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Abstract—We consider the problem of discriminating a legiti-
mate transmitter from an impersonating attacker in an underwa-
ter acoustic network under a physical layer security framework.
In particular, we utilize features of the underwater acoustic
channel such as the number of taps, the delay spread, and the
received power. In the absence of a reliable statistical model of
the underwater channel, we turn to a machine learning technique
to extract the feature statistics and utilize them to distinguish
between legitimate and fake transmissions. Numerical results
show how, using only four channel features as input of either
a neural network or an autoencoder, we achieve a good trade off
between false alarm and detection rates. Moreover, cooperative
techniques fusing soft decision statistics from multiple trusted
nodes further outperform the discrimination capability of each
separate node. Data from a sea trial carried out in Israeli
eastern Mediterranean waters demonstrate the applicability of
our approach.

Index Terms—Authentication; underwater acoustic channel;
physical layer security.

I. INTRODUCTION AND RELATED WORK

Underwater acoustic networks (UWANs) are becoming a
feasible option for many oceanic activities that require teleme-
try, communications, coordination among static and mobile
devices, or the periodic monitoring of a given area. With the
broadening of the applications that UWANs can support and
with the appearance of the first underwater communication
standard JANUS [1], however, greater (cyber)security concerns
are starting to appear. Key types of attacks that affect UWAN
vary from simple signal jamming to impersonation attacks,
from attacks to routing protocols to attempts of breaking pre-
agreed cryptographic keys used for data exchanges among the
nodes [2], [3].

While some signaling and networking protocols may offer a
first barrier against attacks on UWANs [4]–[7], a recent trend
explores the fundamental characteristics of the underwater
acoustic channel (UWAC) to secure underwater communica-
tions [8]. Among the first examples of underwater physical
layer security, Kulhandjian et al. exploit jamming to disturb
unwanted receptions at an eavesdropper, while still allowing
communications between a pair of legitimate transceivers [9].

UWACs are known to decorrelate easily in space, and to
have a limited time coherence [10], [11]. The statistics of the
channel features (e.g., the number of relevant channel taps,
the delay spread, and the power of each tap) vary slowly
over time [8] and can thus be used to validate a legitimate
transmission.

Now, consider an attacker attempting to impersonate a legiti-
mate transmitter in an UWAN, whose trusted nodes collaborate
to detect the attack. Trusted nodes can cooperate to distinguish
the channel footprint of the legitimate and impersonating
nodes, by comparing the statistics of their channel features.
The protocol we proposed in an earlier work [8] authenticates
packets based on the agreement between the channel statistics
across different transmissions. However, given the complexity
of the channel statistic, the models obtained by estimation may
be mismatched thus affecting the outcome of the process.

In this paper, we resort to machine learning for the robust
identification of an impersonating attacker in an UWAN. Our
methods include two steps. First, for each trusted node we
train a neural network (NN), which outputs a real number
representing a soft decision on the authenticity of the received
packets. Second, we fuse the NN outputs from all trusted nodes
to finally decide on the authenticity of the transmission. On
both steps we consider two cases where the dataset of observed
features composed of labeled samples under either i) both
nominal and attack conditions or ii) only nominal conditions.
The latter scenario occurs when the position of the attacker
is unknown. In this case, we resort to autoencoder (AE)
NNs. Considering that good results are achieved with small
networks, we conclude that these are feasible authentication
solutions on devices with limited computational power.

We test our scheme both on simulated channels and on
data from a sea experiment carried out in the eastern Mediter-
ranean sea near Hadera, Israel. Our results confirm that our
proposed scheme successfully distinguishes between authentic
and impersonating transmissions, without the complexity and
locality of other schemes available in the literature such as [8].
In particular, in our simulations we successfully discriminate
between the legitimate transmitter and the attacker even when
they are located close to each other, albeit at different depths.
Results for the sea experiment support the same conclusion in
a realistic environment. Here, we show that a few hundreds
meters between the legitimate transmitter and the attacker are
sufficient to tell the two nodes apart, even when relying on a
single trusted receiver.

The remainder of this paper is organized as follows. In
Section II, we describe our system model. We proceed with
our authentication protocol in Section III and provide both
simulation and experimental results in Sections IV and V, re-
spectively. Finally, we draw concluding remarks in Section VI.



