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Introduction 1
Quantum mechanics is a fundamental physical theory that describes Na-

ture as something far from the classical idea of determinism that people

experience in their everyday life. Indeed, for quantum mechanics, every-

thing has a probabilistic description. It has allowed significant scientific

and technological progress. The first quantum revolution has influenced

society in many fields: quantum principles like the wave-particle duality

and its derived effects, the tunnel and the photoelectric effects, have led

to the invention of 20th-century critical devices like the transistor and

the laser. These devices are at the basis of the present information society,

where data are transmitted and manipulated at unprecedented rates.

The ability of humanity to understand Nature thanks to the quantum

theory has shaped the entire society. If the first quantum revolution

occurred at the beginning of the 20th century, another crucial change

is going on: the second quantum revolution. Here, new devices and

technologies are developed based on the intrinsic properties of quantum

mechanics. Quantum sensing, quantum computing, quantum commu-

nication and quantum metrology are emerging fields of application of

quantum mechanics that exploit quantum principles. Typical quantum

phenomena, like the entanglement or the superposition principle, become

tools for improving the performances of existing devices or for building

new technologies that can, for example, perform calculations unfeasible

with classical computers or enable an unmatched level of privacy in

the information exchange. The interest in such quantum technologies is

worldwide diffused: different countries are pushing their development

and deployment, investing billions of dollars[1–3] [1]: Raymer et al. (2019), ‘The US national

quantum initiative’

[2]: Zhang et al. (2019), ‘Quantum

information research in China’

[3]: Riedel et al. (2019), ‘Europe’s quantum

flagship initiative’

.

Among all the quantum technologies, quantum communication is the

nearest to producing real devices to the consumer market with Quantum

Random Number Generators (QRNGs)[4]

[4]: Herrero-Collantes et al. (2017),

‘Quantum Random Number Generators’

. A QRNG is a device that

exploits quantum processes to produce random numbers. The latter are

fundamental elements in Cryptography, Gamblin and Simulation. In

Cryptography, the unconditional unpredictability of a random numbers

sequence is a crucial feature to ensure the reliability of cryptographic

protocols: their security is based on the inability to predict the random

sequence employed to encrypt private information. A sequence of digits,

or bits, must be uniformly distributed, uncorrelated and unpredictable

to be considered random. Unfortunately, verifying these properties is far

from being easy. On the one hand, the first two features can be tested

by running suitable statistical tests such as those in the test suite of

the National Institute of Standards and Technology (NIST)[5]

[5]: Zaman et al. (2012), ‘Review on fifteen

Statistical Tests proposed by NIST’. Even

if this approach is recognized as a methodology to certify Random

Number Generators (RNGs)[6] [6]: Turan et al. (2018), ‘Recommendation

for the entropy sources used for random

bit generation’

, it is a heuristic approach since no

statistical test can comprehensively verify the presence of all the possible

correlations inside the sequence. Moreover, such tests analyze samples

of the generated raw numbers and, a priori, do not have any control

on future generated sequences. On the other hand, the certification of

unconditional unpredictability is not possible by running the previously
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introduced statistical tests. A key example is a generator that produces

a predeterminate sequence of uncorrelated and uniformly distributed

digits. Such a sequence will pass all the statistical tests, but it cannot be

considered unpredictable since it is predetermined. A possible solution

for RNGs is the calculation of the conditional min-entropy[7][7]: Konig et al. (2009), ‘The operational

meaning of min-and max-entropy’

, a property

that quantifies the amount of randomness in the generated sequence,

taking into account side information accessible to possible eavesdroppers.

However, this task is not trivial for many RNGs.

Today RNGs are divided into two main categories: algorithm-based

RNGs and physical RNGs. Algorithm-based RNGs or Pseudo-Random

Number Generators (PRNGs)[8][8]: James et al. (2020), ‘Review of

high-quality random number generators’

are algorithms that start from a limited

random or nearly random seed and, by recursive operations, produce

random numbers. Even if PRNGs have significant advantages with

respect to physical-based RNGs, e.g., disposability and velocity, they

cannot be used in cryptographic applications, where unpredictability is

mandatory.Algorithm-basedRNGs are, indeed, for definition predictable.

The generated sequence’s security depends upon the initial seed’s privacy

since the algorithm’s structure must be considered public and available

to any adversary[9][9]: Kerckhoffs (1883), ‘La cryptographic

militaire’

. For these reasons, physical-based RNGs have been

introduced. Physical-based RNGs are RNGs that use physical processes

to generate a random output. QRNGs can be considered a sub-category

of this class. Another sub-category of Physical RNGs is formed by True

Random Number Generators (TRNGs), which are generators that exploit

noisy or chaotic processes, such as thermal fluctuations or complex

dynamics of objects, to generate a random output. Examples of such

physical processes are the thermal noise[10][10]: Zhun et al. (2001), ‘A truly random

number generator based on thermal noise’

or the movements of the

user pointer on the PC monitor[11]

[11]: Hu et al. (2009), ‘A true random

number generator based on mouse

movement and chaotic cryptography’

. Being based on processes that can be

described by classical physics, TRNGs are not genuinely unpredictable.

In fact, in principle, any classical phenomenon, even the most complex

one, has a deterministic behavior. Moreover, it is impossible to obtain a

robust stochastic model since the quality of the produced numbers is

influenced by the physical fluctuations of the system.

These intrinsic problems are not present when considering quantum

processes: Einstein himself, talking about quantum mechanics, said its

famous quote: "Quantum mechanics is very worthy of respect. But an

inner voice tells me that it is not the genuine article after all. The theory

delivers much, but does not really bring us any closer to the secret of

the Old One. I, at any rate, am convinced that He does not play dice"[12]

[12]: Einstein (2018), The Collected Papers
of Albert Einstein, Volume 15 (Translation
Supplement): The Berlin Years: Writings &
Correspondence, June 1925–May 1927

. Contrary to the thoughts of Einstein, quantum processes are natural

candidates to become perfect RNGs: radioactive decay[13]

[13]: Manelis (1961), ‘Generating random

noise with radioactive sources’

or even single

photon’s behavior [14]

[14]: Rarity et al. (1994), ‘Quantum

random-number generation and key

sharing’

represent excellent sources of entropy indeed. In

addition, for QRNGs, the calculation of the conditional min-entropy is

easy, even in the presence of eavesdroppers or faulty devices. Remarkably,

quantum mechanics also offers the possibility of certifying a priori the

amount of entropy present in a sequence. Device Independent Quantum

Random Number Generators (DI-QRNGs) can guarantee the presence

of randomness even if an eavesdropper can access classical or quantum

side information about the physical implementation of the RNG[15][15]: Acín et al. (2016), ‘Certified random-

ness in quantum physics’

. DI-

QRNGs are usually based on entanglement: the randomness comes from

the quantum correlations between entangled subsystems. The procedure

for the generation of quantum random numbers in DI-QRNGs is usually

schematized in four main parts:
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1) the entangled state is generated,

2) it is measured on a particular basis chosen between four sets,

3) the Bell correlation function[16]
[16]: Clauser et al. (1969), ‘Proposed experi-

ment to test local hidden-variable theories’

is evaluated,

4) randomness extraction procedure is performed.

The critical aspect of the protocol is the evaluation of the Bell correlation

function: only if the Bell’s Inequality (BI) is violated a certain amount of

randomness can be certified by the sequence[17] [17]: Pironio et al. (2010), ‘Random

Numbers Certified by Bell’s Theorem’

. On the contrary, if the BI

is not violated, the sequence of random numbers can be described using

classical theory, i.e., it is no longer unpredictable. In this application,

the BI is used to witness the presence of intrinsic quantum randomness,

providing a quantification of the value of conditional min-entropy attain-

able. Usually, based on traditional Multi Particles Entanglement (MPE),

these DI-QRNGs are, unfortunately, technologically challenging, where

non-local coincidence measurements have to be performed employing

complicated experimental setups, strongly limiting the applicability of

suchDI-QRNG to research applications. To relax the technological hurdle,

in the last years, a new category of QRNGs, which are more consumer

market-oriented, is emerged: these are called Semi-Device Independent

Quantum Random Number Generators (SDI-QRNGs). SDI-QRNGs rep-

resent a tradeoff between security and feasibility: the entropy certification

is still based on fundamental principles of quantum mechanics, but, in

addition, a partial knowledge of the device is assumed. This could be the

knowledge of the source of the quantum states[18] [18]: Brask et al. (2017), ‘Megahertz-Rate

Semi-Device-Independent Quantum

Random Number Generators Based on

Unambiguous State Discrimination’

or the characterization

of the measurement operations[19]

[19]: Avesani et al. (2018), ‘Source-device-

independent heterodyne-based quantum

random number generator at 17 Gbps’

, or even more complicated assump-

tions, like energetic bounds[20]

[20]: Van Himbeeck et al. (2019), ‘Correla-

tions and randomness generation based

on energy constraints’

. Even a DI-QRNG, where a fixed number

of hypotheses are introduced, can be considered a SDI-QRNG[21]

[21]: Mazzucchi et al. (2021), ‘Entropy

certification of a realistic quantum

random-number generator based on

single-particle entanglement’

.

My entire PhDworkwasdevoted to studying Single PhotonEntanglement

(SPE). As the name suggests, this entanglement does not involve two

distinct photons, but it concerns different Degrees of Freedom (DoFs) of

a single photon. I am aware that in literature, the term "Single Photon

Entanglement" is sometimes associated with the entanglement of a

single photon and the vacuum state[22]

[22]: Van Enk (2005), ‘Single-particle

entanglement’

produced using a beam splitter.

Even if these two typologies of entanglement seem similar since only

one photon is involved, they have fundamental differences concerning

the properties of such states. The DoFs-entanglement has a local and

contextual phenomenology, while the one of vacuum-entanglement is

non-local and non-contextual. Moreover, the information carriers are

different. In the DoFs-entanglement, they are the DoFs, while they are

the numbers of particles in the modes for the vacuum-entanglement.

At the beginning of my PhD studies, the challenges that I faced these

questions:

1) "Can Single Photon Entanglement be produced by attenuated

sources?",

2) "Can Single Photon Entanglement be integrated into a photonic

chip?".

The motivations behind these two questions are purely practical. Con-

cerning the entanglement between two photons, or Multi Particles En-

tanglement (MPE), writing a SPE state on a single photon requires only

linear optical components. However, the generation of a single photon

relies on non-linear optical processes, totally spoiling the convenience

of the SPE concerning MPE. On the contrary, if entanglement can be
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produced using attenuated light sources, like the Light-emitting diode

(LED), SPE becomes a more convenient resource for applications con-

cerning MPE. This fact could be pushed even forward if SPE can be

generated using an integrated approach, resulting in a further reduction

of the footprint and the cost. My PhD journey started answering the first

question. After some months of work, I was able to answer positively

to the first question: indeed, I demonstrated that such an entanglement

could be generated using single photons from attenuated light sources

(laser, LED and a halogen lamp) using, as DoFs, momentum (direction

of propagation) and polarization[23][23]: Pasini et al. (2020), ‘Bell-inequality

violation by entangled single-photon

states generated from a laser, an LED, or a

halogen lamp’

. A BI violation experiment[24]

[24]: Bell (1964), ‘On the Einstein Podolsky

Rosen paradox’

was performed to verify the presence of the entanglement. Since the BI

is a well-known entanglement witness, the entanglement presence is

necessary for observing a violation of the inequality. Then, I started to

think about how to use the SPE for quantum information tasks: having

an apparatus able to witness the violation of the BI, the application of

the SPE to QRNG has been proposed.

In this way, I focused on implementing a certification protocol based

on SPE that can certify the conditional min-entropy of the generated

sequence of random numbers using a DI-like approach[21, 25][21]: Mazzucchi et al. (2021), ‘Entropy

certification of a realistic quantum

random-number generator based on

single-particle entanglement’

[25]: Leone et al. (2022), ‘Certified

Quantum Random-Number Genera-

tor Based on Single-Photon Entanglement’

. Unlike

MPE-basedDI-QRNG, the randomness of the SPE-QRNG comes from the

contextual correlations of the entanglement between the two DoFs. The

resulting QRNG is a SDI-QRNG since the certification of the randomness

is based on a partial characterization of the experimental setup.

The last objective of my PhD work concerned the answer to the second

question: the integration of the SPE in a photonic chip in the silicon

oxynitride platform. Since the integrated control of polarisation is unfea-

sible in standard integrated design, the SPE state was generated between

waveguides where the photon is propagating. Preliminary validation

of this type of entanglement was achieved by performing another BI

violation experiment. The initial results confirm that it is possible to

generate such entanglement in the designed photonic chip, but further

workmust be done to validate the method effectively. Future perspectives

concerning the integrated version of SPE are connected to the generation

of certified quantum random numbers in analogy to what was done

for the SPE-SDI-QRNG. Due to the compactness, the cheapness and the

low power consumption of such an integrated scheme, the successful

implementation of the SDI-QRNG can be considered a further step into

the deployment of real certified QRNGs to high volume market.

The thesis is organized as follows: inChapter 2, the quantumphenomenon

of the entanglement is firstly introduced, focusing on the concepts of

separability and correlation between qubits. Then, the BI is discussed

together with the Einstein, Podolsky and Rosen (EPR) paradox. After this,

the SPE of momentum and polarization is presented by introducing the

experimental setup used to generate and validate such an entanglement.

The validation is obtained by probing the BI violation in the Clauser,

Horne, Shimony andHolt (CHSH) form. Discussed the ideal situation, all

the non-idealities in the experimental implementation are presented and

analyzed, proposing a solution to eachof them.Even if thesenon-idealities

were observed chronologically after the experimental test of the BI during

the study of the SDI-QRNG since they also interest the estimation of the

BI, they are presented in this chapter. Lastly, an experiment is presented to

confirm the theory and the results are discussed. Here, my contribution
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was to implement the numerical approach to the polarization non-

idealities and perform experimental measurements. The discussion of the

non-idealities was developed in collaborationwith Prof. SoniaMazzucchi

and Prof. Valter Moretti. In Chapter 3, QRNGs are firstly introduced.

Then, by discussing the concept of entropy, the main figure of merit

for a QRNG, the min-entropy, is presented, focusing on its operational

meaning. After that, the concept of conditional min-entropy certification

is analyzed by discussing DI-QRNGs and SDI-QRNGs. An example of

conditional min-entropy estimation in an SDI-QRNG is also provided.

Then, particular attention is paid to the estimation of the conditional

min-entropy by exploiting BI violation. The latter part is used to present

theoretically and experimentally the scheme of the SDI-QRNG based

on SPE states of momentum and polarization. Here my contribution

was to apply the SDI protocol of [18] [18]: Brask et al. (2017), ‘Megahertz-Rate

Semi-Device-Independent Quantum

Random Number Generators Based on

Unambiguous State Discrimination’

to a fully integrated optical chip

and fully develop the experiment to validate the SDI-QRNG based on

SPE. Chapter 4 discusses the integrated implementation of SPE using

absolute and relative positions of photons into a set of waveguides. Firstly,

some essential photonics devices are presented and their functionalities

underlined. Then, the implementation of the SPE on-chip is proposed by

introducing the necessary pieces to generate the entanglement and to

perform the BI test. The simulation of each optical component is reported.

The produced photonic chip is then experimentally characterized. An

experiment is carried out to validate the presence of the entanglement

using the BI. The preliminary results are discussed.Here,my contribution

was to conceive the experiment, design the integrated chip structure, and

perform the measurements. Lastly, in Chapter 5, a summary of the entire

thesis is reported together with future perspectives.
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In this chapter, the concepts of entanglement, Single Particle Entan-

glement (SPaE) and Bell’s Inequality (BI) are firstly introduced from a

fundamental point of view. After that, the specific implementation based

on single photons, the Single Photon Entanglement (SPE), is presented,

focusing on the implementation based on momentum and polarization.

The corresponding BI is also discussed with the help of an experimental

setup necessary to test it. Possible non-idealities in the components of

the setup and their effect on the BI are also considered. Lastly, to justify

the reported theory, a series of experiments towards the violation of BI

using SPE states are presented and discussed.

2.1 Entanglement and separability

In order to introduce the concept of entanglement, it is useful to describe

the concept of separability of a quantum state. In quantum mechanics,

only two categories of quantum states exist: separable and not-separable

ones. For illustrating this concept, two finite dimensional Hilbert spaces

H0 and H1 are introduced. A pure state |#〉 in H0 ⊗H1 can be described

as a linear combination:

|#〉 =
=∑
8

28 |#0〉8 ⊗ |#1〉8 ,
=∑
8

|28 |2 = 1 (2.1)

where {28}8 ∈ ℂ are appropriate constants and {|#0〉8} and {|#1〉8} two

orthonormal basis of H0 and H1 . Note that the discussion can be easily

generalized in the case of mixed states and/or considering more Hilbert

spaces. This is called the Schmidt decomposition[26] [26]: Nielsen et al. (2002), Quantum
computation and quantum information

of the state |#〉. The
basis {|#0〉8} and {|#1〉8} are called Schmidt basis and the number of

non-zero coefficients {28}8 is called the Schmidt number or Schmidt rank.

The latter is particularly useful since it is used to distinguish between

separable and non-separable states: |#〉 is called separable if only one

coefficient 28 is different from zero, i.e., its Schmidt rank is equal to 1.

On the contrary, if its Schmidt rank is greater than 1, the state |#〉 is
called not separable or entangled. It is easy to understand now that the

concept of entanglement is strictly connected to the inability of describing

the behavior of the state |#〉 as composed of two independent states

belonging to the subspaces H0 and H1 . One of the funding-fathers of the

quantum theory, Erwin Schrödinger, tried to explain the properties of

quantum mechanics by formulating his famous mental experiment: the

Schrödinger’s cat[27] [27]: Schrödinger (1935), ‘Die gegenwär-

tige Situation in der Quantenmechanik’

. A cat is put in a closed box with a jar of poison and

an excited atom. When the excited atom relaxes, a hammer breaks the jar

of poison, leading to the cat’s death. Besides the cruelty of the experiment,

it explains the concept of entanglement in a pretty intuitive way. Indeed,

after having prepared the setup and waiting some time, the state of

the cat (|!〉, alive, or |�〉, dead) results to be entangled, or correlated,
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with the state of the atom (|�〉, excited or |�〉, ground). In this way, the

cat’s state is directly connected to the atom’s state and it is impossible to

describe one without considering the other. The entanglement, indeed,

is a purely quantum phenomenon in which non-classical correlations

between the considered subsystems are present.

These correlations are extremely counterintuitive from a classical point

of view. Indeed, a property of the entanglement is the non-locality. As

an example, consider two particles, labeled as 0 and 1, which have

been entangled in the z-component of their spin. Assume that their

wavefunction can be written as:

|#〉 = 1√
2

(|I+〉0 |I−〉1 − |I−〉0 |I+〉1) (2.2)

where |I+〉 means a positive z-component of the spin, while |I−〉 in-
dicates a negative z-component, or equivalently, �I |I+〉 = +1|I+〉 and
�I |I−〉 = −1|I−〉, where �I is the operator corresponding to the z-Pauli

Matrix. Suppose to spatially separate the two particles to avoid possi-

ble communication between them. Consider performing a local spin

z-direction measurement on the 0 particle and obtaining the result |I+〉.
Due to the collapse of the wavefunction, not only the measurement

operation has determined the spin of the particle 0 but it has also fixed

the spin of the particle 1 in the other laboratory, thus it will result to be

|I−〉. In a non-local manner, the result of the measurement of �I on the

particle 1 has been influenced by the local operation performed on the

particle 0, thanks to the entanglement. At first glance, this seems to be

quite counterintuitive. Einstein himself was skeptical about quantum

theory and entanglement. In fact, in 1935, Boris Podolsky, Nathan Rosen

and he published their famous work entitled" Can Quantum-Mechanical

Description of Physical Reality be Considered Complete?”[28][28]: Einstein et al. (1935), ‘Can quantum-

mechanical description of physical reality

be considered complete?’

. In the

latter, the three scientists tried to demonstrate the not-completeness of the

quantum mechanical theory formulating the famous Einstein, Podolsky

and Rosen (EPR) paradox.

2.2 EPR Paradox and Bell’s inequality

For Einstein, Podolsky and Rosen a physical theory must possess two

properties:

I Realism: if it is possible to know with unitary probability the value

of a physical quantity without disturbing the system, then it exists

an element of realism corresponding to that quantity,

I Locality: different elements of reality cannot interact instanta-

neously at a distance.

Now, consider the state in Equation 2.2. The measurement of the spin of

particle 0 has influenced the outcome of the measurement of the spin of

the particle 1, which is now predictable with unitary probability. Due to

the hypotheses of realism and locality, the value of the spin component of

the particle 1 should have been fixed before the measurement performed

on the particle 0, which is not true for the quantummechanics description.

To demonstrate the latter, the reduced density matrix for the subsystem
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1,

�1 = Tra � = Tra |#〉〈# |, (2.3)

has to be introduced since it describes the particle 1 independently of

the particle 0. It is easy to prove that the reduced density matrix for an

entangled state like Equation 2.2, corresponds to the density matrix of a

totally mixed state:

�1 =
1

2

�2 , (2.4)

where �2 is the 2×2 identitymatrix. For this densitymatrix, it is impossible

to choose an orthonormal basis in H1 for which |#1〉 (�1 = |#1〉〈#1 |) is
an autovector or, equivalently, it is impossible to predict, with unitary

probability, the outcome of themeasurement operation. For these reasons,

Einstein et al. concluded that quantum mechanics must be incomplete

since it cannotpredict that value. In addition, theypostulated the existence

of some hidden (inaccessible) variables � ∈ Λ, where Λ is a set of

parameters, which can deterministically describe the system in the

Einstein view.

Just after 1964, the concept of entanglement became more widely used. In

that year, John Bell proposed a test to discriminate between the quantum

theory and any local hidden variable theory[24] [24]: Bell (1964), ‘On the Einstein Podolsky

Rosen paradox’

. To understand the result

obtained by Bell, here it is reported the Bell’s analysis of the EPR paradox

proposed by Aharonov and Bohm[29] [29]: Bohm et al. (1957), ‘Discussion of

Experimental Proof for the Paradox of

Einstein, Rosen, and Podolsky’

. Consider a system composed of

two entangled particles in spin. Assume that the state that describes the

situation is the one reported in Equation 2.2. Suppose to perform spin

measurements on the two particles which can have as result only {±1}.
In particular, the outcome 5 2n2 (�) is called the result of the measurement

performed on the particle 2 ∈ {0, 1} in the n2 ∈ {n0 , n1} direction. The
operator that performs this operation is:

n2 · � = =2G�G + =2H�H + =2I�I , n2 ∈ ℝ3 , | |n2 | | = 1. (2.5)

Even if 5 is directly dependent on the hidden variable �, the exact value
of � is unknown: it is only possible to assume the knowledge of the

probability distribution � of �. It is necessary to define also the quantities

5 0n0 ,n1 (�) and 5 1n1 ,n0 (�), which represent the value of the spin components

of the two particles given the measurement performed on the other

particle. Introduced this notation, the hypothesis of realism implies that

5 0n0 ,n1 (�) and 5 1n1 ,n0 (�) are defined for every time and for every choice ofn0
and n1 . On the other hand, the hypothesis of locality can be considered by

imposing the independence of 5 0n0 ,n1 (�) and 5 1n1 ,n0 (�) from every choice of

the direction of measurement on the other particle, i.e., 5 0n0 ,n1 (�) = 5 0n0 (�)
and 5 1n1 ,n0 (�) = 5 1n1 (�). By taking two unitary vectors n0 and n0′ , both
belonging to ℝ3

, along which the spin for the particle 0 is measured and

two others unitary vectors n1 and n1′ belonging to ℝ3
, along which the

spin for the particle 1 is measured, it is possible to define the correlation

coefficient E( 5 0n0 , 5 1n1 ) used to measure the correlation between the results

of the spin measurement on the two particles respectively in the direction

n0 and n1 . Mathematically, E( 5 0n0 , 5 1n1 ) can be written as:

E
(
5 0n0 , 5

1
n1

)
=

∫
Λ

5 0n0 (�) 5
1
n1 (�)d�(�). (2.6)

Bell demonstrated that if the correlation function "(n0 , n0′ , n1 , n1′), or
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1: The notation E
(
5 0n0 , 5

1
n1

)
is changed to

E
(
$0

n0 , $
1
n1

)
to distinguish between the

two cases:$2
n3 indicates the operator mea-

sured on the particle c in the direction

n3 .

"-parameter, is constructed as:

"(n0 , n0′ , n1 , n1′) B

E
(
5 0n0 , 5

1
n1

)
− E

(
5 0n0 , 5

1
n1′

)
+ E

(
5 0n0′ , 5

1
n1

)
+ E

(
5 0n0′ , 5

1
n1′

) , (2.7)

its absolute value must be upper bounded by 2 for any local hidden

variable theory:

|"(n0 , n0′ , n1 , n1′)| < 2. (2.8)

This is called the Bell’s Inequality (BI). In order to prove Equation 2.8, it

is necessary to insert Equation 2.6 into Equation 2.7.

"(n0 , n0′ , n1 , n1′) =

= E
(
5 0n0 , 5

1
n1

)
− E

(
5 0n0 , 5

1
n1′

)
+ E

(
5 0n0′ , 5

1
n1

)
+ E

(
5 0n0′ , 5

1
n1′

)
=

∫
Λ

5 0n0 (�) 5
1
n1 (�)d�(�) −

∫
Λ

5 0n0 (�) 5
1
n1′ (�)d�(�)+

+
∫
Λ

5 0n0′ (�) 5
1
n1 (�)d�(�) +

∫
Λ

5 0n0′ (�) 5
1
n1′ (�)d�(�)

=

∫
Λ

(
5 0n0 (�) 5

1
n1 (�) − 5

0
n0 (�) 5

1
n1′ (�)+

+ 5 0n0′ (�) 5
1
n1 (�) + 5

0
n0′ (�) 5

1
n1′ (�)

)
d�(�)

=

∫
Λ

(
5 0n0 (�)

(
5 1n1 (�) − 5

1
n1′ (�)

)
+

+ 5 0n0′ (�)
(
5 1n1 (�) + 5

1
n1′ (�)

))
d�(�)

(2.9)

For every choice of�, only one termsurvives inside the integral

(
5 2n2 (�) ∈ {±1}

)
.

From this, it is possible to conclude that

−2 < "(n0 , n0′ , n1 , n1′) < 2
 |"(n0 , n0′ , n1 , n1′)| < 2. (2.10)

Bell demonstrated that for quantum mechanics, not only the function

"(n0 , n0′ , n1 , n1′) reaches values greater than 2, but also that the maxi-

mum attainable value is 2

√
2. In the framework of quantum mechanics

1

E
(
$0

n0 , $
1
n1

)
= Tr

[
� (n0 · � ⊗ n1 · �)

]
(2.11)

Given � = |#〉〈# |, with |#〉 of the form of Equation 2.2, ∀n0 , n1 ∈
ℝ3 , |n0 | = |n1 | = 1, E

(
$0

n0 , $
1
n1

)
= −n0 · n1 .

By choosing as measurement directions, the ones reported in Figure 2.1,

which correspond to the conditions:

n0 · n1 = n0′ · n1 = n0′ · n1′ = cos

(�
4

)
, (2.12)

n0 · n1′ = cos

(
3�
4

)
, (2.13)
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2: Actually, a separable state cannot vio-

late any BI[30].

it can be obtained that:

"MQ(n0 , n0′ , n1 , n1′) =

= E
(
$0

n0 , $
1
n1

)
− E

(
$0

n0 , $
1
n1′

)
+ E

(
$0

n0′ , $
1
n1

)
+ E

(
$0

n0′ , $
1
n1′

)
= −n0 · n1 + n0 · n1′ − n0′ · n1 − n0′ · n1′

= −3 cos

(�
4

)
+ cos

(
3�
4

)
= −4 cos

(�
4

)
= −2

√
2 < −2.

(2.14)

Consider now the general case of a composed Hilbert space H = H0 ⊗
H1 = ℂ2 ⊗ ℂ2

. It can be proven that the value 2

√
2 could be achieved

by properly measuring any one of the maximally entangled states. The

latter are called the Bell basis and can be written as:

|)+〉 = 1√
2

(|00〉 + |11〉) , (2.15)

|)−〉 = 1√
2

(|00〉 − |11〉) , (2.16)

|#+〉 = 1√
2

(|01〉 + |10〉) , (2.17)

|#−〉 = 1√
2

(|01〉 − |10〉) , (2.18)

where the notation |GH〉 = |G〉 ⊗ |H〉 is introduced. |0〉 and |1〉 are just two

basis vectors in ℂ2
. It is important to remark a few observations about

the BI:

I a necessary condition to violate the BI is the presence of the

entanglement;

I a pure entangled state always violates a BI;

I the maximum attainable value of the BI for the quantummechanics

is 2

√
2;

I a separable state cannot violate the BI
2
;

I a mixed entangled state could violate a BI (the Werner states[31]

[31]: Werner (1989), ‘Quantum states with

Einstein - Podolsky - Rosen correlations

admitting a hidden-variable model’

are entangled states which do not necessarily violate the BI).

Returning to the physical implications of the BI, since the quantum

Figure 2.1: Geometrical representation of

four possible directions of spin measure-

ment that violates BI when performed on

the state Equation 2.2.
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mechanics leads to a value greater than 2, it is possible to conclude

that the quantum mechanics theory is not a local realist theory in the

Einstein sense. Today, it is well known that the quantum mechanics

phenomenology is non-local, where the non-locality of the entanglement

is at the base of many quantum technologies.

2.3 Single Photon Entanglement

Up to now, it has been considered only situations in which the entan-

gled subspaces are two particles. Specifically, it is possible to call this

type of entanglement as Inter-Particle Entanglement or Multi Particles

Entanglement (MPE). Another type of entanglement is the Intra-Particle

Entanglement or Single Particle Entanglement (SPaE). As the name sug-

gests, in SPaE only one particle is involved: the two subspaces used

are associated to two Degrees of Freedom (DoFs) of the particle. In the

literature it is possible to find different examples of this peculiar type

of entanglement, involving atoms, photons and neutrons[32–41][32]: Monroe et al. (1996), ‘A “Schrödinger

Cat” Superposition State of an Atom’

[33]: Michler et al. (2000), ‘Experiments

towards Falsification of Noncontextual

Hidden Variable Theories’

[34]: Gadway et al. (2009), ‘Bell-inequality

violations with single photons entangled

in momentum and polarization’

[35]: Karimi et al. (2010), ‘Spin-orbit

hybrid entanglement of photons and

quantum contextuality’

[36]: Chen et al. (2010), ‘Single-photon

spin-orbit entanglement violating a

Bell-like inequality’

[37]: Basu et al. (2001), ‘Bell’s inequality

for a single spin-1/2 particle and quantum

contextuality’

[38]: Hasegawa et al. (2003), ‘Violation of

a Bell-like inequality in single-neutron

interferometry’

[39]: Sponar et al. (2010), ‘Violation of

a Bell-like inequality for spin-energy

entanglement in neutron polarimetry’

[40]: Geppert et al. (2014), ‘Improvement

of the polarized neutron interferometer

setup demonstrating violation of a

Bell-like inequality’

[41]: Shen et al. (2020), ‘Unveiling

contextual realities by microscopically

entangling a neutron’

. An

example of a SPaE state is:

|#〉 = 1√
2

(|0+〉 + |1�〉) (2.19)

where |G〉, G = +, �, refers to the vertical and horizontal polarization of

a single photon and |H〉, H = 0, 1, refers to its direction of propagation in

the space. Note that the directions of propagation |0〉 and |1〉, must be

chosen to have a null overlap, 〈0|1〉 = 0. The composed Hilbert space is

H = H" ⊗H% , where" stands for momentum and" for polarization.

In the state of Equation 2.19 the polarization of the photon cannot be

described without considering its direction of propagation. Since its

Schmidt rank is 2, the state is entangled. At this point, it could be helpful

to introduce the concept of the qubit: in a ℂ2
system, the qubit is defined

as the quantum representation of the information that can be stored in

the state. In the case of Equation 2.2, the two qubits are represented

by the two particles and the information is codified into their z-spin

components. In contrast, in the case of Equation 2.19, the two qubits are

the two DoFs. This description is particularly useful since it allows to

perform calculations without directly addressing the specific physical

implementation behind the encoding of qubits. The two vectors, that

compose the two bases for the two qubits, are:

|+〉 =
(
1

0

)
, |�〉 =

(
0

1

)
, |0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
, (2.20)

for Equation 2.19 and

|I+〉0 =
(
1

0

)
, |I−〉0 =

(
0

1

)
, |I+〉1 =

(
1

0

)
, |I−〉1 =

(
0

1

)
. (2.21)
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Figure 2.2: Example of a Bloch sphere

representation. The two orthonormal basis

vectors of the qubit are represented at the

poles of the sphere. Two angles ) and

� can be used for representing each pure

state of the sphere, as reported in Equation

2.23.

for Equation 2.2. Consequently, the entangled states of Equation 2.2 and

Equation 2.19 can be written in the same way as:

|#〉 = 1√
2

(|0+〉 + |1�〉) = 1√
2

©­­­«
1

0

0

1

ª®®®¬ . (2.22)

The Bloch sphere is also introduced for completeness: it provides a

geometrical representation of all the possible pure states achievable using

a qubit. A generic pure state on the Bloch sphere can be represented by a

linear combination of the orthonormal basis vectors |0〉 and |1〉 as:

|#〉 = cos

�
2

|0〉 + sin

�
2

4 8) |1〉, (2.23)

where the angles � and ) are represented in Figure 2.2.

Even if the mathematical structure of the SPaE is totally analogues to

the MPE, a fundamental difference is that SPaE is a local phenomenon,

while the MPE is non-local. In Section 2.2, the locality argument is a

fundamental piece to derivate the BI, which now have to be generalized

also for SPaE states. For this scope, it is necessary to introduce another

property called contextuality. Consider the state of Equation 2.19: the

two subsystems H% and H" are independent but not spatially separated

and mathematically analogous to ℂ2
. It is important to remark that

considering the polarization as a qubit is well justified since vertical

and horizontal polarizations are well-defined and orthogonal. The same

cannot be done for H" , since infinite possible momenta are available.

In this case, a further assumption must be introduced on H" where

it is necessary to restrict the available wavevectors only to the ones

corresponding to the states |0〉 and |1〉. Within this approximation, the
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3: As before, the first subsystem, or equiv-

alently qubit, is labeled with the letter a

and the second qubit with the letter b,

while the observables for the two subsys-

tems can be written in the form n2 ·�, with

2 ∈ {0, 1}.

structure of H" is analogous to ℂ2
. By considering a non-contextual

hidden variable theory, these two properties must hold
3
:

I Realism: it exists a pre-defined result for every observable measur-

able;

I Non-contextuality: the result of a measurement operation n0 · �
must be independent of the choice of two incompatible observables

n1 · � and n1′ · � which can be measured simultaneously with n0 · �.

The reasoning done before to prove the BI with non-locality can be reused

now to prove the BI in its more general non-contextual version. The only

difference regards themotivations behind the equalities 5 0n0 ,n1 (�) = 5 0n0 (�)
and 5 1n1 ,n0 (�) = 5 1n1 (�), which are now justified using non-contextuality.

In the case of SPaE, the BI can be used to rule out non-contextual hidden

variable theories, which are more general than local hidden variable

theories. Indeed, in local hidden variable theory, non-contextuality is

implicitly assumed by introducing the space-like separation between the

two considered particles. Such a physical motivation is not necessary

for non-contextual hidden variable theories, where the independence of

the values of the measurement operations from the choice of the other

observables that have to be measured is assumed.

2.4 Single Photon Entanglement: experimental
implementation

In the previous section, it was demonstrated that the BI can be used to rule

out possible non-contextual hidden variable theories that try to explain

the correlations between the outcomes of two groups of compatible

observables applied to a generic SPaE. The key ingredients necessary

to test the BI are an entangled state and a set of four observables n2 · �
that have to be measured on the selected entangled state. In this section,

it is presented an experimental setup able to generate Single Photon

Entanglement (SPE) state, a SPaE state in which the particle is a single

photon, and to test a BI in the form due to Clauser, Horne, Shimony

and Holt (CHSH) for verifying the presence of the entanglement as

in [16, 33, 42][16]: Clauser et al. (1969), ‘Proposed

experiment to test local hidden-variable

theories’

[33]: Michler et al. (2000), ‘Experiments

towards Falsification of Noncontextual

Hidden Variable Theories’

[42]: Barreiro et al. (2005), ‘Generation of

Hyperentangled Photon Pairs’

. The experimental setup is shown in Figure 2.3. The

employed DoFs are the polarization (|+〉 and |�〉 with respect to the

propagation plane) and the direction of propagation of a single photon

(|0〉 , east direction and |1〉, south direction, respect to Figure 2.3). In the

following, each macro-stage (generation, rotation and measurement in

Figure 2.3) is analyzed presenting the optical components that compose

it and explaining its action on the state.

2.4.1 Generation stage

In the generation stage (red box in Figure 2.3 and Figure 2.4), the SPE state

is created. The light is injected in the setup by using a collimator, which

provides a collimated light path and fixes the direction of propagation

(the collimator is not reported in Figure 2.3 and Figure 2.4). The initial

polarization of the single photon is fixed by means of a Glan-Thompson

Polarizer (GTP). The input state results to be |#〉 = |0+〉. A balanced

50 : 50 Beam Splitter (BS) is employed to create a superposition of
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Figure 2.3: Scheme for the generation of

SPE state and testing of the BI. The circled

dashed boxes represent the main parts of

the setup: the generation (red box), the

rotation (orange box) and the detection

(blue box) stages. The optical path is rep-

resented by green line while the photon is

representedby agreen sphere. The colored

red and blue arrows represent the polar-

ization of the photon, while the green ar-

rows indicate the momentum. The optical

components involved are Glan-Thompson

Polarizer (GTP); Beam Splitter (BS);Mirror

(MR); Delay Line (DL), composed of three

mirrors for optical alignment purposes;

Polarized Beam Splitter (PBS); Half-Wave

Plate (HWP); Single Photon Avalanche

Diode (SPAD). � represents the angle used

to compensate for phase differences in the

generation. ) is the angle that fixes the

direction of measurement for the momen-

tum and � is the angle that fixes the direc-

tion of measurement for the polarization.

