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Abstract

Recent observations of failure and damage of buildings and structures under seismic
action has led to an increasing interest for an in-depth analysis of the vertical com-
ponent of site ground motion. In particular, when dealing with saturated soils, the
current engineering practice does not usually go beyond the simplified u–p formula-
tion of the Biot’s equations describing the coupled hydro-mechanical behaviour, thus
neglecting some terms of fluid inertial forces, despite the presence of more refined
formulations, e.g. the u–U formulation. Therefore, a theoretical and numerical vali-
dation of the u–p formulation as compared with the u–U formulation is proposed in
this work, where the numerical simulations are compared with the analytical solu-
tion for the u–p formulation, which is also derived and illustrated in this text. The
comparison between the two formulations and the analytical solution is provided for
different levels of permeability and dynamic actions, which are representative of a
wide scenario of site ground properties and seismic hazard in the vertical direction.
In particular, the soil response is analysed in terms of acceleration and pore pressure
time history, frequency content, acceleration response spectrum, and amplification
ratio of acceleration. This study extends the discussion of the limits of applicability of
the u–p formulation with respect to the rigorous solution of Biot’s equations (obtained
here with u–U formulation) to the context of a complex dynamic regime provided by
the vertical components of real earthquake records, and paves the way for further
investigations.

Keywords: soil dynamics, vertical ground motion, earthquake engineering, analytical
solution, finite element modelling, u–p and u–U formulation

1 Introduction

In Geotechnical and Structural Engineering there is an increasing interest in the analysis
of the vertical component of site ground motion. In fact, it is well known that damages to
buildings, structures, and bridges during an earthquake may arise from the horizontal
component as well as from the vertical component of site ground motion. It is noted that
a limited emphasis is given to the vertical component on earthquake ground motion by
the current seismic design regulations, as the horizontal component is usually considered
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to be more relevant. A number of seismic protection systems that are developed for the
design of special constructions (i.e. petrochemical plants and storage systems [1, 2]) are
mainly focused on the effects of the horizontal component of seismic actions, despite these
constructions may undergo detrimental effects when subjected the vertical component
of the seismic actions. However, different real earthquakes showed that the vertical to
horizontal peak ground acceleration ratio can be above unity [3–7], denoting that this
feature can play an important role in seismic design [8]. This situation typically occurs
within few dozen kilometres from a seismic source, in the so-called near-field or epicentral
area where, depending on fault dimension and rupture mechanism, specific ground
motion effects can occur [9–12]. Since the pioneering work by Housner & Trifunac [9] it
has been recognised that in the near-field domain engineering structures can be exposed to
seismic demands that are much different from those arising from far-field domain, which
correspond to the typical demands that influence the design of the structures, both in
terms of intensity and, especially, of nature of ground motion [13]. The vertical component
of ground motion typically focuses its energy in a high frequency band (commonly
above 5 Hz [13]) and, within 5 km from the source, the peaks of vertical and horizontal
components can be considered to occur almost simultaneously [4, 14, 15]. This is a typical
condition for the Apennine region, where historical towns are located on or very close to
active faults, as occurred in L’Aquila (2009, Italy) earthquake [16].

Nevertheless, the effects of the vertical component of site ground motion are rarely
investigated in detail and only simplified formulations are usually employed in the current
practice when performing finite element modelling, whereas several tools are available
for the horizontal component. In particular, the coupled hydro-mechanical behaviour of
saturated soils under static and dynamic conditions can be described by means of the
Biot’s equations [17, 18], for which different formulations are proposed in literature [19–21].
There is a constant interest in developing refined numerical formulations addressed to
include the full set of Biot’s equations also in the context of large strains [22–24]; however,
the modelling of saturated soils under static and dynamic conditions is commonly per-
formed by means of the well known u–p formulation of the Biot’s equations; an alternative
choice is the u–U formulation [19, 25], which is rarely employed in engineering practice
due to its much higher computational costs, and the same holds for u–w, u–w–p, and
u–U–p formulations, although they are capable to describe the response when pore fluid
accelerations are not negligible with respect to those of the solid phase. In particular, the
u–w–p formulation leads to a proper Lagrangian formulation for the solid skeleton and
a completely Eulerian formulation for the fluid in terms of pore pressure p and relative
velocity w with respect to the solid skeleton (and hence reveals to be suitable also to de-
scribe quasi-static situations involving filtration), whereas the u–U–p formulation allows
to take into account for absolute pore water displacement U . Further investigations on
these refined formulations can be found, for instance, in recent works that are devoted to
the implementation of the u–w–p formulation [23, 26] and of the u–U–p formulation [27]
at large strain.

Despite being widely employed, the u–p formulation is based on a set of simplifications
that limit its range of validity in terms of maximum frequency content of input motions,
of thickness, and of permeability of the soil layers [28]. In particular, Zienkiewicz et al. [29]
indicate that the acceleration frequencies are low in the case of earthquake motions, so
that the terms in the governing equations involving the relative acceleration of the fluid
become negligible. Furthermore, the current formulation of such validity limits is limited
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to the linear elastic response and considers only longitudinal wave propagation.
The aim of this work is to present a novel theoretical validation of the widely diffused u–

p formulation as compared to the u–U formulation of the Biot’s equations for the analysis
of the vertical component of site ground motion in the dynamic regime. The proposed
validation is intended as an extension of the validation proposed by Zienkiewicz et al. [28]
and is based on two sets of case studies: (i) the propagation of a single longitudinal
pulse in a laboratory sample; (ii) the seismic response of a soil layer subjected to a set
of registered vertical seismic ground motions applied at the soil base. This validation is
performed within the elastic response of the soil, as it was performed by Zienkiewicz et
al. [28]. Although the non-linear behaviour of soil (e.g. soil plasticity) is of paramount
importance to accurately describe the soil response, soil plasticity is not taken into account
in this work in order to avoid any possible dependency of the results on the chosen
constitutive model, and the focus is on the basic features of the u–p formulation. On the
other hand, it is expected that the effects of the elastic-plastic response of the soil can lead
to increased differences between the behaviour predicted by two formulations. In fact,
a difference in the pore pressure evaluation by means of the two formulations can lead
to a difference in the effective stress computation, which, in turn, can lead to a different
non-linear behaviour as the constitutive modelling depends on the (mean) effective stress
itself.

Although a combination of the vertical component of both S waves, surface waves
and P waves can trigger the vertical ground motion acting on a structure, the case studies
are devoted to the modelling of the sole P waves in the near-field in order to provide a
clear interpretation of the results. Due to this assumption, this study is limited to the
one-dimensional modelling of the soil.

