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Abstract—We present mmSCALE, a practical self-calibration
method that automatically estimates the relative position and
orientation of a network of millimeter wave (mmWave) radars
by post-processing the trajectories of detected targets that move
within the radars’ fields of view (FoVs). This is a key component
of multi-device mmWave radar deployments for indoor human
sensing. As commercial mmWave radars have limited range (up
to 6-8 m) and are subject to occlusion, covering large indoor
spaces requires multiple radars. A fully self-contained system
should estimate the location and orientation of each radar with
no intervention by a human operator. To solve this problem,
mmSCALE fuses target detections from multiple radars, yielding
median errors of 0.18 m and 2.86° for radar location and
orientation estimates, respectively. For this, mmSCALE requires
no specific target trajectories or controlled conditions, it au-
tonomously assesses the calibration quality over time, and is
robust to occlusion and to the presence of multiple subjects.

Index Terms—Indoor sensing; mmWave radar; target track-
ing; self calibration; self registration

I. INTRODUCTION AND RELATED WORK

The increasingly growing interest in the use of millimeter
waves (mmWaves) for human tracking [1], [2] and activity
recognition [3], [4] demands solutions to improve the usabil-
ity and practicality of such systems. Frequency-Modulated
Continuous-Wave (FMCW) radars working in the mmWave
band have emerged as valid alternatives to cameras for indoor
monitoring, as they are robust to changing and poor lighting
conditions and do not raise privacy concerns [5]. However,
commercial mmWave radars have limited range [1] (up to
6-8 m) and are subject to occlusion [2]. Covering medium-
to-large indoor spaces thus requires multiple radars (radar
networks), with known position and orientation. This raises
the problem of how to automatically obtain the positions and
orientations of the radars, as it is often impossible to know
them in advance, and it is impractical to manually input these
settings at deployment time. This problem remains unsolved in
the existing literature. To the best of our knowledge, only two
works have tackled it, i.e., [6], [7]. In [6], the walking trajec-
tory of a single person moving along a straight line (estimated
via a Kalman filter (KF) [8]) is used to compute the relative
position and orientation of two radars. Even though results are
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accurate (< 10 cm position and < 1° orientation errors), the
system has limitations, as (i) only straight-line human move-
ment trajectories are supported, which is unrealistic, and (ii) it
only works when a single person is being tracked. Both aspects
require that the radar network performs a dedicated calibration
phase in controlled conditions, which is impractical and time-
consuming. The authors of [7] propose a similar algorithm
for multiple sitting subjects. Here, data association between
different radars is accomplished by pairing the reflections from
the same target seen by two radars. The pairing employs a
measure of similarity between the respiration waveform of a
subject. While this method tackles the multiple target problem,
it only works when the subjects are stationary, significantly
limiting its application scope.

In this work, we propose mmSCALE, a practical algorithm
that automatically estimates the locations and orientations of
multiple radars with respect to a reference coordinate system
by leveraging the movement trajectories of people in the
environment. Our method solves the problem of handling
free movement trajectories and multiple subjects using (i) a
standard KF-based tracking routine, (ii) an efficient, singular
value decomposition (SVD) least-squares (LS) approach to
obtain the relative position and orientation of an arbitrary
number of mmWave radars, and (iii) the Hungarian algorithm,
applied to an originally designed cost function, to associate the
tracks detected by different radars. The original contributions
of the present work are

1) We propose mmSCALE, a fully automated method for
the self-calibration of multiple mmWave radars. The al-
gorithm estimates the relative positions and orientations
of the radars with a median error of 0.18 m and 2.86°,
respectively, using the information obtained by tracking
people moving freely in the FoV of multiple radars.

2) mmSCALE is highly practical and requires no controlled
conditions for the calibration. It can support an arbitrary
number of radars. Thanks to a novel data association
cost function, it handles multiple moving subjects in
the environment even when occlusions occur. Its fast
convergence time enables accurate calibration in less
than 6 seconds.