Figure 2.4: Details of the generation stage

of Figure 2.3. In red and blue is indicated

the polarization of the photon in that op-

tical path, respectively, blue for vertical

polarization and red for horizontal one.

The cyan double circle represents the en-

tangled state created.

4: Note that the phase � could be applied

also on the other path in Figure 2.3, with-

out any significant difference.

momentum states, obtaining |#〉 = 1√
2

(|0〉 + 8 |1〉) ⊗ |+〉. On the |0〉 path,
a Half-Wave Plate (HWP) rotates the polarization of photons by

�
2
to |�〉

and then a Mirror (MR) swaps the momentum state to |1〉. On the other

path, a MR, with an adjustable delay of �, and a HWP in the null position

change the momentum state to |0〉. Therefore, the following entangled

state is formed:

|#〉 = 1√
2

(
4 8� 8 |0+〉 + |1�〉

)
. (2.24)

By setting � = −�
2

4
, which is regulated by displacing the MR, the state

|)+〉 of the Bell basis is obtained:

|)+〉 = 1√
2

(|0+〉 + |1�〉) . (2.25)

The matrix representation of the state in Equation 2.25 is

|)+〉 = 1√
2

(|0+〉 + |1�〉) = 1√
2

©­­­«
1

0

0

1

ª®®®¬ , (2.26)
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5: 3 = "(%) if 2 = 0(1)

while its density matrix is:

� = |)+〉〈)+ | = 1

2

©­­­«
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

ª®®®¬ . (2.27)

All of the Bell basis states are achievable by applying the correct phase �
and by rotating the HWPs.

2.4.2 Physical meaning of rotation and detection stages

The aim of the rotation and detection stages (respectively, orange and

blue boxes in Figure 2.3) is the construction of the four observables

{n2 · �}2=0,0′,1,1′ for the momentum and the polarization. The Projection-

valued measure (PVM) associated to n2 · � is

%
n2
±1
=

1

2

(� ± n2 · �). (2.28)

In this way, the observable can be rewritten as

n2 · � = %n2
+1
− %n2
−1
. (2.29)

If � is the input state of the composed system H" ⊗H% , the probability

of observing the results G for momentum and H for polarization is given

by:

ℙ(G, H |�, n0 , n1) B Tr

[
�%n0

G ⊗ %n1
H

]
, G, H ∈ {+1,−1}. (2.30)

By using relation Equation 2.29, the expectation value of the observable

n0 · � ⊗ n1 · � can be expressed as:

E
(
$"

n0 , $
%
n1

)
= Tr

[
� (n0 · � ⊗ n1 · �)

]
= Tr

[
�%n0
+1
⊗ %n1
+1

]
+ Tr

[
�%n0
−1
⊗ %n1
−1

]
+

− Tr

[
�%n0
+1
⊗ %n1
−1

]
− Tr

[
�%n0
−1
⊗ %n1
+1

]
= ℙ(1, 1|�, n0 , n0) + ℙ(−1,−1|�, n0 , n0)+
− ℙ(1,−1|�, n0 , n0) − ℙ(−1, 1|�, n0 , n0)

(2.31)

Moreover, it is possible to rewrite Tr

[
�%n0

G ⊗ %n1
H

]
in a more convenient

form. For any unit vector n2 ∈ ℝ3
, *n2 : H3 → H3

5
is the unitary

operator transforming the PVM of the operator �3I , {%3+1
, %3−1
}, into the

PVM {%n2
+1
, %

n2
−1
} of the operator n2 · �:

%
n2
+1
= *†n2%

I
+1
*n2 , %

n2
−1
= *†n2%

I
−1
*n0 . (2.32)
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Figure 2.5: a) Schematics of the Rotation

stage. It is composed of a MZI and by two

HWPs. The MZI is constituted by two BS

and twoMR. The output response is deter-

mined by the transmission and reflection

coefficients of the optical elements and by

the phase ), the phase difference between

the two arms of the MZI. The two HWPs

have the scope to rotate by an angle �
the polarization of the impinging wave. b)

Representations of the rotation operations

on the Bloch spheres for the two DoFs

considered.

Consequently ℙ(G, H |�, n0 , n1) can be rewritten as:

ℙ(G, H |�, n0 , n1) = Tr[�%n0
G ⊗ %n1

H ] (2.33)

= Tr[�*†n0%
"
G *n0 ⊗*†n1%

%
H*n1 ] (2.34)

= Tr[�*†n0 ⊗*
†
n1 %

"
G ⊗ %%H *n0 ⊗*n1 ] (2.35)

= Tr[*n0 ⊗*n1�*
†
n0 ⊗*

†
n1 %

"
G ⊗ %%H ] (2.36)

= Tr[�n0 ,n1%
"
G ⊗ %%H ], (2.37)

where in Equation 2.37

�n0 ,n1 = *n0 ⊗*n1�*
†
n0 ⊗*

†
n1 (2.38)

is the density matrix corresponding to a quantum state having the

DoFs rotated by the operations *n0 ⊗ *n1 . Remarkably, the statistical

distribution of outcomes for the operator %
n0
G ⊗ %n1

H , over the state �,

coincides with the one of the operator %"G ⊗ %%H over the state �n0 ,n1 .

Expressed in another way, operating on the state � or changing the

directions of measurement n0 and n1 are equivalent. The scope of the
two stages of Figure 2.3 is now explained: the rotation stage acts on the

wavefunction rotating the two DoFs and the detection stage projects the

wavefunction over the basis vectors |0+〉, |0�〉, |1+〉, |1�〉 performing

the operation �"I ⊗ �%I . They essentially set the measurements basis.
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2.4.3 Rotation stage

The optical components used in the rotation stage are MRs, BSs and

HWPs(Figure 2.5). First, it is necessary to analyze the matrix correspond-

ing to the action of the Mach Zehnder Interferometer (MZI). A MZI is

a well know optical device composed of two BSs and two MRs. It has

two inputs and two outputs. It modulates the intensity of the outputs

depending on the phase difference that the light accumulates propagat-

ing in the device’s two arms. It is possible to model it using the unitary

matrix*):

*) = *MZI()) = *BS*Ph(2))*MR*BS (2.39)

where

*BS =

(
C 8A

8A C

)
, *

Ph()) =

(
428)

0

0 1

)
, *MR =

(
0 1

1 0

)
. (2.40)

Note that C and A are respectively the amplitude transmission and

reflection coefficients of the BSs, while 2) is the phase difference between

the two arms of the MZI. In this general case, the transfer function of the

MZI is:

*
MZI()) =

(
8AC + 8428)AC −A2 + 428)C2

−428)A2 + C2 8AC + 8428)AC

)
. (2.41)

In the case of a balanced BS

(
C = A = 1√

2

)
, it is possible to simplify

Equation 2.41 as:

*
MZI()) = 84

8)

(
cos()) sin())
− sin()) cos())

)
, (2.42)

which is the matrix that implements a rotation of the input states by an

angle ). Second, two HWP are placed in each momentum direction. The

response matrix for the HWP has an analogous form:

*� = *HWP(�) =

(
cos(�) sin(�)
− sin(�) cos(�)

)
. (2.43)

It is important to point out the actual physical behavior of a HWP to

better understand the matrix form of*�. Actually, the physical matrix

representation of the action of the HWP is represented in Figure 2.6:

*
HWP(�) =

(
cos(�) − sin(�)
sin(�) cos(�)

)
(2.44)

when the fast axis of the HWP is rotated by an angle �/2 respect to the

vertical polarization. By making the substitution of angles � → −�, it
is possible to obtain the form reported in Equation 2.43. Consequently,

to induce a rotation of *�, it is necessary to rotate the fast axis by an

angle � = −�/2. To keep the discussion clear, however, it is convenient

to consider only the angle �, without considering the angle �. In the
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|V⟩

|δ⟩

|H⟩
k

Fast axis

 HWP

δ
HWP

Figure 2.6: Schematics of the physical be-

havior of a rotated HWP. The optical wave

has the wavevector : that is pointing out-

side the plane determined by the |+〉 and
|�〉 vectors. The fast axis of the HWP is ro-

tated by an angle
�
2
and induces a rotation

of polarization of �.

composed Hilbert space, the two operators assume the form:

*)()) ⊗ �%
2
= 84 8)

©­­­«
cos()) 0 sin()) 0

0 cos()) 0 sin())
− sin()) 0 cos()) 0

0 − sin()) 0 cos())

ª®®®¬ (2.45)

�"
2
⊗*� =

©­­­«
cos(�) sin(�) 0 0

− sin(�) cos(�) 0 0

0 0 cos(�) sin(�)
0 0 − sin(�) cos(�)

ª®®®¬ . (2.46)

The composed operator becomes:

*) ⊗*� =
(
*) ⊗ �%

2

) (
�"
2
⊗*�

)
= 84 8)

©­­­«
cos(�) cos()) sin(�) cos()) cos(�) sin()) sin(�) sin())

sin(�)(− cos())) cos(�) cos()) − sin(�) sin()) cos(�) sin())
− cos(�) sin()) − sin(�) sin()) cos(�) cos()) sin(�) cos())
sin(�) sin()) − cos(�) sin()) sin(�)(− cos())) cos(�) cos())

ª®®®¬ .
(2.47)

2.4.4 Detection stage

The detection stage is composed of twoPBSs and four SPADs[43] [43]: Ceccarelli et al. (2021), ‘Recent

Advances and Future Perspectives of

Single-Photon Avalanche Diodes for

Quantum Photonics Applications’

. The two

PBSs are necessary to discriminate between vertically and horizontally

polarized photons by introducing two other directions of propagation:
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Figure 2.7: Schematics of the detection

stage. It is composed of four SPADs and

by two PBSs. The PBSs are necessary to

discriminate between the horizontal and

vertical polarizations, while SPADs are

used to detect single photons.

each PBS reflects vertically polarized photons and transmits horizontally

polarized ones. The single photons are then detected by the SPADs. The

detection stage is reported in Figure 2.7. This part of the setup implements

the projector operators {%"G ⊗%%H }G,H , which can be represented in matrix

form as:

%"+1
⊗ %%+1

=

©­­­«
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª®®®¬ , (2.48)

%"+1
⊗ %%−1

=

©­­­«
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

ª®®®¬ , (2.49)

%"−1
⊗ %%+1

=

©­­­«
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

ª®®®¬ , (2.50)

%"−1
⊗ %%−1

=

©­­­«
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

ª®®®¬ . (2.51)

2.5 Theoretical form of CHSH parameter for
SPE

Suppose that the generated state has the form:

|#〉 = 1√

2 + �2 + �2 + �2

©­­­«


�
�
�

ª®®®¬ , 
, �, �, � ∈ ℝ. (2.52)

|#〉 enters in the rotation stageof Figure 2.3. The function"(n0 , n0′ , n1 , n1′)
(Equation 2.7) depends on the choice of the directions of measurement
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(n0 , n0′ , n1 , n1′), which are fixed by the choice of angles (), )′, �, �′) in
the rotation stage. For this reason, the direction n0(1) will be replaced

by the angle )(�) in the following discussions. The fundamental con-

stituents of "(), )′, �, �′) are the probabilitied {ℙ(G, H |�, ), �)}, with

� = |#〉〈# |, where (see Equation 2.37)

ℙ(1, 1|�, ), �) =
(cos(�)(
 cos()) + � sin())) + sin(�)(� cos()) + � sin())))2


2 + �2 + �2 + �2

,
(2.53)

ℙ(1,−1|�, ), �) =
(sin(�)(
 cos()) + � sin())) − cos(�)(� cos()) + � sin())))2


2 + �2 + �2 + �2

,
(2.54)

ℙ(−1, 1|�, ), �) =
(cos(�)(� cos()) − 
 sin())) − sin(�)(� sin()) − � cos())))2


2 + �2 + �2 + �2

,
(2.55)

ℙ(−1,−1|�, ), �) =
(sin(�)(� cos()) − 
 sin())) + cos(�)(� sin()) − � cos())))2


2 + �2 + �2 + �2

.
(2.56)

By these, the expectation value E
(
$"

) , $
%
�

)
(see Equation 2.31) is ob-

tained, which, for Equation 2.52, takes the form:

E
(
$"

) , $
%
�

)
=

� + �

2 + �2 + �2 + �2

(2.57)

where

� = cos(2�)
(
cos(2))

(

2 − �2 − �2 + �2

)
+ 2 sin(2))(
� − ��)

)
,

� = 2 sin(2�)(sin(2))(
� + ��) + cos(2))(
� − ��)).
(2.58)

Now, it is finally possible to compute "(), )′, �, �′) (Equation 2.7) as:

"(), )′, �, �′) = 1

2(
2 + �2 + �2 + �2)
cos(2�)(cos(2)) + cos(2)′))(
2 − �2 − �2 + �2)+
− (cos(2�′)(cos(2)) − cos(2)′))(
2 − �2 − �2 + �2))+
+ 2 cos(2))(sin(2�) − sin(2�′))(
� − ��)+
+ 4 sin(2)) sin(� − �′)(sin(� + �′)(�� − 
�)+
+ cos(� + �′)(
� + ��)) + 2 cos(2)′)(sin(2�)+
+ sin(2�′))(
� − ��)+
+ 4 sin(2)′) cos(� − �′)(sin(� + �′)(
� + ��)+
+ cos(� + �′)(
� − ��)).

(2.59)

Consider now the four states of the Bell basis (Equation 2.15 (
 = 1, � =
0, � = 0, � = 1), Equation 2.16 (
 = 1, � = 0, � = 0, � = −1), Equation 2.17
(
 = 0, � = 1, � = 1, � = 0), Equation 2.18 (
 = 0, � = 1, � = −1, � = 0) ).
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6: Actually these represent the solutions

corresponding to maximum and mini-

mum points. Other critical points are ig-

nored here, i.e., the solutions �1 = �2 =

�3 = 0,�.

For these states, "(), )′, �, �′) becomes:

"|)+〉(), )′, �, �′) = cos(2(� − ))) + cos(2(� − )′))+
− cos(2(�′ − ))) + cos(2(�′ − )′));

(2.60)

"|)−〉(), )′, �, �′) = cos(2(� + ))) + cos(2(� + )′))+
− cos(2(�′ + ))) + cos(2(�′ + )′));

(2.61)

"|#+〉(), )′, �, �′) = − cos(2(� + ))) − cos(2(� + )′))+
+ cos(2(�′ + ))) − cos(2(�′ + )′))
= −"|)−〉(), )′, �, �′);

(2.62)

"|#−〉(), )′, �, �′) = − cos(2(� − ))) − cos(2(� − )′))+
+ cos(2(�′ − ))) − cos(2(�′ − )′))
= −"|)+〉(), )′, �, �′).

(2.63)

Consequently, it is just necessary to find the right conditions for the maxi-

mization of "|)±〉(), )′, �, �′) to have the condition for the minimization

for "|#±〉(), )′, �, �′). By fixing the values of the angles as:

2(� − )) = −2(� − )′) = 2(�′ − )′) = ±�
4

(2.64)

for "|)+〉(), )′, �, �′) and

2(� + )) = −2(� + )′) = 2(�′ + )′) = ±�
4

(2.65)

for "|)−〉(), )′, �, �′) is possible to obtain the maximum violation of the

BI of 2

√
2. The minimum of −2

√
2 is instead achievable for

2(� − )) = −2(� − )′) = 2(�′ − )′) = ±3

4

� (2.66)

for "|)+〉(), )′, �, �′) and

2(� + )) = −2(� + )′) = 2(�′ + )′) = ±3

4

� (2.67)

for "|)−〉(), )′, �, �′). To demonstrate these conditions it is useful to

define the arguments of the cosine in Equation 2.60 and Equation 2.61 as

2(� ∓ )) = �1 ,

2(�′ ∓ )′) = �2 ,

2(� ∓ )′) = �3.

(2.68)

In this way, it is possible to rewrite Equation 2.60 and Equation 2.61 as:

"|)±〉(), )′, �, �′) = cos(�1)+cos(�2)−cos(�1+�2−�3)+cos(�3). (2.69)

The maximum and minimum of the function are solutions of the system:
%"
%�1

= − sin �1 − sin(�1 + �2 − �3) = 0

%"
%�2

= − sin �2 − sin(�1 + �2 − �3) = 0

%"
%�3

= − sin �3 + sin(�1 + �2 − �3) = 0

(2.70)

which result to be
6
:
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�1 = �2 = −�3 = ±
�
4

, (2.71)

�1 = �2 = −�3 = ±
3

4

�. (2.72)

By introducing the parameter �1 = �2 = −�3 = $, "|)±〉(), )′, �, �′)
takes the form:

"|)±〉($) = 3 cos($) − cos(3$), (2.73)

that is represented in blue in Figure 2.8. In this particular case, the angles

(), )′, �, �′) takes the values () = 0, )′ = $, � = $/2, �′ = 3/2$). It is
observed that the BI is violated for different $ values.

Figure 2.8: Graphical representation of

Equation 2.73 as a function of the param-

eter $. Red boxes represent the values

where the BI is violated. As predicted by

Equation 2.71 and Equation 2.72, the max-

imum values are obtained for ±�
4
and the

minimum values for ± 3

4
�.

In the case instead of separable states ((
 = 1, � = � = � = 0) and
(
 = 1, � = 1, � = � = 0) as examples), "(), )′, �, �′) becomes:

"(1,0,0,0)(), )′, �, �′) = cos(2�) cos(2)) + cos(2�) cos(2)′)+
+ cos(2�′) cos(2)′) − cos(2�′) cos(2))

(2.74)

for (
 = 1, � = � = � = 0) and

"(1,1,0,0)(), )′, �, �′) = cos(2)) sin(2�) − cos(2)) sin(2�′)+
+ cos(2)′) sin(2�) + cos(2)′) sin(2�′)

(2.75)

for (
 = 1, � = 1, � = � = 0). If the angles are fixed as before, i.e.,

() = 0, )′ = $, � = $/2, �′ = 3/2$) the previous equations become:

"(1,0,0,0)($) =
1

2

(4 cos($) − cos(3$) + cos(5$)), (2.76)

"(1,1,0,0)($) = 2 sin($) cos
2(2$). (2.77)

As reported in Figure 2.9, no violation of the BI is achieved with (
 =
1, � = � = � = 0) and (
 = 1, � = 1, � = � = 0) since these states are not
entangled.
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Figure 2.9: Graphical representation of

Equation 2.76 in blue and Equation 2.77 in

orange as a function of the parameter $.
Red boxes represent the values where the

BI is violated. As predicted by the theory,

the maximum values is 2 and no violation

of BI is achievable with these states.

7: Note that the necessity of this input

randomness will be commented in the

next section, talking about non-idealities.

2.6 Ideal experimental implementation

For experimentally testing the CHSH inequality with the ideal experi-

mental setup reported in Figure 2.3, the correct procedure for estimating

the different probabilities {ℙ(G, H |�, )8 , �9)}(G=±1,H=±1) is:

1) select four couples of angles {()8 , �9)}(8 , 9=0,1),
2) randomly choose a couple ()8 , �9)7 ,
3) for each ()8 , �9), measure the state and store the result (G, H),
4) repeat the points 2) and 3) many times.

The probabilities {ℙ(G, H |�, )8 , �9)}(G=±1,H=±1) are then estimated as:

ℙ(G, H |�, )8 , �9) =
#(G,H)()8 , �9)∑
G,H #(G,H)()8 , �9)

=
#(G,H)()8 , �9)
#()8 , �9)

(2.78)

where#(G,H)()8 , �9) is the number of photons revealed by the detector cor-

responding to the couple (G, H) and #()8 , �9) =
∑
G,H #(G,H)()8 , �8). The

object

#(G,H)()8 ,�9 )
#()8 ,�9 ) is called the empirical frequency of the outcome (G, H)

with respect to the input angles ()8 , �9). Obtained the different probabili-

ties {ℙ(G, H |�, )8 , �9)}(G=±1,H=±1) for every (), �) ∈ {()8 , �9)}(8 , 9=0,1) it is
possible to calculate the correlation coefficients E and, consequently, the

"-parameter.

2.7 Non-idealities in the calculation of
"(), )′, �, �′)

In this section, the analysis of different sources of non-ideality is reported

and it is discussed how they affect the estimation of the "-parameter. This

allows introducing problems in the experimental test of the BI, called BI

loopholes. The following aspects are considered:

I the presence of noise;

I the non-idealities of the optical components;

I the source emission statistics;

I the finite coherence time and length of the light source;
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Figure 2.10: Graphical representation of

Equation 2.80 as a function of the momen-

tum rotation angle ) for different values

of �. The amplitude of the interference

fringes decreases as � decreases.

I the non-idealities of the detectors.

2.7.1 Presence of noise

In an experiment, signals are affected by noise. This introduces a baseline

for every ℙ(G, H |�, ), �). To consider this effect, it is necessary to define

a new density matrix:

�eff = �|#〉〈# | +
1 − �

4

�4 (2.79)

where |#〉 is one of the states of the Bell basis and � is a phenomenological

parameter introduced to consider the presence of noise. The physical

meaning of � becomes evident when the probabilities {ℙ(G, H |�, ), �)}
(see Equation 2.33) are considered. In the case of �eff, the probability

ℙ(1, 1|�eff , ), �) becomes:

ℙ(1, 1|�eff , ), �) =
1

4

(� cos(2(� − ))) + 1). (2.80)

Defining the visibility parameter + for the probability ℙ(1, 1|�eff , ), �)
as

+ =
max(),�)(ℙ(1, 1|�eff , ), �)) −min(),�)(ℙ(1, 1|�eff , ), �))
max(),�)(ℙ(1, 1|�eff , ), �)) +min(),�)(ℙ(1, 1|�eff , ), �))

(2.81)

it is found that + = �. The graphical representation of ℙ(1, 1|�eff , ), �)
is reported in Figure 2.10 for different value of �. By observing the

interference fringes of Figure 2.10, the visibility + gives information

about their amplitude. In particular, for � = 1 (no noise) the fringes are

clearly visible, while, as � approaches to 0 (largest noise), the fringes tend

to disappear.

This information is a preliminary test for observing the violation of BI,

since the visibility is strictly connected toE
(
$"

) , $
%
�

)
and "(), )′, �, �′).
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Figure 2.11: Graphical representation of

"
eff
(), )′, �, �′) as a function of the pa-

rameter $ for different values of �. For
� > 1√

2

the BI can be violated for the an-

gles ±�
4
and ± 3

4
�, while for � < 1√

2

no

violation is achievable. Red boxes indicate

the areas where the BI is violated.

For �eff

Eeff

(
$"

) , $
%
�

)
= �E

(
$"

) , $
%
�

)
, (2.82)

"eff(), )′, �, �′) = �"(), )′, �, �′). (2.83)

For � < 1√
2

' 0.71, no violation of the BI is observable, since

|"eff(), )′, �, �′)| < 2, ∀(), )′, �, �′) as reported in Figure 2.11 for � =
0, 71 and � = 0.5.

2.7.2 Polarization dependence of the optical components

In the previous sections, the bound |"eff(), )′, �, �′)| < 2 is obtained

by considering four observables

(
n) · �" ⊗ �2

) (
�2 ⊗ n� · �%

)
that are in

product form. The latter represents a necessary condition to consider

the BI as an entanglement witness: the BI can attain value greater than

2 even with not-entangled systems by measuring observables not in

product form. Consequently, such a product form must be ensured in

each experimental implementation that tries to observe a violation of the

BI. This is the first loophole that will be discussed: the locality loophole.

This loophole implies the existence of possible communication channels

which allow the twomeasurements to communicate. In this situation, the

outcomes obtained by the measurement operations on the qubits 0 and 1

are no longer independent, i.e., 5 0n0 ,n1 (�) ≠ 5 0n0 (�) and 5 1n1 ,n0 (�) ≠ 5 1n1 (�).
From an operational and practical point of view, the locality loophole

can be reasonably neglected for MPE by just separating or screening

out the two particles. However, this is not trivial in the case of SPE. In

the case of momentum and polarization SPE states, one must ensure

that the rotation of one DoF leaves the other untouched. It is worth

remembering that these operations are performed by using two HWPs

and a MZI. While in practical implementation, this is not a concern

regarding the action of the HWPs, it results to be a problem considering

the polarization response of the optical components that compose the

MZI. In particular, the power reflection and and transmission coefficients

of the BSs and MRs are polarization-dependent, spoiling the product

form of the operator*) ⊗ �2. The matrix representation of the BS in the
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basis {|0+〉, |0�〉, |1+〉, |1�〉} can be modeled as:

*real

BS
=

©­­­«
C+ 0 8A+ 0

0 C� 0 8A�
8A+ 0 C+ 0

0 8A� 0 C�

ª®®®¬ ,
|C+ |2 + |A+ |2 ≤ 1

|C� |2 + |A� |2 ≤ 1

(2.84)

where C+,� , A+,� are the amplitude transmission and reflection coeffi-

cients of the BS for the corresponding polarization. The operator*real

BS
is

not in product form as long as the amplitude coefficients are different for

the two polarizations. The same occurs to the operator*real

MR
:

*real

MR
=

©­­­«
0 0 �+1

0

0 0 0 ��1

�+2
0 0 0

0 ��2
0 0

ª®®®¬ ,
|�GH |2 ≤ 1,

∀G ∈ {+, �},∀H ∈ {1, 2}

(2.85)

where �GH is the amplitude transmission coefficient for the polarization

G of the mirror H of the MZI. The detection probabilities, obtained by the

real experimental setup, are represented by:

ℙreal(G, H |�, ), �) =
Tr[*real

),��(*
real

),�)† %"G ⊗ %%H ]

Tr[*real

),��(*
real

),�)†]
, (2.86)

where

*real

),� = *
real

BS2

*real

MR
*Ph*

real

BS1

(�2 ⊗*�). (2.87)

The subscripts 1,2 indicate that, in principle, the transmission and re-

flection coefficients of the two BSs are different. The appearance of the

term Tr[*real

),��(*
real

),�)†] in the denominator of Equation 2.86 is justified

by the presence of losses due to scattering and absorption in the BSs and

MRs: the photons detected by the SPADs are only those that go through

the entire setup without being lost. For this reason, it is necessary to

consider in the probabilities only these photons by renormalizing the

probabilities.

The scope of the following calculations is to understand the effects

of these non-idealities and provide two theoretical corrections 4ℙ and

4" that will link the ideal probabilities and correlation function " to

those obtained by the real experimental setup. To simplify the analytical

calculation, the operator*real

MR
will be assumed as ideal and omitted in

the development of the model. Indeed, it is a hermitian operator, which

swaps the components |0〉 and |1〉 for momentum. This operation will be

compensated by just exchanging the role of the %"+1
and %"−1

, taking no

effect in the final result.

In the evaluation of Equation 2.86 an useful simplification can be achieved

if the losses for the polarization are comparable: if C2
+,:
+A2

+,:
' C2

�,:
+A2

�,:
,

for : = 1, 2, Equation 2.86 can be rewritten as:

ℙreal(G, H |�, ), �) = Tr[*̃),��(*̃),�)† %"G ⊗ %%H ] (2.88)
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where the operator *̃),� is defined as:

*̃),� = (*real

) ⊗ �2)(�2 ⊗*�) = *̃BS2
*Ph())*̃BS1

(�2 ⊗*�), (2.89)

*̃BS:
=

©­­­«
C̃+,: 0 8Ã+,: 0

0 C̃�,: 0 8Ã�,:
8Ã+,: 0 C̃+,: 0

0 8Ã�,: 0 C̃�,:

ª®®®¬ , (2.90)

ÃG,: =
AG,:√

C2
G,:
+ A2

G,:

, C̃G,: =
CG,:√

C2
G,:
+ A2

G,:

, (2.91)

with G = +, � and : = 1, 2. By making the identification:

C̃G,: = cos(
G,:) ÃG,: = sin(
G,:) (2.92)

it is possible to search for an operator

* ideal

) (D, E) = (*(D) ⊗ �2)(*Ph()) ⊗ �2)(*(E) ⊗ �2) (2.93)

*(G) =
(

cos(G) 8 sin(G)
8 sin(G) cos(G)

)
, G = D, E (2.94)

in product form thatminimize theHilbert-Schmidt norm of the difference

operator:

'(D, E)) = *real

) −* ideal

) (D, E) = *̃BS2
*Ph())*̃BS1

−* ideal

) (D, E) (2.95)

for a particular choice of (D, E). This procedure is based on the implicit

assumption that the action of the MZI implements the "nearest" operator

* ideal

) (D, E) instead of the ideal one*) . For this reason, the optimization

of (D, E) for minimizing '(D, E)) is well motivated. The operator *real

)

can be viewed as:

*real

) = 4 8)
(
*(�+ , =̂+ ) ⊗

(
1 0

0 0

)
+*(�� , =̂�) ⊗

(
0 0

0 1

))
(2.96)

where the operator*(�+ , n+ ) and*(�� , n�) are:

*(�G , nG) = cos(�G) �2×2 + 8 sin(�G)nG · �, G = +, � (2.97)

cos(�G) = cos()) cos(
G,1 + 
G,2), (2.98)

sin(�G)nG =
©­«
cos()) sin(
G,1 + 
G,2)
sin()) sin(
G,1 − 
G,2)
sin()) cos(
G,1 − 
G,2)

ª®¬ . (2.99)

It is possible to rewrite also* ideal

) (D, E) in the same way

* ideal

) (D, E) = *(�, n) ⊗ �2 , (2.100)

*(�, n) = cos(�) �2×2 + 8 sin(�)n · �, (2.101)

cos(�) = cos()) cos(D + E), (2.102)

sin(�)n = ©­«
cos()) sin(D + E)
sin()) sin(D − E)
sin()) cos(D − E)

ª®¬ . (2.103)
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The difference operator ') = *
real

) −* ideal

) takes the form:

') = 4
8)/2 (

51())'1 + 52())'2

)
(2.104)

where 51()) = cos()), 52()) = sin()) and the two operators '1 , '2 do

not depend on ) and are given by

'1 =

(
'+

1
⊗

(
1 0

0 0

)
+ '�

1
⊗

(
0 0

0 1

))
(2.105)

'2 =

(
'+

2
⊗

(
1 0

0 0

)
+ '�

2
⊗

(
0 0

0 1

))
(2.106)

where

'G
1
= (cos(
G,1 + 
G,2) − cos(D + E))�2×2 + 8(sin(
G,1 + 
G,2)

− sin(D + E))�G ,
'G

2
= 8(cos(
G,1 − 
G,2) − cos(G − H))�I + 8(sin(
G,1 − 
G,2)

− sin(D − E))�H ,
G = +, �.

(2.107)

The Hilbert-Schmidt norm of '(D, E)) can then be written as:

‖')(D, E)‖2
HS
= Tr[')(D, E)'†)(D, E)]
= 4

(
2 − cos

2())(cos(
�,1 + 
�,2 − D − E)+
+ cos(
+,1 + 
+,2 − D − E))+
− sin

2())(cos(
�,1 − 
�,2 − D + E)+
+ cos(
+,1 − 
+,2 − D + E))

)
,

(2.108)

and it has the minimal value for

D0 =

�,1 + 
+,1

2

, E0 =

�,2 + 
+,2

2

. (2.109)

In particular, ')(D0 , E0)'†)(D0 , E0) is a multiple of the identity, i.e.,

')(D0 , E0)'†)(D0 , E0) = 2�4×4 with

2 =2 − 2 cos
2()) cos

(
�,1 − 
+,1
2

+ 
�,2 − 
+,2
2

)
+

− 2 sin
2()) cos

(
�,1 − 
+,1
2

− 
�,2 − 
+,2
2

)
.

(2.110)

Hence ‖')‖ =
√
2. To remove the dependence of ) it is useful to take

the upper bound of c for ) ∈ [0, 2�]:

4 = sup

)∈[0,2�]
‖')(D0 , E0)')(D0 , E0)†‖

= 2 − 2 min

{
cos

(
+,1 − 
�,1
2

+ 
+,2 − 
�,2
2

)
,

cos

(
+,1 − 
�,1
2

− 
+,2 − 
�,2
2

) }
.

(2.111)

It is important to remark that the optimization technique presented here

is even more precise: it provides a bound that is accurate also in the

general case where *real

) is compared to a generic operator of the type
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8: For the sake of clarity the notation

"(), )′, �, �′) needs to be replaced by

"()0 , )1 , �0 , �1) to compress the formu-

las, otherwise too long.

*" ⊗ +% ∈ H" ⊗H% . For detailed proof, see [21][21]: Mazzucchi et al. (2021), ‘Entropy

certification of a realistic quantum

random-number generator based on

single-particle entanglement’

. It is necessary to

connect the bound obtained in Equation 2.111 to the difference between

the read and the ideal detection probabilities. By exploiting the identity:

* ideal

) + ') = *
real

) , (2.112)

where ') = ')(D0 , E0), is possible to write:

ℙreal(G, H |�, ), �) = ℙideal(G, H |�, ), �)+
+ Tr[* ideal

) �'†)%
"
G ⊗ %%H,�]+

+ Tr[')�(* ideal

) )†%"G ⊗ %%H,�]+

+ Tr[')�'
†
)0%"G ⊗ %%H,�]

(2.113)

inwhich %"G ⊗%%H,� = (�⊗*�)†%"G ⊗%%H (�⊗*�) and %ideal(G, H |�, ), �) =
)A[* ideal

) �* ideal

) )†%"G ⊗ %%H,�]. For any choice of (), �), the difference

between thedetectionprobabilitiesℙreal(G, H |�, ), �) and theones related

to product observables ℙideal(G, H |�, ), �) can be bounded by

|ℙreal − ℙideal | =
= Tr[* ideal

) �'†)%
"
G ⊗ %%H,�]+

+ Tr[')�(* ideal

) )†%"G ⊗ %%H,�]+

+ Tr[')�'
†
)%

"
G ⊗ %%H,�] ≤

≤ 2

√
‖')'

†
)‖ + ‖')'

†
)‖ ≤

≤ 2

√
4 + 4 = 4ℙ ,

(2.114)

where 4 is given by Equation 2.111. The next step consists into the deriva-

tionof a similar bound for"(), )′, �, �′). Inparticular"real()0 , )1 , �0 , �1)8
is defined as:

"real = Tr[�
∑
8 , 9

28 9(*real

)8
)†(� ⊗*†�9 )�I ⊗ �I(� ⊗*�8 )*real

)8
], (2.115)

while "ideal()0 , )1 , �0 , �1) as:

"ideal = Tr[�
∑
8 , 9

28 9(* ideal

)8
)†(� ⊗*†�9 )�I ⊗ �I(� ⊗*�9 )* ideal

)8
], (2.116)

where 200 = 210 = 211 = 1 and 201 = −1. Using the Equation 2.112 it is

possible to write:

"real = "ideal + Tr[�
∑
8 , 9

28 9(')8 )†�I ⊗ �9 · �* ideal

)8
]︸                                      ︷︷                                      ︸

P1

+

+ Tr[�
∑
8 , 9

28 9(* ideal

)8
)†�I ⊗ �9 · �')8 ]︸                                      ︷︷                                      ︸

P2

+

+ Tr[�
∑
8 , 9

28 9'
†
)8
�I ⊗ �9 · �')8 ]︸                                ︷︷                                ︸
P3

.

(2.117)
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It is necessary to evaluate each term on the right-side of Equation 2.117.

Starting with P1, exploiting Equation 2.104, it can be expressed as:

Tr[�
∑
8 , 9

28 9(')8 )†�I ⊗ �9 · �* ideal

)8
] =

Tr[�'†
1

∑
8 , 9

28 94
−8)8 51()8)�I ⊗ �9 · �* ideal

)8
]+

+ Tr[�'†
2

∑
8 , 9

28 94
−8)8 52()8)�I ⊗ �9 · �* ideal

)8
] =

Tr[�'†
1
$1] + Tr[�'†

2
$2],

$: =
∑
8 , 9

28 94
−8)8 5:()8)�I ⊗ �9 · �* ideal

)8
,

: = 1, 2.

(2.118)

The norm of $8 can be upper bounded by the value:

‖$:$
†
:
‖ ≤ 2 5:()0)2 + 2 5:()1)2 + 2| 5:()0)2 − 5:()1)2 |+

+ 4| 5:()0) 5:()1)|
≤ max

| 5: ()8 )|∈[0,1]

(
2 5:()0)2 + 2 5:()1)2 + 2| 5:()0)2+

− 5:()1)2 | + 4 5:()0) 5:()1)
)

= 8.

(2.119)

As a consequence, each term | Tr[�'†
:
$:]| can be upper bounded by

exploiting the Von Neumann’s trace inequality:

| Tr[�'†
:
$:]| ≤ ‖'†:$‖ Tr[�] ≤ 2

√
2

√
‖'†

:
': ‖ , (2.120)

resulting in this upper bound for the term P1:

Tr[�
∑
8 , 9

28 9(')8 )†�I ⊗ �9 · �* ideal

)8
] ≤ 2

√
2

∑
:

(
√
‖'†

:
': ‖). (2.121)

The same reasoning could be applied to the term P2. The last term (P3)

can be maximized as follows:

Tr[�
∑
8 , 9

28 9'
†
)8
�I ⊗ �9 · �')8 ] =

∑
0,1=1,2

Tr['1�'†0$01] (2.122)

with

$01 =
∑
8 , 9

28 9 50()8) 51()8)�I ⊗ �9 · �. (2.123)

By considering ‖$01$
†
01
‖:

‖$01$
†
01
‖ ≤ 222

0
+ 222

1
+ 2|22

0
− 22

1
|,

28 = 50()8) 51()8),
: = 0, 1,

(2.124)

it is possible to observe that:

I ‖$01 ‖ ≤ 2 if 0 = 1,

I ‖$01 ‖ ≤ 1 if 0 ≠ 1.
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9: The acronym Comparable Polarization

Losses (CPL) is used here to distinguish

between the real probabilities in the case

of comparable polarization losses and the

ones of the general case.