It is also important to remark that the validation of Zienkiewicz et al. [28] is based
on a single frequency soil motion applied at the the top surface of a soil layer, and their
validation was limited to the error on pore pressure. The results of the case studies
proposed in this work allow to extend the validation of Zienkiewicz et al. [28] to the
general case of seismic ground motions encompassing an interval of frequencies. In
this work, the validation is extended to the computed frequencies content, acceleration
response spectrum, and amplification ratio of acceleration. In particular, it is shown that
in the case of a wide frequency range ground motion, the graphical representation of the
validity ranges proposed by Zienkiewicz et al. [28] for a single frequency ground motion
should be treated with caution and should be accompanied with a thorough analysis of
the errors in the acceleration and pore pressure time history, the frequencies content, the
acceleration response spectrum and amplification, in order to define the appropriate limits
of applicability of the the u–p formulation.

To this purpose, the analytical solution of the u–p formulation is derived and compared
with the numerical results obtained with the u–p formulation implemented as a user-
defined subroutine in a commercial finite element code (Abaqus Unified FEA®) and
with those obtained with the u–U formulation implemented in an in-house finite element
code [30]. In particular, a parametric study is performed in order to investigate the vertical
site response as a function of the soil permeability, the soil layer thickness and the soil
state conditions. The results and the comparisons are provided in terms of the frequency
content, the type of the seismic site ground motion, and the amplification function. Finally,
the limits of applicability of the u–p as compared to u–U formulations for applications in
Geotechnical Earthquake Engineering are discussed.
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2 Governing equations

In this section, the governing equations for the u–p formulation and for the u–U
formulation of saturated porous media are summarised, together with a brief description
of their numerical implementation within a finite element framework. The analytical
solution for the longitudinal wave propagation problem is derived for the u–p formulation,
which is used as a benchmark for the first case study (discussed in section 3.1). It is worth
recalling that the u–U numerical results were validated by using the analytical solution
proposed by Gajo & Mongiovì [31].

2.1 u–p formulation and analytical solution

The well known u–p formulation for the dynamic behaviour of saturated porous
media is obtained by neglecting the inertial forces of the pore fluid related to the relative
acceleration of the fluid with respect to the solid and can be expressed by the following
set of equations [21, 28] for a linear-elastic soil response (small strain theory is assumed):

dσij = dσ′′ij − α δij dp , (1a)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1b)

dσ′′ij = Dijkl
(
dεkl − dε0kl

)
, (1c)

∂σij
∂xj

+ ρgi = ρ
∂2ui
∂t2

, (1d)

α
∂εii
∂t

+
KD

g

∂

∂xi

(
− 1

ρf

∂p

∂xi
+ gi −

∂2ui
∂t2

)
+

1

Q

∂p

∂t
= 0 , (1e)

where ui is the displacement of the solid skeleton, σij is the total stress tensor, σ′′ij is the
Nur & Byerlee [32] effective stress tensor, εij is the strain tensor, ε0kl is the initial (creep
or thermal) strain tensor, Dijkl is the elastic stiffness tensor, KD is the Darcy permeability
coefficient, ρ is the density of the whole porous medium, ρf is the pore fluid density, gi is
i−th component of the gravity acceleration (having modulus g), whereas α is the Biot’s
coefficient and Q is the bulk modulus of the mixture, which are expressed as

α = 1− K

Ks
, (2a)

1

Q
=

n

Kf
+
α− n
Ks

, (2b)

being n the porosity, while Ks, Kf, and K are the bulk modulus of the solid skeleton, of
the pore fluid, and of the mixture, respectively. The density of the whole porous medium
can be expressed as

ρ = (1− n)ρs + nρf . (3)

It can be noted that the fluid mass balance equation (1e) includes inertial forces due to
pore fluid. The effects of these forces are discussed in the next section.

When dealing with the problem of longitudinal wave propagation, for instance along
the x1 axis, and assuming null body forces, it is possible to rewrite equations (1d) and (1e)
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as:

M
∂2u

∂x2
− α∂p

∂x
− ρ∂

2u

∂t2
= 0 , (4a)

α
∂2u

∂x∂t
− KD

g

∂

∂x

(
1

ρf

∂p

∂x
+
∂2u

∂t2

)
+

1

Q

∂p

∂t
= 0 , (4b)

where x = x1 and M = λ + 2µ is the oedometric modulus, being λ and µ the Lamé
constants. According to one-dimensional context (u2 = 0, u3 = 0), it is also assumed that
the displacement and pore pressure fields can be expressed as u = u(x, t) and p = p(x, t),
so that their derivatives with respect to x2 and x3 vanish.

The set of equations for the one-dimensional wave propagation (4) can be reduced to a
single equation as follows. The derivative of equation (4b) with respect to x yields

α
∂3u

∂x2∂t
− KD

g

∂2

∂x2

(
1

ρf

∂p

∂x
+
∂2u

∂t2

)
+

1

Q

∂2p

∂t∂x
= 0 , (5)

whereas from (4a), the following relation can be obtained

∂p

∂x
=
M

α

∂2u

∂x2
− ρ

α

∂2u

∂t2
, (6)

which can be substituted into (5), in order to eliminate the dependence on the pore
pressure, thus yielding the governing equation for the one-dimensional case in terms of
the solid displacement field only

KD

αg

∂2

∂x2

[(
ρ

ρf
− α

)
∂2u

∂t2
− M

ρf

∂2u

∂x2

]
+

1

α

∂

∂t

[(
α2 +

M

Q

)
∂2u

∂x2
− ρ

Q

∂2u

∂t2

]
= 0 . (7)

If we neglect the gradient of fluid inertial forces in equation (4b), namely neglecting
the term ∂3u/∂x∂t2, equation (7) reduces to

KD

αg

∂2

∂x2

[
ρ

ρf

∂2u

∂t2
− M

ρf

∂2u

∂x2

]
+

1

α

∂

∂t

[(
α2 +

M

Q

)
∂2u

∂x2
− ρ

Q

∂2u

∂t2

]
= 0 . (8)

Alternatively, if the term ∂3u/∂x∂t2 is neglected in equation (4b), the following relation
can be obtained from equation (4b):

∂2u

∂x∂t
= − 1

αQ

∂p

∂t
+

KD

αg ρf

∂2p

∂x2
. (9)

This relation can be substituted in the derivative with respect to x and t of equation (4a)
in order to eliminate the dependence on the solid displacement field, thus yielding the
governing equation for the one-dimensional case in terms of the pore pressure field only

KD

αg

∂2

∂x2

(
ρ

ρf

∂2p

∂t2
− M

ρf

∂2p

∂x2

)
+

1

α

∂

∂t

[(
α2 +

M

Q

)
∂2p

∂x2
− ρ

Q

∂2p

∂t2

]
= 0 . (10)

