢)1°Ninj(A) 2 (2/)*0Ninj(A) 2 T,
so that Zp = 7. O

Remark 4.1.25. In Proposition[4.1.4) we have shown that over an artin algebra, for every
cosilting module C, we have a nice injective copresentation pc @ (0 — Io) which we can
use to describe the cosilting class. However, if C = [[C;, with the C; indecomposable
pure-injective modules, it might be more convenient to consider a different copresentation,
namely the one of the form ([[pc,) ® (0 — Ic).
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By minimality pco is a direct summand of o = [[pc,, thus Cu, 2 Co. However,
notice that each pc; is a direct summand of pc, as we can write C = C; @ (H#Z— Cj),
thus Cpp. 2 Cpe. Therefore, Cup, = Co.

Lemma 4.1.26. Let A be an artin algebra, then for every cosilting pair (Z,T) in A-Mod

the module
C(Z,I) = H Z
Zez
1s cosilting with respect to the injective copresentation

O(z1) = (H pz) & (0 — HI)

ZeZ IeT

More explicitely, Cogen(Z) = C

9(2,1)
Proof. Since Cz 1) is pure-injective and A is an artin algebra we can apply Lemma
and Corollary to obtain that Cs . ;) € A-Mod is a cosilting class.

Moreover, C(z 1) € CU@,’I) by the definition of rigid pair, thus C'z 7) is precosilting.

Thus, by means of Proposition , we can find a module C’, such that C = Cizn®
(' is cosilting with cosilting class Cozz)-

By Proposition[f.1.22] C' is an elementary cogenerator, thus the indecomposable pure-
injective modules in Prod(C) form a closed subset Z’ of the Ziegler spectrum. Moreover,
by construction Hom(C,Z) = 0 thus (2’,7) is a rigid pair.

However since Z C Z’ and (Z,7) is a cosilting pair we have Z = Z’. However,
by Lemma Prod(C) = Prod(]],cz Z), so that Prod(C(z 1)) = Prod(C) and

therefore C'z 1) is a cosilting module equivalent to C' by Lemma [1.1.9] 0
Theorem 4.1.27. Let A be an artin algebra. The assignments

C— (Zc,Ic)
(2,2) = Cz1

are mutually inverse bijections between:
e Equivalence classes of cosilting modules in A -Mod

e (Cosilting pairs in A-Mod

Proof. We proved in Lemmas [4.1.26] and {.1.24] that the assignments are well defined.

Let (Z,Z) be a cosilting pair, with associated cosilting module C(z 1) = [[4cz Z,
then Prod(C(z 7)) N A-pinj is equal to the closed set Z. The non-trivial inclusion is
Prod(C(z 1)) N A-pinj C Z. As Z is a closed set, by Theorem there is a unique
definable subcategory D of A-Mod such that Z = D N A - pinj.

However, let M € Prod(Cz 7))NA - pinj, then M is a direct summand of ([T, Z)’ €
D, thus M € DN A-pinj = Z.

Conversely, any cosilting module C' is determined, up to equivalence, by the pure-
injective indecomposable modules in Prod(C') by means of Lemma [£.1.23] thus the cosilt-
ing class C = Cogen(C) i.e. C is equivalent to C(z 7.,)- O

9(2c.To)
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Summarising what we discussed in this first section we have:
Corollary 4.1.28. Let A be an artin algebra, then we have bijections between:
(i) The set tors(A) of torsion classes in A-mod.
(ii) The set of equivalence classes of mazimal rigid systems in D(A).

(i1i) The set of cosilting pairs in A-Mod.

4.2 Mutation of cosilting pairs

In this section we will discuss a notion of mutation for cosilting pairs. Recall the following
terminology:

Definition 4.2.1. We say that B is a characteristic brick for the torsion pair (7, F) if
B is torsion, almost torsionfree or torsionfree, almost torsion with respect to (7, F).

In the artin algebra setting, the mutation of cosilting modules developed in [6] is
deeply connected with the operation of exchanging characteristic bricks between torsion
pairs.

Thus, before discussing the idea of mutation for cosilting pairs, we need a better
understanding of characteristic bricks for cosilting torsion pairs.

4.2.1 Characteristic bricks for cosilting torsion pairs

Let R be left noetherian.

For every cotilting module C, we know that Gen(Cogen(C)) = R-Mod, as the pro-
jective generator R is always contained in +1C = Cogen(C). In particular, every module
admits a surjective Cogen(C')—cover. This needs not be the case for cosilting modules.
We will discuss specifically the case of torsion, almost torsionfree modules without a
surjective cover.

Fix R = R/ Ann(C) for a cosilting module C. We begin with a lemma that identifies
when a R-module is contained within R- Mod.

Lemma 4.2.2. Let M be a R-module. Then M has a surjective Cogen(C) = F-cover
in R-Mod if and only if M is contained in R-Mod.

Proof. First suppose that M has a surjective F-cover. Then there exists a short exact
sequence

O—>KM—>FMi>M—>0

such that f is an F-cover of M. It follows that M is contained in R-Mod, as Fj; €
R-Mod and this category is closed under quotients.

Now assume that M is contained in R-Mod. Then, since F is a cotilting torsion-free
class, it is generating in R-Mod and hence every module in R-Mod has a surjective

JF-cover. O
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Given any cosilting torsion pair (7, F) in R-Mod we have a corresponding cotilting
torsion pair (7 N R-Mod, F) in R-Mod. In the next proposition we discuss the relation
between the corresponding characteristic bricks:

Proposition 4.2.3. Let C be a cosilting module in R-Mod with torsion pair (T,F).
Denote by (T, F') the corresponding cotilting torsion pair in R-Mod. Then the following
statements hold for a module B :

(1) B is torsionfree, almost torsion with respect to (T, F) if and only if it is torsionfree,
almost torsion with respect to (T', F')

(2) B is torsion, almost torsionfree with respect to (T',F') if and only if it is torsion,
almost torsionfree with respect to (T, F) and it admits a surjective F— cover.

Proof. The first statement is immediate, as all the conditions which must be checked can
be verified in the torsionfree class, which is contained in R- Mod.

For the second point, notice that by Lemma B admits a surjective cover if and
only if it is an element of R-Mod.

It is clear that, in this situation, if B is torsion, almost torsionfree with respect to
(T, F) it is also torsion, almost torsionfree with respect to (7', F').

For the converse, notice that B is surely a torsion module and that all its proper
submodules are contained in 7 = F. Thus it remains to check only the last condition;
let 0 > K - T — B — 0 be an exact sequence in R-Mod with T € T. Assume that
K is torsionfree, then using the surjective cover of B, f: F' — B, we can construct the
following commutative diagram:

0 K P F
A
0 K T B

0

By assumption K and F are in F, thus P € F and therefore T has a surjective cover.
This forces T to be in R-Mod by Lemma m Hence, we can use the torsion, almost
torsionfree property of B to conclude that K € T'. So K € T'"NF = 0.

