
UNIVERSITÀ DEGLI STUDI DI TRENTO

DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

CYCLE XXXIII

U N D E R S TA N D I N G A N D M A N A G I N G
C O M P L E X D ATA S E T S

martin brugnara

Advisor:

Yannis Velegrakis
University of Trento, Trento - Italy
Utrecht University, Utrecht - the Netherlands

2022

“Bla bla bla. Love you. Thanks, bye!”

A B S T R A C T

Nowadays, we are producing and collecting data at an unprecedented
rate, measured in the order of petabytes per minute, together with a
substantial increase in data volume, complexity, and variety. While
tabular and unstructured data still dominate the scene, graphs are
becoming ever more prominent, bringing new challenges. The size
and complexity of graph datasets have increased, thus renewing the
interest in graph databases and distributed graph processing. The
current abundance of data and content complicates even simply ac-
cessing data. Web users are constantly overwhelmed by the availabil-
ity of information and rely upon search engine and recommender
systems to get a trusted personalized selection. Since people tend to
prefer sources that reinforce their pre-existing beliefs, such systems
optimize for whatever the users like. Whenever a controversial topic
arises, users get more polarized as they see only a part of the reality
and feel support from others who hold the same view. This feedback
loop leads to “filter bubbles” and “echo chambers”, new problems
tackled by researchers in the social sciences. On the other hand, sci-
entists and data analysts have a hard time navigating the different
data lakes and data repositories with the data deluge. Thus, new tools
need to help data scientists explore and understand data to maximize
the value they can extract by processing them.

This thesis contributes to solving these issues by studying and eval-
uating the existing graph database technologies to reveal the impli-
cations of different design decisions. It offers a principled and sys-
tematic evaluation methodology based on microbenchmarks compris-
ing tests for more than 51 classes of operations and graphs with up
to 30M nodes and 178M edges. The framework has been material-
ized into an evaluation suite and executed against the major graph
databases available today. The gathered results proved effective for
better understanding graph databases systems’ design choices, per-
formances, and functionalities. Findings include analysis of the trade-
offs between native and hybrid graph database systems, their effect
on important graph queries like traversals and pattern matching, and
their current capability to handle highly heterogeneous graphs.

This thesis also contributes to the efficient processing of distributed
graphs whose data is partitioned by other systems, like externally
managed by graph databases. In particular, it provides a novel tech-
nique for k-core decomposition and maintenance. The solution has
been implemented on top of akka and tested on various real and
synthetic datasets. Results show that it efficiently exploits as much
as possible the existing topology of the graph achieving shorter run-

v

ning time and higher scalability compared to existing sequential and
distributed approaches.

To tackle news polarisation, this thesis proposes two novel recom-
mender systems that account for different points of view expressed
in a document and offer a holistic overview of the topic at hand. The
first, Orthogonal-topics, focuses on the relationship of the topics, and
it has been designed to generalize well on all datasets. The second,
Sentimented-topics, focuses on the sentiment expressed by the docu-
ments on the different topics, and it has been designed to extract and
exploit as much information as possible from text corpora that con-
tain opinionated articles. Moreover, a new diversity-metric, MIN-BW,
and a new optimization algorithm, FDLS, are provided to support
these approaches in finding the most diverse set based on the metric
mentioned above. For MIN-BW, a set of documents is modeled as a
system of particles with repulsive forces, where the most diverse set
is the one whose system requires less work to balance, i. e., to make
it statically stable. The results of a user study showed the superior
quality of the recommendation of our approach, and further test on
synthetic data showed the superior scalability of FDLS.

Finally, to aid researchers in navigating through data lakes, this
thesis provides a new solution to the generations of compact and
informative summaries of the contents of a dataset to enable a more
systematic approach to data exploration. The task is modeled as a
multi-objective optimization problem. We formally define the notion
of a data description and the intuition behind the concept of goodness
for such a description. Descriptions are modeled as sets of views over
the datasets, where the views are defined as filtering clauses. Four
factors determine the quality of a description: length, coverage on the
dataset, overlap, and intricacy. We thus provide three algorithms that
generate such descriptions given these four optimization objectives.
Results showed the scalability and applicability of our approaches.

With this thesis, we have contributed to improving and scaling data
management, processing, and exploration, which are fundamental
tasks in big data and knowledge management both from a research
and a business perspective.

vi

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[1] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yan-
nis Velegrakis. “Distributed k-core decomposition and main-
tenance in large dynamic graphs.” In: Proceedings of the 10th
ACM International Conference on Distributed and Event-based Sys-
tems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016. Ed. by
Avigdor Gal, Matthias Weidlich, Vana Kalogeraki, and Nalini
Venkasubramanian. ACM, 2016, pp. 161–168. doi: 10.1145/
2933267.2933299. url: https://doi.org/10.1145/2933267.
2933299.

[2] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis.
“Beyond Macrobenchmarks: Microbenchmark-based Graph Database
Evaluation.” In: Proc. VLDB Endow. 12.4 (2018), pp. 390–403.
doi: 10.14778/3297753.3297759. url: http://www.vldb.org/
pvldb/vol12/p390-lissandrini.pdf.

vii

https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.14778/3297753.3297759
http://www.vldb.org/pvldb/vol12/p390-lissandrini.pdf
http://www.vldb.org/pvldb/vol12/p390-lissandrini.pdf

A C K N O W L E D G E M E N T S

Voglio ringraziare mia madre Lorenza, mio padre Stefano, e mia sorella
Giada per essermi stati vicini ed avermi supportato continuamente e
incondizionatamente sin dal mio principio.

I want to thank my supervisor, professor Yannis Velegrakis, for advis-
ing me since my bachelor’s and providing me with many opportuni-
ties to grow.

I am grateful to my friends
who walk with me through this adventure called life,
who help me through the hard times, and
who celebrate my achievements.

ix

C O N T E N T S

1 introduction 1

2 micro-benchmarking graph databases 7

2.1 Related Work . 10

2.1.1 Evaluating Graph Processing Systems 10

2.1.2 Evaluating Graph Databases 10

2.1.3 Distribution & Cluster Evaluation 11

2.1.4 Graph Benchmarks 11

2.2 Graph Databases . 11

2.2.1 The Graph Data Model 12

2.2.2 Implementing a Graph Database 12

2.2.3 The Heterogeneity Problem in Graphs 13

2.3 Test Operations: Queries 14

2.3.1 [L] Load Operations 16

2.3.2 [C] Create Operations 16

2.3.3 [R] Read Operations 17

2.3.4 [U] Update Operations 17

2.3.5 [D] Delete Operations 17

2.3.6 [T] Traversals . 18

2.3.7 [P] Pattern Matching 19

2.3.8 Complex Query Set 19

2.4 Evaluation Suite . 19

2.4.1 Requirements . 19

2.4.2 Technological Solutions 20

2.4.3 Evaluation Framework 21

2.5 Systems . 24

2.5.1 Native . 27

2.5.2 Hybrid . 28

2.5.3 RDF . 29

2.5.4 Query Processing and Evaluation 30

2.6 Datasets . 30

2.6.1 Set A . 30

2.6.2 Set B . 31

2.6.3 Datasets Characteristics 32

2.7 Experimental Setup . 33

2.7.1 Hardware . 33

2.7.2 GDB configuration 34

2.8 Results . 34

2.8.1 Data Loading . 35

2.8.2 Complex Queries 38

2.8.3 Micro-benchmark Results 39

2.8.4 Fixed Traversal and Pattern Matching 48

xi

xii contents

2.8.5 Progress across Versions 51

2.8.6 Overall Evaluation and Insights 51

2.9 Conclusion . 55

3 computing & maintaining k–core 57

3.1 Related work . 58

3.1.1 Centralized algorithms 58

3.1.2 Distributed algorithms 59

3.1.3 k-core & dynamic graphs 59

3.2 Problem formulation . 60

3.3 k-core computation . 61

3.4 Experiments . 65

3.4.1 Experimental data 66

3.4.2 Experimental environment 66

3.4.3 Experimental protocol 67

3.4.4 Experimental results 68

3.5 Conclusions . 71

4 topic recommendation : expand your horizon 73

4.1 Background . 75

4.1.1 Latent Dirichlet Allocation 75

4.1.2 Diversification . 76

4.1.3 Unit-Hyper-Sphere 78

4.2 Related . 81

4.3 Problem Statement . 82

4.4 Solution . 82

4.4.1 Approach 1: Orthogonal-topics 82

4.4.2 Approach 2: Sentimented-topics 83

4.4.3 Min Balancing Work 84

4.4.4 FDLS . 87

4.5 Evaluation . 88

4.5.1 Quality . 89

4.5.2 Scalability & Performance 92

4.6 Conclusions and Future Work 95

5 on describing the contents of a dataset 97

5.1 Motivating Example . 98

5.2 Problem Statement . 100

5.3 Identifying the best Description 102

5.3.1 Naïve approach 102

5.3.2 Vertical approach 104

5.3.3 Adaptive . 112

5.4 Evaluation . 115

5.4.1 Results . 117

5.5 Related Work . 120

5.6 Conclusions . 122

contents xiii

6 conclusions 123

bibliography 127

L I S T O F F I G U R E S

1 introduction 1

2 micro-benchmarking graph databases 7

Figure 2.1 Example of Graph. 12

Figure 2.2 Evaluation Framework architecture. 22

Figure 2.3 Loading time (Set A). 36

Figure 2.4 Space occupancy (Set A). 37

Figure 2.5 Space occupancy (Set B). 38

Figure 2.6 Complex Query Performance on ldbc. 39

Figure 2.7 Timeouts (Set A). 40

Figure 2.8 Time for insertions. 41

Figure 2.9 Time for updates and deletions. 42

Figure 2.10 Time for searching by id. 43

Figure 2.11 Time for general selections. 43

Figure 2.12 Time for neighbors traversal. 44

Figure 2.13 Time for filtering on all nodes. 45

Figure 2.14 Time for BFS. 46

Figure 2.15 Time for SP on Fbr-*, fixed-lbl SP & BFS. . . . 47

Figure 2.16 Time for indexed property search. 47

Figure 2.17 Overall time (Set A). 48

Figure 2.18 Time for SP on air-routes. 49

Figure 2.19 Time for SP on ldbc.10. 49

Figure 2.20 Time for fixed traversals on air-routes. 49

Figure 2.21 Time for fixed traversals on ldbc.10. 49

Figure 2.22 Time for pattern matching on air-routes. 50

Figure 2.23 Time for pattern matching on ldbc.10. 50

3 computing & maintaining k–core 57

Figure 3.1 System overview. 61

Figure 3.2 Average insertion/deletion time. 69

Figure 3.3 Amount of exchanged data. 70

Figure 3.4 #paritions vs amount of exchanged data. 70

Figure 3.5 #workers vs insertion/deletion time. 72

4 topic recommendation : expand your horizon 73

Figure 4.1 Thomson solution prefers outer points sacrific-
ing distance and coverage. 86

Figure 4.2 The three different optimization problems have
different optimal results. 86

Figure 4.3 User-study interface. 91

Figure 4.4 Scalability tests, avg running time. 93

xiv

List of Figures xv

5 on describing the contents of a dataset 97

Figure 5.1 A Job Openings dataset. 99

Figure 5.2 Statements on the Jobs dataset. 100

Figure 5.3 Expansion highlights for running example. . . 106

Figure 5.4 Adaptive approach overview. 113

Figure 5.5 Real-World Datasets. 115

Figure 5.6 Number of W1 in synthetic datasets. 116

Figure 5.7 Execution failures % in [V]. 118

Figure 5.8 Mean running time of the 3 approaches on [V]. 118

Figure 5.9 Mean running time of the 3 approaches on [S]. 119

Figure 5.10 Mean running time of the 3 approaches on [R]. 119

Figure 5.11 Adaptive coverage vs Vertical. 120

6 conclusions 123

L I S T O F TA B L E S

1 introduction 1

2 micro-benchmarking graph databases 7

Table 2.1 Test Queries. 16

Table 2.2 Tested Systems. 26

Table 2.3 Datasets Characteristics (Set A). 33

Table 2.4 Datasets Characteristics (Set B). 33

Table 2.5 Evaluation Summary. 52

3 computing & maintaining k–core 57

Table 3.1 Notation. 63

Table 3.2 Experiments data. 67

Table 3.3 Experiments results. 68

4 topic recommendation : expand your horizon 73

Table 4.1 Space used in Figure 4.1 to show Thomson vs
MIN-BW different behavior. 85

Table 4.2 Example of a space for which each optimiza-
tion problem yields a different solutions. . . . 86

Table 4.3 Statistics for the optimal solutions, in bold, com-
puted accordingly to the three different opti-
mization problems; they all differ. Recall, the
first two maximize whereas the last minimizes. 87

Table 4.4 Mean score for each approach. 92

5 on describing the contents of a dataset 97

Table 5.1 Domain Pruning on [V]: % of residual |W1|. . 117

Table 5.2 Domain Pruning on [V]: Dataset with a non-
empty description. 117

6 conclusions 123

xvi

1
I N T R O D U C T I O N

The world is producing data at an unprecedented rate measured
petabytes per minute or in hundreds of zettabytes per year [59, 139].
The rate is only destined to grow as more of humanity not only gets
connected to the internet but will start to rely on it for work, en-
tertainment, and news. Moreover, the produced data vary widely in
complexity and nature.

Data can be unstructured, semi-structured, or structured. Unstruc-
tured data can be seen as opaque blob identified by an id, they do
not have a predefined schema and known data types, and it must be
processed to extract structure and information. Examples of unstruc-
tured data include articles, text documents, web pages, and videos.
On the contrary, structured data follow a schema that can be either
implicit or explicit, and its data types are consistent within a dataset.
Examples of structured data include anything with a predefined type,
like census data, retail and e-commerce data, and transactional data,
such as credit card payments, call logs, and purchase orders.

The data we are dealing with today was nothing like the past. Nev-
ertheless, its evolution path was already being forecasted in 2001 by
D. Laney with the definition of Big Data and its 3V: Volume, Veloc-
ity, and Variety [77]. The definition has since been extended multiple
times, and one of the most important additions was Value [69] key-
word. The value of the different datum kinds and instances depends
upon the value of the information they carry. Research in data mining
and knowledge management has focused on several aspects related
to the extract of value from data.

From this perspective, one of the most valuable and fast-growing
data source are graphs. Graphs, also known as networks, are a form
of data used to model and track interactions that usually are non-
linear. Graphs have become increasingly important for a wide range
of applications [26, 87] and domains, including biological data [25],
knowledge graphs [134], and social networks [54].

Moreover, if the value of the information is time-dependent, the
value of the datum itself becomes time-dependent. For example, a
news article reaches its peak value as soon as it is published and then
diminishes as it gets less relevant. A support ticket is most relevant
until the problem gets resolved, but its value can be maintained in
time by incorporating it into a knowledge base. Instead, the value
of sensor-generated monitoring data peeks two times, first while live
monitoring for faulty equipment, then once it gets aggregated and

1

2 introduction

analyzed over time to enable and optimize, for example, preventive
maintenance.

More generally, most data has two lives: as a single datum and
then as part of a dataset. To extract the maximum value, the data
must be: 1st) made easily and efficiently accessible by the primary
consumer, being it a person for articles, a technician for support tick-
ets, or the alarm system for sensor data; 2nd) securely and durably
stored to allow aggregated processing and analysis at a later time.
This dual problem of keeping the data available while also safely
storing it, has been widely studied since the advent of the computer.
Different, specialized solutions have been devised, each accounting
for the different data types, velocity, scale, and requirements of the
consuming services. Some solutions focus on the first life of the data
where it is created, updated, and manipulated, often in an interac-
tive setting (OLTP); others concern themselves only with the second
one offering high performance, possibly distributed, batch processing
(OLAP). Two data types of particular interest are tabular data (struc-
tural data organized in a table) and graph data. Tabular data is the
most mature domain; for example, RDBMS have grown to support a
greater volume of data and more complex workloads. Entire frame-
works, completed with novel files systems and files formats, were
born, e. g., Apache Hadoop, Apache Spark, HDFS, and Parquet. On
the contrary, support for graph data is still young, but it has recently
received much attention as the number and complexity of available
graphs increased. Most graph data management solutions are either
strictly graph processing systems [46, 89, 93] or graph databases (GDB for
short) [11]. Graph processing systems focus on complex batch anal-
ysis at a large scale, implementing computationally expensive graph
algorithms. Most of them work only on a snapshot of the graph. They
can, in some sense, be seen as the graph world parallel to OLAP sys-
tems, while graph databases the parallel to the OLTP systems. GDBs
indeed focus on storage and querying tasks where the priority is on
high-throughput and transactional operations.

Graph processing systems and their evaluation have received con-
siderable attention [46, 57, 89, 93]. Instead, graph databases lag far
behind. Since graph management systems are a relatively new tech-
nology, their features, performances, and capabilities are not yet fully
understood nor agreed upon. Thus, there is a need for effective bench-
marks to provide a comprehensive picture of the different systems.
This is of major importance for practitioners in order to understand
the capabilities and limitations of each system, for researchers to de-
cide where to invest their efforts, and for developers to be able to
evaluate their systems and compare with competitors.

Safely storing and managing graphs should not be a limiting factor
for high-performance graph analysis and processing. Graphs are be-
coming so large that processing them on a single machine becomes

introduction 3

challenging. Even with graphs partitioned by distributed GDBs, or
other solutions, efficiently processing them is complicated by the na-
ture of most graph processing systems. Unfortunately, they assume
sole control over the data, its data format, and its partitioning. This is-
sue is usually handled by exporting and reimporting snapshots. How-
ever, continuously duplicating and shuffling data around is clearly
suboptimal. There is a need for new algorithms and systems capable
of working with externally managed and already partitioned data to
bring graph data management and graph data processing on par with
their tabular data counterpart.

While many of the interactions on the web are modeled as graphs,
most of the content itself is text or can be processed as such, e. g.,
videos by their captions. The source, quality, focus, and trustworthi-
ness of the content vary. Governments are publishing official data,
established journals are reposting articles, people are blogging their
stories, users are reviewing products and services, and bad actors are
spreading misleading information and fake news [35]. The amount
of content produced every day means no human can dream of read-
ing through all of it. Users rely on search engines, news feeds, and
recommender systems to process all the data and provide a person-
alized content selection. People tend to prefer sources that reinforce
their pre-existing beliefs [99]. Since such systems optimize for what-
ever the users like, whenever a controversial topic arises, they get
more polarized as they see only a part of the reality and feel support
from other users in the same position. While this phenomenon ap-
pears in many domains, it is most well documented in forums and
social networks [30, 31, 128]. Nevertheless, studies showed it is pos-
sible to actively fight polarization and misinformation by providing
the user with a comprehensive set of viewpoints [55, 82, 83, 105, 143].
Now, more than ever, there is a need for novel systems to provide
holistic overviews of discussion topics.

Given the value of the raw data itself and the possibility of addi-
tional value from its processing and integrations with different data,
many companies and organizations store much of the generated data
whether they already have a plan for it or not. However, extracting
novel information or insights from raw data is not trivial. Selecting
the most appropriate analysis and processing to perform requires a
good understanding of the datasets and their content. This knowl-
edge is typically acquired through data exploration. In data explo-
ration, the users start by looking at parts of the data and making
their way to more specific or different parts until they find what is
really of interest in it. Given the ever-increasing number of datasets
and their growth in size, the effort required to skim through a data
repository in this manner is colossal. We claim that there is a need for
a more systematic data exploration approach. To achieve this, a user

4 introduction

must first obtain a compact and informative overview of the contents
of the data.

contributions This thesis contributes to Understanding and Man-
aging Complex Datasets in the following ways.

In Chapter 2, we provide a complete and systematic evaluation of
existing graph databases, that is not provided by any other existing
work to date. We test 51 classes of operations with both single queries
and batch workloads, as opposed to the 4-13 that existing studies have
done, and we scale our experiments up to 30 million nodes and 178+
million edges, as opposed to a few thousand nodes and few million
edges of previous works. We provide a principled and systematic
evaluation methodology based on microbenchmarks. We materialize
it into an evaluation suite, designed with extensibility in mind and
containing datasets, queries, and scripts. We apply this methodology
on the major graph databases available today, using different real and
synthetic datasets — from co-citation, biological, knowledge base,
and social network domains — and discuss our findings.Our find-
ings have illustrated the advantages microbenchmarks can offer prac-
titioners, developers, and researchers and how they can help them
better understand the graph database system’s design choices, per-
formances, and functionalities. As a result, we have presented several
findings that help understand the trade-offs between native and hy-
brid graph database systems, their effect on important graph queries
like traversals and pattern matching, and their current capability to
handle highly heterogeneous graphs.

In Chapter 3, we tackle the problem of processing existing large
graphs that are already stored in a distributed way. We developed
a technique that can exploit as much as possible the existing topol-
ogy of the graph data and perform the k-core decomposition in a
cooperative way among the distribution nodes. Our solution is based
on the idea of recomputing the coreness only for those nodes of the
graph that are affected by the graph updates. The propagation of the
effect is done first inside the partition that exists in a single node and
then across partitions by considering the cut edges, i. e., edges between
nodes of different partitions. We present our algorithm, encompass-
ing initial k-core decomposition and coreness maintenance strategy,
and implement it on top of akka [148], a framework for building dis-
tributed and resilient message-driven applications. By running exper-
iments on a variety of both real and synthetic datasets, we show that
the proposed method is interesting in the case of very large graphs
with a very satisfactory performance and scalability for large graphs.

In Chapter 4, we address the polarization problem in content rec-
ommendation systems. We are interested in building a system whose
recommended articles cover, depending on the text corpora at hand,
the different perspectives or the different opinions and sentiments for

introduction 5

the subject of the query document and its closely related topics. We
thus propose two new approaches. The first, Orthogonal-topics, focuses
on the relationship of the topics, and it has been designed to general-
ize well on all datasets. The second, Sentimented-topics, focuses on the
sentiment expressed by the documents on the different topics, and it
has been designed to extract and exploit as much information as pos-
sible from text corpora that contain opinionated articles. To support
these approaches, we also propose a new diversity-metric, MIN-BW,
and a new optimization algorithm, FDLS, to find the most diverse
set based on the metric mentioned above. To evaluate our solution
we first perform a user study where we ask the users to compare the
quality of the recommendations generated by our two approaches
(orthogonal-topics + MIN-BW and sentimented-topics + MIN-BW)
against the state-of-the-art recommender from Abbar et al. [1] on real-
world data. The results show that both our approaches outperform
in all aspects, on average, the solution from Abbar et al. [1], especially
in diversity and usefulness. We then validate the scalability and pre-
cision of FDLS by performing an extensive set of tests on synthetic
data. We compare its running time and solution quality (accordingly
to MIN-BW score) with the state-of-the-art approximation algorithms
for similar diversity-metrics [116]. The results demonstrated that the
FDLS algorithm is a good approximating for MIN-BW and scales far
beyond what the competition can do; it handles the most complex
test cases in less than 175ms, whereas the other algorithms exceed
20s.

In Chapter 5, we streamline the exploration of data lakes and data
warehouses. Several tools and techniques have been proposed in the
past with the purpose of helping the user understand the data [3,
36, 66, 70, 124, 147]. We focus on the problem of generating concise
and informative data summaries; in particular, we see it as a multi-
objective optimization problem. We formally define the notion of a
data description and the intuition behind the concept of goodness for
such a description. We propose three solutions for selecting the best
description, namely, the Naïve, which considers all the different de-
scriptions and evaluates them; the Vertical, which exploits a smart
exploration strategy and heavy pruning; and the Adaptive, which
builds on the Vertical and brings in an auto-tuning capability for its
parameters. We then evaluate the solutions’ scalability and perfor-
mance on both synthetic and real-world datasets. Results show the
effectiveness of our pruning strategies in Vertical and the increased
scalability of Adaptive.

dissertation organization The remaining of this thesis is or-
ganized as follows. In Chapter 2 we present our Graph Databases
Evaluation framework and the insights gathered testing the existing
systems with it. In Chapter 3 we present our approach at comput-

6 introduction

ing and maintaining the k-core decomposition of a distributed graph
such that the process exploits the existing topology of the graph and
executes cooperatively among the distribution nodes. In Chapter 4

we present two new approaches to recommend articles that provide a
holistic view of the discussion topic at hand. In Chapter 5 we present
our solution to generate concise and complete datasets descriptions.
Finally, we conclude with a summary of our results and a possible
future work in Chapter 6.

2
M I C R O - B E N C H M A R K I N G G R A P H D ATA B A S E S

Graphs have become increasingly important for a wide range of ap-
plications [26, 87] and domains, including biological data [25], knowl-
edge graphs [130], and social networks [54]. As graph data is becom-
ing prevalent, larger, and more complex, the need for efficient and
effective graph management is becoming apparent. Since graph man-
agement systems are a relatively new technology, their features, per-
formances, and capabilities are not yet fully understood or agreed
upon. Thus, there is a need for effective benchmarks to provide a
comprehensive picture of the different systems. This is of major im-
portance for practitioners in order to understand the capabilities and
limitations of each system, for researchers to decide where to invest
their efforts, and for developers to be able to evaluate their systems
and compare with competitors.

There are two categories of graph management systems that ad-
dress two complementary yet distinct sets of functionalities. The first
is that of graph processing systems [46, 89, 93], which analyze graphs to
discover characteristic properties, e. g., average connectivity degree,
density, and modularity. They also perform batch analytics at large
scale, implementing computationally expensive graph algorithms, such
as PageRank [112], SVD [39], strongly connected components iden-
tification [135], and core identification [17, 28]. Those are systems
like GraphLab, Giraph, Graph Engine, and GraphX [150]. The sec-
ond category is that of graph databases (GDB for short) [11]. Their
focus is on storage and querying tasks where the priority is on high-
throughput and transactional operations. Examples in this category
are Neo4j [106], OrientDB [110], Sparksee [129] (formerly known as
DEX), Titan[136] (recently renamed to JanusGraph), ArangoDB[16]
and BlazeGraph [121]. To make this distinction clear, graph process-
ing systems can, in some sense, be seen as the graph world parallel
to OLAP systems, while graph databases as the parallel to OLTP sys-
tems.

Graph processing systems and their evaluation have received con-
siderable attention [46, 57, 89, 93]. Instead, graph databases lag far
behind. Our focus is specifically on graph databases aiming to reduce
this gap, with a two-fold contribution. First, we introduce a novel eval-
uation methodology for graph databases that complements existing
approaches, and second, we apply it to gather several insights on the
performance of the existing GDBs. Some experimental comparisons
of graph databases do exist [37, 68, 74]. However, they test a limited
set of features providing a partial understanding of the systems, with

7

8 micro-benchmarking graph databases

experiments at a small scale making assumptions not verifiable at a
larger scale [68, 74], sometimes provide contradicting results, and fail
to pinpoint the fine-grained limitations that each system has.

Motivated by the above, we provide a complete and systematic eval-
uation of existing graph databases, that is not provided by any other
existing work to date. We test 51 classes of operations with both sin-
gle queries and batch workloads, as opposed to the 4-13 that existing
studies have done, and we scale our experiments up to 30 million
nodes and 178+ million edges, as opposed to a few thousand nodes
and few million edges of previous works. Our tests cover all the types
of insert-select-update-delete queries that have so far been considered
and, in addition, cover a whole new spectrum of use-cases, data types,
and scales. Our extended spectrum of tests includes pattern matching
queries (for these systems that support them) and fixed and dynamic
traversal queries. Our selection of datasets is spanning in all dimen-
sions: their size ranges from 2.3k/7.1k up to 30M/178M nodes/edges;
some are synthetic, while some are real; their nature ranges from
co-authorship networks to airlines-routes networks, from social net-
works to heavenly heterogeneous knowledge bases.

Moreover, the sheer number of systems, systems versions, queries,
and datasets we planned to test made clear we needed a solution
for reliably and repeatably evaluating the systems autonomously and
automatically. This need was exacerbated by the velocity with which
GDBs are being developed, which also lead us to evaluate multiple
versions of some systems. We then designed and implemented a flex-
ible evaluations suite capable of automatic scheduling and perform-
ing the different kinds of tests (one-shot or batch)in complete isola-
tion, and where systems, queries, and datasets can be added with
minimum effort, The evaluation suit also handles transient and per-
manent failures of the database systems, ensuring each has the best
conditions to run.

The fact that GDBs are still a relatively new and volatile technology
makes even more apparent the need for evaluation frameworks.

micro-benchmarking . In designing the evaluation methodol-
ogy, we follow a principled micro-benchmarking approach. To substan-
tiate our choice, we look at the test queries provided by the popular
LDBC Social Network benchmark [45], and show how the produced
results are ambiguous and limited in providing a clear picture of the
advantages of each system. So, instead of considering queries with
such a complex structure, we opt for a set of primitive operators.
The primitive operators are derived by decomposing the complex
queries found in LDBC, the related literature, and some real applica-
tion scenarios. By testing primitive operators, we can better pinpoint
underperforming opaque system components. Furthermore, the per-
formance of any complex query can be explained by the performance

micro-benchmarking graph databases 9

of the primitive operations it is composed of and the components sup-
porting them. Query optimizers may change the order of the basic
operators or select among different implementations, but the primi-
tive operator performance is always a significant performance factor.
This evaluation model is known as micro-benchmarking [23] and is sim-
ilar to the principles that have been successfully followed in the de-
sign of benchmarks in many other areas [6, 37, 64, 65, 68, 74]. Note
micro-benchmarking is not intended to replace macro-benchmarks.
Macro-benchmarks are equally important in order to evaluate the
overall performance of query planners, optimizers, and caches. They
are, however, limited in identifying underperforming operators at a
fine grain.

Our evaluation provides numerous specific insights. Among them,
three are of particular importance: (i) we highlight the different in-
sights that micro and macro benchmarks can provide; (ii) we experi-
mentally demonstrate limitations of the tested hybrid systems when
dealing with localized traversal queries that span across multiple
long paths, such as the breadth-first search, and with vertex-centric
pattern-matching queries; and (iii) we identify the trade-offs between
the logical and physical data organizations, supporting the choice
of the native graph databases we study to separate structural infor-
mation from the actual data. For example, we found that the most
effective organization for typical graph queries is storing nodes and
edges as records directly linked to each other and with pointers to
off-loaded structures for node attributes.

Note that the current work does not consider any distribution fea-
tures, and the focus is on single-machine installation.

contributions . Our specific contributions are as follows:

• We explain the limitations of the existing graph database eval-
uations and clarify the motivations for the current evaluation
study;

• We provide an extensive list of primitive operations (queries)
that graph databases should support;

• We introduce the first thorough experimental evaluation method-
ology based on the micro-benchmarking model for Graph Databases;

• We materialize the methodology into an open-source testing
suite 1, based on software containers and Apache TinkerPop [14],
that automates the addition of new systems, tests, and datasets;

• We provide a technical analysis of the state-of-the-art systems
we evaluate;

1 https://graphbenchmark.com

https://graphbenchmark.com

10 micro-benchmarking graph databases

• We apply this methodology on the major graph databases avail-
able today, using different real and synthetic datasets — from
co-citation, biological, knowledge base, and social network do-
mains — and discuss our findings.

The remainder of this chapter is organized as follows. First, the
related studies are presented in Section 2.1, followed by a description
of the graph data model and the challenges of its implementation
(Section 2.2). A complete list of queries is provided in Section 2.3. The
evaluation suite is described in Section 2.4. A technical analysis of the
evaluated state-of-the-art systems is presented in (Section 2.5). The
datasets are introduced alongside their characteristics in Section 2.6.
Then the results of the test are presented and discussed in Section 2.8.
Finally, the chapter terminates with our conclusions 2.9.

2.1 related work

2.1.1 Evaluating Graph Processing Systems

There are plenty of works on evaluating graph processing systems [27,
57, 90, 94, 153]. Such systems are designed for computationally expen-
sive algorithms that often require traversing the complete graph mul-
tiple times to obtain an answer, like page rank, or community detec-
tion. Such systems are very different in nature from graph database
systems; thus, in their evaluation, “needle in the haystack” queries
like those that are typical of transactional workloads are not consid-
ered. Of course, there are proposals for unified graph processing and
database systems [46], but this idea is in its infancy. Our focus is not
on graph processing systems or their functionalities.

2.1.2 Evaluating Graph Databases

In contrast to graph processing systems, graph databases are designed
for transactional workloads and “needle in the haystack” operations,
i. e., queries that identify and retrieve a small part of the data. Exist-
ing evaluation works [9, 11] for such systems are limited in describ-
ing the systems implementation, data modeling, and query capabil-
ities but provide no experimental evaluation. A different group of
studies provides an experimental comparison but is incomplete and
fails to deliver a consistent picture. In particular, one work [37] ana-
lyzes only four systems, two of which are no longer supported, with
small graphs and a restricted set of operations. Two other empiri-
cal works [68, 74] compared almost the same set of graph databases
over datasets of comparable small sizes but agreed only partially on
the concluded results. Moreover, all existing studies do not test with
graphs at a large scale and with rich structures. Our work comes to fill
precisely this gap in graph database evaluation by providing the most

2.2 graph databases 11

extensive evaluation of the state-of-the-art systems in a thorough and
principled manner.

2.1.3 Distribution & Cluster Evaluation

In the era of Big Data, it is important to understand the abilities
of graph databases in exploiting parallel processing and distributed
architectures. This has already been done in graph processing sys-
tems [57, 90, 140]. However, distributed data processing is out of the
scope of the current work for several reasons. First, not all the sys-
tems support distribution in the same way, i. e., partitioning, replica-
tion, or sharding. Second, an evaluation of distribution capabilities
to be complete would require considering additional parameters like
the number of nodes and concurrency level. Third, despite the pop-
ularity of distributed graph management systems, single machine in-
stallations are still a highly popular choice [122]. For these reasons,
we consider the study of distribution as our natural follow-up work
since the question about which system is able to scale out better may
only come after the understanding of its inherent performance [97,
120].

2.1.4 Graph Benchmarks

There is already a number of benchmarks [2, 10, 12, 45] for eval-
uating systems for RDF or social data. Yet, those benchmarks are
application-specific. For instance, RDF benchmarks [2] focus only on
finding structures that match a set of RDF triples. While another
graph benchmark, LDBC [45], simulates queries on a social graph. We
have used such benchmarks, among others, to create our list of test
queries. Moreover, in our experiments, we illustrate the limitations of
complex benchmarks. Our goal is not to replace such benchmarks but
to enhance them with the extra insights that our own methodology
can bring.

2.2 graph databases

Graph databases adopt the attributed graph model [11]. Graph data is
data consisting of nodes (also called vertexes) and connections be-
tween them, called edges. Edges have labels, and every node or edge
has a set of attributes or properties, i. e., a set of name-value pairs. In
the implementation of such a model, graphs and edges are typically
first-class citizens and are assigned internal identifiers.

12 micro-benchmarking graph databases

2.2.1 The Graph Data Model

Formally, we can axiomatically assume the existence of an infinite set
of names N and an infinite set of values A. A property is an element
from the set N×A. A graph is a tuple G=〈V ,E, l,p〉 where V is a set
of nodes, E is a set of edges between them, i. e., E⊆V×V , l:{V∪E}→N

is a labeling function, and p:{V∪E}→2N×A is a property assignment
function on edges and nodes.

Note that, in the model above, different nodes and edges are al-
lowed to have exactly the same set of properties. Systems thus need
to extend the implementation of the above model with unique identi-
fiers to distinguish the different nodes and edges. In particular, they
consider a countable set O of unique values and a function id:{V∪E}→O

that assigns a unique identifier to each node and edge. Since nodes
and edges are fundamental building blocks of graph data, they are
typically implemented as atomic objects in the systems and may be
referred to as such in some parts of the text that follows.

lives_in

person

personcountry

ma
rr
ie
d

in
:

19
92

president_of
since: 2009

name: U.S.A.
population: 328M

fname: Barack
lname: Obama

fname: Michelle
lname: Obama

married
in:

1992

v1v3

v2

e4

e3

e1

e2

Figure 2.1: Example of Graph.

Figure 2.1 illustrates a portion of some graph data where one can
see the identifiers as a boxed number, the properties as pairs sepa-
rated by the colon symbol “ : ”, and the labels in blue and italics.

2.2.2 Implementing a Graph Database

There are two ways to implement a graph database system (GDBMS).
One is to design and build it from scratch so that nodes and edges are
first-class citizens. Such systems are referred to as native. The other
approach is to delegate some functionalities to an external system,
often designed for a different model. Examples of used third-party
external systems include document stores and relational DBMS. The
systems designed using this architecture are referred to as hybrid. The
main challenges faced in both the native and the hybrid systems are
the efficient and effective storage of the graph structures as well as
the retrieval of those parts of the graph that satisfy the specifications
of a query at hand.

2.2 graph databases 13

When implementing a native GDBMS, since the nodes and the edges
have a more central role in the model and in the query processing
than that of the attributes and labels, it is often the case that the latter
are kept in separate structures, speeding-up the traversal and retrieval
operations. In practice, each atomic object (e. g., a node) is annotated
with pointers to other objects connected to it (e. g., incoming and out-
going edges). As a result, when processing a query, operations on
the structures are translated into a series of direct pointer traversals,
which for atomic objects have a constant-time cost. Labels are usu-
ally the only additional information stored with nodes and edges. In
the simplest solutions, they are stored as explicit annotations in the
objects themselves; in more sophisticated solutions, they are used to
cluster nodes and edges, with the implicit intuition that objects with
the same label should have a similar structure. Not embedding the
properties helps with traversal queries based only on labels but com-
plicates queries that access both structure and properties because the
two information resides in two different structures and must then be
joined; nevertheless, efficient implementations exist.