It can be noted that this expression has the same structure of (8). The governing equa-
tions (8) and (10) can be easily solved if the solutions u(x, t) and p(x, t) are assumed to be
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expressed in the following separation form

u(x, t) = X(x)T (t) , (11a)

p(x, t) = P (x)T (t) , (11b)

so that (8) and (10) can be rewritten as

KD

αg

(
ρ

ρf

∂2X

∂x2
∂2T

∂t2
− M

ρf

∂4X

∂x4
T

)
+

1

α

[(
α2 +

M

Q

)
∂2X

∂x2
∂T

∂t
− ρ

Q
X
∂3T

∂t3

]
= 0 , (12a)

KD

αg

(
ρ

ρf

∂2P

∂x2
∂2T

∂t2
− M

ρf

∂4P

∂x4
T

)
+

1

α

[(
α2 +

M

Q

)
∂2P

∂x2
∂T

∂t
− ρ

Q
P
∂3T

∂t3

]
= 0 . (12b)

respectively, where the explicit dependence on variables x and t of the functions X , P , and
T is omitted. However, to obtain an effective separation of the variables, the following
form for X(x) and P (x) should be employed:

X(x) = C1 cos(ξx) + C2 sin(ξx) , (13a)

P (x) = C3 cos(ξx) + C4 sin(ξx) , (13b)

namely, the same value ξ is assumed for solid and fluid phases, which holds true for bound-
ary conditions involving the same Fourier expansion for solid and fluid displacements. In
this way, equations (12) can be rewritten as

∂3T

∂t3
+ a1ξ

2∂
2T

∂t2
+ a2ξ

2∂T

∂t
+ a3ξ

4T = 0 , (14)

where

a1 =
KDQ

ρg

ρ

ρf
, (15a)

a2 =
Q

ρ

(
α2 +

M

Q

)
, (15b)

a3 =
KDQM

ρf ρg
. (15c)

The general solution of (14) is
T (t) = eψt , (16)

so that the characteristic equation associated to (14) is

ψ3 + a1ξ
2ψ2 + a2ξ

2ψ + a3ξ
4 = 0 . (17)

One real root and two complex conjugate roots are the solutions of the characteristic
equation, corresponding to the propagation of one single longitudinal wave. Therefore,
the general solution has the form

u(x, t) =
[
C1 cos(ξx) + C2 sin(ξx)

] [
eψ1t

(
C5 cos(ηt) + C6 sin(ηt)

)
+ C7 e

ψ2t
]
, (18a)

p(x, t) =
[
C3 cos(ξx) + C4 sin(ξx)

] [
eψ1t

(
C8 cos(ηt) + C9 sin(ηt)

)
+ C10 e

ψ2t
]
, (18b)
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where the velocity of propagation of the longitudinal wave is given by V = η/ξ. The
existence of one single longitudinal wave is obviously in contrast with Biot’s equations,
in which the propagation of two longitudinal waves is predicted within the range of
high permeabilities or short propagation lengths. Moreover, the existence of one single
longitudinal wave as evaluated from u–p formulation is in contrast with numerical findings
by Han et al. [33].

The constants Ci (i = 1, . . . , 4) and ξ can be determined by imposing the boundary
conditions, whereas the constants Ci (i = 5, . . . , 10) and η can be determined by imposing
the initial conditions. The imposition of the initial and of the boundary conditions for the
determination of the analytical solution is provided for the case study in section 3.1.

Two extreme cases may potentially occur and are discussed below. In the limit of very
low permeability (KD → 0), equation (9) reduces to

p = −αQ∂u
∂x

, (19)

and substituting this expression into equation (4a) leads to

(M + α2Q)
∂2u

∂x2
− ρ∂

2u

∂t2
= 0 , (20)

which represents the equation of one longitudinal wave propagating with velocity equal
to

Vc =

√
M + α2Q

ρ
. (21)

It is worth noting that this velocity coincides with Biot’s results for very low permeability.
In the limit of very high permeability (KD → +∞), equation (8) reduces to

ρ

ρf

∂4u

∂x2∂t2
− M

ρf

∂4u

∂x4
= 0 , (22)

which is equivalent to

M
∂2u

∂x2
− ρ∂

2u

∂t2
= 0 , (23)

representing the equation of one longitudinal wave propagating with velocity equal to
V =

√
M/ρ. This velocity is much smaller than that obtained by Biot for very high

permeability and has no physical meaning. It is worth recalling that the analytical solution
described above has been obtained by neglecting the gradient of fluid inertial forces
∂3u/∂x∂t2 in equation (4b).

2.2 Implementation of the u–p formulation

The u–p formulation is implemented as a user-defined, 2D, finite element (through a
UEL subroutine) in the commercial finite element code Abaqus Unified FEA®. In order to
extend further the comparison between different formulations, two types of implemen-
tation of the u–p formulation are performed: in the first one, the gradient of pore fluid
inertial forces in the mass balance equation (1e) are neglected, and in the second one, these
forces are taken into account. In both implementation types, eight node finite elements
are used for the discretisation of the solid displacements, whereas four node elements are
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Table 1: Material properties of the components of the two-phase medium. Properties referred to the solid
phase and to the fluid phase are denoted with subscripts “s” and “f” respectively.

Parameter Symbol Value

Density ρ 2020 kg m−3

Porosity n 0.4
Young modulus E 1200 MPa
Poisson ratio ν 0.3
Bulk modulus Ks +∞
Solid phase density ρs 2700 kg m−3

Bulk modulus Kf 2.1771 GPa
Fluid density ρf 1000 kg m−3

used for the pore pressure. The Hilber-Hughes-Taylor time integration implicit operator
is employed in Abaqus simulations, which introduces numerical damping. According to
Abaqus Unified FEA® manual, the following parameters for the Hilber-Hughes-Taylor
integrator were chosen: α = −0.06, β = 0.28, and γ = 0.56. Volumetric-locking effects
were not detected in the simulations, so that no stabilizing scheme was needed in the UEL
subroutine.