For a generic M, consider the following pushout diagram:

0 M T B 0
| I
0—— M/tM T B 0

Apply the special case to the lower sequence to conclude that M =t M is a torsion
module.
This shows that B is torsion, almost torsionfree with respect to (7, F). ]

Therefore, it remains to consider the set of torsion, almost torsionfree modules which
are not contained in R-Mod. The following proposition deals with those:
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Proposition 4.2.4. Let C be a cosilting module, T a torsion, almost torsionfree module
with respect to (T, F = Cogen(C)) whose F—cover f: F — T is not surjective.
Then there exists a simple R—module S € F0 and a short exact sequence

f

0 F T S 0

Moreover, T has a unique mazimal submodule.

Proof. First we show that T has a unique maximal submodule. By hypothesis, any
maximal submodule is in F, as T is torsion, almost torsionfree. Recall that T is finitely
generated by Proposition 2.1.7] thus we have at least one maximal submodule. If 7" had
two maximal submodules F; # Fy then the summation map Fy; @ F» — T would be
surjective, contradicting the assumption we made on the F—cover.

This shows the existence of a simple module § fitting in the short exact sequence.
If we had any non-zero morphism from a torsionfree module to S, then it would be an
epimorphism, as S is simple, and we could obtain a surjective map from a torsionfree
module to T via pullback. This would contradict the assumption, thus S € FLo. O

4.2.2 Neg-isolated points

Given a cosilting A—module C, the characteristic bricks in A - Mod correspond to certain
indecomposable modules in Prod(C). These modules will play a fundamental role in the
final part of the chapter, to understand it we need the concept of neg-isolated point.

In this section, we recall the concept of neg-isolated point in some closed subset of
the Ziegler spectrum. For an in depth discussion of this technical notion we refer to [55
Section 5.3]. The results concerning critical and special modules can be found in [3].

Definition 4.2.5. Let C C R-Mod be an additive subcategory. A morphism f: C — C’
in C is left almost split in C if it is not a split monomorphism and for every non-split
mono g : C' — C” there exists h : C' — C"” such that g =ho f.

Definition 4.2.6. Let Z be an indecomposable pure-injective module in some definable
subcategory D C R-Mod.
Then Z is neg-isolated in D if there is a left almost split map Z — Z’ in D.

Remark 4.2.7. There is o finer topology on the set of indecomposable pure-injective
modules, known as the full-support topology, such that the neg-isolated points are precisely
the open, or isolated, points, see [53, Proposition 5.3.67] for details.

There are equivalent characterisations of the isolation condition: the original defini-
tion given in [55] is that a module N is neg-isolated in a definable subcategory D if and
only if the tensor product functor (—® V) is the injective envelope of some simple object
in the localised functor category (mod- R, Ab)p, see Section for the terminology

and notation.

Proposition 4.2.8 ([3, Proposition 6.6]). Let D be a definable subcategory of R-Mod.
The following statements are equivalent for a module N € D:
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(i) N is neg-isolated in D.
(i1) (— ® N) is the injective envelope of a simple object in (mod- R, Ab)p.

The following result gives a relation between elementary cogenerators and neg-isolated
points:

Theorem 4.2.9 (|55, Theorem 5.3.50]). A pure-injective module E is an elementary
cogenerator if and only if every neg-isolated point in (E)NrZg occurs as a direct summand
of E.

Definition 4.2.10. Let Z be a neg-isolated module in a definable subcategory D. Then
Z is critical if there exists a non-injective left almost split map in D starting at Z.

Proposition 4.2.11 (|3, Proposition 6.13]). Let D be a definable subcategory, Co the set
of critical modules in D. Then D C Cogen(Ce) and every module in Co is split-injective
in Cogen(C,).

Remark 4.2.12. Given a cosilting module C' we will be interested in critical modules in
Cogen(C) as, by the proposition above, Cogen(Co) = Cogen(C).

One can show that every critical module in Cogen(C') is actually a direct summand
of C (in fact the critical modules in Cogen(C) are precisely the critical modules in (C))

Proposition 4.2.13 (|3, Lemma 4.3|). Let C be a cosilting R—module and N € Prod(C)
a neg-isolated module in Cogen(C'). Then:

(i) N is critical if and only if there exists a surjective left almost split map in Cogen(C')
starting at N.

(ii) N is not critical if and only if there ezxists an injective left almost split map in
Cogen(C) starting at N.

Proof. In [3] this is proved when C' is a cotilting module. However, since every cosilting
module C is cotilting over R = R/ Ann(C) and all the concepts involved are relative to
the subcategory Cogeng(C) = Cogeng(C) € R-Mod the same statements hold in this
case. 0

We now consider the non critical case:

Definition 4.2.14 ([3]). Let C be a cosilting module. A module N € Prod(C) is special
(in Cogen(C)) if there exists an injective left almost split map in Cogen(C) starting at
N.

Critical and special summands of a cosilting module are connected with characteristic
bricks:

Theorem 4.2.15 (|3, Propositions 6.11 and 6.18]). Let (T, F) be a cosilting torsion pair
in R-Mod, with cosilting module C. Then the following statements are equivalent for a
module N :
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(1) N is special neg-isolated in F
(2) There is a short exact sequence

0— N N-_TL 7 o

where T' is torsion, almost torsionfree with respect to (T,F), the map b is a strong
left almost split morphism in F and f is an F—-cover.

Moreover, the following statements are equivalent for a module M :
(1) M is critical neg-isolated in F

(2) There is a short exact sequence

0——F -2 M -*sM-—30

where F is torsionfree, almost torsion with respect to (T, F), the map a is a strong
left almost split morphism in F and g is a Prod(C)—envelope.

Proof. The theorem is proved in [3] for cotilting modules. We can extend it using the
compatibility results for characteristic bricks obtained in Section [4.2.1]

First notice that a module N is special neg-isolated in F as a R—module if and only if
it is special neg-isolated in F as a R—module: the conditions only involve the torsionfree
class F.

"(1) = (2)": If N is special neg-isolated we have a short exact sequence in R- Mod

0— s N NS 7 1o

with the required properties. As T is a torsion, almost torsionfree module with respect
to the cotilting torsion pair in R-Mod we can use Proposition to obtain that T is
also torsion, almost torsionfree with respect to (7, F).

"(2) = (1)" : In this setting, as T" has a surjective F—cover, we can use once
again Proposition to infer that T is torsion, almost torsionfree with respect to the
torsion, pair in R-Mod. Thus we can apply the original theorem in R-Mod to conclude
that N is special neg-isolated in F.

In the same way we can prove the equivalence of the two conditions for critical
modules. O

For cotilting modules we have a cleaner connection between injective envelopes and
neg-isolated modules

Theorem 4.2.16 (|3, Proposition 4.1, Theorem 4.2, Corollary 4.4]). Let C be a cotilting
module, with cotilting class F. Then a module X is either critical or special neg-isolated
i F if and only if, when seen as an object in the cosilting heart, it is the injective envelope
of some simple object.
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In particular, there is a bijection between the set of special neg-isolated modules and
the set of torsion, almost torsionfree modules. This bijection sends a torsion, almost
torsionfree module T to the kernel N of the F—cover of T'. This N is the unique inde-
composable module in Prod(C) such that Ext}(T, N) = Homp gy (T[-1], N) # 0.