3) We evaluate our method via an extensive measurement
campaign involving up to 4 commercial mmWave radars
and multiple subjects, deployed in realistic conditions
including possibly challenging human motion.



The remainder of this paper is organized as follows: Section II
gives preliminary description of mmWave radar-based human
tracking; Section III formalizes the self-calibration problem;
Section IV presents and discusses our approach; Section V
describes the experimental results on our testbed; finally, we
draw concluding remarks in Section VI.

II. PRELIMINARIES ON MMWAVE INDOOR RADAR

A Multiple-Input Multiple-Output (MIMO) FMCW radar
jointly estimates the distance, the radial velocity, and the
angular position of the targets with respect to the radar
device [9]. During the sensing process, the radar transmits
sequences of linear chirp signals with bandwidth B. A full
sequence, or “radar frame”, is repeated with period 7" seconds.

1) Distance, velocity and angle estimation: The distance,
r, and velocity, v, of the targets are computed from the
frequency shift induced by the delay of each reflection, usually
applying discrete Fourier transform (DFT) processing. The
FMCW radar distance resolution is related to the bandwidth
B by Ar = ¢/(2B), where c is the speed of light. This makes
mmWave devices accurate to the level of a few centimeters
using a bandwidth of 2 — 4 GHz [2], [10]. Furthermore, using
a 2D array of multiple receiving antennas makes it possible to
obtain the angle-of-arrival (AoA) of the reflections along the
azimuth (0), and the elevation (¢) dimensions, by leveraging
phase shifts across different antenna elements. The azimuthal
Ao0A resolution depends on the number of antennas N in the
array and is given by A8 = A\/(Ndcosf), where d is the
spacing between the antennas.

2) Radar point-clouds: A human presence in the environ-
ment generates a large number of reflections in the form of
points detected by the radar. This set of points, usually termed
radar point-cloud, can be transformed into the 3-dimensional
Cartesian space using the distance, azimuth, and elevation
angle information of the multiple body parts. Each point is
described by vector [z, y, z]T, including its spatial coordinates
x,y, z obtained transforming 7, 6 and ¢.

3) People tracking: the common approach to people track-
ing from mmWave radar point-clouds [1], [2], [11] includes
(i) a detection phase via density-based clustering algorithms
(e.g., DBSCAN [12]) to separate the reflections from multiple
subjects, (ii) applying Kalman filtering techniques [8] on each
cluster centroid to track the movement trajectory of each
subject in space.

In this paper, we estimate the subjects’ trajectories in the
(z,y) horizontal plane. We define the state of each subject
at time k as s = [:Ek,yk,;kk,yk]T, where 25 and 3, are the
velocity components along the two axes. We assume that the
state evolution obeys s = Cs;_1, where the transition matrix
C represents a constant-velocity (CV) model [13]. The KF
estimates the state Sy for a target subject at time k.

III. PROBLEM OUTLINE

In this work, we tackle the problem of automatically esti-
mating the position and orientation of multiple radar devices
on the azimuth (horizontal) plane with respect to a common

reference system by leveraging the movement trajectories of
one or more targets moving in the radars’ FoV.

A. System self-calibration

Assume S radars are deployed in the space and call
F;,i=1,...,5, their reference systems (RSs). Each RS is
composed of a pair F; = (t;,R;), where t; = [x,y] repre-
sents the position of the origin of the i-th RS and R,; corre-
sponds to the 2 x 2 rotation matrix identifying its orientation.

We elect the RS of one radar to be the reference RS,
and refer all other RSs to the reference one. Therefore, the
common RS is known, whereas all the others are unknown.
In particular, assuming F} is chosen as the reference device,
it holds that F} = (tl,Rl), with t; = [O,O}T and R =1,
the 2 x 2 identity matrix. Hence, our objective is to estimate
F;,i=2,...,5, since F; is known.