2.3 u–U formulation and its implementation

The governing equations for the u–U formulation within the small strain framework
are given by [21, 30, 34]

Dijklεkl + (α− n)2Q
∂εjj
∂xi

+ n(α− n)Q
∂2Uj
∂xj∂xi

+ (1− n)ρsgi − (1− n)ρs
∂2ui
∂t2

− ρa

(
∂2ui
∂t2
− ∂2Ui

∂t2

)
− n2

k

(
∂ui
∂t
− ∂Ui

∂t

)
= 0 , (24a)

n(α− n)Q
∂εjj
∂xi

+ n2Q
∂2Uj
∂xj∂xi

+ nρfgi − nρf
∂2Ui
∂t2

− ρa

(
∂2Ui
∂t2

− ∂2ui
∂t2

)
− n2

k

(
∂Ui
∂t
− ∂ui

∂t

)
= 0 , (24b)

where Ui is the absolute displacement of the pore fluid, ρa is the added mass of pore
fluid (which is neglected here for the sake of consistency with u–p formulation), and
ρs is the density of the solid constituent. The u–U formulation is implemented in an
in-house 1D FEM code [30], in which both the solid and the pore fluid displacements are
approximated with quadratic elements. The numerical solution proved to be consistent
with the analytical solution of Biot’s equations proposed by Gajo & Mongiovì [31] and
no volumetric-locking problem was detected in the simulations performed for this study,
so that no stabilizing scheme was needed in the implementation of the numerical code.
Numerical damping is introduced in the Newmark scheme, assuming the parameters
α = 028 and β = 0.56 that are in agreement with the u–p formulation implementation
strategy.
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3 The case studies

This section presents two case studies on the transient response of a finite length,
saturated soil column subjected to a longitudinal dynamic excitation. The first case
study is representative of the typical wave propagation occurring in specimens during
dynamic tests performed in a laboratory, whereas the second case study is related to real
earthquakes (in the case of a near-field or epicentral area) and has a potential impact on
Geotechnical Earthquake Engineering. The soil column is modelled as a water-saturated,
linear elastic isotropic porous material, which properties are summarised in table 1, and
both u–p and u–U formulations are employed. The soil column is laterally constrained,
so that lateral displacements and horizontal strains are equal to zero. No water flux is
permitted through the lateral boundaries. The response of the system is thought as an
incremental response, therefore gravity is neglected and null initial stress state and null
pore pressure are assumed.

3.1 Analytical solution and computational model for the first case study

3.1.1 Determination of the analytical solution

In the first case study, the analytical solution has been applied to a soil column with
length L = 0.08 m and constrained at the top and bottom surfaces. The initial pore
pressure is assumed equal to zero and null water flux is assumed at both top and bottom
surfaces of the sample, which is initially undeformed. The initial condition of the sample
consists in a rigid longitudinal displacement u(x, 0) = −0.1 µm. A step variation of the
longitudinal displacement equal to 0.1 µm is then applied simultaneously at the top and
bottom surfaces, thus the final displacement at the top and bottom ends is null. This
means that the sample is initially shifted by a limited amount (u(x, 0) = −0.1 µm) with
respect to the reference system while keeping the sample undeformed and at rest. The
prescribed displacement variation generates two longitudinal waves in the soil column
propagating from the top and bottom boundaries, respectively. To obtain the analytical
solution, the following initial conditions need to be imposed

u(x, 0) = f(x) = −0.1 µm ,
∂u

∂t

∣∣∣
t=0

= 0 m s−1 ,

p(x, 0) = g(x) = 0 Pa ,
∂p

∂t

∣∣∣
t=0

= 0 Pa s−1 , (25)

together with the following boundary conditions applied at the top and at the bottom of
the sample

u(0, t) = h(t) , u(L, t) = h(t) . (26)

where h(t) is the Heaviside step function modified as follows

h(t) =

{
−0.1 µm , for t < 0 s ,

0 m , for t ≥ 0 s .
(27)

In this way, summation of 0.1 µm to u(x, t) leads to a solution with a clear physical
meaning. The boundary conditions allow to determine the integration constants C1, C3,
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and ξ, so that the general solution (18) can be written as

u(x, t) =
[
eψ1t

(
C5 cos(ηt) + C6 sin(ηt)

)
+ C7 e

ψ2t
]

sin
mπx

L
, (28a)

p(x, t) =
[
eψ1t

(
C8 cos(ηt) + C9 sin(ηt)

)
+ C10 e

ψ2t
]

cos
mπx

L
, (28b)

where m is an integer. Imposition of the initial conditions allows for the determination
of the 3+3 unknown coefficients Ci (i = 5, . . . , 10). In addition to the 2+2 initial condi-
tions (25), 1+1 further conditions are obtained from equations (4a) and (4b), written for
t = 0 and neglecting the term ∂3u/∂x∂t2.

It is worth noting that the initial conditions for the solid displacements and pore
pressures, u(x, 0) and p(x, 0), become a half-range expansion of f(x) and g(x), respectively,
namely the Fourier sine and cosine series of f(x) and g(x), respectively. This strategy
allows to have both effective stress σ′′ij and pore pressure p expressed by the same Fourier
cosine series. The functions f(x) and g(x), herein considered, and their derivatives satisfy
the conditions of continuity, which are sufficient to ensure the convergence of the Fourier
series in t = 0. The convergence of the Fourier series for t > 0 has been always found,
except for few cases where a steady oscillation occurred; in such cases, the mean value of
the series has been selected.

In order to improve the comparison between the results obtained with the theoretical
solution and those obtained from the numerical models, the step displacement boundary
condition is replaced with a time-dependent displacement represented by a bi-linear
function of time (represented in figure 1c and described in detail in the next subsection).
In this case, the theoretical solution is obtained through a convolution integral of the
analytical solution for the step displacement boundary condition.

3.1.2 Setup of the computational model

The setup of the computational model for the first case study is the following. The u–p
formulation is implemented as a user-defined subroutine employed in Abaqus Unified
FEA®, whereas the u–U formulation is implemented in an in-house FEM code.

Due to the choice of the setup described above, it can be noted that the system and
its dynamic response are symmetric, so that in the numerical computations only half of
the sample (with length L/2 = 0.04 m) can be modelled. In the reduced domain for the
numerical computations (the upper half of the sample) employed for the u–p and the
u–U formulations, only one wave propagates downwards and the following boundary
conditions need to be imposed at the symmetry plane of the system: null displacement
and no water flux, as illustrated in figure 1a (the bottom line). The loading is assigned by
means of the following boundary condition (represented in figure 1c)

u(0, t) =

{
(0.5 m s−1) t , for 0 ≤ t < 0.2 µs ,

0.1 µm , for t ≥ 0.2 µs ,
(29)

so that the time-dependent displacement is imposed only at the top surface of the sample,
as shown in figure 1a.

The system is discretised with 800 elements, the total time of the simulation is equal
to 15 µs and the time step is chosen equal to 2.5 ns. The analytical solution of Biot’s
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equations proposed in [31] is not shown here because it coincides with the numerical
results of u–U formulation.

