
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Unsupervised Change Detection Using
Convolutional-Autoencoder Multi-resolution

Features
Luca Bergamasco, Student Member, IEEE, Sudipan Saha, Member, IEEE, Francesca Bovolo, Member, IEEE

and Lorenzo Bruzzone, Fellow, IEEE

Abstract—The use of Deep Learning (DL) methods for Change
Detection (CD) is currently dominated by supervised models
that require a large number of labeled samples. However, these
samples are difficult to acquire in the multi-temporal case. A
possible alternative is leveraging methods that exploit transfer
learning for CD by reusing DL models pre-trained for other tasks.
However, the performance of the transfer-learning-based models
decreases as much as the target images differ from the ones
used for training the model. To overcome this limit, we propose
an unsupervised CD method that exploits multi-resolution deep
feature maps derived by a Convolutional Autoencoder (CAE). It
automatically learns spatial features from the input during the
training phase without requiring any labeled data. The proposed
method processes the bi-temporal images to obtain and compare
multi-resolution bi-temporal feature maps. These feature maps
are then analyzed by a feature-selection technique to select
the most discriminant ones. Furthermore, an aggregated multi-
resolution difference image is computed and used for a detail-
preserving multi-scale change detection. In the context of this
CD approach, we propose two alternative strategies to retrieve
multi-scale reliability maps. We tested the proposed method on
bi-temporal multispectral images acquired by Landsat-5 and
Landsat-8 representing burned areas and Sentinel-2 images
representing deforested areas. Results confirm the effectiveness
of the proposed CD technique.

Index Terms—Convolutional Autoencoder, Unsupervised
Change detection, Deep learning, Multi-temporal Analysis,
Unsupervised learning, Remote Sensing.

I. INTRODUCTION

CHANGE detection (CD) identifies changed objects by
examining multi-temporal images acquired over the same

geographical areas. CD is critical for many applications, such
as environmental monitoring [1], [2], fire and burned area
detection [3]–[6], and disaster management [7]. Many State-
of-the-Art (SoA) methods detect changes by a-priori selecting
the best spectral bands to focus on specific changes and/or
by using ad-hoc hand-crafted features designed for a single
specific scenario and a given sensor. Thus they have to be
re-designed whenever any of these factors change. Deep-
learning (DL) techniques may alleviate this problem since they
can automatically learn features during their training phase.
So, it is possible to exploit a trained DL model to perform
multiple tasks by processing Remote Sensing (RS) data having
characteristics similar to the ones used in the model learning
[8].

Some CD methods based on Convolutional Neural Net-
works (CNNs) [8]–[12] have been proposed to analyze the

spatial context information and automatically learn features.
The Convolutional-based DL models automatically learn and
extract unique spatial features [8], [10], [13] that improve the
capability to accurately detect changes [12], [14]. However,
most DL techniques are supervised and require a large number
of multitemporal labeled training samples [10], [12] that are
almost impossible to gather in many multi-temporal applica-
tions. Domain-Adaptation (DA) based methods can exploit a
DL model trained with given labeled samples (source domain)
to process data acquired by another sensor or in another
geographical area (target domain). The DA approach can be
used to fine-tune a DL model, such as VGG-16, trained using
ImageNet, to process multispectral images for CD [15]. In the
last years, CD methods using Generative Adversarial Networks
(GANs) or adversarial models mitigate the difference between
source and target domains thus allowing for multi-sensor CD
[16]–[18]. Some DA CD methods transfer the knowledge
between heterogeneous RS data [19], [20] or between existing
labeled data and unlabeled RS images [21]. However, the DA
of models pre-trained with existing labeled data or RS data
acquired by sensors different from the target RS images is
still a challenging open issue in the literature.