In the same way we have a bijection between the set of critical neg-isolated modules
and the set of torsionfree, almost torsion modules. This bijection sends a torsionfree,
almost torsion module F to the Prod(C)—envelope M of F. This M is the unique
indecomposable module in Prod(C) such that Hom(F, M) = Hompg)(F, M) # 0.

In the next three corollaries we adapt this theorem to the cosilting setting. This will
yield several useful orthogonality properties which will be essential in the next sections.

Corollary 4.2.17. Let C be a cosilting module, F a torsionfree, almost torsion module
for Cogen(C'). Then there exists a unique indecomposable module M in Prod(C) such
that Hom(F, M) # 0, this M is critical neg-isolated in Cogen(C').

Proof. We can apply Theorem to the cotilting module C over A = A/ Ann(C).
This will yield a unique critical neg-isolated M with the required property in A - Mod,

and as all these conditions are local to Cogen(C') we can obtain the same properties for

M when seen as A—module. O

Corollary 4.2.18. Let C be a cosilting module, T a torsion, almost torsionfree module
in LoC with surjective Cogen(C)— cover.

Then there exists a unique indecomposable module N in Prod(C') such that T & C,,,,
or equivalently such that HomD(A)(T[—l],,uN) # 0. This N is special neg-isolated in
Cogen(C).

Moreover, for every indecomposable injective I € C*0 we have Hom(T, ) = 0.

Proof. Let F = Cogen(C). By Proposition the module T is still torsion, almost
torsionfree for the cotilting torsion pair cogenerated by C in A-Mod. Therefore, we
can apply Theorem to obtain the unique (special) neg-isolated point N such that
Exty (T, N) # 0.

Once again, when seen as a A—module this module N is still special neg-isolated.
Moreover, as Ext} (T, N) # 0 we have that T & C,, .-

For every other indecomposable module X in Prod(C), T' € C,, for the minimal
injective copresentation pyx of X. In fact, in every non-split extension 0 - X — L —
T — 0 in A-Mod, we have that L € F, as T is torsion, almost torsionfree. Thus
0= Extlx(T , X) = Ext} (T, X). Moreover all proper submodules F' of T are torsionfree,
and since F is an extension closed subcategory Extlx(F, X) = Ext} (F, X). However, in

A-Mod, X has injective dimension less than 1, being in Prod(C), thus for all F < T we
have Ext} (F, X) = 0 which implies that T' € C,, as in the proof of Lemma
For the last statement, notice that if we had any morphism from T to any such

indecomposable injective I, the surjective F—cover F' — T" would induce a non-zero map
C— I O]
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Corollary 4.2.19. Let C be a cosilting module, T a torsion, almost torsionfree module
in +0C with injective Cogen(C)— cover.

Then for every indecomposable module N in Prod(C) we have that T € C,,, or
equivalently Homp ) (T'[-1], un) = 0.

Moreover, there exists a unique indecomposable injective module I in C0 such that

Hom(T,I) # 0.

Proof. Let F = Cogen(C). We start from the second statement. Let T be a torsion,
almost torsionfree module with injective F—cover, then by Proposition the cok-
ernel of the cover is a simple module S with E(S) € Cto. Clearly for such injective
Hom(T, E(S)) # 0.

Moreover, assume we had another indecomposable injective I € C0 with some non-
zero f : T — I. Then we can consider two settings, either f is monic or it has non-zero
kernel. If f is monic then in case T is not simple we have a non-zero map from a non-zero
proper submodule of T, which is in Cogen(C) to I, thus I ¢ C*° a contradiction. If
T = S is simple, then I = E(S), again a contradiction.

Thus we might assume that the map f has some non-trivial kernel K. Let S’ be the
simple socle of the indecomposable injective I. We can produce the following pullback
diagram:

0 K P ' 0
R
0 K T Im(f) —— 0

But as T is torsion, almost torsionfree, P must be torsionfree or isomorphic to 7', in
the first case we would get a non-zero map from Cogen(C') to I, in the second Proposition
[.2.4implies that S’ ~ S and I = E(S).

For the first statement, let N € Prod(C) indecomposable, then to show that 7' € C,,,
it is equivalent to prove that every submodule of T is in ** (V). However, every proper
submodule of T is torsionfree, thus Ext-orthogonal to N as all the modules in Prod(C)
are Ext-injective in F. In conclusion it is enough that Ext!(T, N) = 0.

Assume we had a non-split short exact sequence 0 - N — L — T — 0. As T is
torsion, almost torsionfree, the module L must be torsionfree, however if this were the
case we would have a surjective map from a module in F to T, which contradicts our
assumption on the injectivity of the F—cover. O

We close this section showing some additional properties of critical and special mod-
ules. First, critical and special modules occur as summands of the approximation se-
quence induced by a cosilting module:

Theorem 4.2.20 ([3]). Let E(R) be an injective cogenerator of R-Mod, let C be a
cosilting module with approximation sequence:

0 o Co E(R)
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Then every special module is a summand of C1 and every critical module is a summand

Of C().

Proof. Once again in [3] this result is proved only for cotilting modules. However, since
we know that:
0 Ch Co Im(f) — 0

is an approximation sequence for the injective cogenerator Im(f) of R-Mod, by Lemma
1.4.7] and that being critical, or being special is a condition local to F, we can immedi-
ately extend the result to the cosilting case. O

For the last result we need the following generalisation of the radical:
Definition 4.2.21. Let X,Y be modules in R-Mod. Then we define

VZ such that End(Z) is local ,
Rad(X,Y) := ¢ f € Homg(X,Y) | Vg € Homg(Z, X), Vh € Hompg(Y, Z),
h o f o g is not invertible

Recall that by Theorem [1.3.10| every indecomposable pure-injective module has local
endomorphism ring.

Lemma 4.2.22. Let R be a ring, then Rad is an ideal in R-Mod.
Proof. Same proof as [15, Proposition 7.1]. O
We conclude this brief recap with the following Lemma.

Lemma 4.2.23 (cf. |1, Lemma 2.20]). Let C be a cosilting module. Then for the minimal
approzrimation:

f

0 Ch Co —— E(R)

we have that C1 and Cy do not have a common, up lo isomorphism, indecomposable
summand; in particular C1 has no critical summands and Cy has no special summands.

Proof. The proof is the dual of the proof of [1, Lemma 2.20], using the modified definition
of the radical.

We show that Hompg(C1,Cy) = Rad(Cq,Cp). First, notice that f € Rad(Cy,Cp):
assume by contradiction that we have a (non-zero) module Z with local endomorphism
ring and two maps j : Z — C1, h : Cyp — Z such that ho f o j is invertible. Then Z is
isomorphic to a direct summand of Cy which is contained in the kernel of g. However,
the map ¢ is right minimal and the existence of such a Z leads to a contradiction.