Consider, now, a set Q@ = {Qg,..., Qs} of S tracks
obtained by synchronously tracking the same target at each
radar device. Each track is a matrix containing the position
vectors of the target across time, as seen from a different
perspective (i.e., from a different radar). Denote by qj the
(z,y) position of the target (i.e., the first two components of
the KF state estimate Si) with respect to F} at time k, and
with uy the (z,y) position of the target with respect to the
generic RS Fj, at the same time instant. It holds that

ar = Ryuy + ¢, (D

where R; and t; represent, respectively, the rotation matrix
and translation vector to move from F; to F}. Considering a
number P of consecutive pairs of estimated positions in tracks
Q: € R>*F and Q; € R?>*F, we get an over-determined
system of 2P independent equations corrupted by noise, due
to the imperfect estimation of the positions by the KF. The
desired pair (R;,t;) can be found solving the LS problem

P
(R;,t;) = argmin ZH(R,u;C +t)—agllz, i=2,..., 5,
R;€50(2), 1}
t;€R?
2)

where SO(2) denotes the special orthogonal group in dimen-
sion 2 and [|-||2 is the Euclidean norm. In Section IV, we
present an algorithm to efficiently solve this problem.

B. Challenges of self-calibration with mmWave real data

The automatic self-calibration of a radar network using
targets moving in their FoV in a real-world scenario poses
several challenges concerning (i) the presence of multiple
tracks, (ii) the time synchronization of the radars, (iii) the
association between the tracks, forming pairs to be used for the
calibration, and (iv) how to assess the quality of the calibration
once deployed in a previously unseen, uncontrolled scenario.
All these points are briefly discussed below.

Multiple tracks. While in Section III-A we only considered
the case of every radar providing only one track, in a real-
world scenario, every device would likely provide a list
of tracks. This is due to the presence of multiple targets,
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spurious ghost targets related to mmWave reflections on highly
reflective surfaces, or the splitting of the trajectory of a single
target into multiple tracks caused by occlusion events. Thus,
we need a method to understand the correspondence between
the tracks acquired by different radars. Moreover, not all the
track pairs provide the same calibration quality. For instance,
longer and accurately synchronized tracks are expected to
perform better. In the following, focusing on a single time
instant, we denote by N; the number of tracks from radar 1
and by N; the number of tracks from radar ¢, indicized by
£=1,...,Ny and m = 1,..., N;, respectively.
Time synchronization. Some level of time synchronization
between radars is needed, as it allows us to associate the pairs
(qk,uy) to be used in Eq. (2), which are obtained by different
devices. To this end, once a data frame is acquired by one
radar, we attach a timestamp and then use the timestamps to
match data coming from different devices. We call 7/ and
7,/ the timestamps (in seconds) of the k-th position vector in
tracks ¢ (of the reference radar 1) and m (of the ¢-th radar),
respectively. As we empirically assess in Section V, synchro-
nization on the radar frame duration level (typical frame rates
range from 10 to 30 Hz) is sufficient for mmSCALE to work,
so errors of a few milliseconds can be tolerated.
Assessment of the calibration process. As we envision a
system that should generalize to unseen, uncontrolled, real-
world scenarios, a procedure to evaluate the calibration quality
in such conditions is required. To this end, we leverage the
fact that, after calibration, associated tracks belonging to the
same target should match closely. The same metric can also
be used to verify the validity of the calibration across time
and to decide whether re-calibration is required.

As further explained in Section IV-C, all these aspects are
accounted for in the proposed cost function (Eq. (6)).

IV. MMSCALE WORKFLOW

From a high-level perspective, mmSCALE solves the cali-
bration problem and the above challenges by operating in three
steps, as shown in Fig. 1.

(1) Time alignment. Considering all the possible pairings
of the reference radar 1 with radars ¢ = 2,...,5, a time
alignment between the /V; tracks maintained by radar 1 and the
N;; tracks from radar ¢ is sought, by minimizing the difference
between timestamps 74 and 7.