3.2 Computational model for the second case study

In the second case study, the soil column has a length of 15 m and is discretised with 30
elements; the top surface of the soil column is free, and the fluid pressure is equal to
zero, as shown in figure 1b. A prescribed longitudinal displacement is applied at the
bottom surface, which represents the vertical component of a real earthquakes, as shown
in figure 1d. No water flux is allowed at the bottom and at the lateral surfaces; as a result,
the bottom surface represents the contact with an impervious bedrock. A parametric
study is performed by considering different permeability and porosity levels, different
length of the soil column (i.e. different depth of the bedrock, always keeping the element
size constant), and different ground motions. In particular, the Christchurch earthquake
(2011, New Zealand) [33] is considered in the first set of simulations, then three additional
real earthquakes data are employed to investigate the response of the u–p and of the
u–U formulations, namely the earthquakes of L’Aquila (2009, Italy), Emilia (2012, Italy),
and Norcia (2016, Italy) [8]. The time step of the simulation is chosen equal to 1× 10−4 s.
This value provides a good compromise between the computing time required by each
numerical simulation and the accuracy of the solution. In fact, since every real earthquake
data is composed of a broad range of frequencies (which can be evaluated by means of a
Fourier analysis), it is necessary to employ a time step that allows to accurately capture
the behaviour of most of these frequencies, and it is well known that this choice is related
also to the element size employed for the domain discretisation and to the wave velocity.
In particular, according to well known literature, at least 10 elements per wave length
should be used to accurately capture the behaviour of a wave, so that Fourier analysis
helps to determine the minimum element length of the finite element since it provides
the maximum relevant frequency of the ground motion input, and hence the wave length.
For instance, for a wave velocity of 1869.26 m s−1 (from the parameters described in
table 1) having a relevant frequency up to 40 Hz (as illustrated in 1g for the Christchurch
earthquake) the wave length is slightly smaller than 50 m, so that a spatial discretisation
with elements having length of 0.5 m can be considered appropriate to accurately describe
the behaviour of the ground motion and also possible effects of higher frequencies input.
Similar checks were performed prior to analyse the other real earthquakes described
in the manuscript. Therefore, for the numerical examples illustrated in this paper, the
influence of the chosen mesh on the results revealed to be negligible. A further numerical
investigation based on artificial signals (i.e. a sinusoid with different frequencies lying
in the real earthquake frequency range, and the sum of a number of sinusoids), not
reported for the sake of conciseness, was previously performed in order to identify a
suitable range of time steps to employ in the simulations of real earthquakes. From these
results, it has been drawn that in order to obtain an accurate solution for the proposed
real earthquake data there is the need of a reduced time step with respect to common
expectations [7, 33, 35–37]; the best accuracy level can be obtained with a time step equal
to 1× 10−5 s although the computing time is very high. A time step equal to 1× 10−4 s

produces solutions that are very close to those obtained by employing a time step equal
to 1× 10−5 s, and the computational cost is reduced. It is worth remarking that the time
steps of 1× 10−5 s÷ 1× 10−4 s are smaller than the time needed for the longitudinal wave
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Figure 1: Reference schemes and loading time histories for the numerical simulations for the two case studies.
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to travel the distance between two adjacent nodes (equal to 1.35× 10−4 s) and are much
smaller than the time step that could be deduced from the highest frequency of the input
signal (40 Hz from figure 1g) according to Nyquist theorem (80 sampling points are much
less than the 250 points that are employed in the simulation performed for this study).

A further effect is worth noting, which highlights the need of appropriate settings
to perform accurate simulations when dealing with a wide range of frequency content
of the imposed seismic ground motion. Abaqus introduces spurious oscillations when
the time step of the simulation is two orders of magnitude smaller than the time step of
the ground motion record (the manual suggests that for an implicit integration scheme
a ratio higher than 20 already provides a certain level of accuracy). Also the in-house
code for the u–U formulation provides spurious oscillations, especially when the ratio
between the ground motion record step and the integration time step is very high. A
spline approximation of the input data (namely, the ground motion record in terms of
displacement) was implemented in the in-house code for the u–U formulation in order to
eliminate spurious oscillations that arise from the employment of reduced time steps in
the simulations. The time step provided for the spline approximation can be fixed a priori,
so that a value of 5× 10−4 s is selected for the in-house code for the u–U formulation. In
contrast, since the ground motions records employed in this study are provided with a
time step equal to 5× 10−3 s, spline approximation of the input is not needed in order to
perform Abaqus simulations, as the ratio between the ground motion record time step and
the simulation time step is equal to 50, which demonstrates to provide accurate results.

4 Results and discussion

This section is devoted to the analysis and the discussion of the results and their
interpretation in terms of range of validity of the u–p formulation (with and without fluid
inertial terms) taking into account the water pore pressure and the vertical displacement
and acceleration at different reference points. The first subsection summarises the results
for the first case study, where the analytical solution is compared with numerical results
obtained by employing the u–U formulation. The results of the second case study, related
to real earthquakes, are summarised in the second subsection: the novelty of investigat-
ing a frequency range of the imposed ground motion shows several features that are
introduced and discussed.

4.1 First case study

In the first case study, the water pore pressure is measured at the reference point B
(illustrated in figure 1a), which is 1 cm below the ground level. The results for the first
case study are illustrated in figure 2 for different permeability levels. The results of
the u–p formulation are provided both for the cases in which the gradient of pore fluid
inertial forces in the mass balance equation (1e) is neglected and is taken into account.
These results of the u–p formulation are compared with those obtained with the u–U
formulation that was validated against an analytical solution [31]. It can be observed that
for large permeabilities (KD = 1× 10−5 m s−1 in this case), the results obtained with u–p
formulation are completely unreliable, showing a sort of diffusion phenomenon. The
amplitude of the pore pressure pulse evaluated with u–p formulation is much smaller than
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that evaluated with u–U formulation. With the decrease of permeability, the results of u–p
formulation become closer to those of u–U formulation, with the pore pressure tending
to the form of a Dirac δ-function in the time domain. For permeabilities smaller than
KD = 1× 10−8 m s−1, the results are almost superposed to each other. It can be observed
that pore fluid inertial forces in the mass balance equation are important in a range of
permeabilities in which the u–p formulation is not valid. It is worth noting that the above
mentioned permeability values generally depend on the frequency content of the input
signal, on the propagation length, and on the stiffness of the porous solid.

The numerical results of the u–p formulation obtained without considering the pore
fluid inertial forces in the mass balance equation (1e) are perfectly consistent with the
analytical solution described in section 2.1.