Unsupervised CD DL models can exploit transfer learning
to process target RS data with pre-trained models. These
methods achieve accurate results when the target images
are similar to the ones used to train the model [8], [11],
[22], [23]. Performance of the transfer-learning-based methods
drops when the difference between target and source images
increases [22]. This is a drawback as RS applications usually
cover large geographic areas and are associated with wide
sensor varieties. Given the lack of multi-temporal labeled
datasets, it is seldom possible to obtain a pre-trained network
providing informative features for the many possible cases.

An alternative way to perform CD is to exploit unsupervised
deep learning methods, which do not require any labeled data
for training. These methods obtained accurate results in bi-
temporal CD applications [8], [13], [24]. In this context, the
autoencoders are used to project the pre-change image into
the domain of the post-change one. This projection reduces
the impact of differences due to factors (such as atmospheric
differences) not related to the changes on the ground [25].
Unsupervised neural networks can extract features to exploit in
the CD task [26], [27]. However, most of these methods have
limited capability to capture the multi-scale spatial features,
which may improve the performance of the change detection
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[28].
Multi-scale features allow achieving accurate results in

the processing of high-resolution (HR) images since they
can model both geometrical details and homogeneous areas.
Change detection (CD) methods used many strategies to
retrieve and examine multi-scale versions of the same scene,
such as pyramid [29], wavelets [30], [31], and object-based
methods [32], [33]. The wavelet transform can be combined
with Markov Random Fields (MRFs) [34] to select the most
informative representations and include the analysis of the
spatial context. Liu et al. [35] retrieve multi-scale bi-temporal
features by exploiting morphological filters. The multi-scale
representations retrieved by one of these strategies (i.e., Dis-
crete Wavelet Transform (DWT)) can be used to compute a
change map preserving the geometrical details of the scene by
considering the pixel values at the most reliable scales [30].
The labels of edges are given according to the highest reso-
lution, whereas, in homogeneous areas, the CD exploits low-
resolution representations. Most of these methods have limited
capability to effectively capture multi-scale information since
they depend on shallow features [30], [35]. Thus, they produce
a multi-scale version of images by analyzing a limited range
of characteristics (i.e., texture, spatial frequencies), but they
do not capture semantic information.

To manage the spatial context information while auto-
matically learning features during the unsupervised training,
Convolutional Autoencoders (CAEs) can be used. CAEs are
DL models [36] showing the characteristics of both stan-
dard Autoencoders (AEs) and Convolutional Neural Networks
(CNNs). For RS tasks, where the labeled data sets are limited
in comparison to other research fields, such as Computer
Vision, the CAEs are often pre-trained in an unsupervised
way and then fine-tuned with few labeled samples [37]–[39].
CAEs can reduce the need for labeled data since they auto-
matically learn spatial features from the input data during the
unsupervised training phase. CAEs are also more efficient in
multi-scale feature extraction than other SoA methods, such as
DWT. While DWT retrieves only multi-scale representations
of images, CAEs capture both the visual information and
semantic representation of the input image [40], [41]. In [42],
the authors proposed a time-series CD method that exploits a
CAE fine-tuned by a pre-trained model to transform a pre-
change image into a post-change one and viceversa. The
CD technique analyzes only the output images of the fine-
tuned CAE without performing any explicit multi-resolution
analysis. In [41], the authors trained a CAE with unlabeled
samples. They use the CAE to extract multi-resolution feature
maps from bi-temporal images and apply a multi-scale CD
[30] to retrieve the change map. However, this method uses a
static feature selection process that chooses the same number
of feature maps from each layer in the network, but the
layers of a CAE have a heterogeneous number of filters that
can provide a varying number of informative features. Thus
this feature selection may lead to the rejection of features
containing relevant information about changes or the retention
of non relevant ones.