10: As before, the swap operation will be

considered ideal and omitted.

Equation 2.122 is then bounded by∑
0,1=1,2

Tr['1�'†0$01] ≤ 2(‖'1'
†
1
‖ + ‖'2'

†
2
‖ + ‖'1‖‖'2‖). (2.125)

Using Equation 2.121 for the terms P1 and P2 and Equation 2.125 for the

term P3, it is possible to bound the difference between "real
and "ideal

as:

|"real − "ideal | ≤4

√
2(‖'1‖ + ‖'2‖)
+ 2(‖'1‖2 + ‖'2‖2 + ‖'1‖‖'2‖) = 4"

(2.126)

where ‖'1‖ and ‖'2‖ can be obtained by explicit calculation for (D, E) =
(D0 , E0):

'1'
†
1
= '†

1
'1 = 4 sin

2

(
�,1 + 
�,2 − 
+,1 − 
+,2
4

)
�4×4 , (2.127)

'2'
†
2
= '†

2
'2 = 4 sin

2

(
(
�,1 − 
�,2) − (
+,1 − 
+,2)

4

)
�4×4 , (2.128)

hence obtaining

‖'1‖ = 2

���sin

(
�,1 + 
�,2 − 
+,1 − 
+,2
4

)��� ,
‖'2‖ = 2

����sin

(
(
�,1 − 
�,2) − (
+,1 − 
+,2)

4

)���� . (2.129)

Generally lossy beam splitters

The previous calculation has to be generalized in the case of not compa-

rable losses for the two polarizations. In that situation, the denominator

of Equation 2.86 cannot be "neglected" as done before. In the following,

it is estimated an upper bound for the difference between the detection

probabilities of Equation 2.86:

ℙreal(G, H |�, ), �) =
Tr[*real

),��(*
real

),�)† %"G ⊗ %%H ]

Tr[*real

),��(*
real

),�)†]

and the simplified ones of Equation 2.88
9
:

ℙreal

CPL
(G, H |�, ), �) = Tr[*̃real

),��(*̃
real

),�)
† %"G ⊗ %%H ]. (2.130)

In this way, it is possible to use the result developed in the previous

calculation to bound the distance between ℙreal(G, H |�, ), �) and
ℙideal(G, H |�, ), �):

|ℙreal − ℙideal | = |ℙreal − ℙreal

CPL
+ ℙreal

CPL
− ℙideal | ≤

≤ |ℙreal − ℙreal

CPL
| + |ℙreal

CPL
− ℙideal |

(2.131)

where |ℙreal

CPL
− ℙideal | is the term calculated previously. Moreover, the

effect of the polarization losses of the two MRs (assumed equal, i.e, with

the same transmission coefficients �+ and ��) will be also considered in

the next calculations
10

by inserting the transmission coefficients of the

MRs into the action of the second BS. Then, the matrix that represents
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11: The details of the derivation can be

found in [21]

the second BS can be written as:

*BS2
=

©­­­«
�+ C+,2 0 8�+ A+,2 0

0 �� C�,2 0 8��A�,2
8�+ A+,2 0 �+ C+,2 0

0 8��A�,2 0 �� C�,2

ª®®®¬ ;

�+ , �� ∈ [0, 1].

(2.132)

The upper bound 4̂ is defined as:

4̂ = sup

),�
4̂(), �) = sup

),�
|ℙreal(G, H |�, ), �) − ℙreal

CPL
(G, H |�, ), �)| (2.133)

where 4̂(), �) is the difference between the detection probabilities (Equa-

tion 2.86) and the simplified ones (Equation 2.88). To evaluate this term,

an useful simplification consists into assuming the knowledge of the

input state � that enters into the rotation stage:

� = 
%���%� + �%+�+%+ + %+?%� + %�?†%+ , (2.134)

where %+ (%�) is the projector associated to the subspace of H" ⊗H%

with fixed vertical(horizontal) polarization, �+(�) is the 2 × 2 density

matrix associated to the vertical(horizontal) polarization, 
, � ≥ 0 with


 + � = 1 and ? is a linear operator connecting the two subspaces with

different polarizations. By introducing the two constants 2� and 2+ :

2� =
√
(C2
�,1
+ A2

�,1
)(C2

�,2
+ A2

�,2
)

2+ =
√
(C2
+,1
+ A2

+,1
)(C2

+,2
+ A2

+,2
),

(2.135)

and with the decomposition of Equation 2.134, it is possible to obtain the

following form for the upper bound 4̂11 :

4̂ ≤
���
�(22

�
− 22

+
)


22

�
+ �22

+

��� + �����
√

�(2� 2+ − 
22

+
− �22

�
)


22

�
+ �22

+

����� . (2.136)

The actual values of 
 and � can be defined as:


 =
C2
�

C2
+
+ C2

�

, � =
C2
+

C2
+
+ C2

�

, (2.137)

where C2
+
, C2
�
are the power transmission coefficients for the vertical and

horizontal polarizations, which consider the optical responses of the BS,

HWPs and MRs in the generation stage of Figure 2.4. Derived the value

of 4̂, by introducing the latter in Equation 2.131, it is possible to obtain

that

|ℙreal − ℙideal | ≤ 2

√
4 + 4 + 4̂ = 4ℙ (2.138)

with 4 given by Equation 2.111 and 4̂ bounded by Equation 2.136.

Now it is necessary to bound the distance between "real
and "real

CPL
. Since

the difference "real − "real

CPL
can be seen as a linear combination of the 16

distances of the probabilities in the form(
ℙreal(G, H |�, )8 , �9) − ℙreal

CPL
(G, H |�, )8 , �9)

)
, with 8 , 9 = {0, 1}, the bound
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is easily obtained as:

|"real()0 , )1 , �0 , �1) − "real

CPL
()0 , )1 , �0 , �1)| =

=

����� ∑
8 , 9 ,G,H

28 92GH

(
ℙreal(G, H |�, )8 , �9) − ℙreal

CPL
(G, H |�, )8 , �9)

)����� ≤
≤

∑
8 , 9 ,G,H

��ℙreal(G, H |�, )8 , �9) − ℙreal

CPL
(G, H |�, )8 , �9)

�� ≤
≤

∑
8 , 9 ,G,H

4̂ = 164̂ .

(2.139)

In this way it is possible to bound the distance |"real()0 , )1 , �0 , �1) −
"ideal()0 , )1 , �0 , �1)| as:

|"real − "ideal | ≤4

√
2(‖'1‖ + ‖'2‖)+
+ 2(‖'1‖2 + ‖'2‖2 + ‖'1‖‖'2‖) + 164̂ = 4"

(2.140)

where ‖'1‖ and ‖'2‖ were obtained in Equation 2.129.

Numerical approach

It is important to note that the triangular inequality defined in Equation

2.131 represents an useful simplification, since the direct analytical calcu-

lation of |ℙreal − ℙideal | is not easy. This comes at the price of having a

larger bound on the probabilities and, consequently, on the difference con-

cerning the "-parameters. A more direct approach can be implemented

by considering a numerical approach. Since the matrix representation of

each of the optical elements was already presented both in the ideal and

in the real versions, it can be useful to directly calculate the object:

4ℙ = min

{D,E}
[4ℙ(D, E)]

= min

{D,E}

 max

{),�,�,G,H}


�������
Tr

[
*real

),��(*
real

),�)† %"G ⊗ %%H
]

Tr

[
*real

),��(*
real

),�)†
] −

−Tr

[
* ideal

),� (D, E)�(*
ideal

),� (D, E))
† %"0 ⊗ %%1

] ���] ] ,
(2.141)

where the minimization and the maximization can be done numerically

by using standard optimization programs like the Sequential Quadratic

Programming (SQP), which can be implemented using the Global Opti-

mization Toolbox of Matlab(c). A possible algorithm can be:

I fix a pair of (D, E);
I performamaximizationover thevariableparameters {), �, �, G, H};
I store the value of 4ℙ(D, E);
I repeat.

The minimum 4ℙ(D, E) is the best one. The same reasoning can be then

applied also for the numerical calculation of 4", with the difference that

now the variable parameters are {)0 , )1 , �0 , �1 , �, G, H}. A clarification

has to be done for the maximization over the density matrix �. This is of
the form of Equation 2.79, where the only free parameter is the visibility
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Figure 2.12:Details of the generation stage

of Figure 2.3 with indicated the amplitude

transmission coefficients relative to the

direction |0〉 (blue) and |1〉 (red).

� ∈ [0, 1]. So the maximization has to be performed ∀� ∈ [0, 1]. However,

an even more precise form of the density matrix � can be consider:

�(�) =

©­­­«
�|C0= |2 + (1 − �) 0 0 EC0=(C1=)∗
0 1 − � 0 0

0 0 1 − � 0

EC∗
0=C1= 0 0 E |C1= |2 + (1 − �)

ª®®®¬ ,
(2.142)

where

C0= =
C0√
C2
0
+ C2

1

C1= =
C1√
C2
0
+ C2

1

(2.143)

are the normalized power transmission coefficients of the two paths |0〉
and |1〉, as reported in Figure 2.12. This normalization is necessary to have

a density matrix � normalized. Physically, the observed experimental

probabilities only refer to the not adsorbed or scattered photons, so the

lost fraction is unimportant. The state �(�) represents the most detailed

description of the real state that enters in the rotation MZI, so it will be

used in the numerical maximization.

2.7.3 Use of an attenuated source

It is necessary to underline that the previous discussions are related

to a single photon over which the SPE state is written. Indeed, until

now, a Hilbert space having a fixed dimensionality has been considered,

selecting two distinct momenta and polarizations for the single photon.

Single-photon states are usually obtained using heralding techniques[44]

[44]: Eisaman et al. (2011), ‘Invited

review article: Single-photon sources and

detectors’

and non-linear optical processes like Spontaneous Parametric Down

Conversion or Four-Wave Mixing [45, 46]

[45]: Magnitskiy et al. (2015), ‘A SPDC-

Based Source of Entangled Photons and

its Characterization’

[46]: Takesue et al. (2004), ‘Generation

of polarization-entangled photon pairs

and violation of Bell’s inequality using

spontaneous four-wave mixing in a fiber

loop’

, in which a high power laser is

used. Remarkably, SPE offers the possibility of being generated starting

from attenuated sources like a laser, a Light-emitting diode (LED) and

a halogen lamp, without being affected by the different statistics of

emission. This represents an important simplification for generating an

entangled state, which can be obtained with cheaper components. It is

important to remark that such a simplification is advantageous if no

precise timing measurements are needed since it is impossible to know

the precise time when the photon has been emitted from an attenuated

source. Such a problem is not present in heralded single-photon sources.

Suppose now that the input state of the electromagnetic field that enters
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12: In the following discussion the exper-

imental setup is assumed to be ideal for

simplicity.

13: |)+〉 in the following example.

into the experimental setup of Figure 2.3 is no more a single photon, but

instead, is one of the following two forms:

I a coherent superposition of pure states, labeled by the number of

photon =#, all belonging to the same mode:

|Ψ〉 B
+∞∑
==0

�= |=#〉 , where

+∞∑
==0

|�= |2 = 1, (2.144)

obtained typically by a short time laser pulse;

I an incoherent superposition of pure states of finite number of

particles in the same mode:

� B
+∞∑
==0

%= |=#〉〈=# | , where

+∞∑
==0

%= = 1, (2.145)

which it is typically obtained after frequency filtration of an inco-

herent source (LED/halogen lamp).

|=#〉 = 1√
=!

(0†#)= |vac〉 represents the quantum state having = single

photons in the mode |#〉 = |0+〉, where |vac〉 is the vacuum state and 0†#
is the creation operator of a photon in the mode |#〉.
Note that the representation of Equation 2.144 is valid also in the case of an

ideal laser far above threshold and at the atomic physics timescale, with

�= = 4
−�/2 �=/2√

=!

, where � = 〈#〉 is the mean value of the number operator

# and �= =
√
〈#〉. As reported in [47][47]: Wiseman (2016), ‘How many

principles does it take to change a light

bulb. . . into a laser?’

, however, the relative phase

between the different number of photon states {|=#〉} in Equation 2.144

becomes rapidly undefined due to phase diffusion and the emitted state

collapses in Equation 2.145 with a Poissonian distribution %= = 4−�
�=

=!

with 〈#〉 = � and �= =
√
〈#〉. In the case of mode filtered thermal light

at temperature ), the coefficients %= of Equation 2.145 take the form

%= =
1

1+〈=〉

(
〈=〉
〈=〉+1

)=
, where 〈=〉 = 1

exp{~$/:�)}−1
and $ = 2 |k|. A LED

source can be described in this way.

It is important to recall that the generation stage (Figure 2.4) and rotation

stage (Figure 2.5) are composed of linear optical elements, whose action

can be described by two unitary
12

operators,*� and*'(), �) = *)⊗*�

acting in the composed Hilbert space of the single photon H" ⊗H% .

Considering the generation stage, its action is to transform the state |#〉
into one of the four states that compose the Bell basis

13
:

|#〉 = |0+〉 → *� |#〉 = |)+〉. (2.146)

On the other hand, the action of the rotation stages is similarly described

as

|)+〉 → |#),�〉 = *'(), �)|)+〉 . (2.147)

Considering the linearity of the optical elements involved, the action of

the two stages on the multi-particles state is represented by the unitary

operator *" = *"
'
(), �)*"

�
, acting in the Fock space, defined by the

requirements

I *" 0†#(*")† = 0†#),�
, the number of photons is conserved, only

the mode in which they are created is changed,
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I *" |vac〉 = |vac〉, the vacuum is invariant under the operator*"
,

I |#),�〉 = *"
'
|#〉.

Therefore, the net action on the states of Equation 2.144 and Equation

2.145 is:

|Ψ〉 ↦→ |Ψ),�〉 B *" |Ψ〉 =
+∞∑
==0

�= |=#′〉 ,

� ↦→ �),� B *"�(*")† =
+∞∑
==0

%= |=#′〉〈=#′ |.
(2.148)

The last part that needs to be analyzed in this multi-photon scenario

is the detection stage (Figure 2.7), in which the measurement of the

observables is performed. In the detection stage, four tests &(G,H), are
implemented: the possible outcomes are 0, no photon detected, or 1, a

photon detected. Considering the two possible states that enter into this

stage (|Ψ),�〉, �),�) the probability of obtaining the outcome 1 by one of

the tests &(G,H) is given by:

〈Ψ),� |&(G,H) |Ψ),�〉 B
+∞∑
=,<=0

�<�= 〈<#),� |&(G,H) |=#),� 〉, (2.149)

Tr(�),�&(G,H)) B
+∞∑
==0

%= 〈=#),� |& |=#),� 〉. (2.150)

It is important to remark that each used test &(G,H) commutes with the

observable number of particles. Therefore, in the case of Equation 2.149,

〈<#′ |&(G,H) |=#′〉 = 0, when < ≠ =, allowing to rewrite that as:

〈Ψ),� |&(G,H) |Ψ),�〉 B
+∞∑
==0

|�= |2〈=#),� |& |=#),� 〉 . (2.151)

Equation 2.151 has the same form of Equation 2.150, whichmeans that the

detection stage cannot distinguish between a coherent superposition of

pure number states and an incoherent superposition having %= = |�= |2.
Consequently, the entire analysis can be performed for each single pure

state with a fixed number of particles separately and then it is possible

to combine all of them with the weights %= or |�= |2. According to this,

suppose that the Fock state |=#〉 enters into the setup. On each photon

belonging to |=#〉, the values of the momentum and polarization are

measured obtaining one of the results: (1, 1), (1,−1), (−1, 1), (−1. − 1).
Those test {&(G,H)} are:

mutually compatible [&(G,H) , &(G′ ,H′)] = 0, (2.152)

pairwise exclusive &(G,H)&(G′ ,H′) = 0 for (G, H) ≠ (G′, H′), (2.153)

exhaustive
∑
G,H

&G,H = �4. (2.154)

When n photons enter into the setup, the four single particle tests

determine a class of tests {&n}, where n = (=1 , =2 , =3 , =4) ∈ ℕ4
and

=1 + =2 + =3 + =4 = =. The particular test &n occurs only if =1 photons

have produced the result (1, 1), =2 the result (1,−1), =3 the result (−1, 1)
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and =4 the result (−1,−1). These multi-particle tests are:

mutually compatible [&n , &m] = 0, (2.155)

pairwise exclusive &n , &m = 0 for n ≠ m (2.156)

exhaustive
∑

=1+=2+=3+=4==

&n = � (2.157)

and they take into account every possible combination of outcomes

obtainable having = indistinguishable photons. Considering the one-

particle tests {&(G,H)}, these multi-particle test &n are defined as

&n ≡∑
�

&
�(1)
(1,1) · · ·&

�(=1)
(1,1) &

�(=1+1)
(1,−1) · · ·&

�(=1+=2)
(1,−1) &

�(=1+=2+1)
(−1,1) · · ·

· · ·&�(=1+=2+=3)
(−1,1) &

�(=1+=2+=3+1)
(−1,−1) · · ·&�(=1+=2+=3+=4)

(−1,−1) ,

(2.158)

where � indicates all the permutations of the set of indexes {1, . . . , =}.
The operator &

91
1
· · ·& 9=

= , with { 91 , ..., 9=} = {1, ..., =} acts on the tensor

product of = copies of the Hilbert space H" ⊗H% , and &
9;
(G,H) indicates

the operator

&
9;
(G,H) ≡ � ⊗ · · · ⊗ �︸      ︷︷      ︸

9;−1 factors �

⊗ &(G,H)︸︷︷︸
9; th position

⊗ � ⊗ · · · ⊗ �︸      ︷︷      ︸
=−9; factors �

. (2.159)

Now, the probability of finding the outcome {(G, H)} for {=8}8=1,2,3,4

particles for the state |=#),� 〉 can be computed from Equation 2.158 as:

〈=#),� |&n |=#),� 〉 =
=!

=1!=2!=3!=4!

(G=1,G=1)∏
(G=0,H=0)

〈#),� |&(G,H) |#),�〉=8 (2.160)

Equation 2.160 corresponds to the multinomial distribution of = inde-

pendent random variables {�9} 9=1,...,= with four possible results 8 =

(1, 1), (1,−1), (−1, 1), (−1. − 1) and having as elementary probabilities:

ℙ(�9 = (G, H)) = 〈#),� |&(G,H) |#),�〉, 9 = 1, ..., =. (2.161)

From Equation 2.160 is clear that the photons of the beam can be treated

as independent and identically distributed random variables, {�9} 9∈ℕ ,
with four possible outcomes and corresponding probabilities reported

in Equation 2.161. In other words, the linear optical transformation

performed by the experimental setup is applied individually on each

photon, independently of the statistics of emission of the source of

light. Consequently, there are no differences between an attenuated

beam of photons and a heralded single-photon source, provided ideal

detectors are used and Poissonian statistics is applied. More precisely,

the discrimination of the number of incoming photons is possible due to

the ideal detector where non-idealities, such as dead time and dynamic

range, are neglected. Given this assumption, the detection stage observes

a flux of photons in both cases. The only difference is that the time of

arrival on the detector can be determined within a certain confidence

level for heralded single-photon sources, while it is a stochastic process

for attenuated sources.
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Figure 2.13: Schematics of the experimen-

tal setup to analyze the coherence prop-

erties of the SPE state. Note that it is only

constituted by the generation stage of Fig-

ure 2.3, with the addition of one BS and

two detectors that perform the projection

operation in the two momentum states,

without considering the polarization DoF.

2.7.4 Broadband spectrum of the source of photons

As previously introduced, the generation of SPE states does not depend

on the form of the input state, which can be a coherent superposition or

a statistical mixture of pure states. Indeed, they can be generated even

using attenuated incoherent sources, such as a lamp or a LED. In this case,

it is necessary to consider the short coherence time �2 and, consequently,
the short coherence length ;2 of the input source.

To analyze this, it is necessary to introduce the setup of Figure 2.13. A

precise description of the state that exits from the first BS of Figure 2.4 is:

|#〉 = # 9(k), |�〉 |�〉 B cos(�)|+〉 − sin(�)|�〉. (2.162)

The state |�〉 takes into account the polarization of the photons, while the

function # 9 refers to its momentum, which is concentrated around k9 ∈
ℝ3

. More precisely, themomentum k9 is the center of a small ball � 9 ⊂ ℝ3
:

each wavevector belonging to the ball � 9 is an allowed momentum

wavevector for the state. Note that the shape of � 9 is determined by the

source, or more precisely, by the collimator used to inject the light into

the optical setup of Figure 2.13. The momenta ~k0 and ~k1 define the two

momentum states |0〉, |1〉 which are an effective approximations of the

functions #0 and #1. It holds $0 = 2 |k0 | = 2 |k1 | where
$0

2� is the central

frequency of the light that enters into the setup. Note that since 〈1|0〉 = 0,

the two small ball � 9 ⊂ ℝ3
in which k9 are defined, must be disjoint.

To describe the effect of the coherence time, or equivalently length, it is

necessary to introduce the time evolution operator*C of the following

form:

*C#(k)|�〉 = 4−82 |k|C#(k)|�〉 . (2.163)

Due to the dependence of the term 4−82 |k|C on k, the approximation of

having a finite dimension Hilbert space is no longer valid since the state

changes with time. The entangled state entering the second BS of Figure

2.13, assuming � = 0, is no longer the Bell state

|)+〉 = 1√
2

(|0+〉 + |1�〉) , (2.164)

but instead

|)+
(precise)

〉 B 1√
2

(
8#0(k)|+〉 + 4−82) |k|#1(k)|�〉

)
. (2.165)
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An absolute phase 4−82C |k| is omitted in the following discussion, since

it is irrelevant for the calculation. ) in Equation 2.165 represents the

time delay between the two arms (Arm |0〉 and Arm |1〉 in Figure 2.13)

exiting from the first BS. In other words, 2) |k| = � represents the phase

difference between the two paths. To better highlight the phase difference

between the term |0+〉 and the term |1�〉, it is useful to ignore an overall

phase of 4 8�/2. Consequently, the state of Equation 2.165 can be rewritten

as:

|)+
(precise)

〉 B 1√
2

(
#0(k)|+〉 − 84−82) |k|#1(k)|�〉

)
. (2.166)

The robustness of the SPE is evaluated by observing the interference

between the two terms #0(k)|+〉 and #1(k)|�〉 by using a second BS and

two SPADs as reported in Figure 2.13. Consider an ideal BS that acts on

the state in Equation 2.166 transforming it into:

|)out

(precise)
〉 =
=(*�( ⊗ �2)|)+

(precise)
〉

=
1

2

(#0(k) + 8#1(k))|+〉+

− 8

2

4−82C |k|(8#0(k) + #1(k))|�〉.

(2.167)

In the simplifiedvision of two separatedmomentumstates, the twoSPADs

of Figure 2.13 implement the projection operations over the momentum

basis |0〉, |1〉. In the more accurate description, the orthogonal projector

acts as multiplicative operators %9 B � 9 (k) in the space of momentum

packets. In particular:

� 9 (k) = 0 if k ∉  9 ,

� 9 (k) = 1 if k ∈  9 .
(2.168)

 9 indicates a set of momenta which includes the corresponding ball � 9
and such that  0 ∩  1 = ∅. Note that the detector fixes the shape of  9 .

This is a truncated cone having its axis parallel to k9 and its bases are

pieces of parallel spherical surfaces. The device’s maximal and minimal

frequencies detectable define the distance of the two bases from the

origin of the space of momenta. The probability to detect a photon in the

9-th detector is given by:

〈)out

(precise)
|%9 ⊗ �2 |)out

(precise)
〉 =

1

2

(
1 + (−1)9 cos(�)

∫
ℝ3

cos(2) |k|)|# 9(k)|233:

)
=

1

2

(
1 + 
 9())

)
.

(2.169)

Note that,when the 
 9 = 0, the result coincides to the case of an incoherent

superposition

�Mixed =
1

2

(|0〉〈0| ⊗ |+〉〈+ | + |1〉〈1| ⊗ |�〉〈� |) (2.170)

entering in Figure 2.13. The term 
 9 represents the contribution due to the

quantum interference and it is a function of the delay time ). Moreover,
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it holds that:∫
ℝ3

cos(2) |: |)|# 9(k)|233: = Re

[∫ +∞

0

4 8)$ 5 ($)3$
]
, (2.171)

and

5 ($) = $2

23

∫
|# 9($/2, ', !)|2 sin(')3'3!. (2.172)

The right-hand side represents the integral of |# 9(k)|2 over the two

polar angles ', ! of the vector k whose norm is $/2. To evaluate the

integral, the following assumption is introduced: the function 5 can be

approximated by a Gaussian function centered in $0 = 2 |k0 | = 2 |k1 | and
having a standard deviation �$:

5 ($) = 4
− ($−$0

)2

2�2

$√
2��2

$

. (2.173)

�$ represents the width of the spectrum of the input light. Under the

previous approximation and the condition $0 � �$ the integral of

Equation 2.171 can be estimated as:

Re

∫ +∞

0

4 8)$ 5 ($)3$ ' Re

∫ +∞

−∞
4 8)$ 5 ($)3$ =

Re(4 8)$0 6())) = cos($0))6())
(2.174)

where

6()) = 4− 1

2
�2

$)
2

. (2.175)

The function 6 is the density of a centered Gaussian function with

standard deviation given by �) = 1/�$, up to normalization terms. In

the case |) | � 1/�$, the quantum interference term 
 9()) is negligible
in Equation 2.169. In this situation the state represented in Equation

2.167 can be replaced by the incoherent superposition of Equation 2.170.

In the case where the delay time |) | is lower that the coherence time,

i.e., |) | � 1/�$, the initial assumption on the two distinct packets is

applicable: the phase 4−82) |: | in Equation 2.169 is approximated by 4−8)$0
,

and the entangled state entering the second BS can be defined as:

|)+(simpl)〉 B
1√
2

(
|0+〉 − 84−8)$0 |1�〉

)
. (2.176)

At the output of the second BS the state becomes

|)out〉 =
8

2

|0〉
[
(1 + 4−8)$0

cos (�))|+〉 − 4−8)$0

sin(�)|�〉
]
+

+ 1

2

|1〉
[
(−1 + 4−8)$0

cos (�))|+〉 − 4−8)$0

sin(�)|�〉
] (2.177)

and, consequently, the probability of detecting a photon results to be

〈)out |%9 ⊗ �2 |)out〉 =

=
1

4

[
|1 + (−1)94−8)$0

cos (�) |2 + sin
2(�)

]
=

1

2

(1 + (−1)9 cos (�) cos ()$0)).

(2.178)
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Note that the same arguments apply to any other state of the Bell basis that

can be generated using the setup presented in Figure 2.13. In conclusion, it

is necessary that the two components of the SPE have a time delay within

the coherence time of the source of light of the experiment, otherwise

no violation of the BI can be achieved since the state is replaced by the

incoherent superposition of Equation 2.170

Effective analysis of the coherence length/time

The previous discussion allows to explain the phenomenological descrip-

tion presented in [48][48]: Vallés et al. (2014), ‘Generation of

tunable entanglement and violation of

a Bell-like inequality between different

degrees of freedom of a single photon’

. In the latter, the desnsity matrix |)+
precise

〉〈)+
precise

|
is replaced by a phenomenological density matrix �&:

�& = (1 − &)|)entangled〉〈)entangled | + &�Mixed. (2.179)

�Mixed represents the totally mixed state given by Equation 2.170, while

|)entangled〉 is the pure state reported in Equation 2.176. Lastly, 0 ≤ & ≤ 1

is a phenomenological coherence parameter. In particular:

I & = 0 corresponds to a phase difference within the coherence

region. The state is the maximally entangled one;

I & = 1 corresponds to a phase difference outside the coherence

region. The state is the totally mixed one and no entanglement is

present.

The aim of the following discussion is to determine the functional form of

& as a function of the delay time ). Considering the action of the second

BS, the resulting state is given by

�&,out = (*�( ⊗ �)�&(*�( ⊗ �)†. (2.180)

Up to now, it has been considered only observables of the form | 9〉〈9 | ⊗& 9

and their infinite dimensional counterparts %9 ⊗ & in the infinite dimen-

sional Hilbert space, where the precise time evolution (Equation 2.163)

has been introduced. The operator & works, instead, in the polarization

space. Therefore, the state �&,out must satisfy:

Tr

[
�&,out | 9〉〈9 | ⊗ &

]
= 〈)(>DC)

(precise)
|%9 ⊗ & |)(>DC)

(precise)
〉. (2.181)

Inserting Equation 2.179 in the latter equation, it can be written:

〈)(>DC)
(precise)

|%9 ⊗ & |)(>DC)
(precise)

〉 =

=(1 − &)〈)entangled |(*�( ⊗ �)†(| 9〉〈9 | ⊗ &)(*�( ⊗ �)|)entangled〉
+ & Tr[(*�( ⊗ �)�Mixed(*�( ⊗ �)†(| 9〉〈9 | ⊗ &)].

(2.182)

By manipulating Equation 2.182 considering 〈+ |& |�〉 = |〈+ |& |�〉|4 8!
and the previously introduced discussion on the coherence length,

within the approximation 4−82) |: | ' 4−8)$0
, it is possible to obtain the

final functional relation between & and ):

&()) = 1 −
∫ +∞

−∞

cos($) + !)
cos($0) + !)

4
− ($−$0

)2

2�2

$√
2��2

$

3$ = 1 − 4− 1

2
�2

$)
2

. (2.183)
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It is important to note that the form of the & parameter is in accordance

with the result obtained in the previous section. Indeed, for |) | �
√

2

�$
the coherence is lost, and the state results to be the totally mixed one

(Equation 2.170), while for |) | �
√

2

�$
the state is of the form of Equation

2.167 and can be approximated by using Equation 2.177.

CHSH inequality for partially incoherent states

Lastly, the form of the CHSH correlation function " has to be modified in

the case of partially incoherent states of the form given by Equation 2.179.

The pure state |)+〉 entering the rotation stage of Figure 2.3 is replaced

by the state:

�& = (1 − &)|)+〉〈)+ | + &�Mixed (2.184)

with �Mixed =
1

2
(|1�〉〈1� | + |0+〉〈0+ |). Recalling the operation induced

by the MZI (apart for a global phase term 84 8)) and the HWPs:

*())|0〉 = cos())|0〉 − sin())|1〉,
*())|1〉 = cos())|1〉 + sin())|0〉,

*(�)|+〉 = cos(�)|+〉 − sin(�)|�〉,
*(�)|�〉 = cos(�)|+〉 + sin(�)|�〉,

(2.185)

and considering �′ = *()) ⊗*(�)�"8G43(*()) ⊗*(�))†, the following

probabilities are obtained:

ℙ(1, 1|�, ), �) = )A[�′ |0+〉〈0+ |] = 1

4

(
1 + cos(2)) cos(2�)

)
, (2.186)

ℙ(1,−1|�, ), �) = )A[�′ |0�〉〈0� |] = 1

4

(
1 − cos(2)) cos(2�)

)
, (2.187)

ℙ(−1, 1|�, ), �) = )A[�′ |1+〉〈1+ |] = 1

4

(
1 − cos(2)) cos(2�)

)
, (2.188)

ℙ(−1,−1|�, ), �) = )A[�′ |1�〉〈1� |] = 1

4

(
1 + cos(2)) cos(2�)

)
.

(2.189)

Hence,

E
(
$"

) , $
%
�

)
= cos(2)) cos(2�). (2.190)

Eventually, it is obtained

"(), )′, �, �′)Mixed = cos(2)) cos(2�) + cos(2)′) cos(2�)+
+ cos(2)′) cos(2�′) − cos(2)) cos(2�′).

(2.191)

For ) = 0, � = $/2, )′ = $, �′ = 3/2$, " takes the form:

"Mixed($) =
1

2

(4 cos($) − cos(3$) + cos(5$)) (2.192)

which is exactly the result that was obtained previously in Equation 2.76.

Using the result obtained in Equation 2.73 for |)+〉 and Equation 2.192,

the complete form of the "-parameter is achieved:

"&($) =(1 − &) (3 cos$ − cos(3$)) +

+ &
(
1

2

(4 cos($) − cos(3$) + cos(5$))
)
.

(2.193)
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The time delay ) can be connected to the length difference (Δ!) between

the two optical path |0〉 and |1〉. Therefore, it is possible to provide the &
also as a function of Δ!

&(Δ!) = 1 − 4−(Δ!)2/;22 , (2.194)

where ;2 is the coherence length of the source of photons. Now, forΔ! = 0,

& = 0 and the coherence is preserved, while for Δ! > 0 the coherence

starts to decrease till being totally lost (& = 1) for Δ! � ;2 . Note that

the previous discussion about the coherence length can be generalized

also to the case where the non-idealities of the optical setup reduce the

visibility of the four detected signals. In this situation, the state �& has to
be replaced with �&

eff
, defined as:

�&
eff
= ��& + (1 − �) �4

4

, (2.195)

where � ∈ [0, 1] is the visibility parameter introduced in Equation 2.81.

In this situation, the correlation function " results to be

"&
eff
($) = �"&($). (2.196)

2.7.5 Not-ideal detectors

In the previous sections, it has been shown that the building blocks of

the correlation function "()0 , )1 , �0 , �1) are the probabilities
{ℙ(G, H |�, ), �)}(G,H) and experimentally these are obtained as reported

in Equation 2.78. In Equation 2.78 it is implicitly assumed that the de-

tectors can reveal each photon arriving to the detection stage. However,

detectors have always not unitary detection efficiencies in real exper-

imental implementations. Even though efficiencies > 90% have been

reported for the Superconducting Nanowire Single Photon Detectors

(SNSPDs), these devices are particularly expensive and technological

demanding due to their working temperature (∼ few kelvin)[49][49]: Holzman et al. (2019), ‘Supercon-

ducting Nanowires for Single-Photon

Detection: Progress, Challenges, and

Opportunities’

. On the

other hand, SPADs are less efficient (< 80%) but are cheaper and easier

to be used. The detection efficiencies {�(G,H)} of the detectors must be

considered for the estimation of ℙ(G, H |�, ), �). The raw probabilities

obtained experimentally by the detectors ℙ̂(G, H |�, )∗ , �∗) with a fixed

()∗ , �∗), can be written as:

ℙ̂(G, H |�, )∗ , �∗) =
#̂(G,H)()∗ , �∗)∑
G,H #̂(G,H)()∗ , �∗)

. (2.197)

where #̂(G,H)()∗ , �∗) are the effective number of photons detected by

the detector (G, H). The probabilities {ℙ̂} are the estimators for the

probabilities {ℙ̃}, which are connected to the probabilities {ℙ} by the

efficiencies of the single detectors {�(G,H)}:

ℙ̃(G, H |�, )∗ , �∗) =
�(G,H)ℙ(G, H |�, )∗ , �∗)∑
G,H �(G,H)ℙ(G, H |�, )∗ , �∗)

. (2.198)
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By solving the following system for the probabilities {ℙ(G, H |�, )∗ , �∗)}:

ℙ̃(1, 1|�, )∗ , �∗) = �(1,1)ℙ(1,1|�,)∗ ,�∗)∑
G,H �(G,H)ℙ(G,H |�,)∗ ,�∗)

ℙ̃(1,−1|�, )∗ , �∗) = �(1,−1)ℙ(1,−1|�,)∗ ,�∗)∑
G,H �(G,H)ℙ(G,H |�,)∗ ,�∗)

ℙ̃(−1, 1|�, )∗ , �∗) = �(−1,1)ℙ(−1,1|�,)∗ ,�∗)∑
G,H �(G,H)ℙ(G,H |�,)∗ ,�∗)

ℙ̃(−1,−1|�, )∗ , �∗) = �(−1,−1)ℙ(−1,−1|�,)∗ ,�∗)∑
G,H �(G,H)ℙ(G,H |�,)∗ ,�∗)

, (2.199)

it is possible to obtain the actual probabilities that enter in the estimation

of "()0 , )1 , �0 , �1). Note that, if the efficiency {�(G,H)} are artificially

equalized, i.e., �(1,1) = �(1,−1) = �(−1,1) = �(−1,−1), they cancel out and the

resolution of the system is simply ℙ̃(G, H |�, )∗ , �∗) = ℙ(G, H |�, )∗ , �∗).
In this situation, the raw experimental probabilities {ℙ̂} can be used to

directly estimate the probabilities {ℙ}. However, to perform the previous

simplification, onemust invoke a rather simple but important assumption:

the fair sampling assumption. This assumption states that the detected

fraction of photons revealed by the detectors is a faithful representation

of the entire amount of photons involved, or equivalently, that the losses

do not depend on the measurement conditions, i.e., �(G,H,),�) = �(G,H)[16,

50] [16]: Clauser et al. (1969), ‘Proposed

experiment to test local hidden-variable

theories’

[50]: Pearle (1970), ‘Hidden-Variable

Example Based upon Data Rejection’

. Even if it seems pretty reasonable in the case of losses due to a not

unitary detection efficiency, in principle, it is necessary to exclude that

those are not selectively controlled to emulate the observed quantum

correlations. This discussion enables the introduction of another loophole:

the detection loophole. This loophole is strictly connected to the fair

sampling assumption: if the detected photons are not a faithful sample of

the entire sequence, then it is possible to artificially mimic a BI violation

even with non-entangled photons.

Not random input sequence

As pointed out in Section 2.6, for a correct estimation of the probabili-

ties {ℙ(G, H |�, ), �)} it is necessary to choose the measurement angles

(), �) randomly in every round of the experiments. Such a necessity

is at the heart of the free-will loophole. This loophole implies that the

measurement operations, or, equivalently, the measurement outcomes

can be modified based on the knowledge of a certain couple of angles

(), �) used as input. This can be seen as an enhanced version of the

detection loophole: while before only the detection efficiency � must be

independent of the measurement setting, now the entire experimental

setup can be used to fake a violation of the BI. For achieving this purpose,

it is enough to change the measurement basis or the state in a deter-

ministic way, based on the knowledge of which couple of (), �)will be

used: essentially, the parameter�, representing the hidden variables used

in Equation 2.6, depends on the choice of (), �), i.e., �(), �). Despite

this problem, in a trusted scenario like performing the experiment in a

research laboratory, it seems quite catastrophic to say that the behavior of

the physical system depends on the choice of the observables to measure.