4.2 Second case study

In the second case study, the water pore pressure is evaluated at the reference point B
(illustrated in figures 1b), which is 5 m below the ground level, whereas the vertical dis-
placement and acceleration are evaluated at the top of the soil column (point A in figure 1b).
In addition to the analysis of the system response in the time domain (considered in terms
of time history of acceleration and pore pressure), the response in the frequency domain is
investigated in order to provide a detailed and comprehensive analysis of the effects of
the frequency content of a real earthquake. Several numerical simulations are performed
considering the four earthquakes described in section 3.2. The study includes a parametric
analysis of the soil properties: in particular, the effects of the Young’s modulus, of the
porosity, and of the permeability are investigated by considering a soil layer with thickness
equal to 15 m; furthermore, the parametric study includes also the case of a soil layer
with thickness equal to 100 m. In order to provide a deeper insight in the analysis of the
validity range of the u–p formulation, the porosity and the Young’s modulus are assumed
to range from 0.1 to 0.8 and from 12 MPa to 1200 MPa respectively (which correspond
to very extreme conditions that were mainly chosen to further explore and compare the
response of the two formulations), whereas the investigated permeability levels range
from 1× 10−6 m s−1 to 1 m s−1, thus including the behaviour of coarse to medium grained
soils, i.e. from gravel and sand to medium silt. Each type of parametric study is performed
for u–U formulation and for the two versions of u–p formulation (with and without the
pore fluid inertia term). This means that a large number of simulations has been performed
and therefore, for the sake of conciseness, only a limited number of detailed results is
reported (figures 3-5). The results can be summarised in a compact form by employing the
dimensionless chart provided by Zienkiewicz et al. [28, see their figure 3], as illustrated in
figures 6 and 7, which highlight the limits of validity of u–p formulation proposed by these
authors [28]. This type of representation mainly refers to the validation of u–p formulation
in terms of frequency response.

It is worth recalling that, according to Zienkiewicz et al. [28, figure 3], zone (I) denotes
the zone of slow phenomena; zone (II) and (III) denote, respectively, the zone of moderate
speed and the zone of fast phenomena; zone (IV) (illustrated in figures 6 and 7 of this
text) corresponds to the zone of undrained behaviour. In zone (I) and zone (IV), the
employment of the u–p formulation is admitted, as it provides a negligible difference with
full Biot equation. Zone (II), which is highlighted with a hatch in figures 6 and 7 as well
as in figure 3 of Zienkiewicz et al. [28], corresponds to a zone where the employment of

14



0 5 10

0

500

1,000

Time [µs]

∆
p

[k
P

a
]

u–p AS

u–p wFA

u–p FA

u–U

8.0 9.0

0

50

(a) Permeability KD = 1× 10−5 ms−1.

0 5 10

0

200

400

600

Time [µs]

∆
p

[k
P

a
]

u–p AS

u–p wFA

u–p FA

u–U

6.5 7.0 7.5

0

40

(b) Permeability KD = 1× 10−6 ms−1.

0 5 10

0

500

1,000

Time [µs]

∆
p

[k
P

a
]

u–p AS

u–p wFA

u–p FA

u–U

6.0 6.5
−20

0

(c) Permeability KD = 1× 10−7 ms−1.

0 5 10

0

500

1,000

Time [µs]

∆
p

[k
P

a
]

u–p AS

u–p wFA

u–p FA

u–U

5.5 6.0 6.5

0

40

(d) Permeability KD = 1× 10−8 ms−1.

0 5 10

0

500

1,000

1,500

Time [µs]

∆
p

[k
P

a
]

u–p AS

u–p wFA

u–p FA

u–U

5.5 6.0 6.5

0

40

(e) Permeability KD = 1× 10−9 ms−1.

Figure 2: Comparison between u–p and u–U formulations for the first case study for different levels of
permeability. Labels “FA” and “wFA” mean, respectively, with and without the gradient of fluid
inertial force in the mass balance equation (1e), whereas “AS” denotes the analytical solution.
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the u–p formulation can be considered valid, although a limited difference is noted with
respect to full Biot equation. This hatched area denotes the limits of applicability of u–p
formulation according to Zienkiewicz et al. [28]. In contrast, zone (III) corresponds to a
zone where the u–p formulation leads to unreliable results and only the full Biot equation
is valid. In the present work, in addition to this graphical representation of the results,
the error graphs in terms of ground acceleration at the ground surface and pore pressure
at the depth of 5 m are provided for the different formulations as a function of different
levels of soil layer thickness and soil properties, as illustrated in figures 8-10.

In order to provide a more comprehensive investigation, a comparison with previous
results by Zienkiewicz et al. [28, figure 3] is performed by employing their dimensionless
chart, which is based on the definition of two non-dimensional quantities Π1 and Π2 as:

Π1 =
KDV

2
c

gβωL2
(30a)

Π2 =
ω2L2

V 2
c

(30b)

where Vc is the compression wave velocity in the limit of low permeability defined by
equation (21) (equal to 1869.26 m s−1 from the parameters described in table 1) and β is
the ratio between the fluid density and the total density, whereas the definition of the
angular frequency ω deserves a specific discussion as follows. It is important to remark
that in the work of Zienkiewicz et al. [28] the loading is imposed at the ground surface
as a sinusoid having angular frequency ω, so that this value is employed to evaluate the
non-dimensional quantities Π1 and Π2. In contrast, in this work the loading is imposed
as a prescribed displacement at the base of the soil column that includes a wide range of
angular frequencies (a representative condition of real earthquakes), so that the response
of the system in terms of vertical displacement and acceleration is evaluated at the top
of the soil column, and a representative value for ω must be chosen in order to evaluate
Π1 and Π2. Therefore, based on the modelling techniques and assumptions described
in this section, the representative value of ω for the second case study is selected as the
angular frequency associated with the largest acceleration amplitude in the Fourier series
transform of the acceleration history at ground surface. This means that the value of ω
depends on the formulation employed (u–U or u–p, with or without pore fluid inertia
terms), so that all the quantities involved in the evaluation of Π1 and Π2 are consistent.
In the case of a prescribed ground motion that includes a wide frequency range, the
angular frequency ω may also be chosen with different criteria. The shift of the simulation
results shown in figures 6 and 7 (corresponding to different values of Π1 and Π2 for a
specific level of permeability) is due to the change of the values of ω (defined above) when
performing the Fourier analysis of the acceleration at the top of the soil column for different
formulations. Therefore, a change of the definition of ω would lead to different values
of Π1 and Π2, but the difference between u–U and u–p formulation for the same level of
permeability would remain unaltered. It is worth observing that the selected seismic input
motions lead to data points laying along a nearly horizontal line in Zienkiewicz et al. [28]’s
diagram and their location depends roughly only on permeability.