II. SYSTEM MODEL

We consider an UWAN composed of a legitimate transmit-
ter, namely Alice, a set of N trusted receivers B = {Bn, n =
1, . . . , N}, and an attacker, namely Eve. In the following, we
will refer to any trusted receiver as Bob. We assume that
all nodes are loosely synchronized, and that each packet has
a unique sequential identification number (ID). This allows
different receivers to perform a distributed cooperative check
by observing the same broadcast packet. The exact location
of the different receiver nodes is unknown to both the trusted
receivers and Eve.

We assume that all trusted receivers are connected to a sink
node via a limited-rate, authenticated, and integrity-protected
channel, over which they can share their observations. Then,
the sink makes the final decision on the authenticity of the
received packets. We make a first decision at each node to
avoid transmitting each single observation to the sink. This
reduces the communication overhead. We model each point-
to-point UWAC as a tapped delay line, having power-delay
profile H ′n(t, τ) at time t.

The attacker Eve is a single malicious node. However, our
scheme can be straightforwardly extended multiple attackers.
We also make no assumption on the contents of the packets,
i.e., we assume that the packets sent by Alice and Eve are
indistinguishable at the data level.

A. Features for Authentication on UWACs

To assess the authenticity of the received packet, we rely
on four channel statistics. Let xi,n(t) be the value of the ith
feature with i = 1, . . . , 4 measured at time t by node Bn.
To extract the features, we zero out low-power arrivals in the
power-delay profile, i.e.,

Hn(t, τ) =

{
0 |H ′n(t, τ)| < Th,

H ′n(t, τ) |H ′n(t, τ)| ≥ Th,
(1)

where we choose Th to obtain a desired false alarm probability,
as detailed in [12]. Call Sn(t) the set of delays of all
channel arrivals that remain after thresholding. We consider
the following four features:
1–Number of channel taps. The estimated number of relevant
taps revealing the spread of the acoustic channel:

x1,n(t) = |Sn(t)| . (2)

2–Average tap power. The average power of the relevant taps,
which reflects how diverse and sparse the channel is:

x2,n(t) =
1

|Sn(t)|
∑

τ∈Sn(t)

|Hn(t, τ)| . (3)

3–Relative root mean square (RMS) delay. This feature
reflects the delay spread of the channel. Let τ0 = min{τ :
τ ∈ Sn(t)} be the delay of the first tap, then the relative RMS
delay is

x3,n(t) =

(
1

|Sn(t)| − 1

∑
τ∈Sn(t),τ 6=τ0

(τ − τ0)2
)1/2

. (4)

4–Smoothed received power. This feature accounts for the
overall attenuation in the channel. To track the variation of
power over time, let qn,t be the power of a symbol received
by node n at time instance t. Given a user-defined parameter
0 ≤ α ≤ 1, we recursively compute the smoothed received
power as

x4,n(t) = α qn,t + (1− α)x4,n(t′) , (5)

where x4,n(t′) is the smoothed received power of the previous
symbol received at time t′.

We choose these features, because their statistics are stable
over time and depend strongly on the transmitter’s location [8].
We use the estimated statistics for authentication purposes:
therefore, by comparing the channel’s features, Bob can dis-
tinguish between packets arriving from sources located at
different locations.

III. AUTHENTICATION PROTOCOL

In the absence of a reliable statistical model of the UWAC,
we turn to a NN to distinguish between a legitimate transmis-
sion and a fake one. We consider two alternative scenarios,
depending on the data available to train the NN. In the first
scenario, Bob has observations available from both Alice and
Eve; instead, in the second scenario, Bob has observations
only from Alice, as would be the case if the statistics of Eve’s
channel features are unknown. Therefore, in the first scenario
the NN operates as a two-class classifier, whereas it operates
as a one-class classifier (or AE) in the second scenario.

Considering the received packet φ, we formulate the au-
thentication problem as a binary hypothesis test, where the
two hypotheses are:
• H0 (legitimate): φ was transmitted by Alice and,
• H1 (non legitimate): φ was not transmitted by Alice.