When implementing a hybrid architecture nodes and edges are usually
stored as single tuples. Like for the native architecture, the properties
can either be inlined in the object’s entry or get their own tuple in
a different table. The first approach requires processing more pages
for structural queries, while the second avoid joining the labels tables
for mixed or non-structural queries. In both cases, the tables are then
usually partitioned per label either explicitly or implicitly (dedicate
table or table partition). Moreover, this architecture usually makes
use of heavy indexing to speed up both property-based search and
structural queries.

When using document stores as the underlying system, nodes and
edges are represented as documents storing the various properties
of the objects. Structural connections are modeled as document at-
tributes. For simple traversal queries, i. e., queries that do not access
object properties, ad-hoc indexes are added to navigate the graph’s
structure. In general, search and filtering by properties in hybrid sys-
tems is usually a highly optimized operation, while traversing the
structure is less efficient.

2.2.3 The Heterogeneity Problem in Graphs

A significant application of the graph model is that of modeling
Knowledge Graphs [107]. Knowledge graphs have historically adopted
the RDF model and been stored in triplestores [149]. Recently much
interest has been shown in modeling RDF [13] as property graphs.
Thus, we would like to understand the challenges of managing KGs
using graph databases. A typical characteristic of knowledge graphs
is that they model an open domain. By studying well-known knowl-

14 micro-benchmarking graph databases

edge graphs, like DBpedia, Yago, and WikiData, one can see that the
structures used model entities such as people, places, things, orga-
nizations, locations, work of art, events, publications, fields of study,
and so forth [103, 134, 142]. As a result, modeling a knowledge graph
through a property graph would require a very large number of types
which poses certain strains in storage and querying. Furthermore,
due to the open domain nature, entities of the same type may be
highly heterogeneous. Attributes with the same name of entities of
the same type may have different value types. For example, the price
of a product may be expressed for in an instance as a sole number
for the default currency, e. g., price:15, whereas in another can be ex-
pressed as the local price in a different currency, e. g., price:‘13eur’.
This heterogeneity poses significant challenges on how the system
can specialize the storage space and optimize the queries.

2.3 test operations : queries

The set of queries selected for our tests adhere to a micro-benchmark
approach [23] that has been repeatedly used in many cases [43, 47,
138]. The query list (Table 2.1) is the result of an extensive study of the
literature and many practical scenarios. Furthermore, it also encom-
passes the elementary operations that we have identified by decom-
posing the many complex scenarios we found. We obtained in this
way a set of common operations that are independent of the schema
and the semantics of the underlying data; hence, they enjoy generic
applicability.

In the query list, we consider different types of operations. We con-
sider all the “CRUD” kinds, i. e., Creations, Reads, Updates, Deletions,
for nodes, edges, their labels, and their properties. Specifically for the
creation, we treat the initial loading of the dataset and the individual
object creations as separate cases. The reason is that the first happens
in bulk mode on an empty instance, while the second at runtime with
data already in the database. The category of Reads operations com-
prises statistical operations, content search, and filtering content.

We consider next the Traversal operations across nodes and edges,
and Pattern matching queries, which are characteristic for graph databases.
We recall that operations like finding the centrality or computing
strongly connected components are typical in graph processing sys-
tems and not in graph databases. The categorization we follow is
aligned to the one found in other similar works [9, 68, 74] and bench-
marks [45]. The complete list of queries can be found in Table 2.1 and
is briefly presented next.

In addition to those queries, we also run a set of complex queries
in order to compare the insights they provide with the results of the
other operators, as well as to test the query optimization capabilities

2.3 test operations : queries 15

of the systems. These queries are taken from a social network appli-
cation benchmark [10].

query description cat

1. readGraph("/path"), g Load dataset into the graph ‘g’ L

2. g.addVertex(l) Create new node with label l

C

3.+ g.addVertex(l).property(p,val) Same as Q.2 adding property p=val
4. v.addEdge(l , v2) Add edge l from v to v2
5. v.addEdge(v2 , l , p, val) Same as Q.3, adding property p=val
6. v.property(p, val) Add property p=val to node v
7. e.property(p, val) Add property p=val to edge e
8. g.addVertex(. . .); g.addEdge(. . .) Add a new node, and then edges to it

9. g.V.count() Total number of nodes

R

10. g.E.count() Total number of edges
11. g.E.label.dedup() Existing edge labels (no duplicates)
12.+ g.V.label.dedup() Existing node labels (no duplicates)
13. g.V.has(p, val) Nodes with property p=val
14.+ g.V.has(l, p, val) Same as Q.13 limited to node label l
15. g.E.has(p, val) Edges with property p=val
16. g.E.hasLabel(l) Edges with label l
17.+ g.V.hasLabel(l) Nodes with label l
18. g.V(id) The node with identifier id
19. g.E(id) The edge with identifier id

20. v.property(p, val) Update property p=val for vertex v
U

21. e.property(p, val) Update property p=val for edge e

22. v.remove() Delete node v

D
23. e.remove() Delete edge e
24. v.property(p).remove() Remove node property p from v

25. e.property(p).remove() Remove edge property p from e

26. v.inE() Edges incoming to v

T

27. v.outE() Edges outgoing from v

28. v.both(‘l’) Edges adjacent to v with label l
29. v.inE.label.dedup() Labels of in coming edges of v (no dupl.)
30. v.outE.label.dedup() Labels of outgoing edges of v (no dupl.)
31. v.bothE.label.dedup() Labels of edges of v (no dupl.)
32. g.V.where(inE.count()>=k) Nodes of at least k-incoming-degree
33. g.V.where(outE.count()>=k) Nodes of at least k-outgoing-degree
34. g.V.where(bothE.count()>=k) Nodes of at least k-degree
35. g.E.inV.dedup() Nodes having an incoming edge
36. v.repeat(both().simplePath()) Undirected Breadth-first traversal

.until(loops().is(k)) from v

37. v.repeat(both(ls).simplePath()) Undirected Breadth-first traversal
.until(loops().is(k)) from v on labels ls

38. v.repeat(both().simplePath()) Unweighted Shortest Path
.until(v2) from v to v2

39. v.repeat(both(ls).simplePath()) Same as Q.38 but only following
.until(v2) labels ls

40.+ v.out().out().out().where(v2) Paths of length 3 from v to v2
41.+ v.both().both().both().where(v2) Same as Q.40 but undirected
42.+ v.out(l1).out(l2).out(l3).where(v2) Same as Q.40 with labels l1, l2, l3
43.+ v.bothE(l1).bothE(l2). Same as Q.41 with labels l1, l2, l3

.bothE(l3).where(v2)
44.+ v.out(l1).out(l2).out(l3) All Paths from v with labels l1, l2, l3
45.+ v.both(l1).both(l2).both(l3) Same as Q.44 but undirected

16 micro-benchmarking graph databases

query description cat

46.+ .match(.as(a).out(l).as(b) Find triangles containing edge label l

P

.as(b).out().as(c)

.as(a).out().as(c))
47.+ .match(.has(‘label’,l) Find triangles for node label l

.as(a).out().as(b)

.as(b).out().as(c)

.as(a).out().as(c))
48.+ .match(.hasId(v) Find triangles in node v

.as(a).out().as(b)

.as(b).out().as(c)

.as(a).out().as(c))
49.+ .match(.as(a).out(l).as(b) Find squares containing edge label l

.as(b).out().as(c)

.as(a).out().as(d))

.as(d).out().as(c))
50.+ .match(.has(‘label’,l) Find squares for node label l

.as(a).out().as(b)

.as(b).out().as(c)

.as(a).out().as(d))

.as(d).out().as(c))
51.+ .match(.hasId(v) Find squares in node v

.as(a).out().as(b)

.as(b).out().as(c)

.as(a).out().as(d))

.as(d).out().as(c))

g is the graph; v and e are node/edges, ls is a list of labels.
+ Hetereogenity support (C, R), fixed tracersal (T), pattern matching (P) – Test-Set B.

Table 2.1: Test Queries by Category (in simplified Gremlin 3 syntax).

2.3.1 [L] Load Operations

Data loading is a fundamental operation. Given the size of modern
datasets, understanding the speed and complexity of this operation is
crucial for evaluating a system. The specific operator (Query 1) reads
the graph data from a GraphSON [15] file. Additional operations may
be needed for loading, e. g., to deactivate indexing, but in general,
they are vendor-specific, i. e., not found in the Gremlin specifications.

2.3.2 [C] Create Operations

Create operators may be for nodes, edges, or even properties (on pre-
existing nodes or edges). To create a complex object, i. e., a node with
many connections to other existing nodes, these operators must often
be called multiple times. We tested the insertion of nodes alongside
some initial properties (Queries 2, and 3), the insertion of edges with
and without properties attached (Queries 4, and 5), the insertion of
properties on top of existing nodes or edges (Queries 6, and 7), and
finally, the insertion of a new node, alongside several edges that con-

2.3 test operations : queries 17

nect it to other nodes already in the database (Query 8). Note that
one does not create an edge label without an edge, so edge labels are
instantiated with the edge instantiation. In some of these (and other
queries below) the node (or the edge) is explicitly referred through
its unique id, and thus no search task is involved, as the lookup for
the object is performed before the time is measured.

2.3.3 [R] Read Operations

graph statistics . (Queries 9, 10, 11, and 12) The evaluation
set includes four operations that require scanning the entire graph
dataset. The first one scans and counts all the nodes; the second one
counts all edges; the last two counts the number of distinct edge-
labels and node-labels, respectively. Performing the last two opera-
tions also tests the ability of the system to maintain intermediate in-
formation in memory since it requires eliminating duplicates before
reporting the results.

search by property. (Queries 13, 14, and 15) These are the ba-
sic operators used for content filtering since they search for nodes
(or edges) with a specific property. The name and the value of the
property are provided as arguments.

search by label . (Queries 16, and 17) This task is similar to the
previous but filters nodes and edges with a given label. Labels are
fundamental components in a graph, and probably, for this reason,
the syntax in Gremlin 3 has distinct operators for labels and proper-
ties, while in 2.6, they are treated equally.

search by id. (Queries 18, and 19) As it happens in almost any
other kind of database, a fundamental search operation is searching
by a key, i. e., ID. These two queries retrieve a node and an edge,
respectively, via their unique identifier.

2.3.4 [U] Update Operations

Graphs structure updates consist only of insertions and deletions. As
such, here, we test only updates on properties. Queries 20 and 21 test
the ability of a system to change the value of a property of a specific
node or edge.

2.3.5 [D] Delete Operations

We include four types of deletions: the deletion of a node (Query 22),
which implicitly requires also the elimination of all its properties and
edges; the deletion of an edge and its attached properties (Query 23);

18 micro-benchmarking graph databases

and the deletion of a property from a node or an edge (Queries 24,
and 25).

2.3.6 [T] Traversals

direct neighbors . (Queries 26, 27, and 28) A popular operation
is retrieving all the nodes directly reachable from a given node (1-
hop), i. e., those that can be found by following either an incoming or
an outgoing edge. Finally, a specific query performs a 1-hop traversal
only through edges with a specific label, allowing more advanced
filtering.

node edge-labels . (Queries 29, 30, and 31) Given a node, we
often need to know the labels of the incoming, outgoing, or both
types of edges. This set of three queries performs these three kinds of
retrieval, respectively.

k-degree search . (Queries 32, 33, 34, and 35) For many real ap-
plication scenarios, there is a need to identify nodes with many con-
nections, i. e., edges, since this is an indicator of the importance of a
node. The first three queries retrieve nodes with at least k edges. They
differ in which type of edges they consider: incoming, outgoing, or
both. The fourth query identifies nodes with at least one incoming
edge and is often used when retrieving a hierarchy.

breadth-first search . (Queries 36, and 37) Some search oper-
ations prefer nodes found in close proximity and are better imple-
mented with a breadth-first search *(BFS) from a given node. These
two queries test the support for BFS. In particular, the second one is
a special case of the former that considers only edges with a specific
label.

shortest path . (Queries 38, and 39) Another traditional opera-
tion on graphs is the discovery of the path between two nodes that
contains the smallest number of edges. Thus, we include these two
queries, with the second query being the special case that considers
only edges with a specific label.

fixed traversals . (Queries 40, 41, 42, 43, 44, and 45) In contrast
to these operations that require recursive traversal, there are traver-
sals of fixed length. Here we implement six variations of this query.
They search for paths of length 3, with or without a specific destina-
tion node, an exact sequence of labels to traverse, or the directionality
of the traversal.

2.4 evaluation suite 19

2.3.7 [P] Pattern Matching

Queries [46-51] test searching for structural patterns. In particular,
Queries 46, 47, and 48 look for triangles, while the 49, 50 and 51 look
for square shapes in the graph.

2.3.8 Complex Query Set

In order to compare the insights obtained using the micro-benchmark
approach with those using a macro-benchmark and to test the ability
of the systems to optimize complex queries, we also created a work-
load of 13 queries based on the LDBC Social Network benchmark [10,
45]. These queries mimic the tasks that may be performed by a new
user in the system, from the creation of an account (creating a new
node with attributes) and fill-up of the profile (connecting to nodes
representing the school, place of birth, and workplace), to the task
of retrieving recommendations of items or other users. For these op-
erations, we include in the workload queries composed of multiple
primitive operators, multiple join predicates, sorting, top-k, and max
finding [86].

2.4 evaluation suite

2.4.1 Requirements

Building a successful evaluation suite is a challenging task. It is not
enough to have the list of tests to perform, the graph database that
needs to be evaluated, and the data on which the evaluation tasks will
run. There is a need for a complete suite that facilitates the execution
of the tests in a systematic way and the collection of all the necessary
information.

One of the first requirements is the understanding of the use of the
different resources during the execution of the tests. Typically, this can
be achieved by embedding the necessary messages that report the
resource usage in the right format and the right time into the code of
the graph database. Unfortunately, this is not always possible since
the graph databases are handled as black boxes and do not always
provide such functionality. Thus, there is a need for an alternative
solution.

The second requirement is reproducibility and fairness. All the sys-
tems need to be tested under the same conditions, on the same datasets,
and be provided with the same input. We should avoid situations in
which the experimental results are affected by a cold start, a system
has more information than another, or some execution benefits by the
presence of meta information like indexes. Furthermore, the results

20 micro-benchmarking graph databases

of any test execution should be easily and consistently reproducible;
otherwise, they will be of minimal value.

A third requirement is extensibility. It is not always possible to pre-
dict all the possible scenarios that may become of interest in the fu-
ture. For this reason, any evaluation suite should be able to be easily
enhanced with additional tests, datasets, or metrics.

Evaluation action may be specialized for each dataset. We refer to
this as adaptability. Several tests may require vertexes, edges, or paths
with specific properties. The systems shall automatically identify suit-
able samples or outright refuse to execute the test if the necessary
conditions cannot be met.

Last but not least, the results of the tests should become available
in an interchangeable and user-friendly format to allow for easy commu-
nication.

2.4.2 Technological Solutions

To achieve the above requirements, a number of technological solu-
tions have been employed.

gremlin query language . For fairness, all the systems should
be able to understand in the same way the task that is to be per-
formed, which means that there should be a common formal query
language. For this, the Apache TinkerPop - Gremlin 2 has been adopted.
The Gremlin [117] graph traversal language is a component of the
Apache TinkerPop framework, an open-source, vendor-agnostic, graph
computing framework. The project aims to provide the missing layer
of compatibility between existing graph databases and graph process-
ing solutions. It is the query language with the most widespread
support across graph databases, and it can be seen as the SQL of
the graph database systems [60] aspiring to be what ODBC is for
relational databases and much more. There are Gremlin clients for
groovy, python, or java. An application connects and interacts with
the database by sending “commands” in a standard Gremlin format,
which are then translated to native commands and sent for execution
to the database engine.

docker containers . We employed Linux containers through
the Docker application to control the environment in which an evalu-
ation test is running and to guarantee its portability, reproducibility,
and extensibility. A Linux container is a combination of Linux names-
paces and control groups (cgroups) that allow for packaging and iso-
lating applications with their entire runtime environment, effectively
acting as operating-system-level virtualization. Linux cgroups is a fea-
ture that allows limiting, tracking, and isolating process resources

2 http://tinkerpop.apache.org

http://tinkerpop.apache.org

2.4 evaluation suite 21

(CPU, memory, I/O, network, . . .). At the same time, namespaces
make it possible to restrict the set of resources a process sees [119].
While this set of capabilities may resemble those of virtual machines
(VM), containers have a distinctive property: the hosted applications,
i. e., the applications inside a container, share their kernel with the
host. As such, containers are much more lightweight than VMs.

The Docker platform dramatically simplifies the usage of contain-
ers by providing tools and automation to manage all aspects of a
container life, from its definition to monitoring it while running. It
simplifies the process of creating the container’s initial snapshot and
environment, providing commands to generate the image from a file.
It abstracts the complex process of spawning a new container that
includes cloning the initial environment, setting up cgroups, names-
paces, virtual networks, and routing rules behind a single command.

jupyter notebooks . To present the results of the different eval-
uations systematically and dynamically, Jupyter Notebooks looked to
be an appealing solution. Notebooks are an old technology that has
recently seen a new wave of interest, thanks in part to the IPython
project. Introduced by Wolfram Mathematica in 1988, they consist, in
their simpler form, in a document like interface where text, code, and
the result of the code execution can be arbitrarily mixed. The Jupyter
Notebook is a client-server application composed of three main com-
ponents the notebooks documents, the kernels, and the notebook web ap-
plication.

A notebook document is composed of different building blocks
called cells; they may either be text (markdown), source code, or re-
sults. The document is, on disk, a JSON file, where the binary data,
if any, is encoded in base64 and has a characteristic extension .ipynb.
The kernels are server-side processes responsible for executing code
blocks and generating result blocks. The notebook documents are ma-
nipulated through a web interface. The interface makes use of the
latest web technologies to seemingly interlace rendered markdown,
highlighted editable source code, and rendered results blocks. Results
block supports a variety of content like plain text, images, charts, and
HTML. Moreover, code cells can be edited on the fly, and the corre-
sponding result blocks updates live. Additional features include auto
code completion and export-import of documents and cells.

2.4.3 Evaluation Framework

We developed an end-to-end evaluation framework to run a sequence
of experiments systematically and automatically. The overall architec-
ture of the framework is illustrated in Figure 2.2.

The framework consists of three main logical components, one for
each of the three necessary steps to perform a complete evaluation:

22 micro-benchmarking graph databases

Build	
database	images

CONFIG
0

Execute	tests

REPOSITORIES EXECUTION	ENGINE RESULTS	ANALYZER

Clean	&	Validate

Aggregate

DATABASES

Dockerfiles
Scripts

DATASTORE

GraphSON	3
(JSONL)

QUERIES

Gremlin	3
(java)

GIT

1

meta-parameters

Build	
database_data	images

Plan	experiment	set

2

3

4

RESULTS

Partial	&	Total
times.csv

Figure 2.2: The Graph Database Evaluation Suite Architecture

the tests specification, the tests execution, and the analysis of the re-
sults.

repository. The Repository consists of the Database Engine Reposi-
tory, the Query Repository, and of the Dataset Repository.

The Database Engine Repository contains a Dockerfile for each Graph
Database that will be involved in the comparison. The Dockerfiles are
plain text files containing a list of directives to build the docker im-
ages. In other terms, a list of operations defining how to prepare a
database installation alongside the necessary software. These files are
usually provided by the companies or the community behind the sys-
tems. In the remote case of a missing Dockerfile, one can be derived
from the installation instruction. Moreover, to facilitate the setup of
a standard set of libraries and support binaries, one can exploit the
inheritance capabilities of Dockerfiles.

The Query Repository contains the set of queries (tests) that the
suite needs to execute against the database systems. Each query is
expressed in Gremlin and modeled as a java class or jar file. It im-
plements, however, a specific interface that allows it to be called in a
standard way by the other components.

The Dataset Repository is where all datasets that will be used as a
testbed for the evaluation reside. Each dataset is expected to be a
single file in GraphSON 3 format. This is a JSONL file, where each
line is a vertex with its list of incoming and outgoing edges.

execution engine . The Execution Engine (engine) executes the
tests from the Repository and provides the raw results to the Result
Analyzer. The test procedure consists of a set of steps, the most im-
portant of which are summarized in the center column of Figure 2.2.
The first step is identifying the databases, datasets, and queries to test.
By default, the unit tests all possible combinations of the databases,
datasets, and queries available from the Repository; however, it also
accepts a configuration file that can restrict the tests to a subset of

2.4 evaluation suite 23

the combinations or define more complicated test scenarios like, for
example, the one comparing indexed data and the effect of persist-
ing cache and intermediate data. (Step 1) The engine first builds a
docker image, the database images, for each database involved. (Step 2)

Then it proceeds to create a database_dataset image for each database-
dataset combination. Before starting the test phase, the systems must
ensure suitable samples are available for the selected dataset. A query
may indeed require additional parameters; for example, the shortest
path query required source-node and max-depth. Since the range of
values to test for max-depth are equally defined for all datasets, the
engine must ensure the sample contains vertexes that can generate
paths of at least max-depth length, or the general results would be
misleading. (Step 3) The engine then checks for the availability and
conformity of such samples; in case they are not available, it generates
one.
(Step 4) Finally, the engine executes each test, for each valid com-

bination of parameters, in its own isolated and controlled environ-
ment and monitors the progress. Once an execution completes, the
results are logged in a CSV file versioned into a git repository. The
git repository serves as the communication channel between the exe-
cution engine and the result analyzer.

result analyzer . The Result Analyzer provides basic analytics,
monitoring, and a simple but powerful tool to explore and study the
results. It consists of a relational database and three Jupyter Note-
books: the first one ingests the data and monitors the comparison
progress; the second one computes basic analytics and prepares fre-
quently used intermediate views; the last one acts as a scratchpad
while offering general-purpose results exploration functions. Before
ingesting any results, a schema is created in the relational databases.
It contains four tables, three that define the experiments and one
that holds the results. The three tables representing the databases,
the datasets, and the queries, will be used to check the consistency of
the experiment and monitor the progress. Moreover, they can be used
in the analysis to group by properties of the tests, e. g., to compare the
mean performance on real datasets against synthetic ones. The result
table is modeled according to the structure of the results CSV files.
The CSV files contain time records of the execution, as well as the
parameters under which the queries were executed.

After the schema has been set up, the results are pulled from the
git repository, parsed, and inserted into the relational tables. Some
of the tests may have failed to execute, which means that the results
may contain invalid data. For this reason, we employ a verification,
and a clean-up task takes place to remove those entries. One of the
notebooks’ advantages is that the user may now monitor the evalua-
tion results as they are produced and does not have to wait until the

24 micro-benchmarking graph databases

whole experiments terminate. This feature is of critical importance
when dealing with large-scale experiments. It allows detecting early
on the scalability limits of the database/machines (swap trashing)
and pathological queries, which will consistently lead to timeouts.
The user may then decide to exclude these systems/datasets/queries
test combinations and dedicate the computational resources to other
experiments.

The last notebook contains the code for a holistic and clean presen-
tation of the final results. Moreover, it can serve as a comprehensive
standalone report of the evaluation campaign.

The complete framework can be freely downloaded at the project
web page https://graphbenchmark.com .

2.5 systems

For a fair comparison, we need all the systems to support a com-
mon access method. For this, we considered systems that support
the Gremlin query language [14] through officially recognized im-
plementations. Gremlin [117] is the query language with the most
widespread support across graph databases and can be seen as the
SQL of the Graph Database Systems [61]. We also required that the
systems we consider have a license permitting the publication of ex-
perimental comparisons and their operation on a server without a
fee.

Given these requirements, we have applied our graph database
evaluation suite on a number of state-of-the-art graph database sys-
tems, both native and hybrid, and also on two RDF databases. We
have not included systems that were not supporting Gremlin, which
is why Cayley 3 and DGraph 4 or systems built for RDF, like Apache
Jena 5, Virtuoso 6, AllegroGraph 7, and Stardog 8 have not been con-
sidered.

Table 2.2 provides a summary of the main characteristics of the sys-
tems we consider. Note that for some systems we considered two ver-
sions (ThinkerPop 2 and 3.*). We do so because we want to illustrate
the degree of progress that has been achieved in these systems from
one version to another and also help stakeholders decide whether it
is worth the effort to upgrade. The most recent versions have adopted
a newer version of Gremlin with cleaner semantics, less overloaded
operators, and a richer operator set. Gremlin is mainly a syntax; thus,
any performance variation observed across the different versions of

3 https://cayley.io/

4 https://dgraph.io/

5 https://jena.apache.org/

6 https://virtuoso.openlinksw.com/

7 https://franz.com/agraph/allegrograph/

8 https://www.stardog.com

https://graphbenchmark.com
https://cayley.io/
https://dgraph.io/
https://jena.apache.org/
https://virtuoso.openlinksw.com/
https://franz.com/agraph/allegrograph/
https://www.stardog.com

2.5 systems 25

the same system will most likely be due to more effective implemen-
tation and not the actual language per se.

26 micro-benchmarking graph databases

s
y

s
t

e
m

t
y

p
e

s
t

o
r

a
g

e
e

d
g

e
t

r
a

v
e

r
s

a
l

g
r

e
m

l
i
n

A
ra

ng
oD

B(
2

.8
,3

.6
′)

H
yb

ri
d

(D
oc

um
en

t)
Se

ri
al

iz
ed

JS
O

N
H

as
h

In
de

x
v2

.6
/

3
.4

.2
Bl

az
eG

ra
ph

(2
.1

.4
)

H
yb

ri
d

(R
D

F)
R

D
F

st
at

em
en

ts
B+

Tr
ee

v3
.2

N
eo

4
J

(1
.9

,3
.0

,3
.4
′)

N
at

iv
e

Li
nk

ed
Fi

xe
d-

Si
ze

re
co

rd
s

D
ir

ec
t

Po
in

te
r

v2
.6

/
v3

.2
/

3
.4

.2
O

ri
en

tD
B

(2
.2

,3
.0
′)

N
at

iv
e

Li
nk

ed
R

ec
or

ds
2

-h
op

Po
in

te
r

v2
.6

/
3
.4

.2
Sp

ar
ks

ee
(5

.1
)

N
at

iv
e

In
de

xe
d

Bi
tm

ap
s

B+
Tr

ee
/B

it
m

ap
v2

.6
SQ

LG
(1

.2
,2

.0
′)

/
Po

st
gr

es
(9

.6
)

H
yb

ri
d

(R
el

at
io

na
l)

Ta
bl

es
Ta

bl
e

Jo
in

v3
.2

/
3
.4

.2
Ti

ta
n

(0
.5

,1
.0

)
-

Ja
nu

s
(0

.4
′)

H
yb

ri
d

(C
ol

um
na

r)
Ve

rt
ex

-I
nd

ex
ed

A
dj

ac
en

cy
Li

st
R

ow
-K

ey
In

de
x

v2
.6

/
v3

.0
/

3
.4

.2

s
y

s
t

e
m

q
u

e
r

y
e

x
e

c
u

t
i
o

n
a

c
c

e
s

s
l

a
n

g
u

a
g

e
s

A
ra

ng
oD

B(
2

.8
,3

.6
′)

A
Q

L,
N

on
-o

pt
im

iz
ed

R
ES

T
(V

8
Se

rv
er

)
A

Q
L,

Ja
va

sc
ri

pt
Bl

az
eG

ra
ph

(2
.1

.4
)

Pr
og

ra
m

m
in

g
A

PI
,N

on
-o

pt
im

iz
ed

em
be

dd
ed

,R
ES

T
Ja

va
,S

PA
R

Q
L

N
eo

4
J

(1
.9

,3
.0

,3
.4
′)

Pr
og

ra
m

m
in

g
A

PI
,N

on
-o

pt
im

iz
ed

em
be

dd
ed

,W
eb

So
ck

et
,R

ES
T

Ja
va

,C
yp

he
r,

O
ri

en
tD

B
(2

.2
,3

.0
′)

M
ix

ed
,M

ix
ed

em
be

dd
ed

,W
eb

So
ck

et
,R

ES
T

Ja
va

,S
Q

L-
lik

e
Sp

ar
ks

ee
(5

.1
)

Pr
og

ra
m

m
in

g
A

PI
,N

on
-o

pt
im

iz
ed

em
be

dd
ed

Ja
va

,C
++

,P
yt

ho
n,

.N
ET

SQ
LG

(1
.2

,2
.0
′)

/
Po

st
gr

es
(9

.6
)

SQ
L,

O
pt

im
iz

ed
(*

)
em

be
dd

ed
(J

D
BC

)
Ja

va
Ti

ta
n

(0
.5

,1
.0

)
-

Ja
nu

s
(0

.4
′)

Pr
og

ra
m

m
in

g
A

PI
,O

pt
im

iz
ed

em
be

dd
ed

,R
ES

T
Ja

va

′
Sy

st
em

ve
rs

io
n

us
ed

fo
r

ad
va

nc
ed

te
st

s
(S

et
B)

.

Ta
bl

e
2

.2
:F

ea
tu

re
s

an
d

C
ha

ra
ct

er
is

ti
cs

of
th

e
te

st
ed

sy
st

em
s.

2.5 systems 27

2.5.1 Native

neo4j (v.3 .0). Neo4j 9 is implemented in Java. It stores nodes and
edges natively but separately and supports some schema and textual
indexes. It uses one file for node records, one file for edge records, one
file for labels and types, and one file for attributes. Nodes and edges
are stored as fixed-size records and have unique IDs that correspond
to the offset of their position within the corresponding file. In this
way, given the ID of an edge, it is retrieved by multiplying the record
size by its ID and reading bytes at that offset in the corresponding
file. Moreover, being records of fixed size, each node record points
only to the first edge in a double-linked list, and the other edges are
retrieved by following such links. A similar approach is used for at-
tributes. Given an edge, obtaining its source and destination requires
constant time operations, and inspecting all edges incident to a node,
i. e., visiting a node neighborhood, has a cost that depends on the
node degree and not on the graph size. Neo4J has its own query lan-
guage, called Cypher, which is translated to a set of Java operators.
Gremlin queries, instead, are directly describing a sequence of low-
level operators with direct access to their programming API. Each
operator is evaluated one at a time and passes the result to the next
in the sequence. Therefore, our micro-benchmarking approach allows
us to investigate the direct performances of each operator without
having to take into account query-translation time.

orientdb . OrientDB 10 is implemented in Java. It is a multi-model
database where nodes are modeled as documents and edges as links.
Hence, it is designed to support graph storage and querying natively.
It supports SB-Trees, hash, and Lucene full-text indexes for node
search. Information about nodes, edges, and attributes is stored in
distinct records that have an ID. Record IDs are not linked directly
to a physical position but point to an append-only data structure,
where the logical identifier is mapped to a physical position. This al-
lows for changing the physical position of an object without changing
its identifier. Thanks to this approach, the cost of getting the nodes of
a given edge depends on the node degrees and not on the overall size
of the graph. Interaction is done through native Java API, Gremlin,
and extended SQL, which is a SQL-like query language. For complex
queries, a series of operations, after having been translated into native
queries, may have their result processed through the programming
API, which can be seen as some sort of query optimization.

9 http://neo4j.com

10 http://orientdb.com/orientdb/

http://neo4j.com
http://orientdb.com/orientdb/

28 micro-benchmarking graph databases

2.5.2 Hybrid

arangodb . ArangoDB 11 is an open source engine based on the
document model and using RocksDB 12, a log structured key-value
store, as storage layer. To implement the graph model, it materializes
JSON objects for each node and edge and stores them serialized in
compressed binary format in documents. Each object contains links
to the other objects to which it is connected, i. e., a node contains all
the IDs of its incident edges. A specialized hash index is in place that
allows the retrieval of the source and destination nodes of an edge,
accelerating traversals. While the system indexes automatically the
edge endpoints and some attributes, e. g., the internal node identifiers,
users can also create additional custom indexes. Nodes and edges
are stored into special structures called collections that are treated as
shards. This poses a strict limitation since the total number of collec-
tions is limited by design to 2048. Alternatively, one can coerce the
system to store each node and edge in one collection (i. e., all nodes
have the same label, and all edges have the same label) and then en-
code the node or edge label in an attribute. However, this solution
will hinder most of the traversal optimization put in place. Apart
from Gremlin, ArangoDB supports its own query language, called
AQL, ArangoDB Query Language, which is an SQL-like dialect sup-
porting graph traversals, joins, and transactions. Interaction happens
via a REST API and HTTP calls over TCP connections. Arango sup-
ports Gremlin at a driver lever. At query time, all Gremlin pipelines
are thus translated into more AQL queries and are sent to the server
for execution. Note that Gremlin is a Turing-complete language and
can describe complex operations that declarative languages, like AQL,
may not be able to express in one query. For instance, the Gremlin
query Q32 in Table 2.1, which selects nodes with at least k incoming
edges will be translated into a selection of nodes (g.V), and for each
node applying a filter (.where(...)) by counting its incoming edges
(inE.count()). ArangoDB does not provide any overall optimization
of these parts.

sqlg/postgresql . Sqlg 13 is an generic implementation of Apache
TinkerPop on top of RDBMS; Sqlg in particular, is based on the rela-
tional database Postgresql [114].

Each node and edge is identified by a unique ID as the primary key,
and connections between nodes and edges are retrieved through joins.
It models every vertex type as a separate table and edge labels as
many-to-many join tables. The indexes it supports are those inherited
by the relational engine. It provides Java API to the Gremlin language,

11 https://www.arangodb.com/

12 https://rocksdb.org

13 http://www.sqlg.org/

https://www.arangodb.com/
https://rocksdb.org
http://www.sqlg.org/

2.5 systems 29

and the underlying implementation maps graph semantics to that of
the RDBMS. Hence, this approach requires unions and joins even for
retrieving the incident edges of a node. Wherever possible, it tries
to conflate operators in a single query, which is some form of query
optimization.

janus/ titan. Janus Graph 14 is another hybrid system. The name
Janus Graph is the latest rebranding of Titan. The main part of the
system handles data modeling and query execution, while data per-
sistence is delegated to a third-party storage and indexing engines.
For storage, it supports primarily Cassandra 15 and HBase 16, then it
also supports BerkeleyDB 17 and an in-memory storage engine (both
not intended for production use). The graph is stored with the ad-
jacency list model, where each vertex is stored alongside the list of
incident edges. In addition, each vertex property is an entry in the
vertex record. With this model, the system generates a row for each
node and then one column for each node attribute and each edge.
Hence, for each edge traversal, it needs to access the node (row) ID
index first. Janus adopts Gremlin as its only query language and Java
as the only compatible programming interface.

2.5.3 RDF

blazegraph is an RDF database and stores all information into
Subject-Predicate-Object (SPO) triples. Each statement is indexed three
times by changing the order of the values in each triple, i. e., a B+Tree
is built for each one of SPO, POS, OSP. BlazeGraph stores the edges
attributes as reified statements, i. e., each edge can assume the role of
a subject in a statement. Hence, traversing the graph’s structure may
require more than one access to the corresponding B+Tree.

sparksee employs separate data structures: one structure for ob-
jects, both nodes and edges, two for relationships which describe
which nodes and edges are linked to each other, and a data structure
for each attribute name. Each of these data structures is itself com-
posed of a map from keys to values and a bitmap for each value [96].
In each data structure, the objects are identified by sequential IDs, and
each ID is linked as a key through the map to one single value. Also,
each value links to a bitmap, where each bit corresponds to an object
ID, and the bit is set if that object has that value. For instance, given a
label, one can scan the corresponding bitmap to identify which edges
share the same label. Furthermore, bitmaps identify all edges incident

14 https://janusgraph.org/

15 http://cassandra.apache.org

16 http://hbase.apache.org

17 http://www.oracle.com/technetwork/products/berkeleydb

https://janusgraph.org/
http://cassandra.apache.org
http://hbase.apache.org
http://www.oracle.com/technetwork/products/berkeleydb

30 micro-benchmarking graph databases

to a node. For the attributes, a similar mechanism is used. The main
advantage of this organization is that many operations become bit-
wise operations on bitmaps, although operations like edge traversals
have no constant time guarantees.

2.5.4 Query Processing and Evaluation

A Gremlin query is a series of operations. Consider, for instance, Q32

in Table 2.1, which selects nodes with at least k incoming edges. For
every node (g.V), it applies the filter (.filter{...}) by counting the
incoming edges (it.inE.count()). In ArangoDB each step is con-
verted into an AQL query and sent to the server for execution so
that the above Gremlin query will be executed as a series of two in-
dependent AQL queries implementing the outer and the inner part,
respectively. ArangoDB does not provide any overall optimization of
these parts. Note that Gremlin is a Turing-complete language and can
describe complex operations that declarative languages, like AQL or
Cypher, may not be able to express in one query. Sqlg translates all
operations to a declarative query language. Moreover, Sqlg, where
possible, tries to conflate operators in a single query, which is some
form of query optimization. In OrientDB some consequent operators
may get translated into queries and then their result processed with
the programming API, resulting in some form of optimization for a
part of the query. Titan, which has Gremlin as the only supported
query language, also features some optimization during query pro-
cessing. BlazeGraph, Neo4J, and Sparksee, instead, translate Grem-
lin queries directly into a sequence of low-level operators with direct
access to their programming API, evaluate every operator, and pass
the result to the next in the sequence.

2.6 datasets

We used seven different datasets (Set A), both real and synthetic, to
test the systems general capabilities.