Applying Hom(—, E(R)) to the short exact sequence:

/ g

0 Ch Co

Im(g) —— 0

we observe that the map Hom(f, E(R)) : Hom(Cy, E(R)) — Hom(C1, E(R)) is surjec-
tive.
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So let s : C1 — Cj be an arbitrary morphism.

By the observation above, there is some map b : Cy — E(R) such that gos=bo f.
However, since g is a Cogen(C')—cover, the map b must also factor through g, so we can
write b = g ol for some endomorphism [ : Cy — Cy.

In this way we can conclude that gos = (gol)o f and therefore go (s —lo f) = 0.

Thus (s —lo f) = fow since f is the kernel of g and ultimately we can express
s=fov+lof.

Since the radical is an ideal in R-Mod, we conclude that s € Rad(C1, Cy).

It follows that C and Cjy can not have any common indecomposable (pure-injective)
summand. O

Remark 4.2.24. For Lemma pure-injectivity of the modules C1,Cy is a funda-
mental point. In particular, a large version of [1, Lemma 2.20] for silting modules is
unlikely to exist.

4.2.3 Identifying well-behaved points of cosilting pairs

Let A be an artin algebra. In this section we will identify the classes of points at which
it is possible to perform some kind of mutation. We will see that these points correspond
to some neg-isolated modules.

Whenever we work with a subset S of some topological space T we will always consider
S as a topological space with respect to the subspace topology.

Definition 4.2.25. Let (Z,7) be a cosilting pair in A-Mod. Then we say that:

(i) a point N € Z is special if there exists a monomorphism N — N that is a left
almost split map in Cogen(Z2)

(ii) a point N € Z is (very) critical if there exists an epimorphism f: N — N that is
a left almost split map in Cogen(Z) (and ker f is finitely generated).

(iii) An injective I € T is special, if I = E(S) for some simple module S and there

exists a torsion, almost torsionfree module T' with respect to (+°Z,Cogen(Z))
with a short exact sequence:

0 F—~*5T S 0

where ¢: F' — T is a Cogen(Z)—cover.

We prove in the next Lemma that all the injective modules in a cosilting pair are
well-behaved, i.e. special. This is in accordance with intuition as the injective part of a
rigid pair does not involve topological notions.

The lemma also shows that a non-sincere definable torsionfree class must admit some
torsion, almost torsionfree module.
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Lemma 4.2.26. Let F be a definable torsionfree class in A-Mod, assume there is a
simple module S with E(S) € FL0. Then there exists a module T, torsion, almost
torsionfree with respect to the torsion pair (T,F), with a short exact sequence:

0 F—>T S 0

where ¢c: F — T 1s a F—cover.

Proof. Since we are dealing with a question about torsion, almost torsionfree modules,
we can work with the restricted torsion pair (t,f) in A-mod and apply the (dual of the)
techniques in [35]. We will still use the torsion, almost torsionfree terminology even if
we actually work with minimal co-extending modules.

First, notice that “0E(S) N A-mod is a Serre subcategory of A-mod, which we will
consider now as a torsionfree class. It is functorially finite and it is distinct from the
whole category, thus we can find a torsion, almost torsionfree module U with respect to
(u,v = 10E(S) N A-mod) by means of Theorem and by [17, Theorem 2.3.2 |.

Such module admits a v—cover, which must be a monomorphism as v is closed under
quotients and 0 # U € u. Being torsion, almost torsionfree, by Proposition U
must have a unique maximal submodule and we then have a sequence:

0>V ->U—=5—=0

moreover, we must have S’ ~ S as S is a composition factor of U, but it is not a factor
of any of its proper submodules.

Now U is a module in u C t, however it might not be t—simple. Thus, consider the
set S consisting of t—simple modules occurring as quotients of U and having a non-zero
morphism to S. This set is clearly non-empty, as the simple module S itself satisfy these
conditions.

Let T be a module in S of maximal dimension. We claim that T is torsion, almost
torsionfree with respect to (t,f). It is clearly a t—simple by construction, thus by the
dual of [35, Lemma 4.4], it remains to show that it is maximal in the epi-brick ( collection
of bricks with the only non-zero maps between them being epimorphisms) of t—simple
modules.

Let T" be a t—simple module, assume we have an epimorphism 77 — T

Counsider the following pull-back diagram:

0 K P U 0
0 K T’ T 0

By t—simplicity of 7", the kernel K € f C v. Since U is torsion, almost torsionfree
with respect to (u,v) we have two possibilities: either P € v or the upper sequence
splits. In the first case, we reach a contradiction, as we would obtain a non-zero map
P—T —T— S — E(S). In the second case, writing P = K & U, we notice that the
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map U — T’ must be an epimorphism, as every proper submodule of 7" is an element
of f C v. This means that 7" is an element of the set S, thus, by maximality of T, we
must have 7" ~ T.

Now using that T is torsion, almost torsionfree, and that .S is one of its composition
factors we obtain the required short exact sequence. O

Now we show that the special and very critical points we defined have a topological
meaning: they are open in the relative topology of the closed set Z. This result is
essentially an adaptation of [55, Corollary 5.3.3].

Proposition 4.2.27. Let (Z,7) be a cosilting pair in A-Mod. Every special or very
critical point X in Z is open in Z. In particular, for any such X the pair (Z\ {X}, 7)
s a rigid pair.

Proof. We sketch the proof. The argument involves several technical statements and
definitions, which will not be explained. The relevant notions can be found in [4I] and
[55].

Note that each bireflective subcategory of A-Mod is definable by [55, Theorem 5.5.3].
In particular, if (£,7) is a cosilting pair with corresponding cosilting module C' and
A = A/Ann(C), then Z C 1Zg and 1Zg is a closed subspace of yZg, therefore the
subspace topology of Z C 1Zg is the same as the subspace topology in yZg and a set is
closed in {Zg if and only if it is closed in 5 Zg.

Therefore we can reduce to the case where the set 7 is empty and Z corresponds to
a cotilting module.

Recall that by Lemma [£.1.24] the definable category corresponding to the closed set Z
is (C), the definable subcategory generated by C, and, since we are in the left noetherian
setting (C') = Cogen, (C), see Proposition thus the pure-injective modules in (C)
are precisely the elements of Prod(C).

Let AC := (mod- A, Ab) be the category of additive functors from mod- A to the
category of abelian groups.

Then AC is a locally coherent Grothendieck category and thus it is possible to define a
topology on the set of indecomposable injective objects in AC. The resulting topological
space is denoted as Zg(aAC).