(2) Rigid transformation. Using the time alignment from
point (1), we solve the problem in Eq. (2) for all aligned
track pairs, obtaining the corresponding rotation matrices and
translation vectors.

(3) Tracks association and radar calibration. Radar calibra-
tion is performed using the best matching track pairs in terms

of time alignment and residual rigid transformation error. The
key idea is that track pairs that are well aligned in time and that
leads to low residuals in Eq. (2) represent the same target, as
seen by radar 1 and ¢, respectively. Following this rationale, we
design a new track-to-track association cost function and find
the one-to-one track association yielding the minimum cost.
Finally, the calibration of radar ¢ is carried out by solving the
rigid transformation problem Eq. (2) using all the points in
the associated track pairs.

A. Time alignment

The ¢-th and m-th tracks from radar 1 and ¢, respectively,
are aligned in time by exploiting timestamps that are attached
to each frame. This alignment is performed so that every
element of track ¢ is associated with the element of track m
that minimizes the time difference between the two acquisition
instants, reducing the tracks to a common length of K time-
aligned positions. Elements of track ¢ that do not have a
corresponding element of track m within 7" seconds (recall that
T is the duration of a time frame) are discarded. Due to this
last operation, our time alignment procedure selects only the
portions of the tracks that are sufficiently well synchronized, in
order to avoid performing the rigid transformation on wrongly
associated points. We define the mean time alignment of the
(¢,m) pair as

1
T(m) =2 > | =i 3)

The value of 7(¢,m) represents the quality of the time
alignment between the two tracks, and will be used in the
track association step (see Section IV-C).

B. Rigid transformation

Let the subject’s trajectories observed from the reference
radar 1 and the ¢-th radar (after time alignment) respectively
be Q, € R?**K and Q; € R?>*K. Then, the transformed
trajectory Qg1 is given by Q;; = R;Q; + t;. We use the
subscript ,, to represent a transformed trajectory from the RS
of radar x to that of radar y. To find the optimal R,; and t,,
we solve the LS problem in Eq. (2), that minimizes the square
of the Euclidean norm between Q;; and Q;. The solution is
obtained, in closed form, as [14]

t;=a1 — R;q; , with R; = UV | 4

where, q; and q; are the mean positions of the trajectories
Q; and Q;, respectively, and the columns of U and V are
the left and right singular vectors obtained after the SVD of
the covariance matrix XY7 = UXV7”. Here, X = Q; — q;
and Y = Qi — qi. The translation vector obtained after the
rigid transformation gives the position of radar ¢ in the RS
of the reference radar. We can also compute the orientation
angle of radar ¢ using the R; matrix. This orientation angle,
defined by 0, is given as 0; = cos™* (3tr(R;)), where tr(-)
is the trace of the matrix. mmSCALE computes the rigid
transformation parameters (R."™,t{“"™) for all the aligned
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(¢, m) track pairs from radars 1 and i, i = 2,..., .S, as part
of the following association step.

C. Tracks association and radar calibration

Tracks association. Our data association strategy consists in
(i) computing a cost for each association (¢ <> m), and (ii)
solving the resulting combinatorial cost minimization problem
to associate the best matching track pairs. Since we operate
in real-world conditions, as mentioned in Section III, our cost
function needs to incorporate different aspects: (a) the length
of the tracks, as longer tracks are assumed to provide a better
calibration; (b) the time alignment of the tracks, as we should
compare positions acquired almost simultaneously by the
different radars; and (c) the quality of the rigid transformation,
in terms of residual error in superimposing tracks form the
different radars. We define

K

s(tm) = llak —REug =6 [l )
k=1

where qf, and u}® are the (z,y) positions at time k in tracks

¢ and m, respectively. £(¢, m) is the residual sum of errors in

the trajectories after applying the time alignment and the rigid

transformation and measures the quality of the solution to the

LS problem. Then, the association cost, A, for the tracks pair
(¢,m), is defined as