We then used three more datasets (Set B) to stress-test fixed traver-
sal & pattern matching queries, support for heterogeneous data, and
scalability. These tests have been highlighted with a + in Table 2.1.
Since these operations and datasets are much more challenging, we
used them to test only systems that support the pattern matching
operations (Thinkerpop 3) and which demonstrated good results on
Set A.

2.6.1 Set A

mico . The first dataset (MiCo) describes co-authorship information
crawled from the CS Microsoft Academic portal [44]. Nodes represent

2.6 datasets 31

authors, while edges represent co-authorships between authors and
have as a label the number of co-authored papers.

yeast . The second dataset (Yeast) is a protein interaction network [20].
Nodes represent budding yeast proteins (S.cerevisiae) [25] and have as
labels the short name, a long name, a description, and a label based
on its putative function class. Edges represent protein-to-protein in-
teractions and have as labels the respective protein classes.

frb-*. The third dataset is Freebase [53], which is one of the largest
knowledge bases freely available for download nowadays. Nodes rep-
resent entities or events, and edges model relationships between them.
We took the latest snapshot, cleaned it, and considered four sub-
graphs of it of different sizes [85, 104]. The raw data dump contains
1.9B triples [53], many of which are duplicates, technical or experi-
mental meta-data, and links to other sources that are commonly re-
moved [19, 104], thus leaving a clean dataset of 300M facts. The sizes
of the samples were chosen to ensure that all the engines had a fair
chance to process them in a reasonable time, but, on the other hand,
to show also the system scalability at levels higher than those of pre-
vious works.

In this study, we created one subgraph (Frb-O) by considering only
the nodes related to the topics of organization, business, government,
finance, geography, and military, alongside their respective edges.
Furthermore, we created other 3 graph datasets by randomly select-
ing 0.1%, 1%, and 10% of the edges from the complete graph, result-
ing in the Frb-S, Frb-M, and Frb-L datasets, respectively.

ldbc . We generated a synthetic dataset [86] using the data gener-
ator provided by the Linked Data Benchmark Council (LDBC) [45],
which produces graphs that mimic the characteristics of a real social
network with power-law structure, and real-world characteristics like
assortativity based on interests or preferences (ldbc). We selected this
in place of any available social network dataset because it is richer in
attribute types, edge types, and relationships. It is the only dataset of
Set A with attributes on the edges. The generator was instructed to
produce a dataset simulating the activity of 1000 users over a period
of 3 years.

2.6.2 Set B

We then specifically selected three more datasets to stress-test fixed
traversal & pattern matching queries, support for heterogeneous data,
and scalability.

32 micro-benchmarking graph databases

air-routes . To test reachability and long traversal queries, we se-
lected air-routes, a real-world dataset that describes the world airlines
route network 18. Vertexes represent airports, countries, and conti-
nents, while edges describe routes between airports and continents.
Both vertexes and edges have attributes.

dbpedia . To verify the support for heterogeneous data, we used DB-
pedia. The popular knowledge graph extracted mainly from Wikipedia [78],
another real-world dataset. We took the latest official dump and con-
verted it to a property graph with an official Neo4J (v.3.0) library
designed for this task. We converted RDF URIs into a node of type
Resource and translated the predicates connecting to resources into
edge labels and those connecting to literals into properties. This gave
a very heterogeneous graph with 12 thousand different edge types
and 47 thousand distinct node properties.

ldbc.10 . Finally, to further test scalability, we generated another
synthetic dataset using the data generator provided by the Linked
Data Benchmark Council (LDBC) [45]. We selected this in place of any
available social network dataset because it is richer in attribute types,
edge types, and relationships. This time we instructed the generator
to go for a much larger scale. The generator was instructed to produce
a dataset with a scale factor of 10, simulating the activity of 73.000
users over a period of 3 years.

2.6.3 Datasets Characteristics

Table 2.3 provides the characteristics for the first set of datasets (Set A).
It reports the number of nodes (|V |), edges (|E|), labels (|L|), connected
components (#), the size of the maximum connected component (CC/-
max), the graph density (Density), the network modularity (Modu-
larity), the average degree of connectivity (Avg), the max degree of
connectivity (Max), and the diameter (�).

As shown in the table, MiCo and Frb are sparse, while ldbc and
Yeast are one order of magnitude denser, which reflects their nature.
The ldbc is the only dataset with a single component, while the Frb
datasets are the most fragmented. The statistics include the average
and the maximum degree because large hubs become bottlenecks in
traversals.

Table 2.4 provides a summary of the characteristics for the second
set of datasets (Set B). It reports the number of nodes (|V|), edges
(|E|), labels on nodes and edges (|Lv| and |Le|), as well as number of
properties on nodes and edges (|Pv| and |Pe|).

.

18 https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html

https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html

2.7 experimental setup 33

cc degree

|V| |E| |L| # max density modularity avg max �

Yeast 2.3K 7.1K 167 101 2.2K 1.34∗10−3 3.66∗10−2 6.1 66 11

MiCo 100K 1.1M 106 1.3K 93K 1.10∗10−6 5.45∗10−3 21.6 1.3K 23

Frb-O 1.9M 4.3M 424 133K 1.6M 1.19∗10−6 9.82∗10−1 4.3 92K 48

Frb-S 0.5M 0.3M 1814 0.16M 20K 1.20∗10−6 9.91∗10−1 1.3 13K 4

Frb-M 4M 3.1M 2912 1.1M 1.4M 1.94∗10−7 7.97∗10−1 1.5 139K 37

Frb-L 28.4M 31.2M 3821 2M 23M 3.87∗10−8 2.12∗10−1 2.2 1.4M 33

ldbc 184K 1.5M 15 1 184K 4.43∗10−5 0 16.6 48K 10

Table 2.3: Datasets Characteristics (Set A).

|V| |E| |Lv| |Le| |Pv| |Pe|

ldbc.10 30M 178M 11 15 18 4

DBpedia 16M 27M 1 12K 47K 0

air-routes 3742 57K 4 2 15 1

Table 2.4: Datasets Characteristics (Set B).

2.7 experimental setup

We used our framework (Section 2.4) to subject selected systems (Sec-
tion 2.5) with our micro-benchmarking oriented test methodology
(Section 2.3) on a variety of dataset (Section 2.6.)

As already discussed, thanks to our evaluation framework: all sys-
tems were tested with the very same queries, which were imple-
mented just once in the Gremlin common query language; each test
had dedicated resources and was completely isolated (Linux contain-
ers); all systems were tested with exactly the same set of pseudo-
random samples (selected once and then re-mapped for each database).

Our goal is to perform a comparative evaluation. Nevertheless, we
strive to have numbers as close to a production-like installation as
possible. Thus, we measure each system bootstrap time, i. e.time to
execute a blank query, and subtract it from the total running time, so
that results include only the actual query execution time.

2.7.1 Hardware

We used a machine with a 24-core CPU, an Intel Xeon E5-2420 1.90GHz,
128 GB of RAM, 2TB hard disk (20.000 rpm), Ubuntu 14.04.4 operat-
ing system, and with Docker 1.13, configured to use AUFS on ext4.
During the tests, we reserved 8GB of main memory for the host oper-
ating systems.

34 micro-benchmarking graph databases

2.7.2 GDB configuration

The system configuration is important since the different parameters
significantly affect its performance. Neo4J does not need any special
configuration to run. OrientDB, instead, supports a default maximum
number of edge labels equal to 32676 divided by the number of CPU
cores and requires disabling a special feature in order to support
more. ArangoDB requires configurations for the engine and for its
V8 javascript server for logging. With default values, it generates ap-
proximately 40 GB of log files in 24 hours, and it is impossible to
force it to allocate more than 4GB of memory. In Titan, the most crit-
ical configuration is that of the JVM Garbage Collection and of the
Cassandra backend. The other systems that are also based on Java,
namely, BlazeGraph, Neo4J, OrientDB and Titan, are equally sensi-
tive to the garbage collection, especially for very large datasets that
require large amounts of main memory. As a general rule, the option
-XX:+UseG1GC for the Garbage First (G1) garbage collector is strongly
recommended. Finally, Sqlg has a limit on the maximum length of
labels (due to Postgresql), which requires special handling.

As a general observation, it seems that Neo4J is a mature system
in which the developers have paid attention to both usability and
automatic tuning. The rest of the systems are heavily restricted by
their underlying technology, which significantly affects the system
performance if not well-tuned.

2.8 results

We provide first an overview of the results of the experimental evalu-
ation performed for the individual types of operations, and then, in
Section 2.8.6 and Table 2.5, we provide an overall evaluation and the
main insights.

Throughout our tests, we noticed that MiCo and ldbc were giving
results similar to Frb-M and Frb-O. Yeast was so small that it did not
highlight any particular issue, especially when compared to the re-
sults of Frb-S. We also tried to load the full freebase graph (with 314M
edges and 76M nodes), but only Neo4J, Sparksee, and Sqlg managed
to do so without errors, and only Neo4J (v.3.0) successfully completed
all the queries. Furthermore, the running times recorded on the full
dataset respected the general trends witnessed with its subsamples.
Thus, for the initial set of tests (Set A, Table 2.3), we focus only on
the results of Frb-S, Frb-O, Frb-M, and Frb-L and make reference to
the other samples only when they show a behavior different from
the one of Freebase (Section 2.8.3). Additional details about the ex-
perimental results that are not mentioned here can be found in our
technical report [86].

2.8 results 35

For the tests on fixed traversal & pattern matching queries, support
for heterogeneous data, and scalability (Set B, Table 2.4, Section 2.8.4),
we can report results for all systems only over the air-routes dataset
(Section 2.8.4). Since ArangoDB failed the mapping setup for ldbc –
i. e., it was not able to extract the node and edge information required
to instantiate the queries (the operation timed out) – and only Neo4J
and Janus managed to load DBpedia and were able to run at least
some of the queries on it.

We first discuss the procedure employed to load the data (Sec-
tion 2.8.1). We then introduce the results and analysis for Complex
Queries (Section 2.8.2). We follow up with the two sets (A and B) of
micro-benchmark style tests in Section 2.8.3 and Section 2.8.4, respec-
tively. We thus present our remarks on the systems’ progress over
their versions 2.8.5. Finally, we conclude with a summary of the re-
sults, insights, and takeaways gathered throughout the whole evalua-
tion summary (Section 2.8.6).

2.8.1 Data Loading

S E T A

execution. Many systems were failing or taking days to load the
data through Gremlin (using query 1). The Gremlin implementation
of ArangoDB was sending each node and edge insertion instruction
separately to the server via HTTP calls, making it prohibitively slow
to load with this method, even with small datasets. OrientDB had
a similar limitation and was, in addition, performing a lot of book-
keeping tasks for each edge-label it was loading. For both, we used
implementation-specific scripts and commands, bypassing the Grem-
lin library, in order to load the datasets. To load the data in Blaze-
Graph, we had to explicitly activate a “bulk loading” option. Without
it, the system processes each label and node separately and updates
its meta-data structures after the insertion of each such item. In Ti-
tan, the delays were higher. That was due to consistency checks and
schema inference tasks. Disabling automatic schema inference was
significantly reducing the loading times but required to specify the
schema before inserting any data, meaning that Titan was not able
to handle dynamic schema updates transparently. Neo4J, Sqlg, and
Sparksee managed loading the data through the Gremlin API with-
out issues, which indicates that they offer a good Gremlin implemen-
tation.

time . In terms of loading time (Figure 2.3), ArangoDB was the
fastest, mainly thanks to the use of native scripts we had to employ
to load data in a reasonable time. Neo4J was almost equally fast, prov-
ing that a good implemented Gremlin API can achieve as good per-

36 micro-benchmarking graph databases

formance as the native scripts. The loading time of the different size
datasets on Sqlg and OrientDB illustrated a high sensitivity to the
edge label cardinality. This sensitivity is because both Sqlg and Ori-
entDB create and use different structures for different edge labels.
BlazeGraph, on the other hand, updates and balances its B+Tree in-
dex structure after every insertion, and this made it up to 3 orders of
magnitude slower than the other engines.

Figure 2.3: Loading time (Set A).

space . We studied the disk space that the datasets occupied in the
different systems to identify those with the most effective compres-
sion strategies (Figure 2.4). Although disk space may not be a major
concern nowadays, it becomes relevant, for instance, in systems with
solid-state drives. The results of the datasets Frb-O, Frb-M, and Frb-L
show Titan as the one with the best space performance. Its strategy is
to compact node identifiers in each adjacency list with a form of delta
encoding, a strategy very effective in graphs with nodes of high de-
grees. For the ldbc dataset, instead, where much textual information
is shared by many objects, OrientDB and Sparksee achieved the least
space consumption because they de-duplicate attribute values. Given
that OrientDB creates different files for each distinct edge label, we
see that it is the second last in terms of space on the Frb-S dataset
that contains many different edge labels (∼1.8K) for relatively few
edges (∼300K). Finally, we can see that BlazeGraph requires, on aver-
age, three times the size of any other system on all the datasets, and
this is because it instantiates a journal file of fixed size and produces
a lot of data replication with its different indexes.

2.8 results 37

Figure 2.4: Space occupancy (Set A).

S E T B

execution. Many systems were failing or taking days to load the
data through Gremlin (using query 1). While ThinkerPop uses Graph-
SON 3 as the serialization format for the graphs on disk, there is no
globally agreed format for serializing property graphs. Many systems
assume to load a graph from a set of CSV files, and this is due to their
focus on graphs with very simple and regular structure. Instead, the
GraphSON format is based on JSON and allows the modeling of very
complex and heterogeneous graphs. Each file line serializes one node
with all its properties and adjacent edges. This encoding should allow,
in theory, to load a graph by reading line-by-line. However, when ma-
terializing a node with its incident edges (i. e., all outgoing edges for
which the current node represents the source), the system needs to
materialize also the other nodes (i. e., the destination nodes) that are
referenced only by ID. But, since most systems do not allow direct
manipulation of the node and edge ids, the default loader loads the
entire graph in memory, materializing all nodes and mapping their
IDs in the dataset with the system’s internal ids. The default Thinker-
Pop loader is thus limited by the available main memory and is very
slow. To conduct our experiments, we rewrote the loader to work
in a streaming fashion: with a first pass over the data, it creates all
the nodes with their properties and records their ids into a hashmap
(h(id)→ idsys); with a second pass, it inserts all edges resolving the
ids using the map build in the first pass. Nevertheless, only Neo4J and
Sqlg managed to complete the loading without any further modifica-
tions. For ArangoDB and OrientDB we used instead their native load-
ers. Moreover, ArangoDB and Titan (v.1.0) both require the schema of
the graph to be known a-priory. This requirement implies parsing the
dataset, extracting all node labels, edge labels, properties, and track-
ing all their combinations. Therefore, contrary, for instance, to the case of

38 micro-benchmarking graph databases

RDF, there is a large gap in the standardization of dataset serialization and
data loading tasks for property graphs.

space . We studied the disk space that the datasets occupied in the
different systems to identify the effect of the various data organiza-
tion strategies (Figure 2.5). For this test, we also added a property, a
surrogate key, to all node types and put an index on it. Janus has the
most compact data representation. In particular, for ldbc.10 the un-
compressed JSON is twice as large as the representation on disk en-
coded by Janus, and this takes into account also the index. ArangoDB
and Sqlg instead, when enabling indexes, occupy more space than the
uncompressed file, with a blow-up of about 45%. Finally, OrientDB
and Neo4J require 3 times more space than the uncompressed data,
and the index alone accounts for about 50% of such space.

Figure 2.5: Space occupancy (Set B).

2.8.2 Complex Queries

For completeness, we first evaluate the graph databases using com-
plex queries of an existing benchmark, the LDBC, applied on their
ldbc dataset (Figure 2.6). For these we set a timeout of 2 hours. Blaze-
Graph is not reported in the figure because the queries timed out.
ArangoDB and Titan (v.0.5) were, in general, the slowest, which indi-
cates that they could not effectively exploit the index structures and
neither employ any advanced optimization. Yet, for ArangoDB this
result fails to demonstrate that there are cases (identified below) in
which it can actually perform better than others. Titan (v.1.0) was
very fast for some queries involving short joins and for some with
single-label selections. Yet, the micro-benchmark analysis (below) shows
that this result does not generalize. This type of performance is due
to the specific query and to the help of caching from the Cassandra

2.8 results 39

10

100

1.000

10.000

ma
x-i

id

ma
x-o

id

cre
ate cit

y

co
mp

an
y

un
ive

rsi
ty

frie
nd

1

frie
nd

2

frie
nd

-ta
gs

ad
d-

tag
s

frie
nd

-o
f-

frie
nd

tria
ng

le

pla
ce

s

Ti
m

e
(m

s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Arango Sqlg

Figure 2.6: Complex Query Performance on ldbc.

backend. As we will see below, in the result of our microbenchmark,
Titan (v.1.0) is consistently slower than other systems when the graph
gets larger and when the query cannot exploit any cache. Sqlg is the
fastest in almost half the queries. Hence, we question the reason why
in some cases (e. g., the last query) Sqlg is much slower than the com-
petition. Especially, it is puzzling to compare the last and the second
to last queries, both performing some sort of traversal. Again, the
micro-benchmark analysis identifies the characteristics of the best per-
forming operators in Sqlg, which are exploited by those queries that
can be translated to a single relational operator or to conditional join
queries, with no recursion and short join chains that traverse only few
edge labels with limited cardinality. In these queries, the system does
not incur expensive joins, and it can take advantage of the relational
optimizer and exploit indexes. Those cases in which Sqlg is slower
are, instead, queries that traverse many edges and do not filter on a
single edge label, and thus generate large intermediate results.

2.8.3 Micro-benchmark Results

We now turn to our micro-benchmark queries.

completion rate . For online applications, it is crucial to ensure
that the queries terminate in a reasonable amount of time. For this,
we count the queries that did not complete within 2.5 hours, either in
isolation or in batch mode, and illustrate the results in Figure 2.7.

Neo4J, in both versions, is the only system that successfully com-
pleted all the tests with all the parameters on all the datasets (omit-
ted in the figure). OrientDB is the second-best, with just a few time-
outs on the large Frb-L. BlazeGraph is at the other end of the spec-
trum, collecting the highest number of timeouts. It reaches the time
limit even for some batch executions on Yeast, and almost on all the
queries on Frb-L. In general, the most problematic queries are those

40 micro-benchmarking graph databases

that have to scan or filter the entire graph, i. e., queries Q.9 and Q.10.
Some shortest-path searches and some breath-first traversals with
depth 3 or more reach the timeout on Frb-O, Frb-M and Frb-L in
most databases. The filtering of nodes based on their degree (Q.32,
Q.33, and Q.34), the search for nodes with at least one incoming edge
(Q.35), and the pattern matching based on node labels or edge labels
(Q.46, Q.47, Q.49, and Q.50) are proved to be extremely problematic
almost for all the databases apart from Neo4J and Titan (v.1.0). In
particular, for Sparksee, on all the Freebase subsamples, these queries
cause the system to exhaust the entire available RAM and swap space
(this has been linked to a known problem in the Gremlin implemen-
tation). ArangoDB failed these last queries only on Frb-M and Frb-L,
and OrientDB only on Frb-L. These results highlight the benefits of
separating the graph structure from the attribute values, allowing na-
tive systems to execute fast even queries that require access to large
portions of the graph.

Figure 2.7: Timeouts for Interactive (I) and Batch (B) modes (Set A).

insertions , updates and deletions . For operations that add
new objects (nodes, edges, or properties), we experienced extremely
fast performances for Sparksee, Neo4J (v.1.9), and ArangoDB, with
times below 100ms, with Sparksee being generally the fastest (Fig-
ure 2.8). Moreover, with the only exception of BlazeGraph, all the
databases are almost unaffected by the size of the dataset. We at-
tribute this result to the internal configuration of the data structures
adopted where elements are stored in append-only lists, while for
ArangoDB these operations are registered in RAM and asynchronously
flushed to disk. BlazeGraph, on the other hand, is the slowest with
times between 10 seconds and more than a minute as each of these

2.8 results 41

operations requires multiple index updates. Both versions of Titan
are the second slowest systems, with times around 7 seconds for the
insertion of nodes, and 3 seconds for the insertion of edges or prop-
erties, while for the insertion of a node with all the edges (Q.9) it
takes more than 30 seconds. Sparksee, ArangoDB, OrientDB, Sqlg,
and Neo4J (v.1.9) complete the insertions in less than a second. Ori-
entDB is among the fastest for insertions of nodes (Q.2) and prop-
erties on both nodes and edges (Q.6 and Q.7), but is much slower,
showing inconsistent behavior, for edge insertions. Neo4J (v.3.0), is
more than an order of magnitude slower than its previous version,
with a fluctuating behavior that does not depend on the size of the
dataset. We will see below that this depends on some initialization
procedures. Sqlg is one of the fastest for insertions of nodes as these
operations translate into inserting a tuple into a relational table, while
is much slower for all other queries where it has to change the table
structure. Similar results are obtained for the update of properties
on both nodes and edges (Q.20, and Q.21), and for the deletion of
properties on edges (Q.25).

Figure 2.8: Time for insertions.

On the other hand, the performance of node removal (Q.22) for Ori-
entDB, Sqlg, and Sparksee seems highly affected by the structure and
size of the graphs (Figure 2.9). While ArangoDB and Neo4J (v.1.9) re-
main almost constantly below the 100ms threshold, Neo4J (v.3.0) com-
pletes all the deletions between 0.5 and 2 seconds, showing that there
is some overhead intervening. Finally, for the removal of nodes, edges,
and node properties, Titan obtains an improvement of almost one or-
der of magnitude by exploiting the benefits of the data organization
in the column stores. Note that ArangoDB is also consistently among
the fastest. However, the following factors bias its results: its interac-

42 micro-benchmarking graph databases

tions happen through REST calls, the updates are asynchronous, and
it lacks support for transactions. These constitute a bias on results in
ArangoDB favor because the time is measured on the client-side, and
we have no control over when those operations get materialized on
disk.

Figure 2.9: Time for updates and deletions.

general selections . With read queries, some heterogeneous be-
haviors show up. The search by ID (Figure 2.10) differs significantly
from all the other selection queries (Figure 2.11), and it is in general
much faster; this indicates special attention from all vendors on this
operation. BlazeGraph is again the slowest. All other systems take
between 10ms (Sparksee) to 400ms (Titan) to satisfy both queries.

In counting nodes and edges (Q.9, and Q.10), Sparksee has the best
performance followed by Neo4J (v.3.0). For BlazeGraph and ArangoDB,
node counting is one of the few queries in this category that com-
plete before timeout. Edge iteration, on the other hand, seems hard
for ArangoDB, which rarely completes within 2.5 hours for Freebase
and the other medium and large size datasets, as it materializes all
edges while counting them.

Computing the set of unique labels (Q.11, and Q.12) does not sig-
nificantly affect the ranking. Here, the two versions of Neo4J are the
fastest databases, while Sparksee is a little slower. Since the previ-
ous experiments showed that Sparksee is fast in iterating over the
edges, we identified here a sub-optimal implementation of the de-
duplication step.

The search for nodes and edges (Q.13, Q.14, and Q.15) based on
property values perform similar to the search for edges and nodes
based on labels (Q.16 and Q.17), for almost all the databases. These

2.8 results 43

Figure 2.10: Time for searching by id.

3 are some of the few queries where the RDBMS-backed Sqlg works
best, with results an order of magnitude faster than the others. Hence,
equality search on edge labels has not received special optimizations
in the various native systems. This is despite Sparksee and OrientDB
have data-structures that should help optimizing this operation.

In general, the above results support the choice of separating struc-
ture and data records since it allows to iterate over the entire set of
objects without materializing them. They also indicate the importance
of indexing the correct properties since, in all the systems, the search
task became problematic for large datasets. The RDBMS was less af-
fected in this situation, especially for edge labels due to the storage
of the relations in separate tables.

Figure 2.11: Time for general selections.

44 micro-benchmarking graph databases

traversals . For traversal queries that access the direct neigh-
borhood of a specific node (Q.26 to Q.31), OrientDB, Neo4J, and
ArangoDB are the fastest and are robust to variations in graph size
and structure, as shown in Figure 2.12. In contrast, Sparksee seems
to be more sensitive, requiring around 150ms on Frb-L. The only ex-
ception for Sparksee is the visit of the direct neighborhood of a node
filtered by edge labels, in which case it is on par with the former sys-
tems. BlazeGraph is an order of magnitude slower (∼600ms) preceded
by Titan (∼160ms). We also notice that Sqlg is the slowest engine for
these queries unless a filter is required on the label to traverse, in
which case Sqlg becomes much faster (explaining the good perfor-
mance in Figure 2.6).

Figure 2.12: Time for traversal operations: local access to node edges.

When comparing the performance of queries from Q.32 to Q.35,
which traverse the entire graph filtering the nodes based on the edges
around them, as shown in Figure 2.13, Neo4J (v.3.0) presents the best
performance, with its older version being the second-fastest. Those
two are also the only two engines that complete these queries on all
datasets. All the systems tested are affected by the number of nodes
and edges to inspect. Sparksee is unable to complete any of these
queries on Freebase due to the exhaustion of the available memory,
identifying a problem in the implementation, as this never happens in
any other case. BlazeGraph as well hits the time limit on all samples,
while ArangoDB is able to complete only on Frb-S and Frb-O. Finally,
Sqlg is able to complete only Q.35, with time comparable to Neo4J
(v.1.9). Yet, all systems complete the tasks on Yeast, ldbc and MiCo.

Breadth-first (BFS) (Q.36 and Q.37) and shortest path (SP) search
(Q.38 and Q.39) are important operations in graphs. The performance
of the unlabeled version of BFS, shown in Figure 2.14, highlights the
good scalability of Neo4J at all depths. OrientDB and Titan give the

2.8 results 45

Figure 2.13: Time for filtering on all nodes.

second fastest times for depth 2, with times 50% slower than those of
Neo4J.

For depth 3 and higher (Figures 2.14(b,c,d)), OrientDB is a little
faster than Titan. On the other hand, in these queries, we observe
that Sqlg and Sparksee are actually the slowest engines, even slower
than BlazeGraph sometimes.

For the shortest path with no label constraint (Q.38, Figure 2.15(a)),
the performance of the systems was similar to the above, even though
BlazeGraph and Sparksee are in this case, very similar, while Sqlg is
still the slowest since it accesses all tables for all edges, and performs
very large joins.

The label-filtered versions of both the breadth-first search and the
shortest path query on the Freebase samples (not shown in a fig-
ure) were extremely fast for all datasets because the filter on edge
labels stops the exploration almost immediately, i. e., beyond 1-hop
the query returned an empty set, hence the running time was not
showing any interesting result. Running the same queries on ldbc we
still observe (Figure 2.15(b)) that Neo4J is the fastest engine, while
Sparksee is the second fastest in par with OrientDB for the breadth-
first search. Instead, on the shortest path search filtered on labels,
Titan (v.1.0) gets the second place.

Such results support the choice of index-free traversals implemented
by the native systems for large and expensive visits on the graph. Yet,
the dedicated structural index employed by Titan reaches the second-
best performance.

46 micro-benchmarking graph databases

Figure 2.14: Time for breadth-first traversal (a) at depth= 2, and (b,c,d) at
depth 3, 4, and 5

effect of indexing . The existing systems provide no support
for structural indexes, i. e., user-specified indexes for graph structures.
They all have some form of indexes already implemented and hard-
wired into the system. The only kind of index that can be controlled
by the users is on attributes, and this is what we study. BlazeGraph
provides no such capability, so is not considered. ArangoDB showed
no difference in running times, so we suspect some defect in the
Gremlin implementation. Insertions, updates, and deletions, as ex-
pected, become slower since the index structures have to be main-
tained, but not more than 10% in general, apart from Neo4J (v.3.0)
and OrientDB that showed delays of about 30% and 100%, respec-
tively. Despite this increase, Neo4J (v.1.9), Sparksee, and OrientDB
remain the fastest systems for CUD operations. For search queries on
node attributes, i. e., Q.13 (Figure 2.16), the presence of indexes gives
Neo4J (v.1.9), OrientDB, Titan (v.0.5), and Titan (v.1.0) an improve-
ment of 2 to 5 orders of magnitude (depending on the dataset size),
while Sqlg witnesses up to a 600x speed up. We also see that Titan
(v.1.0) still encounters problems on Frb-L. Sparksee and Neo4J (v.3.0)
are not able to take advantage of such indexes. It seems that there is
space for optimization in this sector.

2.8 results 47

Figure 2.15: Time for (a) SP on Fbr-*, (b) fixed-label BFS & SP on LDBC.

Figure 2.16: Time for indexed property search.

single vs batch execution. We looked at the time differences
between single (run in isolation) and batch executions (Figure 2.17(a)
and (b)). Tests in batch mode do not create any major changes in how
the systems compare to each other. For the retrieval queries, the batch
executions of 10 queries take exactly 10 times the time of one itera-
tion, i. e., no benefit is obtained from the batch execution. Instead, for
the “CUD” operations, the batch takes less than 10 times the time
needed for one iteration, meaning that in single mode most of the
running time is due to some initial setup for the operation. For traver-
sal queries, the batch executions only stress the differences between
faster and slower databases.

48 micro-benchmarking graph databases

Figure 2.17: Overall time for (a) Single (a) and (b) Batch (Set A).

2.8.4 Fixed Traversal and Pattern Matching

As previously discussed, only the systems that support at least Thinker-
Pop 3.4.2 and that well performed in the first set of tests were sub-
jected to the following ones. For this set, we dropped Sparksee and
BlazeGraph, for the first does not support the required TP version
and the latter is the worst on all accounts. For all remaining systems
we just bumped the version as shown in Table 2.2. For this batch of
tests, We set the timeout to 3 hours.

fixed traversals . We first compare the performance on short-
est path queries (Q.38 and Q.39 in Figure 2.18 and Figure 2.19) to
the fixed path traversals (represented by Q.40, Q.42, and Q.44 in Fig-
ure 2.20 and Figure 2.21). The main difference between the two group
of queries are that in the shortest path queries we are interested in
finding at least one and only one shortest path between two nodes,
while in the other traversals we are listing all paths of that exact
length between the two nodes.

Here we notice that, being the air-routes dataset quite small and
highly connected, all systems are fast in identifying the shortest path.
Yet, when listing all paths, all systems incur in longer response time
fast, but while other system see generally a slowdown of 1 order of
magnitude (and are actually materializing some thousands paths),
Sqlg instead suffers a slowdown of more than 2 orders of magnitude.
This is a typical case where the intermediate results are amplified by
join fan-out.

In the ldbc.10 dataset, instead, being much larger but not as highly
connected, we notice a different outcome. In the shortest path queries,

2.8 results 49

Neo4J is again the fastest system, but in this case Sqlg is the second
fastest. Here, OrientDB and Titan (v.1.0) seem to suffer more because
of the size of the graph. Finally, when it comes to fixed traversals we
witness again the dramatic slowdown of Sqlg except that for search-
ing a path between two nodes given a fixed sequence of labels. The
fastest system in this dataset is Titan (v.1.0) but only for queries where
labels are fixed (Q.42 and Q.44), while Neo4J is the fastest for the un-
labeled search. Once more, this proves how Neo4J can effectively han-
dle the widest range of traversals, while other systems are optimized
only for a very narrow set of queries.

Figure 2.18: Time for SP on air-routes.

Figure 2.19: Time for SP on ldbc.10.

Figure 2.20: Time for fixed traversals on air-routes.

Figure 2.21: Time for fixed traversals on ldbc.10.

50 micro-benchmarking graph databases

Figure 2.22: Time for pattern matching on air-routes.

Figure 2.23: Time for pattern matching on ldbc.10.

pattern matching . Here we test how systems perform when
extracting some predefined structures. In particular subgraph shaped
as triangle and as squares, the first is usually employed to identify re-
lationships that can form a transitive closure, the second identifies
equivalent paths connecting two nodes. In general, we see that these
operations are particularly challenging, for some systems (especially
ArangoDB) even on the smaller air-routes dataset (Figure 2.22). In gen-
eral, pattern matching based only on edge labels (Q.46 and Q.49) has
the worst performances. While, thanks to the much higher selectivity,
searching for patterns around a specific node is understandably much
faster. Once again, Neo4J presented the best performance, while Ori-
entDB reached second best. Yet, on the larger ldbc.10 native systems
are often up to an order of magnitude faster than hybrid systems
(Figure 2.23).

2.8 results 51

2.8.5 Progress across Versions

An important observation regards the difference in performance ob-
served across different versions of the same system, e. g., Neo4J. For
Neo4J, in some cases, we see improvements or similar performance of
the newer version compared to the old. Yet, we observe the opposite
in very fast operations, i. e., “CUD” queries and Search by ID. This is
due to the overhead for accessing a wrapper library that was added in
the newer version to cope with some licensing issues (i. e., Tinkerpop
adopted the Apache license, and the incompatibility in the licenses
forced the developer to add a wrapper). Furthermore, other queries
that show worsened performance are the global node filtering based
on the degree (Q32-35) and some other traversals not filtered by type.
We found that in the new version, the storage format and the part for
traversal of relationships have been completely rewritten to improve
filtered traversals (i. e.traversals that are restricted to a single edge
type). In particular, relationship chains are now split by type and di-
rection. The disk storage format changed as well. All these changes
combined probably adds overhead to queries that access many edges
of different types. Titan, on the other hand, demonstrated a slightly
improved performance in the newer version. The main difference is
that the software became production-ready (from v.0.5 to v.1). It is
important to note here that the newer version also supported a newer
version of the Gremlin language. The new version offers a cleaner
syntax, but the way the operators have been implemented across ver-
sions is orthogonal to the language.

2.8.6 Overall Evaluation and Insights

Table 2.5 provides a summarization of the observed performance of
the different GDBs in our experiments. The tick symbol (3) means
that the system achieved the best or near-to-best performance. The
warning symbol (!4) means that the system performance was to-
wards the low end or indicated execution problems. Through this
table, it is possible for a practitioner to identify the best system for
a specific workload or scenario. One can see for instance that the na-
tive graph databases Neo4J, OrientDB and in part Sparksee, are bet-
ter candidates for graph traversals operators (T). On the other hand,
with data of few node and edge types, and a heavy search workload,
hybrid systems may be a better fit. Finally, pattern matching queries
posed serious challenges to most systems, and Neo4J has been shown
to be the only one with consistently good performances.

neo4j is the system with the shortest execution time when looking
at the cumulative time taken by each system to complete the entire
set of queries in both single and batch executions (Figure 2.17(a) and

52 micro-benchmarking graph databases

L C R U D T P

Lo
ad

In
se

rt
io

ns

G
ra

ph
St

at
is

ti
cs

Se
ar

ch
by

Pr
op

er
ty

\L
ab

el

Se
ar

ch
by

Id

U
pd

at
es

D
el

et
e

N
od

e

O
th

er
D

el
et

io
ns

N
ei

gh
bo

rs

N
od

e
Ed

ge
-

La
be

ls
D

eg
re

e
Fi

lt
er

B
FS

Sh
or

te
st

Pa
th

Fi
xe

d
Tr

av
er

sa
l

Pa
tt

er
n

M
at

ch
in

g

H
et

er
og

en
ei

ty

ArangoDB 3 !4 !4 3 3 3 !4 !4 !4 !4 !4
BlazeGraph !4 !4 !4 !4 !4 !4 !4 !4 !4 !4 !4 !4 !4 - - -

Neo4J (v.1.9) 3 3 3 3 3 3 3 3 3 3 3 - - -

Neo4J (v.3.0) 3 3 3 3 3 3 3 3 3 3

OrientDB 3 3 3 3 3 3 3 3

Sparksee 3 3 3 3 3 3 !4 - - -

Titan (v.0.5) !4 !4 !4 - - -

Janus !4 !4 !4 !4 3 3

Sqlg 3 3 3 !4 !4 !4 !4 !4 !4 !4 !4

Table 2.5: Evaluation Summary.
Good: 3, Bad: !4, No data: -.