The fully faithful functor T : A-Mod — AC, M — —®p M induces a homeomorphism
T : AZg — Zg(AC), see Theorem

Consider the hereditary torsion pair cogenerated by the set of injectives T'(Z). This
gives a localization of the functor category AC ¢y, which will be once again a locally coher-
ent Grothendieck category by [41, Theorem 2.16] and its Ziegler spectrum Zg(ACcy) is
homeomorphic to the closed subset T'(Z) of Zg(AC) equipped with the subspace topology
by [41, Proposition 3.6]. So in conclusion Z is homeomorphic to Zg(ACcy)-

Now, it turns out that AC(c) is equivalent to the heart H of the cotilting HRS-t-
structure, as shown in [62, Section 6.1|. This result is obtained exploiting the equiva-
lence between the categories of injective objects in H and ACc): recall that two abelian
categories with enough injectives are equivalent if and only if the corresponding full



4.2. MUTATION OF COSILTING PAIRS 85

subcategories of injective objects are equivalent, for a proof of the dual case see [15]
Proposition 1V.1.2].

In fact, in the cotilting case Lemma[d.1.1] tells us that Inj(#) is equivalent to Prod(C)
and by Theorem the injective objects of ACcy are precisely the pure-injectives in
(C), thus the elements of Prod(C).

In conclusion we have that the spaces Z,Zg(H) and Zg(sC(cy) are homeomorphic.

Thus to show that every very critical or special point M is open in Z it is enough
to show that the corresponding object M in H is open in Zg(H). To do this, using
[41, Theorem 3.8, it suffices to find a coherent simple object S in the heart, such that
{M} =0(S):={F € Zg(H) | Homy(S, FE) # 0}.

We can obtain this simple S by Theorem {.2.16f a module N is critical or special
neg-isolated in Cogen(C) if and only if it is the injective envelope of a simple in H. The
resulting S is finitely presented by hypothesis: recall that a stalk complex in the heart
is finitely presented if the corresponding module M is finitely presented by Theorem
511 O

In light of this result we give the following definition:

Definition 4.2.28. We say that a rigid pair (U,Z) is almost complete, if it is not a
cosilting pair and there exists a point X of the Ziegler spectrum, resp. an indecomposable
injective J, such that (U U{X},7), resp. (U,ZU{J}), is a cosilting pair and X is either
very critical or special in U U {X}.

We say that a cosilting pair (Z,Z) completes a rigid pair (U, J) if Y C Z and J C I.

Remark 4.2.29. Let C be a closed subspace of a topological space T. Then, given a point
P € C the set C\ {P} is closed if and only if the point P is open in C.

If T = AZg then all the open points in a closed subset are in particular neg-isolated
in the corresponding definable subcategory: recall that the neg-isolated points are precisely
the open points with respect to a finer topology, see Remark [{.2.7

The next proposition in conjunction with our previous remark shows that the condi-
tions imposed in Definition [4.2.28| are reasonable:

Proposition 4.2.30. Let R be a left noetherian ring, C € R-Mod a cosilting module.

Then every neg-isolated module in (C) is either a special or critical neg-isolated module
in Cogen(C).

Proof. First, notice that we can once again assume, without loss of generality, that C' is
cotilting in fact the definable closure of C' in A-Mod is equal to the definable closure in
A-Mod as A-Mod is definable.

Recall that, by Proposition f.2.8] a module is neg-isolated in a definable subcategory
X if and only if its image under the tensor embedding 7" to the localised functor category
(mod- R, Ab)y is the injective envelope of a simple object.

Now, if the definable subcategory is (C'), then we have an equivalence of categories

H ~ (mod - R, Ab)(c)
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as discussed in the proof of Proposition

In conclusion, the neg-isolated modules correspond to injective envelopes of the simple
objects in the heart H.

As we know by Proposition the simple objects correspond to the characteristic
bricks for the cotilting torsion pair and their injective envelopes are precisely the special

and critical modules in Cogen(C), see Theorem {4.2.16| O

Combining the previous proposition with the Corollaries [4.2.17] [4.2.18] and [4.2.19] we
obtain:

Remark 4.2.31. Given a cosilting A—module C' with cosilting pair (£,Z) we have a
bijection:

{ characteristic bricks } & { neg-isolated modules in (C)} UT

realised as follows:

F' torsionfree, almost torsion — M in Z with Hom(F, upr) # 0

T torsion, almost torsionfree in A-Mod — N in Z with T & C,,,

T torsion, almost torsionfree not in A-Mod +— I indecomposable injective in T with
Hom(T,I) # 0.

In the other direction, knowing that a module is neg-isolated in (C) if and only if it
is special or critical neg-isolated in F we associate to every critical (resp. special), the
kernel (resp. cokernel) of the corresponding left almost split map. To an injective [ € T
we associate the torsion, almost torsionfree module T, such that T[—1] is the socle of the
indecomposable injective HO(0 — I) in the cosilting heart H.

In conclusion, we have that to obtain a possible mutation we must work with open
points of cosilting pairs. Every open point corresponds to some critical or special neg-
isolated module in the cosilting class and we know that all very critical or special points
are open.

Example 4.2.32. Let A = kKs be the Kronecker algebra over some algebraically closed
field k. See Ezample [2.5.0 for a description of the category A-mod. The tubes in the
reqular component of the AR-quiver are parametrised by some set L. Let P C L be a
non-empty subset and fir Q = L\ P, then we have a cosilting pair, corresponding to a
cotilting module C, whose closed set Prod(C) N pZg is

{Sq[—00l}geq U {Splool}per U{GH

where Sg[—oo] is the adic module obtained as the inverse limit of the sequence of irre-
ducible epimorphisms in the tube indexed by q, Sp[oo] is the Prifer module obtained as
the direct limit of the irreducible monomorphisms in the tube indexed by p and G s the
generic module.

The torsionfree, almost torsion modules for the corresponding torsion pair are the
simple requlars Sp[1] for p € P, while the torsion, almost torsionfree modules are the
remaining simple requlars Sq[1] for ¢ € Q. Knowing this, we can identify the open points



4.2. MUTATION OF COSILTING PAIRS 87

of this pair: they are the very critical points of the form Sy[oco] and the special points
Sy[—0o0].

The point G is not the injective envelope of any simple in the cotilting heart, in
particular it is not open in the closed set we considered.

As in the example above, all infinite cosilting pairs will contain non-open points, in
fact:

Lemma 4.2.33. Let Z be a closed subspace of nZg. Then if every point of Z is open,
Z is a finite set.

Proof. The Ziegler spectrum is a compact topological space [55], Corollary 5.1.23], there-
fore the closed subspace Z is also compact. If every point z € Z is open, then we have
an open cover given by the collection of all the singletons {z}. By compactness, this
collection must be finite. O

Using the results we obtained, we can now get a more practical criterion to determine
if a given rigid pair is a cosilting pair, this is the analogue of [Il, Corollary 2.13]:

Corollary 4.2.34. A rigid pair (Z,I) is cosilting if and only if Cogen(Z) = Cy(z 1)

Proof. If (£,7) is a cosilting pair then by Lemma Cogen(2) = Cy(z17)-

Conversely, if we assume the second condition, we obtain that C' = [[,.z Z is a
cosilting module with respect to the presentation oz 7y, therefore applying Lemma
to C' we obtain a cosilting pair (Z¢,Z¢). Using the fact that Z is closed, as in the proof
of Theorem we can see that Prod(C) N A-pinj = Zo = Z. Moreover, Zo O 7 as
all the elements of Z are necessarily in C0.