To dynamically select and use all the informative spatial
features retrieved by the hidden layers of a CAE, we propose

an unsupervised CD method that exploits multi-resolution
deep feature maps retrieved by some a-priori chosen layers of
a CAE. The CAE is trained in unsupervised manner by using
unlabeled samples. After the training phase, we process all the
spectral bands of bi-temporal images with the trained model
without any a-priori-driven band selection. We then retrieve
multi-resolution bi-temporal feature maps and compare them
to define multi-resolution difference feature maps. We select
only the most informative difference feature maps by applying
a dynamic standard-deviation-based feature selection [8], [43].
By this, we choose a dynamic number of feature maps per
layer by focusing on those providing relevant information
about changes. The selected feature maps are aggregated to
retrieve multi-resolution difference images, that emphasize the
changes. The multi-resolution difference images are analyzed
by a detail-preserving multi-scale CD method inspired by [30],
for which we propose two alternatives. The first one adapts
[30] to optical passive sensors by calculating the standard
deviation instead of the coefficient of variation to compute
the reliability of maps, while the second one retrieves the
reliability maps by exploiting a gradient-based method.

The paper has the following outline. Section II describes
the methodology. Section III presents the experimental settings
and the results. Finally, we draw our conclusion in Section IV.

II. UNSUPERVISED CHANGE DETECTION BASED ON
CONVOLUTIONAL-AUTOENCODER FEATURE EXTRACTION

The proposed method aims to perform change detection
(CD) in bi-temporal images I1 and I2 acquired at time t1 and
t2, respectively. Let us assume that a set of N unlabeled sam-
ples X = {Xn, n = 1, ..., N} extracted from I1 is available.
The method uses X to train from scratch a convolutional-
autoencoder (CAE) in an unsupervised way. Once the CAE is
trained, we process I1 and I2 and extract bi-temporal deep
feature maps of the images from the model. The feature
maps are compared and fused to detect changed (ωc) and
unchanged (ωnc) pixels, where ωc includes all the relevant
changes occurred in the image, while ωnc represents the no
change. The block scheme of the proposed method is shown
in Fig. 1.

A. Unsupervised CAE training

CAEs have the property to produce an output image that
is as similar as possible to the input one by unsupervised
learning of spatial context features from a set of unlabeled
training samples (X). The CAE contains L convolutional
layers divided into an encoder and a decoder. The encoder
down-samples the input images and increases the number of
feature maps extracted by each layer, whereas the decoder up-
samples the output of the encoder and reduces the number of
feature maps. The CAE includes strided convolutional (in the
encoder) and deconvolutional layers (in the decoder), Batch
Normalization (BN) layers, and leaky Rectified Linear Unit
(ReLU) activation functions. BN [44] layers normalize the
values within a batch during its processing in the model.
This normalization helps to increase the learning speed of the
model and to stabilize it by reducing the overfitting, thanks
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Fig. 1. Block scheme of the proposed unsupervised CD method based on CAE.

to the regularization effect of BN. Leaky ReLU [45] is an
improvement of ReLU that keeps the non-linearity of ReLU
but improves the handling of negative values. ReLU imposes
all negative values to 0. Instead, leaky ReLU transforms them
into values close to 0, according to the function y = αx.
The feature maps of a layer l, where l = 0, ..., L, for an
input sample Xn ∈ X , where n = 1, ..., N , is defined by
Hn,l = φ(Wl−1,lHn,l−1 + bl), where Hn,0 = Xn, Wl−1,l is
the weight matrix of the layer l processing the feature maps
of the layer l − 1, Hn,l−1. bl represents the biases of layer l,
and φ(.) is the leaky ReLU activation function. The training
minimizes a loss function. As in [41], we use a sum-squared-
error (SSE) (1) to train our model. The learning process is
performed using the back-propagation method that trains the
model according to the SSE evaluated between the original
samples (X) and the predicted ones from CAE (X ′):

SSE =

N∑
n=1

(Xn −X ′n)
2 (1)