(b)). It has the best overall stability and support for typical graph
operations.

orientdb also obtained relatively fast running times, which are
often on par with Neo4J, and in some cases better than one of its two
versions. However, it does not perform well when large portions of
the graph have to be processed and kept in memory, e. g., computing
graph statistics on Frb-L.

titan results are quite often one order of magnitude slower than
the best engine. It is slower in create and update operations but faster
in deletions. This is most likely due to the tombstone mechanism
that in deletions marks an item as removed instead of actually re-
moving it. Yet, it has shown the best or second to best performances
in some traversal and pattern matching operations, although these
performances are not consistent across datasets and operations.

sparksee gives almost consistently the best execution time in cre-
ate, update and delete operations. Although it is not very fast with
deletions of nodes having lots of edges, it is still better than many
of the others. It performs better also in edge and node counts, as
well as in the retrieval of nodes and edges by ID, thanks to its in-
ternal compressed data structures. Nevertheless, it performs worse
than the others for the remaining queries due to suboptimal filtering
and memory management. For instance, it gives a lot of timeouts on
degree-based node search queries.

arangodb excels only in a few queries. For creations, updates
and deletions, it ranks among the best. In the latest version they re-

2.8 results 53

place mapped-memory files with a persistent key-value store, there-
fore write performances have been reduced, but many previous lim-
itations in durability have also been overcome. For retrievals and
search, its performance is, in general, poor. This is due to the way
Gremlin primitives are translated into the engine, where ArangoDB
has to materialize all the objects in order to iterate through them. An
exception is when searching by ID, which is expected since at the core
it is a key-value store, while for traversals, it has a narrow lead over
Sparksee, BlazeGraph, and Sqlg demonstrating some effectiveness of
its edge-specific hash index.

sqlg shows the expected low performance for all the traversal op-
erations due to the need to traverse the graph via relational joins
instead of via direct links to node/edges. However, for queries con-
taining 1-hop traversals restricted to a single edge-label, it performs
reasonably well, yet it requires that also the node label is specified;
otherwise, it has to union over all node tables. In some complex
queries, instead, it takes advantage of the ability to conflate multi-
ple operations in a single query and filter using foreign key indexes
for specific edge labels.

blazegraph results show in general that the indexes it builds au-
tomatically do not help much. Moreover, since every single step is exe-
cuted against some specific graph API, instead of having the Gremlin
query translated into SPARQL and executed as such, its query pro-
cessing is, in general, less efficient. This graph API implementation
does not allow it to exploit any of the optimization implemented by
the SPARQL query engine.

system selection. All the above observations can serve as a
guide in the choice of the right system for the different scenarios.
The two main factors that should be considered in each scenario are
the characteristics of the dataset and the intended workload, with
the latter weighing more. When most of the intended operations are
search on node properties, with few traversals, a hybrid system is
preferable, e. g., Sqlg. Such systems also allow the re-utilization of
the existing technologies in an enterprise and allow the exploitation
of robust optimizers and advanced index mechanisms. The choice of
hybrid systems is also preferable for data in large enterprises with
a low degree of heterogeneity. On the other hand, when the data
is highly heterogeneous, i. e., many different edge types, and in the
workload is predominant the presence of long traversals, native graph
systems appear to be a better choice. This is the case especially when
the data comes from a knowledge graph or is the result of the inte-
gration of many different heterogeneous sources. Another factor to
consider is the dynamicity of the data. If many insert, update, and

54 micro-benchmarking graph databases

delete operators are to be performed, Sparksee, and ArangoDB are
the best performing in our study. If, however, the data is going to be
relatively static and the majority of operations are going to be search
queries, then Neo4J and OrientDB perform better on graph search
and Sqlg on content filters. It is important to note that having studied
all the well-known systems characterized as GDB, our findings offer
a good understanding of the behavior of GDB solutions. There may
be, of course, proprietary or special-purpose solutions, which are not
characterized as GDBs, yet, they offer some graph data storage and
querying functionality. Such a system may show a different behavior
but are not part of our focus of the current work.

hybrid and native systems . The experiments show that hy-
brid and native systems perform differently. In general, despite the
idea that reusing an existing storage layer looks like a promising so-
lution, typical graph workloads require specialized data organization
and query processing to obtain the necessary performances. For a lim-
ited set of use cases, the hybrid systems in our study perform equally
well as the native. However, for traversal queries, like finding the
connectivity between two nodes, BFS visits, and the enumeration of
edges, these hybrid systems underperform significantly. Hence, this
suggests that the design choices made in native systems, e. g., the
separation of the graph structure from other data values, are more
effective than the strategies adopted by the hybrid systems in our
study.

The benefit of the native GDBs against the hybrid may, however,
vary based on the context. In graph analytic pipelines, many tasks
need to be performed on the data by different tools. Using a native
GDB forces the data to be imported in the GDB for the management
and exported for other tasks, diminishing the benefit of the effective
management the native GDB offers. However, a hybrid GDB can pro-
cess the data even while it is residing in external storage. Thus, big
analytic pipeline systems, like SAP Hana, may opt for a hybrid GDB
solution.

heterogeneity and knowledge graphs . We tested the abil-
ity of the various systems in handling a large knowledge graph (DB-
pedia). Handling KGs is notably challenging for the relational model
because the nodes feature properties with different types. Typical
options are encoding the type explicitly in the attributes or storing
everything as strings. Both solutions have notable drawbacks, and
they are not currently supported in the Sqlg system implementation.
ArangoDB and OrientDB organize nodes and edges in shards or par-
titions based on their labels. This partitioning strategy limits both
systems in the maximum number of node and edge labels supported,
which is usually in the order of 2 or 3 thousand. Therefore, only Neo4J

2.9 conclusion 55

and Janus demonstrated to have an internal data organization able
to accommodate such a large number of edge types and attributes.
Additionally, systems like Sqlg, ArangoDB, and Janus require costly
operations whenever a new attribute, node label, or edge label is in-
troduced in the database, making them ill-equipped in supporting
graphs that need to support frequent addition to their schema. More-
over, when handling KGs, typical queries include the so-called Basic
Graph Patterns, which require pattern matching capabilities. Our ex-
periments and experiences with the systems highlighted an overall
lack of appropriate support for this use case.

query language . Although all the systems we studied support
Gremlin, most of them also offer their own custom declarative query
language, for which they also offer query planning and optimization
for that. Many translate Gremlin queries in a one-to-one fashion to
native primitives, but in that way, many Gremlin-side optimizations
cannot be implemented. This behavior indicates that for many GDBs,
Gremlin is not their first priority. Additional evidence is the strug-
gle of loading the data through Gremlin compared to native API. Yet
another shred of evidence is the observed problems with interme-
diate results exhausting the memory. This optimization, however, is
for complex queries, and our microbenchmark approach is based on
primitive queries. Hence, this limitation does not affect our findings.

2.9 conclusion

We have performed an extensive experimental evaluation of the state-
of-the-art graph databases in ways not tested before. We provided
a principled and systematic evaluation methodology based on mi-
crobenchmarks. We have materialized it into an evaluation suite, de-
signed with extensibility in mind, containing datasets, queries, and
scripts. Our findings have illustrated the advantages microbenchmarks
can offer to practitioners, developers, and researchers and how they
can help them better understand design choices, performances, and
functionalities of the graph database system. As a result, we have
presented a number of findings that help understand the trade-offs
between native and hybrid graph database systems, their effect on im-
portant graph queries like traversals and pattern matching, and also
their current capability to handle highly heterogeneous graphs.

availability of data and material : The data used in this
work was collected from existing public datasets, references to the
datasets exist in Section 2.6. The code and all the datasets used in this
work can be accessed online at https://graphbenchmark.com

https://graphbenchmark.com

3
C O M P U T I N G & M A I N TA I N I N G K – C O R E

Over the last decade, the field of distributed processing of large graphs
has attracted considerable attention. This field has been highly moti-
vated, not only by the increasing size of graph data, but also by its
huge number of applications. Such applications include the analysis
of social networks [50, 127], Web graphs [8], as well as spatial net-
works [113]. k-core decomposition is an important task that has been
used to understand large graph data by identifying k-cores, which
are a special family of maximally-induced subgraphs. Intuitively, a k-
core is obtained by recursively removing all nodes of degree smaller
than k, until the degree of all remaining vertices is larger than or
equal to k. A node is said to have coreness k if it belongs to the k-
core but not to the (k + 1)-core [21]. The k-core decomposition has
been used in several different domains including bioinformatics [18],
graph visualization [76] and Internet structure analysis [7].

Several algorithms exist for k-core computation in static graphs,
both in centralized and decentralized settings. Yet, modern graphs
are growing dramatically and are becoming more and more dynamic,
with an ever-increasing rate of node/edge additions or removals. In
such environments, there is an urgent need for solutions that not only
compute the k-core of large graphs, but are also able to maintain it in
an efficient way while the data is constantly changing.

Our work is motivated by two factors. First, the size of the graphs is
becoming so large, that makes it difficult to process with off-the-shelf,
single machines. Second, and most important, the fact that the major-
ity of the existing large graphs are already stored in a distributed
way, either because they cannot be stored on a single machine due
to their sheer size, or because they get processed and analyzed with
decentralized techniques that require them to be distributed among
a collection of machines. For these reasons, we identified the need of
methods and techniques that can exploit as much as possible the exist-
ing topology of the graph data and perform the k-core decomposition
in a cooperative way among the distribution nodes. Our solution is
based on the idea of recomputing the coreness only for those nodes of
the graph that are affected by the graph updates. The propagation of
the effect is done first inside the partition that exists in a single node,
and then across partitions by considering the cut edges, i. e., edges be-
tween nodes of different partitions. To the best of our knowledge, the
proposed solution is the first that allows to consider graph streams
and incremental changes while computing k-core decomposition in
graphs that are already stored in a distributed manner.

57

58 computing & maintaining k–core

contributions . More specifically, our contributions are the fol-
lowing:

• We present a distributed and streaming k-core decomposition
algorithm for very large graphs that are partitioned and dis-
tributed across the nodes of a physically independent network
of machines.

• We propose a maintenance strategy that deals with incremental
changes on the graph by looking to the nodes that need to be
updated in all the partitions and updating the coreness of only
those nodes.

• We present an implementation of our algorithms on top of akka [148],
a framework for building distributed and resilient message-driven
applications.

• We experimentally evaluate the performance of the proposed
approach on both real and synthetic datasets.

The remainder of this chapter is organized as follows. Section 3.1
presents an overview of the related work and specifically those works
that deal with the concept of distributed k-core decomposition. In Sec-
tion 3.2, we define the problem of distributed k-core decomposition in
large dynamic graphs. In Section 3.3, we present our incremental ap-
proach for the k-core maintenance in such graphs. In Section 3.4, we
describe our experimental evaluation and we discuss our findings.

3.1 related work

In this section, we highlight the relevant literature in the field of k-
core decomposition. We consider three research areas: (1) centralized
algorithms, (2) distributed algorithms, and (3) distributed and stream-
ing algorithms for k-core decomposition and maintenance in dynamic
graphs.

3.1.1 Centralized algorithms

The first k-core decomposition algorithm was originally proposed by
Batagelj and Zavernik (BZ) [21]. The main idea of the algorithm is to
recursively delete vertices of degree less than k. It requires random
access to the whole graph, which should therefore be kept in the main
memory for the sake of performance. Cheng et al. [29] have proposed
a strategy based on the BZ algorithm to handle graphs that do not fit
into main memory. The proposed algorithm requires O(kmax) scans
of the graph, where kmax is the largest coreness value of the graph.

3.1 related work 59

3.1.2 Distributed algorithms

The problem of distributed k-core decomposition was first studied
in [102] and a new algorithm for the computation of the k-coreness
of a network was proposed. The proposed approach has been ap-
plied to two different computational models, one based on Pregel [92]
and one based on a block-centric approach [151]. In the former, one
computational unit is associated with one node in the graph, and
communication occurs only through direct messages between nodes
connected through an edge. In the latter, one host stores many nodes
together with their local and remote edges, while communication oc-
curs through messages between hosts.

3.1.3 k-core decomposition and maintenance in dynamic graphs

Few works have studied the k-core decomposition problem from large
dynamic graphs [4, 29, 67, 81, 101, 125]. Li, Yu, and Mao [81] have pre-
sented a k-core maintenance approach in dynamic graphs. They pro-
posed two pruning techniques to remove the nodes whose coreness is
definitely unchanged after an update operation over the initial graph.
When a dynamic graph is updated, the minimal subgraph for which
k-core decomposition might have changed is computed, instead of re-
computing everything from scratch. The proposed algorithm keeps
track of core number for each vertex and upon an update provides
the subgraph for which k-core decomposition needs to be updated.
In [125], the authors present an incremental k-core decomposition al-
gorithm for streaming graph data. The main idea of their approach
is first to locate a small subgraph that contains the set of vertices
whose coreness values have to be updated. Then it processes the lo-
cated subgraph to incrementally maintain the coreness values of its
vertices when a single edge is inserted or removed. In [4], the authors
present a distributed incremental algorithm for k-core maintenance in
large dynamic graphs. The presented approach uses HBase to store
the graph data and hence to exploit the horizontally scaling of its dis-
tributed storage. The distributed algorithm constructs a k-core sub-
graph by progressively removing edges in parallel by remote calls
on distributed nodes. It is worthwhile to mention that the approach
presented in [4] uses a fixed k value and does not determine all the
updated k-cores when dynamic changes are made to the graph.

Most of the above-cited solutions deal with core maintenance of
large dynamic graphs. However, these approaches do not consider
the case when the graph is too large to be kept in the main memory or
when the graph is already distributed across several machines. Only
a few works include the core maintenance task in the case of large
distributed graphs, which is the addressed issue in this chapter.

60 computing & maintaining k–core

3.2 problem formulation

Given an undirected graph G = (V ,E) with n = |V | nodes andm = |E|

edges, the concept of k–core decomposition [21] is condensed in the
following two definitions:

Definition 1 (k-core). A subgraph G(C) induced by the set C ⊆ V is a
k-core if and only if ∀u ∈ C : dG(C)(u) > k, and G(C) is maximal, i. e.,
for each C ⊃ C, there exists v ∈ C such that dG(C)(v) < k.

Definition 2 (coreness). A node in G is said to have coreness k (kG(u) =
k) if and only if it belongs to the k-core but not the (k+ 1)-core.

dG(u) and kG(u) denote the degree and the coreness of u in G,
respectively; in what follows, however, G can be dropped when it is
clear from the context. The subgraph of G induced by C is defined as
G(C) = (C,E|C) where E|C = {(u, v) ∈ E : u ∈ C∨ v ∈ C}.

A k-core of a graph G = (V ,E) can be obtained by recursively
removing all the vertices of degree less than k, until all vertices in
the remaining graph have degree at least k. While such a central-
ized solution is simple and works in linear time [21], the situation
gets more complicated when the issues of dynamism and scale are
considered; even more so when they are considered together. When
new edges and nodes are added or removed, this may cause a cas-
cading re-computation of the coreness of the nodes surrounding the
newcomers, which can potentially span the entire graph. While re-
computing the coreness of the entire graph is always an option, limit-
ing the re-computation to as few nodes as possible is desirable. When
the graph is large and cannot be stored or computed using a single
machine, its vertex set can be partitioned into p disjoint partitions
{V1, . . . ,Vp}; in other words, V = ∪pi=1Vi and Vi ∩ Vj = ∅ for each i, j
such that 1 6 i, j 6 p and i 6= j. Such partitions induce p subgraphs
Gi = (Vi,Ei), where Ei = E|Vi. In such subgraphs, an edge (u, v) is
called a frontier edge of Gi if u ∈ Vi and v ∈ Vj 6= Vi, i. e.the edge links
a node in Vi with a node in a different partition. The set of frontier
edges of a subgraph Gi is denoted Fi; clearly, Fi ⊆ Ei. The set of all
frontier edges of a graph G is defined as Vf = ∪pi=1Fi where Fi is the
set of frontier edges of a subgraph Gi; clearly, Vf ⊆ E.

Given a graph G(V ,E), distributed in a number of partitions, and
having the k-core decomposition already computed over it, we are
interested in finding the coreness after a number of modifications
(insertions or deletions) have taken place on the graph, without hav-
ing to restart the computation from scratch. A by-product of such a
maintenance solution is that the k-core can also be computed for the
first time by running the k-core computation in each partition inde-
pendently, and then considering the edges between the partitions as
updates, and applying the maintenance approach that updates the
coreness of every node into the right value considering the overall

3.3 k-core computation 61

graph. After that, the k-core will be given by the nodes whose core-
ness is k.

3.3 k-core computation

We assume that the graph is subdivided into multiple partitions, each
of them assigned to a different worker. Inside each partition, a central-
ized algorithm to compute the coreness is run. At that point, we treat
large-scale and dynamism in the same way: whenever a new edge
is added to the graph, we first determine the set of candidate nodes
(nodes whose coreness needs to be updated); then, we compute the
correct values for the coreness of those nodes. The set of nodes to
be updated may span multiple partitions, particularly when frontier
edges are added. The system overview of our approach is illustrated
by Figure 3.1.

Graph partitioning

A single large graph
Graph

updates

Worker 1

Subgraph 1

Worker 2

Subgraph 2

Worker p

Subgraph p

Master

...

Figure 3.1: System overview.

As illustrated in Figure 3.1, each worker runs a centralized algo-
rithm to compute the coreness of nodes of its associated subgraph.
The master worker orchestrates the execution of the update process
after considering graph changes. Our approach operates in three com-
puting modes:

• M2W mode. In this mode, message exchanges between the mas-
ter and all workers are allowed. The master uses this mode in
order to ask a distant worker to look for candidate nodes. The
worker uses this mode in order to send the set of computed
candidate nodes to the master.

62 computing & maintaining k–core

• W2W mode. In this mode, message exchanges between workers
are allowed. The workers use this mode in order to propagate
the search for candidate nodes to one or more distant workers.

• Local mode. In this mode, only local computation is allowed.

Our algorithm exploits Theorem 1, first stated and demonstrated
by Li, Yu and Mao [81], that identifies what are the candidate nodes
that may need to be updated whenever we add an edge:

Theorem 1. Let G = (V ,E) be a graph and (u, v) be an edge to be inserted
in E, with u, v ∈ V . A node w ∈ V is said to be a candidate to be updated
based on the following three cases:

• If k(u) < k(v), w is candidate if and only if w is k-reachable from u

in the original graph G and k = k(u);

• If k(u) > k(v), w is candidate if and only if w is k-reachable from v

in the original graph G and k = k(v);

• If k(u) = k(v), w is candidate if and only if w is k-reachable from
either u and v in the original graph G and k = k(u).

A node w is k-reachable from u if there exists a path between u and
w in the original graph such that all nodes in the path (including u
and w) have coreness equal to k = k(u). At this point, we can further
prune the number of possible nodes using Theorem 2.

Theorem 2. Let G = (V ,E) be a graph and let C be the set of candidates
nodes after considering the new edge (u, v). LetN(w) be the set of neighbors
of w and let X(w) be the number of neighbors of w such that ∀w ′ ∈ N(w),
k(w ′) > k(w) or w ∈ C. Then, ∀w ∈ C, X(w) 6 k(u) implies that the
coreness of u is definitely unchanged.

Proof. After considering an edge to be inserted (u, v), the quantity
X(w) consists in the number of neighbors whose coreness values are
larger than k(w). We note that if X(w) 6 k(w), the node w cannot
belong to the (k(u) + 1)-core and thus, the coreness of w remains
equal to k(w).

In order to increase the performance of our approach, the parti-
tioning of the input graph needs to be optimized to have balanced
partitions and a small number of frontier edges. In the following,
we present basic algorithms for the distributed k-core decomposition
task. Table 3.1 summarizes the notations used in our algorithms.

Algorithm 1 implements the distributed orchestration mechanism
that first computes the coreness in each of the partitions and then
adds the frontier edges one by one. This algorithm is run by a master
worker under the M2W computing mode. Later, any kind of edge can
be added, following the same approach.

3.3 k-core computation 63

G An undirected graph partitioned into p partitions
k(u) Coreness of u
N(u) Neighbors of u
Vf The set of all frontier edges of G

kCore(Gi)
Executed by worker i and computes the coreness of all
nodes of Gi

partitionID(u) Partition associated to node u

visited(u)
Indicates whether the node u is visited or not while we
are looking for reachable nodes.

pi.f() A remote call to the f() function on partition pi

Table 3.1: Notation.

Algorithm 1: Distributed k-core decomposition

foreach j ∈ {1, . . . ,P} do1

pi.kCore(Gi)2

foreach e = (u, v) ∈ Vf do3

C← getCandidates(e)4

C← pruneCandidatesInsert(C)5

foreach u ∈ C do6

pu ← partitionID(u)7

pu.k(u)← pu.k(u) + 18

The update process is composed of three steps. The first step con-
sists in activating the W2W computing mode and identifying the set
of candidate nodes, i. e., the set of nodes that may need to be updated
(Algorithm 2). For each frontier edge (u, v), the current coreness of
nodes u and v are compared. If the coreness of u (respectively v) is
greater than the coreness of v (respectively u), then the set of can-
didate nodes consists of nodes that are k-reachable from v (respec-
tively u), where k = k(v) (respectively, k(u)). If the coreness of u is
equal to the coreness of v, then the set of candidate nodes consists
of the union of nodes that are k-reachable from u and from v, where
k = k(v) = k(u).

The reachable (u) function returns the set of nodes that are k-reachable
from u, by performing a depth-first visit. The visit can span multiple
partitions, meaning that the visit of a frontier edge can lead to the
visit of a node in a different partition. The pseudo-code shown below
illustrates the behavior of the visit; in the real implementation, the
nodes identified as potential candidates are sent back to the master
node that orchestrates the execution.

The second step consists in activating the Local computing mode of
our approach and selecting the set of nodes that need to be updated
from the set of candidate nodes. This step is achieved by applying the
pruning strategy introduced in Theorem 2.

64 computing & maintaining k–core

Algorithm 2: set getCandidates (edge (u, v))

pu ← partitionID(u)1

pv ← partitionID(v)2

C← ∅3

if k(u) < k(v) then4

C← pu.reachable(u)5

else if k(u) > k(v) then6

C← pv.reachable(v)7

else8

C← pu.reachable(u)∪ pv.reachable(v)9

return C10

Algorithm 3: set reachable (node u)

set C← ∅1

if visited(u) = false then2

C← C∪ {〈u,k(u),N(u)〉}3

visited(u)← true4

pu ← partitionID(u)5

foreach v ∈ N(u) do6

if k(v) = k(u) then7

pv ← partitionID(v)8

if pu = pv then9

C← C∪ reachable(v)10

else11

C← C∪ pv.reachable(v)12

return C13

Finally, the third step consists in activating the M2W computing
mode and updating the coreness values of the set of nodes computed
in the second step.

It is important to highlight that the algorithms presented above
aim to compute the distributed k-core decomposition in a large parti-
tioned graph. The frontier edges of the original graph are considered
one by one after computing the k-cores of the distributed graph parti-
tions separately. The proposed approach deals with frontier edges as
edge insertions in a dynamic graph. Consequently, the proposed al-
gorithms can be simply used to deal with edge insertions in large dy-
namic graphs. Algorithm 5 implements the update process for edge
insertion in a large dynamic graph.

The edge deletion task is slightly different from edge insertion. Al-
gorithms 6 implement the update process for edge deletion in a large
dynamic graph.

3.4 experiments 65

Algorithm 4: pruneCandidatesInsert (set C)

changed← true1

while changed do2

changed← false3

foreach 〈u,k(u),N(u)〉 ∈ C do4

count← 05

foreach v ∈ N(u) do6

if 〈v,k(v),N(v)〉 ∈ C or k(v) > k(u) then7

count← count + 18

if count 6 k(u) then9

changed← true10

C← C− {〈u,k(u),N(u)〉}11

return C12

Algorithm 5: updateInsertions (set S)

foreach e ∈ S do1

C← getCandidates(e)2

C← pruneCandidatesInsert(C)3

foreach u ∈ C do4

pu ← partitionID(u)5

pu.k(u)← pu.k(u) + 16

Algorithm 6 is run by a master worker under the M2W computing
mode. It consists of three main steps. The first step consists in acti-
vating the W2W computing mode and identifying the set of nodes
that may need to be updated after the deletion using Algorithm 2.
The second step consists in activating the Local computing mode and
selecting the set of nodes that need to be updated from the set of
candidate nodes. The set of nodes with unchanged coreness values
is computed by Algorithm 7. We notice that for edge deletions, the
set of nodes that need to be updated is slightly different from the set
computed by Algorithm 4.

The last step of the edge deletion task consists in activating the
M2W computing mode and updating the coreness values of the nodes
that need to be updated.

3.4 experiments

We have performed an extensive set of experiments to evaluate the
effectiveness and efficiency of our approach on a number of different
real and synthetic datasets. Additional and more detailed information

66 computing & maintaining k–core

Algorithm 6: updateDeletions (set S)

foreach e ∈ S do1

C← getCandidates(e)2

C← C− pruneCandidatesDelete(C)3

foreach u ∈ C do4

pu ← partitionID(u)5

pu.k(u)← pu.k(u) − 16

Algorithm 7: pruneCandidatesDelete (set C)

changed← true1

while changed do2

changed← false3

foreach 〈u,k(u),N(u)〉 ∈ C do4

count← 05

foreach v ∈ N(u) do6

if 〈v,k(v),N(v)〉 ∈ C or k(v) > k(u) then7

count← count + 18

if count < k(u) then9

changed← true10

C← C− {〈u,k(u),N(u)〉}11

return C12

about our datasets and our experiments in general can be found in
the following link: https://martinbrugnara.it/rp/dkcore.html.

3.4.1 Experimental data

Since we are interested in the core of graph data, the characteristic
properties of our datasets are the number of nodes, the number of
edges, the diameter, the average clustering coefficient, and the maxi-
mum coreness. Table 3.2 shows these properties for the datasets we
have used in our work. We have used two groups of datasets: (1)
real-world datasets, made available by the Stanford Large Network
Dataset collection [79] and (2) synthetic datasets, created by a graph
generator based on the Nearest Neighbor model [123], that builds
undirected graphs with power-law degree distribution with exponent
between 1.5 and 1.75, matching that of online social networks.

3.4.2 Experimental environment

We have implemented our approach on top of the akka framework,
a toolkit and runtime for building highly concurrent, distributed, re-

https://martinbrugnara.it/rp/dkcore.html

3.4 experiments 67

Dataset Type] Nodes (N)] Edges (M) � Avg. CC Max(k)

DS1 Synthetic 10,000 70,622 4 0.3977 33

DS2 Synthetic 20,000 144,741 4 0.3935 38

DS3 Synthetic 50,000 365,883 4 0.3929 42

DS4 Synthetic 100,000 734,416 4 0.3908 46

ego-Facebook Real 4,039 88,234 8 0.6055 115

email-Enron Real 36,692 183,831 11 0.4970 43

roadNet-TX Real 1,379,917 1,921,660 1,054 0.0470 3

roadNet-CA Real 1,965,206 2,766,607 849 0.0464 3

com-LiveJournal Real 3,997,962 34,681,189 17 0.2843 296

soc-LiveJournal Real 4,847,571 68,993,773 16 0.2742 318

Table 3.2: Experiments data.

silient message-driven applications. In order to evaluate the perfor-
mance of our approach, we used a cluster of 17 m3.medium instances
on Amazon EC2. Each m3.medium instance contained 1 virtual 64-bit
CPU, 3.75 GB of main memory, and a 8 GB of local instance storage.
We also implemented two existing approaches for k–core decompo-
sition in large dynamic graphs. First, we implemented Li et al.’s ap-
proach [81] and we run it on a machine equipped with two Intel(R)
Xeon(R) E5-2440 CPUs (2.40GHz) and 192 GB of memory. Second, we
implemented the HBase-based approach of Aksu et al. [4] and we run
it on a cluster of 9 m3.medium instances on Amazon EC2 (1 master
and 8 slaves).

3.4.3 Experimental protocol

In order to simulate dynamism in each dataset, we consider two up-
date scenarios. For each scenario, we measure the performance of the
system to update the core numbers of all the nodes in the considered
graph after insertion/deletion of a constant number of edges.

• In the inter-partition scenario, we either delete or insert 1000 ran-
dom edges connecting two nodes belonging to different parti-
tions.

• In the intra-partition scenario, we either delete or insert 1000
random edges connecting two nodes belonging to the same par-
tition.

We consider three figures of merit to evaluate our approach.
First, we measure the average insertion time (AIT) and the average

deletion time (ADT) in the two proposed scenarios. We also compare
the results of our algorithm with existing solutions for k–core decom-
position in large dynamic graphs, including Li et al.’s approach [81]
and Aksu et al.’s approach [4].

Second, we study data communications and networking. In this
context, we measure the amount of exchanged data needed to com-
pute the task of k-core decomposition.

68 computing & maintaining k–core

Third, we study the scalability of our approach with respect to the
number of machines in our cluster. In this context, we vary the num-
ber of worker machines and measure the average insertion/deletion
time for each update scenario.

3.4.4 Experimental results

speedup Table 3.3 illustrates the results obtained with both the
real and the synthetic datasets. For each dataset, we measure the num-
ber of frontier edges and we record the average insertion time (AIT)
and the average deletion time (ADT) over the 1000 insertions/dele-
tions for both inter-partition and intra-partition scenarios. To generate
the results of Table 3.3, we randomly partition the graph dataset into
8 partitions.

Dataset
Number of

frontier edges
AIT (ms) ADT (ms)

inter intra inter intra

DS1 61,803 (87.51%) 27 6 20 4

DS2 126,720 (87.54%) 39 16 27 9

DS3 320,318 (87.54%) 42 10 32 8

DS4 643,189 (87.57%) 30 10 25 8

ego-Facebook 77,253 (87.55%) 38 15 32 10

email-Enron 161,055 (87.61%) 32 8 28 6

roadNet-TX 1,681,830 (87.51%) 28 9 25 7

roadNet-CA 2,420,674 (87.49%) 30 12 26 10

com-LiveJournal 30,348,426 (87.50%) 256 30 205 27

soc-LiveJournal 59,916,050 (86.84%) 579 27 499 25

Table 3.3: Experiments results.

As shown in Table 3.3, we observe that in the intra-partition scenario,
the values of the average insertion/deletion time are much smaller
than those in the inter-partition scenario. This can be explained by the
fact that the inserted/deleted edges in the intra-partition scenario are
internal ones. Consequently, the amount of data to be exchanged be-
tween the distributed machines in the case of internal edges is smaller,
in most cases, than the amount of exchanged data in the case of
edges of the inter-partition scenario (i. e., frontier edges). During the k-
core maintenance process after insertion/deletion of an internal edge,
there is always the chance of not having to visit distributed worker-
s/partitions other than the partition that holds the internal edge.

Figure 3.2 presents a comparison of our approach with both the
sequential approach proposed by Li et al. and the HBase-based ap-
proach proposed by Aksu et al. in terms of average insertion/deletion
time. For our approach, we used 9 m3.medium instances on Amazon
EC2 (1 acting as a master and 8 acting as workers). For the HBase-
based approach, we used 9 m3.medium instances on Amazon EC2 (1
master node and 8 slave nodes).

3.4 experiments 69

We notice that Li et al.’s approach produces better results in terms
of average insertion/deletion time for almost all small datasets. This
can be explained by the communication cost of our approach com-
pared to Li et al.’s approach, which performs in-memory and cen-
tralized computing. For road network and LiveJournal datasets, our
approach performs much faster that Li et al.’s approach with both
inter-partition and intra-partition scenarios. It is also important to men-
tion here that Li et al.’s approach has failed to deal with LiveJournal
datasets using one of the m3.medium instances used for the evaluation
of our approach due to lack of memory.

As shown in Figure 3.2, our approach allows much better results
compared to the HBase-based approach for almost all datasets. It
is noteworthy to mention that the presented runtime values of the
HBase-based approach correspond to the maintenance time of only
one fixed k value core (k = max(k) in our experimental study).
This means that, for each dataset, the maintenance process of the
HBase-based approach needs to be repeated max(k) times in order
to achieve the same results as our approach.

D
S
1
+

D
S
1
-

D
S
2
+

D
S
2
-

D
S
3
+

D
S
3
-

D
S
4
+

D
S
4
-

ego-F
aceb

o
ok

+

ego-F
aceb

o
ok

-

em
ail-E

n
ron

+

em
ail-E

n
ron

-

road
N
et-T

X
+

road
N
et-T

X
-

road
N
et-C

A
+

road
N
et-C

A
-

com
-L
iveJ

ou
rn
al

+

com
-L
iveJ

ou
rn
al

-

so
c-L

iveJ
ou

rn
al

+

so
c-L

iveJ
ou

rn
al

-

100

102

104

A
ve
ra
ge

in
se
rt
io
n
/d

el
et
io
n
ti
m
e
(m

s)

inter-partition intra-partition HBase-based approach Sequential solution

Figure 3.2: Average insertion/deletion time.

data communications and networking In order to study
data communications and networking, we begin by examining the
amount of exchanged data between the distributed machines.Then,
we study the impact of the partitioning method and the number of
graph partitions on the amount of exchanged data between the mas-
ter node and the worker nodes. Figure 3.3 shows the average value
of the amount of exchanged data between the master node and the
worker nodes. The amount of exchanged data is shown in log-scale.
For each dataset, we present the mean value of the exchanged data.
As illustrated in Figure 3.3, the amount of data to be exchanged in the

70 computing & maintaining k–core

intra-partition scenario is much smaller than the amount of exchanged
data in the inter-partition scenario.

D
S
1

D
S
2

D
S
3

D
S
4

eg
o-F

aceb
o
ok

em
ail-E

n
ron

ro
ad

N
et-T

X

ro
a
d
N
et-C

A

co
m
-L
iveJ

ou
rn
a
l

so
c-L

iveJ
o
u
rn
al

101

103

105

M
ea
n
o
f
ex
ch
a
n
ge
d
d
at
a inter-partition scenario intra-partition scenario

Figure 3.3: Amount of exchanged data.

In order to study the impact of the number of partitions on the
amount of exchanged data, we show in Figure 3.4, for each number
of partitions, the mean value of the exchanged data and the standard
deviation value which corresponds to the error bar. This standard
deviation gives a general idea of how the values of the exchanged
data are concentrated around the mean value.

2 4 8 16

101

102

103

104

105

106

Number of workers/partitions

M
ea
n
of

ex
ch
an

g
ed

d
at
a

DS1 DS2 DS3 DS4 ego-Facebook
email-Enron roadNet-TX roadNet-CA com-LiveJournal soc-LiveJournal

Figure 3.4: Impact of the #partitions on the amount of exchanged data.

We note that the amount of exchanged data is inversely propor-
tional to the number of partitions in almost all datasets (see Fig-
ure 3.4).

scalability To study the scalability of our approach and to show
the impact of the number of worker machines on the maintenance
task runtime in the case of large-scale networks, we measured the

3.5 conclusions 71

average insertion/deletion time of our approach for each number of
worker machines. We present these results in Figure 3.5.

As illustrated in Figure 3.5, our approach scales up as the number
of worker machines increases. In fact, our approach’s average inser-
tion/deletion time is inversely proportional to the number of such
machines.

3.5 conclusions

This chapter deals with the problem of distributed k-core decompo-
sition in large dynamic networks. Most of the existing approaches
solve the problem of k-core maintenance for graphs that can fit into
the main memory of one single machine. They do not consider the
cases of already distributed graphs and graphs that can not fit into
one single machine. In this chapter, we have introduced an efficient
distributed and streaming k-core decomposition approach for large
and dynamic networks. Our approach deals with graph changes/up-
dates by selecting only the nodes of a subgraph of the original graph
that really need to update their core numbers. We implemented our
approach on top of the akka framework, a toolkit and runtime for
building highly concurrent, distributed, and resilient message-driven
applications. By running experiments on a variety of both real and
synthetic datasets, we have shown that the proposed method is in-
teresting in the case of very large graphs with a very satisfactory
performance and scalability for large graphs.

72 computing & maintaining k–core

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
g
e
in
se
ri
o
n
/d

el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(a) DS1

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
g
e
in
se
ri
o
n
/d

el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(b) DS2

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
g
e
in
se
ri
o
n
/d

el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(c) DS3

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
g
e
in
se
ri
o
n
/d

el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(d) DS4

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
ge

in
se
ri
on

/d
el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(e) ego-Facebook

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
ge

in
se
ri
on

/d
el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(f) email-Enron

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
ge

in
se
ri
on

/d
el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(g) roadNet-TX

2 4 8 16
0

10

20

30

40

50

Number of workers/partitionsA
ve
ra
ge

in
se
ri
on

/d
el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(h) roadNet-CA

2 4 8 16
0

80

160

240

320

400

Number of workers/partitionsA
ve
ra
ge

in
se
ri
on

/d
el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(i) com-LiveJournal

2 4 8 16
0

180

360

540

720

900

Number of workers/partitionsA
ve
ra
ge

in
se
ri
on

/d
el
et
io
n
ti
m
e(
m
s) AIT + Inter-partition ADT + Inter-partition

AIT + Intra-partition ADT + Intra-partition

(j) soc-LiveJournal

Figure 3.5: Effect of the number of workers on the average insertion time
(AIT) and the average deletion time (ADT).

4
T O P I C R E C O M M E N D AT I O N : E X PA N D Y O U R
H O R I Z O N

People today have access on the web to a massive amount of informa-
tion, some more static like general knowledge, some more dynamic,
like news and commentary about daily events. Thanks to the accessi-
bility of the web, the growth in popularity of comment sections, re-
views sites, and the birth of social networks, the users evolved from
pure information consumers for the journals or the TVs to become
also producers of information. The information available on the web
today varies a lot in quality, correctness, and trustfulness, at least as
much it varies in terms of sources. Everybody contributes to it, from
governments and reputable institutions with their official and certi-
fied documents and data, to people providing their reviews, through
bad actors providing fake news [35] and volunteers and profession-
als fact-checking and democratizing complex topics. The web has be-
come part of everybody’s life, and for many, it serves as their primary
source of information. While most news and data would be directly
available from the sources, many users entrust third parties to pro-
vide more concise or simplified interpretations and analyses of the
originals. The providers can vary from online journals or corpora-
tions to other users. Different authors will produce different opin-
ion pieces [56] influenced by their own opinions and by the expecta-
tions of their target audience. Generally, people tend to prefer opinion
pieces that reinforce their pre-existing beliefs [99]. They thus get more
polarized as they see only a part of the reality and feel support from
other users in the same position. While this phenomenon appears
in many domains, it is most well documented in forums and social
networks [30, 31, 128]. Nevertheless, studies showed it is possible to
actively fight polarization and misinformation by providing the user
with a comprehensive set of viewpoints [55, 82, 83, 105, 143].

Now more than ever, there is a need for novel systems to provide
holistic overviews of discussion topics. Moreover, it may be worth
mentioning that while this is a need for the news sector, it is also an
important future for reviewing services, and for the related-articles
recommendation problem in general.