Assume now that Z¢ contains an injective I ¢ Z. Then by Remark we would
have a torsion, almost torsionfree module T corresponding with it, and by Corollary
4.2.19|such that T € CJ(ZCJC\{[}).

However, Zc\{I} 2 Z, therefore Cy(z,, 7.\ (1}) = Co(z,z) and we have a contradiction.

O

4.2.4 Exchanging points of cosilting pairs

Before starting with the proper discussion of mutation, we recall a lemma giving a pro-
cedure for exchanging characteristic bricks. This gives a mutation operation on torsion
pairs in A -mod on which we will build our mutation of cosilting pairs.

The next lemma is a summary of some results from the literature, for instance [17,
Theorem 2.2.6, Proposition 2.3.3|. It could also be recovered in terms of brick labelling
from [11] and [32].

Lemma 4.2.35. Let (t,f) be a torsion pair in A-mod. Let F' be a torsionfree, almost
torsion module with respect to (t,f). Then F is torsion, almost torsionfree with respect
to (t',£ N FL0). Moreover t' covers t in the lattice tors(A).

Dually, a torsion, almost torsionfree module T with respect to (t,f) is torsionfree,
almost torsion with respect to (t N 0T, ') and t covers (t N +0T).
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Remark 4.2.36. We can apply Lemma to a cosilting torsion pair (T,F) with
restriction (t,f) as follows: let F' be a finitely generated torsionfree, almost torsion module
with respect to (T, F), then by PropositionF 1s also torsionfree, almost torsion with
respect to (t,f). Applying Lemma we obtain a torsion pair (u,v) such that F is
torsion, almost torsionfree with respect to it and u covers t.

Consider now the cosilting pair (U,V) extending (u,v) and use again Proposition
to obtain that F is torsion, almost torsionfree with respect to (U, V).

Moreover, using Theorem it follows that U covers T in the lattice of torsion
classes which are part of a cosilting torsion pair as this lattice is isomorphic to tors(A).

We can now start with the main discussion: the following lemma will describe the
mutation of a cosilting pair at a point corresponding to a finitely generated torsionfree,
almost torsion module with respect to the corresponding cosilting torsion pair.

Lemma 4.2.37. Let (Z,7) be a cosilting pair in A-Mod with X € Z a very critical
point. Let I be the finitely generated torsionfree, almost torsion module in Cogen(Cz 1))
obtained as the kernel of the left almost split epimorphism corresponding to X. Then:

Cogen(Cz\(x1,7)) = Cogen(C(z 1)) N Fto
In particular, Cogen(Cz 1)) covers Cogen(C(z\(x},1)) in Cosilt(A).

Proof. First notice that Cogen(C(z\(x},7)) is a torsionfree class, as all the modules in
Z \ {X} are Ext-injective in the larger class Cogen(Cz 1)) (see [2, Remark 3.4]). It is
definable, as it is obtained as the class of subobjects of some definable subcategory, see
[55] Proposition 3.4.15], namely the definable subcategory corresponding to the closed
set Z\ {X}. Now let’s fix (T, F) = (+°C(z 1), Cogen(C(z 1)) and (T',F') = (T(T U
{F}),Fn Fto).

As F is F—simple, we have that F’ is the largest torsionfree class contained in F
which does not contain F. Thus, to show that Cogen(C(z\(x},7)) C F’, it is enough
to show that F' ¢ Cogen(C(z\(x},7))- This is obtained from Corollary : the only
element Z of Z such that Hom(F, Z) # 0 is precisely the very critical module X.

For the reverse inclusion, we will prove that every critical neg-isolated module M in
F' is actually contained in the set Z\ {X} (it is sufficient as critical modules cogenerate
the torsionfree class by Proposition . This is equivalent to require that every such
critical module is Ext-injective in F, as Z = Prod(C) N A-pinj is precisely the set of
indecomposable Ext-injectives in F and X ¢ F' once again by Corollary

The class F can be expressed as the class of extensions (FN7T’)xF’ by Lemmal|l.1.13]
As M is split-injective in F’ by Proposition it will be enough to show that M is
Ext-injective in (F NT").

However (77, F’) is a mutation of the torsion pair (7,F) at the torsionfree, almost
torsion module F' as per Lemma so that we have a minimal inclusion between
the corresponding torsion classes t C t’ in A-mod thus by [6, Corollary 9.14], we have
FNT = ligﬁlt(F). Notice that all the split-injectives M in F’ are pure-injective
modules, thus +1 M is closed under direct limits by Lemma
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In conclusion, it is enough to prove that Ext!(F, M) = 0. Let

0— s M-—*yp T . p_ 49

be an arbitrary extension. As L is an extension of modules in F, we have L € F.
Moreover, if L € F10 then the sequence would split, as M is split-injective in F'.

Thus we can focus on the case in which we have a non-zero map f : F — L. Any
such f must be a monomorphism, as F' is torsionfree, almost torsion in F. If jo f =0,
then f would factor through the kernel k : M — L. But M € F10 so this can not occur.
Thus j o f # 0 and since F' is a brick, it must be an automorphism. Thus the sequence
splits. O

Remark 4.2.38. Notice, in the last part of the proof of the Proposition, that the fact
that F is Ezt-orthogonal to the criticals in F' could be immediately deduced using that
F is torsion, almost torsionfree in the new torsion pair. This means that its injective
envelope in the new heart corresponds to a special point.

Remark 4.2.39. It is not clear if a critical, but not very-critical point X in o cosilt-
ing pair (Z,I) could be open. If any such point existed, the description of the class
Cogen(C(g\{X},I)) would not be the same as the one given in Lemma .

In fact, if I is an infinitely generated torsionfree, almost torsion module for a defin-
able class F, then V := F N F10 is not definable: all the finitely generated quotients of
F must be torsion modules, thus VN A-mod = F N A-mod. Hence, if V were definable,
1t would be equal to F, but this is not the case as V doesn’t contain F'.

The next lemma describes the mutation of a cosilting pair at a point corresponding to
a (finitely generated) torsion, almost torsionfree module with respect to the corresponding
cosilting torsion pair.

Lemma 4.2.40. Let (Z,7) be a cosilting pair in A-Mod with X € Z a special point. Let
T be the torsion, almost torsionfree module obtained as the cokernel of the corresponding
left almost split monomorphism. Let £ = Cogen(Z) N A-mod. Then:

Coz\(x),1) = im F(FU{T})

In particular, Cy(z\(x1,1) covers Cy(z 1) = Cogen(Z) in Cosilt(A).
The same result applies for any injective I € I, choosing as T the torsion, almost
torstonfree module making I special.

Proof. Both the involved classes are definable torsionfree classes by construction. Thus,
it is enough to show that the corresponding restrictions f” = Co(z\{x},7) N A-mod and
f' = F(f U{T}) coincide by Theorem

By Lemma the torsionfree class f' covers f in the lattice of torsionfree classes
in A-mod.