Calling H ∈ {H0,H1} the true class of the received packet,
the decision Bob makes based on H is Ĥ ∈ {Ĥ0, Ĥ1}. We
account for two cases of misclassification, i.e., false alarms
(FAs), where the transmitter considers a signal transmitted
by Alice as fake, and missed detections (MDs), where Bob
considers a signal from Eve as legitimate. The FA probability
is defined as pFA = P(Ĥ = H1|H = H0) and the MD
probability is defined as pMD = P(Ĥ = H0|H = H1).

A. Local NN-Based Authentication

The aim of a NN is to provide a test function f(x). In
our case, f(x) = −1 and f(x) = 1 ideally when H = H0

and H = H1, respectively. We model the NN as a function
R4 −→ R composed of Q stages, typically called layers: we
call layer 0 the input layer, the last stage the output layer
and the remaining layers hidden layers. The first layer input is
mapped to a vector y(0), whereas the output of the output layer
is y(Q). We represent the output of the kth neuron of the qth
layer as y(q+1)

k = ψ(q)
(
w

(q)
k y(q) + b

(q)
k

)
, where ψ(q)(·) is the

neuron activation function, y(q) is the output of the previous
layer q, b(q)k is a bias value and w

(q)
n is a vector of weights. We

consider only feedforward NNs [13] with no loops between
the layers. While the activation functions are decided a priori,



weights w
(q)
k are optimized during the algorithm’s learning

phase. Finally, considering the (single-node) output of the last
layer y(Q)

1 , we choose function f as

f(x) =

{
1 if y(Q)

1 ≥ λ
−1 if y(Q)

1 < λ
(6)

where λ is chosen a priori depending on a target pFA value.
Notice that by increasing λ we reduce pFA and increase pMD;
vice-versa, decreasing λ reduces pMD while increasing pFA.

B. Local Autoencoder-based Authentication

An AE is an unsupervised NN trained to replicate its input
at the output [13], [14]. An AE is composed of an encoder,
a hidden layer with M < N nodes, and a decoder. The task
of the encoder, composed of Qe layers, is to project the input
vector x into a lower dimensional space of size M . The task
of the decoder is to retrieve the original input vector from
the encoded word. Notice that the reconstruction process is
not perfect, and depends on the size of the training dataset
and of the hidden layer. While a larger hidden layer eases the
reconstruction of the input, a smaller hidden layer enables a
more accurate characterization of the training set.

Because we use the AE for one-class classification, our aim
is not only to properly reconstruct input features from a legiti-
mate transmission, but also to yield a significant reconstruction
error when the input is a set of features from a transmission
by Eve. If this occurs, we obtain an authentication test by
comparing how good is the match between the input and the
output of the AE. To this end, by using the smallest size
of the hidden layer that properly reconstructs the legitimate
input of the training set, we ensure that an input with different
characteristics, i.e., coming from an impersonation attack, is
not properly reconstructed. Still, note that the training phase
is performed using only channel features from legitimate
transmissions.

Formally, let y(Q)(x) = [y
(Q)
1 (x), . . . , y

(Q)
4 (x)] be the

output of the trained AE: we associate the following mean-
square error (MSE) function to the input feature vector x

Γ(x) =
1

4

4∑
i=1

|xi − y(Q)
i (x)|2, (7)

which provides the test function

f(x) =

{
1 if Γ(x) < λ,

−1 if Γ(x) ≥ λ,
(8)

where λ depends on the target false alarm probability, pFA.

C. Neyman-Pearson Test

For comparison purposes, we consider also the Neyman-
Pearson (N-P) test. Let p(x|Hi) be the probability density
function (PDF) of observation x given that φ ∈ Hi. We
compute the log likelihood ratio (LLR) as

M(x) = ln
p(x|H0)

p(x|H1)
, (9)
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Fig. 1. Scheme of the two-step cooperative authentication protocol.

and compare it to a threshold λ to obtain the N-P test

f(x) =

{
1 if M(x) > λ,

−1 if M(x) ≤ λ.
(10)

However, as stated in Section II, we do not have a general
statistical model for the UWAC, hence we cannot analytically
derive p(x|Hi) as needed for the N-P test. However, to
compare the performance of our solutions, we will infer
p(x|Hi) by estimating it directly from our data set.