We are interested in providing a solution that, given a query article,
recommends a set of diverse and related articles. The recommended
articles shall thus cover, depending on the text corpora at hand, the
different perspectives or the different opinions and sentiments for the
subject of the query document and its closely related topics.

73

74 topic recommendation : expand your horizon

We are thus proposing two new approaches. The first, Orthogonal-
topics, focuses on the relationship of the topics, and it has been de-
signed to generalize well on all datasets. The second, Sentimented-
topics, focuses on the sentiment expressed by the documents on the
different topics, and it has been designed to extract and exploit as
much information as possible from text corpora that contain opinion-
ated articles.

To best model our intuition of a set of diverse articles, we devised
our own diversity-metric, MIN-BW. It models a set of documents as
a system of particles with repulsive forces; then, the most diverse
set is the one whose system requires less work to balance, i. e., to
make it statically stable. We then show how MIN-BW differs from
existing diversity-metrics in literature: maximize minimal pairwise
points distance (MAX-MIN) and maximize average pairwise points
distance (MAX-AVG). After demonstrating how we cannot reuse or
adapt existing algorithms, we present FDLS, a fast and scalable time-
bounded approximated optimization algorithm to find the maximally
diverse set accordingly to MIN-BW.

To validate both our solutions, we perform a user study where
we ask the users to compare the quality of the recommendations
generated by our two approaches (orthogonal-topics + MIN-BW and
sentimented-topics + MIN-BW) against the state-of-the-art recommender
from Abbar et al. [1] on real-world data. The results showed that both
our approaches outperform in all aspects, on average, the solution
from Abbar et al. [1], especially in diversity and usefulness. They also
showed that in the 75% of the instances, the diversity score was 75%
or better, demonstrating the power of our MIN-BW model.

Finally, to validate the scalability and precision of FDLS, we per-
form an extensive set of tests on synthetic data, tracking the running
time and diversity score accordingly to MIN-BW. We thus compare
them with these from the state-of-the-art approximation algorithms
for MAX-MIN and MAX-AVG proposed by Ravi et al. [116]. Results
show that FDLS scales effectively linearly with the number of points,
always terminating under 175ms even for 4096 points, whereas MAX-
AVG and MAX-MIN running times explode with just a few points.
They require twice the time of FDLS for 256 points, they take more
than two seconds for 1024 points, and none of their tests instances
with 4096 point could terminate in less than 20s. Moreover, they
showed that the quality of FDLS approximations is generally com-
parable or even better, like in the cases with fewer points, and that
our algorithm scales best. The analyses of the precision of the ap-
proximations showed little to no difference between the algorithms
across both the number of points and the number of dimensions. Our
solution performed best on examples with fewer points, but the val-
ues still re-enter within standard deviation for all configurations. Our

4.1 background 75

FDLS algorithm is thus a good approximating for MIN-BW and scales
far beyond what the competition can do.

contributions . More specifically, our contributions are the fol-
lowing:

• We propose two novel approaches, orthogonal-topics and sentimented-
topics, for providing holistic overviews of discussion topics.

• We propose a novel diversity-metric, MIN-BW.

• We provide an efficient approximated algorithm, FDLS, to select
the most diverse set accordingly to MIN-BW.

• We experimentally demonstrate the quality of our approaches
with a user study on real data.

• We demonstrate the superior scalability of our algorithm with
exhaustive tests on synthetic datasets.

The remaining of the chapter is organized as follows. Section 4.1
provides the background needed to define and evaluate our solu-
tions. Section 4.2 present the closest approaches from the literature.
Section 4.3 define the recommendation problem, and Section 4.4 in-
troduces our two solutions including orthogonal-topics, sentimented-
topics, and the diversity-measure MIN-BW. Section 4.5 describes our
evaluation methodology and reports the results. Finally, we conclude
with our remarks in Section 4.6.

4.1 background

Section 4.1.1 describes Latent Dirichlet Allocation (LDA), a frequently
used technique [62, 72, 80, 144, 146, 152] for text corpora and topic
modeling that is also been employed in this work.

The problem of selecting a diverse and representative subset of
items has been studied in many different domains [38, 40, 118, 126]
in the past. Section 4.1.2 describes the models and solutions exploited
in this work and for its evaluation.

4.1.1 Latent Dirichlet Allocation

Given a text corpora, Latent Dirichlet Allocation (LDA) [22], gener-
ates a probabilistic model which describes the documents in terms
of topic distribution probabilities and the topics themselves as word
topic distribution probabilities.

Definition 3 (Topics). The topics produced by LDA are characterized by
a distribution over words. In other terms, they are vectors of real numbers,
between 0 and 1, where each value corresponds to the probability associated

76 topic recommendation : expand your horizon

with any distinct word in the corpus. Their representation can be lossly
compressed by retaining only the most relevant words, i. e.transforming the
vectors in list of tuples (word id, prob).

Documents themselves are then characterized by a distribution over
the topics. In a similar manner to topics&words, documents are vec-
tors of probabilities over topics and can be lossly compressed in the
same manner. From now on, we will use the term “documents’ topics”
to refer only to the subset of topics that survive the compression/se-
lection procedure as described above.

4.1.2 Diversification

The definition of diverse results varies in the literature. Since, in this
work, we focus on recommending articles based purely on their text-
body, we are only interested in content-based definitions. They inter-
pret diversity as an instance of the discrete p-dispersion problem [40].
As such, the text corpora must be modeled as space with a point for
each article and a distance function that measures their diversity, i. e.,
a diversity-metric. The literature provides several methods [1, 49, 80]
to perform this mapping. In this work, we use LDA, as discussed
in Section 4.4, to construct a geometric space with a metric that also
satisfies the triangle inequality.

The discrete p-dispersion problem, also known as k-facility disper-
sion problem, consists in selecting a subset of p points for which
either their minimum pairwise distance, MAX-MIN, or their average
distance, MAX-AVG, is maximal. While the problem is known to be
NP-Hard, for both definitions, Ravi et al. provided the two state-of-
the-art approximation algorithms for Rd, with proved optimal perfor-
mance guaranteed (equal to 2) under the assumption of P 6= NP [116].
Hereafter we present the two problem definitions with the respective
approximation algorithms.

Definition 4 (MAX-MIN). Given a set V = {p1,p2, . . . ,pk}, of n points
with pk ∈ Rd, a positive integer k smaller that n, and a distance function
d(pa,pb) : R+, find a subset P ⊆ V with |P| = k for which the minimal
pairwise distance among the points is maximal.

argmax
P∈(Vk)

min
a,b∈P

d(a,b) (4.1)

where
(
V
k

)
represents, by abuse of notation, the set of all possible subsets of

size k of V , i. e., all possible combinations of k elements from V .

The greedy algorithm (Algorithm 8) requires k− 1 iterations to in-
crementally build the P set. For the first iteration, it adds the two
points with maximal distance. Then, for each subsequent iteration, it

4.1 background 77

adds the single point from S \ P which minimal distance from any
point in P is maximal. The complexity thus is

O
(
|V |2/2+ (k− 2) · (k− 3) · |V |

)
,

where the first term maps to the first iteration and the second to all
subsequent ones.

Algorithm 8: Greedy MAX-MIN
Data: V , k, d(),
Result: P
// Find most distant pair of points.

dmin, a, b←∞, 0, 11

for i ∈ [0, |V − 1|] do2

for j ∈ [i+ 1, |V | do3

if d(Vi,Vj) < dmin then4

dmin, a, b← d(Vi,Vj),Vi,Vj5

P ← {a,b}6

// Greedy search reamaing k− 2

for _ ∈ [0,k− 2] do7

dmax,dp ← 0, ∅8

for p ∈ V \ P do9

// Min distance from anything in P

dmin ←∞10

for p ∈ P do11

if d(p,p) < dmin then12

dmin ← d(p,p)13

// p has maximal min-dist "from" P

if dmin > dmax then14

dmax,dp ← dmin,p15

P ← P ∪ dp16

return P17

Definition 5 (MAX-AVG). Given a set V = {p1,p2, . . . ,pk}, of n points
with pk ∈ Rd, a positive integer k smaller that n, and a distance function
d(pa,pb) : R+, find a subset P ∈ V with |P| = k for which the average
pairwise distance among the points is maximal.

argmax
P∈(Vk)

avg
a,b∈P

d(a,b). (4.2)

The greedy algorithm for MAX-AVG (Algorithm 9) is closely re-
lated to that for MAX-MIN, albeit that in the main loop, it searches
for the point that has the maximal average distance from the points
already in P, instead of the minimal.

78 topic recommendation : expand your horizon

Algorithm 9: Greedy MAX-AVG
Data: V , k, d(),
Result: P
// . . . Preamble same as Algorithm 8 . . .

// Greedy search reamaing k− 2

for _ ∈ [0,k− 2] do7

dmax,dp ← 0, ∅8

for p ∈ V \ P do9

// Avg distance "from" P

dsum ← 010

for p ∈ P do11

dsum ← dsum + d(p,p)12

// p has maximal avg-dist "from" P

if dsum > dmax then13

dmax,dp ← dsum,p14

P ← P ∪ dp15

return P16

From now on, since the subject will be clear from the context, we
will use the same terms MAX-MIN and MAX-AVG to refer to both
the optimization problems and to the greedy algorithms.

4.1.3 Unit-Hyper-Sphere

In many solutions, like in the ones we propose in this work, the
relevance or relatedness score is a function of the two documents’
distance, score(q, doc) -> f(||doc - q||). A relevance/relatedness
filter reduces the entire space to the interior of a sphere. Moreover,
whenever the maximal minimum distance in an optimal dispersion
solution is greater than the radius of the hyper-sphere, all points lay
on the surface of the sphere itself. This condition presents itself for
small values of k and dense spaces.

Furthermore, in our solution, like in some others, we will also
limit the minimum distance to avoid almost-identical documents, ef-
fectively limiting the search space to a hyper-corona. This filtering
strategy makes even more likely the arising of the condition just de-
scribed since the distance shall now be just greater than the difference
in radii of the hyper-corona.

How should then k points be distributed on a unit (hyper) sphere
Sd−1 embedded in the Euclidean space Rd, such that they are opti-
mally spaced?
There currently exist two different answers to the question. The first
answer yields the Tammes [132] problem, the second the Thomson [137]

4.1 background 79

problem. They were originally formulated for S2 ⊂ R3, but they can
be easily stated for higher dimensions. In the Tammes problem, the
minimum distance between pair of points is maximized. This is a
special case of the MAX-MIN optimization problem where the points
are constrained on the surface of the unit hyper-sphere. In the Thom-
son problem, the energy of a central field of forces with origin at the
center of the sphere is minimized. It has been formulated originally
for the electrostatic field (electrons around the kernel of an atom in
the plum pudding model), but the specific constants can be here ne-
glected.

The unit sphere Sd−1 ⊂ Rd is defined as

Sd−1 = {x ∈ Rd | ||x|| = 1},

where || · || is the Euclidean norm of Rd. The angle α between two
unit vectors x and y is obtained from the standard scalar product via
x · y = cos(α). The Euclidean distance can be written as

||x− y|| =
√
2− 2x · y =

√
2− 2 cos(α)

The geodetic distance between two points on the sphere (spherical
distance) is equivalent to the angle α since the sphere has a radius of
1. It is related to the Euclidean distance by ||x− y|| = 2 sin(α/2).

Definition 6 (Tammes). Given a positive integer k, find k points P = {p1,
. . ., pk} with pj ∈ Sd−1 ⊂ Rd such that they maximize their respective
distance s:

max s

subject to: ||pi − pj|| > s, i 6= j,
pi ∈ Sd−1 i, j = 1, . . . ,k.

A second answer considers the optimal positioning as the mini-
mum energy displacement of particles around a central point. The
Thomson formulation considered the Coulomb law for electrostatic
potential. The particles were electrons, and the central point was the
kernel of the atom. Here, an abstract central force is considered: its
potential is characterized by the reciprocal interaction of two particles
that satisfies the classic relation

U(pi,pj) =
1

||pi − pj||
.

The global potential energy of all particles is then defined as the sum
of all pairwise interactions:

U =

n∑
i<j

1

||pi − pj||
. (4.3)

80 topic recommendation : expand your horizon

Definition 7 (Thomson). Given a positive integer k, find k points P = {p1,
. . ., pk} with pj ∈ Sd−1 ⊂ Rd such that they minimize their respective
potential energy:

minU =

k∑
i<j

1

||pi − pj||

subject to: pi ∈ Sd−1, i, j = 1, . . . ,n,

where U is the total potential defined in (4.3).

Classic and intuitive solutions to both problems, in the planar case
they are the regular n-polygons; in the case S2 ⊂ R3, common solu-
tions are the triangle for n = 3 and the tetrahedron for n = 4.

However, the solution of the two problems is not always the same. The
first counterexample for d = 3 is given for n = 10, where the so-
lution of the Tammes problem is dTa = 1.091426290 and the associ-
ated solid, which does not have a specific name and is composed by
different polygons, has an irregular distribution of points and nor-
malized potential energy of ETa = 32.796048964. On the other hand,
the Thomson solution has a minimum distance between points of
dTh = 1.074534852 and potential energy of ETh = 32.716949460. The
associated solid is more regular and composed only by triangles, a
gyroelongated square bipyramid, that is a square antiprism inserted
between the basis of an octahedron. The differences in the solution
are the regularity that brings a configuration of lower energy in the
Thomson problem (99.75%) at the price of more close points (98.45%)
with respect to the Tammes solution.

Examples of optimal solutions for d = 3 is given for n = 10:

Optimal solution accordingly to Tammes.

0.000000000 0.000000000 1.000000000
0.914584731 0.000000000 0.404394325
0.101026934 0.908987782 0.404394325

−0.841397575 0.358490376 0.404394325
0.263354009 −0.875848101 0.404394325

−0.744490792 −0.666330505 0.041678755
0.654028153 0.585365077 −0.479160623

−0.426378376 0.729938829 −0.534219792
0.678373208 −0.504399648 −0.534219792

−0.329471593 −0.294882053 −0.896935363



4.2 related 81

Optimal solution accordingly to Thomson.

0.26295766989233 −0.77367763277684 0.57643402431295
0.99173360691940 0.01088493241960 −0.12785136351584
0.18386542849509 0.97655761918020 0.11193176772221

−0.73873395788922 −0.65620949982719 0.15382207838239
−0.79466061788263 0.58139371195556 −0.17463062184202
−0.52855026444359 −0.23998820230990 −0.81427285396768
0.52855026833562 0.23998819628140 0.81427285321810
0.29191085307296 0.45332951632285 −0.84218786709897

−0.54491050501616 0.19199505935279 0.81621715168646
0.34783751836567 −0.78427370036534 −0.51373516886861


Despite the straightforward definitions, both problems are extremely

difficult to solve; since they are non-convex and NP-hard. In fact, they
are often used as benchmarks for testing clusters of computers and
optimization software. In practice, only for a few cases and d = 3,
the global optimum has been found for both problems. Moreover, the
solution is not found via standard optimization techniques like gradi-
ent descent (because of the presence of many local optima) but with
algebraic techniques based on graphs. These problems are further
complicated by the fact that the solution of the case (d,k) does not
help in any way for the solution of (d,k+ 1), even if sometimes the
configuration (d,k) is obtained from (d,k+ 1) by removing a point.

4.2 related

The problem of recommending a diverse set of topics or articles can
be decomposed in finding a good model for textual data and selecting
a diverse sub-set of elements.

The modelling of text corpora is generally performed by LDA [1, 22,
62, 72, 80, 144, 146, 152], which we already introduced in Section 4.1.1,
or by Term frequency-inverse document frequency (TF-IDF) [63, 131],
or by a mix of the two [72]

The spectra of existing approaches for recommending a diverse
sub-set of elements is broad; it ranges from simple clustering algo-
rithms to deep neural networks. Hereafter we report relevant exam-
ples of systems that can work with just the article bodies as input.

Drosou and Pitoura proposed Disc Diversity [41, 42] for result di-
versification. Their approach takes as input a set V and a distance
metric. It looks for a subset P of V such that: 1) all the items in V lay
within distance r from at least one of the element in P; 2) all items
in P are at least at distance r between them. The set P is called a
r-Dissimilar-and-Covering diverse subset (r-DisC). The first set
found to match these criteria is returned as the final result.

Liu and Jagadish [88] investigated the performance of the Random
Selection, Density biased sampling, k-medoids, and top-k sorting al-
gorithms in solving the “Many-Answers” problem and identified the
k-medoids as the best solution.

82 topic recommendation : expand your horizon

Abbar et al. [1] proposed a novel approach to recommending di-
verse and related articles. The documents are modeled as sets of rele-
vant topics (these with high probability), and the Jaccard distance is
used as the similarity metric. Related documents are thus clustered
via Locality Sensitive Hashing (LSH). The algorithm takes as input
a query document and a value k. As a first step, it finds the LSH
bucket that the document would map to. Then it identifies the subset
of k documents from such bucket that maximize the minimum inter-
distance (MAX-MIN). The approach uses the greedy algorithm from
Ravi et al. [116], as described in Section 4.1.2, to solve the MAX-MIN
optimization problem.

4.3 problem statement

Given a query article, q, and a positive integer k, recommend k ar-
ticles related but not quasi-identical to q, while maximizing their di-
versity.

The recommended articles shall thus cover, depending on the cor-
pora at hand, the different perspectives or the different opinions and
sentiments for the subject of the query document and its closely re-
lated topics.

4.4 solution

Herein we propose two novel approaches to the problem of recom-
mending diverse related articles. The first, Orthogonal-topics, focuses
on the relationship of the topics, and it has been designed to general-
ize well on all datasets. The second, Sentimented-topics, focuses on the
sentiment expressed by the documents on the different topics, and
it has been designed to extract and exploit as much information as
possible from text corpora that contain opinionated articles.

4.4.1 Approach 1: Orthogonal-topics

Given a text corpora, first learn an LDA model (Section 4.1.1). Let us
then consider a vector space Rt, where t is the number of topics of
the LDA model and where each document is represented by a vector
whose values correspond to the documents’ topics probabilities.

The query operation thus consists in:

1. Projecting the query-article, q, into this space.

2. Filtering for relevant articles, rint 6 ||doc − q|| 6 rext. They can-
not be too similar, so they have to be at a minimum distance of
rint and, at the same time, they must be related and thus close
with a maximum distance of rext.

4.4 solution 83

3. Selecting k articles as diverse as possible.

After carefully considering MAX-MIN/ Tammes, MAX-AVG, and Thom-
son, we decided to propose a new model Min Balancing Work (MIN-
BW) described in Section 4.4.3.

Choosing the correct number of topics, t, for the LDA model is
hard. The parameter, t, can either be provided by a domain expert or
automatically learned by training multiple models varying t, α, and
η, and looking for the combination that yields a model with the best
coherence score.

Selecting meaningful values for rint and rext, can be challenging for
a user and can be easily lead to empty answers or very unrelated rec-
ommendations. We propose to infer their values from the distribution
of the point themselves and a single optional parameter r, r ∈ [0, inf)
as follows. Let dµ be average of the distance of each point from its
closes neighbor. Let dσ be standard deviation of the distance of each
point from its closes neighbor.

u = (dµ + 2 · dσ) · k
rint = max(0, r− 2) · u
rext = r · u.

This While this algorithm cannot guarantee to select boundaries en-
compassing at least k points, it usually does, and it does it fast since
both u can be pre-computed at space creation time. Hover, whenever
this remote scenario realizes itself, we relax the constraints to include
the 2 · k points with distance from q closer to the center of the corona,
(rint + rext)/2.

4.4.2 Approach 2: Sentimented-topics

The Sentimented-topics approach focuses on recommending articles
that expressed different feelings about the subject covered by the
query articled, q. We thus introduce Sentimented-topics to model the
sentiment expressed by a document on a particular topic.

Definition 8 (Sentimented-topics). Sentimented-topics are topics (Sec-
tion 3) enhanced with a sentiment score, a real value between −100 and 100.
Given a document, the sentiment score for each of its topics is defined as the
average sentiment score of all the sentences it appears in. Sentimented-topics
are thus represented as a list of triples (topic-id, perc, sent-score).

Given a text corpora, first learn an LDA model (Section 4.1.1). Let
us then consider a vector space, the word-space, with w dimensions,
wherew is the number of the different words used to define the topics
in the LDA model. Each topic is represented by a vector whose values
correspond to the topics’ word probabilities.

The query operation thus consists in:

84 topic recommendation : expand your horizon

1. Selecting the ρ most relevant topics for the document-query, q.
To this end, project q into the word-space by computing the linear
combination of its topics’ vectors using as weights their proba-
bility values. Select then the ρ closest topics to q accordingly to
the Euclidean distance.

2. Filtering for relevant articles. Let us consider a vector space,
the sentimented-topics-space, and with ρ dimensions. The space
contains only documents featuring at least one of the selected
topics. Each document is represented by the sentiment score of
its Sentimented-topics (missing topics default to a neutral score
of 0). From this space, select documents that are not too close
nor too far away from the origin, i. e.rint 6 ||doc_sent|| 6 rext.

3. Selecting k articles as diverse as possible. Again, we propose to
use MIN-BW (Section 4.4.3).

This approach shares most of the challenges of Orthogonal-topics
and its solutions, but it also introduces a new variable ρ. The selec-
tion of this parameter is far from trivial as it may seem at first glance
since the distribution of documents over topics cannot be assumed to
be uniform. Thus, depending on the projection of q, ρ must be dy-
namically derived. A ρ value chosen too small would produce empty
(or too sparse) sentimented-topics-space, and, on the other side, one
too large would produce spaces that are too large, thus diminishing
the focus of the query and thus the relevance of the recommendations.
We propose to start with a small value, e. g., ρ = 3, and then increment
it by multiplying it by 2 until the size of the generated sentimented-
topics-space is at least 2 · k. Note that ρ can be derived with one single
pass over the documents LDA data using only ˆ

(
log2dt/3e

)
memory,

without the need actually to build the spaces. Just keep one counter
and a selected-topics bitmap (assuming topics have been assigned a
serial ID). Scan the data and increment the counter of each bucket for
which at least one of the document’s topics is present.

4.4.3 Min Balancing Work

Given a set, V = {p1,p2, . . . ,pk,pk}, of n points in an Euclidean space,
and a positive integer k.

Let us model each possible subset of k points of V as a system
of particles with unitary mass that repel each other with force pro-
portional to the inverse square of their distance. Find the subset that
required the minimal amount of additional work to balance it, i. e., to
make it statically stable.

Definition 9 (MIN-BW). Let P, P = {p1,p2, . . . ,pk}, be a set of k points
with pk ∈ V , and fP(p) the net-force acting on p, p ∈ P, as the sum of the
repelling action exerted by the other particles in the system, P.

4.4 solution 85

fP(p) =
∑

p ′∈(P−{p})

p ′ − p

||p ′ − p||3
.

The additional balancing work required to make the system statically sta-
ble is directly proportional to the sum of the module of the net-forces acting
on each particle. The optimization problem can thus be formally defined as
finding the configuration of particles P such that the sum total of the modulo
of the net-forces acting on each particle in P is minimal, i. e.:

argmin
P∈(Vk)

∑
p∈P

|fP(p)| (4.4)

where
(
V
k

)
represents, by abuse of notation, the set of all possible subsets of

size k of V , i. e., all possible combinations of k elements from V .

Differences with the existing formulations. As stated, we expect articles
to be diverse and to cover different points of view, sentiments, or
orthogonal topics from the query document, q.

The methods k-medoid, k-mean, and similar clustering approaches
would follow the distribution density of the points; we instead desire
an overview of all existing prospective. Nevertheless, neighborhood
density can be provided to the user as a meta-information but shall
not exclude the perspective itself.

General MAX-MIN, MAX-AVG, and alike DiscC [41, 42] do not
consider query centrality; on the other hand, our approach reinforces
this behavior by optimizing for the inverse square of the distance.
Thomson method is the most similar problem, but, as required by
its application, it works only with the module of the pairwise forces
instead of relying on the net-force as MIN-BW does. As such, Thom-
son strongly prefers solutions that only use outer points, even if that
means having a pair of them much closer than what they could have
been if one of the inner points was to be chosen. This behavior can be
observed in Figure 4.1 which shows the two optimal solutions for the
points in Table 4.1. The solutions produced by the two approaches
have similar global potential energy (PE), 5.1695 vs 5.1707, but very
different MIN-BW score 9.3109 vs 7.0768.

1 2 3 4 5

X -0.6000 -0.2365 -0.8484 -0.4061 0.8749

Y -0.0400 -0.8692 0.3534 0.6755 0.0315

Table 4.1: Space used in Figure 4.1 to show Thomson vs MIN-BW different
behavior.

Exiting algorithms and proofs cannot be reused. MAX-MIN (Tammes),
MAX-AVG, and MIN-BW optimization problems may seem similar,
but they produce different results.

86 topic recommendation : expand your horizon

Figure 4.1: Thomson solution prefers outer points sacrificing distance and
coverage. Selected points are indicated by ?.

Table 4.2 shows a space with 2 dimensions and 5 points (X,Y). The
last three columns of the table mark whether the point belongs to the
optimal solution for a given problem definition.

1 2 3 4 5

MAX-MIN 4 4 4

MAX-AVG 4 4 4

MIN-BW 4 4 4

X 0.3310 0.8034 0.4720 -0.9095 -0.9877

Y 0.8962 -0.5951 -0.7533 -0.4014 -0.1373

Table 4.2: Example of a space for which each optimization problem yields a
different solutions.

Figure 4.2 displays the space just described with a 2d chart.

1 0 1
1.0

0.5

0.0

0.5

1.0

Q

1

23
4

5

MAX-MIN

1 0 1

Q

1

23
4

5

MAX-AVG

1 0 1

Q

1

23
4

5

MIN-BW

Figure 4.2: The three different optimization problems have different optimal
results. Selected points are indicated by ?.

Table 4.3 shows the three optimal solutions statistics, highlighting
how a solution, optimal for one method, is not necessarily optimal
for the other.

We propose a new approximation algorithm: FDLS.

4.4 solution 87

MAX-MIN AVG dist. B. Work

MAX-MIN 1.584354 1.638435 1.938652

MAX-AVG 1.564332 1.696150 1.827654

MIN-BW 1.564332 1.694437 1.826499

Table 4.3: Statistics for the optimal solutions, in bold, computed accordingly
to the three different optimization problems; they all differ. Recall,
the first two maximize whereas the last minimizes.

4.4.4 FDLS

The idea behind our algorithm is to use the optimal-disposition (OD)
for k points on a sphere of d dimensions and center q to aid the search
for the real solution. Clearly, it must be an approximated algorithm
since just a few of its steps would be too costly to be computed for a
real-time application. These will then be appropriately approximated.

The intuition is to rotate the OD around q such that mind,k− 1
points of OD maps to real points. Mapping here is loosely defined
as “coincide with” or “is close to”. The selection of such points com-
pletely determines the ideal location of the remaining points. Thus,
the best real solution that includes the selected points and those that
best map to the remaining free ideal points. Since there is no guar-
antee that the best solution contains any of the points just selected,
different rotations must be tested to find the absolute best one. Tech-
nically, for each fixed point, all rotations that map to another point
must be considered.

This ideal algorithm would work well with a low dimensionality
space, like d=2 or d=3, where optimal-dispositions are known or
can be computed in a reasonable time; but does not scale well. First,
we already know that even restricted k-dispersion problems such as
Tammes and Thomson are NP-Hard, and even if there was an efficient
(approximate) solution, we are not always in the position where d is
known a-priori, e. g.sentimented-topics. Second, with greater values
of d the number of rotations to be tested would approach the number
of solutions, O

((
|V |
k−1

))
vs ˆ

((
|V |
k

))
, making this approach inferior to

a naïve one. This is even more true when considering the mapping
cost, which is also doomed to increase for the hyper-sphere case.

While the deterministic solution above is not suitable for our appli-
cation, the underlying idea is worth exploring.

F D L S

stands for Force Driven Local Search optimization algorihtm, and it is
an iterative time-bounded approach based on the very same intuition
that solves the scalability problem by carefully approximating each
step (Algorithm 10).

88 topic recommendation : expand your horizon

The algorithm starts by computing an ideal point disposition. In-
stead of pre-computing optimal-dispositions, it generates several (de-
fault 300) uniform samples from a unit (d−1)-sphere using the method
proposed by Harman et al. [58, 141], and selects the one that has min-
imal MIN-BW, the BS (Lines 5-9).

It will then rescale (BS · (rext + rint)/2), recenter (BS+ q), and map
each of the points in BS to nearest points in the space, P (Line 10).

Finally, it tries to locally optimize P by repeatedly replacing the
point for which the module of the sum of its net-force, pm, and the
inverse of the drift of the system barycenter (Line 14) from q (Line 15)
is maximal. The point is thus swapped in the solution with one of its
neighbors, pn, preferring the one that is closest in direction to the
net-force (Lines 19-21). The neighborhood of a node consists in the
(k + 1)−Nearest-Neighbor, since this is sufficient to guarantee that
all points can be eventually reached. The map, M, of the (k+1)-NNs
can either be pre-computed or derived at runtime. The score for each
neighbor point is thus computed as the cosine similarity between the
net-force and pm − pn.

The optimization step terminates when either the solution is stable
(Lines 16-17), i. e., the maximum net-force is less than a given thresh-
old, or when all local perturbations have been tested, or when the se-
quence of optimizations leads to a never-ending loop (think 3 points
on a circle of 5). This second termination condition is implemented
by tracking the sequence of the latest swaps (Lines 12,24), by default
30, and then by verifying the existence of a repeating pattern in the
history (Lines 25,26).

The whole procedure, from computing the ideal point disposition
to locally optimizing the solution, is repeated until the time-budget,
tb, is consumed (Lines 1,27,31). The algorithm eventually returns the
best solution across all the runs.

4.5 evaluation

To validate both our solutions, we performed a user study where
we asked the users to compare the quality of the recommendations
generated by our two approaches (orthogonal-topics + MIN-BW &
sentimented-topics + MIN-BW) against the state-of-the-art recommender
from Abbar et al. [1] on real-world data. In the study, the users are not
aware of the origin of the recommendations.

To validate the scalability and precision of FDLS, we performed an
extensive set of tests on synthetic data, tracking the running time and
MIN-BW value. We thus compared them with these from the state-
of-the-art approximation algorithms for MAX-MIN and MAX-AVG
proposed by Ravi et al. [116].

4.5 evaluation 89

Algorithm 10: FDLS
Data: V , k, q, M, tb: time budget.

Result: P
ts ← now()1

wmin,wp ←∞, ∅2

repeat3

Smin,Sb ←∞, ∅4

for _ ∈ 300 do5

S← select k points uniformly from Sd−16

Sw ←
∑

p∈S |fP(p)| ; // Track best disp.7

if Sw < Smin then8

Smin,Sb ← Sw,S9

P ← map Sb to points from V10

X← ∅ ; // Clean “cannot replace” set.11

H← [] ; // Clean History.12

repeat13

// Next to replace? p with max net-force.

fq ← q−
∑

p∈P p ; // q pull14

pm ← argmaxp∈P\X fP(p) + fq15

if fP(pm) < ε then16

break ; // Stable solution!17

// Find neighbor to swap with.

pn ← argmaxp∈M[pm]\P
p·pm
‖p‖‖pm‖18

if pn = ∅ then19

// @ valid neighbor.

X← X∪ {pn}20

continue ; // Next swap candidate.21

P ← P ∪ {pn} \ {pm}22

X← ∅23

// Prevents swap loops.

H.append((vpm, vpn))24

if HistoryLoop(H) then25

break ; // Cannot improve.26

// Done if time is up or no node can be replaced.

until (now() − ts) > tb ∨X = P27

wp ′ ←
∑

p∈P |fP(p)| ; // Best solution?28

if wp ′ < wmin then29

wmin,wp ← wp ′ ,P30

until (now() − ts) > tb31

return P32

4.5.1 Quality

In the user study, we asked the users to evaluate the quality of the
recommendations from our two approaches and the results produced
by the solution proposed by Abbar et al. [1].

90 topic recommendation : expand your horizon

We used PetScan [100] to create a dataset1 of Wikipedia pages
that belong to one or more of the following categories: Client-server
database management systems, Database management systems, Rela-
tional model, Database theory, Types of databases, Relational database
management systems. Specifically, we used the MediaWiki APIs to
fetch only the pure content, as plain-text, of both the full page and
the abstract [98].

To streamline the user study experience, we decided to pre-compute
a batch of examples. For this, we implemented both our approaches
and Abbar’s one in Python 3.9; the code is available, alongside the
data, on the project page [95]. Abbar’s original implementation used
opencalais.com to extract the topics from the text, but the tool was
not available to us, so we used the same LDA model from our ap-
proaches and transformed the vectors into sets by applying a thresh-
old on the probability (0.01). Moreover, since we were not concerned
with running time, we replaced LSH with a distance filter based on
Jaccard. Note that this does not degrade the quality of the results. On
the contrary, it should improve them as the filter precisely computes
what LSH only approximates.

Then, we trained an LDA model on the full pages dataset follow-
ing the procedure described in Section 4.4.1 to autonomously derive
the number of topics, t, and the other parameters. With the LDA
model ready, we executed the pre-processing steps pre-computing the
spaces for orthogonal-topics, sentimented-topics, and Abbar’s Jaccard-
based model with their distance matrixes.

We randomly selected 30 pages from the dataset and used them
to generate as many queries for five recommendations, k = 5. For
orthogonal-topics, rint and rext were personalized for each query in
such a way that the corona contained 50 points and another 50 were
contained inside the inner boundary. For Abbar’s, we replicated what
LSH would have done by setting rint to 0 and rext such that 50 el-
ements were included. For sentimented-topics, we provided no pa-
rameters and let the algorithm adapt by itself.

Finally, we created a website where we could send the user to
evaluate the recommendations of the three approaches. At each visit
and page refresh, the website would load a webpage with a different
query.

The webpage (Figure 4.3) was structured in three sections. The first
one showed the title, abstract, and link to the source for the query
page. The second one was a table-form, and the third one listed the
three sets of recommendations (one per approach) adjacent to one
another. Each recommended page was presented in the same manner
as the query page. The layout of the page, i. e., the order of the three
sets and the order within the sets themselves, changed at each visit. In
this way, we make it impossible for a user to map a specific approach

1 https://petscan.wmflabs.org/?psid=21221976

opencalais.com
https://petscan.wmflabs.org/?psid=21221976

4.5 evaluation 91

Figure 4.3: User-study interface.

to its results. Moreover, we used session-based tracking to ensure no
user was presented the same query twice.

The table-form was used to evaluate how much diverse, related, and
useful were the recommendations. In the form, we asked the users
how much they agreed, for each set, on the following statements. To
collect their answers, we used Likert-type scales [84], reported herein
with the statements.

[Diverse] All the articles are related to the query.
You can guess why they have been suggested.
Scale: 100%, 75%, 50%, 25%, 0%.

[Related] The set of articles is variegated.
Each article covers a different point of view/subject.
Scale: Strongly agree, Agree, Neutral, Disagree, Strongly disagree.

[Useful] The proposed articles are useful.
They allow you to expand your knowledge on the topic.
Scale: Strongly agree, Agree, Neutral, Disagree, Strongly disagree.

We received a total of 109 submissions. To analyze the responses,
we assigned to each possible answer an integer number, starting from
1 for the worst up to 5 for the best.

Table 4.4 shows the average score for all statements and for all
approaches.

92 topic recommendation : expand your horizon

Orthogonal-topics Sentimented-topics Abbar et al. [1]

Diverse 3.9174 3.9357 3.7798

Related 2.8440 2.4311 2.4220

Useful 3.0458 2.7064 2.5412

Table 4.4: Mean score for each approach.

The results showed that both our approaches outperform in all as-
pects, on average, the solution from Abbar et al. [1], especially in di-
versity & usefulness. They also show that in the 75% of the instances,
the diversity score was 4 or better (75%, 100%), showing the power of
our MIN-BW model – the other solutions use MAX-MIN and do so
only in the 60% of cases. We can attribute the difference in usefulness
and relevance between our two approaches to the double space mod-
eling of Sentimented-topics. The technical pages we extracted from
Wikipedia tend to be unopinionated.

4.5.2 Scalability & Performance

To validate the scalability and precision of FDLS, we performed an
extensive set of tests on synthetic data, tracking the running time and
MIN-BW value. We thus compared them with these from the state-
of-the-art approximation algorithms for MAX-MIN and MAX-AVG
proposed by Ravi et al. [116].

For this test, we implemented the three algorithms with Python 3.9
as a single process/thread solution alongside a space-generator. This
last component takes in input two integers and one float, respectively
the number of dimensions d, the number of points pts, and the inner
boundary of the corona rint. It generates a d−space with pts points
randomly distributed in a corona centered in 0 with radii rint and 1.

As discussed in Section 4.4.4, our algorithm is time-bounded. It is
designed to generate good approximations as fast as possible and re-
turn the best one over multiple iterations. The quality of the result
is thus expected to improve (statistically) with the number of itera-
tions. We then decided to test two different configurations: 1) FDLS,
uses the default configuration with a time-budget of 1s (as used in
our Quality tests), 2) FDLS-0s, is configured to be as fast as possi-
ble by performing only a single iteration, i. e., it has a time-budget
of 0s. They are used together to verify: the minimal running-time of
the algorithm, if the algorithm can reliably meet its deadline, and
to increase in approximation quality with the variation of the time
budget.