For this reason, using a predefined sequence of (), �) can be suitable,

under the assumption that the setup is not malicious. In this situation, it

can be even easier to adopt a systematic approach:

I fix one ()∗ , �∗);
I acquire a large amount of detection events;
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14: In the following discussion, the no-

tation � = $($) indicates that A is of

the same order of magnitude of $, while

� = >($)means that � � $.

15: To simplify the notation, here the cou-

ple (G = 1, H = 1) is identified with the

outcome 8 = 1, (1,−1) with 8 = 2, (−1, 1)
with 8 = 3 and (−1,−1)with 8 = 4. In the

same manner, ℙ(G, H |�, )∗ , �∗) is simpli-

fied to ?8 .

I estimate all the four probabilities {ℙ(G, H |�, )∗ , �∗)}(G=±1,H=±1);
I repeat the previous points for all four couples of angles.

This simplifies the experimental implementation since there is no need to

switch the measurement basis repeatedly, but only to change them four

times. Moreover, the detectors have to acquire the time sequence of the

detection events and no random sequence is required at the beginning of

the experiment.

However, such a simplification comes at the price of introducing cor-

relations between the different outcomes. Indeed, SPADs present other

non-idealities in addition to the not unitary detection efficiency. These

are the dead time, the afterpulsing and the Dark count rate (DCR). The

dead time is the time )3 in which the SPAD, after having detected a

photon, is unable to reveal any other photon. The afterpulsing, instead,

is the possibility of triggering a false detection event after the arrival of a

photon. Lastly, the DCR is the presence of a rate of fake detection events,

essentially a noise, even without any light illumination. For a physical

explanation of these non-idealities, see [43][43]: Ceccarelli et al. (2021), ‘Recent

Advances and Future Perspectives of

Single-Photon Avalanche Diodes for

Quantum Photonics Applications’

. These non-idealities intro-

duce memory effects that modify the sequence of the detection events.

Consequently, the {ℙ(G, H |�, )∗ , �∗)} cannot be estimated by simply ob-

serving the empirical frequencies since the events in the time sequence

are no longer independent and identically distributed. This is called the

memory loophole. To cope with this fact, a Markov model is developed

to estimate the different probabilities {ℙ(G, H |�, )∗ , �∗)} in the case of

such memory effects. The model is based on the following assumptions
14

:

I the provider of the detectors is considered trusted and the parame-

ters of the detectors are fixed and characterized. Moreover they are

similar for all the detectors involved;

I the effective intensity of the flux of photons is �4 = ��, where �
is the efficiency of the detectors and � is the real intensity of the

beam.

I the probability of afterpulsing, ?0 , is assumed to be of the order of

10
−2

or less;

I the probability that = photons arrive on the detector during the

dead time )3 is ℙ(#()3) = 1) and it is assumed to be of the order of

& ' 10
−2

or less. In the case of an attenuated laser ℙ(#()3) = 1) =
�4)34−�4)3 ∼ �4)3 and ℙ(#()3) > 1) = 1 − 4−�4)3 − �4)34−�4)3 . If
the mean value �4)3 of #()3) is of order 10

−2
, thenℙ(#()3) = 1) ∼

�4)3 and ℙ(#()3) > 1) ∼ (�4)3)2/2 = >(�4)3);
I the timing of afterpulsing and dead time are of the same order )0 ∼
�)3 with � = $(1) and, correspondingly, ℙ(#()0) = 1) = $(&)
and ℙ(#()0) > 1) = >(&).

Consider the sequence {�=}=≥1 of random variables with 4 possible

outcomes 8 = 1, 2, 3, 415 corresponding to the time sequence of the

outcomes produced by the four detectors during the measurement

operation. Initially, it is helpful to assume that the DCRgives a negligible

contribution. If the first detected photon is taken under consideration,

since the real SPADs are neither in the dead time condition nor an

afterpulsing can appear, the first variable �1 has the same distribution

of �ideal
1

, which is the time sequence of the outcomes produced by four

detectors with negligible DCR, afterpulsing and dead time, i.e., ℙ(�1 =
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8) = ℙ(8), 8 = 1, ..., 4. In the second detection, �2, the memory effects have

to be considered: the set of conditional probabilities ℙ(�2 = 9 |�1 = 8),
with 8 , 9 = 1, ..., 4 that describe the correlations between �1 and �2 can

be written as:

ℙ(�2 = 9 |�1 = 8) =ℙ(�2 = 9 |�1 = 8 ∩ ��%)?0+
+ ℙ(�2 = 9 |�1 = 8 ∩ ��%2)(1 − ?0),

(2.200)

where the afterpulsing event is called ��% and ��%2 is the complemen-

tary event. Denoted by � the interarrival time between the first and the

second photon, the first term ℙ(�2 = 9 |�1 = 8 ∩ ��%) can be expressed

as:

ℙ(�2 = 9 |�1 = 8 ∩ ��%) =
=ℙ(�2 = 9 |�1 = 8 ∩ ��% ∩ � < )0)ℙ(� < )0 |�1 = 8 ∩ ��%)+
+ ℙ(�2 = 9 |�1 = 8 ∩ ��% ∩ � > )0)ℙ(� > )0 |�1 = 8 ∩ ��%)

=ℙ(�2 = 9 |�1 = 8 ∩ ��% ∩ � < )0)ℙ(#()0) > 0)
+ �8 9ℙ(#()0) = 0).

(2.201)

ℙ(�2 = 9 |�1 = 8 ∩ ��%) has to be multiplied by ?0 ∼ 10
−2
, so, in the

case where ℙ(#()0) > 0) = $(&), it is possible to neglect the first term

obtaining:

ℙ(�2 = 9 |�1 = 8 ∩ ��%) ∼ �8 9ℙ(#()0) = 0). (2.202)

ℙ(�2 = 9 |�1 = 8∩��%2) represents the probability of obtaining the result

9 for the second measurement, having observed the result 8 in the first

measurement and no afterpulsing event occurs.

ℙ(�2 = 9 |�1 = 8 ∩ ��%2)
=

∑
:=0

ℙ(�2 = 9 ∩ #()3) = : |�1 = 8 ∩ ��%2)

=
∑
:=0

ℙ(�2 = 9 |�1 = 8 ∩ ��%2 ∩ #()3) = :)ℙ(#()3) = :)

= ℙ(�2 = 9 |�1 = 8 ∩ ��%2 ∩ #()3) = 0)ℙ(#()3) = 0)
+ ℙ(�2 = 9 |�1 = 8 ∩ ��%2 ∩ #()3) = 1)ℙ(#()3) = 1) + >(&)
= ? 9(1 − & + >(&)) + @8 9& + >(&)

(2.203)

where

@8 9 =

{
ℙ(�2 = 9 |�1 = 8 ∩ ��%2 ∩ #()3) = 1) = ?2

9
8 = 9

ℙ(�2 = 9 |�1 = 8 ∩ ��%2 ∩ #()3) = 1) = ? 9 + ?8? 9 8 ≠ 9

(2.204)

The conditional probabilities satisfy the Markov property:

ℙ(�=+1 = 8=+1 |�1 = 81 , . . . , �= = 8=) =
= ℙ(�=+1 = 8=+1 |�= = 8=) = ℙ(�2 = 8=+1 |�1 = 8=),

(2.205)

under the assumption that & is so small that all the terms of order >(&) can
be neglected. Indeed, Equation 2.205 holds if #()3) ≥ 2 has a negligible

probability. In this situation, the random variables sequence {�=}=≥1 is a



50 2 Single-Photon Entanglement

stationary Markov chain with transition probabilities ℙ(�=+1 = 9 |�= =
8) = %8 9 given (up to term of order >(&)) by:

%8 9 = ?0�8 9 + (1 − ?0)
(
(1 − &)? 9 + &@8 9

)
. (2.206)

The stochastic matrix % is equal to

% = ?0 �4×4 + (1 − ?0)
(
(1 − &)%̃ + &&

)
, (2.207)

where

%̃ =

©­­­«
?1 ?2 ?3 ?4

?1 ?2 ?3 ?4

?1 ?2 ?3 ?4

?1 ?2 ?3 ?4

ª®®®¬ (2.208)

and

& =

©­­­«
?2

1
?2(1 + ?1) ?3(1 + ?1) ?4(1 + ?1)

?1(1 + ?2) ?2

2
?3(1 + ?2) ?4(1 + ?2)

?1(1 + ?3) ?2(1 + ?3) ?2

3
?4(1 + ?3)

?1(1 + ?4) ?2(1 + ?4) ?3(1 + ?4) ?2

4

ª®®®¬ . (2.209)

In the casewhere∀8, ?8 > 0, theMarkov chain is irreducible. By exploiting

the ergodic theorem, the empirical frequencies converge to the unique

invariant distributions { 58}8=1,...4. In particular, by introducing # 8
= B∑=

:=1
1�:=8 ,

ℙ

(
lim

=→∞

# 8
=

=
− 58 = 0

)
= 1 (2.210)

where ( 51 , 52 , 53 , 54) are the left eigenvector of the matrix % with eigen-

value 1. The distributions { 58} can be written as:

58 =
?8

1 + &?8

(
4∑
9=1

? 9

1 + &? 9

)−1

∼ ?8 + & ?8(
∑
9

?2

9 − ?8). (2.211)

Inverting the previous relation and ignoring terms of order >(&), it is
possible to obtain:

?8 ∼ 58

(
1 + &

(
58 +

4∑
9=1

5 2

9

))
. (2.212)

Equation 2.212 represents a rough estimator of the theoretical prob-

abilities {?8} as a function of the empirical frequencies { 58}. A more

precise estimator can be obtained by exploiting the maximum likelihood

principle. Given a sequence of outcomes {G8}8=1,...,= , with G8 = 1, 2, 3, 4,

described by the Markov chain previously introduced, its probability can

be computed as:

?G1

=−1∏
8=1

%G8G8+1
(2.213)
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16: The theory is reported in [51, 52]

and the corresponding log-likelihood is equal to

;(%) B log(?G1

=−1∏
8=1

%G8G8+1
) (2.214)

= log(?G1
) +

∑
8 , 9=1,2,3,4

#8 9 log(%8 9), (2.215)

where#8 9 represents the number of transitions from 8 to 9. The parameter

{?̂8} that maximize Equation 2.215 under the constrains

∑
9 %8 9 = 1, 8 =

1, ..., 4 are actually the unbiased estimator of the theoretical probabilities

{?8}16 .

Up to now, the presence of the DCR has been consider negligible. In

the case where this hypothesis is not true, the distribution of the initial

random variables �=

ℙ(�= = 8) = ?8 , 8 = 1, 2, 3, 4, (2.216)

has to be replaced by the corrected one

ℙ(�= = 8) = ?̃8 = (1 − ?DCR)?8 +
?DCR

4

, 8 = 1, 2, 3, 4, (2.217)

where ?DCR represents the total fraction of detected photons due to the

DCR.

2.8 Experimental validation

The experimental result here presented are reported in [23] [23]: Pasini et al. (2020), ‘Bell-inequality

violation by entangled single-photon

states generated from a laser, an LED, or a

halogen lamp’

.

2.8.1 The experimental setup

To validate the presented theory, an experiment is set up. The whole

experimental setup is reported in Figure 2.14a, while the details of the

optical setup are reported in Figure 2.14b. Three sources of light are used

as input:

I a single-mode green HeNe laser, with nominal power of 5 mW

and center wavelength 541 nm. The laser is fiber-coupled and

attenuated by a variable optical attenuator (VOA).

I a commercial through-hole 5 mm LED emitting at 517 nm with a

spectral width of 30 nm. The light is filtered using an Interference

filter (IF) centered at 531 nm with a bandwidth of 1 nm.

I a Halogen lamp, model: HL-2000-FHSA-LL from Ocean Optics

with a broad spectrum (360 − 2400 nm). The light is filtered using

the same IF of the LED.

The sources are fiber-coupled to a single-mode visible optical fiber and

injected into the optical setup by using a Collimator (C). As detailed in

Section 2.4, the SPE state is first generated using the different optical

elements reported in red in Figure 2.14b. The relative phase shift �, used to

compensate for any phase difference between the two paths, is controlled

by moving the MR using a Piezoelectric transducer (PZT). The MZI and

the two HWPs used to rotate the two DoFs are reported in orange in
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Figure 2.14: a) Experimental setup used to demonstrate violation of BI. With a green arrow is indicated the optical signal, while with a

cyan arrow is reported the electrical signal. Color code of the boxes: green, source, orange, optical components used to prepare the light

before the injection into the optical setup (VOA or IF), red, detection elements (VOAs and SPADs), cyan, electrical components used to

control the phases � and ) and to store the data obtained (PC and Field programmable gate array (FPGA)). b) Details of the optical bulk

setup. Color code: white, input port of the setup, red, generation stage, orange, rotation stage and blu, detection stage. The fiber couplers

{Collimators (Cs)i}i=1..4 are used to couple the photons inside the fibers connected to the SPADs.
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Figure 2.14b. The phase ) that induces the rotation on the momentum is

controlled electronically by using another PZT. The single photons are

detected in the detection stage, whose optical elements are reported in

blue in Figure 2.14b. The different fiber couplers C8 are used to couple

the photons to four long (> 1 m) optical fibers, which are connected at

the other end to four Si-SPADs. Such long fibers are employed to avoid

correlations between the detections observed by the different SPADs.

The detection events collected by the SPADs are stored in a PC by using

a Field programmable gate array (FPGA). Since the four SPADs have

different efficiencies, these are equalized by varying the fiber-coupling of

the signal to each detector by using VOAs. The dead time of the SPADs is

of the order of 20 ns, while the afterpulsing probability is of the order of

0.5%. The DCR of the SPADs is < 1.5 kHz. These characteristics imply a

linear dynamic range for count rates lower than 1 MHz. The use of fluxes

of photons <= 0.5 MHz is a safe choice to avoid the loss of real counts

due to the detectors’ imperfections. To reduce the noise on the phase )
of MZI, the setup is shielded using a black box. Note that the sources

and the detectors are not shielded. The working wavelength is chosen

for practical purposes:

I performances of the optical components,

I price of the optical components,

I possibility of using Si-SPADs, which have less imperfections (DCR

and efficiency) compared to 1.5 �m-SPADs,

I easy alignment (eye-visible light).

The estimation of the "-parameter in the case of the attenuated laser is

done by acquiring all the four signals, while, in the case of the LED and

theHalogen lamp, only the projections over |0�〉 and |0+〉 are considered.
The others are constructed using symmetry arguments, as done in [34] [34]: Gadway et al. (2009), ‘Bell-inequality

violations with single photons entangled

in momentum and polarization’

.

For the case of the attenuated laser, the average flux of photon is set to

be ' 40 KHz, considering the sum of counts recorded by four SPADs,

while for the LED and the Halogen lamp ' 10 KHz, considering now the

sum of only two SPADs. The difference is justified by the difficulty of

coupling a considerable amount of light from LED and the Halogen lamp

in the optical setup due to the non-directionality of these sources. The

measurements are performed by setting an angle �8 on the twoHWPs and

by performing a sweep of the angle ). This is done by varying the voltage

+ applied to the PZT, which controls the phase ) of theMZI. The relation

)(+) is fitted in post-processing. Experimentally, the measured data are

the empirical frequencies #(G,H)(), �)/#(), �), which allow to build the

probabilities ℙ(G, H |�, ), �) as reported in Equation 2.78. Note that the

fair sampling assumption is introduced, while the Markov correction to

theℙ(G, H |�, ), �) is assumed to be negligible. A justification of the latter

assumption will be provided in Chapter 3. The polarization dependence

of the optical components has to be considered in the estimation of the

ℙ(G, H |�, ), �). Here the numerical evaluation is considered, since it

provides the tighter bounds 4ℙ and 4" . To compute them, in Table 2.1 are

reported the measured power transmission coefficients associated to the

different momenta necessary to model the state � that enters in the MZI.

For the MZI, in Table 2.2 there are reported the power reflection and

transmission coefficients of its BSs. To facilitate the optical alignment, the

twoDLs in theMZI of Figure 2.3 are actually composed of a series of three

MRs, as shown in Figure 2.15. In Table 2.3 are reported the corresponding
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Figure 2.15: Details of the DL. It is com-

posed of three mirrors for optical align-

ment purposes. Reprinted figure with

permission from Nicolò Leone, Stefano

Azzini, Sonia Mazzucchi, Valter Moretti,

and Lorenzo Pavesi, "Certified Quantum

Random-Number Generator Based on

Single-PhotonEntanglement", Physical Re-

view Applied 17, 034011. Copyright 2022

by the American Physical Society.

Table 2.1: Power transmission coefficients

for each momentum |0〉 and |1〉 in the

generation stage. The coefficients are mea-

sured at 543.5 nm. The standard deviation

is obtained by repeated measurements.

Reprinted table with permission from

Nicolò Leone, Stefano Azzini, Sonia Maz-

zucchi, ValterMoretti, and Lorenzo Pavesi,

"Certified Quantum Random-Number

Generator Based on Single-Photon En-

tanglement", Physical Review Applied 17,

034011. Copyright 2022 by the American

Physical Society.

|C0 |2 0.421 ± 0.002

|C1 |2 0.456 ± 0.001

power transmission coefficients. Note that the previous values are not

precisely measured at the central wavelength of the filter in the case of

LED and halogen lamp. However, due to the weak spectral dependence

of the parameters, as reported by the website of the constructor[53][53]: Thorlabs (2021), Thorlabs Non-
Polarizing Cube Beamsplitters (400 - 700 nm)

, the

differences between the coefficients at 531 nm and the ones at 543.5 nm

are effectively negligible.

By exploiting the MultiStart solver in the Global Optimization Toolbox

of Matlab(c), using the standard SQP algorithm, the values of

4ℙ = 0.066 ± 0.002

and

4" = 0.0026 ± 0.0007

are obtained. To verify the correctness of the result, the optimization

is performed starting from several initial points: 3 × 10
3
random initial

points are chosen for 4ℙ, while 10
4
for 4". Respectively, the errors are

estimated by considering normal distributions of the transmission and

reflection coefficients of the different optical elements having as mean

Table 2.2: Power transmission and reflec-

tion coefficients for the two BSs in MZI

for each polarization. The measurements

were done at 543.5 nm for the two incident

light polarizations (V vertical, H horizon-

tal) and the standard deviation is obtained

by repeated measurements. Reprinted fig-

ure with permission from Nicolò Leone,

Stefano Azzini, Sonia Mazzucchi, Val-

ter Moretti, and Lorenzo Pavesi, "Certi-

fied Quantum Random-Number Gener-

ator Based on Single-Photon Entangle-

ment", Physical ReviewApplied 17, 034011.

Copyright 2022 by the American Physical

Society.

BS1 BS2

|C+ |2 0.502 ± 0.005 0.476 ± 0.003

|A+ |2 0.423 ± 0.003 0.416 ± 0.001

|C� |2 0.511 ± 0.002 0.4865 ± 0.001

|A� |2 0.349 ± 0.001 0.3583 ± 0.0007



2.8 Experimental validation 55

DL1 DL2

|�+ |2 0.898 ± 0.005 0.872 ± 0.006

|�� |2 0.798 ± 0.004 0.771 ± 0.002

Table 2.3: Power transmission and reflec-

tion coefficients for the two MRs in MZI

for each polarization. The measurements

were done at 543.5 nm for the two incident

light polarizations (V vertical, H horizon-

tal) and the standard deviation is obtained

by repeated measurements. Reprinted fig-

ure with permission from Nicolò Leone,

Stefano Azzini, Sonia Mazzucchi, Val-

ter Moretti, and Lorenzo Pavesi, "Certi-

fied Quantum Random-Number Gener-

ator Based on Single-Photon Entangle-

ment", Physical ReviewApplied 17, 034011.

Copyright 2022 by the American Physical

Society.

and standard distribution the values reported in Table 2.2 and Table 2.3.

From each of these distributions, one value is randomly extracted creating

a set of parameters{�}8 . With the latter set, 4ℙ8 and 4"8 are calculated

using the values of {), �, �, G, H} that maximize 4ℙ and 4" . By repeating

this procedure 4 × 10
3
the errors are evaluated as the standard deviation

of the sequences {4ℙ8 } and {4"8 } obtained.

2.8.2 Results

Attenuated laser

First, it is considered the case in which the light from the attenuated

laser is injected into the optical setup. In Figure 2.16 the experimental

data point of "(�) are reported as a function of the polarization angle

�. A violation of the BI is witnessed in this situation. Each experimental

point represents the average of different measurements and the errors

are obtained by error propagation. Recalling the choice done in Equation

2.73, i.e., () = 0, )′ = $, � = $/2, �′ = 3/2$), it results that � = 2$
and the expression for the ideal "-parameter becomes:

"(�) = (3 cos(2�) − cos(6�)) . (2.218)

In the real case, when the mean visibility � and the coherence parameter

& are considered, the "-parameter is:

"&
eff
(�) = �"&(�) =�(1 − &) (3 cos(2�) − cos(6�)) +

+ �&
(
1

2

(4 cos(2�) − cos(6�) + cos(10�))
)
.

(2.219)

Actually Equation 2.219 for & = 0 and � = 0.95 ± 0.01 (dashed curve in

Figure 2.16) reproduces the experimental data obtained. The obtained

maximum and minimum values of the "-parameter are reported in

Table 2.4. The effect of the correction 4" is negligible compared to the

experimental errors considered.

No Correction Correction

"Max 2.60 ± 0.08 2.60 ± 0.08

"Min −2.41 ± 0.07 −2.41 ± 0.07

Table 2.4:Maximum and minimum value

of "(�) in the case of an attenuated laser

source. The values are reported here with

no correction (4" = 0) and with the cor-

rection estimated (4" = 0.0026 ± 0.0007).
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Figure 2.16: Evaluation of "-parameter us-

ing as a light source an attenuated laser

beam in the coherent regime. The exper-

imental data, here reported as red dots,

are plotted as a function of the rotation

angle � induced by the two HWPs in

the rotation stage (Figure 2.5). Note that

the error bars are within the size of the

red dots and not visible. Respectively, the

solid and the dashed curve represent the

theoretical forms of the "-parameter in

the cases of Equation 2.218 and Equation

2.219 with � = 0.95 ± 0.01 and & = 0.

Lastly, in blue are indicated the areas in

which the violation of the CHSH inequal-

ity can be achieved. A violation of the

CHSH inequality is observed. Reprinted

figurewithpermission fromMatteoPasini,

Nicolò Leone, Sonia Mazzucchi, Valter

Moretti, Davide Pastorello, and Lorenzo

Pavesi, "Bell-inequality violation by entan-

gled single-photon states generated from a

laser, an LED, or a halogen lamp", Physical

Review A 102, 063708 (2020). Copyright

2022 by the American Physical Society.
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LED and Halogen lamp

As discussed previously, SPE states can be generated by any source

of light without being affected by its statistics of emission. The only

concern regards the spectrum of emission of the source. Indeed, a short

coherence length and, consequently, time is problematic: considering the

Bell state |)+〉, no violation of the BI is observable when the relative time

delay ) between the terms |0+〉 and |1�〉 is greater than the coherence

time �2 . The IF is used to increase the coherence time and length of the

light. Consider the emission spectrum of the LED when the filter is not

present. Under the assumption that the LED’s spectrum is a gaussian of

the form 5 ($) = �4
− ($−$0

)2

2�2

$ , it is possible to obtain an estimation of its

coherence time and length. In Figure 2.17, the spectrum is reported in blue

while the fit is reported in red. The following parameters are obtained:

� = 0.932± 0.002, $0 = (3611.4± 0.4)(2� × THz) and �$ = (134± 9)(2�
× THz). Eventually it is obtained that �2 = 1

�$
= (7.43 ± 0.02)fs and

;2 = �22 = (2.227± 0.006)�m. In this situation the optical setup of Figure

2.13 is used to measure the LED autocorrelation, which is reported in

Figure 2.18 as a function of the time delay between the two optical paths.

The displacement of the PZT is enough to lose the coherence of the

light.

In the filtered situation, instead, the spectrum of the LED is reported

in Figure 2.19. Performing the gaussian fit on the filtered spectrum, the

obtained parameters are � = (0.985 ± 0.006), $0 = (3547.24 ± 0.04) (2�
× THz) and �$ = (6.5 ± 0.8) (2� × THz). The coherence time results

to be increased to �2 = (154 ± 1) fs and, consequently, the coherence

length is ;2 = (46.0 ± 0.3)�m. Contrary to the unfiltered situation, the

autocorrelation does not decrease significatively over the 20 �m range of

the displacement of the PZT, as shown in Figure 2.20.

In the coherent regime, the "-parameter is reported in Figure 2.22 for the

LED and in Figure 2.23 for the Halogen lamp. As in the case of the atten-

uated laser, a violation of the CHSH is observed with both the sources.
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Figure 2.17: Spectrum of the unfiltered

LED used in the experiments with the

relative gaussian fit 5 ($).
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Figure 2.18: Autocorrelation of the un-

filtered LED. It is acquired by moving

the PZT by 20�m. Reprinted figure with

permission from Matteo Pasini, Nicolò

Leone, Sonia Mazzucchi, Valter Moretti,

Davide Pastorello, and Lorenzo Pavesi,

"Bell-inequality violation by entangled

single-photon states generated from a

laser, an LED, or a halogen lamp", Physical

Review A 102, 063708 (2020). Copyright

2022 by the American Physical Society.
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Figure 2.19: Spectrum of the filtered LED

used in the experiments with the relative

gaussian fit 5 ($).
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Figure 2.20: Autocorrelation of the fil-

tered LED. It is acquired by moving

the PZT by 20�m. Reprinted figure with

permission from Matteo Pasini, Nicolò

Leone, Sonia Mazzucchi, Valter Moretti,

Davide Pastorello, and Lorenzo Pavesi,

"Bell-inequality violation by entangled

single-photon states generated from a

laser, an LED, or a halogen lamp", Physical

Review A 102, 063708 (2020). Copyright

2022 by the American Physical Society.
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The maximum and minimum values for both sources are reported in

Table 2.5. As in the laser case, the correction 4" is negligible compared to

the experimental errors considered. Moreover, the normalized signal for

Table 2.5:Maximum and minimum value

of "(�) in the case of the LED and halo-

gen lamp sources. The values are reported

here with no correction (4" = 0) and with

the correction estimated (4" = 0.0026 ±
0.0007).

No Correction Correction

"Max, LED 2.69 ± 0.06 2.69 ± 0.06

"Min, LED −2.51 ± 0.07 −2.51 ± 0.07

"Max, Lamp 2.72 ± 0.06 2.72 ± 0.06

"Min, Lamp −2.45 ± 0.07 −2.45 ± 0.06

the |0�〉-channel is reported in Figure 2.21, where the visibility of the

interference fringes is constant for every value of �.

In the case of the LED, a further measurement of the "-parameter is

performed in the incoherent regime ( Figure 2.24 and Figure 2.25) by

introducing a path difference Δ! between the |0〉 path and the |1〉 path in

the generation stage of Figure 2.3, such as Δ! � ;2 . The result is reported

in Figure 2.24, where no violation is witnessed. The experimental data

points are in agreement with the theoretical prediction of "&
eff

in the case

of & = 1, i.e., when the coherence is lost. In this situation the visibility

of the |0�〉-channel is a function of � and approaches 0 for � ≈ �
4
, as

shown in Figure 2.25.
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Figure 2.21: Normalized signal acquired

by one single SPAD (#
(),�)
$�

) as a function

of ) for different polarization angles � in

the coherent case. The counts are normal-

ized with respect to their maximum value.

Reprinted figure with permission from

Matteo Pasini, Nicolò Leone, Sonia Maz-

zucchi, Valter Moretti, Davide Pastorello,

and Lorenzo Pavesi, "Bell-inequality vio-

lation by entangled single-photon states

generated from a laser, an LED, or a halo-

gen lamp", Physical Review A 102, 063708

(2020). Copyright 2022 by the American

Physical Society.
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Figure 2.22: Evaluation of "-parameter

using as light source a 1 nm filtered LED

in the coherent regime. The experimen-

tal data, here reported as red dots, are

plotted as a function of the rotation angle

� induced by the two HWPs in the rota-

tion stage (Figure 2.5). Note that the error

bars are within the size of the red dots

and not visible. Respectively, the solid and

the dashed curve represent the theoretical

forms of the "-parameter in the cases of

Equation 2.218 and Equation 2.219 with

� = 0.87±0.02 and & = 0. Lastly, in blue are

indicated the areas in which the violation

of the CHSH inequality is observable. A vi-

olationof theCHSH inequality is observed.

Reprinted figure with permission from

Matteo Pasini, Nicolò Leone, Sonia Maz-

zucchi, Valter Moretti, Davide Pastorello,

and Lorenzo Pavesi, "Bell-inequality vio-

lation by entangled single-photon states

generated from a laser, an LED, or a halo-

gen lamp", Physical Review A 102, 063708

(2020). Copyright 2022 by the American

Physical Society.
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Figure 2.23:Evaluation of "-parameter us-

ing as light source a 1 nm filtered halogen

lamp in the coherent regime. The experi-

mental data, here reported as red dots, are

plotted as a function of the rotation angle

� induced by the two HWPs in the rota-

tion stage (Figure 2.5). Note that the error

bars are within the size of the red dots

and not visible. Respectively, the solid and

the dashed curve represent the theoretical

forms of the "-parameter in the cases of

Equation 2.218 and Equation 2.219 with

� = 0.91±0.01 and & = 0. Lastly, in blue are

indicated the areas in which the violation

of the CHSH inequality is observable. A vi-

olationof theCHSH inequality is observed.

Reprinted figure with permission from

Matteo Pasini, Nicolò Leone, Sonia Maz-

zucchi, Valter Moretti, Davide Pastorello,

and Lorenzo Pavesi, "Bell-inequality vio-

lation by entangled single-photon states

generated from a laser, an LED, or a halo-

gen lamp", Physical Review A 102, 063708

(2020). Copyright 2022 by the American

Physical Society.
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Figure 2.24: Evaluation of "-parameter

using as light source a 1 nm filtered LED

in the incoherent regime. The experimen-

tal data, here reported as red dots, are

plotted as a function of the rotation an-

gle � induced by the two HWPs in the

rotation stage (Figure 2.5). Note that the

error bars are within the size of the red

dots and not visible. Respectively, the solid

and the dashed curve represent the the-

oretical forms of the "-parameter in the

cases of Equation 2.218 and Equation 2.219

with � = 0.89 ± 0.01 and & = 1. Lastly,

in blue are indicated the areas in which

the violation of the CHSH inequality is

observable. A violation of the CHSH in-

equality is not observed. Reprinted fig-

ure with permission from Matteo Pasini,

Nicolò Leone, Sonia Mazzucchi, Valter

Moretti, Davide Pastorello, and Lorenzo

Pavesi, "Bell-inequality violation by entan-

gled single-photon states generated from a

laser, an LED, or a halogen lamp", Physical

Review A 102, 063708 (2020). Copyright

2022 by the American Physical Society.
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Figure 2.25:Normalized signal acquired

by one single SPAD (#
(),�)
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) as a function

of ) for different polarization angles � in

the incoherent case. The counts are nor-

malized respect to their maximum value.

Reprinted figure with permission from

Matteo Pasini, Nicolò Leone, Sonia Maz-

zucchi, Valter Moretti, Davide Pastorello,

and Lorenzo Pavesi, "Bell-inequality vio-

lation by entangled single-photon states

generated from a laser, an LED, or a halo-

gen lamp", Physical Review A 102, 063708

(2020). Copyright 2022 by the American

Physical Society.
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2.9 Quantum signature

In this section, the SPE is discussed respect to classical entanglement[54]
[54]: Spreeuw (1998), ‘A classical analogy

of entanglement’

. To introduce the concept of classical entanglement, it is necessary to

consider the electric field of a paraxial beam with propagation direction

I:

E(�, I) = eG 5G(�, I) + eH 5H(�, I) . (2.220)

In Equation 2.220, the unit vectors eG , eH express the polarizations, the
scalar functions 5G , 5H describe the wavefronts and � = GeG + HeH defines
the transverse position vector. The electric field E(�, I) is in the tensor

product H" ⊗H% , where the spaces H" and H% are the classical ones

of classical momentum and classical polarization. Analogously to the

Schmidt decomposition introduced in the Section 2.1 for quantum states,

the same reasoning can be applied also in this situation: by properly

fixing a H% basis {u1 , u2} and a H" basis {61, 62}, it is possible to write

E(�, I) as:
E(�, I) =

√
�1u161(�, I) +

√
�2u262(�, I). (2.221)

Now, if only one of the Schmidt coefficients {�1 ,�2}, where �8 ∈ [0, 1]
is different from 0, the state is considered separable, otherwise, it is

considered not separable or classically entangled. Mathematically, for

�1 = �2 = 1/2, Equation 2.221 and a maximally entangled state of two

qubits are identical. Indeed, it is possible to obtain a classical version

of the BI for classical entanglement. The correlation coefficient can be

defined as

E
(
$"

) , $
%
�

)
=
�
(),�)
++ + �(),�)−− − �(),�)+− − �(),�)−+

�
(),�)
++ + �(),�)−− + �(),�)+− + �(),�)−+

(2.222)

where �
(),�)
±± are now light intensities, and, consequently, a "-parameter

with the same structure of the quantum one can be obtained. Even if a

violation of this classical CHSH inequality can be obtained for a suitable

choice of the angles (), )′, �, �′), what really changes is the meaning

of such a violation. First, intensities are classical notions which can be

completely described in the classical framework[55] [55]: Khrennikov (2020), ‘QuantumVersus

Classical Entanglement: Eliminating the

Issue of Quantum Nonlocality’

. Second, they refer

to collective behavior of the photons considered: the classical version of

the CHSH inequality does not predict anything about the characteristics

of the single photons that constitute the light beam, even assuming

their existence. This is not true, instead, for the quantum mechanical

version of the BI, where the violation rules out any (classical) realistic non

contextual theory that tries to completely explain the phenomenology

of the measurement operations on single photons. Indeed, as long as it

is possible to access the behavior of the single constituents of light, i.e.,

to detect single photons, the violation of the BI is a direct evidence of

quantum contextuality[56] [56]: Marcin Markiewicz et al. (2019),

‘From contextuality of a single photon to

realism of an electromagnetic wave’

and has to be ascribed to the properties of the

single photons.
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A random number sequence is a succession of digits, usually 0 and

1, which are unpredictable, not correlated and uniformly distributed.

These three properties are the key features that enable each application

based on random numbers: cryptography, scientific simulation, gaming

and lotteries. While the requirements for random numbers in computer

science are to be uniformly distributed and the absence of correlations and

patterns, a different level of security is necessary for gaming, lotteries and

cryptography. Indeed, in these applications, the secrecy of the sequence

represents an additional essential characteristic. Before moving on, it is

necessary to specify the difference between unpredictable and secret: the

former indicates the impossibility of predicting the digits of the sequence

given any previous knowledge (except for the knowledge of the sequence

itself), while the latter specifies that the sequence is not accessible to

anyone except the interested parties. Note that an unpredictable sequence

could be public, and, on the contrary, a secret sequence could be predicted

given a certain initial knowledge. Quantum mechanics cannot certify

secrecy, while it can ensure unpredictability. In other words, no one can

guarantee that a random sequence can be safely used in cryptographic

applications if it has been stored in a malicious PC that is sending the

digits to an adversary. For this reason, in the following discussion, it

is assumed that the provider of the components is a trusted person,

which, however, can sell imperfect and noisy devices and that the place,

in which the random sequence is generated, is a safe place in which the

adversary cannot enter to install any trojan horse in the electronics. In

this chapter, firstly, Quantum Random Number Generators (QRNGs)

are introduced, focusing on their physical principles and structures.

Then, the concept of conditional min-entropy is discussed for the process

of randomness extraction. After that, Device Independent Quantum

RandomNumber Generators (DI-QRNGs) and Semi-Device Independent

Quantum Random Number Generators (SDI-QRNGs) are introduced,

also providing an example of an integrated SDI-QRNG. Finally, the

certification scheme over which the Single Photon Entanglement (SPE)-

based SDI-QRNG is discussed from a theoretical and experimental point

of view, for different levels of trust in the source of SPE states.

3.1 Quantum random number generators

A Quantum Random Number Generator (QRNG) is a Random Number

Generator (RNG) that exploits quantum processes to generate random

numbers. The probabilistic description of the Nature that quantum

mechanics offers can be exploited to obtain real devices that produce

real randomness. Historically, the first QRNGs were based on radioactive

decay[13, 57–59]. To generate randomness, this class of QRNGs uses the

Poissonian distribution of the detection events of 
, �, and �-particles
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Figure 3.1: Schematic of a typical QRNG.

The raw random bits produced by the

quantum entropy source are processed by

the randomness extractor, which provides,

as output, a sequence of unbiased random

numbers. The additional inputs required

by the randomness extractor are a random

seed and an estimation of the number of

truly randombits produced by the entropy

source.

emitted during a decay reaction. Nowadays, the largest class of QRNGs

is based on photonics and uses quantum optics principles[4][4]: Herrero-Collantes et al. (2017),

‘Quantum Random Number Generators’

like:

I superposition of paths and measurements[14, 60–62];

I photon arrival time[63–74];

I photon counting measurements[75–81];

I attenuated pulse[82–86];

I quantum vacuum instability[87–89];

I phase fluctuations[90–98].