B. Feature extraction

During the training, the CAE learns visual and semantic
features from X . Since the patches included in X are sampled
from I1, it is reasonable to assume that the CAE produces
spatial feature maps representing both bi-temporal images I1
and I2 since they were acquired over the same geographical
area. To extract the feature maps, the CAE separately processes
I1 and I2, and the bi-temporal multi-resolution feature maps
are obtained from L′ = L/2 layers. The initial layers of
the encoder extract simple features (i.e., edges), as shown

in previous works [8], whereas the decoder layers retrieve
features providing more spatial context information about the
change. Hence, we do not exploit encoder layers for CD,
and we choose the L′ layers composing the decoder. L′ also
represents the number of scale levels used during the multi-
scale CD. Since from the number of CAE layers L depends
the number of scale levels L′, L should be carefully chosen
to find the optimal trade-off between the noise reduction, the
informative content of the learned features, and the loss of
geometrical details. By processing the bi-temporal images, we
retrieve for each layer l′ = 1, ..., L′ feature maps representing
the pre-change image I1, H1

n,l′ , and the post-change image
I2, H2

n,l′ . The feature maps extracted by the layers of the
model are in the same feature space, and therefore they are
comparable. The bi-temporal feature maps extracted from L′

layers produce multi-scale feature maps having heterogeneous
spatial dimensions. We apply a bi-linear interpolation method
to the features retrieved by the L′ layers to obtain multi-scale
bi-temporal feature maps having the same spatial dimensions.
Corresponding H1

n,l′ and H2
n,l′ are compared in a multi-

resolution fashion to highlight information about changes. The
k-th feature maps (k = 1, . . . ,Kl′ ) characterizing bi-temporal
images retrieved by the layer l′ = 1, ..., L′ of the model are
compared as follows:

DFn,k,l′ = (H2
n,l′,k −H1

n,l′,k)
2

(2)

where
l′ = 1, . . . , L′

k = 1, . . . ,Kl′
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Comparing the bi-temporal feature maps, if no change occurs,
the feature maps are similar, and their comparison results in
small values close to 0. On the contrary, where the change
occurs, the feature maps of I2 have a different reconstruction
of the objects with respect to I1. Hence, the comparison
between the feature maps of I1 and I2 enhances the difference
due to the changes assuming values far from 0. It is worth
noting that the CAE can correctly reconstruct only objects or
areas of images learned by X during the training process. If
I2 has a change with structures not available in X , it will
be reconstructed in an unpredictable way. However, possible
unpredictable reconstructions do not decrease the capability
of CD since those structures will be reconstructed in I2
differently with respect to I1 in any case.

Now, we have Kl′ comparisons that emphasize the change
between feature maps from I1 and I2, respectively, where
Kl′ can be in the order of hundreds. However, not all of
them are informative. In each layer l′, only a small amount
of the difference feature maps DFn,k,l′ carries relevant in-
formation about the change. Thus the method removes the
least informative difference feature maps that provide no or
small information about the change. For each layer l′, we
apply a feature selection (FS) inspired by [8], [43] to filter out
the difference feature maps with low probability of providing
relevant information about changes. Under the assumption
that the presence of the change makes the standard deviation
higher than the corresponding situation with no change, we
choose the Ml′ difference feature maps having a standard
deviation higher than the other ones since they provide the
most relevant information about the change. After ordering
them into descending standard deviation, we select difference
feature maps until the gap between the standard deviation
of two difference feature maps is greater than 10% of the
maximum standard deviation value range of layer l′:

|σ(DFn,k,l′)− σ(DFn,k+1,l′)|>
0.1|σmax(DFn,l′)− σmin(DFn,l′)| (3)

In Fig.2, it is possible to observe an example of behavior
of the standard deviation values of the difference feature
maps of a single layer l′ sorted in descending order. The
drop in the standard deviation is expected when the change
information becomes less represented. In this example, the
difference between the standard deviation values of the first
two difference feature maps and the third one is larger than
10% of the maximum standard deviation value range, so
we assume that the first two feature maps provide the most
relevant information about the change. For this reason, they
are selected for the CD. This feature selection step can be
computed either manually or automatically. It is worth noticing
that Ml′ can be different in each layer l′ and can be equal
to 0 when the l′ has no DFn,l′ providing a sufficiently
high |σ(DFn,k,l′)−σ(DFn,k+1,l′)|. Since the selected feature
maps have a high standard deviation, they are the ones with
the highest probability of containing changes, and therefore
they maximize the probability to detect them. This feature
selection process allows analyzing all the spectral bands of the
input multispectral RS images without using any a-priori band