D. Cooperative Authentication

We consider the two-step authentication protocol of Fig. 1,
where each node Bn runs a single-node authentication protocol
and transmits to the sink node either zn = y

(Q)
1 , if Bn uses a

NN, or zn = Γ(x), uses an AE. To perform the cooperative
authentication check, the sink node fuses the information
coming from the nodes. We distinguish two cases, depending
on the local authentication. In particular,

1) for a NN-based local authentication, the sink can train
a second NN for the global decision, because we also
have access to the features of transmissions by Eve;

2) for an AE-based local authentication if only data coming
from Alice are available for training, the sink node trains
another AE.

Moreover, we also propose an additional, simpler approach
that can be used in both the two above cases: the sink node can
linearly combine the information from the nodes as follows

g(z) =
1

N

∑
n

zn . (11)



This also helps counter the fact that solution 2) tends to
perform poorly, as will be clearer from simulation results.

Denote in general the output of the cooperative check as
g(z). As for local authentication, we compare g(z) with a
threshold λ′ such that

f ′(z) =

{
1 if g(z) < λ′,

−1 if g(z) ≥ λ′.
(12)

The result of this test is then broadcast by the sink to all the
nodes.

IV. SIMULATION RESULTS

We consider the channel model of [15]: in particular we
model our UWAN with
• 3 legitimate receivers, namely B1, B2, and B3, placed at

different depths;
• Alice, located at a depth of 20 m;
• Eve, located close to Alice at depth of 480 m.

Notice that we challenge our solution by placing Eve and Alice
close to each other; if Alice and Eve are located farther away,
it may be easier for a node to check the authenticity of the
packets, e.g., by thresholding the received power. Fig. 2 shows
an example of the simulated scenario: for simplicity we did
not include the sink node in the figure, assuming that any
node may act as the sink node. To generate the data set, we
simulate the communication in the UWAC using the Bellhop
simulator and the Acoustic Toolbox [15], [16]. In particular,
for each node, we pick 500 different position uniformly at
random within a sphere of radius 10 m centered on each node’s
nominal location. For each pair of nodes, this yields 500×500
transmitter-receiver pairs. We ran Bellhop for each pair and
obtained a realization of the UWAC. We considered a rough
sea surface and modeled the sea bottom with hills of sinusoidal
shape, with diameter of 200 m and maximum height of 10 m.
To model the sound speed profiles (SSP) we considered the
measurements available at [17].

A. Results For the Local Authentication

We start considering the local authentication at each node,
where receiver B1 acts as Bob. As stated in Section III, we
compare the proposed approach with the N-P test: however,
we cannot analytically compute the PDFs p(x|Hi). Instead, we
estimate them from the channel realizations via kernel density
estimation (KDE) [18]. Implicitly, as in [8], we also assume
that the features are independent.

The NN has
• 4 nodes on the input layer with the ReLu as activation

function,
• 2 hidden layers composed of 3 nodes each with the ReLu

activation function,
• one node on the output layer with the sigmoid activation

function.
The AE is composed of
• 4 nodes for the input layer, i.e., the encoder, with the

ReLu,
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Fig. 2. Example of the simulated scenario.

• a single hidden layer with M = 3 nodes, with the ReLu
activation function,

• 4 nodes for the output layer, i.e., the decoder with a linear
activation function.

For both NN and AE we used 60% of the data set for training,
15% for validation, and 25% for testing.

In our context, conventional machine learning metrics such
accuracy are not particularly relevant, since we can directly
evaluate the impact of machine learning approaches (including
the effect of the training set) on metrics defined for our
specific authentication application. Specifically, we focus on
the detection error tradeoff (DET) curves, i.e., the value of FA
and MD probabilities, for different values of the threshold λ.
Fig. 3 shows the obtained DET curve: we observe that, even if
Alice and Eve are close to each other, both NN and AE achieve
good results. We also observe that the NN outperforms both
the AE and the N-P test. In fact, different from the AE, the
NN is trained using also data from Eve UWAC realizations.
Moreover, we use estimated PDFs in the N-P test and their
mismatch with respect to the features’ true statistics negatively
affects the test performance.