From figures 3-5 it can be observed that the results obtained with u–p formulation
and those obtained with u–U formulation are different, but the difference decreases with
decreasing levels of permeability, as highlighted in figures 8-10.
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For instance, within the range of KD = 1× 10−1 m s−1 ÷ 1× 100 m s−1 the analysis of
the vertical amplification and acceleration response spectrum obtained with u–p and u–U
formulation are very different: in fact, the number of peaks and the frequency at which
they occur are different. Only a very limited frequency range shows an error below 10%
between u–p and u–U formulation. The response in terms of vertical acceleration and pore
pressure over time are different and the error in their peaks can be above 20%.

For KD = 1× 10−3 m s−1 ÷ 1× 10−2 m s−1 the number of peaks shown in the accelera-
tion amplification and response spectrum obtained with u–p and u–U formulation is the
same, and the frequency at which they occur become closer to each other. The frequency
range that shows an error below 10% between the two formulations is way larger than that
obtained for the previous case. However, the behaviour in terms of vertical acceleration
and pore pressure over time is still different, but the error in the estimation of the peak
values is reduced, although it can still be above 15%.

Only with a lower value of permeability such as KD ≤ 1× 10−4 m s−1 the acceleration
amplification and response spectrum obtained with different formulations become signifi-
cantly closer to each other, leading to an error of the peak estimate that, approximately,
does not exceed 5%. In this case, the response in terms of vertical acceleration and pore
pressure over time becomes comparable and shows a limited error (around 5% for several
time intervals and, in general, less than 10%) over the whole time domain. For such
permeability range, it is possible to consider the results of the u–p formulation (including
the pore fluid inertial term) as a good approximation of the results provided by the u–U
formulation.

Within the range of permeabilities corresponding to those that are typical for fine
sand and silt (i.e. KD = 1× 10−6 m s−1 ÷ 1× 10−5 m s−1) the response in both time and
frequency domain of the u–p and u–U formulation can be considered the same: in fact, over
these domains the solutions obtained with the two formulations cannot be distinguished,
and only over very limited frequency intervals and time intervals show some differences,
which are definitely lower than 5%.

From the results of the simulations for the second case study, it is apparent that the
differences between u–p and u–U can be found simultaneously in the pore pressure, in the
vertical acceleration, in the acceleration response spectrum, in the amplification factors,
and in the frequency content. Furthermore, these differences tend to decrease as the
permeability decreases, as it can be seen from figures 3-5, and become negligible only
for permeabilities that are no greater than 1× 10−4 m s−1. This permeability threshold
holds true for all of the above mentioned relevant quantities (pore pressure, acceleration,
acceleration response spectrum, amplification, and frequency content), so that this can
be considered a more appropriate limit of validity of u–p formulation with respect to
u–U formulation. The effects induced by neglecting the gradient of pore fluid inertial
forces in the mass balance equation (1e) consist in a larger discrepancy with the results ob-
tained by using the u–U formulation, especially when the permeability is equal or greater
than 1× 10−4 m s−1. On the other hand, in the case of lower permeabilities, the gradient of
pore fluid inertial forces has negligible effects, but this case corresponds to the permeability
range where u–p formulation can already be considered a good approximation of u–U
formulation.

According to Zienkiewicz et al. [28], the u–p formulation would be expected to be
unreliable for the selected seismic input motions for KD ≥ 1× 10−1 m s−1, whereas the
error for KD ≤ 1× 10−2 m s−1 is limited, so that this can be considered within a reliability
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zone, but this holds true for a ground motion input based on a single frequency. In
contrast, according our investigation, when dealing with the frequency content of real
earthquakes, the results reported in figures 3-5 and the results of the parametric analysis
for the other real earthquakes (for different soil layer thickness and different levels of
porosity and Young’s modulus) clearly show that for KD = 1× 10−2 m s−1 the differences
in acceleration history, pore pressure, acceleration response spectrum, frequency content,
and acceleration amplification are significant (6% to 20% for the acceleration and pore
pressure peaks, above 50% for the acceleration amplification peak) and, therefore, the u–p
formulation cannot be considered reliable.

This means that the limits of applicability shown in figures 6 and 7 that were suggested
by Zienkiewicz et al. [28] for the case of a single frequency loading may no longer hold
true when dealing with an input ground motion that includes a wide range of frequencies.
Therefore, the limits of applicability for a single frequency loading should be modified
based on a thorough analysis of the results in terms of acceleration history, pore pressure,
acceleration response spectrum, frequency content, and acceleration amplification, thus
leading to modified boundaries of zone (II) in the (Π1,Π2) domain. The present study
highlights this aspect: figures 6 and 7 show that the employment of the boundaries of
zone (II) defined by Zienkiewicz et al. [28] may lead to wrong conclusions about the errors
that can arise from the use of u–p formulation in the case of a wide frequency range
ground motion, so that these previous boundaries may be misleading. In particular, even
if the set of points (Π1,Π2) representing the solutions provided in figures 6 and 7 obtained
with u–U and u–p formulation for a given value of permeability and porosity may be
almost coincident and may lie in the zone (II) (with the boundaries defined for a single
frequency loading), this does not imply that the overall behaviour of the results obtained
with u–p formulation is a good approximation of the overall behaviour of the solutions
obtained with u–U formulation. For instance, this is apparent when considering the case
of L’Aquila earthquake for a soil layer thickness equal to 100 m, porosity n = 0.4 and
Young’s modulus E = 1200 MPa, as illustrated in figure 7d. When considering only this
figure, according to the definition of zone (II) by Zienkiewicz et al. [28], it may be drawn
that in the case of a permeability equal to 1× 10−2 m s−1 the u–p formulation is almost
coincident with u–U formulation. When considering also the other results in terms of
acceleration history, pore pressure, acceleration response spectrum, frequency content,
and acceleration amplification it is clear that this conclusion would not be correct: the error
in the evaluation of the maximum acceleration and pore pressure ratios is still above 10%,
as illustrated in figure 10.