A(t,m) = —p(K,7) (1+€(6m) " (6)

where p(K,T) is a corrective term that depends on the length
of the tracks and on their mean time alignment. Recalling that
T is the sampling interval of the system, the corrective term
is formalized as

(K, 7) = log(KT)

" T (m) "

where log denotes the natural logarithm. Note that this
corrective term favors tracks which are longer and bet-
ter time aligned, and penalizes the others. Costs A(¢,m),
{=1,..., Ny,m=1,..., N;, are arranged into a N1 X N;
cost matrix, Aj;, and the optimal association of tracks is
obtained by minimizing the overall cost, computed through
the Hungarian algorithm [15].

Radar calibration. The Hungarian algorithm yields
min (N7, N;) pairs of associated tracks, which, according
to the mmSCALE rationale, are possibly the same targets
seen by the two radars. Due to the presence of spurious
tracks, ghost targets and clutter, we select a subset of the
associated track pairs that have a cost below a threshold Ay,
which represents a confidence value under which the pair is
truly a track pair generated by a human. The NNV, track pairs
which are selected in this way are then stacked together and
used to set up a rigid transformation problem as in Eq. (2)
that includes all the information available from multiple
subjects. The problem is solved with the same procedure
described in Section IV-B, obtaining the final rotation matrix
and translation vector to be used to calibrate radar 7, namely
(R¥,t¥). This step exploits all the available information
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from multiple subjects, improving the calibration accuracy
by increasing the number of useful measurements per time
frame. Note that even though target occlusion events may
split a trajectory into multiple components, our algorithm still
works by exploiting each resulting sub-trajectory.

V. EXPERIMENTAL RESULTS

We implemented mmSCALE using Texas Instruments
IWR1843BOOST mmWave radars' connected to two NVIDIA
Jetson TX2 edge computing devices’> communicating via Eth-
ernet. The radars operate in the 77-81 GHz band in real-time
at a frame rate of 1/7 = 15 Hz with a FoV of +60° and
+15° over the azimuth and elevation planes, respectively. In
this section, we present the experimental results obtained by
testing the system in several different scenarios, with 2 and 4
radar devices and up to 2 concurrently moving subjects.

A. Measurements setup and Dataset

To assess the performance of mmSCALE, we conducted
tests in a 7 x 4 m research laboratory (see Fig. 2a) equipped
with a motion tracking system featuring 10 cameras. This
provides the ground truth (GT) 3D localization of a set of four
markers placed on each radar® with millimeter-level accuracy.
We considered 4 scenarios with 2 radars and 1 or 2 moving
targets, and 3 scenarios with 4 radars and 1 moving target. The
locations and orientations of the radars in the different setups
are shown in Fig. 2, where the black circles represent the
radars, the arrows identify their orientations, and the blue area
the region of the laboratory where the subjects were allowed
to move. We also asked the subjects to move according
to 3 possible different trajectories: (i) straight, identifying a
movement along a straight line, (ii) 8-shape, and (iii) free,
corresponding to an arbitrary trajectory. In the following, we
use the notation xR-yT to identify a measurement sequence
involving x radars and y targets.

B. Performance evaluation

I. Qualitative results. The input of mmSCALE is a set
of tracks obtained from different radars, and the output is
the estimation of their position and orientation with respect
to a common reference system, which, for convenience, we
consider to be coinciding with that of radar 1. Fig. 3 shows
a qualitative example of the calibration process with a target
moving freely. Here, after finding the optimal rotation and
translation parameters, we applied the rigid transformation to
the trajectory seen by radar 2 (blue line), so as to superimpose
it with the one of radar 1 (orange line). The transformed
trajectory (yellow line) matches well with the reference one,
showing a good calibration result. We represent the reference
radar with a purple triangle (located at [0, 0], while the black
square and the pink triangle mark the estimated position of
radar 2 and its ground truth, respectively.