B. Cooperative UWAC Authentication

In this section, we report results using the cooperative
authentication strategies described in Section III-D. Fig. 4
shows the DET at the sink node considering that all the nodes
have access to both Alice and Eve realizations for training, and
use a NN for the single node authentication check. Fusion at
the sink is performed with either

1) a global NN with a design analogous to the local NN,
but having 3 nodes on input layer and a single 2-node
hidden layer, or

2) the linear combination of the local NNs outputs (Eq.
(11)).

We observe that both cooperative checks outperform the
local authentication. In particular, the NN makes the data
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Fig. 3. DET curves for the simulated scenario, using NN, AE, and N-P test.

set separable, i.e., there exists a value of λ′ that provides
pfa = pmd = 0, thus no line is reported in the log-scale DET
figure. Note also that the results of the faster and simpler to
train support vector machines (SVM) do not lag much behind
the NN, with pfa = pmd ≈ 10−4, where the used data set
included 250 000 realizations.

Fig. 5 shows the DET obtained using observations from
Alice only, i.e., an AE is used each node and the sink node
fuses the MSE obtained from the nodes by either

1) a second AE with the same design as the first one but
one less node on both input and hidden layer, or

2) the linear combination (11).
While the first solution does not improve the results, the
second is shown to be effective. Specifically, it provides lowers
probabilities of misdetection and false alarm than those of
node in the best position, taking advantage of the less reliable
nodes.

V. EXPERIMENTAL RESULTS

To demonstrate the performance of our authentication pro-
tocol in a realistic environment, we repeated the training and
evaluation process of the NN also for a data set obtained from
a sea experiment. The experiment was conducted near the
Hadera coal pier in Israel in May 2017, with the setup shown
in Fig. 6. In details, we used
• two projectors, Tx1 and Tx2, acting as Alice and Eve,

respectively. Tx1 was deployed from the pier, while Tx2
was deployed from a boat. The distance between Tx1 and
Tx2 was roughly 1 km;

• three receivers, Rx1, Rx2, and Rx3. Rx1 and Rx3 were
deployed from two floating buoys, while Rx2 was de-
ployed from a boat. The distance between each receiver
was approximately 500 m.

Tx1 and Tx2 mounted EvoLogics software-defined S2CR 7/17
modems, and transmitted packets composed of 100 chirp
symbols of duration 10 ms in the 7-17 kHz band. The source
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Fig. 4. DET curves for the cooperative authentication check in the simulated
scenario. Here, we fuse the results of the NN single node checks.
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Fig. 5. DET curves for the cooperative authentication check in the simulated
scenario. Here, we fuse the local soft decisions of the AEs.

level was roughly 175 dB re 1µPa@1m. The receivers used a
Cetacean CR1 hydrophone and continuously recorded the raw
acoustic data. The data set collects the measurements acquired
by Rx2. To process the experiment data, we used the same NN
and AE design used for the simulated UWAC.

Using the NN, for the experiments we always have{
y
(Q)
1 > 0.9 if φ ∈ H0,

y
(Q)
1 < 0.9 if φ ∈ H1,

Since the two distributions are separable by a threshold, it is
possible to find values of λ (e.g., λ = 0.9 ) such that pFA =
pMD = 0.

Equivalently, using instead the AE we get{
Γ(x) < 0.1 if φ ∈ H0,

Γ(x) > 0.1 if φ ∈ H1.



Fig. 6. Setup of the sea experiment in Hadera, Israel.

hence also these distributions are separable after the AE so
the Bob is able to perfectly distinguish between Alice and
Eve packets.

VI. CONCLUSIONS

In this paper, we proposed a novel authentication proto-
col for underwater acoustic networks that exploits machine
learning techniques to assess the authenticity of a received
packet. We considered a two-step approach. First, each node
authenticates the received packet using a locally-trained NN.
Then, each node transmits the (soft) output to a sink node,
which fuses the local outputs to make a global decision. To
train our networks, we considered a scenario where all nodes
train their models with realizations drawn both from legitimate
and attacker channels, and a scenario where only a data
set of legitimate features was available. While experimental
results show that even single-node authentication is effective,
simulation results prove that adding the cooperation step
makes our protocol able to distinguish between legitimate and
attacker packets even when Alice and Eve are relatively close
to each other.
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