The whole experiment was comprised of 6480 tests where the MAX-
AVG, MAX-MIN, FDLS, and FDLS-0s were executed with 5 different

4.5 evaluation 93

values of k, k = {5, 10, 25, 50}, against 450 difference spaces generated
from the following settings, 3 for each valid combination:

• Number of points, pts: {42, 43, 44, 45, 46}.

• Number of dimensions, d: {4, 5, 7, 9, 11, 13, 15, 32, 64, 128}.

• Corona’s rint: {0.5, 0.75, 1.0}.

42 43 44 45 46

Points

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Scalability over number of points.
MAX-AVG
MAX-MIN
FDLS
FDLS-0s

Figure 4.4: Average running-time, for different values of k and number of
dimensions, over the number of points. FDLS targeted 1s, where
FDLS-0s targeted 0s (i. e., 1 iteration). MAX-MIN and MAX-AVG,
exceeded the 20s timeout for all tests with 46 points.

scalability Figure 4.4 shows the results of the scalability test in
terms of seconds over the number of points for MAX-AVG, MAX-
MIN, and two versions of our algorithm averaged over the different
values of k, rint, and the number of dimensions. All tests were ex-
ecuted on a Linux machine running kernel version Debian-5.2.9 on
an AMD Ryzen 5 2600 with 32GB of RAM, with a hard timeout of
20s. Reported timings do not include pre-computation of the distance-
matrix and neighbor-map, for we are interested in the real-case sce-
nario, and in such case, they would reasonably be pre-computed.

MAX-AVG and MAX-MIN running time are, as expected, identi-
cal. We can observe how they are the fastest up to 64 points, then
their execution time starts diverging. Already with 256 points, they
required twice the time of FDLS-0s, with 1024 they are far away from
interactive performance requiring more than 2s, and by 4096 points,

94 topic recommendation : expand your horizon

none of their instances terminated under 20s independently from
the number of dimensions and values of k. This behavior is not sur-
prising, since the complexity analysis from Section 4.1.2 shows that
O
(
V2/2+ (k− 2) · (k− 3) · |V |

)
, where V is set of all the points in the

space.
Interestingly, it appears that for very small values of |V |, the cost of

FDLS-0s is dominated by the cost of the local optimization step, and
its running time exceeds the one from MAX-AVG and MAX-MIN.
Nevertheless, FDLS-0s, running time is always under 175ms.

FDLS-0s scales linearly, with a very shallow angle, with respect
to the number of points. This is because the bootstrap step depends
linearly on the number of points and k, i. e., 300 iterations times the
O (k) cost for sampling step and the mapping step, which is ˆ (k · |V |).
While the local optimization step could be, in theory, combinatorial
with respect to k and |V |, in practice, it behaves pretty well, requiring
a small number of inner iterations over the neighbors-map, making it
linear with respect to k.

We can observe how FDLS consistently approaches the target-running
time of 1 second only exceedingly ever so slight in tests with most
points by 64ms. This can be attributed to each iteration taking longer,
as seen by FDLS-0s data, and the algorithm having fewer opportu-
nities to check for the termination condition. This corner case can
easily be managed by either employing, on platforms that support
it, an external timer triggering an exception2, or by tracking the aver-
age iteration time and modifying the check on Lines 27,31 to verify
whether there is enough time for yet another one.

performance To evaluate the performance, we compared the
quality of the results generated by the four approaches in terms of
Balancing-work as defined in Section 4.4.3.

They showed that the quality of FDLS approximations are generally
comparable (or even better in the cases with fewer points) and that
our algorithm scales best. The analyses of the precision of the approx-
imations showed little to no difference between the algorithms across
both the number of points and the number of dimensions. Moreover,
FDLS was, on average, slightly better than FDLS-0s, as expected, but
the quality of the latter itself was already comparable or better than
MAX-MIN and MAX-AVG.

The results demonstrated that our FDLS algorithm is thus a good
approximating for MIN-BW and scales far beyond what the competi-
tion can do.

2 For example using https://docs.python.org/3/library/signal.html

https://docs.python.org/3/library/signal.html

4.6 conclusions and future work 95

4.6 conclusions and future work

In this work, we proposed two novel solutions, orthogonal-topics and
sentimented-topics, in the form of recommender systems to the prob-
lem of suggesting related but diverse article sets.

We leveraged on the state-of-the-art text modeling technique, such
as LDA, and sentiment analysis to map documents into hyper-spaces
and thus treat the problem geometrically.

In orthogonal-topics (Section 4.4.1), the document’s topics proba-
bility distributions are used values for vectors representing the doc-
uments in a space where each axis maps to a topic. The query then
consists in finding k documents that are at the correct distance from
the query document and that are as diverse as possible among them.

In sentimented-topics (Section 4.4.2), instead, we first identify the
topics that are closely related to the document’s topics. This is achieved
by projecting a query document into the space of the topics by com-
puting the linear combination of the documents’ topics using the doc-
ument’s topic distribution probability values as weights, and then
selecting the closest ones (topics are just distributions of probabilities
over words). We then build a new space, with an axis for each of
the selected topics, and represent the documents are by their topic-
sentiment score (Section 8) for each axis. The query process then ter-
minates, similarly to orthogonal-topics, by finding k documents that
are at the correct distance from the query document and that are as
diverse as possible among them.

To model diversity among the recommended documents, we pro-
posed a new diversity-metric based on the modeling of their point
representation as repulsive particles, and requiring the minimization
of the work required to balance the system representing the solution
(Section 4.4.3). We showed how this definition differs and compares
to the existing literature, and how existing solutions for similar prob-
lems cannot be directly applied (Section 4.1.2).

We thus proposed a new approximation algorithm, FDLS, for solv-
ing the MIN-BW optimizing problem (Section 4.4.4).

We demonstrate the superior quality of our solutions through a
user study that compared the end-to-end results produced by our
two approaches (orthogonal-topics + MIN-BW & sentimented-topics
+ MIN-BW). against the state-of-the-art recommender from Abbar
et al. [1] (Section 4.5.1).

Finally, we demonstrate the superior scalability and performance
of FDLS, by comparing it to the state-of-the-art approximation for
MAX-MIN and MAX-AVG proposed by Ravi et al. [116].

5
O N D E S C R I B I N G T H E C O N T E N T S O F A D ATA S E T

Companies and organizations alike have started to realize the value of
Big Data. They aggressively collect data from their daily operations
with the intention of later analyzing it and turning it into valuable
insights that can drive their business into offering new innovative ser-
vices. Unfortunately, this collection of data is often coming without a
clear plan in mind, and once the data has been collected, data own-
ers remain wondering how to use the data and what kind of analysis
to run on them. Before answering that question, it is fundamental to
have a good understanding of the data that has been collected. This
is typically done through data exploration. In data Exploration, the
users start by looking at parts of the data and making their way to
more specific or different parts until they find what is really of inter-
est in it.

We claim that there is a need for a more systematic data exploration
approach. To achieve this, a user must first obtain an overview of the
contents of the data. We aim at providing such an overview through
a set of descriptions for different parts of the data. In particular, we
deal with the problem of generating an informative set of descriptions
for the available data. For description, we adopt views, since they
provide a formal and consistent way one can use to refer to parts of
the data. Furthermore, given their formalism, they are easy to manage
and reason about.

On the question of what description constitutes an informative set,
we consider different but complementary factors. The first is to gen-
erate a set of descriptions that are about the whole dataset, meaning
that no part of the data remains that is not covered by some descrip-
tion in the set, or if such part exists, it is as small as possible. The
second factor has to do with redundancy. We would like to avoid
descriptions of the same part of the data because that would be re-
dundant, and if this is not possible, this should also be kept to a
minimum.

There have been tools and techniques that have been proposed with
the purpose of helping the user understand the data. Some are based
on interactive visualization. By showing facets of the data allow the
user to dig deeper into dimensions that may be of interest [70, 124].
Others summarize the data through some clustering or sampling tech-
niques, providing certain quality guarantees [3]. Further approaches
have focused on finding relationships and similarities among datasets
in data-lakes [36]. Other techniques describe the result of a query by
highlighting the differences to the rest of the data [147], or by de-

97

98 on describing the contents of a dataset

scribing specific structures in the data, like patterns, through some
compact textual representation [66]. Despite the fact that all these
works have the right aim, they do not take into consideration rela-
tionships across the descriptions they generate, neither consider how
all these descriptions collectively relate to the whole dataset. With
this in mind, we study the problem of generating an informative set
of descriptions.

We see the task as an optimization problem. We take the different
factors into consideration, prioritize them, and investigate combina-
tions that give the best values to metrics that quantify these factors.
We start by formally defining the notion of a data description and
the intuition behind the concept of goodness for such a description
(Section 5.2). We propose three solutions for selecting the best de-
scriptions, namely, the Naïve, which considers all the different de-
scriptions and evaluates them, the Vertical, which exploits a smart ex-
ploration strategy and heavy pruning, and the Adaptive, that builds
on the Vertical and brings in an auto-tuning capability for its parame-
ters (Section 5.3). We follow-up with an evaluation of their scalability
and their performance on datasets with different characteristics (Sec-
tion 5.4).

contributions . More specifically, our contributions are the fol-
lowing:

• We propose a new formal definition for a dataset description.

• We propose a new formal goodness metric for dataset descrip-
tions.

• We provide three algorithms to generate dataset descriptions
accordingly to such metric.

• We extensively test our algorithms on a multitude of real and
synthetic datasets.

5.1 motivating example

Consider the case of a government analyst that was provided with a
dataset with job opening records collected by various offices. A frac-
tion of the dataset is illustrated in Figure 5.1. The dataset spans thou-
sands of records, but for the purpose of illustration, we can assume
for the moment that it contains only those present in the figure. The
analyst does not have some specific task in mind but is only wonder-
ing if there are any interesting facts recorded in the data which would
be worth investigating further. Furthermore, she would like to have
an overview of the overall situation the dataset describes in order to
present the findings to her superiors.

5.1 motivating example 99

JpID City Employer Job

0 6489 Seattle Amazon Systems Eng.
1 2598 Toronto Amazon Software Dev.
2 1561 San Francisco Discord iOS Dev.
3 2609 San Francisco VMware Software Dev.
4 9426 Newark Amazon Software Dev.
5 1828 Toronto Amazon Software Dev.
6 6027 San Jose Adobe Systems Software Dev.
7 8238 Seattle Tableau Software Dev.
8 7555 Seattle Amazon Data Eng.
9 3090 San Francisco Clustrix Software Dev.
10 8678 Seattle Amazon Data Eng.
11 7587 Palo Alto Microsoft Software Dev.
12 7325 Seattle Google Software Dev.
13 4096 San Francisco Twitter Android Dev.
14 7614 Seattle Amazon Data Eng.

Figure 5.1: A Job Openings dataset.

She can notice a number of interesting facts in the data, either by
looking at it on a record-by-record basis or by posing specific queries.
For instance, she can notice that there are four job openings in San
Francisco, three openings at Amazon as Data Engineer, or that Mi-
crosoft is looking for a Software Developer in Paolo Alto. Some addi-
tional facts can be found in the list provided in Figure 5.2.

The analyst is wondering which of these statements of facts consti-
tute useful information to include in the report describing the records
of the dataset. Considering only the statement that there are open-
ings in San Francisco (Statement 1), it is useful but is only about a
small portion of the data. The statement about the positions for soft-
ware developers (Statement 5) may be a stronger statement since it
is supported by more records in the dataset. Yet, this is not the only
information provided. There are additional facts supported by other
records. Thus, selecting more statements instead of only one would
provide a better overview of the dataset. For instance, considering
statements 2, 3, and 5 is preferable to considering only 2, since they
provide information about a larger portion of the records dataset. Un-
der this reasoning, the set of statements {2, 3, 5, 6, 7} will be an even
better choice since all records in the table are described by at least one
statement (we can informally say that there is at least one statement
that “covers" the record).

The set of statements {1, 5, 8} has a similar property to the one of
{2, 3, 5, 6, 7}, i. e., they cover every tuple in the dataset. Yet, between the
two, the former seems preferable since the same set of records in the
dataset is described with a smaller number of statements. The former
set of statements is preferable for one additional reason. Across all
its statements, the number of attributes mentioned is less. Thus, the

100 on describing the contents of a dataset

1. There are four openings in San Francisco.
2. There is a job post with ID 4096.
3. There are three openings at Amazon as Data Engineer.
4. Amazon has four open positions in Seattle.
5. There are nine positions available for Software Developers.
6. There is only one position for Systems Engineers.
7. There is only one position for iOS Developers.
8. Amazon has seven open positions.
9. Microsoft is looking for a Software Developer in Paolo Alto.
10. There is only one position in Newark.

Figure 5.2: Statements about the Job Openings dataset records.

analyst can better grasp the information they provide. Overall, these
two examples indicate that the more compact the description is, the
more desirable.

Another set of statements in which again all the records of the
dataset are covered is {1, 4, 5}. Compared to the one with {1, 5, 8}, it
can be noted that they both have, apart from the same “coverage" of
the dataset records, the same number of statements, and also they
involve the same number of attributes. There is, however, one ad-
ditional argument that makes the former set preferable. Notice that
among the records covered by statement 5, there is record #3, which
is also included in statement 1, since it has “San Francisco” for the
city. This phenomenon may be seen as some form of redundancy. If
the statements are seen as groups of records, it is preferable to have
groups with minimum overlap, i. e., avoiding having records “cov-
ered” by more than one statement. Statements set {1, 4, 5} describes
only two (#3 and #4) multiple times, whereas for {1, 5, 8} they are five
(#1, #3. #4, #5, and #9). Under this observation, the analyst chooses
the set of statements {1, 4, 5}.

5.2 problem statement

Let A be an infinite set of attribute names, and V be an infinite set
of atomic values. A tuple is a finite sequence 〈a1:v1, a2:v2, . . ., ak:vk〉
where a∈A and v∈V. The sequence of attributes 〈a1,a2, . . . ,ak〉, is the
schema of the tuple. A relation is a finite set of tuples, all with the
same schema. The schema of a relation is the schema of its tuples. A
dataset is a set of relations. We assume next that our dataset consists
of one relation only, but whatever we present applies naturally to
many relations. We use views to refer to portions of a relation.

Definition 10 (View). A view is a conjunction of equality predicates of
the form a=v where a∈A and v∈V. The length of a view W, denoted as
|W| is the number of predicates it contains. The view is well-defined over a
relation R if and only if, for every predicate a=v in the view, the attribute a
is in the schema of R.

5.2 problem statement 101

A view is like a window on a relation. It selects some of its tuples,
in particular, those that satisfy all the predicates in the view. The set
of selected tuples is referred to as coverage.

Definition 11 (coverage). The coverage of a view W in a relation R, de-
noted as W is the set of tuples in R that satisfy all the predicates of the
view, i. e., W={〈a1:v1, a2:v2, . . ., ak:vk〉 | 〈a1:v1, a2:v2, . . ., ak:vk〉∈R ∧

(∀〈a=v〉∈W, ∃i∈[1..k] such that a=ai ∧ v=vi)}.

Intuitively, a view is a summarization of the tuples it covers. Since
our goal is to provide a description for the content of a dataset, the
idea is to use views for that purpose. Views will constitute the funda-
mental blocks of descriptions and correspond to what was referred to
as statements in the previous sections. We consider a description of a
dataset to be a collection of views.

Definition 12 (description). A description is a set of views. The length of
a description D, denoted as |D|, is the number of views it contains.

Different views can be defined on a given relation R. A challenging
task is deciding which subset of these views form a good descrip-
tion of the dataset. One of the factors that can be used for this is
the portion of the dataset that the description is about. The larger
that portion, the better the description. To quantify this, the notion of
coverage can be extended to the level of the dataset.

Definition 13 (coverage). The coverage of a description D on a relation R,
denoted by abuse of notation as D, is the union of the coverages of the views
in D, i. e.,

D =
⋃
W∈D

W.

It is always possible to find a description, the coverage of which
contains all the records in a relation. This is done, for instance, by
considering a description with all the possible views that can be de-
fined on the relation. In situations like this, there will be records in
the relation that belong to the coverage of more than one view. Such
descriptions are not so desired since the same piece of information
(i. e., the tuple) is described in many different ways (i. e., the views).
To quantify this, we introduce the notion of overlap.

Definition 14 (overlap). The overlap of a description D on a relation R,
denoted as D̃, is the times above 1 a tuple is covered by a view in the descrip-
tion, i. e.,

TCDt = {W|W ∈ D∧ t ∈W}

D̃ =
∑
t∈R

max(|TCDt |− 1, 0).

to denote the set of views in D that cover the tuple t.

102 on describing the contents of a dataset

Last but not least, it is desired for the description to be compact
representations of the tuples in their coverage so that they can be
better understood. This compactness is quantified by the intricacy.

Definition 15 (intricacy). The intricacy of a view, W, denoted as, Ŵ, is
the number of equality conditions it contains. The intricacy of a description,
D, is the sum of the intricacies of the views it contains, i. e.,

D̂ =
∑
W∈D

Ŵ.

Given a relation R, let WR denote the set of views that can be de-
fined over it. There are 2|WR| possible descriptions using WR, i. e.,
those in its powerset. The goal is to select the one that best describes
the data in the relation. For this, the first condition would be that all
the tuples are covered. At the same time, we would like a description
as compact as possible, meaning that the length of the description
should be minimum. Let DCL be such description, i. e.,

DCL = argmin
D∈D ∧ D=R

(|D|)

There may be more than one description with this property. In that
case, the one preferable is the one that achieves the minimum overlap.
Let that be denoted as DCLO, i. e.,

DCLO = argmin
D∈DCL

(D̃).

Last but not least, there can still be more than one description with
the above properties. Since we need to create descriptions that are as
compact as possible and easier to understand by the user, we select
the description that is less intricate. Those descriptions, denoted as
DCLOI, are the

DCLOI = argmin
D∈DCLO

(D̂).

5.3 identifying the best description

To identify the best description, we consider three different solutions.
The first is an exhaustive space search. The second is a multi-step ap-
proach that exploits smart exploration and heavy pruning, and the
third incorporates parameter auto-tuning to achieve the best perfor-
mance.

5.3.1 Naïve approach

The straightforward approach, used as the baseline, first generates the
set of all possible descriptions and then compares them to identify the

5.3 identifying the best description 103

one that best satisfies the set criteria. This approach, although time-
consuming, is guaranteed to find the best solution. The algorithm that
implements this idea is shown in Algorithm 11.

As a first step, it constructs the domain of each attribute, i. e., the set
of values that the attribute’s column contains (Line 1). Then, list of all
possible views the relation is constructed by concatenating (flatMap)
the result of computing the cartesian product (product) of all possi-
ble attribute combinations, i. e., by computing the powerset of their
domains (Line 2). By construction, such views will not have the same
attribute repeated two times. Then, the set of all valid descriptions
for the relation is derived from the views list by enumerating all its
possible subsets (Line 3).

The process to find find the best description starts by selecting as
best, Db, one of them (Line 4), and then it visits all the others in
order (Line 5). In the visit, the description is compared against the
one currently selected in terms of Coverage, Overlap, and Intricacy (in
this order), the best of the two becomes the new selected one (Lines 9-
15).

We assume that the members of the powerset are monotonically in-
creasing in size — as most implementations guarantee. This assump-
tion allows us to skip the check on the length and to introduce an
early termination condition (Line 6): if the currently selected solution
covers the whole relation and the next candidate is longer, then none
of the remaining candidates can be better in terms of length, so the
iteration over the remaining descriptions can be interrupted.

Algorithm 11: Naïve algorithm
Data: R: relation
Result: Db: description for R.

dom← map(attr→ set(attr),RT)1

views← flatMap(attrs → product(. . . attrs), Powerset(dom))2

descs← Powerset(views)3

Db ← descs[0]4

for D ∈ descs[1 :] do5

if Db = R∧ |D| > |Db| then6

break ; // Early exit7

if D 6= Db then8

Db ← D > Db : D,Db9

else if D̃ 6= D̃b then10

Db ← D̃ < D̃b : D,Db11

else12

Db ← D̂ < D̂b : D,Db13

return Db14

104 on describing the contents of a dataset

This naïve implementation stresses the computational complexity
of the problem that is exponential. Let the number of well-defined
views, nW , be

nW =− 1+
∏
a∈A

|{v, v ∈ Ra}|+ 1

=O
(
(|R|+ 1)|A|

)
.

The plus 1 accounts for the “do not filter by this attribute” case, and
the −1 for the “do not filter by anything” one. The number of all
possible descriptions is 2nW . Given Ccmp be the constant cost for the
comparison of any two solution, by the mean of the if-elseif chain,
the computational complexity of the solution is O

(
Ccmp × 2nW

)
.

domain pruning The performance can be improved by exclud-
ing some extreme cases that provide no useful insights. One such ex-
ample is the case in which an attribute has the same value in all the
records or has a different value in each different record. Excluding
the predicates from such cases will significantly reduce the number
of possible views and, consequently, the number of descriptions. To
achieve this, we consider the entropy of an attribute and the support
PS of an attribute value. Given an entropy thresholdHε, we can prune
all the attributes with entropy less than Hε or more than 1−Hε. The
former will exclude attributes that in almost all the tuples the same
value, while the second those that are almost like having distinct val-
ues in every tuple. Furthermore, given support threshold PS, we can
exclude predicates with support lower than that.

Thresholds set to 0will induce the system to consider all views and
descriptions. Thresholds set to any other values will reduce search
space. In the latter case, however, the coverage we can achieve may
not be the whole relation, and we use the term maximal coverage
to indicate the maximum set of tuples that can be covered. The size
of the maximal coverage, denoted as Cmax can be computed as the
union of the coverages of the views with only one predicate (W=〈a :

v〉=〈p〉), i. e.,
Cmax =

∣∣∪p∈domp∣∣ .
In the case of Algorithm 11, applying this form of pruning is achieved

by modifying line 1. As an indication of the benefit that can bring, in
the example of Figure 5.1, setting the values of Hε and Ps to 0.01 and
2, respectively, allows only 6 predicates to pass the pruning, from the
35 that were originally (that were leading to 6720 views generating
10E2022 descriptions).

5.3.2 Vertical approach

A more systematic approach to the description discovery considers
the different requirements in three incremental steps. Step 0, domain

5.3 identifying the best description 105

pruning; same as in the case of the naïve approach. Step 1, the expan-
sion phase; the algorithm starts with short descriptions and keeps ex-
panding them with views until they reach the coverage required. By
construction, the mined descriptions also have minimal length. Step 2,
the refinement phase; the identified descriptions are refined by spe-
cializing their views (i. e., adding predicates to them) to minimize the
overlap. This phase terminates when a description has no overlap
or no further refinements without sacrificing coverage are possible.
This approach is entirely deterministic and always produces an op-
timal description. Given the same domain pruning configuration, it
produces either the same or an equally good description as the naïve
approach.

S T E P 1 : E X PA N S I O N

In the expansion phase, the algorithm looks for descriptions with
maximal coverage and minimal length, ignoring the overlap they may
have.

Lemma 3. Let Wn denote the set of views with n predicates, i. e.,

Wn = {W|W ∈WR ∧ |W| = n}.

There cannot be a description covering the whole relation that is shorter (uses
fewer views) then the shortest one among those covering the whole relation
and composed only of views from W1.

Proof. Assume there exists a description, D1, that covers the whole
relation and is shorter than the shortest one among those composed
only of W1 views. Let description D2 be built as follows: for each
view w in D1 create a view that contains only one of the predicates
of w. By construction, D2 is built only of W1 views, has the same
length as D1, and its coverage is a superset of the coverage of D1.
Thus, D1 cannot be not shorter than the shortest.

Given the above lemma, to maximize coverage, the algorithm can
restrict its focus to the descriptions that are composed only of views
from W1. The process aims at maximizing the probability of finding
a suitable description early and it also minimizes the overall number
of candidates that have to be evaluated with a number of pruning
techniques.

Let Dn be all the descriptions of length n. Let ←−W1 be the list of all
W1 ordered decreasingly by coverage. D0 contains only one descrip-
tion, the description with no views. Then Dn is generated as follow,
for each description, D, in Dn−1, for each view, W, in ←−W1 that comes
after all the views in D, create a new description as D∪{W}. We will
refer to the D part as the root, and to the W as the expansion.

106 on describing the contents of a dataset

Figure 5.3: Expansion highlights for running example (Fig 5.1).

Figure 5.3, shows a subset of the generated descriptions in the or-
der that they are explored (from left to right and from top to bot-
tom). Nodes represent descriptions, and arrows represent the root-
expanded relationship. Each node shows coverage (C), overlap (O),
and its W1 views. The nth level contains descriptions from Dn. By
exploiting this ordering, several pruning techniques can be applied.

coverage estimation based pruning . The size of the cover-
age of a description, D, can be estimated from the coverage of its
root, R(D), and the coverage of the expansion, E(D). More precisely, the
following interval can be identified [D⊥,D>]. The lower bound corre-
sponds to the case where the coverage of the root and the coverage
of the expansion are one subset of the other; the upper bound corre-
sponds to the case where the two sets are disjoint. The lower-bound
is then defined as D⊥ = max(|R(D)|, |E(D)|), and the upper-bound as
D> = |R(D)|+ |E(D)|. The coverage of the expansion is always known,
as it is equal to the coverage of the W1 views, which is equal to
the predicate support (number of tuples that contain that value for
that attribute) of the single predicate in that view. The coverage of
the root instead may not be. When this is the case, its upper bound
is

∑
W∈R(D) |W|. Moreover, a description, D, can be safely ignored

whenever D> is less than the dataset’s maximal coverage, Cmax.
(1) Root pruning. When D> is less than Cmax, not only can D be

ignored, but so can all the remaining expansions for the root of D. For
they have support smaller than the expansion used in D, thus neither
they can reach the coverage threshold.

In Figure 5.3, the descriptions with D∩ being less than Cmax have a
dashed border and those for on which this pruning is applied have an
orange border. Consider the description ((Job=Software Dev.), (City=San

Francisco)), The |R(D1)| is 9 and the |E(D1)| is 4. The successive ex-
pansions would replace (City=San Francisco), with (Job=Data Eng.)

5.3 identifying the best description 107

and (City=Toronto), which respectively have coverage of 3 and 2,
i. e.cannot cover more than D1.

(2) Level pruning. This pruning is based on the descriptions that
are sub-sequences of ←−W1. If in such description, D2, the sum of the
coverages of the views is less than the required coverage,

∑
W∈D2 |D2| <

Cmax, then not only it can be safely ignored, but so can all the remain-
ing description from W|D|, i. e., in the same level.

Since ←−W1 is ordered decreasingly with respect to the coverage, the
sum of the coverage of a sub-sequence description of length (n+ 1),
[Wa,Wa+n], will be always greater or equal than [Wa+1,Wa+n+1]
as Wa > Wa+n+1. The same reasoning can be applied to all the
descriptions that are absolutely rooted in Wa, i. e., that has as most
covering view Wa. To differ from the sub-sequence, they must have
at least one different view, Wx, since Wa must belong to each of
them, and views Wb, . . . ,Wa+n belong to sub-sequence, x must be
greater than a+ n. Thus, Wx would have less or equal coverage of
whichever view it is replacing. The new descriptions must then have
less or equal coverage.

It is worth noting that this pruning function cannot be applied in a
tree pruning manner, as it usually happens in a lattice. For, as cover-
age keeps increasing with each view addition, descriptions that were
pruned may expand to some that shall actually be considered. As
an example, ((Employ=Amazon), (City=Seattle)) is discarded by level
pruning on level 2 – nodes with red border in Figure 5.3 – then, its
first expansion is pruned on level 3 by root pruning, but it would
expand, on level 4, into two descriptions with D> being 16 and 15,
respectively.

early termination. The exploration process can terminate ear-
lier in two situations:

1) If the Perfect Description is found: A perfect description is a de-
scription that has the required coverage and no overlap. It can be
returned immediately as a result of the whole computation. For, any
other description that might fulfill the coverage threshold would have
the same length. Moreover, if it had any overlap, it would require re-
fining, and as such, its intricacy would be greater than the current
one; if it did not, they would be equally optimal, and the algorithm
returns only one description.

2) Once a description that satisfies the minimum coverage require-
ment is found, |D| > Cmax, only these remaining from the same
length, D|D|, shall be considered. It is not possible to interrupt the
exploration immediately as there might be another description that
satisfies the constraint that may lead to a better solution after the
refinement process, i. e., less overlap. Thus all the description candi-
dates, DC, of D|d| – nodes with green border in Figure 5.3 – must be

108 on describing the contents of a dataset

identified and then provided as input to the refinement step (STEP
2).

efficient implementation. Algorithm 12 illustrates an efficient
implementation of STEP 1.

Algorithm 12: Expansion
Data: R, ←−W1, Cmax.
Result: DC, Omin: c̃best, cbest: current best desc.

DC,Omin, cbest← [], None, None1

for l ∈ [1, |←−W1‖] do2

del cache[l− 2]3

if |DC| > 0 then4

break ; // Early ret: Min length5

lvl: for R ∈ combinations(|
←−
W1|, l− 1) do6

R> ← cache[l− 1][to_bitset(R)] or
∑
W∈RW7

del cache[l− 1][to_bitset(R)]8

for E ∈ [R[−1] + 1, |←−W1|) do9

D← R|(E)10

if R[0] + l− 1 = E∧
∑
W∈D |W| < Cmax then11

break lvl ; // Level pruning12

if R> + E < Cmax then13

cache[l][to_bitset(D)]← R> + E14

break ; // Root pruning15

// Evaluate description.

D, D̃,R> ← query(R,D)16

cache[l][to_bitset(D)]← D17

if D < Cmax then18

continue19

if D̃ = 0 then20

return (), 0,D ; // Early ret: Perfect21

// Save candidate for refinement.

DC← DC|(D)22

if ¬Omin ∨ D̃ < Omin then23

cbest,Omin ← D, D̃24

return DC,Omin,best25

[Description enumeration] It is possible to implement a generator
that yields description accordingly to the aforementioned search strat-
egy in constant time and O (|

←−
W1|) main memory. Moreover, many li-

brary implementations of the combinatorial function, like combinations

5.3 identifying the best description 109

from the itertools python package1, already behaves in this manner
and can thus be exploited.

To speed up the pruning functions, the generator uses the indexes
of the views in ←−W1 instead of the views themselves or pointers. In the
pseudo-code, the notation for coverage and overlap is abused since
the mapping of a list of indexes to a list of items is trivial. Further-
more, the generator must be decomposed and integrated into the al-
gorithm to allow finer control over the pruning points. As such, the
enumeration is implemented with three nested loops, one that selects
Wn (Line 2), one that enumerates all the roots in the class (Line 6),
one that generates all the expansions for a given root (Line 8).

[Pruning] The first pruning function to be applied is the level prun-
ing function. The “is sub-sequence of ←−W1” precondition is verified by
checking the difference between the index of the first view of the root
and that of the expansions, which should be equal to the description
length minus one – array and lists indexes start at 0. When the precon-
dition is met, the maximal coverage upper bound is derived from the
coverage of the views, which was already computed for the domain
pruning step (Line 11). The two inner loops are thus interrupted if the
Cmax threshold is not met (Line 12). The root pruning function follows
next. The D> is estimated by summing R> and E, If it is smaller than
Cmax, the inner loop is interrupted (Lines 13,15).

[Caching] Computing R> may not be necessary, since R may have
been already computed when exploring the previous W class as a
description instance, if it was not pruned. Thus, every time a coverage
is estimated (Line 14) or computed (Line 17), the value is cached. To
avoid exhausting the main memory, the Record TTL (time to live) and
the record key encoding must be carefully designed. Cached records
can be safely deleted in two spots: 1) After R> has been estimated
(Line 8). For, roots are evaluated only once. 2) When the exploration
moves to Dn, then the description cached from Dn−2 will not be used
anymore, as the estimation relays only on Dn−1 (Line 3). The cache
shall then be organized hierarchically, like by using HashMaps inside
a HashMap, i. e.{length: {desc: coverage}}.

In order to have a consistent and compact record key, the descrip-
tion can be mapped to bitsets. It is sufficient to flip the bits corre-
sponding to the index of the views that belongs to the description.

[Query evaluation & Early Termination] . The evaluation of a descrip-
tion consists, at its minimum, in computing coverage and overlap.
The function proposed in the pseudo-code also tracks the coverage
of the root itself; this value is then used to update the root coverage
upper bound estimation, R>.

Depending on the backing store (e. g., bi-dimensional in-memory
array, a relational database, or columnar store), computing the actual

1 https://docs.python.org/3/library/itertools.html

https://docs.python.org/3/library/itertools.html

110 on describing the contents of a dataset

coverage and the amount of overlap can be much more costly than
just verifying all tuples are covered. In this case, it is possible to op-
timize in the following manner. If it is the first expansion, compute
all the values; otherwise, check if the description covers the whole
relation; if it does, then and only then compute the overlap to know
whether it is a perfect description or not.

If the description happens to be perfect, the exploration terminates
immediately and returns the description as a result (Line 21). Other-
wise, the description is added to the list of the description candidates,
DC, for refinement (Line 22), and the statistics for the current best de-
scription are updated, if necessary (Lines 23,24).

Adding a description to DC also enables the guard for the early
termination for the minimal length constraint (Line 4).

S T E P 2 : R E F I N E M E N T

In this second step, the candidates are refined to reduce their amount
of overlap, which has so far been ignored. To reduce the amount
of overlap in a description, one or more views must be replaced by
others that cover only a subset of the respective tuples. In other words,
a view shall be replaced by another that features a superset of its
predicates. This operation is called view specialization. This operation
will cause an increase in intricacy. A smart strategy should then be
employed to consider the possible refinements in order with respect
to the increase in intricacy that they imply.

The proposed strategy: a) efficiently enumerate the possible refine-
ments in such order. b) ensures that each refinement is considered
at most one single time, even if they could be generated by different
description candidates. For example, both the candidates identified
in our running example, green border in Figure 5.3, would otherwise
lead to consider multiple times refinement like ((Job=Software Dev.),

(City=Seattle, Employer=Amazon), (City=San Francisco)) or ((Job=Software
Dev.), (City=Seattle, Job=Data Eng.), (City=San Francisco)). c) min-
imizes, by pruning, the number of views specializations to consider.

Given a description, generate a set of “specialization templates",
such that each specializes only one view by adding one single predi-
cate (Property a).

To avoid duplicates (Property b), track the index of the view that
has been last specialized to generate the description, i. e.(D, i1); limit
the generation of refinements only to the views with an index equal
or greater than the last specialized view; if no view has been special-
ized, yet use 0. Without loss of generalization, consider the follow-
ing description candidate template {-: ((W1, W1, W1), -)}, with
no parent id (specialization path), intricacy 3, and never specialized
before. There are 3 ways it can be refined to increase the intricacy
progressively

5.3 identifying the best description 111

{parent id: ((template), last specialized)}

{-: ((W2, W1, W1), 0)}

{-: ((W1, W2, W1), 1)}

{-: ((W1, W1, W2), 2)}

These in turn, yield:

{-,0: ((W3, W1, W1), 0)}

{-,0: ((W2, W2, W1), 1)}

{-,0: ((W2, W1, W2), 2)}

{-,1: ((W1, W3, W1), 1)}

{-,1: ((W1, W2, W2), 2)}

{-,2: ((W1, W1, W3), 2)}

For each specialization template, generate a new refined descrip-
tion, specializing the prescribed view by adding a new predicate.
Once again, to avoid considering the same option multiple times, uti-
lize only predicates that are defined on attributes that have an id,
position in the relation, greater than any of the ones in use in the
view. In this way the refinement ((Job=Software Dev.), (City=Seattle,

Employer=Amazon), (City=San Francisco)), which happens to be also
the solution, is only generated once from the second candidate identi-
fied in Step 1 Figure 5.3, ((Job=Software Dev.), (City=Seattle), (City=San

Francisco)).
The refinements can be evaluated as soon as they are generated.

The evaluation can have three outcomes: 1) the coverage has fallen
under the Cmax threshold; this is not anymore a valid solution, and
neither can be any of its specializations; it is discarded (Property c). 2)
the amount of overlap is now zero, i. e.the description is now perfect;
the execution terminates by returning this description as a result. 3)
the overlap is still greater than zero; the statistics for the current best
description are updated, if necessary, and the description is enqueued
to DC to be further refined.

Algorithm 13 shows how the refinement process can be imple-
mented efficiently. The algorithm uses DC as a queue and keeps it-
erating over it (Line 1). An inner loop is used to cycle over the id of
the next view that must be refined, i. e.from the last modified i−1 to
the last one in the description (Line 2). Another inner loop iterates
over all the suitable predicates that can be added to the view under
specialization.

The extend_view function is responsible for enumerating these pred-
icates. Two possible implementations of this function are devised: the
first uses the domain of the attributes to derive the predicates; the
second instead queries the relation to see with which other predi-
cates the tuples selected by this view appear. The first option is faster
but potentially generates many views with no coverage, and thus in-
valid descriptions. The second one is more costly but generates only

112 on describing the contents of a dataset

non-empty views. Which one is better strongly depends on the do-
main cardinality/distribution and query time. In the evaluation pro-
cess (Section 5.4) the former was used.

Then, a new description is created by merging the unmodified
views with the specialized view, and it is thus evaluated (Lines 4-6).
The checks for the coverage requirement and perfect solution follows
immediately after. If none of the checks is triggered, then the descrip-
tion is enqueued in DC for further refinement, and the statistics for
the current best description are updated, if necessary (Lines 7-13).