Moreover, the brick T is also contained in f”. In fact, o(z\(x},7) = HNe{Z\{X}} 1N D
[1;c2(0 = I) and T' € C,,, for all such N by Corollary [1.2.18 Finally, T € Co_y = 101
for all the injectives I again using Corollary
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Now, since f’ is the smallest torsionfree class in A-mod containing f and 7', and
f = CU@I) N A-mod C f”, this shows that ' C f”. For the converse, it will be enough
to show that w := Lof’ N f"” = 0. Now L0f’ =t N 10T, where t = 1of.

So let M € w and consider the object M[—1] in the cosilting heart H corresponding
to the cosilting module C(z 7). We know by Theorem that # is a locally coherent
Grothendieck category whose finitely presented objects are the ones in H N Db(A— mod).
In particular, M|[—1] is a finitely presented object, thus if M[—1] # 0 it must have some
simple quotient .S in the heart.

Recall that the simple objects in H are in bijection with characteristic bricks for the
cosilting torsion pair and in particular, as seen in Remark a simple S corresponds
to the unique neg-isolated module Z in Z such that Homp ) (S, p1z) # 0 or to the unique
indecomposable injective I € Z with HomD(A)(S, 0—1I)#0.

But the fact that M € C,(z\(x}7) implies by Lemma that, for every Z €
Z\{X}, Hompp)(M[~1], pz) = 0 and Hompp)(M[-1},0 — ) =0 for all I € T.

This means that the simple quotient S must be the one corresponding to X, that
is T[—1]. However, this would show the existence of a non-zero map M — T. This
contradicts our hypothesis on M, thus w = 0 and this shows that f' = f”.

The proof in the case of the indecomposable injective is identical, using Corollary
4.2.19] O

The next lemma fixes the asymmetry in the definition of an almost complete pair:

Lemma 4.2.41. Let (U,Z) be a rigid pair. Then (U,T) is almost complete with respect
to a very critical point if and only if it is almost complete with respect to o special point
or indecomposable injective.

Proof. We start the proof in the case of a rigid pair (U,Z) which is almost complete
with respect to a very critical point X. Let I’ be the torsionfree, almost torsion module
corresponding to X.

Consider the cosilting pair (Z,7) = (U U{X},Z), and fix F = Cogen(Z) = lim f,
where f = F N A-mod.

By Lemma we have F' := Cogen(U) = F N F+o. This is a cosilting torsionfree
class, in particular, we have a corresponding cosilting pair (U’,Z’) extending the rigid
pair (U,Z): every element of U is Ext-injective in Cogen(Z) O Cogen(U), thus it is also
an element of U’ being in Prod(C 77y) and I’ = Cogen(U’)0 Ninj(A) = Cogen(U)*+0 N
inj(A) D Cogen(Z)*0 Ninj(A) = T.

Moreover, the module F' is torsion, almost torsionfree with respect to the torsion pair
(o F', F'), in particular we have either a special point X’ € U’ or an injective I’ € T’
corresponding to it.

Assume we are in the special point case, we want to prove that U’ =U U {X'}.

Applying Lemma we obtain that Copn (x1y,7) = @ﬁ(f’ U {F}). However,
this is a definable torsionfree class strictly containing F’ and contained in F, therefore
since these two classes cover each other, we must have F = Co @\ (x71,77)-
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In particular, we have that (Z,7) is a cosilting pair completing (U \ {X'},Z7), so
that 7/ =Z and U' \ {X'} C Z =U U {X}. However, X can not be an element of U,
otherwise F' € F/, thus U’ \ {X'} = U.

In the injective case, we want to show that Z' = ZU{I'}. Again, we can apply Lemma
4.2.40|to obtain that Co @y 7\ {11}) = ligf‘(f’u {F}) = F and conclude using that Z C 7,
but 7\ {I'} C T.

Assume now that (U, Z) is almost complete with respect to an indecomposable injec-
tive I. Let T be the corresponding torsion, almost torsionfree module. Let 7/ = Z U {I}
and F = ]ﬂlf = CO'(Z/{,I’)'

Using Lemma we obtain that F' := Coy 1) = hg}?(f U{T}) covers F in the
lattice of definable torsionfree classes.

As the class F’ is cosilting, we have a cosilting pair (Z,J) extending (U,Z) with
Cogen(Z) = Cy(z,7) = F'. Then T is a finitely generated torsionfree, almost torsion
module in F’, thus it corresponds to a very critical point X’ € Z.

Using Lemmawe obtain that the class Cogen(Z\{X'}) = F/NT0, therefore it
must coincide with F and thus (U4, Z’) is a completion of (Z\{X'}, J) so that Z\{X'} C
U, but knowing that & C Z we must have Z\{X'} =U. Moreover Z C J C 7' = ZU{I}.
However, J does not contain I as T' € F’ and thus J = 7.

The case in which the rigid pair is almost complete with respect to a special point
can be treated in the same way. O

From the proof of the previous lemma we can extract the following proposition,
ensuring that every almost complete rigid pair admits exactly two complements, this
result is the cosilting analogue of [I, Theorem 2.18]:

Proposition 4.2.42. Given an almost complete rigid pair (U, T), there exists exactly two
cosilting pairs completing it: one is obtained by adding a very critical point, the corre-
sponding cosilling class is C;y 1), the other by adding a special point or an indecomposable
injective, the corresponding class is Cogen(U).

Proof. In the proof of Lemma [4.2.41| we see that there are two completions (U’,Z") and
(U",T") with the required properties.

Let (V,J) be a cosilting pair completing (U, Z), then F = Cogen(U) C Cogen(V) =
Cow,7) € Couzy = T

As F' covers F, we have that (V,J) is either (U',Z") or (U",T"). O

In conclusion, we have the following theorem describing the process of mutation:

Theorem 4.2.43. Let (Z,7) be a cosilting pair. The following procedure yields the cosilt-
ing pairs corresponding to the minimal extensions and coextensions of F = Cogen(Z):

e Given F, a finitely generated torsionfree, almost torsion module and X the cor-
responding very critical point in Z, then the cosilting pair corresponding to the
coestension V = Cogen(Z) N FLo is:
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(i) (Z\{X})U{X'},Z) if F has a surjective V—cover and X' is the kernel of
this cover.
(1)) (Z\{X},ZU{E(S)}) if F has an injective V—cover and S is the simple

module obtained as the cokernel of this cover.

o If T is torsion, almost torsionfree module, then the cosilting pair corresponding to
Cogen(C') = hﬂF(f U{T}) is:

(1) (Z\{X}HU{X'},T), if T has a surjective F—cover and X is the corresponding
spectal point in Z
(1) (ZU{X'},Z\{E(S)}), if T has an injective F—cover and S is the simple

cokernel of such a cover.
where X' is a Prod(C")—envelope of T

Proof. The proof is just a collection of the previous lemmas. T will give some details for
the torsion, almost torsionfree case: by Lemma we know that we must substitute
precisely one object from the cosilting pair (Z£,Z). As the new class Cogen(C”) must
contain the module T we have to remove the obstructions to its presence. If 7" has an
injective F—cover then we have an indecomposable injective I, with F C 101 such that
Hom(T,I) # 0. So we must remove [ from the set Z.