The above list is far to be complete, but it provides an overview of the

research interest on this type of QRNGs. These are the best candidates

to be widely used in real-life applications, with some big manufacturer

groups that have already implemented them in consumer electronics[99,

100][99]: IDQuantique (2021), IDQuantique
ID Quantique and SK Telecom unveil the
Samsung Galaxy Quantum2, the newest
QRNG-Powered 5G smartphone with even
more embedded secured applications
[100]: IDQuantique (2021), IDQuantique
ID Quantique integrates its quantum chip in
Vsmart Aris 5G Smartphone

. The typical structure of a QRNG is explained in Figure 3.1. The

"magic" is contained in thequantumentropy source box,where aquantum

state is manipulated andmeasured to generate a raw sequence of random

numbers. These usually contain bias and are correlated due to the

imperfections of the experimental apparatus or the presence of noise. For

these reasons, the sequence is then "cleaned" using the post-processing

techniques of randomness extraction. The output of this stage is a

sequence of perfectly uncorrelated and unbiased bits. The key ingredients,

that must be provided to the randomness extraction stage, are an initial

random seed and an estimation of how many uniform random bits can

be extracted from the considered entropy source. To estimate such a

quantity, it is helpful to introduce the concept of entropy.

3.2 The concept of entropy: definitions and
examples

The entropy is a physical quantity related to the quantification of random-

ness. However, there existmany entropy definitions in information theory.

In this section, these will be introduced and their meaning discussed.

The following notation will be used: a discrete random variable Λ is

considered, which is distributed according to a probability distribution

ℙΛ. Taking now an alphabet A with # possible outcomes {�8}8=1..# , the

probability of obtaining the result �8 is defined as ℙΛ(�8). The following

discussion follows the work of [4][4]: Herrero-Collantes et al. (2017),

‘Quantum Random Number Generators’

.
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Figure 3.2: Schematic of a simple optical

QRNG based on the superposition of the

output paths created by the Beam Splitter

(BS). In the case of a 50:50 BS, a single

photon source and ideal detectors, it rep-

resents a perfect QRNG.

3.2.1 Shannon Entropy

The Shannon Entropy[101] [101]: Shannon (1948), ‘A Mathematical

Theory of Communication’

provides the average number of bits that an

entropy source can generate, or, equivalently, the number of bits necessary

to store the digits produced by the source in each round (Shannon’s

noiseless coding theorem[102] [102]: Nielsen et al. (2001), ‘Quantum

computation and quantum information’

). It is defined as:

�(Λ) B −
∑
�8∈A

ℙΛ(�8) log
2
[ℙΛ(�8)] . (3.1)

Consider now the optical QRNG reported in Figure 3.2: a single photon

emitted by a single photon source that encounters a Beam Splitter (BS).

At the output ports of the BS, there are two ideal single photon detectors

that click every time a single photon arrives. If the single photon comes

from the |0〉 direction, the BS creates a superposition of the paths |0〉 and
|1〉:

|#〉 = |0〉 → |#′〉 = 1√
2

(|1〉 + |0〉) . (3.2)

The mean values of the projectors %9 over the direction 9 is:

〈#′ |%0 |#′〉 = 〈#′|%1 |#′〉 =
1

2

. (3.3)

In this optical QRNG it is enough to assign the outcome 0 every time a

photon is detected in |0〉 and 1 every time the photon is detected in |1〉.
The Shannon Entropy of the process is:

�(Λ) = −
∑

�8∈{0,1}
ℙΛ(�8) log

2
[ℙΛ(�8)]

= −ℙΛ(0) log
2
[ℙΛ(0)] − ℙΛ(1) log

2
[ℙΛ(1)]

= −2

1

2

log
2

[
1

2

]
= 1.

(3.4)

For each single photon, one bit of randomness is produced. The dis-

cussion can be generalized to more complicated QRNGs: for a uniform

distribution of # equally probable outcomes, the Shannon Entropy is

log
2
# .
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Figure 3.3: Plot of the Rényi entropy for

different 
, in the case of binary outcomes

{�0 ,�1}. Here there are reported, in blue,

�0(Λ), in red, �1(Λ) = �(Λ), in yellow,

�2(Λ) and in purple,�
inf
(Λ) as a function

of the outcome �0 probability.

3.2.2 Family of Rényi entropies

The Shannon entropy �(Λ) can be generalized considering the Rényi

entropies[103][103]: Rényi (1961), ‘On measures of

entropy and information’

, a family of entropies defined as:

�
(Λ) B
1

1 − 
 log
2

[ ∑
�8∈A

ℙΛ(�8)

]
. (3.5)

In the limit 
 → 1, �
(Λ) is exactly the Shannon entropy �(Λ). A
remarkable property of the Rényi entropies is that

��(Λ) ≤ �
(Λ), 
 ≤ �. (3.6)

Consider now a binary entropy source where only two outcomes are

available {�0 ,�1}. In this case it is possible to graphically represent the

Rényi entropies for selected values of 
. These plots are reported in

Figure 3.3, confirming the validity of Equation 3.6.

3.2.3 Max-entropy

The max-entropy �0(Λ) or �max(Λ) is defined as the limit for 
→ 0 of

�
(Λ):
�max(Λ) = log

2
[#] . (3.7)

which correspond to the Shannon entropy of a uniform probability

distribution of # outcomes. This entropy is the upper bound of all the

Rényi entropies.

3.2.4 Min-entropy

The min-entropy �∞(Λ) or �min(Λ) is defined as the limit for 
→∞ of

�
(Λ), or, equivalently, as the logarithm of the most probable outcome

�8 :

�min(Λ) B − log
2

[
max

�8∈A
ℙΛ(�8)

]
. (3.8)
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It is possible to define also the guessing probability of the sequence as:

ℙguess(Λ) B max

�8∈A
ℙΛ(�8). (3.9)

Using the guessing probability definition, the min-entropy �min(Λ) can
be rewritten as:

�min(Λ) = − log
2

[
ℙguess(Λ)

]
. (3.10)

Equavalently, the guessing probability is:

ℙguess(Λ) = 2
−�min(Λ). (3.11)

As a consequence of Equation 3.6,�min(Λ) represents the lower-bound of

all the Rényi entropies. To understand the meaning of �min(Λ), consider
now to have an adversary who tries to guess a single outcome of the

QRNG and assume that the eavesdropper knowsℙΛ. The best strategy for

the adversary is to bet on the highest probability outcome. Essentially, this

is the information that�min provides: in the presence of an adversary that

knows ℙΛ, �min(Λ) quantifies the number of bits that can be considered

random or, equivalently, howmany uniform random bits can be extracted

from the considered probability distribution[4] [4]: Herrero-Collantes et al. (2017),

‘Quantum Random Number Generators’

. This can be understood

since:

1) each outcome �8 has a probability less or equal than the guessing

probability ℙguess(Λ)

ℙΛ(�8) ≤ 2
−�min(Λ) = ℙguess(Λ), ∀�8 ∈ A; (3.12)

2) it is possible to write any probability distribution with a bounded

min-entropy �min(Λ) as a convex combination of uniform distribu-

tions of �min(Λ) bits.

Compared to the other entropies, �min is the important parameter when

considering RNG, since the worst-case scenario must be assumed to

provide conservative and safe results. To explain the importance of the

min-entropy, consider again the case of the single photon impinging on

the BS. For an ideal BS it can be observed that, since ℙΛ(�0) = ℙΛ(�1) =
ℙguess(Λ) = 0.5:

�min(Λ) = �(Λ) (3.13)

as reported in Figure 3.3. Consider now the situation in which the ideal

BS is replaced by a non-ideal one: for example, assume that the power

transmission and reflection coefficients of the new BS are respectively

) = 0.60 and ' = 0.40. In this situation, the Shannon Entropy is:

�(Λ) = −0.60 log
2
[0.60] − 0.40 log

2
[0.40] = 0.97, (3.14)

while the min-entropy is:

�min(Λ) = −0.60 log
2
[0.60] = 0.44. (3.15)

which is a value ' 45% lower compared to 0.97. In such a situation, the

use of the Shannon entropy to estimate the randomness also implies the

assumption that the adversary does not know about the characterization

of the faulty BS.
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Conditional Min-entropy

There exist some situations in which the eavesdropper has a more de-

tailed knowledge of the QRNG with respect to the knowledge of ℙΛ. For

example, it can be aware of the measurements that are performed or

even of the purification of the used mixed state in the QRNG. For these

reasons, the guessing probability ℙguess(Λ) is not enough to estimate

the probability of guessing the outcomes for such an eavesdropper. In

these situations, the quantity that must be considered is the conditional

guessing probability ℙguess(Λ|Δ). This parameter quantifies the proba-

bility of guessing the outcome � in the presence of the side-information

Δ available to the eavesdroppers. As before, the conditional guessing

probability is directly connected with the min-entropy: the conditional

min-entropy �min(Λ|Δ) is defined as:

�min(Λ|Δ) B − log
2

[
ℙguess(Λ|Δ)

]
. (3.16)

It provides an estimation of how many uniform random bits can be

extracted, from the generated sequence, in the presence of an adversary

which uses the best strategy and has the side information Δ[7][7]: Konig et al. (2009), ‘The operational

meaning of min-and max-entropy’

. In

thefollowing, two examples of estimation of the conditional min-entropy

�min will be discussed.

3.3 Randomness extractor

This introduction to randomness extractor follows what is reported in [4,

104][4]: Herrero-Collantes et al. (2017),

‘Quantum Random Number Generators’

[104]: Ma et al. (2013), ‘Postprocessing for

quantum random-number generators:

Entropy evaluation and randomness

extraction’

.

The necessity of estimating the min-entropy �min(Λ) or the conditional
min-entropy �min(Λ|Δ) in the presence of the side information Δ, is

well motivated considering randomness extraction. The randomness

extraction is a post-processing technique used in most RNG for removing

correlations and biases due to errors in the produced random sequence.

Ideally, the output of a randomness extractor is a uniform sequence of

bits, genuinely random. To provide a brief overview, it is necessary to

introduce the concept of statistical distance between two probability

distribution - and ., which is defined as:

| |- − . | | Bmax

+⊆)

�����∑
E∈+

ℙ-(E) − ℙ.(E)
�����

=
1

2

∑
E∈)
|ℙ-(E) − ℙ.(E)| ,

(3.17)

where ) is the common domain of the two probability distributions.

This notion of distance is useful in the context of randomness extractors.

Indeed, the goal of any extractor is to extract, from the probability

distribution - produced by the RNG, a . distribution which is near

enough (&-near) to the uniform distribution* , or, equivalently:

| |. −* | | ≤ &, (3.18)
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where & is a security parameter. Now it possible to define the extractor

as the function (:, 3, =, <, &) − Ext

Ext : {0, 1}= × {0, 1}3 → {0, 1}< (3.19)

such that

| | Ext(Λ, *3) −*< | | ≤ &, (3.20)

∀Λ ∈ {0, 1}= having a min-entropy �min(Λ) ≥ :. In Equation 3.20,*<

is the target uniform distribution, while *3 ∈ {0, 1}3 is the random

seed of the extractor. It seems a little bit awkward to use a perfect

RNG to generate a uniform random seed, being used to obtain another

perfectly random sequence: why it is not simply used the initial RNG

to generate other random numbers? Despite possible motivations about

speed and availability of such a RNG, the use of the random seed

becomes reasonable in the case of strong randomness extractors. A strong

randomness extractor is a function (:, 3, =, <, &) − Ext for which

| | Ext(Λ, *3) ◦*3 −*3+< | | ≤ &. (3.21)

Using a strong extractor, it is possible to reuse multiple times the same

input random seed, which, however, has to be maintained private. In

such a way, the generation of the seed can be performed once and

then the extractor can use it multiple times, without any consequence.

Example of strong extractors are the Trevisan extractor[105] [105]: (2001), ‘Extractors and Pseudoran-

dom Generators’

and the

Toepliz matrix multiplication[106]

[106]: Mansour et al. (1990), ‘The computa-

tional complexity of universal hashing’

, which is a particular case of hashing

function extractors[104, 107]

[107]: Nisan et al. (1999), ‘Extracting

Randomness: A Survey and New

Constructions’

[104]: Ma et al. (2013), ‘Postprocessing for

quantum random-number generators:

Entropy evaluation and randomness

extraction’

.

3.4 Methodology for certifying randomness

In the previous example of the QRNG reported in Figure 3.2, it was

showed how the min-entropy varies, introducing an unbalance between

the transmission and detection power coefficients. Such an example sug-

gests that a QRNG must be perfectly characterized to certify the amount

of randomness effectively produced. Moreover, such a characterization

must be repeated to ensure that the components’ aging or other phe-

nomena have not changed it. This limits the trust and the applicability

of any QRNG. Even the presence of eavesdroppers could be a problem

in this situation: they can have a better characterization of the device

and utilize it to extract some information about the generated sequence.

Remarkably, quantum mechanics offers ways to certify the amount of

conditional min-entropy even in the presence of faulty devices and eaves-

droppers, which have side information, such as a better knowledge of

the considered QRNG. These QRNGs are called Device Independent

Quantum Random Number Generators (DI-QRNGs). DI-QRNGs[15, 17,

108–111] [17]: Pironio et al. (2010), ‘Random

Numbers Certified by Bell’s Theorem’

[108]: Pironio et al. (2013), ‘Security of

practical private randomness generation’

[109]: Plesch et al. (2014), ‘Device-

independent randomness amplification

with a single device’

[15]: Acín et al. (2016), ‘Certified random-

ness in quantum physics’

[110]: Arnon-Friedman et al. (2018),

‘Practical device-independent quantum

cryptography via entropy accumulation’

[111]: Arnon-Friedman et al. (2019),

‘Simple and tight device-independent

security proofs’

are considered the golden standard of the quantum random

number generation. Indeed, the entropy certification that these QRNGs

offer is extremely powerful: with a DI-QRNG, it is possible to certify

randomness, i.e., the conditional min-entropy of the sequence, without

any prior characterization of the devices used and even in the presence

of an eavesdropper with unlimited computational power and side infor-

mation. These QRNGs are usually based on the violation of the Bell’s

Inequality (BI). In particular, when a violation is observed (" > 2, where
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" is the correlation function introduced in Chapter 2) in a loopholes-free

scenario, the conditional min-entropy of the outcomes (G, H), observed in

the BI test, can be lower bounded by a function of " itself. Conceptually,

the certification offered by the BI is elegant: when a violation of the BI is

observed, no hidden local variable model can deterministically explain

the distribution of the observed outcomes. As a consequence, these are

not predetermined and are necessarily distributed randomly, accord-

ing to quantum mechanics. In the last years, some experimental works

have demonstrated DI-generation of quantum random numbers[112–118]

[112]: Bierhorst et al. (2018), ‘Experimen-

tally generated randomness certified by

the impossibility of superluminal signals’

[113]: Liu et al. (2018), ‘Device-

independent quantum random-number

generation’

[114]: Liu et al. (2018), ‘High-speed

device-independent quantum random

number generation without a detection

loophole’

[115]: Shen et al. (2018), ‘Randomness

extraction from bell violation with

continuous parametric down-conversion’

[116]: Zhang et al. (2020), ‘Experimental

low-latency device-independent quantum

randomness’

[117]: Shalm et al. (2021), ‘Device-

independent randomness expansion with

entangled photons’

[118]: Liu et al. (2021), ‘Device-

independent randomness expansion

against quantum side information’

. However, DI-QRNGs represent technological challenges. Closing all

the loopholes imposes separated measurement stages (locality loop-

hole) equipped with high-efficiency detectors (detection loophole: to

avoid making assumptions on the efficiencies of the implied detectors,

near-unity detection efficiencies are required) and complex coincidence

electronics. These facts, together with the slow generation rates obtained

in the experiments, seriously compromise any deployment of suchQRNG

in real-life applications. The idea of transforming the DI-approach, i.e.,

to use fundamental quantum principles to certificate the min-entropy,

in a more market-oriented approach, has pushed the development of a

new class of QRNGs: the Semi-Device Independent Quantum Random

Number Generators (SDI-QRNGs). In a SDI-QRNG, one or more parts of

the setup are left uncharacterized, while a certain amount of assumptions

are introduced. As an example, a DI-QRNG could be considered a SDI-

QRNG if the characterization of the detectors or the source is assumed.

In the years, many SDI-QRNGs have been proposed based on different

physical principles. A non-exhaustive list is reported in Table 3.1. Respect

to DI-QRNGs, SDI-QRNGs have simpler experimental implementations

and, moreover, achieve generation rates comparable to standard QRNG

(MHz) at the cost of being less secure, since assumptions on the internal

behaviour of these QRNGs are introduced. However, they represent a

good trade-off between feasibility and security.
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Table 3.1:Non-exhaustive list of SDI-QRNGs. For each SDI-QRNG it is reported how it generates randomness, its classification based on

the assumptions introduced in the certification protocols and the reported random bit generation rate if experimentally implemented or

simulated(*). Acronyms: Source Independent (SI), Positive operator-valued measure (POVM), Measurement Independent (MI), Bounded

states overlap (BSO), Bounded energy (BE), Bounded system dimensionality (BSD), Quantum steering (QS), Quantum contextuality (QC),

Device independent + assumptions (DI+A) .

Randomness Type Gen. Rate [bits] Ref

Uncertainty principle SI - [119]

Uncertainty principle SI 5 kHz [120]

Uncertainty principle SI 1.7 GHz [121]

Overcomplete set of POVMs SI 17.42 GHz [122]

Uncertainty principle SI 8.2 kHz [123]

Phase Randomization SI 270 MHz [124]

Extremality of Gaussian states SI 15.07 GHz [125]

Uncertainty principle SI 1.81 MHz [126]

Probability Estimation Factors SI 22 kHz [127]

POVMs set + tomography MI 50 kHz* [128]

POVMs set + tomography MI 5.7 kHz [129]

Trusted Shutter Variable SI and MI 37.2 MHz [130]

State discrimination BSO+BE 16.5 MHz [18]

State discrimination BE 6.9 kHz [131]

State discrimination BE - [132]

State discrimination BE 1.25 MHz [133]

State discrimination BE - [20]

State discrimination BE 145.5 MHz [134]

State discrimination BE 113 MHz [135]

State discrimination BE - [136]

State discrimination BE - [137]

State discrimination BSD - [138]

Dimension witness BSD - [139]

Dimension witness BSD - [140]

Dimension witness BSD 23 Hz [141]

Steering QS - [142]

Value indefiniteness QC - [143]

Entanglement DI+A 4.4 kHz [25]

3.5 Example of Conditional Min-entropy
estimation using an SDI-QRNG

To provide an example of a SDI-QRNG in which the conditional min-

entropy is certified, here it is reported the case of a fully integrated

optical QRNG[72] [72]: Acerbi et al. (2018), ‘A Robust Quan-

tum Random Number Generator Based

on an Integrated Emitter-Photodetector

Structure’

in which a semi-independent protocol of generation

of random numbers[18]

[18]: Brask et al. (2017), ‘Megahertz-Rate

Semi-Device-Independent Quantum

Random Number Generators Based on

Unambiguous State Discrimination’

is implemented. The original work is reported in

[131]

[131]: Leone et al. (2020), ‘An optical chip

for self-testing quantum random number

generation’

.

3.5.1 Description of the semi-device independent
protocol

The SDI protocol is a prepare and measure protocol that uses the number

of particles implementation reported in [18]. It requires a controllable

emitter of photons and a detector able to reveal single photons. The

source must be partially characterized: it must generate two states �1, �2

depending on the value of an input variable G. The detector, instead, is

left uncharacterized: it only provides, as output, a binary digit 1 for each
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1: The description of the complexity of the

protocol is out of the scope of this section,

so the reader is referred to [18] for a more

detailed description.

state sent by the emitter. Now, the only requirement for the protocol is

a lower bound over the fidelity of the two states �1, �2, which must be

kept fixed for the measurement device and any possible observer. The

fidelity between the two states �1, �2 is defined as

�
(
�1 , �2

)
B Tr

(√
�1�2

√
�1

)
(3.22)

and it must be lower bounded by a certain value �:

�
(
�1 , �2

)
≥ �. (3.23)

If the fidelity is big enough, the two state �1, �2 are not perfectly dis-

tinguishable, independently on the characteristics of the two state con-

sidered. This is the key intuition behind the protocol: the measurement

device is supposed to perform a perfect Unambiguous State Discrimina-

tion (USD) measurement[144–147][144]: Ivanovic (1987), ‘How to differenti-

ate between non-orthogonal states’

[145]: Dieks (1988), ‘Overlap and distin-

guishability of quantum states’

[146]: Peres (1988), ‘How to differentiate

between non-orthogonal states’

[147]: Barnett et al. (2009), ‘Quantum state

discrimination’

, i.e., is able to find a measurement

that

1) maximize ℙ(G = 1)
and for which

2) ℙ(G ≠ 1) = 0.

Quantum mechanics allows finding such a measurement. Moreover,

this is the one that best discriminates between the two states. However,

this comes at the price of introducing a certain amount of inconclusive

events: these represent the occurrences in which neither an error nor

an event is observed. These inconclusive events are not only present

but they must be distributed randomly. This is a direct consequence

of having used the USD strategy: if the "positions" of the inconclusive

events are predictable, a better measurement can be found to avoid

them systematically. Now, the probability of observing an inconclusive

event is strictly connect to � and, in particular, ℙ(1 = ∅) ≥ �, where

∅ represents the inconclusive occurrence. Given the idea behind the

protocol
1
, it can be proven that the conditional min-entropy �min =

− log
2
(ℙguess(�|Λ)) can be lower-boundedusing a Semi-Definite Program

(SDP), starting from the conditional probabilities {ℙ(1 |G)}1,G=0,1 and �[18]

[18]: Brask et al. (2017), ‘Megahertz-Rate

Semi-Device-Independent Quantum

Random Number Generators Based on

Unambiguous State Discrimination’

. Hereℙguess(�|Λ) represents the guessing probability of the output string
� = {18}8 knowing the value of Λ, which is a classical random variable

that accounts for all the possible measurement strategies. In this example,

the On-Off-Keying (OOK) version is used. The input variable G is used to

directly control the source: for G = 0(1), it is switched On(Off). The state

prepared and sent when G = 0 is the vacuum state

�0 = |0〉〈0|. (3.24)

For G = 1, instead, the state

�1 =
∑

?(=)|=〉〈= | (3.25)

is sent. Here �1 is a classical mixture of Fock’s states, with ?(=) super-
Poissonian coefficients[148][148]: Bisadi (2017), ‘All-Silicon-Based

Photonic Quantum Random Number

Generators’

. In this situation, the fidelity of these two

states is given by:

�
(
�1 , �2

)
=

√
?(0) (3.26)

where ?(0) is the probability that the source emits the vacuum state when

On. As experimentally reported in [148][148]: Bisadi (2017), ‘All-Silicon-Based

Photonic Quantum Random Number

Generators’

, the average number of photons
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� for this super-poissonian distribution, is lower than 1. For this reason,

the Poissonian estimate 4−
�
2 can be used to lower bound the fidelity[131] [131]: Leone et al. (2020), ‘An optical chip

for self-testing quantum random number

generation’

:

�(�0 , �1) =
√
?(0) ≥ 4−

�
2 . (3.27)

This proves that it is just necessary to bound the mean number of emitted

photons � to fulfill the assumption of the SDI protocol.

3.5.2 Hardware structure

The hardware structure of the optical QRNG is reported in Figure 3.4a

and it is composed of two parts[131] [131]: Leone et al. (2020), ‘An optical chip

for self-testing quantum random number

generation’

:

1) the optical part (detailed in Figure 3.4b);

2) the electronic part (read-out + control).

The optical part is composed of a Silicon Photomultiplier (SiPM), that acts

as the emitter of photons through avalanche impact ionization[149] [149]: Akil et al. (1999), ‘Amultimechanism

model for photon generation by silicon

junctions in avalanche breakdown’

and

by two integrated passively-quenched Single Photon Avalanche Diodes

(SPADs) that act as detectors of photons. These are placed at 20 �m apart

from the emitter. The emitter and the detectors are p-n junctions on an

n-type epi-substrate working in Geiger-mode and passively quenched by

integrated resistors. In particular, the SiPM emitter is composed of sixteen

cells. The dimension of each cell is about 20 �m × 20 �m. To enhance the

probability of photon emission, the emitter operates with an emitter’s

bias voltage above its breakdown voltage (Vbr = −32.5 V at 20
◦
C). The

electronic read-out part is integrated into the circuit reported in Figure

3.4a. It has the goal to make readable the detection signal emitted by the

integrated SPADs: the signal is amplified and thresholded with the use

of a fast comparator and digitalized using a monostable. The electronic

control part (not integrated) has the objective to electronically control the

QRNG. It provides a voltage of −37 V applied to the common cathode of

the SiPM and the SPADs and a voltage bias Ve applied to the anode of the

emitter. The value of Ve is controlled by a Field programmable gate array

(FPGA), by means of pseudo-random 1 MHz Transistor-transistor logic

(TTL) signal: the TTL G = 0(G = 1) state enables(disables) the emission of

photons, since the emitter is totally biased above(below) the breakdown

voltage. See Figure 3.5 for an example. To correctly set the value of Ve an

Amplification and Manipulation stage (AMS) is used (see Figure 3.4a),

to amplify and shift the TTL signal: in this way, the mean number of

emitted photons � per time interval is controlled by changing the offset

voltage.

3.5.3 Experimental implementation

As previously explained in the Subsection 3.5.1 is necessary to estimate:

1 the conditional probabilities {ℙ(1 |G)}1,G=0,1:

2 the mean number of emitted photons � per time interval.

The conditional probabilities are estimated using a FPGA and only one of

the integrated SPAD. The experimental setup is reported in Figure 3.6. For

every bit G applied to the emitter, the FPGA checks if one ormore photons

have been revealed in the same time window, independently of the value
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Figure 3.4: a) Structure of the integrated
chip: the optical structures are reported

inside the light blue box, while the elec-

tronic components that compose the AMS

and the front-end board are inside the

olive boxes. A constant or pulsed voltage

bias Ve can be applied to the emitter. The

pulsed one is a signal obtained by amplify-

ing and voltage shift, through the AMS, a

square TTL signal generated by the FPGA.

b) Details of the integrated QRNG: it is

constituted by a SiPM emitter, composed

of an array of sixteen cells, and two SPADs

used as detectors (only one used). Themet-

als and the bonding PADs, blue-colored

in the figure, deliver the bias voltage to

the different structures. Reproduced from

[131], with the permission of AIP Publish-

ing.

Figure 3.5: Example of the resulting traces.

Ve is shown in blue, while the detector

signal is represented in red. The values of

G and 1 are reported in the upper part of

the figure. Reproduced from [131], with

the permission of AIP Publishing.

of the G bit. In the case of a positive answer, the bit 1 = 1 is registered

and stored by the FPGA. Otherwise, 1 = 0 is stored. An oscilloscope

monitors the emitter voltage Ve. The generated random number sequence

is constituted by the sequence of the observed � = {18}(8=1..#) and,
consequently, it is possible to evaluate the conditional probabilities.

The mean number of emitted photons � is estimated by using a large core

diameter optical fiber (600 �m, NA=0.22) placed on top of the emitter as

shown in Figure 3.6b. A commercial SPAD module is used to detect the

collected photons as a function of the voltage bias. The mean number of

photons vertically emitted �v, which have been collected by the fiber, can

be estimated as:

�v =
�mon


�<>=
(3.28)

where �mon is the mean number of photons detected by the SPAD in a

1 �s time window for each constant Ve applied, 
 ' 4% is the optical

transmission between the fiber and the SPAD and �<>= is an effective
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Figure 3.6: a) Schematic of the experimen-

tal setup. Both the emitter and the detec-

tor are reverse-biased at −37 V, while the

voltage ±5 V is used to power the elec-

tronic board. The voltage bias Ve, applied

to the emitter (cyan arrow), is directly con-

trolled by the FPGA through the bit value

G, which is converted to the correct volt-

age by the AMS. An oscilloscope is used

to monitor the voltage applied. For every

applied G, the FPGA checks if a detec-

tion event is occurred by observing the

response of the integrated SPAD(green

arrow) and store the result. All the instru-

ments are controlled using a PC. b) The

fully-integrated optical chip with on the

top the optical fiber used to characterize

the relation between �, the mean number

of photons emitted per pulse, and the bias

voltageVe. The distance between the input

facet of the fiber and the emitter surface is

within 1 mm. Reproduced from [131], with

the permission of AIP Publishing.
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Figure 3.7: Characterization curve of the

mean number of photons �v(Ve) per mi-

crosecond. For every Ve the mean number

of photons �v per microsecond vertically

emitted is collected by the optical fiber.

The experimental data are reported as or-

ange dots, while the spline interpolation

is shown in blue. Reproduced from [131],

with the permission of AIP Publishing.

detection efficiency obtained as:

�<>= =

∫
�(�)B(�)d� ' 60%. (3.29)

�(�) and B(�)[148] [148]: Bisadi (2017), ‘All-Silicon-Based

Photonic Quantum Random Number

Generators’

are respectively the SPAD’s nominal detection effi-

ciency as a function of thewavelength and the source’s emission spectrum.

In Figure 3.7 it is reported in blue the characterization curve �v(Ve), ob-
tained by interpolating the experimental data obtained (orange dots in

the same figure).

3.5.4 Results and discussion

The conditional min-entropy Hmin is calculated by using the experimen-

tally estimated conditional probabilities {ℙ(1 |G)}1,G=0,1 and the mean

number of photon effectively emitted towards the integrated SPAD. In-

deed, only a part of the source’s light reaches the integrated detector: it

is necessary to estimate the relation between �v, the number of photons

collected by the optical fiber and �h, the flux of photons that reaches the
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Figure 3.8: Calculated minimum entropy

�min as a function of �
h
, the mean num-

ber of horizontally emitted photons, for

different levels of modelling of the emitter

(: = 1, 2, 14). Reproduced from [131], with

the permission of AIP Publishing.
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integrated SPAD. It is possible to define the : parameter as:

: B �v/�h. (3.30)

In Figure 3.8 and in Table 3.2 the different estimated values of Hmin are

reported as a function of �h = �v/: for different values of :. Furthermore,

in the same table, it is shown the random bit generation rates assuming

an instantaneous and perfect randomness extraction. : = 1 (blue dots

in Figure 3.8) represents the most conservative assumption: the light

emitted horizontally by the source ( see B(�) in [148][148]: Bisadi (2017), ‘All-Silicon-Based

Photonic Quantum Random Number

Generators’

) is indeed severely

attenuated in the material due to silicon absorption[150]

[150]: Aspnes et al. (1983), ‘Dielectric

functions and optical parameters of Si,

Ge, GaP, GaAs, GaSb, InP, InAs, and InSb

from 1.5 to 6.0 eV’

, while this does

not occur in the vertical propagation. Under this assumption, a maximum

observed min-entropy of 0.61% ± 0.01% is obtained for �h ' 0.4.

The assumption : = 2 comes from the idea that only half of the emitter

cells, the ones facing the SPAD, actually contributes to �h, while the

emission of the other half is entirely absorbed by the material. In this

situation (orange dots of Figure 3.8) a maximum of Hmin = 0.99% ±
0.02% is estimated. A more realistic model (see Figure 3.9) can be made

considering the sixteen single emitting cells of the SiPM as point emitters.

Each one of these emits isotropically photons with the spectrum B(�).
Different solid angles (Ωv and Ωh) and two different detection paths

(Lv(Ωv) andLh(Ωh)) are considered for the vertical and horizontal photon

fluxes. Specifically, to calculate �v, these factors are assumed:

I sixteen equal cells;

I the silicon absorption coefficient 
(�);
I the acceptance angleΩv of the optical fiber;

I the transmission )(�) through the silicon surface: a normal in-

cidence is assumed, so )(�) = 1 −
(
nSi(�)−1

nSi(�)+1

)
2

where nSi is the

refractive index of silicon.

For �h, instead, it is considered only the spatial distribution of the SiPM

cells respect to the detector (sum over i in Equation 3.31). : is then

estimated as:

: '
16

∫
�

∫
Ωv

T(�)4−
(�)Lv(�,))B(�)d�d�d)∑
16

8=1

∫
�

∫
Ωh,i

4−
(�)Lh,i(�8 ,)8 )B(�)d�d�d)
' 14 (3.31)
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Figure 3.9: a)Schematic representation of

the estimation of �
h
and �v when consid-

ering the emitter as composed of sixteen

point emitters. b) Estimation of �
h
: for

each point emitter, it is determined the

solid angleΩ
h,i

in which the photons are

detected by the SPAD. Ω
h,i

has a rectan-

gular shape determined by the dimension

of the detector. L
h,i
(�8 , )8) is the distance

between the point emitter 8 and a point on

the detector’s surface. The entire process

occurs in the silicon material, so the the

silicon absorption coefficient 
(�) (not re-
ported) has to be considered. c) Estimation

of �v: the sixteen emitters are considered

equal and, for each of them, is considered

the acceptance solid angleΩv of the opti-

cal fiber placed on the chip. Lv(�, )) is the
distance between the point emitter and the

surface of the fiber. Since the process occur

in two materials, silicon and air, it is nec-

essary to consider also the transmission

)(�) of the surface between the silicon and

the air (not reported).

: Hmin% Generation rate [kHz]

1 0.61% ± 0.01 6.1

2 0.99% ± 0.02 9.9

14 6.9% ± 0.1% 69

Table 3.2: Conditional min-entropy and

generation rate of the SDI-QRNG of [131]

for different values of the k parameter.

For : = 14, �min is reported in green dots in Figure 3.8. A maximum

value of �min = 6.9% ± 0.1% is obtained. Note that it exists a trade-off

between introducing more complicated but precise assumptions and,

consequently, increasing the min-entropy and the overall security of

the QRNG. Each additional assumption introduces a possible way to

cheat the protocol. Indeed, if only one of those is not valid, the entire

min-entropy estimation is incorrect. The analysis based on : = 1 is safer

because it provides a min-entropy lower bound with respect to the other

cases (: > 1).

Assuming now a perfect extraction procedure, i.e., all the random bits are

perfectly extracted, the generation rate of the random number is obtained

by multiplying the conditional min-entropy by the working frequency

of the QRNG. For : = 1, the generation rate obtained is 6.1 kHz, while

for : = 2, 9.9 kHz is obtained. Eventually, for : = 14 the generation rate

corresponds to 69 kHz.
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3.6 Generating quantum randomness using
CHSH violation

In this section, it is introduced the typical min-entropy proof used in

DI-QRNG for certifying the conditional min-entropy. This discussion

follows the Refs.[30, 151][30]: Scarani (2019), Bell nonlocality
[151]: Acín et al. (2012), ‘Randomness

versus nonlocality and entanglement’

. Such result will be used in the certification

scheme of the SPE-based SDI-protocol. Consider the typical Bell scenario

introduced in Chapter 2. Since the discussion is general, the notation used

in the initial sections of the Chapter 2 is re-introduced, i.e., n0 , n1 are used
instead of ), �. The objective of the DI-certification scheme is to obtain a

realization independent upper bound to the guessing probability:

ℙguess(#, n0 , n1) B max

(G,H)
ℙ(G, H |#, n0 , n1). (3.32)

For the most general input state � =
∑

� ?� |#�〉〈#� |, the guessing proba-

bility is defined as:

ℙguess(�, n0 , n1) B max

?� ,#�

∑
�

?�ℙguess(#� , n0 , n1). (3.33)

The max is taken over all the possible decomposition of the state �:
ℙguess(�, n0 , n1) takes into account that the adversary knows precisely in

which particular pure state |#�〉 � has been prepared. This knowledge

is considered as side information accessible to the eavesdropper. In

this situation, it is necessary to define the realization of the quantum

distribution ℙ( |�, n0 , n1) as the set Q of all the triples {(�, %n0
± , %

n1
± )},

for which:

ℙ(G, H |�, n0 , n1) = Tr[�%n0
G ⊗ %n1

H ], G, H ∈ {+1,−1}, (3.34)

where � ∈ H� ⊗H�, while %
n0
± = 1

2
(�2 ± n0 · �) and %n1

± = 1

2
(�2 ± n1 · �)

are Projection-valued measure (PVM), respectively, on H� and H�.

Consequently, the realization-independent quantumguessing probability

ℙguess(ℙ) associated to the distributionℙ�n0n1 B ℙ( |�, n0 , n1), is defined
as:

ℙguess(ℙ�n0n1 ) B max

(�,%n0
± ,%

n1
± )∈Q

ℙguess(�, n0 , n1). (3.35)

Regarding this guessing probability is possible to observe that:

I it provides a robust bound, independent of the side information

that an adversary can have on �;
I it is effectively realization independent: it does not depend on the

particular choice of the couple (�, %n0
± , %

n1
± ) ∈ Q;

I it depends only on the observed outcomes, that comes from the

measurements of observables in product form.

Since this certification scheme is usually applied to situation in which a

traditional Bell test is performed, two distant particles are considered. It is

interesting to define the marginals of the joint distribution %( |�, n0 , n1)
respect to the measurement of observables $n0

and $n1
:

ℙ�n0 (G) Bℙ(G |�, n0) B
∑
H

ℙ(G, H |�, n0 , n1) = Tr[�%n0
G ⊗ �], (3.36)

ℙ�n1 (H) Bℙ(H |�, n1) B
∑
G

ℙ(G, H |�, n0 , n1) = Tr[�� ⊗ %n1
H ]. (3.37)
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The associated realization-independent guessing probabilityℙguess(ℙ�n0 )
and ℙguess(ℙ�n1 ) are defined as:

ℙguess(ℙ�n0 ) B max

(�,%n0
± ,%

n1
± )∈Q

ℙguess(�, n0), (3.38)

ℙguess(ℙ�n1 ) B max

(�,%n0
± ,%

n1
± )∈Q

ℙguess(�, n1), (3.39)

where ℙguess(�, n0) and ℙguess(�, n1) are constructed in the same way

as ℙguess(�, n0 , n1) in the case where respectively %
n0
G ⊗ �2 and �2 ⊗ %n1

G

are used instead of %
n0
G ⊗ %n1

H . Due to the definition of ℙguess(ℙ�n0 ) and
ℙguess(ℙ�n1 ), it can be observed that:

ℙguess(ℙ�n0 ) ≥ ℙguess(ℙ�n0n1 ),
ℙguess(ℙ�n1 ) ≥ ℙguess(ℙ�n0n1 ).