Algorithm 13: Refinement
Data: R, dom, DC: [(desc, 0)], Omin, cbest, Cmax.
Result: The best description for R.
for (D, i−1) ∈ DC do1

for i ∈ [i−1, |D|) do2

for p ∈ extend_view(D[i],dom) do3

We ← d[i] + [p] ; // Extend view4

De ← D[:i] + We + D[i + 1:] ; // Extended D5

De, D̃e ← query(R,De,Cmax)6

if De < Cmax then7

continue ; // Not a solution anymore8

if D̃e = 0 then9

return De ; // Perfect solution10

DC.append((De, i)) ; // Refining more11

if o < Omin then12

cbest,Omin ← De, D̃e ; // Best so far13

return cbest14

5.3.3 Adaptive

The Adaptive algorithm is designed for scalability and intended for
scenarios requiring minimal supervision. It builds on the Vertical. By
dynamically adjusting the parameters for the domain pruning, Hε
and Ps, it adapts to the data at hand and to the user’s desired maxi-
mal work effort, max_effort. The latter parameter allows for a trade-off
between coverage and time. The results generated by this approach
may differ from these yielded by the naïve and Vertical solutions.

Figure 5.4 provides an overview of how the algorithm works. It
starts by pruning the dataset domain with some initial Hε and Ps. By
default, these are set respectively to 0 and to 2% of the number the
tuples, but they can be override instance by instance if desired. In case
the resulting domain is empty, i. e.no description could be mined, the

5.3 identifying the best description 113

Figure 5.4: Adaptive approach overview.

value of the two parameters are reduced accordingly to the relaxing

function, and the domain pruning step is re-executed.
Then, the algorithm estimates the maximal length, max_dl, of any

description it may find within the boundaries of the requested max_effor.
Next follows the expansion step. If the expansion continues up to

Wmax _dl, it means that no description can be found with the current
settings. Thus, the domain size is reduced, possibly causing a reduc-
tion in Cmax, by increasing the domain pruning parameters accord-
ingly to the tightening function and going back to step 0.

To avoid infinite loops the two functions must cooperate to prop-
erly restrict the parameters window in what is a search for a suitable
configuration. Furthermore, in the unlikely case where no further pa-
rameter tuning is possible, and no description reaches the coverage
threshold before max_dl, the threshold is lowered to the maximal cov-
erage seen in Wmax_dl. In other words, the descriptions with maxi-
mal coverage in the class will be considered description candidates
and provided as input to Step 2, the refinement.

The refinement step is also modified to consider refinements with
intricacy only up to max_int; which, by default, is set equal to two
times max_dl, but also this one is user-customizable.

relaxing & tightening The two functions act primarily on Ps.
The value is modified as Ps ∓ Ps ∗ av ∗ 2s, where av is the Adaptive
Value (by default: 0.25) and s the number of subsequent times the
same operation has been invoked. To ensure that the search window
always reduces, each time the two functions alternate (T, R, T) or (R,

T, R), the Adaptive Value is halved.
Each function has a corner case when invoked on Ps = 0. Relaxing

will halve Hε, while Tightening will set Ps to the default value.
The algorithm stops making adjustments once the result of halv-

ing produces a delta smaller than a user-provided sensitivity thresh-
old. Furthermore, to limit the effects of extreme tuple distributions,
a max_retries constraint is introduced (by default: 5). It limits how
many times the tightening function can be invoked.

maximal description length The maximal description length
is computed by exploiting two estimators: the maximal coverage proba-
bility and the level mining cost.

The maximal coverage probability for description with length q,mcov(q),
is the probability for such a description of covering the whole re-

114 on describing the contents of a dataset

lation. The coverage probability of description can be computed as
the union of the probabilities that each of its views has to cover
the whole relation. Assuming that the probabilities of the different
views are independent; the mcov(q) corresponds to the probability
of the description build with the first q views from ←−

W1, mcov(q) =⋃
i∈[0,q) P(

←−
W1
i). The coverage probability of a single view, W, cor-

responds to its relative coverage, P(W) = |W|/|R|. By applying De
Morgan’s law, mcov(q) can be efficiently computed as 1−

∏q
i=0 1−

P(
←−
W1
i).

The level mining cost can be derived by the number of solutions
that will be evaluated and the size of the relation. While it is not
possible to quantify exactly how many views will be evaluated, due
to the pruning functions, it is possible to compute a lower and upper
bound. The lower bound correspond to the number of roots that will
not be pruned by level pruning, and the upper bound by the number
of views these expand into.

The number of evaluated roots can be computed as the total num-
ber of roots minus the pruned one. To find the first pruned descrip-
tion, it is sufficient to identify the first instance, ı, of a sliding window
of size q on ←−W1 for which the sum of the coverage of its views is less
than Cmax. With that, the bounds can be computed as follows:

roots=
(

|
←−
W1|
q−1

)
−
(

|
←−
W1|−ı
q−1

)
views=

(
|
←−
W1|
q

)
−
(

|
←−
W1|−ı
q

)
with ı=argmin

i∈[|
←−
W1|−q]

max
(∑q

j=0
←−
W1
j −Cmax, −1

)

The maximal description length, max_dl is computed as follows.
Try increasing the description length, q, starting from 2 up to the
number of W1 views. Check whether the amount of work is reason-
able for the expected coverage, i. e.ifmcov(q) > sigmoid(q/max_effort−max_effort).
If it is not, invoke the tightening function and go back to the domain
pruning (Step 0). Check whether the increase in coverage, ∆mcov, is
worth the extra work with ∆mcov ∗ |R| ∗ (1− sigmoid(q/max_effort−
max_effort)) < log_2(views(q)), and if it is not then stop andmax_dl=q−1.

It is worth mentioning that the chosen method is domain agnostic.
If required, this can be optimized for different domains and settings.

solution integration Minimal changes are required to the
vertical approach.

In the expansion step (Algorithm 12), the outer loop condition
should be changed to iterate up to max_dl (Line 2) – if DC is empty,
the tightening function will be invoked by the main loop.

The algorithm should take another input parameter, last execution,
that indicates whether this is the last time the expansion step will be
invoked (i. e.no further domain adjustments are possible). When this
parameter is True, then the two pruning functions shall operate using

5.4 evaluation 115

a local variable partial max cover that records the maximal cover-
age observed so far (Lines 11,13).

The same intuition applies for DC and cbest. The code can be
moved from Lines 22-24 up to Line 17, The check shall be modified
to first compare the coverage.

Finally, the function should be modified to return also the partial

max coverage, such that the refinement process can use it in place of
Cmax

The only other modification to the refinement process (Algorithm 13)
consists of breaking the outer loop once the intricacy reaches max_int
through an if statement on Line 2.

time constrained execution Thanks to the modifications men-
tioned above, it is also possible to execute the algorithm in Vertical
and Adaptive mode in a time-constrained manner. It is sufficient to
always execute the exploration step with the last execution param-
eter set, and whenever the time is up, read the content of the cbest

variable.

5.4 evaluation

We performed an extensive set of tests to assess the effectiveness and
scalability of the proposed approaches. We used several datasets that
can be grouped as: [R] real-world data; [V] variegated synthetic data,
aimed at studying the behavior of domain pruning and the three algo-
rithms on different kinds of data (heterogeneity); [S] large scale syn-
thetic datasets intended to evaluate the scalability of the techniques.

The real-world set [R] features 10 relational tables from open data
repositories used also in similar works [115]. The characteristics of
these tables are shown in Figure 5.5.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Cols 9 6 9 7 9 5 5 7 5 7

Rows 1078 921 9102 307 6705 9537 2410 859 813 1201

|W1| 960 6000 21670 640 10390 57410 10920 1940 2060 2470

Figure 5.5: [R] Real-World Datasets.

The synthetic datasets have been produced with an ad-hoc gen-
erator that we developed to support fine-tuning of the different data
characteristics. The generator supports offers a number of parameters:
the number of repeated value patterns (npatterns), the level of over-
lap among these patterns in terms of coverage (max depth), the per-
centage of overlap of patterns within the same tuple (max overlap),
the number of columns and the number of rows. This data generator
is made available online on our project webpage [109].

116 on describing the contents of a dataset

The first set of synthetic datasets, [V], contains 2220 different tables
created from 740 different configurations:

• columns from 3 to 11 - odd only;

• max depth from 1 to 5;

• max overlap from 0.2 to 1 with increments of 0.2;

• npatterns from 2 to 24 - even only.

• rows fixed to 100,

The scalability set, [S], consists of 60 datasets that have been gen-
erated with the 20 most challenging characteristics and wth size up
to 1.000.000 tuples:

• columns fixed to 6;

• max depth fixed to 5;

• max overlap fixed to 0.6;

• npatterns from 6 to 18 with increments of 4;

• rows 10n for n from 2 to 6.

Figure 5.6 shows the distribution of |W1| for all the synthetic datasets.

Figure 5.6: Number of W1 in synthetic datasets.

To perform the tests, we developed a single-threaded python pro-
totype for the proposed approaches2. The tests were carried out with
GNU Parallel [133] on a cluster of machines, each equipped with pair
of Intel Xeon E5-2420 and DDR3 1333MT/s RAM running Linux 4.15.0-
91 and Python 3.6.9. The tests on [V] have been constrained to a
maximum running time of 15 minutes, with the GNU timeout utility,
while these on [S] and [R] were instead limited to 45 minutes. Each
test was assigned a core and 20GB of main memory using Linux con-
trol groups.

2 Source code & datasets at martinbrugnara.it/rp/describing_data.html.

https://martinbrugnara.it/rp/describing_data.html

5.4 evaluation 117

5.4.1 Results

effects of domain pruning Table 5.1 and Table 5.2 show the
effects of Ps and Hε on [V]. The figure shows the average of the
remaining percentage of patterns after pruning with different coeffi-
cients. While the means provide a general overview, they alone do
not describe the whole picture for the higher pruning values, as with
these, some datasets are left with no predicates at all. The ones with
a non-empty domain will then have many more views than expected.
The table thus shows how many of these last datasets exist for each
configuration. To avoid skewed results, the remaining of the evalua-
tion relies only on experiments with a non-empty domain.

Furthermore, these statistics show the complexity of choosing proper
pruning parameters and provide even more value to the Adaptive ap-
proach, which always provides a solution by autonomously tuning
the parameters.

hε-ps 0 0.02 0.12 0.22 0.32 0.42 0.52

0 20.11 ± 14.62 20.11 ± 14.62 5.39 ± 2.78 1.87 ± 1.78 0.85 ± 1.19 0.45 ± 0.83 1.00 ± 1.00

0.05 17.99 ± 14.61 17.99 ± 14.61 5.36 ± 2.80 1.84 ± 1.77 0.82 ± 1.17 0.42 ± 0.80 0.58 ± 0.76

0.15 10.97 ± 11.32 10.97 ± 11.32 4.14 ± 2.83 1.80 ± 1.75 0.81 ± 1.16 0.41 ± 0.79 0.04 ± 0.24

0.25 4.67 ± 6.20 4.67 ± 6.20 2.37 ± 2.50 1.26 ± 1.47 0.75 ± 1.10 0.38 ± 0.74 0.01 ± 0.10

0.35 1.62 ± 2.80 1.62 ± 2.80 1.06 ± 1.68 0.71 ± 1.13 0.47 ± 0.82 0.32 ± 0.67 0.00 ± 0.07

0.45 0.40 ± 1.14 0.40 ± 1.14 0.29 ± 0.79 0.22 ± 0.60 0.15 ± 0.42 0.10 ± 0.33 0.00 ± 0.06

Table 5.1: Domain Pruning on [V]: % of residual |W1|.

hε-ps 0 0.02 0.12 0.22 0.32 0.42 0.52

0 2220 2220 2172 1505 953 623 5

0.05 2216 2216 2167 1490 934 595 5

0.15 2065 2065 2037 1484 925 582 4

0.25 1501 1501 1490 1251 898 557 4

0.35 892 892 892 854 681 503 4

0.45 323 323 323 320 284 195 3

Table 5.2: Domain Pruning on [V]: Dataset with a non-empty description.

influence of structures & patterns Figure 5.7 shows the
number of failed experiments on [V] by reporting the percentage of
the two failure mode, Timeout (TO) and Out Of Memory (OOM), for
each combination of (max depth and max overlap). It shows that the
Naïve approach suffered the most timeouts, that it has issues deal-
ing with even the simplest datasets, and that sometimes it goes out
of memory (OOM) on the more complex ones. On the contrary, the
Vertical approach never failed on the memory constraint but expe-
rienced a limited amount of timeouts on the more challenging in-
stances. Remarkably, the Adaptive approach never experienced OOM

118 on describing the contents of a dataset

and, thanks to its adaptive pruning strategy, never timed out either.
The observed behavior is also consistent with the running time shown

Figure 5.7: Execution failures % in [V]. Adaptive never failed.

in Figure 5.8. The means have been computed by accounting only
the time equivalent to the timeout (15 minutes) for failed experi-
ments, thus heavily favoring the slower solutions. The matching trend
of the three series confirms that the combination of max depth and
max overlap is a good indicator of the complexity of the dataset min-
ing problem. The Vertical approach is generally faster by orders of
magnitudes than the naïve, and the Adaptive is, in turn, again faster
by orders of magnitudes. The Vertical approach appears to get slower
faster with the growth of max overlap than the Adaptive. This be-
havior can be attributed to the reduction in pruning opportunities,
especially for the level pruning function. The Adaptive approach suf-
fers less as it can adjust max_dl and use its adaptive pruning strategy
to get to a description faster.

Figure 5.8: Mean running time of the 3 approaches on [V].

5.4 evaluation 119

scalability Figure 5.9 shows the mean running time on [S].
Timeouts and out-of-memory errors are counted as the timeout time:
45 minutes. It shows a direct logarithmic relationship between the
size and the running time for the Vertical and the Adaptive solutions
(the chart is log/log). Showing, as expected, that the complexity of
the problem is not directly correlated with the size but instead with
the number of predicates and their structures. However, the impact
of the size on the scan time is not negligible. The naïve approach
constantly times out with the two smaller Ps values.

Figure 5.9: Mean running time of the 3 approaches on [S].

real-world dataset Figure 5.10 shows the mean running time
on real-world datasets [R]. Vertical always outperforms the Naïve
by at least three orders of magnitude. This figure also highlights the
flexibility of the Adaptive solutions; it is generally as fast or faster
than Vertical, except for T4. This dataset is so simple and small that
the effort needed to adapt is more than the time to mine the solution:
the running time increases from ∼3ms to ∼9ms. A small increment
compared to the reductions in the more complex tables like T2 where
it traded 5% coverage for two orders of magnitudes in running time.

Figure 5.10: Mean running time of the 3 approaches on [R].

120 on describing the contents of a dataset

adaptive effectiveness The Adaptive approach trades cover-
age for running time. As discussed, all experiments run with the
max_effort parameter set to 2.5. Figure 5.11 shows the ratio (in per-
centage) of the coverage of the Adaptive solution over the Vertical one
for the same set of initial conditions. The grey series represents the
result for the [V]; it shows that there never is a reduction in mean cov-
erage for more than 20%, and that it increases, as expected, with the
complexity of the datasets. The black series represents the result for
[S] and shows a behavior similar to the former. Here, the smaller cov-
erage values are to be expected since the tests were carried out only
with the most challenging configurations. The brown series represent
the results for [R]. Each data point corresponds to a dataset. The re-
sults can be divided into two groups, where the coverage exceeds
95% and where it does not. The first contains challenging datasets
with many rows, columns, and interleaving patterns, while the sec-
ond contains the simpler ones. The second group’s existence suggests
that the adaptive algorithm is effective also on real-world datasets
and that the current cost model works best, as by design, with mod-
erate/complex datasets. Nevertheless, if the application domain was
to be rich in simple datasets, the model could be easily adapted, as
discussed in Section 5.3.3.

Figure 5.11: Adaptive coverage vs Vertical (max_effort=2.5).
Left [V], center [S], right [R]

5.5 related work

Describing datasets is a topic that has been widely studied in the
past. Most of the approaches provide only a partial description of
the data. Scorpion [147], for instance, is a system that, given a user-
provided set of outliers from the results of an aggregation query, iden-
tifies the tuples that mainly influence the abnormal behavior. The
system takes into consideration only formulas that are single con-

5.5 related work 121

junctions of in-range and in-set predicates, each for one attribute.
Some approaches specialize in describing what is mostly influencing
a given metric. MRI [32], for example, is tailored for the AVG function.
Other works are domain-specific, like PerfXplain [71] that focuses on
MapReduce [34] job logs. Other approaches identify and describe a
subset of tuples that highly differentiate from the others, under the
assumption that those are what actually characterizes the dataset. For
instance, in [66] a generalization of frequent pattern mining is used to
find Fascicles with high support instead of patterns. Some works cap-
ture the possible hints that a dataset may contain with respect to some
goal. A recent work like this [48] finds groups of tuples that all share
the same value for a subset of attributes as well as the same value for
the goal column. In user group analytics, researchers look for descrip-
tions that describe the general population. In one of these works [108],
a multi-objective optimization problem is defined across dimensions
like coverage, set diversity, and optionally on the diameter (defined
on the distribution of a single scalar column). Multidimensional pat-
terns are used in OLAP cubes to both define and describe regions,
in [75] similar dimensions are used as part of MDL/GMDL to decide
how to slice the cube. Generalizing the frequent pattern approach,
conditional functional dependencies (CDF) / pattern tableaux have
been used to describe datasets and their semantics [51, 52]. Thanks
to their expressive power, they have also been considered in organiz-
ing the data in relational databases [33] Descriptions often are the
result of some clustering process. CLIQUE [3] finds dense clusters in
subspaces of maximum dimensionality and then describes the clus-
ters with DNF expression optimized to ease the comprehension for
the user, and a similar work [145] uses also clustering to perform
query result summarization. Another approach [73] proposes a clus-
tering technique that allows the user to provide as input the desired
in-cluster distribution. There also exists mixed approaches; for exam-
ple, Paganelli et al. [111] proposed an interactive system to describe a
dataset by the description of its partitions. The partitions can either
be defined by the user, as (GROUP BY attr1, attr2, ...), or be au-
tomatically derived by a clustering algorithm such as the k-means.
The system does not use partitions’ definition clauses as labels; in-
stead, it generates new boolean formulas, d-formuals, optimized for
two user parameters: coverage and diversity. A d-formula consists of
a set of conjunctions of in-set predicates. The coverage parameter ex-
presses the preference for highlighting outliers over frequent patterns.
The diversity parameter indicates the preferred number of different
attributes to use. The final description then consists in the conjunc-
tion of one d-formula per partition; The formulas are selected for
their diversity and the discrimination factor of their attributes. Data
descriptions have also been studied in the semantic web community
under the umbrella of “dataset description" [5, 24, 91]. In that context,

122 on describing the contents of a dataset

the description is superimposed information provided often by the user,
describing specific meta-data properties and not the content in terms
of values.

5.6 conclusions

We have studied the problem of generating meaningful, concise, and
informative descriptions for a dataset. We have modeled the descrip-
tions as sets of views over the datasets, where the views are defined
as filtering clauses. To judge the quality of a description, we consid-
ered four factors: the length, the coverage on the dataset, the overlap,
and the intricacy. We have thus presented three algorithms that gen-
erate such descriptions given these four optimization objectives. We
have then evaluated the algorithms by performing extensive experi-
mental tests on synthetic and real-world datasets. Results show the
effectiveness of our pruning strategies in Vertical and the increased
scalability of Adaptive.

6
C O N C L U S I O N S

The world is producing data at an unprecedented rate measured
petabytes per minute or in hundreds of zettabytes per year [59, 139].
The growth in size is only matched by its growth in complexity and
variety. The share amount of data available makes it impossible for a
single person to examine or know it all. There is thus a pressing need
for: scalable and efficient storage and processing capabilities for the
new ever more presents kinds of data, such as graphs; unbiased solu-
tions to simplify access to the internet content, such as search engine
and recommender systems, capable of minimizing the polarization
effects of most existing solutions; techniques to expedite the explo-
ration and understanding of all the datasets created from this data
deluge to enable targeted processing and thus maximize the value
of the data. This thesis contributed to Understanding and Managing
Complex Datasets in the following ways.

In Chapter 2 we tackled the problem of graph data storage. We
have performed an extensive experimental evaluation of the state-
of-the-art graph databases in ways not tested before. We provided
a principled and systematic evaluation methodology based on mi-
crobenchmarks. We have materialized it into an evaluation suite, de-
signed with extensibility in mind and containing datasets, queries,
and scripts. Our findings have illustrated the advantages microbench-
marks can offer to practitioners, developers, and researchers and how
they can help them understand better design choices, performances,
and functionalities of the graph database system. As a result, we have
presented a number of findings that help understand the trade-offs
between native and hybrid graph database systems, their effect on im-
portant graph queries like traversals and pattern matching, and their
current capability to handle highly heterogeneous graphs.

In Chapter 3, we tackled the problem of processing existing large
graphs that are already stored in a distributed way. We developed a
technique that can exploit as much as possible the existing topology
of the graph data and perform the k-core decomposition in a coop-
erative way among the distribution nodes. We have introduced an
efficient distributed and streaming k-core decomposition approach
for large and dynamic networks. Our approach deals with graph
changes/updates by selecting only the nodes of a subgraph of the
original graph that really need to update their core numbers. We im-
plemented our approach on top of akka framework, a toolkit and run-
time for building highly concurrent, distributed, and resilient message-
driven applications. By running experiments on a variety of both real

123

124 conclusions

and synthetic datasets, we have shown that the proposed method is
interesting in the case of very large graphs with a very satisfactory
performance and scalability for large graphs.

In Chapter 4, we addressed the polarization problem in content rec-
ommendation systems. We proposed two novel solutions, orthogonal-
topics and sentimented-topics, in the form of recommender systems
to the problem of suggesting related but diverse article sets. Orthogonal-
topics focuses on the relationship of the topics, and it has been de-
signed to generalize well on all datasets. Sentimented-topics, focuses
on the sentiment expressed by the documents on the different topics,
and it has been designed to extract and exploit as much information
as possible from text corpora that contain opinionated articles. More-
over, to model diversity among the recommended documents, we pro-
posed a new diversity-metric based on the modeling of their point
representation as repulsive particles and requiring the minimization
of the work required to balance the system representing the solution,
MIN-BW. We thus proposed a new approximation algorithm, FDLS,
for solving the MIN-BW optimizing problem.We demonstrated the
superior quality of our solutions through a user study that compared
the end-to-end results produced by our two approaches (orthogonal-
topics + MIN-BW & sentimented-topics + MIN-BW). against the state-
of-the-art recommender from Abbar et al. [1].We demonstrated the
superior scalability and performance of FDLS, by comparing it to the
state-of-the-art approximation for MAX-MIN and MAX-AVG.

In Chapter 5, we streamline the exploration of data lakes and data
warehouses. In particular, we have studied the problem of generat-
ing meaningful, concise, and informative descriptions for a dataset.
We have modeled the descriptions as sets of views over the datasets,
where the views are defined as filtering clauses. To judge the quality
of a description, we considered four factors: the length, the coverage
on the dataset, the overlap, and the intricacy. We have thus presented
three algorithms that generate such descriptions given these four
optimization objectives. We have then evaluated the algorithms by
performing extensive experimental tests on synthetic and real-world
datasets. Results show the effectiveness of our pruning strategies in
Vertical and the increased scalability of Adaptive.

conclusions 125

availability of data and material

Source code for all the software developed for this thesis is publicly
available online alongside all the used datasets.

• Graph benchmarking:
https://graphbenchmark.com

• Distributed k-core decomposition:
https://martinbrugnara.it/rp/dkcore.html

• Article Recommendation:
https://martinbrugnara.it/rp/tsearch.html

• Dataset Description Generator:
https://martinbrugnara.it/rp/describing_data.html

https://graphbenchmark.com
https://martinbrugnara.it/rp/dkcore.html
https://martinbrugnara.it/rp/tsearch.html
https://martinbrugnara.it/rp/describing_data.html

B I B L I O G R A P H Y

[1] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh
Mahabadi. “Real-time recommendation of diverse related arti-
cles.” In: Proceedings of the 22nd international conference on World
Wide Web. 2013, pp. 1–12.

[2] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos
Kalnis. “A Survey and Experimental Comparison of Distributed
SPARQL Engines for Very Large RDF Data.” In: PVLDB 10.13

(2017), pp. 2049–2060. issn: 2150-8097. doi: 10.14778/3151106.
3151109. url: https://doi.org/10.14778/3151106.3151109.

[3] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and
Prabhakar Raghavan. “Automatic Subspace Clustering of High
Dimensional Data for Data Mining Applications.” In: SIGMOD
1998, pp. 94–105.

[4] H. Aksu, M. Canim, Yuan-Chi Chang, I. Korpeoglu, and O.
Ulusoy. “Distributed k -Core View Materialization and Main-
tenance for Large Dynamic Graphs.” In: IEEE Trans. Knowl.
Data Eng. 26.10 (2014), pp. 2439–2452. issn: 1041-4347. doi:
10.1109/TKDE.2013.2297918.

[5] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and
Jun Zhao. “Describing Linked Datasets with the VoID Vocabu-
lary.” In: W3c recommendation (2011).

[6] B. Alexe, W. C. Tan, and Y. Velegrakis. “STBenchmark: towards
a benchmark for mapping systems.” In: PVLDB 1.1 (2008),
pp. 230–244.

[7] J. Ignacio Alvarez-Hamelin, Mariano G. Beiró, and Jorge Rodolfo
Busch. “Understanding Edge Connectivity in the Internet through
Core Decomposition.” In: Internet Mathematics 7.1 (2011), pp. 45–
66. doi: 10.1080/15427951.2011.560786. url: http://dx.doi.
org/10.1080/15427951.2011.560786.

[8] José Ignacio Alvarez-Hamelin, Alain Barrat, Alessandro Vespig-
nani, and et al. “K-core decomposition of Internet graphs: hier-
archies, self-similarity and measurement biases.” In: Networks
and Heterogeneous Media 3.2 (2008), p. 371.

[9] Renzo Angles. “A Comparison of Current Graph Database
Models.” In: ICDEW. 2012, pp. 171–177.

127

https://doi.org/10.14778/3151106.3151109
https://doi.org/10.14778/3151106.3151109
https://doi.org/10.14778/3151106.3151109
https://doi.org/10.1109/TKDE.2013.2297918
https://doi.org/10.1080/15427951.2011.560786
http://dx.doi.org/10.1080/15427951.2011.560786
http://dx.doi.org/10.1080/15427951.2011.560786

128 bibliography

[10] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundu-
laki, Thomas Neumann, Orri Erling, Peter Neubauer, Norbert
Martinez-Bazan, Venelin Kotsev, and Ioan Toma. “The Linked
Data Benchmark Council: A Graph and RDF Industry Bench-
marking Effort.” In: SIGMOD Rec. 43.1 (May 2014), pp. 27–31.
issn: 0163-5808. doi: 10.1145/2627692.2627697. url: http:
//doi.acm.org/10.1145/2627692.2627697.

[11] Renzo Angles and Claudio Gutierrez. “Survey of Graph Database
Models.” In: ACM Comput. Surv. 40.1 (Feb. 2008), 1:1–1:39. issn:
0360-0300. doi: 10.1145/1322432.1322433. url: http://doi.
acm.org/10.1145/1322432.1322433.

[12] Renzo Angles, Arnau Prat-Pérez, David Dominguez-Sal, and
Josep-Lluis Larriba-Pey. “Benchmarking Database Systems for
Social Network Applications.” In: GRADES. New York, New
York: ACM, 2013, 15:1–15:7. isbn: 978-1-4503-2188-4. doi: 10.
1145/2484425.2484440. url: http://doi.acm.org/10.1145/
2484425.2484440.

[13] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. “RDF
and Property Graphs Interoperability: Status and Issues.” In:
Alberto Mendelzon Workshop on Foundations of Data Management.
2019.

[14] Apache Tinkerpop. http://tinkerpop.apache.org/.

[15] Apache Tinkerpop. GraphSON data format. http://tinkerpop.
apache.org/docs/current/reference/#graphson-io-format.
2020.

[16] ArangoDB. https://www.arangodb.com/.

[17] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yan-
nis Velegrakis. “Distributed k-core decomposition and main-
tenance in large dynamic graphs.” In: Proceedings of the 10th
ACM International Conference on Distributed and Event-based Sys-
tems, DEBS ’16, Irvine, CA, USA, June 20 - 24, 2016. 2016, pp. 161–
168. doi: 10.1145/2933267.2933299. url: https://doi.org/
10.1145/2933267.2933299.

[18] GaryD Bader and ChristopherWV Hogue. “An automated method
for finding molecular complexes in large protein interaction
networks.” English. In: BMC Bioinformatics 4.1, 2 (2003). doi:
10.1186/1471-2105-4-2. url: http://dx.doi.org/10.1186/
1471-2105-4-2.

[19] Bast, Hannah and Baurle, Florian and Buchhold, Bjorn and
Haussmann, Elmar. “Easy Access to the Freebase Dataset.” In:
Proceedings of the 23rd International Conference on World Wide
Web. Seoul, Korea: ACM, 2014, pp. 95–98. isbn: 978-1-4503-
2745-9. doi: 10.1145/2567948.2577016. url: http://doi.
acm.org/10.1145/2567948.2577016.

https://doi.org/10.1145/2627692.2627697
http://doi.acm.org/10.1145/2627692.2627697
http://doi.acm.org/10.1145/2627692.2627697
https://doi.org/10.1145/1322432.1322433
http://doi.acm.org/10.1145/1322432.1322433
http://doi.acm.org/10.1145/1322432.1322433
https://doi.org/10.1145/2484425.2484440
https://doi.org/10.1145/2484425.2484440
http://doi.acm.org/10.1145/2484425.2484440
http://doi.acm.org/10.1145/2484425.2484440
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/docs/current/reference/#graphson-io-format
http://tinkerpop.apache.org/docs/current/reference/#graphson-io-format
https://www.arangodb.com/
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1186/1471-2105-4-2
http://dx.doi.org/10.1186/1471-2105-4-2
http://dx.doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1145/2567948.2577016
http://doi.acm.org/10.1145/2567948.2577016
http://doi.acm.org/10.1145/2567948.2577016

bibliography 129

[20] Batagelj, Vladimir and Mrvar, Andrej. Yeast, Pajek dataset. 2006.

[21] Vladimir Batagelj and Matjaž Zaveršnik. “Fast algorithms for
determining (generalized) core groups in social networks.” En-
glish. In: Advances in Data Analysis and Classification 5.2 (2011),
pp. 129–145. issn: 1862-5347. doi: 10.1007/s11634-010-0079-
y.

[22] David M Blei, Andrew Y Ng, and Michael I Jordan. “Latent
dirichlet allocation.” In: the Journal of machine Learning research
3 (2003), pp. 993–1022.

[23] Haran Boral and David J. Dewitt. “A Methodology for Database
System Performance Evaluation.” In: Proceedings of the Interna-
tional Conference on Management of Data. 1984, pp. 176–185.

[24] Martin Brümmer, Ciro Baron, Ivan Ermilov, Markus Freuden-
berg, Dimitris Kontokostas, and Sebastian Hellmann. “DataID:
Towards Semantically Rich Metadata for Complex Datasets.”
In: SEM ’14. 2014, 84–91.

[25] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao
Lu, Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan Zhang, et
al. “Topological structure analysis of the protein–protein inter-
action network in budding yeast.” In: Nucleic acids research 31.9
(2003), pp. 2443–2450.

[26] Ed Bullmore and Olaf Sporns. “Complex brain networks: graph
theoretical analysis of structural and functional systems.” In:
Nature Reviews Neuroscience 10.3 (2009), p. 186.

[27] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-
Pérez, Orri Erling, and Peter Boncz. “Graphalytics: A Big Data
Benchmark for Graph-Processing Platforms.” In: GRADES. Mel-
bourne, VIC, Australia: ACM, 2015, 7:1–7:6. isbn: 978-1-4503-
3611-6. doi: 10.1145/2764947.2764954. url: http://doi.acm.
org/10.1145/2764947.2764954.

[28] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Ozsu. “Ef-
ficient Core Decomposition in Massive Networks.” In: ICDE.
2011, pp. 51–62. isbn: 978-1-4244-8959-6. doi: 10.1109/ICDE.
2011.5767911. url: http://dx.doi.org/10.1109/ICDE.2011.
5767911.

[29] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Ozsu.
“Efficient Core Decomposition in Massive Networks.” In: Proc.
of the 27th Int. Conf. on Data Engineering. ICDE ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 51–62. isbn: 978-
1-4244-8959-6. doi: 10.1109/ICDE.2011.5767911. url: http:
//dx.doi.org/10.1109/ICDE.2011.5767911.

https://doi.org/10.1007/s11634-010-0079-y
https://doi.org/10.1007/s11634-010-0079-y
https://doi.org/10.1145/2764947.2764954
http://doi.acm.org/10.1145/2764947.2764954
http://doi.acm.org/10.1145/2764947.2764954
https://doi.org/10.1109/ICDE.2011.5767911
https://doi.org/10.1109/ICDE.2011.5767911
http://dx.doi.org/10.1109/ICDE.2011.5767911
http://dx.doi.org/10.1109/ICDE.2011.5767911
https://doi.org/10.1109/ICDE.2011.5767911
http://dx.doi.org/10.1109/ICDE.2011.5767911
http://dx.doi.org/10.1109/ICDE.2011.5767911

130 bibliography

[30] Matteo Cinelli, Emanuele Brugnoli, Ana Lucia Schmidt, Fabi-
ana Zollo, Walter Quattrociocchi, and Antonio Scala. “Selec-
tive exposure shapes the Facebook news diet.” In: PloS one
15.3 (2020), e0229129.

[31] Matteo Cinelli, Gianmarco De Francisci Morales, Alessandro
Galeazzi, Walter Quattrociocchi, and Michele Starnini. “The
echo chamber effect on social media.” In: Proceedings of the Na-
tional Academy of Sciences 118.9 (2021).

[32] Mahashweta Das, Sihem Amer-Yahia, Gautam Das, and Cong
Yu. “MRI: Meaningful Interpretations of Collaborative Ratings.”
In: PVLDB 4.11 (2011), pp. 1063–1074.

[33] P. De Bra and J. Paredaens. “Conditional dependencies for hor-
izontal decompositions.” In: Automata, Languages and Program-
ming. 1983, pp. 67–82.

[34] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified
data processing on large clusters.” In: Commun. ACM 51.1 (2008),
pp. 107–113.

[35] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio
Petroni, Antonio Scala, Guido Caldarelli, H Eugene Stanley,
and Walter Quattrociocchi. “The spreading of misinformation
online.” In: Proceedings of the National Academy of Sciences 113.3
(2016), pp. 554–559.

[36] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo
Wang, Michael Stonebraker, Ahmed K. Elmagarmid, Ihab F.
Ilyas, Samuel Madden, Mourad Ouzzani, and Nan Tang. “The
Data Civilizer System.” In: CIDR 2017.

[37] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-
Villamor, N. Martínez-Bazán, and J. L. Larriba-Pey. “Survey
of Graph Database Performance on the HPC Scalable Graph
Analysis Benchmark.” In: Proceedings of the 2010 International
Conference on Web-age Information Management. WAIM’10. Ji-
uzhaigou Valley, China: Springer-Verlag, 2010, pp. 37–48. isbn:
3-642-16719-5, 978-3-642-16719-5. url: http://dl.acm.org/
citation.cfm?id=1927585.1927590.

[38] Zhicheng Dou, Sha Hu, Kun Chen, Ruihua Song, and Ji-Rong
Wen. “Multi-dimensional search result diversification.” In: Pro-
ceedings of the fourth ACM international conference on Web search
and data mining. 2011, pp. 475–484.

[39] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
“Clustering Large Graphs via the Singular Value Decomposi-
tion.” In: Mach. Learn. 56.1-3 (June 2004), pp. 9–33. issn: 0885-
6125. doi: 10.1023/B:MACH.0000033113.59016.96. url: http:
//dx.doi.org/10.1023/B:MACH.0000033113.59016.96.

http://dl.acm.org/citation.cfm?id=1927585.1927590
http://dl.acm.org/citation.cfm?id=1927585.1927590
https://doi.org/10.1023/B:MACH.0000033113.59016.96
http://dx.doi.org/10.1023/B:MACH.0000033113.59016.96
http://dx.doi.org/10.1023/B:MACH.0000033113.59016.96

bibliography 131

[40] Marina Drosou and Evaggelia Pitoura. “Search result diversi-
fication.” In: ACM SIGMOD Record 39.1 (2010), pp. 41–47.

[41] Marina Drosou and Evaggelia Pitoura. “DisC diversity: result
diversification based on dissimilarity and coverage.” In: Proc.
VLDB Endow. 6.1 (2012), pp. 13–24. doi: 10.14778/2428536.
2428538. url: https://doi.org/10.14778/2428536.2428538.

[42] Marina Drosou and Evaggelia Pitoura. “Multiple Radii DisC
Diversity: Result Diversification Based on Dissimilarity and
Coverage.” In: ACM Trans. Database Syst. 40.1 (2015). issn: 0362-
5915. doi: 10.1145/2699499. url: https://doi.org/10.1145/
2699499.

[43] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek
R Narasayya, and Manoj Syamala. “Columnstore and B+ tree-
Are Hybrid Physical Designs Important?” In: SIGMOD. 2018,
pp. 177–190.