Thttps://www.ti.com/tool/ TWR 1843BOOST
Zhttps://developer.nvidia.com/embedded/jetson-tx2
3Using four markers allows us to estimate the orientation angle.
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Fig. 2. Illustration of the setups used to test mmSCALE. The numbered dots represent the radar devices, with the arrow identifying the pointing direction of
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Fig. 3. Example of the transformation, via mmSCALE, of a free movement
trajectory using a 2R-1T setup.

I1. Position and orientation errors. To evaluate mmSCALE’s
accuracy in estimating the positions and orientations of multi-
ple radar devices, we first consider four 2R-1T and four 2R-2T
setups (Fig. 2a and Fig. 2d), applying our method to calibrate
radar 2 with respect to radar 1. For every setup and every
trajectory shape (see Section V-A), we collected two 40 s-
long sequences, for a total of 32 sequences. However, since
we observed that a time window as short as 6 s is sufficient
for our algorithm to converge (see Section V-B-III) we only
used the first 6 s of the tracks for all the calibrations.

We define the orientation error as the absolute value of the
difference between the true orientation angle of the radar de-
vice and the estimated one, which are derived, after calibration,
from the rotation matrices, as explained in Section IV-B. The
position error is defined as the Euclidean distance between the
estimated position of the radar device and its true location.

The calibration performance is summarized in Fig. 4, which
shows the distribution of the orientation and localization errors
for the three trajectory types in a single-target setting (1T),
and for the free movement case in a 2 targets setting (2T).
Regarding the orientation error, we observe that its median, for
all the three trajectories, is about 3°, without a great impact
of the shape of the trajectory. On the other hand, the latter
influences the radar position estimation, where the best results
are provided by the 8-shape trajectory, reaching errors as low
as 11 cm. The worst case is represented by the free movement,
giving a median error of 25 cm.

With 2 concurrently (and freely) moving subjects,
mmSCALE obtains similar orientation angle estimation ac-
curacy, with a slightly increased variance, whereas the po-
sitioning error significantly improves with respect to the
single free moving target case (see also Tab. 1). This is a
distinctive advantage of the track association process, which
can simultaneously exploit all trajectories seen by the two
radars. As a result, the number of measurements available for
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Fig. 4. Orientation and position errors with 2 radars and one (1T) or two
(2T) subjects on the scene.
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Fig. 5. Statistical dispersion of trajectory RMSE when calibrating with P
points from the trajectory in various 2R-1T setups. The dotted lines represent
the median of the radar position using P samples.

the calibration process increases over the same observation
period. With 2 subjects, we also empirically assessed suitable
values for the threshold parameter Ayy,,. Our results showed
that spurious tracks lead to association costs closer to 0 in all
the observed cases, whereas complete human trajectories have
costs strictly lesser than —2. Hence, we set A, = —2.

ITI. Calibration quality assessment. We now examine the
number of samples mmSCALE needs in order to achieve a
sufficiently low residual calibration error, namely the value of
P in Eq. (2), and propose a practical method to assess the
calibration quality at run time. As a measure of the calibra-
tion quality, we use the residual error after transforming the
trajectories of radar ¢+ with respect to radar 1 (the reference);
if tracks from the two radars match well, we can assume the
calibration has reached a low positioning and orientation error.
This is demonstrated in Fig. 5, which shows the distributions
of the RMSEs obtained by comparing the transformed track
from radar ¢ with the one from the reference radar 1. To
study the impact of the number of samples, we only used the
first P trajectory points to compute the rigid transformation
and then transformed the entire sequence. P is varied from
15 to 150, which corresponds to a time duration from 1 to
10 seconds. With the dotted curves instead, we show the
median error on the estimated position of radar ¢ with respect