(3.40)

From the discussions in Chapter 2, the BI in the Clauser, Horne, Shimony

and Holt (CHSH) form is:

|"(n01
, n02

, n11
, n12
)| ≤ 2. (3.41)

Consider now a pure state |#〉 of the form:

|#〉 = cos(�)|00〉 + sin(�)|11〉, (3.42)

where the Schmidt decomposition is used. Clearly |00〉 and |11〉 represent
vectors of a basis of H� and H� and � ∈ [0,�/2]. It can be proved that,

for pure states of the kind of Equation 3.42 in the case of measurement

of four observables n08 · � ⊗ n1 9 · � with 8 , 9 = 1, 2, "(n01
, n02

, n11
, n12
) is

upper bounded[152] [152]: Horodecki et al. (1995), ‘Violating

Bell inequality by mixed spin-12 states:

necessary and sufficient condition’

by:

"(n01
, n02

, n11
, n12
) ≤ 2

√
1 + sin

2
2�. (3.43)

Such an inequality can be used to provide a bound on the angle �:

cos
2(2�) ≤ 2 − "2/4. (3.44)

By explicit computation of the expectation values of the operators {n08 ·
� ⊗ n1 9 · �}8 , 9=1,2, in the case of pure state of the form of Equation 3.42, it

is possible to demonstrate that such a values are bounded by:

− cos(2�) ≤ 〈n08 · � ⊗ �2〉 ≤ cos(2�), (3.45)

− cos(2�) ≤ 〈�2 ⊗ n1 9 · �〉 ≤ cos(2�). (3.46)

Now it is just necessary to recall that 〈n08 · � ⊗ �〉 = ℙ(+1|#, n0) −
ℙ(−1|#, n0) = ℙ(+1|#, n0) − (1 − ℙ(+1|#, n0) to obtain:

max

G=±1

ℙ(G |#, n0) ≤
1 + cos(2�)

2

≤ 1

2

+ 1

2

√
2 − "2/4. (3.47)

An analogous reasoning could be applied to � ⊗ n1 9 · �. Noticing that

Equation 3.47 is independent on n0 is possible to write that:



80 3 Single Photon Entanglement for Quantum Random Number Generation

ℙguess(ℙ#n0 ) ≤
1 + cos(2�)

2

≤ 1

2

+ 1

2

√
2 − "2/4 = 5 (") (3.48)

,ℙguess(ℙ#n1 ) ≤
1 + cos(2�)

2

≤ 1

2

+ 1

2

√
2 − "2/4 = 5 ("). (3.49)

It is necessary to extend these bounds in the case of a generic state �,
having a not-fixed dimensionality. Consider two operators $0

and $1

acting on �: if they have only the eigenvalues ±1 then, by using the

Jordan lemma, it is possible to find a basis in which both operators

are diagonal[30][30]: Scarani (2019), Bell nonlocality . Moreover, the dimensionality of the blocks must be

≤ 2. The same can be done to the unknown state �: by linearity, if � =∑
� ?� |#�〉〈#� |, then the observed probabilities ℙ can be decomposed

into the sum of the observed probabilities ℙ� related to each |#�〉〈#� |.
The same reasoning can apply to the "-parameter:

" =
∑
�

?�"�. (3.50)

For any set of four realizations {(�, %n08
± , %

n19
± )}8 , 9=1,2 having the same �

and providing the same value ", it results that:

ℙguess(�, n08 , n1 9 ) = max

?� ,#�

∑
�

?�ℙguess(#� , n08 , n1 9 )

≤ max

?� ,#�

∑
�

?� max

n0
ℙguess(#� , n0) (1)

≤ max

?� ,#�

∑
�

?� 5 ("�) (2)

≤ max

?� ,#�

5

(∑
�

?�"�

)
(3)

= max

?� ,#�

5 (") (4)

= 5 (").

(3.51)

where

(1) is due to Equation 3.40,

(2) is due to Equation 3.49,

(3) is due to the concavity of the 5 function,

(4) is due to the independence of 5 respect to the ?� and to the

two-qubit state #�.

Remarkably, 5 (") is independent of theparticular realization (�, %n08
± , %

n19
± )

chosen. Consequently, the realization independent guessing probability

can be bounded, using Equation 3.35, as

ℙguess(ℙ�n08n19 ) ≤ 5 (") = 1

2

+ 1

2

√
2 − "2

4

, (3.52)

which is valid for every choice of 8 , 9 ∈ {1, 2}. The bound obtained

in Equation 3.52 is valid also in the case of the marginal realization
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2: This assumption is required to avoid

that any adversary has installed a mali-

cious program or trojan horse to steal the

generated sequence. This, indeed, would

be a more effective, simpler and less de-

tectable attack than deterministically con-

trols any electrical and optical elements

during the experiment.

independent guessing probabilities:

ℙguess(ℙ�n0 ) ≤ 5 (") = 1

2

+ 1

2

√
2 − "2

4

, (3.53)

ℙguess(ℙ�n1 ) ≤ 5 (") = 1

2

+ 1

2

√
2 − "2

4

. (3.54)

It is important to notice that 5 (") is lower than 1 only for " > 2: for

" = 2, 5 (") = 1 and there exists a strategy for which the outcomes can

be deterministically predicted. The violation of the BI is a necessary

condition to extract a certain amount of randomness from the outcomes

of the measurements in DI-QRNG.

3.7 Quantum random numbers generation
based on SPE

In this section, it is described the SPE-based SDI-QRNG[21, 25]. The

protocol of randomness certification is based on two key points: first, the

violation of the BI using SPE of momentum and polarization and, second,

themodeling of the non-idealities of the experimental setup. In particular,

memory effects introduced by detectors and the polarization dependence

of the optical components are considered here. Before starting to describe

the protocol, it is useful to introduce all the assumptions on which it

relies:

I the SDI-QRNG is in a safe place where no eavesdropper has ever

entered
2
;

I the provider of all the devices is not-malicious, but sell real, imper-

fect objects;

I a characterization of the non-idealities of the detectors is available;

I a characterization of the polarization non-idealities of the optical

element of the Mach Zehnder Interferometer (MZI) is available;

I the generation and measurement parameters are stable during the

acquisition time.

Under these assumptions, the eavesdropper can be identified as a person

who has:

I classical side information about the experiment, in particular the

decomposition of the involved state � into pure states and the

knowledge of the sequence of measurements that have to be per-

formed;

I an unlimited computational power;

I a quantum description of the experiment.

The same protocol can provide robustness against errors in the system if

one or more components suddenly stop working as expected. Clarified

these points, the SPE state considered is of the kind given by Equation

2.19:

|)+〉 = 1√
2

(|0+〉 + |1�〉) , (3.55)

where momentum and polarization are defined analogously to what was

done in Section 2.3 of Chapter 2.
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Figure 3.10: Protocol’s steps to generate

quantum random numbers: a) generate

a SPE state of momentum and polariza-

tion; b) apply two unitary rotation oper-

ators (*) , *�) to the SPE to rotate the

two considered DoFs; c) project the ro-

tated SPE state over the four basis vec-

tors (|0+〉, |1+〉, |0�〉, |1�〉) using SPADs

and, depending in which state the wave-

function has collapsed, assign a couple

of bits. Repeat the previous points many

times to obtain a sequence of pairs of raw

random numbers. Reprinted figure with

permission from Nicolò Leone, Stefano

Azzini, Sonia Mazzucchi, Valter Moretti,

and Lorenzo Pavesi, "Certified Quantum

Random-Number Generator Based on

Single-PhotonEntanglement", Physical Re-

view Applied 17, 034011. Copyright 2022

by the American Physical Society.

3: Even the case of a non-realist contextual

theory could in principle work, but it is

unfeasible.

It is necessary to remark that the use of such an entanglement is con-

ceptually different to the use of Multi Particles Entanglement (MPE):

the intrinsic randomness of outcomes is due to contextuality instead of

non-locality[153][153]: Moretti (2019), Fundamental
Mathematical Structures of Quantum Theory

. A theory is considered contextual if, chosen two ormore

compatible observables, the result of one observable measurement is

influenced by choice of the other observables to be measured on the same

system. Note that all non-contextual realistic hidden variable theories

are unable to explain the experiment’s outcomes if a BI violation is ob-

served[23, 154]

[23]: Pasini et al. (2020), ‘Bell-inequality

violation by entangled single-photon

states generated from a laser, an LED, or a

halogen lamp’

[154]: Azzini et al. (2020), ‘Single-Particle

Entanglement’

. This impossibility is directly translated into the negation

of one (or both) characteristics of the hidden variable theory: the latter

has to be contextual and realist or non-contextual and non-realistic.
3

Assuming contextuality in an experiment is as strange as accepting

non-locality: both the situations are against the common intuition since

it is straightforward to consider that distant objects cannot interact (non-

locality) and that an object’s property cannot change depending on

which other properties of the object are considered (contextuality). What

seems more reasonable is assuming that the theory is not realistic or, in

other words, that the outcomes of a measurement are not predetermined.

Note that standard quantum mechanics is a non-realistic, non-contextual

theory. Therefore, the BI acts as a randomness witness: if a violation

of the BI is observed, then the measurement outcomes are effectively

random as stated by the quantum mechanical description.

Done this important consideration, it is time to analyze the QRNG based

on SPE. Using SPE, the random numbers are generated accordingly to

what schematized in Figure 3.10: every time a SPE state is generated

(Figure 3.10a), separate rotations of the momentum (angle )) and polar-

ization (angle �) are performed (Figure 3.10b). Then the rotated state is

measured producing the outcome (G, H), depending on in which state of

the base |0+〉, |1+〉, |0�〉, |1�〉 the single photon has been detected. This

procedure is repeated many times to accumulate a sequence of measure-

ment outcomes. Note that the couple (G, H) is stored as a binary number

(Figure 3.10c) instead of the traditional values ±1 just for simplicity. An

example of the time sequence of the detection events is reported in Figure

3.11. This scheme is implemented with the same optical setup reported

in Figure 2.3 of Chapter 2.
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Figure 3.11: Example of the time trace of

the detection events corresponding to the

generated raw random number sequence.

Fixed a couple of angles (),�), the raw se-

quence is produced depending on which

SPAD has detected the photon. Bits in

which multiple detection events or no de-

tection has been observed are discarded.

3.7.1 Protocol for entropy certification

From a practical point of view, the maximum amount of min-entropy

is given when the four detection probabilities are equal. Indeed for

{ℙ(G, H |), �) = 1

4
}G,H the min-entropy is �min = − log

2

1

4
= 2: two bits

of entropy are generated for each detection outcome. However, in this

way, it is just implemented a more complex version of a BS-based QRNG,

without exploiting the main feature of the SPE: the entanglement. As

remarked in Chapter 2, in such an experiment, a violation of the BI can

be observed and, consequently, used. The goal is to detect a sequence of

outcomes for four couples of angles {()8 , �9)}8 , 9=0,1 over which the CHSH

is evaluated: if a violation is observed, the randomness of the results

can be certified. Particular attention must be given to the non-idealities

presented in the experimental setup (Section 2.7 in Chapter 2) that have

to be considered in the protocol. The estimator "̂ used to evaluate the

CHSH violation is defined as:

"̂()0 , )1 , �0 , �1) =

= Ê
(
$"

)0

, $%
�0

)
− Ê

(
$"

)0

, $%
�1

)
+ Ê

(
$"

)1

, $%
�0

)
+ Ê

(
$"

)1

, $%
�1

)
,

Ê
(
$"

)8
, $%

�9

)
= ℙ̂(G = H |)8 , �9) − ℙ̂(G ≠ H |)8 , �9).

(3.56)

{ℙ̂} are the probabilities obtained directly from the outcomes. When

{ℙ} are evaluated using four continuous acquisitions ( the couple of

angles ()8 , �9) is kept constant ), the probabilities {ℙ̂(G, H |)8 , �9)} must

be computed using the Markov maximum likelihood estimators reported

in Subsection 2.7.5 of Chapter 2, due to the presence of the memory

effects introduced by the SPADs. Inserting "̂ in the bound on the guessing

probability of Equation 3.52, yields:

ℙguess(G, H |)8 , �9) ≤
1

2

+ 1

2

√
2 − (|"̂ |)2/4. (3.57)

The estimator "̂()0 , )1 , �0 , �1) has to be further corrected considering

the polarization non-idealities of the optical components: the quantity

4ℙ(4"), which bounds the difference between the ideal probabilities("-
parameter) and the real ones, obtainable with the real experimental

setup, has to be introduced to estimate ℙguess(G, H |)8 , �9). Note that an

important modification has to be made in the numerical evaluation of 4ℙ
and 4" : the state �, on which 4ℙ and 4" are calculated (see the numerical

approach of Subsection 2.7.2 in Chapter 2), has to be modelled as the

most general density matrix in the two qubits space, since the bounds

must be independent on the form of the input state. To model a general

semi-definite density matrix �, the Cholesky decomposition[155] [155]: Loan (1996), Matrix computations(3rd
ed.)

is used:
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4: The use of the analytic approach (Sub-

section 2.7.2 in Chapter 2.) into the calcula-

tion of 4ℙ , 4" is still possible, but it implies

the introduction of further assumptions

on the state �. Moreover, it provides two

bounds that are less precise than the nu-

merical approach. Due to these reasons,

since the goal of a QRNG is usually tomax-

imize the achievable randomness with the

least assumptions, only the numerical ap-

proach will be then considered.

� = (Θ1 + 8Θ2)†(Θ1 + 8Θ2) (3.58)

where Θ1 and Θ2 are

Θ1 =

©­­­«
G1 G5 G8 G10

0 G2 G6 G9

0 0 G3 G7

0 0 0 G4

ª®®®¬ ,
Θ2 =

©­­­«
0 G11 G14 G16

0 0 G12 G15

0 0 0 G13

0 0 0 0

ª®®®¬ ,
(3.59)

and {G8}8=1..16 are the spherical 16-dimensional coordinates. These can

be fixed as:

G1 = A cos(�1),
G2 = A cos(�2) sin(�1),
G3 = A cos(�3) sin(�2) sin(�1),
G4 = A cos(�4) sin(�3) sin(�2) sin(�1),
G5 = A cos(�5) sin(�4)... sin(�1),
...

G15 = A cos(�15) sin(�14)... sin(�1),
G16 = A sin(�15)... sin(�1).

(3.60)

where r is the radius and {�8}8=1..15 are 15 angles. To ensure that � is

normalized, the radius r has to be fixed to 1. Lastly, to obtain a positive

semi-definite matrix, the diagonal terms G1 , G2 , G3 and G4 has to be

positive: by restricting the domains of the angles {�8}8=1..4 to [0,�/2]
the goal is achieved. The other angles have to be chosen between [0,�]
except for the last angle �15, that is free in [0, 2�]. This model allows to

obtain the two state-independent bounds 4ℙ , 4" using the same numerical

approach
4
reported in Subsection 2.7.2 in Chapter 2. Thus, as long as

these bounds are satisfied, Equation 3.57 becomes

ℙguess(G, H |)8 , �9) ≤
1

2

+ 1

2

√
2 − (|"̂real | − 4")2/4 + 4ℙ B ?bound. (3.61)

Note that it is necessary to further correct this bound re-introducing the

Markov model: callingℙ∗
guess
(0, 1 |)G , �H) the Markov corrected guessing

probability, the final bound is obtained as:

ℙ∗
guess
(G, H |)8 , �9) ≤ M

(
?bound

)
, (3.62)

where M is a function derived by the Markov model. This model was

initially used to estimate the probabilities for the evaluation of the "-
parameter. The estimated "̂real is then used to determine the bound ?bound
on the guessing probability as reported in Equation 3.61. ?bound, however,

corresponds to a bound for the guessing probability of a sequence of

independent identically distributed variables for which the "-parameter

"̂real is observed. The hypothesis of independent identically distributed

variables does not apply to this SDI-QRNG since the produced raw

numbers are correlated due to memory effects. Therefore, the Markov
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model has to be reapplied. ?bound has to be modified considering the

detector’s non-idealities: in the presence of such correlations, indeed,

the guessing probability corresponds to the maximum value of the

probability of the =Cℎ-readout �= given the previous ones[25] [25]: Leone et al. (2022), ‘Certified

Quantum Random-Number Genera-

tor Based on Single-Photon Entanglement’

:

ℙ∗
guess

:= sup

80 ,...,8=

ℙ(�= = 8= |�=−1 = 8=−1 , . . . �0 = 80). (3.63)

The same notation of Subsection 2.7.5 of Chapter 2 is used: in particular,

)3 is the dead time of the detectors, ?0 is the afterpulsing probability, �4
is the effective flux of photons considered, %8 , 9 is the transition probability

of the Markov model and 8 , 9 = 1, 2, 3, 4 indicates the possible four

outcomes of the measurement operation. Using the Markov property,

this reduces to

ℙ∗
guess

= sup

8 , 9

%8 9 =

sup

8 , 9

(
?0�8 9 + (1 − ?0)

(
(1 − �4)3)? 9 + �4)3@8 9

) )
.

(3.64)

By using the inequality sup9 ? 9 ≤ ?bound, eventually it is possible to

obtain ℙ∗
guess
≤ M(?bound), where the functionM is defined as:

M(?bound) :=

sup

8 , 9=1,...,4
? 9≤?bound

(
?0�8 9 + (1 − ?0)

(
(1 − �4)3)? 9 + �4)3@8 9

) )
= max

{
?0 + (1 − ?0)

(
(1 − �4)3)?bound+

�4)3?
2

bound

)
, (1 − ?0)(?bound + �4)3?bound(1 − ?bound))

}
.

(3.65)

Estimated ℙ∗
guess

, the �∗
min

for each measurement outcome is calculated

as:

�∗
min

= − log
2

[
ℙ∗

guess
(G, H |)8 , �9)

]
, (3.66)

and the min-entropy of the whole sequence ' as:

�min(' |() = =�∗min

= −= log
2

[
ℙ∗

guess
(G, H |)8 , �9)

]
.

(3.67)

( is the sequence of the input angle ()8 , �9), known by the adversary.

3.7.2 Introducing more assumptions on the input state

It was discussed how the bound obtained in Equation 3.62 is independent

of the particular form of � in the two qubits space. However, it is

interesting to evaluate also a situation in which the state �, obtained by

the generation stage of Figure 2.3, has a different form, with respect to

� = |)+〉〈)+ |, only due to experimental defects or erroneous calibration

of the optical components. In this situation, � can be described as:

�(�, �,�1 ,�2) = '(�1 ,�2)�B(�, �)'(�1 ,�2)†. (3.68)

'(�1 ,�2) represents unwanted rotations of the two HWPs, shown in

Figure 3.12, by the angles �1 ∈ [0, 2�] and �2 ∈ [0, 2�]. Its explicit matrix
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Figure 3.12: Details of non-idealities of

the optical components in the generation

stage of Figure 2.3. Respectively � is an

additional phase-shift between the two

paths, while �1 and �2 are additional an-

gles of rotation of the HWPs with respect

to the nominal values of �/2 and 0. In-

stead, C0 and C1 are the transmission coef-

ficients of the blue dashed (|0〉) and red

dashed (|1〉) paths already introduced in

Subsection 2.7.2 in Chapter 2. Reprinted

figurewith permission fromNicolò Leone,

Stefano Azzini, Sonia Mazzucchi, Val-

ter Moretti, and Lorenzo Pavesi, "Certi-

fied Quantum Random-Number Gener-

ator Based on Single-Photon Entangle-

ment", Physical ReviewApplied 17, 034011.

Copyright 2022 by the American Physical

Society.

description is given by:

'(�1 ,�2) B
©­­­«

cos(�1) sin(�1) 0 0

− sin(�1) cos(�1) 0 0

0 0 cos(�2) sin(�2)
0 0 − sin(�2) cos(�2)

ª®®®¬ . (3.69)

�B(�, �) represents the entangled state:

�B(�, �) = �
(
|#(�)〉〈#(�)|

)
+

1 − �
4

�4 , (3.70)

where � ∈ [0, 1] is the visibility parameter and � ∈ [0, 2�] is an additional

relative phase. |#(�)〉 is defined as:

|#(�)〉 B
(
C0=4

8� |0+〉 + C1= |1�〉
)

(3.71)

and �4 is the identity matrix. The coefficients C0= and C1= represent the

normalized amplitude transmission coefficients of the optical paths |0〉
and |1〉 (see Figure 3.12) already introduced in Subsection 2.7.2 in Chapter

2. The matrix representation of �B(�, �) is given by:

�B(�, �) =
©­­­«
�|C0= |2 + (1 − �) 0 0 �C0=4 8�(C1=)∗
0 1 − � 0 0

0 0 1 − � 0

�(C0=4 8�)∗C1= 0 0 �|C1= |2 + (1 − �)

ª®®®¬ .
(3.72)

The different values of the parameters �1 ,�2 , �, � could be due to er-

roneous calibrations of the optical devices in the generation stage of

Figure 2.3. Having introduced such a �model, now the two bounds 4ℙ
and 4" can be recalculated by considering the parameters �1 ,�2 , �, � as

known from the experimental values or free to vary in the respective

domains. The introduction of additional hypotheses on � represents a

way to increase the min-entropy lowering the bounds 4ℙ and 4" with

respect to the most general situation. Such an increment comes at the

price of having a less secure QRNG, since every time a parameter is fixed,

an additional assumption, or, in other words, a new possible way to cheat

the QRNG is introduced. The final users of the QRNG can indeed decide
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Figure 3.13: Resume of the assumptions

and the steps of the SDI-QRNG.(**The

randomness extraction procedure is not

a necessary step to certificate the �∗
min

but a requirement to have a fully working

SDI-QRNG).

the level of security for the QRNG based on their level of trust. Figure 3.13

resumes the entire protocol for the generation of the quantum random

numbers.

Note that the hypotheses of the SPE-based SDI-QRNG are similar to the

ones of the typical SI-SDI-QRNGs[19, 121] [121]: Marangon et al. (2017), ‘Source-

Device-Independent Ultrafast Quantum

Random Number Generation’

[19]: Avesani et al. (2018), ‘Source-device-

independent heterodyne-based quantum

random number generator at 17 Gbps’

: in all these protocols, the

input state is left under the eavesdropper’s control. What differs is the

measurement operations: in a typical SI-SDI-QRNG, the measurement

observables have to be perfectly characterized. On the contrary, in the

proposed SPE-based SDI-QRNG, only a partial characterization of the

measurement apparatus is necessary, without any assumptions on the

forms of the observables. Indeed, the certification scheme is independent

of the specific product forms of the operators that have to be measured.

3.8 Experimental validation of the SDI-QRNG

3.8.1 Experimental setup

To validate the model of the SDI-QRNG, an experiment is set up and

performed: the whole experimental setup is reported in Figure 3.14. The

same optical setup of Section 2.8 of Chapter 2 is used. An attenuated

single-mode CW green He:Ne laser is used as the light source. The

laser emits at 543.5 nm with a nominal power of 4 mW. The laser is

fiber-coupled and attenuated through a variable optical attenuator (VOA).

For every polarization angle �0,1 set on the two HWPs, the angle ) is

continuously varied, changing the voltage + applied to a Piezoelectric

transducer (PZT) over which is mounted one of the mirrors (Figure 2.3)

of the MZI. The obtained experimental data points (empty squares in

Figure 3.15) are fitted (solid lines in Figure 3.15) and used to obtain the

calibration curve )(+). Obtained the latter, four angles that yields a
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Figure 3.14: Experimental setup used to generate certified quantum random numbers. A green arrow indicates the optical signal, while the

electrical signal is shown with a cyan arrow. Color code of the boxes: green, source, orange, VOA used to attenuate the laser source, red,

detection elements (VOAs and SPADs), cyan, electrical components used to control the phases � and ) and to store the data obtained (PC

and Time Tagger). With respect to the experimental setup reported in Figure 2.14 only the laser source is used and the FPGA is substituted

by the Time Tagger. The details of the optical setup are reported in Figure 2.14b.

Table 3.3: Typical values for the dead time

)3 , afterpulsing probability ?0 and dark

count rate for the SPADs. Reprinted ta-

ble with permission from Nicolò Leone,

Stefano Azzini, Sonia Mazzucchi, Val-

ter Moretti, and Lorenzo Pavesi, "Certi-

fied Quantum Random-Number Gener-

ator Based on Single-Photon Entangle-

ment", Physical ReviewApplied 17, 034011.

Copyright 2022 by the American Physical

Society.

)3 [ns] ?0[%] DCRHz

SPAD 22 0.5 < 100

maximal violation of the BI are chosen: )0 =
3

8
�, )1 =

5

8
�,�0 = 0 and

�1 =
�
4
. For each couple of angles ()G , �H), a 50 seconds time sequence

of single photon detection events is acquired by using a Time Tagger,

interfaced with the PC, with a time-bin of 1 �s. This time bin value was

chosen to discriminate between two subsequent detection events, i.e., the

time bin is lower than the typical time between two photons detection

events (
1

�4
' 5�s), and to have a time sequence which can be stored in

a standard PC memory. Since the values of the dead time, afterpulsing

probability and Dark count rate (DCR) represent essential parameters for

the Markov model, their typical values for the used SPADs, as provided

by the manufacturer, are reported in Table 3.3.

3.8.2 Results

For the 50 s of the acquisition time, the measured count rates are reported

as solid dots inside the green boxes in Figure 3.15 and the numbers of

counts in Table 3.4. Note that time bins in which multiple photons have

been detected are neglected and discarded in post-processing. These

events are due to the emission statistics of the laser and constitute the
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Figure 3.15: Experimental count rates ac-

quired (empty squares and solid dots) and

fits as a function of ) for a) � = 0, and

b) � = �
4
. The color-code: yellow |0+〉,

purple |1�〉, blue |0+〉 and red |1+〉. The
sinusoidal fits are reported as solid lines

with the respective 99%−confidence in-

tervals (shaded area). The experimental

points corresponding to the 50 s long data

acquisitions are circled in green: (1) cor-

responds to ()1 , �0), (2) to ()0 , �0), (3)
to ()1 , �1) and (4) to ()0 , �1). The corre-

sponding total count rates are reported

with solid dots. Reprinted figure with

permission from Nicolò Leone, Stefano

Azzini, Sonia Mazzucchi, Valter Moretti,

and Lorenzo Pavesi, "Certified Quantum

Random-Number Generator Based on

Single-PhotonEntanglement", Physical Re-

view Applied 17, 034011. Copyright 2022

by the American Physical Society.

Channel ()0 , �0)(2) ()1 , �0)(1) ()0 , �1)(4) ()1 , �1)(3)
|0+〉 643132 371255 4754594 1426837

|1�〉 202823 779771 2589956 652294

|0�〉 3804170 3311003 964121 3078159

|1+〉 3855004 4108774 996276 3945250

Total 8505129 8570803 9304947 9102540

Table 3.4: Experimental counts acquired

during the whole 50 s acquisition time

window. The counts are reported for each

experimental set of angles {()8 , �9)}8 , 9=0,1,

respectively labelled as {(:)}:=1,2,3,4 re-

spect to the green boxes of Figure 3.15.

Reprinted table with permission from

Nicolò Leone, Stefano Azzini, Sonia Maz-

zucchi, ValterMoretti, and Lorenzo Pavesi,

"Certified Quantum Random-Number

Generator Based on Single-Photon En-

tanglement", Physical Review Applied 17,

034011. Copyright 2022 by the American

Physical Society.

5: The correctness of these and the future

numerical bounds is verified as in Section

2.8 of Chapter 2.

12.0 ± 0.4% of the entire raw data. The same occurs for the time bin in

which no photons are detected.

Figure 3.16 shows the raw probabilities ℙ(G, H |)8 , �9) estimated from

the raw data considering a time interval of 10 ms. The data are noisy,

but this is not an issue because the protocol is robust under this type

of non-idealities. In Table 3.5 are reported the average raw probabilities

estimated considering a time interval of 10 s. A � ' 0.2% standard

deviation is calculated for these raw probabilities. Between parenthesis,

in Table 3.5 there are also the probabilities ℙ̂(G, H |)8 , �9) estimated using

the Markov model. As it is possible to observe, the correction due to the

memory effects on the probabilities is negligible in this situation since it

is within the standard deviation of the measurements. The "-parameter

estimator "̂ is calculated using the probabilities ℙ̂(G, H |)8 , �9), for which

it is obtained:

|"̂()0 , )1 , �0 , �1)| = 2.656 ± 0.003. (3.73)

Considering the setup non-idealities, in the most general scenario, i.e.,

for a � with no constrains, the two correction terms result to be 4ℙ =

0.080 ± 0.002 and 4" = 0.332 ± 0.008
5
. These are obtained applying the

numerical method, since it provides more precise, i.e., smaller, correction

terms. Following Equation 3.62 and Equation 3.66 these values certify a

conditional min-entropy for bit of �∗
<8=

= (2.5 ± 0.5)%. If this value is

compared to the case where no correction is necessary, i.e., 4" = 4ℙ = 0

a conditional min entropy of �∗
min

= (42.8 ± 0.4)% is obtained: the
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Figure 3.16:Rawprobabilitiesℙ estimated

from the raw data considering a time in-

terval of 10 ms for each measurement out-

come. Yellow corresponds to |0+〉, purple
to |1�〉, blue to |0+〉 and red to |1+〉. The
latter are reported for the four working

points Markov(1), (2), (3), (4) of Figure 3.15

and Table 3.4, corresponding to ()1 , �0),
()0 , �0), ()1 , �1), ()0 , �1). Reprinted fig-

ure with permission from Nicolò Leone,

Stefano Azzini, Sonia Mazzucchi, Val-

ter Moretti, and Lorenzo Pavesi, "Certi-

fied Quantum Random-Number Gener-

ator Based on Single-Photon Entangle-

ment", Physical ReviewApplied 17, 034011.

Copyright 2022 by the American Physical

Society.

Table 3.5: Raw probabilities and cor-

rected probabilities estimated over the

raw data. For each mean values of the

experimental (ℙ) probabilities, the corre-
sponding Markov maximum-likehood es-

timator (ℙ̂) is reported within parenthesis.

This is done for each couple of angles

{()G , �H)}G,H=0,1 and outcomes. The dif-

ference between the raw and maximum-

likehood probabilities is within the es-

timated error ' 0.2%. In the columns

header, between parenthesis, there is re-

ported the number which refers to the

measurement points shown in Figure 3.15.

Reprinted table with permission from

Nicolò Leone, Stefano Azzini, Sonia Maz-

zucchi, ValterMoretti, and Lorenzo Pavesi,

"Certified Quantum Random-Number

Generator Based on Single-Photon En-

tanglement", Physical Review Applied 17,

034011. Copyright 2022 by the American

Physical Society.

Channel ()0 , �0)(2) ()1 , �0)(1) ()0 , �1)(4) ()1 , �1)(3)
|0+〉 7.6(7.6) 4.3(4.3) 51.1(51.1) 15.7(15.7)

|1�〉 2.4(2.4) 9.1(9.1) 27.8(27.8) 7.2(7.2)

|0�〉 44.7(44.7) 38.6(38.6) 10.4(10.4) 33.8(33.8)

|1+〉 45.3(45.3) 47.9(48.0) 10.7(10.7) 43.3(43.4)

Table 3.6: Values of min-entropy �∗
min

and random bits throughput for different modelling of the source �. For each level the value of

4ℙ , 4" are obtained by the numerical approach. Accordingly, the min-entropy �∗
min

is calculated using Equation 3.66. From the value of the

min-entropy, the random bit throughput is estimated from the total number of data acquired divided by the effective time of acquisition

(200 s) assuming an instantaneous extraction procedure. To clarify the four level in the first column there are the free parameters of the

model, while in the second column, there are the parameters fixed using the actual values measured in the experimental implementation. In

particular, in the second row the value of C0= , C1= are fixed using the value reported in Table 2.1 following Equation ?? and Equation ?? of
Subsection 2.7.2 in Chapter 2. In the third row, �1 and �2 are fixed as �1 = �2 = 0, while in the fourth row, � = 0. Reprinted table with

permission from Nicolò Leone, Stefano Azzini, Sonia Mazzucchi, Valter Moretti, and Lorenzo Pavesi, "Certified Quantum Random-Number

Generator Based on Single-Photon Entanglement", Physical Review Applied 17, 034011. Copyright 2022 by the American Physical Society.

Variable Fixed 4ℙ · 10
−2 4" · 10

−2 �∗
min

Random bits generation rate [kHz]

� general - 8.0 ± 0.2 33.2 ± 0.8 (2.5 ± 0.5)% 4.4

�,�1 ,�2, � C0= , C1= 8.0 ± 0.2 26.4 ± 0.8 (6.3 ± 0.6)% 11.0

�, � C0= , C1= ,�1 ,�2 7.8 ± 0.2 1.2 ± 0.2 (26.9 ± 0.5)% 47.1

� C0= , C1= ,�1 ,�2 , � 6.6 ± 0.2 0.26 ± 0.07 (30.1 ± 0.5)% 52.7
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6: This case is the one used to correct

the experimental value of " reported in

Chapter 2

non-idealities have decreased its value of approximately one order

of magnitude. A more ideal optical setup could be used in a future

implementation to increase the amount of certified min-entropy. Since

in the previous sections, it was demonstrated that the upper bound

on ℙguess(0, 1 |G, H) represents also a bound for the marginal guessing

probability, e.g., ℙguess(1 |H) = max

∑
0 ℙguess(0, 1 |G, H) it is possible to

use only oneDoF to label each outcome (G, H). Each photon observedwith

vertical polarization is, then, labeled with H = 0 while H = 1 is used to

label each photon detectedwith horizontal polarization, independently of

theirmomentum. Since during the experiment a total amount of' 35×10
6

raw data are acquired in 200 s, assuming a perfect randomness extraction

procedure, ' 0.88 × 10
6
random bits can be certified, corresponding to a

certified generation rate of about ' 4.4 kHz. Introducing the assumptions

about the input state �, as discussed in Subsection 3.7.2, corresponds to

an increment of the min-entropy. The same maximization procedure is

then performed only on the non-fixed parameters of the input state �. The
results are reported in Table 3.6. As expected, the min-entropy increases

as more parameters are known. In particular, four levels of trust of the

input state are considered. When all the parameters are fixed, except

for the visibility �6 the min-entropy results to be �∗
<8=

= (30.1 ± 0.5)%.

This represents the best scenery for the min-entropy, while it is the

worst concerning security. Intermediate situations can be reached by

letting other parameters free: if the phase � is let free to vary, a value of

min-entropy of �∗
<8=

= (26.9 ± 0.5)% is estimated. Lastly, the two HWPs

of Figure 3.12 can in any positions introducing the angle �1 and/or �2.

This yields to �∗
<8=

= (6.3 ± 0.6)%.

3.8.3 Discussion of results

The experimental results obtained in this section confirm that a SDI-

QRNG based on SPE states of momentum and polarization is feasible:

the simple experimental setup combined with the accurate modeling of

the optical elements and the detectors is enough to certify a violation

of the BI and the presence of randomness using imperfect devices,

providing a kHz generation rate that goes from 4.4 kHz to 52.7 kHz. This

SDI-QRNG represents a trade-off between the security offered by the

DI-QRNGs and the easiness of implementation of DD-QRNGs allowing

to a secure and simple generation of certified random numbers. Indeed,

the experimental implementation is simpler compared to traditional

DI-QRNGs: no separate detection stages are required and no coincidence

measurements have to be performed to test the BI and generate random

numbers. Moreover, an initial random seed is not required.

To compare the demonstrated SPE-based SDI-QRNGwith the otherworks

in the literature, three parameters will be discussed: security, velocity and

possibility of integration. The simplicity of the physical implementation

is here not considered since, in general, all the SDI-QRNGs of Table

3.1 are simple to be implemented. Concerning the security, this QRNG

is more secure than a typical SI SDI-QRNG (see Table 3.1), where the

measurement apparatus is totally characterized. Indeed, in the SPE-

based SDI-QRNG, the measurements are only partially characterized:

the certification scheme is independent of the particular product forms

of the operators that have to be measured. Moreover, the introduced
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assumptions are necessary to keep the experimental implementation

simple. Without this requirement, such a QRNG can aspire to be a

fully DI-QRNG being based on entanglement. Just by only introducing

more efficient detectors and the random input seed will enhance the

protocol’s security, removing the assumption of stationarity and the fair

sampling assumption. Concerning the velocity, it is worth stressing that

the obtained randomnumber generation rate is not remarkable compared

to other SDI-QRNG that can reach MHz or GHz velocities (see Table

3.1). However, velocity is not the primary goal of this proof of principle

experiment, which was conceived to demonstrate that SPE can be used to

generate certified quantum random numbers. A further comment can be

added about the velocity: the only limiting factor to the generation rate

is the dead-time of the SPADs, which caps the maximal achievable rates

to ' few MHz before detectors saturation. A simple solution consists of

using multiple SPADs, a SiPM, as a detector for every single channel:

such solution can be suitable to further increase the velocity of the QRNG

to tens of MHz. Supposing to have an ideal SiPM composed of ten cells

illuminated uniformly, it is possible to estimate that the max achievable

rate before saturation will be increased by ten times, obtaining a ten

times faster SDI-QRNG. Lastly, the proposed protocol is particularly

interesting concerning the possibility of integration. Thanks to the ability

to generate SPE states starting from incoherent sources like LEDs, the

proposed SDI-QRNG can be fully integrated on a silicon photonic chip,

where only the detectors are off-chip, even though some works about

the integration of SPADs in photonic chips has appeared[156, 157][156]: Martinez et al. (2017), ‘Single

photon detection in a waveguide-coupled

Ge-on-Si lateral avalanche photodiode’

[157]: Bernard et al. (2021), ‘Top-down

convergence of near-infrared photonics

with silicon substrate-integrated electron-

ics’

. The

integration of SPEwill be the main discussion of the next chapter. Most of

the MHz/GHz rate SDI-QRNGs[122, 134, 158]

[122]: Avesani et al. (2018), ‘Source-device-

independent heterodyne-based quantum

random number generator at 17 Gbps’

[158]: Avesani et al. (2021), ‘Semi-

Device-Independent Heterodyne-Based

Quantum Random-Number Generator’

[134]: Rusca et al. (2020), ‘Fast self-testing

quantum random number generator

based on homodyne detection’

are based on homodyne or

heterodyne detection, two techniques that rely on the use of a laser source

in their scheme. Even if the system is fully integrable[134], the integration

of a laser source is less economically favorable than the integration of an

LED source. For this reason, the proposed SDI-QRNG results to be more

suitable for all those applications that necessitate having low production

costs, like Internet of Things devices.
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The aim of this chapter is to describe a photonic chip able to gener-

ate Single Photon Entanglement (SPE) states. Even though the bulk

components can be encapsulated in a smaller device (' dm
2
) than the

implemented bulk version ('m
2
), a better approach consists of rethink-

ing the implementation and building it using integrated photonics ('
mm

2
). Integrated silicon photonics allows mass manufacturable optical

devices, significantly reducing cost and dimension and, so, facilitating

the disposability of such products. Optical Quantum Random Number

Generators (QRNGs) are categories of quantum devices that can surely

benefit from the integration. Indeed, despite being considered more

secure than Pseudo-Random Number Generators (PRNGs) and True

Random Number Generators (TRNGs), the high cost of such devices

has slowed down their spread. Integration could resolve this problem

and provide cost-effective QRNGs: indeed, many research groups have

focused their attention on integrated QRNGs[68–73, 75, 77, 94–98, 134].