[44] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos,
and Panos Kalnis. “GraMi: Frequent Subgraph and Pattern
Mining in a Single Large Graph.” In: PVLDB 7.7 (2014), pp. 517–
528. issn: 2150-8097. doi: 10.14778/2732286.2732289. url:
http://dx.doi.org/10.14778/2732286.2732289.

[45] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi,
Andrey Gubichev, Arnau Prat, Minh-Duc Pham, and Peter
Boncz. “The LDBC Social Network Benchmark: Interactive Work-
load.” In: SIGMOD. Melbourne, Victoria, Australia, 2015, pp. 619–
630. isbn: 978-1-4503-2758-9. doi: 10.1145/2723372.2742786.
url: http://doi.acm.org/10.1145/2723372.2742786.

[46] Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel.
“The Case Against Specialized Graph Analytics Engines.” In:
CIDR. 2015.

[47] Alan Fekete, Shirley N Goldrei, and Jorge Pérez Asenjo. “Quan-
tifying isolation anomalies.” In: PVLDB 2.1 (2009), pp. 467–
478.

[48] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn,
and Divesh Srivastava. “Interpretable and Informative Expla-
nations of Outcomes.” In: PVLDB 8.1 (2014), pp. 61–72.

[49] Giorgos Giannopoulos, Marios Koniaris, Ingmar Weber, Ale-
jandro Jaimes, and Timos Sellis. “Algorithms and criteria for
diversification of news article comments.” In: Journal of Intelli-
gent Information Systems 44.1 (2015), pp. 1–47.

[50] C. Giatsidis, D.M. Thilikos, and M. Vazirgiannis. “Evaluating
Cooperation in Communities with the k-Core Structure.” In:
Proc. of the Int. Conf. on Advances in Social Networks Analysis
and Mining. ASONAM’11. July 2011, pp. 87–93. doi: 10.1109/
ASONAM.2011.65.

https://doi.org/10.14778/2428536.2428538
https://doi.org/10.14778/2428536.2428538
https://doi.org/10.14778/2428536.2428538
https://doi.org/10.1145/2699499
https://doi.org/10.1145/2699499
https://doi.org/10.1145/2699499
https://doi.org/10.14778/2732286.2732289
http://dx.doi.org/10.14778/2732286.2732289
https://doi.org/10.1145/2723372.2742786
http://doi.acm.org/10.1145/2723372.2742786
https://doi.org/10.1109/ASONAM.2011.65
https://doi.org/10.1109/ASONAM.2011.65

132 bibliography

[51] Lukasz Golab, Howard Karloff, Flip Korn, and Divesh Srivas-
tava. “Data Auditor: Exploring Data Quality and Semantics
Using Pattern Tableaux.” In: PVLDB 3.1–2 (2010), 1641–1644.

[52] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava,
and Bei Yu. “On Generating Near-Optimal Tableaux for Condi-
tional Functional Dependencies.” In: PVLDB 1.1 (2008), 376–390.

[53] Google. Freebase Data Dumps. https://developers.google.
com/freebase/data. 2015.

[54] Oshini Goonetilleke, Saket Sathe, Timos Sellis, and Xiuzhen
Zhang. “Microblogging Queries on Graph Databases: An In-
trospection.” In: GRADES. Melbourne, VIC, Australia: ACM,
2015, 5:1–5:6. isbn: 978-1-4503-3611-6. doi: 10.1145/2764947.
2764952. url: http://doi.acm.org/10.1145/2764947.2764952.

[55] Eduardo Graells-Garrido, Mounia Lalmas, and Daniele Quer-
cia. “People of opposing views can share common interests.”
In: Proceedings of the 23rd International Conference on World Wide
Web. 2014, pp. 281–282.

[56] Felix Hamborg, Karsten Donnay, and Bela Gipp. “Automated
identification of media bias in news articles: an interdisciplinary
literature review.” In: International Journal on Digital Libraries
20.4 (2019), pp. 391–415.

[57] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer
Ozsu, Xingfang Wang, and Tianqi Jin. “An Experimental Com-
parison of Pregel-like Graph Processing Systems.” In: PVLDB
7.12 (2014), pp. 1047–1058. issn: 2150-8097.

[58] Radoslav Harman and Vladimír Lacko. “On decompositional
algorithms for uniform sampling from n-spheres and n-balls.”
In: Journal of Multivariate Analysis 101.10 (2010), pp. 2297–2304.

[59] Arne Holst. “Volume of data/information created, captured,
copied, and consumed worldwide from 2010 to 2025.” In: Statista,
June (2021).

[60] Florian Holzschuher and René Peinl. “Performance of Graph
Query Languages: Comparison of Cypher, Gremlin and Na-
tive Access in Neo4J.” In: Proceedings of the Joint EDBT/ICDT
2013 Workshops. EDBT ’13. 2013, pp. 195–204.

[61] Florian Holzschuher and René Peinl. “Performance of Graph
Query Languages: Comparison of Cypher, Gremlin and Na-
tive Access in Neo4J.” In: Proceedings of the Joint EDBT/ICDT
2013 Workshops. EDBT ’13. Genoa, Italy: ACM, 2013, pp. 195–
204. isbn: 978-1-4503-1599-9. doi: 10.1145/2457317.2457351.
url: http://doi.acm.org/10.1145/2457317.2457351.

https://developers.google.com/freebase/data
https://developers.google.com/freebase/data
https://doi.org/10.1145/2764947.2764952
https://doi.org/10.1145/2764947.2764952
http://doi.acm.org/10.1145/2764947.2764952
https://doi.org/10.1145/2457317.2457351
http://doi.acm.org/10.1145/2457317.2457351

bibliography 133

[62] Yanrong Huang, Rui Wang, Bin Huang, Bo Wei, Shu Li Zheng,
and Min Chen. “Sentiment Classification of Crowdsourcing
Participants’ Reviews Text Based on LDA Topic Model.” In:
IEEE Access 9 (2021), pp. 108131–108143. doi: 10.1109/ACCESS.
2021.3101565. url: https://doi.org/10.1109/ACCESS.2021.
3101565.

[63] Wouter IJntema, Frank Goossen, Flavius Frasincar, and Fred-
erik Hogenboom. “Ontology-based news recommendation.”
In: Proceedings of the 2010 EDBT/ICDT Workshops. 2010, pp. 1–
6.

[64] E. Ioannou, N. Rassadko, and Y. Velegrakis. “On Generating
Benchmark Data for Entity Matching.” In: J. Data Semantics 2.1
(2013), pp. 37–56. doi: 10.1007/s13740- 012- 0015- 8. url:
http://dx.doi.org/10.1007/s13740-012-0015-8.

[65] E. Ioanou and Y. Velegrakis. “EMBench++: Data for a Thor-
ough Benchmarking of Matching-Related Methods.” In: Se-
mantic Web Journal 9 (2018).

[66] H. V. Jagadish, J. Madar, and Raymond T. Ng. “Semantic Com-
pression and Pattern Extraction with Fascicles.” In: VLDB 1999,
pp. 186–198.

[67] Paul Jakma, Marcin Orczyk, Colin S. Perkins, and Marwan
Fayed. “Distributed k-core Decomposition of Dynamic Graphs.”
In: Proc. of the 2012 ACM CoNEXT Student Workshop. Nice, France:
ACM, 2012. isbn: 978-1-4503-1779-5. doi: 10.1145/2413247.
2413272. url: http://doi.acm.org/10.1145/2413247.2413272.

[68] Salim Jouili and Valentin Vansteenberghe. “An Empirical Com-
parison of Graph Databases.” In: Proceedings of the 2013 Interna-
tional Conference on Social Computing. SOCIALCOM ’13. Wash-
ington, DC, USA: IEEE Computer Society, 2013, pp. 708–715.
isbn: 978-0-7695-5137-1. doi: 10.1109/SocialCom.2013.106.
url: http://dx.doi.org/10.1109/SocialCom.2013.106.

[69] Stephen Kaisler, Frank Armour, J. Alberto Espinosa, and William
Money. “Big Data: Issues and Challenges Moving Forward.”
In: 2013 46th Hawaii International Conference on System Sciences.
2013, pp. 995–1004. doi: 10.1109/HICSS.2013.645.

[70] Daniel A Keim. “Information visualization and visual data
mining.” In: IEEE TVCG 1 (2002), pp. 1–8.

[71] Nodira Khoussainova, Magdalena Balazinska, and Dan Su-
ciu. “PerfXplain: Debugging MapReduce Job Performance.”
In: PVLDB 5.7 (2012), pp. 598–609.

https://doi.org/10.1109/ACCESS.2021.3101565
https://doi.org/10.1109/ACCESS.2021.3101565
https://doi.org/10.1109/ACCESS.2021.3101565
https://doi.org/10.1109/ACCESS.2021.3101565
https://doi.org/10.1007/s13740-012-0015-8
http://dx.doi.org/10.1007/s13740-012-0015-8
https://doi.org/10.1145/2413247.2413272
https://doi.org/10.1145/2413247.2413272
http://doi.acm.org/10.1145/2413247.2413272
https://doi.org/10.1109/SocialCom.2013.106
http://dx.doi.org/10.1109/SocialCom.2013.106
https://doi.org/10.1109/HICSS.2013.645

134 bibliography

[72] Sang-Woon Kim and Joon-Min Gil. “Research paper classifica-
tion systems based on TF-IDF and LDA schemes.” In: Hum.
centric Comput. Inf. Sci. 9 (2019), p. 30. doi: 10.1186/s13673-
019-0192-7. url: https://doi.org/10.1186/s13673-019-
0192-7.

[73] Sofia Kleisarchaki. “Difference Analysis in Big Data: Explo-
ration, Explanation, Evolution.” PhD thesis. University of Greno-
ble Alps & University of Crete, 2016.

[74] Vojtěch Kolomičenko, Martin Svoboda, and Irena Holubová
Mlýnková. “Experimental Comparison of Graph Databases.”
In: IIWAS. Vienna, Austria, 2013, 115:115–115:124. isbn: 978-1-
4503-2113-6. doi: 10.1145/2539150.2539155. url: http://doi.
acm.org/10.1145/2539150.2539155.

[75] Laks VS Lakshmanan, Raymond T Ng, Christine Xing Wang,
Xiaodong Zhou, and Theodore J Johnson. “The generalized
MDL approach for summarization.” In: VLDB. 2002, pp. 766–
777.

[76] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer,
J.J. van Wijk, J.-D. Fekete, and D.W. Fellner. “Visual Analysis
of Large Graphs: State-of-the-Art and Future Research Chal-
lenges.” In: Computer Graphics Forum 30.6 (2011), pp. 1719–
1749. issn: 1467-8659. doi: 10.1111/j.1467-8659.2011.01898.
x. url: http://dx.doi.org/10.1111/j.1467- 8659.2011.
01898.x.

[77] D. Laney. “3D Data Management: Controlling Data Volume,
Velocity and Variety.” In: META Group Research Note, vol. 6
(2001).

[78] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dim-
itris Kontokostas, Pablo N Mendes, Sebastian Hellmann, Mo-
hamed Morsey, Patrick Van Kleef, Sören Auer, et al. “DBpedia–
a large-scale, multilingual knowledge base extracted from Wikipedia.”
In: Semantic web (2015), pp. 167–195.

[79] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.
June 2014.

[80] Liang Li, Zhongmin Zhang, and Shengli Wu. “LDA-Based Re-
source Selection for Results Diversification in Federated Search.”
In: Web Information Systems and Applications - 15th International
Conference, WISA 2018, Taiyuan, China, September 14-15, 2018,
Proceedings. Ed. by Xiaofeng Meng, Ruixuan Li, Kanliang Wang,
Baoning Niu, Xin Wang, and Gansen Zhao. Vol. 11242. Lecture
Notes in Computer Science. Springer, 2018, pp. 147–156. doi:
10.1007/978-3-030-02934-0_14. url: https://doi.org/10.
1007/978-3-030-02934-0_14.

https://doi.org/10.1186/s13673-019-0192-7
https://doi.org/10.1186/s13673-019-0192-7
https://doi.org/10.1186/s13673-019-0192-7
https://doi.org/10.1186/s13673-019-0192-7
https://doi.org/10.1145/2539150.2539155
http://doi.acm.org/10.1145/2539150.2539155
http://doi.acm.org/10.1145/2539150.2539155
https://doi.org/10.1111/j.1467-8659.2011.01898.x
https://doi.org/10.1111/j.1467-8659.2011.01898.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-030-02934-0_14
https://doi.org/10.1007/978-3-030-02934-0_14
https://doi.org/10.1007/978-3-030-02934-0_14

bibliography 135

[81] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. “Efficient Core
Maintenance in Large Dynamic Graphs.” In: IEEE Trans. Knowl.
Data Eng. 26.10 (2014), pp. 2453–2465. doi: 10.1109/TKDE.2013.
158. url: http://doi.ieeecomputersociety.org/10.1109/
TKDE.2013.158.

[82] Q Vera Liao and Wai-Tat Fu. “Can you hear me now? Miti-
gating the echo chamber effect by source position indicators.”
In: Proceedings of the 17th ACM conference on Computer supported
cooperative work & social computing. 2014, pp. 184–196.

[83] Q Vera Liao and Wai-Tat Fu. “Expert voices in echo chambers:
effects of source expertise indicators on exposure to diverse
opinions.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2014, pp. 2745–2754.

[84] Rensis Likert. “A technique for the measurement of attitudes.”
In: Archives of psychology (1932).

[85] Matteo Lissandrini. Freebase ExQ Data Dump. https://disi.
unitn.it/~lissandrini/notes/freebase-data-dump.html.
2017.

[86] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis.
An Evaluation Methodology and Experimental Comparison of Graph
Databases. Tech. rep. Available at https://graphbenchmark.

com. University of Trento, Apr. 2017. url: \url{https://disi.
unitn.it/~lissandrini/pdf/lissandrini-techreport-gdb.

pdf}.

[87] Matteo Lissandrini, Davide Mottin, Themis Palpanas, Dimitra
Papadimitriou, and Yannis Velegrakis. “Unleashing the Power
of Information Graphs.” In: SIGMOD Rec. 43.4 (Feb. 2015),
pp. 21–26. issn: 0163-5808. doi: 10.1145/2737817.2737822.
url: http://doi.acm.org/10.1145/2737817.2737822.

[88] Bin Liu and H. V. Jagadish. “Using Trees to Depict a Forest.”
In: Proc. VLDB Endow. 2.1 (2009), 133–144. issn: 2150-8097. doi:
10 . 14778 / 1687627 . 1687643. url: https : / / doi . org / 10 .

14778/1687627.1687643.

[89] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin,
Aapo Kyrola, and Joseph M. Hellerstein. “Distributed GraphLab:
A Framework for Machine Learning and Data Mining in the
Cloud.” In: PVLDB 5.8 (2012), pp. 716–727. issn: 2150-8097.
doi: 10.14778/2212351.2212354. url: http://dx.doi.org/10.
14778/2212351.2212354.

[90] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. “Large-scale
Distributed Graph Computing Systems: An Experimental Eval-
uation.” In: PVLDB 8.3 (2014), pp. 281–292. issn: 2150-8097.
doi: 10.14778/2735508.2735517. url: http://dx.doi.org/10.
14778/2735508.2735517.

https://doi.org/10.1109/TKDE.2013.158
https://doi.org/10.1109/TKDE.2013.158
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.158
http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.158
https://disi.unitn.it/~lissandrini/notes/freebase-data-dump.html
https://disi.unitn.it/~lissandrini/notes/freebase-data-dump.html
https://graphbenchmark.com
https://graphbenchmark.com
\url{https://disi.unitn.it/~lissandrini/pdf/lissandrini-techreport-gdb.pdf}
\url{https://disi.unitn.it/~lissandrini/pdf/lissandrini-techreport-gdb.pdf}
\url{https://disi.unitn.it/~lissandrini/pdf/lissandrini-techreport-gdb.pdf}
https://doi.org/10.1145/2737817.2737822
http://doi.acm.org/10.1145/2737817.2737822
https://doi.org/10.14778/1687627.1687643
https://doi.org/10.14778/1687627.1687643
https://doi.org/10.14778/1687627.1687643
https://doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2735508.2735517
http://dx.doi.org/10.14778/2735508.2735517
http://dx.doi.org/10.14778/2735508.2735517

136 bibliography

[91] Fadi Maali, John Erickson, and Phil Archer. “Data catalog vo-
cabulary (DCAT).” In: W3c recommendation 16 (2014).

[92] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James
C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
“Pregel: a system for large-scale graph processing.” In: Proc. of
the ACM Int. Conf. on Management of Data. SIGMOD’10. ACM,
2010, pp. 135–146.

[93] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James
C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
“Pregel: A System for Large-scale Graph Processing.” In: SIG-
MOD. 2010, pp. 135–146. doi: 10.1145/1807167.1807184. url:
http://doi.acm.org/10.1145/1807167.1807184.

[94] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. “Ev-
erything you always wanted to know about multicore graph
processing but were afraid to ask.” In: 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association.
2017, pp. 631–643.

[95] Martin Brugnara. TSearch - project page. https://martinbrugnara.
it/rp/tsearch.html.

[96] Norbert Martínez-Bazan, M. Ángel Águila Lorente, Victor Muntés-
Mulero, David Dominguez-Sal, Sergio Gómez-Villamor, and
Josep-L. Larriba-Pey. “Efficient Graph Management Based on
Bitmap Indices.” In: Proceedings of the 16th International Database
Engineering & Applications Sysmposium. IDEAS ’12. Prague,
Czech Republic: ACM, 2012, pp. 110–119. isbn: 978-1-4503-
1234-9. doi: 10.1145/2351476.2351489. url: http://doi.
acm.org/10.1145/2351476.2351489.

[97] Frank McSherry, Michael Isard, and Derek G. Murray. “Scal-
ability! But at what COST?” In: 15th Workshop on Hot Topics
in Operating Systems (HotOS XV). Kartause Ittingen, Switzer-
land: USENIX Association, 2015. url: https://www.usenix.
org/conference/hotos15/workshop-program/presentation/

mcsherry.

[98] MediaWiki. Extension:TextExtracts — MediaWiki, 2021. url: \url{https:
/ / www . mediawiki . org / w / index . php ? title = Extension :

TextExtracts&oldid=4940004}.

[99] Debra Burns Melican and Travis L Dixon. “News on the net:
Credibility, selective exposure, and racial prejudice.” In: Com-
munication Research 35.2 (2008), pp. 151–168.

[100] Meta. PetScan/en — Meta, discussion about Wikimedia projects.
2021. url: \url{https://meta.wikimedia.org/w/index.php?
title=PetScan/en&oldid=21883648}.

https://doi.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
https://martinbrugnara.it/rp/tsearch.html
https://martinbrugnara.it/rp/tsearch.html
https://doi.org/10.1145/2351476.2351489
http://doi.acm.org/10.1145/2351476.2351489
http://doi.acm.org/10.1145/2351476.2351489
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
\url{https://www.mediawiki.org/w/index.php?title=Extension:TextExtracts&oldid=4940004}
\url{https://www.mediawiki.org/w/index.php?title=Extension:TextExtracts&oldid=4940004}
\url{https://www.mediawiki.org/w/index.php?title=Extension:TextExtracts&oldid=4940004}
\url{https://meta.wikimedia.org/w/index.php?title=PetScan/en&oldid=21883648}
\url{https://meta.wikimedia.org/w/index.php?title=PetScan/en&oldid=21883648}

bibliography 137

[101] D. Miorandi and F. De Pellegrini. “K-shell decomposition for
dynamic complex networks.” In: Proc. of the 8th Int. Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless Net-
works). WiOpt’10. May 2010, pp. 488–496.

[102] Alberto Montresor, Francesco De Pellegrini, and Daniele Mio-
randi. “Distributed k-Core Decomposition.” In: IEEE Trans. Par-
allel Distrib. Syst. 24.2 (2013), pp. 288–300. issn: 1045-9219. doi:
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.

124.

[103] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille
Ngonga Ngomo. “DBpedia SPARQL Benchmark – Performance
Assessment with Real Queries on Real Data.” In: The Semantic
Web – ISWC 2011. 2011, pp. 454–469.

[104] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis
Palpanas. “Exemplar Queries: A New Way of Searching.” In:
The VLDB Journal 25.6 (Dec. 2016), pp. 741–765. issn: 1066-8888.
doi: 10.1007/s00778-016-0429-2. url: https://doi.org/10.
1007/s00778-016-0429-2.

[105] Sean Munson, Stephanie Lee, and Paul Resnick. “Encouraging
reading of diverse political viewpoints with a browser wid-
get.” In: Proceedings of The International AAAI Conference on Web
and Social Media. Vol. 7. 1. 2013, pp. 419–428.

[106] Neo4j. http://neo4j.com.

[107] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan
Patterson, and Jamie Taylor. “Industry-scale knowledge graphs:
lessons and challenges.” In: Queue (2019), pp. 48–75.

[108] Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, and Ria Mae
Borromeo. “User group analytics: hypothesis generation and
exploratory analysis of user data.” In: VLDB J. 28.2 (2019),
pp. 243–266.

[109] On describing the contents of a dataset - project page. https://
martinbrugnara.it/rp/describing_datasets.html.

[110] OrientDB. http://orientdb.com/orientdb/.

[111] Matteo Paganelli, Paolo Sottovia, Antonio Maccioni, Matteo
Interlandi, and Francesco Guerra. “Understanding Data in the
Blink of an Eye.” In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, CIKM 2019,
Beijing, China, November 3-7, 2019. Ed. by Wenwu Zhu, Dacheng
Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David
Carmel, Qi He, and Jeffrey Xu Yu. ACM, 2019, pp. 2885–2888.
doi: 10.1145/3357384.3357849. url: https://doi.org/10.
1145/3357384.3357849.

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.124
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.124
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.1007/s00778-016-0429-2
http://neo4j.com
https://martinbrugnara.it/rp/describing_datasets.html
https://martinbrugnara.it/rp/describing_datasets.html
http://orientdb.com/orientdb/
https://doi.org/10.1145/3357384.3357849
https://doi.org/10.1145/3357384.3357849
https://doi.org/10.1145/3357384.3357849

138 bibliography

[112] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The PageRank Citation Ranking: Bringing Order to the Web.
TR 1999-66. Stanford InfoLab. url: http://ilpubs.stanford.
edu:8090/422/.

[113] Roberto Patuelli, Aura Reggiani, Peter Nijkamp, and Franz-
Josef Bade. “The evolution of the commuting network in Ger-
many: Spatial and connectivity patterns.” In: Journal of Trans-
port and Land Use 2.3 (2010). issn: 1938-7849. url: https://
www.jtlu.org/index.php/jtlu/article/view/23.

[114] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language
for RDF. W3C Recommendation 15 January 2008. 2008.

[115] Abdulhakim Ali Qahtan, Nan Tang, Mourad Ouzzani, Yang
Cao, and Michael Stonebraker. “Pattern Functional Dependen-
cies for Data Cleaning.” In: PVLDB 13.5 (2020), pp. 684–697.

[116] Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri Kumar
Tayi. “Facility dispersion problems: Heuristics and special cases.”
In: Workshop on Algorithms and Data Structures. Springer. 1991,
pp. 355–366.

[117] Marko A. Rodriguez. “The Gremlin Graph Traversal Machine
and Language (Invited Talk).” In: DBPL. Pittsburgh, PA, USA,
2015, pp. 1–10. isbn: 978-1-4503-3902-5. doi: 10.1145/2815072.
2815073. url: http://doi.acm.org/10.1145/2815072.2815073.

[118] LT Rodrygo, Craig Macdonald, and Iadh Ounis. “Search re-
sult diversification.” In: Foundations and Trends in Information
Retrieval 9.1 (2015), pp. 1–90.

[119] Rami Rosen. “Resource management: Linux kernel namespaces
and cgroups.” In: (2013).

[120] Antony Rowstron, Dushyanth Narayanan, Austin Donnelly,
Greg O’Shea, and Andrew Douglas. “Nobody Ever Got Fired
for Using Hadoop on a Cluster.” In: HotCDP. Bern, Switzer-
land, 2012, 2:1–2:5. isbn: 978-1-4503-1162-5. doi: 10.1145/2169090.
2169092. url: http://doi.acm.org/10.1145/2169090.2169092.

[121] SYSTAP LLC., Blazegraph. https://www.blazegraph.com/.

[122] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy
Lin, and M. Tamer Özsu. “The Ubiquity of Large Graphs and
Surprising Challenges of Graph Processing.” In: PVLDB 11.4
(2017), pp. 420–431.

[123] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao
Zheng, and Ben Y. Zhao. “Measurement-calibrated Graph Mod-
els for Social Network Experiments.” In: Proc. of the 19th Int.
Conf. on World Wide Web. WWW’10. Raleigh, North Carolina,
USA: ACM, 2010, pp. 861–870. isbn: 978-1-60558-799-8. doi:
10.1145/1772690.1772778. url: http://doi.acm.org/10.
1145/1772690.1772778.

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://www.jtlu.org/index.php/jtlu/article/view/23
https://www.jtlu.org/index.php/jtlu/article/view/23
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
http://doi.acm.org/10.1145/2815072.2815073
https://doi.org/10.1145/2169090.2169092
https://doi.org/10.1145/2169090.2169092
http://doi.acm.org/10.1145/2169090.2169092
https://www.blazegraph.com/
https://doi.org/10.1145/1772690.1772778
http://doi.acm.org/10.1145/1772690.1772778
http://doi.acm.org/10.1145/1772690.1772778

bibliography 139

[124] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. “Discovery-
driven exploration of OLAP data cubes.” In: EDBT 1998, pp. 168–
182.

[125] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva,
Kun-Lung Wu, and Ümit V. Çatalyürek. “Streaming Algorithms
for K-core Decomposition.” In: PVLDB 6.6 (Apr. 2013), pp. 433–
444. doi: 10.14778/2536336.2536344. url: http://dx.doi.
org/10.14778/2536336.2536344.

[126] Sheikh Muhammad Sarwar, Raghavendra Addanki, Ali Mon-
tazeralghaem, Soumyabrata Pal, and James Allan. “Search Re-
sult Diversification with Guarantee of Topic Proportionality.”
In: ICTIR ’20: The 2020 ACM SIGIR International Conference on
the Theory of Information Retrieval, Virtual Event, Norway, Septem-
ber 14-17, 2020. Ed. by Krisztian Balog, Vinay Setty, Christina
Lioma, Yiqun Liu, Min Zhang, and Klaus Berberich. ACM,
2020, pp. 53–60. doi: 10.1145/3409256.3409839. url: https:
//doi.org/10.1145/3409256.3409839.

[127] Stephen B. Seidman. “Network structure and minimum de-
gree.” In: Social Networks 5.3 (1983), pp. 269 –287. issn: 0378-
8733. doi: http://dx.doi.org/10.1016/0378-8733(83)90028-
X. url: http://www.sciencedirect.com/science/article/
pii/037887338390028X.

[128] Anne Shelley. “Book review of Eli Pariser’s The filter bubble:
What the Internet is hiding from you.” In: First Monday 17.6 (2012).

[129] Sparsity Technologies, Sparksee. http://www.sparsity-technologies.
com/.

[130] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum.
“Yago: a core of semantic knowledge.” In: Proceedings of the
16th international conference on World Wide Web. ACM. 2007,
pp. 697–706.

[131] Mir Saman Tajbakhsh and Jamshid Bagherzadeh. “Microblog-
ging hash tag recommendation system based on semantic TF-
IDF: Twitter use case.” In: 2016 IEEE 4th International Confer-
ence on Future Internet of Things and Cloud Workshops (FiCloudW).
IEEE. 2016, pp. 252–257.

[132] P. M. L. Tammes. “On the origin of number and arrangement
of the places of exit on the surface of pollen-grains.” PhD the-
sis. Groningen: J.H. De Bussy, 1930.

[133] Ole Tange. Gnu parallel 2018. 2018. isbn: 9781387509881. doi:
https://doi.org/10.5281/zenodo.1146014.

[134] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek.
“YAGO 4: A Reason-able Knowledge Base.” In: ESWC 2020.
2020, pp. 583–596.

https://doi.org/10.14778/2536336.2536344
http://dx.doi.org/10.14778/2536336.2536344
http://dx.doi.org/10.14778/2536336.2536344
https://doi.org/10.1145/3409256.3409839
https://doi.org/10.1145/3409256.3409839
https://doi.org/10.1145/3409256.3409839
https://doi.org/http://dx.doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/http://dx.doi.org/10.1016/0378-8733(83)90028-X
http://www.sciencedirect.com/science/article/pii/037887338390028X
http://www.sciencedirect.com/science/article/pii/037887338390028X
http://www.sparsity-technologies.com/
http://www.sparsity-technologies.com/
https://doi.org/https://doi.org/10.5281/zenodo.1146014

140 bibliography

[135] Robert Tarjan. “Depth first search and linear graph algorithms.”
In: Siam Journal On Computing 1.2 (1972).

[136] Thinkaurelius, Titan. http://titan.thinkaurelius.com/.

[137] JJ Thomson. “London, Edinburgh Dublin Philos. Mag.” In: J.
Sci 7.39 (1904), pp. 237–265.

[138] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck.
“Contention-aware lock scheduling for transactional databases.”
In: PVLDB 11.5 (2018), pp. 648–662.

[139] Mircea Răducu Trifu, Mihaela Laura Ivan, et al. “Big Data:
present and future.” In: Database Systems Journal 5.1 (2014),
pp. 32–41.

[140] Koji Ueno and Toyotaro Suzumura. “Highly Scalable Graph
Search for the Graph500 Benchmark.” In: Proceedings of the 21st
International Symposium on High-Performance Parallel and Dis-
tributed Computing. HPDC ’12. Delft, The Netherlands: ACM,
2012, pp. 149–160. isbn: 978-1-4503-0805-2. doi: 10.1145/2287076.
2287104. url: http://doi.acm.org/10.1145/2287076.2287104.

[141] Aaron R Voelker, Jan Gosmann, and Terrence C Stewart. “Ef-
ficiently sampling vectors and coordinates from the n-sphere
and n-ball.” In: Centre for Theoretical Neuroscience-Technical Re-
port (2017).

[142] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free col-
laborative knowledgebase.” In: Communications of the ACM 57.10

(2014), pp. 78–85.

[143] VG Vinod Vydiswaran, ChengXiang Zhai, Dan Roth, and Peter
Pirolli. “Overcoming bias to learn about controversial topics.”
In: Journal of the Association for Information Science and Technol-
ogy 66.8 (2015), pp. 1655–1672.

[144] Arisa Watanabe and Basabi Chakraborty. “Time-series Analy-
sis of Newspaper Articles for Automatic Event Detection using
LDA.” In: 4th IEEE International Conference on Knowledge Inno-
vation and Invention, ICKII 2021, Taichung, Taiwan, July 23-25,
2021. Ed. by Teen-Hang Meen. IEEE, 2021, pp. 166–169. doi:
10.1109/ICKII51822.2021.9574704. url: https://doi.org/
10.1109/ICKII51822.2021.9574704.

[145] Yuhao Wen, Xiaodan Zhu, Sudeepa Roy, and Jun Yang. “In-
teractive Summarization and Exploration of Top Aggregate
Query Answers.” In: CoRR (2018).

[146] Di Wu, Rui Xin Yang, and Chao Shen. “Sentiment word co-
occurrence and knowledge pair feature extraction based LDA
short text clustering algorithm.” In: J. Intell. Inf. Syst. 56.1 (2021),
pp. 1–23. doi: 10.1007/s10844- 020- 00597- 7. url: https:
//doi.org/10.1007/s10844-020-00597-7.

http://titan.thinkaurelius.com/
https://doi.org/10.1145/2287076.2287104
https://doi.org/10.1145/2287076.2287104
http://doi.acm.org/10.1145/2287076.2287104
https://doi.org/10.1109/ICKII51822.2021.9574704
https://doi.org/10.1109/ICKII51822.2021.9574704
https://doi.org/10.1109/ICKII51822.2021.9574704
https://doi.org/10.1007/s10844-020-00597-7
https://doi.org/10.1007/s10844-020-00597-7
https://doi.org/10.1007/s10844-020-00597-7

bibliography 141

[147] Eugene Wu and Samuel Madden. “Scorpion: Explaining Away
Outliers in Aggregate Queries.” In: PVLDB 6.8 (2013), pp. 553–
564.

[148] Derek Wyatt. Akka Concurrency. USA: Artima Inc., 2013. isbn:
0981531660, 9780981531663.

[149] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux,
and Sherif Sakr. “RDF Data Storage and Query Processing
Schemes: A Survey.” In: ACM Comput. Surv. (2018), 84:1–84:36.

[150] Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, and
James Cheng. “Big Graph Analytics Systems.” In: SIGMOD.
San Francisco, California, USA, 2016, pp. 2241–2243. isbn: 978-
1-4503-3531-7. doi: 10.1145/2882903.2912566. url: http://
doi.acm.org/10.1145/2882903.2912566.

[151] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. “Blogel: A Block-
Centric Framework for Distributed Computation on Real-World
Graphs.” In: PVLDB 7.14 (2014), pp. 1981–1992.

[152] Nakyeong Yang, Jeongje Jo, Myeong Jun Jeon, Wooju Kim, and
Juyoung Kang. “Semantic and explainable research-related rec-
ommendation system based on semi-supervised methodology
using BERT and LDA models.” In: Expert Syst. Appl. 190 (2022),
p. 116209. doi: 10.1016/j.eswa.2021.116209. url: https:
//doi.org/10.1016/j.eswa.2021.116209.

[153] Qizhen Zhang, Hongzhi Chen, Da Yan, James Cheng, Boon
Thau Loo, and Purushotham Bangalore. “Architectural Impli-
cations on the Performance and Cost of Graph Analytics Sys-
tems.” In: Proceedings of the 2017 Symposium on Cloud Comput-
ing. SoCC ’17. Santa Clara, California: ACM, 2017, pp. 40–51.
isbn: 978-1-4503-5028-0. doi: 10.1145/3127479.3128606. url:
http://doi.acm.org/10.1145/3127479.3128606.

https://doi.org/10.1145/2882903.2912566
http://doi.acm.org/10.1145/2882903.2912566
http://doi.acm.org/10.1145/2882903.2912566
https://doi.org/10.1016/j.eswa.2021.116209
https://doi.org/10.1016/j.eswa.2021.116209
https://doi.org/10.1016/j.eswa.2021.116209
https://doi.org/10.1145/3127479.3128606
http://doi.acm.org/10.1145/3127479.3128606

	Dedication
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Micro-benchmarking Graph Databases
	2.1 Related Work
	2.1.1 Evaluating Graph Processing Systems
	2.1.2 Evaluating Graph Databases
	2.1.3 Distribution & Cluster Evaluation
	2.1.4 Graph Benchmarks

	2.2 Graph Databases
	2.2.1 The Graph Data Model
	2.2.2 Implementing a Graph Database
	2.2.3 The Heterogeneity Problem in Graphs

	2.3 Test Operations: Queries
	2.3.1 [L] Load Operations
	2.3.2 [C] Create Operations
	2.3.3 [R] Read Operations
	2.3.4 [U] Update Operations
	2.3.5 [D] Delete Operations
	2.3.6 [T] Traversals
	2.3.7 [P] Pattern Matching
	2.3.8 Complex Query Set

	2.4 Evaluation Suite
	2.4.1 Requirements
	2.4.2 Technological Solutions
	2.4.3 Evaluation Framework

	2.5 Systems
	2.5.1 Native
	2.5.2 Hybrid
	2.5.3 RDF
	2.5.4 Query Processing and Evaluation

	2.6 Datasets
	2.6.1 Set A
	2.6.2 Set B
	2.6.3 Datasets Characteristics

	2.7 Experimental Setup
	2.7.1 Hardware
	2.7.2 GDB configuration

	2.8 Results
	2.8.1 Data Loading
	2.8.2 Complex Queries
	2.8.3 Micro-benchmark Results
	2.8.4 Fixed Traversal and Pattern Matching
	2.8.5 Progress across Versions
	2.8.6 Overall Evaluation and Insights

	2.9 Conclusion

	3 Computing & Maintaining k–core
	3.1 Related work
	3.1.1 Centralized algorithms
	3.1.2 Distributed algorithms
	3.1.3 k-core & dynamic graphs

	3.2 Problem formulation
	3.3 k-core computation
	3.4 Experiments
	3.4.1 Experimental data
	3.4.2 Experimental environment
	3.4.3 Experimental protocol
	3.4.4 Experimental results

	3.5 Conclusions

	4 Topic Recommendation: Expand your Horizon
	4.1 Background
	4.1.1 Latent Dirichlet Allocation
	4.1.2 Diversification
	4.1.3 Unit-Hyper-Sphere

	4.2 Related
	4.3 Problem Statement
	4.4 Solution
	4.4.1 Approach 1: Orthogonal-topics
	4.4.2 Approach 2: Sentimented-topics
	4.4.3 Min Balancing Work
	4.4.4 FDLS

	4.5 Evaluation
	4.5.1 Quality
	4.5.2 Scalability & Performance

	4.6 Conclusions and Future Work

	5 On Describing the Contents of a Dataset
	5.1 Motivating Example
	5.2 Problem Statement
	5.3 Identifying the best Description
	5.3.1 Naïve approach
	5.3.2 Vertical approach
	5.3.3 Adaptive

	5.4 Evaluation
	5.4.1 Results

	5.5 Related Work
	5.6 Conclusions

	6 Conclusions
	Bibliography