Fig. 2. Behavior of the standard deviation values of the quadratic difference
between the feature maps of a layer l′ sorted in descending order. In this case
only the first two difference feature maps are chosen.

selection that is often required to maximize the performance
of SoA unsupervised methods with respect to the expected
kind of change. The proposed feature selection extracts the
crucial information content from all the input spectral channels
and makes the method independent of the kind of change. We
then aggregate the Ml′ difference feature maps of a considered
layer l′ to compute the difference image (DI) (4) of that layer.

DIl′ =

√√√√Ml′∑
k=1

DFk,l′ (4)

where
l′ = 1, . . . , L′

C. Change detection

We compute DIl′ for all the L′ layers of the CAE having
Ml′ > 0 to retrieve L′sel multi-resolution difference images
derived from deep features, where L′sel is the number of
considered layers and difference images with Ml′ > 0. Thus,
we process the L′sel multi-resolution feature maps with a
detail-preserving multi-scale approach [30]. This method aims
to produce a change map by applying a multi-scale analysis
to the multi-resolution DIl′sel , where l′sel = 1, . . . , L′sel, to
preserve the geometrical details and homogeneous areas and
handle the noise of the considered bi-temporal images. The
main idea is to associate to each pixel the label ωc, ωnc of the
most reliable level (i.e., the lowest resolution level in which
the pixel has a homogeneous behavior). This can be identified
by two strategies. In the first strategy, for each layer l′sel, the
local standard deviation σ(DIl′sel(i, j)), computed on pixels
included in a moving window centered in (i, j) of DIl′sel , is
compared with the global standard deviation σ(DIl′sel) of the
DI of that layer to find the most reliable resolution level for
the pixel (i, j):

σ(DIl′sel(i, j)) < σ(DIl′sel) (5)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

This step aims to assign the pixels of high-resolution change
maps to the areas with high spatial frequencies along change
borders (e.g., the object contours) and the pixels of low-
resolution change maps to homogeneous change areas. This
method tends to overestimate the areas with high spatial
variability thus reducing the performance during the change
detection. The second strategy for identifying the most reliable
scale level for each pixel in (i, j) based on a gradient-based
approach, such as the Canny filter [46]. The Canny filter
provides better performance than other edge detection method
in many scenarios with different noise conditions [47]. For
each of the L′sel layers, the method computes a reliable map
(RMl′sel

) by applying a Canny filter to DIl′sel (6).

RMl′sel
= Canny(DIl′sel) (6)

Each RMl′sel
shows the areas with the highest gradient in

DIl′sel . These areas are the transitions between ωc and ωnc.
These transition areas are the least reliable ones. The strategy
keeps the transition areas very thin, so it masks fewer changes
in borders than the previous strategy. We average L′sel possible
combinations of the L′sel DIs [30]:

DIl′sel =
1

l′sel + 1

l′sel∑
h=0

DIh, l′sel = 0, 1, ..., L′sel (7)

We then retrieve a change map for each resolution level
l′sel by applying to each DIl′sel a threshold Tl′sel retrieved
automatically (for the experiments we used an Otsu’s threshold
[48]). The pixel of the final change map CM in position (i, j)
is assigned to ωc or ωnc, according to the class detected in
the pixel position (i, j) of the change map of the resolution
level l′rel, where l′rel = 0, ..., L′sel that corresponds to the most
reliable resolution level for the position (i, j) [30]:

CM(i, j) ∈

{
ωnc, ifDIl′rel(i, j) ≤ Tl′rel
ωc, ifDIl′rel(i, j) > Tl′rel

(8)

III. EXPERIMENTAL DESIGN AND RESULTS

In this Section, we introduce the datasets used to test the
proposed method, present the experimental design, and show
and discuss the results.