Considering SPE, in the previous chapters only momentum and polariza-

tion Degrees of Freedom (DoFs) were used to produce SPE states since

they can be easily manipulated using bulk optics. However, polarization

is difficult to tune in integrated photonics, although some solutions have

already been proposed and implemented[159]

[159]: Li et al. (2019), ‘Multimode silicon

photonics’

. For these reasons, an

approach based on Hidden Subsystems of Path (HSP)[160]

[160]: Moretti (2019), Fundamental
Mathematical Structures of Quantum Theory

is proposed

and exploited in a fashion similar to traditional gate based quantum com-

puting. In this chapter firstly the key photonics components (waveguides,

Multi-Mode Interferometer (MMI), Crossing (CR), Phase shifter (PS) and

Mach Zehnder Interferometer (MZI)) are presented. Introduced these

concepts, the ideal structure of the integrated optical chip is detailed.

Each optical component is simulated, given the optical properties of

the material, to find the correct geometrical parameters for the selected

working wavelength. The produced optical chip is then experimentally

characterized to verify that each photonic device behaves as expected.

Lastly, the test of the Bell’s Inequality (BI) is performed.

4.1 Required optical integrated components

4.1.1 Optical waveguides

The optical waveguide is the essential element of every optical circuit:

it is where the photons are confined and travel. It is composed of two

parts: the core and the cladding. The cladding has a refractive index

=1, lower than the refractive index of the core medium, =2. The light

propagates in the core layer if the waveguide is appropriately designed.

A typical example of a channel waveguide is reported in Figure 4.1. The

waveguide’s physical working principle is the total internal reflection:

the light coupled inside the waveguide’s core propagates being reflected
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Figure 4.1: Example of a channel waveg-

uide. The core material (cyan) has a re-

fractive index =2, while the cladding ma-

terial has a refractive index =1 (blue, bot-

tom cladding, light transparent blue, top

cladding). The top cladding material is

nearly transparent to highlight the waveg-

uide structure. The light propagates in

the z-direction. The core and the cladding

are deposited over a material called the

substrate (grey).

Figure 4.2: Example of the intensity pro-

file |�G |2 + |�H |2 for the first three modes

of a channel waveguide for the two polar-

izations TE and TM.

by the surfaces of the core, which act like mirrors. For the orientation

of the electrical and magnetic fields, it is possible to define two linear

polarizations: Transverse electric (TE) and Transverse magnetic (TM). TE

is the polarization in which the electric field is oriented in the G-direction.

On the contrary, the TM polarization has the magnetic field oriented

in the G-direction. By imposing boundary conditions and solving the

wave equation, their solutions are the propagating optical modes with

a specific wavevector �< and a field profile D<(G, H). Moreover the two

polarizations, TE and TM have different modes[161][161]: Saleh et al. (2019), Fundamentals of
photonics

. An example of

the mode profile D<(G, H) for TE and TM polarizations is reported in

Figure 4.2. Given the waveguide geometrical parameters, the modal

wavevectors {�?,<}, where ? indicates the polarization and < the mode

number, are found with numerical approaches using softwares like

Comsol Multiphysics[162][162]: Multiphysics (2021), Comsol
Multiphysics Comsol Multiphysics main page

and Lumerical[163]

[163]: Lumerical (2021), Ansys / Lumerical
Lumerical main page

. In particular, from the

simulations, the effective modal indexes {=eff(?,<)} are found. =eff(?,<) is a
complex number: its real part is connected to the wavevector �(?,<) as:

�(?,<) B
2�Re

[
=eff(?,<)

]
�

, (4.1)

while its imaginary part is related to losses. The attenuation coefficient 

is defined as:


(?,<) B
2� Im

[
=eff(?,<)

]
�

. (4.2)

The effective index =eff(?,<) depends on the properties of the materials, on

the geometry of the structure, on the wavelength and on the polarization.

Obtained the modal structure, each field propagating in the waveguide

is a superposition of different modes[161][161]: Saleh et al. (2019), Fundamentals of
photonics

:

�?(G, H, I) =
"∑
<=0

2?,<D?,<(G, H)4−8�?,< I , (4.3)
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1: The definition of overlap integral re-

ported in Equation 4.4 assumes normal-

ized quantities.

where �?(G, H, I) is a generic electric field and {2?,<} are coefficients

related to how much the < mode is excited given a certain input profile

of light B?(G, H). The coefficients {2?,<} are computed from the overlap

integral:

2?,< B

∫
�

B?(G, H)D(G, H)?,<d� (4.4)

where � is the area of the section of the waveguide
1
. From Equation 4.4,

if the input light is polarized, it is impossible to excite modes of the other

polarization.

To provide a historical perspective on how the SPE was planned to be

generated on the optical chip, it is possible to observe that the structure

of the modes can be easily considered as a DoF suitable to replace

the polarization. Different modes are indeed orthogonal between each

other[161] [161]: Saleh et al. (2019), Fundamentals of
photonics

, i.e., 〈D?,= |D?,<〉 = �=,< for two modes < and =. Moreover,

the geometry of the waveguide can be tailored to support only two

modes for a certain polarization, creating a qubit system: the photon

propagates in one mode or the other. The generation of an entangled

state of momentum and mode of propagation can then be achieved by

exploiting an integrated optical component called asymmetric directional

coupler[126]

[126]: Li et al. (2019), ‘Quantum random

number generation with uncharacterized

laser and sunlight’

. Such a component can be used to convert one mode into

another, exploiting the evanescent coupling of two near waveguides[161]

[161]: Saleh et al. (2019), Fundamentals of
photonics

. The main difficulty of using modes is their manipulation. This task

is far to be trivial[164]

[164]: Mohanty et al. (2017), ‘Quantum

interference between transverse spatial

waveguide modes’

and an incredible precision in the lithographic

process is required, implying the use of electron-beam lithography[165]

[165]: Bojko et al. (2011), ‘Electron beam

lithography writing strategies for low

loss, high confinement silicon optical

waveguides’

. An additional difficulty is caused by the difference between the two

modes’ wavevectors �< and �= . This introduces an increasing relative

phase difference between the two modes during the propagation. For

those reasons, this option was not considered as the primary solution for

implementing SPE on the integrated photonic chip.

4.1.2 Multi-Mode Interferometer (MMI) and Crossing
(CR)

AMulti-Mode Interferometer (MMI) is a device composed of # identical

waveguides as input that inject light into a wide waveguide supporting

many modes. After the wide waveguide, there are" output waveguides.

By tuning the structure’s geometry, it is possible to obtain a considerable

amount of transformations by exploiting the concept of multimode

interference. In particular, in the case # = " = 2, it is possible to obtain

a 50 : 50 integrated Beam Splitter (BS). An example of this structure

is reported in Figure 4.3. To better describe the behavior of such an

integrated object, the work of [166] [166]: Soldano et al. (1995), ‘Optical

multi-mode interference devices based on

self-imaging: principles and applications’

is illustrated, since it provides a

quite intuitive picture. Consider the situation reported in Figure 4.4,

in which the multimode waveguide is long ! and has a width , . By

using the effective indexmethod[167] [167]: Knox et al. (1970), ‘Integrated

circuits for the millimeter through optical

frequency range’

, the 3D-geometry can be effectively

approximated using a 2D geometry where the H coordinate has collapsed.

An effective refraction index is assigned to each 2D element to "emulate"

its 3D optical properties. These effective indexes are called =clad ≠ =1

for the cladding material and =mw ≠ =2 for the multimode waveguide.

The input light injected in the multimode waveguide comes from the

waveguide centered in (G∗ , 0). As discussed before, the different modes of

a multimodal waveguide are excited depending on the overlap between
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the input spatial profile and the supported mode profiles. In particular,

Equation 4.3 can be rewritten as:

�?(G∗ , 0, I) = 4−8�0I
"∑
<=0

2?,<D?,<(G∗ , 0)4 8(−�?,<+�0)I
(4.5)

where it was factorized the phase term 4−8�0I
. It can be demonstrated

that[166][166]: Soldano et al. (1995), ‘Optical

multi-mode interference devices based on

self-imaging: principles and applications’

:

�0 − �< =
<(< + 2)�

3!�
(4.6)

where !� is called the beating length between the two lowest order

modes:

!� '
4=<F,

3�
. (4.7)

Inserting Equation 4.6 into Equation 4.5 is possible to obtain that:

�?(G∗ , 0, I) = 4−8�0I
"∑
<=0

2?,<D?,<(G∗ , 0)4 8(
<(<+2)�

3!�
)I . (4.8)

By observing that for I = 3!�, 4
8( <(<+2)�

3!�
)I
= (−1)< , Equation 4.8 can be

rewritten as:

�?(G∗ , 0, 3!�) = 4−8�03!�
"∑
<=0

2?,<(−1)<D?,<(G∗ , 0). (4.9)

An important property of the modes is that for < even the mode is

even, while for < odd the mode is odd respect to the G coordinate, so

it is possible to absorb the term (−1)< into the term D?,<(G∗ , 0) by just

changing the sign of G∗:

�?(G∗ , 0, 3!�) = 4−8�03!�
"∑
<=0

2?,<D?,<(−G∗ , 0) = 4−8�03!��?(G∗ , 0, 0),

(4.10)

obtaining a copy of �?(G∗ , 0, 0) in the location (−G∗ , 0, 3!�). Now repeat-

ing the same reasoning for I = 6!�, it is possible to attain, apart from the

phase factor, an exact copy of the input field at the position (G∗ , 0, 3!�). It
is interesting to observe what happens for I = 3/2!�. For such a length,

�?(G∗ , 0, I = 3/2!�) becomes

�?(G∗ , 0, 3/2!�) =
1 − 8

2

�?(G∗ , 0, 0) +
1 + 8

2

�?(−G∗ , 0, 0) (4.11)

which is the quadrature representation of a signal having an amplitude

of
1√
2

. In this way, an MMI can be used as an integrated structure that

implement the matrix transformation of a BS[168][168]: Peruzzo et al. (2011), ‘Multimode

quantum interference of photons in

multiport integrated devices’

.

A Crossing (CR) is a device that is used when one or more waveguides

have to cross each other. They are designed using as a building block the

MMIs: an example is reported in Figure 4.5. The aim of the CR is to enable

the crossing of two waveguides without inducing a coupling between

the light that propagates in each of them. A near unitary transmission

coefficient and low crosstalk between the differentwaveguides are desired

for these devices. Such parameters are obtained exploiting the physical

principle of the MMI. Consider the situation of Figure 4.5: by making
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Figure 4.3: Example of a 2×2 Multi-Mode

Interferometer (MMI). The MMI is re-

ported in cyan, while in blue is reported

the bottom cladding material, while the

top cladding is transparent to highlight

the structure of the MMI. The multimode

waveguide has a refractive index =2 while

the cladding has a refractive index =1. A

certain amount of light (red spot) is in-

jected into themultimodewaveguide from

the inputs. Since the modal profile of the

input waveguide is not perfectly matched

with the profiles of the different modes

supported by the wider waveguide, many

of them are excited. The propagation of

such modes allows obtaining an interfer-

ence pattern at a certain distance from the

input. In this example, the optical power is

equally divided into the twooutputwaveg-

uides (red spots at the output ports). An

example of the first six horizontal mode

profiles supported by the wider waveg-

uide is also reported. The phase relation

between the different lobes of each mode

is highlighted by the inversion of the trans-

parency of the color: if the transparent part

is at the edge of the lobe, it has a positive

relative phase, while negative in the other

case.

Figure 4.4: Geometry parameters and re-

fractive indexes of a 2×2MMI. TheMMI is

reported in cyan, while in blue is reported

the bottom cladding material, while the

top cladding is transparent to highlight

the structure of the MMI. The multimode

waveguide has a refractive index =2 while

the cladding has a refractive index =1. It

has a width, and a length !. The input
light comes from the waveguide at the

position (G∗ , 0).

the self-image of the input mode in the center of the CR, it is possible

to minimize the crosstalk with the other waveguide since the light is

confined at the center.Moreover, by placing the output port symmetrically

to the input port, it is also ensured that the light is transmitted without

suffering significant losses[169] [169]: Zhang et al. (2013), ‘Ultralow-loss

silicon waveguide crossing using Bloch

modes in index-engineered cascaded

multimode-interference couplers’

.

4.1.3 Phase shifter (PS)

Another device needed is the Phase shifter (PS). In integrated optics, it is

possible to realize integrated PS exploiting the thermo-optic coefficient of

the waveguide material[170] [170]: Komma et al. (2012), ‘Thermo-optic

coefficient of silicon at 1550 nm and

cryogenic temperatures’

. In particular, the thermo-optic coefficient

gives the variation of the refractive index of a material induced by a

variation of its temperature. Specifically:

Δ=eff =
3=

3)
Δ), (4.12)

where
3=
3) is the thermo-optic coefficient. To realize the PS, a metallic

wire is placed on top of the waveguide at a distance large enough not to
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Figure 4.5: Example of a Crossing (CR)

based on the MMI. The CR is designed in

order to have a nearly unitary transmission

coefficient respect to the blue and green

paths, minimizing the crosstalk between

the perpendicular waveguides.

Figure 4.6:Example of an integratedPhase

shifter (PS). In cyan is reported the waveg-

uide, while in blue is reported the bottom

cladding material. The top cladding mate-

rial is removed to emphasize the internal

structure of the PS. In orange, there is

the metal wire used to induce the phase

shift: applying the voltage + , the phase

shift Δ) =

(
2�Δ=

eff

�

)
! is induced by the

variation of temperature Δ) achieved by

heating the waveguide due to Joule effect.

The variation of phase is represented by

the inversion of the transparency of the

color of the red circle, representing the

light that passes under the PS.

increase the propagation losses. Making a current flow in the wire, due

to the Joule effect, its temperature increases, which heats the waveguide.

Therefore, an optical beam that travels in the waveguide suffers a phase

shift given by:

Δ) =

(
2�Δ=eff

�

)
! =

(
2�
�
3=

3)
Δ)

)
! (4.13)

where L is the waveguide length covered by the metallic wire. Since the

wire width is only narrowed on the waveguide, it is only there where

its resistance is large. Therefore, the voltage applied to the wire mostly

drops in this region. Figure 4.6 shows an example of a PS.

4.1.4 Mach Zehnder Interferometer (MZI)

The Mach Zehnder Interferometer (MZI) is composed of two BSs, made

by two 50 : 50 MMIs and two optical waveguides coupled with two PSs

(Figure 4.7). Their matrix representations are:

*MMI =
1√
2

(
1 8

8 1

)
, *

Ph()1 ,)2) =

(
428)1

0

0 428)2

)
. (4.14)

Consequently, the matrix of the integrated MZI is given by:

*MZI()1 , )2) = 84 8()1+)2)
(
sin()1 − )2) cos()1 − )2)
cos()1 − )2) − sin()1 − )2)

)
. (4.15)
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Figure 4.7: Example of an integratedMach

Zehnder Interferometer (MZI). In cyan,

there are reported the waveguides that

compose the integrated structure, while in

blue is reported the bottom claddingmate-

rial. The top cladding material is removed

to emphasize the internal structure of the

MZI. In orange, there are reported the PSs

necessary to induce the phase shift )1 and

)2 due to the thermo-optic effect.

The PSs are controlled applying the voltages +1 and +2 to the metal

heaters represented as the orange rectangles in Figure 4.7. It is interesting

to observe that for )1 = )2 = 0 the MZI implements the SWAP operation,

apart for a global phase
�
2
:(

0

8

)
= 8

(
0 1

1 0

) (
1

0

)
(4.16)(

8

0

)
= 8

(
0 1

1 0

) (
0

1

)
(4.17)

4.2 Hidden Subsystems of Path (HSP)

In the HSP, the qubits are encoded using path encoding[171, 172] [171]: Silverstone et al. (2014), ‘On-chip

quantum interference between silicon

photon-pair sources’

[172]: Wang et al. (2018), ‘Multidimen-

sional quantum entanglement with

large-scale integrated optics’

. Now

consider a path encoded system composed of four waveguides: the

corresponding state (|0〉, |1〉, |2〉 or |3〉) is determined by identifying in

which waveguide the photon is coupled and propagates (Figure 4.8a).

The Hilbert space is H = ℂ4
. Indeed, the four states identified by the

waveguides are mutually orthogonal: the overlap between every two

pairs of waveguides is zero. Considering two straight waveguides 0 and

1, if the separation between the two waveguides is large enough, the

overlap integral between the modes of the waveguide 0 and the modes

of 1 is zero: ∫
�

D0?,<D
1
?,<′dGdH = 0, (4.18)

where D2
?,8

is the 8-th mode profile of the waveguide 2 for polarization ?.

Therefore, the photon has a zero probability of hopping into waveguide

1 if it is confined in 0.

Such a system can be turned into a ℂ2 ×ℂ2
by introducing a symmetry

plane. Consider the dashed white line in Figure 4.8b: it is possible to re-

label the different states |0〉, |1〉, |2〉 or |3〉 using as two "DoFs" the relative

position and the absolute position of each waveguide with respect to the

line. For the absolute position, it is meant in which portion of the space

the waveguide is: if it is above(under) the line, it is labeled as up(down)

|*〉(|�〉). On the contrary, for the relative position, it is considered the

distance at which the waveguide is respect to the line: the waveguides

|1〉 and |2〉 (|0〉 and |3〉) are nearer(farther) to the line than the other two

waveguides so that they can be labeled as |#〉(|�〉). Contrary to the case

of momentum and polarization DoFs, the use of such labels is purely
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artificial: indeed, another possible relabeling of the states |0〉, |1〉, |2〉
and |3〉 could be achieved by converting the decimal number {8}8=1..4

to its direct binary form, forming now the state |00〉, |01〉, |10〉 and |11〉.
This situation can be interpreted as considering two times the absolute

position as reported in Figure 4.8c: for the first qubit, it is considered

the absolute position to the already introduced white dashed line, while,

for the second qubit, the absolute position with respect to the black

dashed line. It can be proven that such a choice defines two independent

subsystems in the overall space H = ℂ4
: the two subsystems can be

identified as H� = ℂ2
and H' = ℂ2

, for the situation of Figure 4.8b and

H�1
= ℂ2

and H�2
= ℂ2

for the situation of Figure 4.8c. The subscript �

stands for absolute, while ' for relative. In the following discussion, it

will be given just a qualitative justification for the situation of Figure 4.8b

since the same reasoning can be applied directly to the case of Figure

4.8c. For a formal justification, which relies on Von Neumann’s algebra,

the reader is referred to [160][160]: Moretti (2019), Fundamental
Mathematical Structures of Quantum Theory

. To compose a quantum system H = ℂ4

starting from two Hilbert spaces H8 = ℂ2
of two independent qubits

labelled as 0 and 1, it is necessary to ensure at least three properties:

1) each element of the two qubits systemmust have a representation in

the composed Hilbert space: ∀$2 ∈ H2 , ∃$ ∈ H, with 2 ∈ {0, 1};
2) the elements of the two qubit system must be compatible: ∀$8 ∈

H0 ,∀$ 9 ∈ H1 , $8$ 9 = $ 9$8 ;

3) for each couple of states belonging to the two qubits quantum

systems, there must exist a state, in the composed space, for which

the measurement on the single qubit space are reproduced by a

composed operator acting on the state: ∀�0 , �1 , ∃$, $′ ∈ H0 ⊗
H1 | Tr

[
�$

]
= Tr

[
�0$0

]
∧ Tr

[
�$′

]
= Tr

[
�1$1

]
.

These three properties are naturally satisfied using the tensor product.

This approach can be considered as a bottom-up methodology: the

composed system is formed by combining the two qubits systems. In-

terestingly, it can also be done the reverse, which is a sort of top-down

approach. In the H = ℂ4
system, suppose that it is possible to group

together two sets of operators {$�,8} and {$�,9}. If every observable

$�,8 and $�,9 can be written in a suitable basis as:

$�,8 B

(
$0,8 0

0 $0,8

)
,

$�,9 B

(

 9 �2 � 9 �2
�9 �2 � 9 �2

)
, $1,9 B

(

 �
� �

) (4.19)

where �2 is the 2 × 2 identity matrix, then the two set {$0,8} and {$1,9}
represent two independent subsystems H� and H� of the general, more

complex H. Moreover, these two are both ℂ2
. Conceptually, having the

two operator $�,8 and $�,8 a structure that is identical to the usual

tensor product between two observables, the properties 1), 2) and 3) are

satisfied. Having recovered a structure analogous to the case of the two

independent qubits, the Bell’s Inequality (BI) can be tested without any

problem. As introduced in Chapter 2, it is just necessary to rotate the two

different qubits and then to project them on their basis. A clarification

has to be done concerning the definition of SPE: in Chapter 2 the SPE is

identified as the entanglement between distinct DoFs of the same photon.

This definition seems contradictory concerning the approach HSP. For
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Figure 4.8: Example of path encoding us-

ing four waveguides. The red dot repre-

sents the photon, while in cyan, the waveg-

uide core and in blue the cladding. a) The

encoded state, |0〉, |1〉, |2〉 or |3〉 is cho-

sen by coupling the photon in the corre-

sponding waveguide. b) Alternative en-

coding based on HSP: the encoding is

done by coupling the photon in the se-

lected waveguide, but two qubits now de-

scribe the system. Respectively the two

qubits are encoded depending on the ex-

cited waveguide position: the absolute po-

sition with respect to the dashed white

line fixes the first qubit (up |*〉 and down

|�〉), while the relative position with re-

spect to the same line fixes the second

qubit (far |�〉 and near |#〉). c) Alterna-

tive two-qubit encoding based on HSP:

the encoding scheme is based now on two

absolute positions: absolute position of

the excited waveguide with respect to the

dashed white line (first qubit, up |0〉 and
down |1〉) and on the absolute position of

the excited waveguide respect to the black

lines (second qubit, up |0〉 and down |1〉).
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this reason, it is necessary to redefine it as the entanglement between

two distinct DoFs or two independent and compatible subsystems of the

same DoF of a single photon.

4.3 Implementation of SPE on chip

In this section the integrated circuit to generate, rotate and detect the

SPE based on HSP is discussed.

The ideal design of the integrated optical chip is reported in Figure 4.9.

The dashed white line refers to the symmetry plane to which the DoFs

are referred. The input light is injected into the chip using a tapered

optical fiber, schematized by a glass cone in Figure 4.9 on the left. Then,

a 50 : 50 MMI is used to split the light into two waveguides. Since the

waveguides correspond to the state |*�〉 and |�#〉, the written state is:

|#〉 = 1√
2

(|*�〉 + 8 |�#〉) . (4.20)

Two PSs are then used to compensate the
�
2
relative phase. Their action

on the state is:

|#〉 = 1√
2

(
4 8�1 |*�〉 + 84 8�2 |�#〉

)
, (4.21)

where �1 is controlled by the PS applied to |*�〉 and �2 by the PS applied

to |�#〉. By properly setting these phases, it is possible to obtain the

states:

|#〉 = 1√
2

(|*�〉 + |�#〉) = |)+〉, (4.22)

|#〉 = 1√
2

(|*�〉 − |�#〉) = |)−〉, (4.23)

apart from global irrelevant phase terms. After being generated, the state

goes through the rotation stage. The qubit of relative position is rotated

by an angle ) = )1 − )2 using two MZI that works in parallel. At the

output, the photon is distributed on the four waveguides (four states)

according to ). Then, the qubit of absolute position is rotated by using

two MZI that work in series: first, the near components are rotated by

an angle � = �1 − �2, while the far components are just transmitted.

Then, after that, two CRs swap the relative position components, another

MZI rotates the far part of the state by the same angle �. The matrix

representations of these operations are:

*()1 , )2) = �2 ⊗*MZI()1 , )2),
*(�1 , �2) = *MZI(�1 , �2) ⊗ �2.

(4.24)

Note that for design limitations, the CRs are used to perform the rotation

of the qubit of absolute position. Their actionwill be essentially neglected,

just remembering that the |�〉 and |#〉 components are exchanged in the

detection stage (note the ordering of the state in the red box of Figure

4.9). The detection stage is constituted by an array of fibers coupled to

the four waveguides. These fibers are connected to four SPADs used to

measure the photon on the state basis |*#〉, |*�〉, |��〉 and |�#〉. A
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Figure 4.9: Schematic of the integrated optical chip for the testing of the BI for the SPE in the HSP version. The optical waveguides are

reported in cyan and the box cladding is in blue. The top cladding is transparent to emphasize the structure. The light is coupled in the

optical chip from the left using a taper optical fiber (left glass cone). The first stage (yellow box) is the generation stage in which the entangled

state is created. The two separate rotation stages act on the two HSP (green boxes): the first two MZIs rotate the qubit of relative position by

the angle ), while the last two operate on the qubit of absolute position, performing a rotation by an angle �. The light is then collected on

the right using an array of fibers (right glass cones). This goes to four SPADs, which implement the measurement operations: as in Chapter

2, it is only necessary to detect in which state |*#〉, |*�〉, |��〉 and |�#〉 the wavefunction collapses.

remark has to be done on the generation stage: apparently, this structure

is less flexible than the generation stage presented in Chapter 2. A more

flexible device could be based on a cascade of MZI. If the initial MMI is

replaced by a MZI placed in the middle of the four waveguides, it can be

used to split the input light between the state |*#〉 and |�#〉. By using

then other two MZIs to rotate the relative position qubit. it is possible to

obtain each linear combination of the four states |*#〉, |*�〉, |��〉 and
|�#〉. Four PSs have then to be placed at the outputs of these MZIs to

change the relative phases. However, abandoning the sharp separation

of the stages, the union of the generation stage with the first rotation of

the relative position could fulfill this scope: it is just necessary to rotate

the MZIs of an angle ) = )2 + )A , where )2 is the angle required to

obtain the linear combination of the four states |*#〉, |*�〉, |��〉 and
|�#〉 and )A is the actual angle of the rotation. However, the four PSs

are still necessary to regulate the relative phases.

4.3.1 Theoretical form of "

Having implemented the same qubit rotations as in Chapter 2, the

structure of the "-parameter of the BI, for the generated state |)±〉, is:

"()0,1 , )0,2 , )1,1 , )1,2 ,�0,1 , �0,2 , �1,1 , �1,2) =
= cos(2(()0,1 − )0,2) ∓ (�0,1 − �0,2)))+
− cos(2(()0,1 − )0,2) ∓ (�1,1 − �1,2)))+
+ cos(2(()1,1 − )1,2) ∓ (�0,1 − �0,2)))+
+ cos(2(()1,1 − )1,2) ∓ (�1,1 − �1,2))),

(4.25)

where the index 8 = 0, 1 and 9 = 1, 2 in )8 , 9 and �8 , 9 refer to, respectively,
to the choice of the angles in the "-parameter (8) and to the angles in

the matrix representation of the MZIs(9). For the state |)+〉, by setting

all the terms having )8 ,2 = �8 ,2 = 0 and making the same choice done in
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Chapter 2 of ()0,1 = 0, )1,1 = $, �0,1 = $/2, �1,1 = 3$/2), it is possible
to obtain the "-parameter:

"

(
0, 0, $, 0,

$
2

, 0,
3$
2

, 0

)
= 3 cos($) − cos(3$). (4.26)

For the state |)−〉, by setting )8 ,2 = �8 ,2 = 0 andmaking the choice ()0,1 =

0, )1,1 = −$, �0,1 = $/2, �1,1 = 3$/2), the same form is obtained:

"

(
0, 0,−$, 0, $

2

, 0,
3$
2

, 0

)
= 3 cos($) − cos(3$). (4.27)

4.4 Non-idealities in the calculation of "

The non-idealities present the integrated circuit are just nearly the same

as the ones reported in Section 2.7 of Chapter 2:

I Presence of noise→ Visibility parameter �,
I Communication between the two qubits→ 4",

I Use of attenuated source with a spectrum→ &,
I Not-ideal detectors→Markov correction to the ℙ.

Consequently, the same assumptions necessary to handle all the loopholes

in the test of the BI are still needed. However, the communication between

the two qubits now is due to a different physical motivation: the presence

of extra differences between the angles applied to each of MZI of the

couple that induce the )(�)-rotation. Indeed, a couple of angles (), �)
has to be precisely fixed in each couple of MZIs. This requirement is not

satisfied if the power supply that controls the PSs is not precise enough.

Indeed, if an error (�), ��) not fixed is introduced in each rotation, the

matrixes that represent the operators that describe the action of the MZIs

are no longer in product form:

*real()1 , )2 , �)1 , �)2 , �)3 , �)4) =
%1 ⊗*MZI()1 + �)1 , )1 + �)2)+
+ %2 ⊗*MZI()1 + �)3 , )2 + �)4);
*real(�1 , �2 , ��1 , ��2 , ��3 , ��4) =
*MZI(�1 + ��1 , �2 + ��2) ⊗ %1+
+*MZI(�1 + ��3 , �2 + ��4) ⊗ %2;

%1 =

(
1 0

0 0

)
, %2 =

(
0 0

0 1

)
.

(4.28)

Note that in principle the terms �)1 , �)2 , �)3 , �)4 , ��1 , ��2 , ��3 , ��4

are all different and they appear both in the rotation terms ()1 − )2) and
(�1 − �2) and in the global phase terms ()1 + )2) and (�1 + �2). I have
not yet elaborated a proper treatment of the non-idealities, which can

be performed by using the same idea of Section 2.7 in Chapter 2. For

this reason such a non-idealities will be neglected in the experimental

verification of the BI by taking the mean of all the angles effectively

applied by the power supply: specifically the considered ) = )1 − )2 is

the mean of {)1+ �)1−)2− �)2 , )1+ �)3−)2− �)4} and � = �1−�2

is the mean of {�1 + ��1 − �2 − ��2 , �1 + ��3 − �2 − ��4}.
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2: In the case of MMI, the coefficients )

and ' have the usual meaning respect

to the BS: when the input waveguide is

placed at G∗ respect to the center of the

MMI, ) gives the power at the output

waveguide with the center in G∗, while '

provides the power at −G∗.

4.5 Simulation of the different optical
components

The integrated circuit has been simulated using the bidirectional Eigen-

mode expansion (EME) solver of Lumerical. For all the different compo-

nents, the height of the waveguide is 0.3 �m. The materials are Silicon

Oxynitride (SiOGNH) for the waveguide and Silica (SiO2) for the top and

cladding material. Such a choice of materials allows using wavelengths

in the range [600, 850] nm. The working wavelength was chosen to be

around 740 nm due to the available light sources at that specific wave-

length. As working polarization, the TE was chosen. All the simulations

of the optical elements were done by Massimo Borghi and Matteo Sanna

inside the project EPIQUS.

4.5.1 Multi-Mode Interferometer (MMI)

The simulated MMI geometric structure is reported in Figure 4.10a.

The geometry is fixed by performing a sweep of the parameters for the

workingwavelength of 740 nm: the goal of the sweep is to find a geometry

such that the power transmission ) and reflection ' coefficients of the

MMI are as close as possible to ) = ' = 1/22 . For the selected geometry,

a wavelength sweep is performed to evaluate the behavior of the power

transmission and reflection coefficients as a function of the wavelength.

The results of the simulation are reported in Figure 4.10a. In the range

720 nm< � < 760 nm, the difference between the two coefficients is lower

than 0.25%, while the insertion losses of the device are lower than 1%

between 730 nm< � < 750 nm. For these reasons, any � ∈ [730, 750] nm
could be suitable for obtaining an integrated BS.

4.5.2 Crossing (CR)

The simulation of the CR is done in the same way as for the MMI with a

different objective: now the transmission in the specular waveguide at the

output of the CR has to be maximized. The best geometrical structure is

chosen by selecting the one with the lowest insertion loss for the desired

wavelength. The designed structure and the result of the simulation are

reported in Figure 4.10b: near 740 nm, the design gives a transmission of

) = 99.1%.

4.5.3 Structure of the integrated chip

Given the simulated structures of the MMI and CR, the chip was then

designed using the MMIs as the BSs of the integrated MZI. The chip

structure is reported in Figure 4.11 and its dimensions are:' 6×1mm
2
. As

expected, its dimensions are three orders of magnitude lower compared

with the ones of the bulk implementation (' 1 × 1 m
2
). In Figure 4.11 are

reported also the different powers {,�8 }�=�,),�;8=1,2, necessary to control

all the PSs.
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Figure 4.10: Geometrical parameter of the simulated MMI and CR and their simulated properties. a) The simulated MMI is composed of

two symmetric input waveguides that are tapered from the width of 0.7 �m to 2.4 �m in 20 �m of length. Those are separated by 1 �m at

the entrance of the wider waveguide. The latter has a width of 5.8 �m and length 163.11 �m. The outputs of the MMI are symmetric with

respect to the inputs. The power transmission ) and reflection coefficients ' of the MMI are simulated between 600 nm and 850 nm and are

reported on the right respectively in red and blue: they nearly reach the desired value of 0.5 between 730 nm and 750 nm. b) The simulated

CR is constituted by two orthogonal 1.5 �m wide waveguides. At the inputs and the outputs of the CR a tapering region of 3.75 �m of

length is used to connect to the CR the 0.7 �mwide input and output waveguides. The simulated transmission coefficients of the CR are

reported on the right: a nearly unitary transmission coefficient was obtained between [730, 750] nm.
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Figure 4.11: Scheme of the fabricated integrated chip for the validation of the SPE based on HSP. The optical waveguides are reported in

pink, while in purple the metallic wire (PS with the respective applied power {,8 9 }8 ,=�,),�, 9=1,2). The input and output waveguides are

indicated in red: for the output waveguide is reported also the corresponding state. The generation stage is reported in yellow, while the

MZIs used to rotate the qubits are inside the green boxes. In blue are circled an example of the MMI, of the PS, of the CR and of the MZI.

The waveguide indicated in blue are used to test the different MZIs.
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4.6 Experimental characterization of the
devices

The clean room of Fondazione Bruno Kessler produced the device,

thanks to Gioele Piccoli andMher Ghulinyan. Martino Bernard wired the

chip. Matteo Sanna and Gioele Piccoli performed the characterization

measurements of the isolated test structure within the project EPIQUS.

4.6.1 Characterization of the CRs and MMIs

The experimental setupused to characterize theCRs andMMIs is reported

in Figure 4.12 and a zoom on the optical chip is reported in Figure 4.13.

Two tapered optical fibers are used to inject and collect the light from

the structure. A supercontinuum laser emitting from 350 nm to 2000 nm

opportunely filtered (650 − 850 nm) and polarized (TE, achieved with

two bulk Half-Wave Plates (HWPs) and one bulk Quarter-Wave Plate

(QWP)) is used as light source. The optical input and output coupling

is achieved using two 3-axis translation stages, a visible camera with

a magnification system (imaging system in Figure 4.13) and a sample

holder over which the chip is placed. The light collected by the output

tapered fiber goes to an Optical spectrum analyzer (OSA), used as the

detector. For characterizing the CR, test structures with a sequence of

150 CRs not-equidistant to avoid any Fabry-Perot effect were used. The

experimental data are normalizedwith respect to the light collected at the

output of a straight waveguide used as a reference and shown in Figure

4.14. In the interested wavelength range of [730, 750] nm the transmission

coefficient measured for the CR is in the range [97.7%, 98.2%]. This
attenuation is quite near to the simulated value. It is worth to remark

that the presence of a CRwith no ideal characteristics is not a problem for

the BI test since its action can be considered as a further rotation acting

on the qubit of the relative position by an angle )2 such that:

CR()2) B
(
sin()2) cos()2)
cos()2) − sin()2)

)
, )2 = arccos(

√
)CR) (4.29)

where )CR is the transmission coefficient of the CR. Moreover, having

used the same design for all the CRs, it is possible to write the action

of such composed object in the space of the two qubits as �2 ⊗ CR()2),
which is still a product form operator.

The MMI is characterized using the same experimental setup. The power

of the two output ports is collected for both the inputs: the experimental

data are still normalized respect to optical power collected at the output

of the reference straight waveguide and are reported in Figure 4.15a. T11

indicates the signal at the output (G∗ , !)with input at (G∗ , 0), while '12 is

the signal at output (−G∗ , !). On the contrary, )22 and '21 are the power

coefficients with input light at (−G∗ , 0). In Figure 4.15a Input1 indicates

the sum of )11 and '12, while Input2 is the sum of )22 and '21. For

this data, two observations can be done:

1) the power transmission and reflection coefficients are different

from the simulation results. Moreover, the coefficients are different
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Figure 4.12: Experimental setup used to characterize the MMI and the CR. The optical signal is indicated with a red arrow. The blue arrow

indicates the imaging system to perform the coupling between the input-output tapered waveguide to the facets of the chip. Color code of

the boxes: red, supercontinuum laser source, orange, optical components used to prepare the light before the injection in the chip of Figure

??, green, OSA used to detect the optical signals.

for the two inputs. These differences are at the moment under

investigation.