As a consequence, the use of the sole original domain of Zienkiewicz et al. [28] should
be made with caution when the input motion is composed of a wide range of frequencies
and should be accompanied with other considerations about acceleration history, pore
pressure, acceleration response spectrum, frequency content, and acceleration amplifica-
tion, in order to verify the accuracy of the u–p formulation; alternatively, starting from
such in-depth analysis of all the features of the response of the system, it would be possible
to modify the boundaries of zone (II) in the (Π1,Π2) domain for the frequency content of
the real earthquake that a designer wants to investigate.
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(d) Fourier transform of the vertical acceleration.
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Figure 3: Comparison between u–p and u–U formulations for the L’Aquila earthquake assuming permeability
KD = 1× 10−1 ms−1, porosity n = 0.4, Young’s modulus E = 1200MPa, and soil layer thickness
L = 15m. Labels “FA” and “wFA” mean, respectively, with and without the gradient of fluid
inertial force in the mass balance equation (1e).
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(d) Fourier transform of the vertical acceleration.
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(e) Vertical acceleration response spectrum.
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Figure 4: Comparison between u–p and u–U formulations for the L’Aquila earthquake assuming permeability
KD = 1× 10−3 ms−1, porosity n = 0.4, Young’s modulus E = 1200MPa, and soil layer thickness
L = 15m. Labels “FA” and “wFA” mean, respectively, with and without the gradient of fluid
inertial force in the mass balance equation (1e).
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Figure 5: Comparison between u–p and u–U formulations for the L’Aquila earthquake assuming permeability
KD = 1× 10−6 ms−1, porosity n = 0.4, Young’s modulus E = 1200MPa, and soil layer thickness
L = 15m. Labels “FA” and “wFA” mean, respectively, with and without the gradient of fluid
inertial force in the mass balance equation (1e).
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Figure 6: Comparison between u–p and u–U formulations in terms of the zones of applicability following
Zienkiewicz et al. [28] for the four real earthquakes considered in section 3.2 in the case of E =
1200MPa, n = 0.4, and soil layer thickness equal to 15m. According to their work, zone (I) denotes
the zone of slow phenomena; zone (II) and (III) denote, respectively, the zone of moderate speed
and the zone of fast phenomena; zone (IV) corresponds to the zone of undrained behaviour. Labels
“FA” and “wFA” mean, respectively, with and without the gradient of fluid inertial force in the
mass balance equation (1e).

5 Conclusions

This article proposes two case studies on the transient response of a finite length,
saturated soil column subjected to longitudinal dynamic excitation that are considered
for the validation of u–p formulation as compared to u–U formulation. The analytical
solution of the one-dimensional form of the u–p formulation is derived for the problem
of the propagation of a longitudinal wave. This solution is employed in the first case
study as a benchmark in order to evaluate the permeability ranges in which u–U and
u–p formulations can lead to the same results, as well as the estimate of the error of u–p
formulation with respect to u–U formulation.

A second case study is analysed in order to determine the validity ranges of u–p
formulation in the context of the dynamic regime induced by a seismic ground motion,
that embraces a large number of frequencies associated with different amplitudes.

It is shown that the results for the second case study can lead to validity ranges that
are slightly different from those identified by Zienkiewicz et al. [28] (which is valid for a
single frequency ground motion): their dimensionless Π1–Π2 domain needs to be updated
based on a thorough analysis in terms of acceleration and pore pressure time history,
acceleration response spectrum, frequency content and acceleration amplification for the
case of a wide frequency range ground motion, so that the zone (II) reported in figures 6
and 7 (corresponding to that provided by Zienkiewicz et al. [28]) is converted to a newer
one that denotes correctly the limits of applicability of u–p formulation under real seismic
actions.
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Figure 7: Comparison between u–p and u–U formulations in terms of the zones of applicability fol-
lowing Zienkiewicz et al. [28] for the L’Aquila earthquake by employing a permeability
range from 1× 10−5 ms−1 to 1× 10−2 ms−1 in subfigures (a)-(c) and from 1× 10−5 ms−1

to 1× 10−1 ms−1 in subfigure (d). Different levels of Young’s modulus E, and different lev-
els of permeability n are investigated for a soil layer thickness equal to 15m. The effect of an
increased soil thickness L = 100m are investigated for E = 1200MPa and n = 0.4. Labels “FA”
and “wFA” mean, respectively, with and without the gradient of fluid inertial force in the mass
balance equation (1e).

23



10−6 10−5 10−4 10−3 10−2 10−1 100

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

KD

M
ax

.a
cc

el
er

at
io

n
ra

ti
o

L’Aquila (2009), u–p FA

L’Aquila (2009), u–p wFA

Christchurch (2011), u–p FA

Christchurch (2011), u–p wFA

Emilia (2012), u–p FA

Emilia (2012), u–p wFA

Norcia (2016), u–p FA

Norcia (2016), u–p wFA

(a) Acceleration error as a function of permeability.

10−6 10−5 10−4 10−3 10−2 10−1 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

KD

M
ax

.p
re

ss
ur

e
ra

ti
o

L’Aquila (2009), u–p FA

L’Aquila (2009), u–p wFA

Christchurch (2011), u–p FA

Christchurch (2011), u–p wFA

Emilia (2012), u–p FA

Emilia (2012), u–p wFA

Norcia (2016), u–p FA

Norcia (2016), u–p wFA

(b) Pore pressure error as a function of permeability.

Figure 8: Comparison of the errors in the evaluation of the acceleration and pore pressure peaks for different
levels of permeability for the four real earthquakes considered in section 3.2 in the case of E =
1200MPa, n = 0.4, and soil layer thickness equal to 15m. The error is defined as the ratio between
the acceleration peak computed using u–p formulation (with and without the fluid inertial term)
and the acceleration peak computed using u–U formulation. Labels “FA” and “wFA” mean,
respectively, with and without the gradient of fluid inertial force in the mass balance equation (1e).
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Figure 9: Comparison of the errors in the evaluation of the acceleration and pore pressure peaks for different
levels of porosity and Young’s modulus for the L’Aquila earthquake for the case of soil layer
thickness equal to 15m. The error is defined as the ratio between the acceleration peak computed
using u–p formulation (with and without the gradient of fluid inertial force) and the acceleration
peak computed using u–U formulation. Label “FA” denotes that the gradient of fluid inertial force
in the mass balance equation (1e) is taken into account.
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Figure 10: Comparison of the errors in the evaluation of the acceleration and pore pressure peaks for different
soil layer thickness for the L’Aquila earthquake in the case of E = 1200MPa and n = 0.4. The
error is defined as the ratio between the acceleration peak computed using u–p formulation (with
and without the gradient of fluid inertial force) and the acceleration peak computed using u–U
formulation. Labels “FA” and “wFA” mean, respectively, with and without the gradient of fluid
inertial force in the mass balance equation (1e).

It is finally worth to remark that the proposed validity limits of u–p formulation are
limited to the linear elastic response of the soil and that non-linear soil response could
affect the proposed limits of validity by increasing the discrepancies between the two
formulations. Moreover, there is a strong dependency of dynamic soil response on the
range of applied frequency and on propagation length: in fact, u–p formulation provides
reliable results for a permeability KD smaller than 1× 10−4 m s−1 for seismic ground
motions (involving low frequencies and large propagation lengths), and for KD smaller
than 1× 10−8 m s−1 for dynamic measurements in laboratory samples (typically involving
very high frequencies and low propagation lengths).
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