A. Description of Datasets

To test the proposed method, we exploited three
multispectral-image datasets. The first dataset is composed of
a couple of bi-temporal images having sizes of 861 × 969
pixels acquired by the Landsat-8 sensor. These images include
a burned area near Granada, Spain. They were acquired on
June 30th, 2015 (Fig. 3a) and July 16th, 2015 (Fig. 3b) with
a spatial resolution of 30m/pixel. Fig. 3c shows the reference
map of the burned area [49] that points out changed (79176)
and unchanged pixels (745007). Moreover, areas where reli-
able labels were not available are identified as ”others” (10126
pixels). We exploited the six spectral bands of the Landsat-8
data having 30m resolution. The image acquired on June 30th,
2015 is I1, and we randomly sampled from it an unlabeled
dataset composed of patches of 64× 64 pixels. We separated

this dataset into an unlabeled validation set composed of
5000 patches, and an unlabeled training set X used for the
unsupervised learning of CAE composed of N = 95000
patches. While any other patch size can be used, larger patch
size may lead to fewer number of patches for model training
and smaller patch size may lead to inadequate spatial context
modeling. To increase N , we sample overlapped patches, so
each patch shares a part of its contents with neighboring ones.

The second dataset is composed of multi-temporal images
acquired by Landsat-5 sensor on the Elba island, Italy, in
August 1992 (Fig. 4a), August 1994 (Fig. 4b), and September
1994 (Fig. 4c). All the images of the second dataset are ac-
quired with a spatial resolution of 30m/pixel. We considered
this dataset as it is a benchmark in change detection that has
been used in many SoA methods [50]–[52]. We designed three
scenarios. The first scenario compares the images acquired in
August 1992 (I1) and August 1994 (I2). The problem consists
in the detection of a burned area that contains some vegetation
regrowth (see Fig.4d for the reference map containing 2842
changed pixels and 132122 unchanged pixels). The second
scenario includes the images acquired in August 1994 (I1)
and September 1994 (I2), where the method has to detect a
burned area on an image acquired shortly after the fire (Fig.4e
shows the reference map containing 2414 changed pixels
and 132550 unchanged pixels). The third scenario compares
the images acquired in August 1992 (I1) and September
1994 (I2). The method has to detect two burned areas with
different characteristics, an old burned area with vegetation
regrowth and a recent one, and to manage the changes that
are not correlated with fires (Fig.4f shows the reference change
map containing 5256 changed pixels and 129708 unchanged
pixels). The images are of 326×414 pixels. For each scenario,
we randomly sampled an unlabeled dataset from the pre-
change image I1 composed of patches of 64×64 pixels. In the
first and third scenarios, I1 is the image acquired on August
1992, whereas it is the one acquired on August 1994 in the
second scenario. This dataset is separated into a training set
used for the unsupervised training composed of N = 14038
patches and a validation set of 1400 patches.

The third dataset is composed by a pair of Sentinel-2 images
with size 1717× 1628 acquired on April 24th, 2016 (Fig. 5a)
and January 19th, 2017 (Fig. 5b) with a spatial resolution
of 10m/pixel. These images represent an area deforested
for palm oil cultivation in Indonesia. The reference map
showing the deforested area (Fig. 5c) points out the changed
(73979) and unchanged (2317297) pixels. It also shows the
cloud-covered areas identified as ”others” (404000) that are
excluded from the change detection performance evaluation.
We removed the spectral bands with a spatial resolution
of 60m/pixel since they are sensitive to the atmospheric
properties and do not provide any information for the detection
of deforested areas. We interpolated the spectral bands at
20m/pixel using the nearest neighbor algorithm to obtain
images with a homogeneous spatial resolution of 10m/pixel.
We randomly sampled from the image acquired on April 24th,
2016 (I1) an unlabeled dataset composed of patches of 64×64
pixels. We separated this dataset into an unlabeled training set
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(a) (b) (c)

Fig. 3. Bi-temporal Landsat-8 images acquired in an area near Granada, Spain on (a) June 30th, 2015, (b) July 16th, 2015, and (c) the related reference
map of the burned area. The white pixels represent no changes, the black pixels the changes, and the grey ones the pixels where reliable reference data are
not available.