2) The Input1 and Input2 are greater than 1 for some wavelengths.

This can be explained considering a wrong cut of the facets of the

input and output waveguide of the chip, which can induce such an

effect.

To have a better estimation of the coefficients )89 (8 = 9) and '89 (8 ≠ 9),

it is possible to renormalize the measurements with respect to the sum

of the total power collected by two outputs:

)̃ 8 9 =
)89

)89 + '89 , '̃8 9 =
'89

)89 + '89 . (4.30)

The corresponding matrix of the MMI can be written as:

*""� B

( √
)̃11 8

√
'̃21

8
√
'̃12

√
)̃22

)
. (4.31)

Such a matrix does not represent a fundamental problem for the calcula-

tion of the "-parameter: even if it is different from the matrix of a perfect

50 : 50 MMI, it does not induce any particular coupling between the two

qubits. The only influenced parameter is, indeed, the visibility �, which

is slightly decreased (� ' 0.986 for T=0.4 and R=0.6) not having perfectly

balanced power coefficients.
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Figure 4.13: Example of the experimental

setup used for the characterization of the

CRs and MMIs. In red are indicated the

input and output tapered fibers used to

couple in and out the light from the pho-

tonic chip. The photonic chip (example,

not the actual one, in purple) is placed

on a sample holder. The fibers are placed

in the desired position using two 3-axis

alignment stages and an imaging system

(white) composed of a magnification sys-

tem and a visible camera.

Table 4.1: Measured values of the MMI

power transmission and reflection coeffi-

cients )̃11, '̃21,'̃12 and )̃22 for � = 730.1
nm.

)̃11 '̃21 '̃12 )̃22

0.411 ± 0.002 0.603 ± 0.001 0.589 ± 0.002 0.398 ± 0.001

4.6.2 Characterization of the single MZIs

The experimental setup used to characterize the MZIs is reported in

Figure 4.16 and in Figure 4.17. The details of the optical chip on the

Printed Circuit Board (PCB) and on the sample holder are shown in

Figure 4.18. To characterize the single MZIs, the light is coupled inside

and outside the chip using a fiber array composed of eight optical fibers:

the output testing ports of Figure 4.19 are used to collect the light,

which is injected at the input port 1 for the characterization of MZI_UP,

MZI_DW and MZI_FR (Figure 4.19), and at the input port 2 for the

characterization of MZI_NR. The fiber array is aligned to the chip using a

6-axis roto-translational stage and a visible camera with a magnification

system (imaging system). The optical chip is attached to a PCB that

allows connecting the metallic pads of the PSs to an 8-channel current

supply, remotely controlled using the PC. As a light source, it was used a

Ti:Sapphire laser centered at 730.1 nm that was coupled into an optical

fiber and attenuated through a VOA. Since the entire chip is designed

for the TE polarization, the polarization of the light was fixed using an

in-fiber polarization controller. As detectors the SPADs are used. The

counts from the SPADs are collected by a Time Tagger and stored in the

PC. The parameter of the MMI are reported in Table 4.1 for 730.1 nm.

The first characterization is on the relation between the angle of rotation

and the power applied to each PS. Since the transmission of the MZI

depends only on the difference between the angles ) = )1 − )2 and

� = �1 − �2 in Equation 4.15, a positive sign was assigned to the power

,)1(�1) applied to the PS that induces )1(�1) and a negative sign to the

power,)2(�2) that induces )2(�2). The experimental data are reported

as blue dots in Figure 4.19 as a function of the power applied to the PSs.

Due to fabrication errors in eachMZI, even if designed balanced, i.e, with

an initial phase difference ()1 −)2 = �1 −�2 = 0), the MZI has a parasite
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Figure 4.14:Measured value of the trans-

mission coefficient of the CR. In red are

reported the experimental data acquired

normalized respect to the power collected

from a straight waveguide of reference.

The error bars are within the dot size.

Figure 4.15: Measured value of the power

transmission and reflection coefficients of

the MMI. The coefficients are estimated

by injecting the light from one input and

collecting the two outputs. In a) )11 is

reported in red, '12 in blue, '21 in green

and )22 in purple. The sum of the co-

efficients for the same input is also re-

ported: for input 1, it is reported in mili-

tary green, while for input 2, in cyan. The

error bars are within the dot size. In b)

)̃11 is reported in red, '̃12 in blue, '̃21 in

green and )̃22 in purple. The error bars

are within the dot size.
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Figure 4.16: Experimental setup used to

characterize the single MZIs and the in-

ternal phases of the fabricated photonic

chip and to demonstrate the violation of

BI in the case of SPE of HSP. The red arrow

indicates the optical signal, the cyan arrow

indicates the electrical signal and the blue

arrow indicates that the imaging system

is used to perform the coupling between

the fiber array and the chip. Color code of

the boxes: red, Ti:Sapphire laser source, or-

ange, optical components (VOA and polar-

ization control) use to prepare the light be-

fore the injection in the chip, green, the op-

tical detection system, composed of VOAs

and SPADs, cyan, electronic devices used

to control the chip (PSs control, used to

set the phases (�1 , �2 , )1 , )2 , �1 , �2)) and

to detect and store the electronical signals

(Time Tagger and PC)

Figure 4.17: Photo of the experimental setup used to characterize the single MZIs and the internal phases of the fabricated photonic chip

and to demonstrate the violation of BI in the case of SPE of HSP. In purple is indicate the optical chip placed over the sample holder. In blue

is highlighted the magnification system used, with the visible camera, to see the optical chip and to align the fiber array to the desired

structure. In the cyan square is possible to see the power supply used to electronically control the PSs. In green is indicated the box where

the SPADs are.
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Figure 4.18: The optical chip produced to

demonstrate violation of BI in the case of

SPE of HSP. In blue is indicate the optical

chip on the PCB. There are clearly visible

the electrical cables necessary to control

the PSs. In red it is indicated the input-

output fiber array used to couple in and

out the photons.

phase differences �) and ��, i.e., )1 − )2 = �) and �1 − �2 = ��. The
fit is necessary to estimate not only the relation phase-power applied but

also this initial offset, different for every MZI. Depending on which input

and output ports are considered for the MZI, the fit functions are:

)(,) = 
 cos(�, + �)2 + �, (4.32)

)(,) = 
 sin(�, + �)2 + �. (4.33)

Equation 4.32 is used for MZI_UP and MZI_FR, while Equation 4.33 is

used for MZI_DW and MZI_NR. Note that for MZI_NR the characteri-

zation is done only for negative power, since one heater pad results not

connected. The fit results are reported in Table 4.2. As it is possible to

observe, the � parameters are different for each MZI as expected, while

instead the � are quite similar, since the heating structure is the same for

all the MZIs.

4.6.3 Characterization of the internal phases of the
structure

Another calibration must be done to know the power,�8 necessary to

compensate the phase of
�
2
given by the first MMI. For this calibration,

an initial guess is to use the mean of the estimate � parameters obtained

for the MZIs since the heating structures are the same. Even if such

an approach seems reasonable in an ideal situation, it is not feasible

due to fabrication errors. In the previous section, it was introduced
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Figure 4.19: Characterization curves of the different MZI present in the optical chip for � = 730.1 nm. The experimental data are reported in

blue, while in red is reported the obtained fit with the corresponding 95% confidence interval. The data are obtained by injecting the light

in the input waveguides (red arrows) and is collected from the output test waveguides (blue arrows). The MZI and the corresponding

characterization curve are indicated with the same color (color of the circle for the MZI and color of the dot for the curve).
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Table 4.2: Fit results for the calibration of each MZI. For each MZI, the parameters of the fit are reported with their standard deviation

estimated by the fitting procedure. Equation 4.32 is used for MZI_UP and MZI_FR, while Equation 4.33 is used for MZI_DW and MZI_NR.

MZI_UP MZI_DW MZI_NR MZI_FR


 0.987 ± 0.008 0.97 ± 0.01 0.956 ± 0.004 0.99 ± 0.01

�[<,−1] 0.01850 ± 0.00005 0.01822 ± 0.00007 0.01940 ± 0.00009 0.01828 ± 0.00007

� 0.025 ± 0.005 0.01287 ± 0.007 0.034 ± 0.002 0.036 ± 0.006

� 0.5092 ± 0.004 −0.3008 ± 0.005 0.036 ± 0.007 0.068 ± 0.005

3: In the following formula the term �2

appears for completeness but is actually

zero.

the effect of the initial phase of the MZIs. The same occurs in the

propagation in the single waveguides. In particular, a relative phase

could be introduced between the different terms of the initial state simply

due to the propagation into slightly different wide waveguides. For this

reason, it is necessary to adopt another methodology. To consider such

fabrication errors, the matrix Ph(
, �, �, �) is introduced as:

Ph(
, �, �, �) B
©­­­«
4 8
 0 0 0

0 4 8� 0 0

0 0 4 8� 0

0 0 0 4 8�

ª®®®¬ , (4.34)

such that

|#out〉 = * |#input〉,
* = �2 ⊗*MZI(�1 , �2)Ph(
, �, �, �)*MZI()1 , )2) ⊗ �2Ph(�1 , 0, 0, �2 = 0)

(4.35)

where |#input〉 is defined in Equation 4.20 and for simplicity the power

is applied only to the PS of �1

3
. Now, if the phases )1 = �2 =

�
4
and

)2 = �1 = 0 are set, the entire optical circuit behaves as two concatenated

MZIs (Figure 4.20): the first BS is given by the initial 50 : 50 MMI for both

the MZIs, while the second BS is given respectively by the MZI_NR and

MZI_FR. Since the MZI_UP and MZI_DW are set to the same phase, they

do not contribute to the whole phase difference between the arms of the

two MZIs, which is influenced only by the phases �, 
, �, �, �. In this

way the probabilities of observing the four states are given by:

ℙ|*�〉(�1 , �2 , 
, �, �, �) =
1

4

(1 − sin(�1 − �2 + 
 − �)) , (4.36)

ℙ|�#〉(�1 , �2 , 
, �, �, �) =
1

4

(
1 − sin(�1 − �2 + � − �)

)
, (4.37)

ℙ|*#〉(�1 , �2 , 
, �, �, �) =
1

4

(
1 + sin(�1 − �2 + � − �)

)
, (4.38)

ℙ|��〉(�1 , �2 , 
, �, �, �) =
1

4

(1 + sin(�1 − �2 + 
 − �)) . (4.39)

This characterization’s objective is also to compensate for the 
 − � and

� − � errors introduced by fabrication. For estimating such errors, the

experimental data obtained as a function of the power applied,�1
are

fitted using the function

5 (,�1
) = 0(1 ± sin (1,�1

+ 2) , (4.40)

depending on the sign of the sin in Equation 4.36, Equation 4.37, Equation

4.38 and Equation 4.39. The experimental data and fits are reported in

Figure 4.20, orange dot, while the fit parameters are reported in Table

4.3. The measurements and fits are reported also for the choice of angles
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Table 4.3: Fit parameters with their standard deviation for Equation 4.36, Equation 4.37, Equation 4.38 and Equation 4.39 using Equation

4.40.

|*�〉 |*#〉 |��〉 |�#〉
0 0.250 ± 0.007 0.244 ± 0.005 0.225 ± 0.003 0.243 ± 0.006

1[<,−1] 0.040 ± 0.001 0.0377 ± 0.0008 0.0381 ± 0.0005 0.036 ± 0.001

2 4.18 ± 0.1 2.91 ± 0.05 4.29 ± 0.05 2.97 ± 0.07

Table 4.4: Fit parameters with their standard deviation for Equation 4.41, Equation 4.42, Equation 4.43 and Equation 4.44 using Equation

4.40.

|*�〉 |*#〉 |��〉 |�#〉
0 0.249 ± 0.005 0.243 ± 0.006 0.236 ± 0.004 0.230 ± 0.004

1[<,−1] 0.0369 ± 0.0007 0.035 ± 0.001 0.0385 ± 0.0006 0.0374 ± 0.0007

2 4.30 ± 0.07 2.95 ± 0.07 4.16 ± 0.06 2.77 ± 0.05

4: Ideally only two PSs are necessary due

to the periodicity of the phase, but, to

avoid using high currents in unfortunate

cases, it is better to have all the four PSs.

)2 = �2 =
�
4
and )1 = �1 = 0 (red dot in Figure 4.20 and fit parameters

in Table 4.4). For such a choice of angles, the probabilities of obtaining

each state are now:

ℙ|*�〉(�1 , �2 , 
, �, �, �) =
1

4

(1 + sin(�1 − �2 + 
 − �)) , (4.41)

ℙ|�#〉(�1 , �2 , 
, �, �, �) =
1

4

(
1 + sin(�1 − �2 + � − �)

)
, (4.42)

ℙ|*#〉(�1 , �2 , 
, �, �, �) =
1

4

(
1 − sin(�1 − �2 + � − �)

)
, (4.43)

ℙ|��〉(�1 , �2 , 
, �, �, �) =
1

4

(1 − sin(�1 − �2 + 
 − �)) . (4.44)

It was found that the values of the 2 parameter for each fit are not

compatible for the eight different cases (Table 4.3 andTable 4.4). Therefore,

it is impossible to compensate at the same time for the different fabrication

errors by changing only the phase �1−�2. To try to continue the validation

of SPEwith theHSP, the following strategy is introduced: since the values

are compatible between pairs (|�〉 and |#〉),,�1
is chosen to compensate


 − � and the counts for only the channels |*�〉 and |��〉 are acquired.
Then,,�1

is changed to correct � − � and the experiment is repeated

acquiring only the channels |*#〉 and |�#〉. Such a strategy introduces

the assumption that the circuit performs the same rotations by repeating

the experiment changing,�1
, which seems a reasonable approximation.

Under this hypothesys, it is possible to test the BI for the SPE based

on HSP. For this reason, the power necessary to compensate each pair

of fabrication error phases for the state |)+〉 is extracted by the fits: it

is obtained ,�1
= 94.8 ± 0.8 mW and ,�1

= 136 ± 2 mW. The same

reasoning can be applied to generate the state |)−〉: for the latter, the

power,�1
= 12.7±0.9 mW and,�1

= 50±1 mWmust be used. In a new

design, four additional PSs
4
could be placed at the outputs of the MZI_-

UP and MZI_DW, to have additional control on the phase differences


 − � and � − �. An example of such a modification is reported in Figure

4.21. The phases inside the sin in Equation 4.36, Equation 4.37, Equation

4.38 and Equation 4.39 become:

� + 
 − �→ � + �1 − �3 + 
 − �, (4.45)

� + � − �→ � + �2 − �4 + � − �. (4.46)
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Figure 4.20: Characterization measurements of the phase �1 as a function of the power applied,�
1
for )1 = �2 =

�
4
and )2 = �1 = 0,

military green dot, and )2 = �2 =
�
4
and )1 = �1 = 0, red dot. �2 is not connected, so its contribution is not considered (�2 = 0). The

experimental data are reported as a function of the power applied to the PS that determines the phase �1,,�
1
and fitted using Equation

4.36, Equation 4.37, Equation 4.38 and Equation 4.39 for the military green and Equation 4.41, Equation 4.42, Equation 4.43 and Equation

4.44 for the red dot. The 95% confidence intervals are shown for each fit. The MZIs used to obtain the experimental data are reported on the

left in orange for |*#〉 and |�#〉 and blue for |*�〉 and |��〉. The phases 
, �, �, and � are also reported.
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Figure 4.21: New scheme of the integrated chip for compensating fabrication phase errors. The addition of the four PSs is necessary to add

flexibility, allowing to compensate the phase errors 
, �, � and �.

5: Positive angles are not reachable for �,
since one PS is not connected.

6: To avoid confusion, the subscripts here

indicate the particular angle in the BI and

not the angle in the MZI: 
8 = 
8 ,1 − 
8 ,2,
with 
 ∈ {), �}.

where the new PSs induce the phases �1 , �2 , �3 and �4. In this way, just

controlling �1 , �2 , �3 and �4, it is possible to compensate the different

fabrication errors 
, �, � and �.

4.7 Test of the Bell’s inequality

To perform the test of the BI, the same optical setup described in the

previous section and shown in Figure 4.17 and Figure 4.18 is used. The

test of the BI is done for both the states |)+〉 and |)−〉 with the previously

introduced assumptions.

4.7.1 Bell’s inequality for |)+〉

The test of the BI is done by performing a sweep of the rotation angle

) = )1 − )2 for different values of the angle � = �1 − �2. The sweep

intervals are determined by physical considerations: since the maximal

current applicable to each PS is 24 mA, a limiting value of 17 mA is

chosen. Considering that the � coefficient of each MZI is > 0.018 mW
−1

and that each PS has a resistance of the order of ' 500 Ω, the maximal

range for the angles ) = )1 − )2 and � = �1 − �2 achievable for each

MZI is [−2.6, 2.6] rad. To be even more conservative the intervals are

further decreased to [−2, 2] rad for ) = )1 − )2 and to [−2, 0]5 rad for

� = �1 − �2. For each couple of (), �), the detection events are acquired

for 1 s with a time bin of 1 �s. The average flux of photons is ' 75

kHz. For such a flux, the correction induced by the Markovian model

developed in Chapter 2 is negligible. So the probabilities ℙ(G, H |), �)
are estimated from the empirical frequencies of the counts, in which

multiple detection events and no detection events are eliminated. The

experimental correlation coefficients E
(
$) , $�

)
are reported in Figure

4.22a with the respective fit of the type:

EFit

(
$) , $�

)
= � cos(2() − �)), (4.47)

where � is the only free parameter connected to the visibility. Figure 4.22b

reports the residuals plot of the experimental data with respect to the fit

(Equation 4.47): the oscillations that appear are probably connected to

the instability of the power supply.

By making the choice )0 = −$/2, )1 = $/2, �0 = 0, �1 = $6
, the

"-parameter assumes the already introduced form:

"($) = �(3 cos($) − cos(3$)), (4.48)
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Figure 4.22: a) Raw correlation coefficients EFit

(
$) , $�

)
)(blue dots) obtained during the experiment with the relative fit EFit

(
$) , $�

)
=

�1 cos(2() − �)) (colored surface) where ) and � are the variables and �1 is a fit parameter. From the fit operation, it is obtained

�1 = 0.88 ± 0.01 b) Residuals plot of the fitted raw data E
(
$) , $�

)
respect to the fit EFit

(
$) , $�

)
. The physical origin of the oscillations

observed is probably the power supply instability.
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Table 4.5: Maximal absolute violations of

the BI observed for the state |)+〉. ")1

refers to the values reported in Figure

4.23, while "rec
to the maximum and min-

imum violations observed by comparing

every possible combination of correlation

coefficients.

Max Min

")1
2.39 ± 0.02 −2.32 ± 0.02

"rec
2.731 ± 0.005 −2.689 ± 0.007

which becomes

"()1) = �(3 cos(2)1) − cos(6)1)) (4.49)

identifying $ = 2)1. This choice is done to maximize the number of data

obtainable from the raw data without any fitting operation. The results

for the calculated "-parameter are reported in Figure 4.23 as a function

of the angle )1. Apart from the direct estimation based on the raw data

(green dots of Figure 4.23), " is obtained using two methodologies:

1) Equation 4.47, with fit parameters � and variables ) and �, is used
to fit the correlation coefficients E

(
$) , $�

)
. The mean visibility

obtained is �1 = 0.88 ± 0.01. From the fitted E
(
$) , $�

)
, "1, is

directly calculated and reported as the purple dashed curve in

Figure 4.23.

2) Equation 4.47 with fit parameters )̂ and �) . Such a fitting function

is used to fit E
(
$)̂ , $�

)
with � variable for each fixed )̂ ∈ [−2, 2]

rad. Obtained this fit, it is used to enlarge the �-range to [−4�, 4�].
Given the new set of fitted data, this operation is repeated, with

new parameters �̂ and ��, to enlarge the )-range to [−4�, 4�] for
each �̂ ∈ [−4�, 4�]. The new set of data is then cubic interpolated

to extrapolate also intermediate values. Respect to the previous

method, this allows to consider also the effects of a variation of

� during the sweep of the angles ) and �. The mean visibility is

eventually calculated as the mean of the set of all the {�8}8=),�
obtained from the fitting procedures: �2 = 0.897 ± 0.003. The

obtained "2 is reported as a red dotted curve in Figure 4.23.

The "-parameter obtained from the data, "data, follows Equation 4.49

(blue curve in Figure 4.23) for the mean visibility calculated, apart

from a right lateral shift probably induced by the already introduced

instability of the power supply. However, the form of the "-parameter is

the one expected. A further estimation of the "-parameter can be done by

using a recursive approach: evaluate "()8 , ) 9 , �: , �;) for all the angles
)8 ∈ [−2, 2] rad,) 9 ∈ [−2, 2] rad,�: ∈ [−2, 0] rad and�; ∈ [−2, 0] rad, for
which the rawdata are available. Using this strategy, it is possible to obtain

even higher values of the "-parameter than themethodologies previously

introduced, since the choice )0 = −$/2, )1 = $/2, �0 = 0, �1 = $
is optimal only for |)+〉. However, due to experimental errors, the

actual obtained state can be slightly different than |)+〉, opening to the

possibility of finding a better combination of angles that maximize the BI.

The maximal and minimal values for the "-parameter obtained using the

raw data are reported in Table 4.5: ")2
indicates the values reported in

Figure 4.23, while "rec
the values obtained using the recursive approach.

The latter is obtained by selecting the best 1 s sequences that maximize

" and dividing them into five pieces of 0.2 s: "rec

8
is calculated for each

8 = 1..5 and the value "rec
is the mean value obtained with its standard

deviation.



4.7 Test of the Bell’s inequality 121

Figure 4.23: Evaluation of "-parameter for the state |)+〉. The experimental data (green dots) are plotted as a function of the rotation angle

)1 with the respective error bars. The solid blue line represents the theoretical forms of the "-parameter in the case of Equation 4.49 with

�2 = 0.897 ± 0.003. The dashed purple line "1 represents the "-parameter obtained by fitting procedure over the raw data, with only �
as the free parameter. It is also reported the 95% confidence interval. The dotted red line is the "-parameter obtained by the two fitting

operations performed on the data, leaving one angle and the � as parameters. Also for this fit, it is reported the 95% confidence interval.

Lastly, in cyan are indicated the areas in which the violation of the CHSH inequality can be observed.

4.7.2 Bell’s Inequality for |)−〉

The same experimental procedure was followed also in the case of |)−〉
just by changing the value of,�1

with the one reported in Subsection

4.6.3. The same intervals ) ∈ [−2.2] rad and � ∈ [−2, 0] rad are used. The

experimental correlation coefficients E
(
$) , $�

)
are reported in Figure

4.24a as a fuction of ) and �. Now the theoretical form of the correlation

coefficients is:

EFit

(
$) , $�

)
= � cos(2() + �)). (4.50)

The fit of the data using Equation 4.50 with � as parameters and ) and

� as variable is reported in Figure 4.24a and the connected residuals

plot in Figure 4.24b. Also in this situation, the oscillations that appear

are probably connected to the instability of the power supply. In this

case, a mean visibility of �1 = 0.89 ± 0.01 is obtained. Using the second

methodology (an angle as a fit parameter), a visibility of�2 = 0.904±0.002

is estimated. The "-parameter as a function of the angle )0 ()0 =

$/2, )1 = −$/2, �0 = 0, �1 = $) has the same form of Equation 4.49.

Both the "1 and "2, obtained by the fitting procedure (dashed purple line

and dotted red line), and "data (green dots) are reported in Figure 4.25

togetherwith the theoretical form (Equation 4.49 for$ = 2)0, blue curve).

The obtained "-parameters follow the theoretical form of Equation 4.49

apart from the already observed lateral shift. The maximal and minimal

values of ", estimated using the raw data, are reported in Table 4.6: ")2

indicates the values reported in Figure 4.25, while "rec
the ones obtained
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Figure 4.24: a) Raw correlation coefficients EFit

(
$) , $�

)
)(blue dots) obtained during the experiment with the relative fit EFit

(
$) , $�

)
=

�1 cos(2() + �)) (colored surface) where ) and � are the variables and �1 is a fit parameter. From the fit operation, it is obtained

�1 = 0.89 ± 0.01. b) Residuals plot of the fitted raw data E
(
$) , $�

)
respect to the fit EFit

(
$) , $�

)
. The physical origin of the oscillations

observed is probably the power supply instability.
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Figure 4.25: Evaluation of "-parameter for the state |)−〉. The experimental data (green dots) are plotted as a function of the rotation angle

)0 with the respective error bars. The solid blue line represents the theoretical forms of the "-parameter in the cases of Equation 4.49 with

�2 = 0.904 ± 0.002 and choice )0 ()0 = $/2, )1 = −$/2, �0 = 0, �1 = $). The dashed purple line "1 represents the "-parameter obtained

by fitting procedure over the raw data, with only � as a free parameter. It is also reported the 95% confidence interval. The dotted red line is

the "-parameter obtained by the two fitting operations performed on the data, leaving one angle and the � as parameters. Also for this fit,

it is reported the 95% confidence interval. Lastly, in cyan are indicated the areas in which the violation of the CHSH inequality can be

observed.

using the recursive approach as described in the |)+〉 case.
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Table 4.6:Maximal absolute violations of

the BI observed for the state |)−〉. ")2

refers to the values reported in Figure

4.25, while "rec
to the maximum and min-

imum violations observed by comparing

every possible combination of correlation

coefficients.

Max Min

")0
2.67 ± 0.02 −2.35 ± 0.02

"rec
2.738 ± 0.004 −2.679 ± 0.004

4.8 Discussion of the results

The experimental demonstration of the SPE based on HSP has given

encouraging results. A violation of the BI in the CHSH formwas observed

in many different working points, which allows concluding that the

entanglement is present. However, further steps have to be done. The

fundamental and mandatory one is the development of a model which

considers the current instabilities introduced by the power supply. These

spoil the product form of the operators created by the different MZIs.

It is important to recall that this step is necessary not only to ensure a

trustful violation of the BI but also for the generation and certification

of genuine quantum random numbers. Concerning the experimental

setup, the power supply has to be stabilized to compensate for the current

fluctuations induced in each arm of the different MZI when high currents

are implied. Finally, with the new design of Figure 4.21, no separate

measurements to collect all the four channels are needed which reduces

the acquisition time.

Even though there is ample margin of improvement, the results of

this chapter show that a compact integrated photonic chip enables

a quantum information task. This task is quantum random number

generation in a market-reliable SDI-QRNG. Let us estimate the random

number generation rate that this device might provide. Having a SPAD

dynamical range of ' few MHz, hundreds of kHz generation rate could

be achieved assuming an ideal randomness extraction procedure. Further

improvements to the rate could be obtained bymultiplexing of the SPADs

as suggested in Chapter 3. Other applications of this integrated source of

SPE states are quantum key distribution, entanglement swapping and

quantum teleportation[154][154]: Azzini et al. (2020), ‘Single-Particle

Entanglement’

.
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In this PhD thesis, I have demonstrated that Single Photon Entanglement

(SPE) is achievable by using bulk optical components and attenuated

sources via a Bell’s Inequality (BI) experiment. The BI experiment is

performed on SPE states where the photon’s momentum is entangled

with its polarization. The photons come from commercial attenuated

sources like a laser, a LED and a halogen lamp. The violation of the BI

was obtained under a few simple assumptions:

1) the experimental setup is notmalicious, i.e., the free ofwill loophole

is handled;

2) some optical elements are characterized, i.e., the communication

effects induced by the locality loophole can be bounded;

3) the detectors are trusted and characterized, i.e., the detection and

memory loopholes are handled.

Under these assumptions, the observed violation of the BI can be safely

considered a faithful one. Experiments of generation of SPE states

have already been reported in the literature using as DoFs momentum-

polarization[33, 34] [33]: Michler et al. (2000), ‘Experiments

towards Falsification of Noncontextual

Hidden Variable Theories’

[34]: Gadway et al. (2009), ‘Bell-inequality

violations with single photons entangled

in momentum and polarization’

, but also momentum-spin[36]

[36]: Chen et al. (2010), ‘Single-photon

spin-orbit entanglement violating a

Bell-like inequality’

and spin-orbit[35]

[35]: Karimi et al. (2010), ‘Spin-orbit

hybrid entanglement of photons and

quantum contextuality’

. The fundamental difference that distinguishes my work is the use of

commercial light sources (laser, LED and halogen lamp) to generate the

SPE states and no non-linear optical processes. This represents a signifi-

cant advantage for applications, increasing the scientific community’s

attention towards this type of entanglement. Indeed, SPE is simpler than

Multi Particles Entanglement (MPE) because only bulk commercial linear

optical components like Beam Splitters (BSs), Half-Wave Plates (HWPs)

and Mirrors (MRs) are necessary to generate and manipulate it. From

the point of view of the test of the BI, both SPE and MPE present some

analogies. To make a fair comparison, consider a situation in which no

random choice of the measurement basis is implemented and SPADs are

used as detectors. The detection, post-selection, and memory loopholes

can be tackled similarly for the two types of entanglement (see Chapter

2). The only loophole that has to be considered differently is the locality

loophole: in the case of MPE, a simple solution consists of separating

or shielding the detection stages. However, this approach requires the

introduction of synchronized and precise coincidence measurements

that enhance the experimental difficulties of such an experiment. On the

contrary, in the case of SPE, only single-photon detection events are nec-

essary to test the inequality, not requiring any sophisticated coincidence

electronics. This simplification comes at the price of introducing a partial

but simple characterization of the experimental setup, which decreases

the achievable BI violation.

SPE states of momentum and polarization are then used to demonstrate

a Semi-Device Independent Quantum Random Number Generator (SDI-

QRNG). This represents the first example of a SDI-QRNG based on SPE

states. The certification of the conditional min-entropy is based on the

violation of the BI and the partial characterization of some elements

of the experimental setup. In particular, the polarization non-idealities
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of a few optical components and the non-idealities of the SPADs are

considered. No assumptions must be introduced about the form of the

input state, which can be left uncharacterized. Moreover, the protocol

is independent of the particular form of the measurement observables,

which have just to be kept independent. I achieved a kHz-generation rate

of certified quantum random numbers, assuming a perfect randomness

extraction. Compared to other SDI-QRNGs present in the literature[18,

120–127, 129–131, 133–135] the obtained rate is low since MHz and GHz

SDI-QRNGshave already been reported.However, the generation rate can

be improved by increasing the flux of photons and by the multiplexing of

different SPADs. This last represents an essential aspect for discriminating

the behavior of single photons.

I have also discussed the SPE generated in a photonic chip using the

Hidden Subsystems of Path (HSP) as two effective qubits. In the device,

both the source of SPE state and its certification, based on the BI, are

integrated. The generation scheme of the entanglement is extremely

simple, requiring only one Multi-Mode Interferometer (MMI) and two

Phase shifters (PSs). The test of the BI is instead implemented usingMZIs,

Crossings (CRs) and PSs, which are well-known integrated components

already present in many Process Design Kits (PDKs). All these optical

devices were simulated and experimentally characterized. Even consid-

ering the not optimal performances of the integrated photonic circuit, a

considerable violation of the BI was observed. It is important to remark

that the observed violations are just preliminary results since the locality

loophole is not closed or bounded in the experimental implementation.

Due to the inability to set the same phase on the pair of MZIs that

perform the rotations because of the instability of the power supply, it is

impossible to confirm that the observed violations are faithful. Further

work has to be done to ensure these results effectively. Concerning the

other loopholes, these have been handled by introducing the assumptions

already used for the bulk version, with the additional requirement that

the physical conditions of the chip and the rotations do not change

during the acquisition time. This further hypothesis must be introduced

due to relative phases induced by the fabrication errors that cannot be

compensated. Such a problem can be fixed by introducing other PSs in

the future implementation of the photonic circuit. The integrated imple-

mentation is more compact, robust, and cheap with respect to the bulk

version. These characteristics motivate the use of this source of entangled

state for other quantum information tasks: the first is the generation

of certified quantum random numbers, as done for the bulk version in

Chapter 3. Such an integrated SDI-QRNG is potentially adopted for many

Internet of Things devices to ensure quantum security. Another possible

perspective concerns the use in Quantum Key Distribution (QKD). Today,

QKD applications are limited to research purposes, with only a few

real-world applications adopted by governments, banks and militaries.

Critical aspects that slow down the adoption of this technology are the

price and the footprint of the available devices, which are prohibitive

for many applications. In this context, the availability of an integrated

source of entangled states is particularly interesting. Indeed, it opens to

the possibility of producing a fully integrated system for QKD, where

both the optical and electronic components are integrated on the same

chip. Moreover, SPE has already been proposed as a tool for improving

the security of QKD[154, 173][173]: Adhikari et al. (2015), ‘Toward

secure communication using intra-particle

entanglement’

[154]: Azzini et al. (2020), ‘Single-Particle

Entanglement’

. Such a level of integration paired with
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the enhanced security guaranteed by the entanglement could result in a

more secure solution than the already available ones, primarily based

on bulk components. The integrated device presented here will possibly

push forward the deployment of QKD applications on the market. I am

presently working in this direction.
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Special Terms

A
AMS Amplification and Manipulation stage. 73–75

B
BE Bounded energy. 71

BI Bell’s Inequality. viii–x, 5–7, 9, 12, 13, 15–17, 24–28, 43, 46, 47, 51, 54, 55, 60, 61, 69, 70, 79, 81–83, 87, 91, 93,

100, 103, 104, 108, 112, 113, 116, 118, 120, 124–126

BS Beam Splitter. viii, x, 16, 17, 19, 20, 28, 29, 34, 35, 40, 41, 43, 53, 54, 65, 67, 83, 95, 96, 98, 105, 115, 125

BSD Bounded system dimensionality. 71

BSO Bounded states overlap. 71

C
C Collimator. 51, 52

CHSH Clauser, Horne, Shimony and Holt. vi, 6, 9, 16, 22, 23, 25, 44, 55, 57–60, 63, 78, 79, 83, 121, 123, 124

CPL Comparable Polarization Losses. 34, 35

CR Crossing. vii, ix, 93, 95–98, 102, 105–111, 126

D
DCR Dark count rate. 47, 48, 50, 52, 87, 88

DD-QRNG Device Dependent Quantum Random Number Generator. 91

DI+A Device independent + assumptions. 71

DI-QRNG Device Independent Quantum Random Number Generator. 4–7, 63, 69, 70, 78, 81, 91

DL Delay Line. viii, 17, 53, 54

DoF Degree of Freedom. 5, 6, 14, 16, 19, 28, 40, 52, 82, 89, 93, 95, 99, 100, 102, 125

E
EME Eigenmode expansion. 105

EPR Einstein, Podolsky and Rosen. vi, 6, 9–11, 13

F
FPGA Field programmable gate array. 51, 52, 73–75, 88

G
GTP Glan-Thompson Polarizer. 16, 17

H
HSP Hidden Subsystems of Path. vii, ix, 93, 99–103, 107, 112, 113, 116, 124, 126

HWP Half-Wave Plate. viii, 16–21, 28, 35, 44, 52, 53, 55, 58, 59, 85–87, 91, 108, 125

I
IF Interference filter. 51, 52, 55

L
LED Light-emitting diode. viii, x, 6, 37, 52, 53, 55–59, 92, 125

M
MI Measurement Independent. 71

MMI Multi-Mode Interferometer. vii, ix, x, 93, 95–98, 102, 103, 105–111, 113, 115, 126

MPE Multi Particles Entanglement. 5, 6, 14, 15, 28, 82, 125

MR Mirror. x, 16, 17, 19, 28, 29, 34, 35, 52–54, 125

MZI Mach Zehnder Interferometer. vii, ix, x, 19, 20, 28, 29, 36, 44, 52–54, 81, 87, 93, 98, 99, 102–105, 107, 110,

112–118, 124, 126



N
NIST National Institute of Standards and Technology. 3

O
OOK On-Off-Keying. 72

OSA Optical spectrum analyzer. 108, 109

P
PBS Polarized Beam Splitter. 17, 21

PCB Printed Circuit Board. 110, 113

PDK Process Design Kit. 126

POVM Positive operator-valued measure. 71

PRNG Pseudo Random Number Generator. 4, 93

PS Phase shifter. vii, ix, 93, 97–99, 102–105, 107, 110, 112, 113, 115–118, 126

PVM Projection-valued measure. 18, 78

PZT Piezoelectric transducer. 52, 53, 56, 57, 87

Q
QC Quantum contextuality. 71

QKD Quantum Key Distribution. 126, 127

QRNG Quantum Random Number Generator. viii, 3–7, 63–65, 67–71, 73, 74, 77, 82–84, 86, 87, 91–93

QS Quantum steering. 71

QWP Quarter-Wave Plate. 108

R
RNG Random Number Generator. 3, 4, 63, 67–69

S
SDI-QRNG Semi-Device Independent Quantum Random Number Generator. vi, vii, ix, x, 5–7, 63, 70, 71, 73,

75, 77, 81, 84, 87, 89, 91, 92, 124–126

SDP Semi-Definite Program. 72

SI Source Independent. 71, 91

SiPM Silicon Photomultiplier. 73, 74, 76, 92

SNSPD Superconducting Nanowire Single Photon Detector. 45

SPAD Single Photon Avalanche Diode. x, 17, 21, 28, 41, 46–48, 51–53, 73–77, 82, 83, 87, 88, 91, 92, 102, 103, 110,

112, 124–126

SPaE Single Particle Entanglement. 9, 14–16

SPE Single Photon Entanglement. vi–ix, 5–7, 9, 16, 17, 22, 23, 28, 36, 37, 40, 41, 43, 52, 55, 60, 63, 78, 81–83, 85,

91–93, 95, 100, 102, 103, 107, 112, 113, 116, 124–126

SQP Sequential Quadratic Programming. 36, 54

T
TE Transverse electric. ix, 94, 105, 108, 110

TM Transverse magnetic. ix, 94

TRNG True Random Number Generator. 4, 93

TTL Transistor-transistor logic. 73, 74

U
USD Unambiguous State Discrimination. 72

V
VOA variable optical attenuator. 51, 52, 87, 88, 110, 112
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