If T has a surjective cover, then we have a special point X € Z such that Ext!}(T, X) #
0, so in particular T' € C,,,.. Therefore in this case we must remove the point X.

To complete the modified rigid pair, recall that T becomes torsionfree, almost torsion
in Cogen(C"), therefore by Theorem [4.2.15|and Corollary [4.2.17 we must have a sequence:

0T —->X -X—0

with X’ a Prod(C’")—envelope which is critical in Cogen(C”). The module X’ was not
an element of Z, as T' ¢ F, thus it is the required complement. ]



Appendix A

Torsion classes over the wild
3-Kronecker quiver

We discuss the structure of the lattice of torsion classes over the three Kronecker algebra
A =k(1 == 2), for some algebraically closed field k.

The fundamental results about wild hereditary algebras which we use can be found
in the extensive survey [45].

First, recall that the indecomposable modules in A-mod can be divided in three
sets: preprojective modules p, that is modules which can be obtained as inverse-AR-
translations of some indecomposable projective, preinjective modules q obtained as AR-
translations of some indecomposable injective, and regular modules v, that is indecom-
posable modules R such that 77" (7"R) ~ R ~ 7™(7 "R) for all n € N.

We have the usual orthogonality properties: Hom(q,t) = Hom(q,p) = Hom(t,p) = 0.

Every preprojective and preinjective module is a stone, that is it has no self-extensions,
and thus, since the algebra is hereditary, it is also a brick. As such, we have a torsion
class gen(M) in A - mod for each isoclass of preinjectives and preprojective modules, such
that M is the unique torsion, almost torsionfree module.

There are countably many isomorphism classes of preprojective and preinjective mod-
ules, which we can denote in the following way:

P? = Aey Q% = D(e1A)
P! = Aey Q' = D(eaA)
P2 = (P) Q" ="(Q")
p2ntl T_n(Pl) Q2n+l _ Tn(Ql)

Notice that, for every natural n # 0 and for every m € N, gen(P") D gen(P"!) D
gen(Q™H1) D gen(Q™). On the other hand gen(P°) = add(S2) does not properly contain
any non-zero torsion class, and it is only contained in the trivial class gen(A) = A - mod.

What about regular modules? For any such module R we have that R € Gen(P"),
for every n # 0 and 'T‘(R) D Gen(Q™), for every m.

93



94 APPENDIX A. WILD QUIVERS

A -mod
N\
gen(P')
\
gen(P?)
\
gen(P?)

Moer gen(P)
gen(P?)
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gen(Q?)
.
gen(Q")
v
gen(Q")
/

0

Figure A.1: Global structure of torsion classes over kK3

As such, the global structure of the lattice of torsion classes is close to the tame case,
see Figure [A]
A first important difference is that the interval

gen(q) = [ J gen(@™), gen(x) = () gen(P"*)
neN neN

is not wide. In fact the heart of these two classes is reg — A, the additive closure of «,
which is not closed under kernels and cokernels.

As in the tame case, gen(q) does not admit any minimal co-extending module and
gen(t) does not admit any minimal extending module.

However, we will see that these classes are actually “isolated”. To this aim, it will be
interesting to consider the notion of elementary module:

Definition A.0.1. Let A be an hereditary algebra, a module E # 0 € reg — A is said to
be elementary if for every short exact sequence:

0O—-M—-E—-N=0
with M # 0, N # 0, either M € reg — A or N € reg — A.
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Since reg — A is an additive subcategory, closed under extensions (and images), it
inherits a natural exact structure from A-mod. It is immediate to check that elementary
modules are precisely the simple objects in reg — A relatively to this exact structure.

Notice that every regular module admits a finite filtration by elementary modules.

We have the following equivalent characterisations of elementary modules:

Proposition A.0.2. Let A be a wild hereditary algebra, E an indecomposable module.
The following statements are equivalent:

(i) E is elementary.

(i) There exists an integer N such that T'E has no non-trivial regular factors for all
I>N.

(15i) If Y # 0 is a reqular submodule of E, then E/Y is preinjective.
From which we can obtain:

Corollary A.0.3. Every elementary module is a brick.
Now, we need a further general result about regular modules:

Proposition A.0.4. Let A be a wild hereditary algebra, X,Y non-zero reqular mod-
ules, then there exists some positive integer m such that X is generated by ™Y and
cogenerated by 7Y .

Finally, we can show that:

Proposition A.0.5. Let A = kKCs. The torsion class gen(q) does not admit any minimal
co-extending module, nor any minimal extending module.

Proof. We already noticed that gen(q) does not cover any torsion class, in particular, it
does not admit any minimal co-extending module.

Assume there is a torsion class t covering gen(q). Then there is some regular module
R, which we might assume elementary, in t. Moreover, since this class is covering, it
must be the case that t = T(R).

However, Proposition tells us that R generates the elementary brick 7™ R, for
some m > 1, therefore t = T(R) D T(7™R) 2 gen(q), a contradiction. gen(q) does not
have any minimal extending module. O

With dual arguments for the corresponding torsionfree class we obtain:

Proposition A.0.6. Let A = k3. The torsion class gen(t) does not admit any minimal
co-extending module, nor any minimal extending module.

We give some further examples of pathological torsion pairs in A - mod:
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Proposition A.0.7. Let A = k3. Let By be the brick obtained as the cokernel of the
map o : Py — Py induced by the first arrow of the quiver.
Then the minimal extending modules with respect to (T(Bl),BlLO N A-mod) are in

bijection with the finite-dimensional simple modules over the free ( associative ) algebra
in two variables k(X,Y).

Proof. This is an immediate consequence of Lemma |3.3.10 ﬁ(BfO) = BlLO’l, which by

Remark is equivalent to the category of modules over the universal localisation at
the map «a.

It is well-known that such universal localisation is Morita-equivalent to the ring
E(X,Y).

By Proposition the minimal extending modules with respect to (T(By), BN
A-mod) are precisely the finite-dimensional simples of (Bfo). O

Universal localisations are also useful in finding locally maximal torsion classes:

Proposition A.0.8. Let A = kK3. Then there are orthogonal bricks By, Bo such that
the torsion class (’i‘(Bl, Bs),{B1, B2} N A-mod) has no minimal extending modules.

As an example, it is enough to chose orthogonal bricks with dimension vector (1,1)
and (1,2): in fact B({B1, Bo}*°) = {By, Bo}*01, but if a finite-dimensional module
M s perpendicular to both By and By then its dimension vector must be orthogonal to
both (1,1) and (1,2) with respect to the Euler form associated to kK3. This means that
B({B1, B2}*0) = 0.
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