(a) (b) (c)

(d) (e) (f)
Fig. 4. Multi-temporal Landsat-5 images acquired on the Elba island, Italy in (a) August 1992, (b) August 1994, and (c) September 1994. Reference maps
of the changes that occurred between (d) August 1992 and 1994, (e) August 1994 and September 1994, and (f) August 1992 and September 1994. The white
pixels represent no changes, and the black ones the changes.

X composed of 12305 patches and a validation set composed
of 1367 patches. Given the limited spatial dimensions of the
images, we increased the number of samples by overlapping
the patches.

B. Design of Experiments

We performed an unsupervised training of a CAE for each
dataset (and scenario) with a number of epochs E. The CAEs
were trained for image reconstruction, (which is a different
objective from our target task (Change Detection)) thus the
parameters (e.g., the number of layers) were entirely based

on this task. We used the validation set to assess the quality
of reconstructed images during the training by computing
the validation loss. When the validation loss diverges from
the training one, the model overfits the data reconstruction,
and this may affect CD performance. Multi-scale features
generated from the CAE after training were used for the
CD task. In our experiments we used leaky ReLU activation
functions with α = 0.2. We trained the model using a batch
size bs = 100 and a learning rate lr = 10−4. We did several
experiments on the proposed method in both datasets using
different set-ups:
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(a) (b) (c)

Fig. 5. Bi-temporal Sentinel-2 images acquired in Indonesia on (a) April 24th, 2016, (b) January 19th, 2017, and (c) the related reference map of the
deforested area. The white pixels represent no changes, the black pixels the changes, and the grey ones the cloud-covered areas.

1) Experiment 1: The experiment objective was the anal-
ysis of the proposed CD method performance by varying
the number of model layers. This hyperparameter needs to
be fixed in any method based on CAEs or DL in general.
For this test, we used two datasets acquired by different
sensors, Landsat-8 and Sentinel-2, to analyze the effect of
data with heterogeneous spatial and spectral resolutions and
changes with different shapes. The Granada dataset acquired
by Landsat-8 includes jagged changed areas providing an in-
teresting test case to study the geometrical-details preservation
and informative-feature generation. The Indonesia dataset ac-
quired by Sentinel-2 contains changed areas with more regular
borders than the other dataset, thus resulting less critical in
terms of geometrical-detail preservation. To choose the optimal
number of layers of the CAE in the Granada dataset and thus
the number of multi-scale levels L′, we compared the CD
performance using a CAE with L = 2, 4, 6, 8 layers trained
with E = 50. For the standard deviation reliability approach,
we used a moving window size of 5 × 5. For the Indonesia
dataset, we used the same test settings as for the Granada one,
but we exploited a CAE trained for E = 250. The window size
and the number of epochs are fixed according to the results
achieved in Experiments 2 and 3, respectively. We can observe
the number of CAE layers that results in a good trade-off
between de-noising of input data and generation of informative
feature maps.

2) Experiment 2: This experiment analyzed the CD per-
formance using various moving window sizes in the standard
deviation reliability approach. We tested window dimensions
of 3 × 3, 5 × 5, and 7 × 7. We fixed the number of layers
and E according to the results obtained in experiments 1
and 3, respectively. The number of layers and training epochs
depends on the considered dataset:

• L = 6 and E = 50 for the Granada dataset;
• L = 6 for the Elba dataset with E = 300 for the first

scenario, E = 150 for the second one, and E = 200 for
the third one;

• L = 4 and E = 250 for the Indonesia dataset.