TABLE 1
SUMMARY OF THE MEDIAN ERRORS FOR DIFFERENT SETUPS

2 Radar setup 4 Radar setup
Median error 1T Straight 1T 8-Shape 1T Free 2T Free 1T Free
Orientation [°] 3.1 2.78 2.66 2.86 5.6
Position [m] 0.21 0.11 0.24 0.18 0.26

to the GT. In practice, the GT is not available, so only the
transformed trajectory RMSE can be computed. We observe
that the median RMSE of all the trajectories falls below
0.5 m with just 30 samples, i.e., 2 seconds of data. The
RMSE distributions for the straight and 8-Shape trajectory
reach a plateau with 45 samples (3 seconds), whereas, for
the free trajectory, it takes about 75 samples (5 seconds). The
estimation error on the radar position also reaches low values
within 90 samples (6 seconds), showing an identical trend to
the trajectory RMSE. Therefore, 6 seconds are sufficient to
assess the quality of the calibration. If needed, a re-calibration
can be performed by collecting another set of trajectories and
re-applying mmSCALE.

IV. Cascaded calibration. mmSCALE works by calibrating
pairs of radars, taking one of them as the reference. In practical
indoor radar networks scenarios, the aim is to have a single
global reference system and calibrate multiple radars with
respect to it. We expect that not all the deployed radars
have a FoV that partially overlaps with the reference radar,
i.e., the origin of the global reference system. As a result,
direct one-to-one calibration is infeasible. In these cases,
mmSCALE can be applied in cascade, calibrating each radar
with respect to another radar with which it partially shares
the FoV, e.g., in Fig. 2e, radar 2 with respect to radar 1,
radar 3 with respect to radar 2, and so on. We define a
cascade sequence as the ordered list of the radar numbers
according to the calibration order ([1,2,3,4] in the previous
example from Fig. 2e). Furthermore, we refer to the degree
of a radar in the cascade sequence as its position in the list,
starting from 0, which is the degree of the reference radar.
The final calibration with respect to the reference radar can
be obtained by composing the obtained rigid transformations
sequentially. Note that cascaded calibration can occur in any
order, as long as adjacent radars in the cascade sequence have
overlapping FoVs. We applied this technique to the 4R-1T
setups shown in Fig. 2e-2g. We consider all feasible cascading
permutations: e.g., in Fig. 2g all permutations involving the
calibration of radar 4 with respect to 3 (or vice-versa) are
infeasible as their 120° FoVs do not overlap. Fig. 6 shows the
calibration error distributions for radars with different degree
in the cascade. The median errors are almost unaffected by
cascaded calibration, while the variance is slightly higher for
higher degrees in the cascade because the errors in 6 and t
keep adding up linearly as the degree of the radar increases.
The “4 Radar setup” section of Tab. 1 reports the overall
median errors across all the degrees of cascade. The above
results show that mmSCALE can keep the cascaded calibration
error within reasonable levels in realistic scenarios, where a
room would include a network of typically up to 3-4 radars.

Orientation error [°]
Position error [m]

1 2 3 1 2 3
Degree of cascading Degree of cascading

(a) Orientation error. (b) Position error.

Fig. 6. Statistical distributions of all the orientation errors and position errors
of the radars for different degrees of cascade in the 4R-1T setups.

VI. CONCLUSIONS

In this paper, we proposed mmSCALE, a practical and fully
autonomous self-calibration method to estimate the relative
position and orientation of multiple mmWave radars, by ex-
ploiting the tracking of people moving in the environment. We
evaluated the system in several realistic conditions, including
up to 4 radars and 2 subjects, achieving median position
and orientation errors of 0.18 m and 2.86°, while still al-
lowing targets to move freely during the calibration process.
Moreover, our system requires a calibration window as short
as 6 s, handles multiple targets, and is robust to occlusion
events. These results suggest that mmSCALE can be a viable
candidate to calibrate mmWave radar networks for real-time
applications. Future work will incorporate our method for real-
time multi-radar people tracking, identification, and activity
recognition in large indoor spaces.
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