3) Experiment 3: The experiment objective consisted in the
analysis of the CD performance by varying the number of
training epochs. It is worth noting that the number of training
epochs E is a hyperparameter that has to be a-priori fixed for
CAE- and DL-based methods. We analyzed the performance
by varying the number of epochs E = 50, 100, ..., 300 to train
a CAE with L = 6 layers for the Granada and Elba datasets
and with L = 4 for the Indonesia one (Experiment 1). We used
a moving window size of 5×5 for the Granada and Indonesia
datasets and 3× 3 for the Elba scenarios (Experiment 2). We
tested our method by considering the two strategies based on
standard deviation and Canny filter [46] (Section II-C) to find
the most reliable scale levels.

4) Experiment 4: The Experiment verified that the multi-
scale feature concatenation and the feature selection are ef-
fective. We compared the proposed method against two limit
variants. The first one used only the feature maps extracted
from a single layer: the bottleneck one. The second one used
all the feature maps from all L′ layers without any feature
selection. For this experiment, we used a CAE with L = 6
layers for the Granada and Elba datasets and with L = 4 for
the Indonesia one (Experiment 1). For the Granada dataset, the
method exploited a CAE trained for E = 50 and a moving
window size of 5×5. For the Elba dataset, we used a window
size of 3 × 3 and a CAE trained with E = 300 for the first
scenario, E = 150 for the second one, and E = 200 for the
third one. For the Indonesia dataset, the method exploited a
CAE trained for E = 250 and the Canny-based reliability
approach. The moving window size and the training epochs
are fixed according to the results achieved in Experiments 2
and 3, respectively.

SoA comparison was performed against i) the adaptive
Change Vector Analysis (CVA) [50], ii) the CVA performing
the analysis of the contextual information with a Markov-
Random-Fields (MRF) based method [51], iii) the adaptive
semiparametric and context based CVA [52], and iv) a self-
supervised segmentation method [22]. For i) and iii), we used
NIR, SWIR1, and SWIR2 to detect burned areas, whereas,
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TABLE I
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD VS THE NUMBER OF LAYERS L IN THE GRANADA DATASET
TRAINED FOR E = 50.

L FA MA TP OE Sensitivity Specificity
2 1.21% 29.99% 55435 3.97% 70.01% 98.79%
4 3.58% 23.73% 60385 5.51% 76.27% 96.42%
6 2.38% 8.71% 72279 2.99% 91.29% 97.62%
8 3.06% 8.72% 72275 3.6% 91.28% 96.94%

for the MRF-based one, we exploited NIR and SWIR2. As
well-known in the literature, this is done since CVA benefits
from selecting the most relevant spectral bands. The a-priori
band selection favors the SoA methods with respect to the
proposed one that, in turn, ingests all the features and allows
us to demonstrate the effectiveness in feature selection. To
evaluate the performance with respect to the expected kind of
change, we considered the number of the true detected change
(TPs), the false-alarm rate (FAs), the missed-alarm rate (MAs),
the overall errors (OE), the sensitivity (TP/(TP+FN)) and the
specificity (TN/(TN+FP)).

C. Experiment 1: Analysis of the performance varying the
number of layers

Experiment 1 examined the number of CAE layers that
results in a good trade-off between de-noising of input data and
generation of informative feature maps. In the Granada dataset,
the proposed method achieved the best trade-off between FAs
and MAs among the examined cases using L = 6 layers
(Table I). With L = 6 layers, the proposed method resulted
in the lowest OE, and found the most of change areas by
keeping the number of FAs relatively low. With L = 2, the
method detected the smallest number of FAs, but it found
fewer changed areas (i.e., 55435) than in the case with L = 6
(i.e., 72279) since the features learned by two layers provide
less information than the ones learned by a deeper model. On
the contrary, the proposed method using L = 8 detected a
number of change areas as L = 6, but it detected more FAs
(3.06% vs. 2.38%). A CAE with L = 8 provided informative
feature maps at the cost of missing more geometrical details
(Fig. 6d) than the one with L = 6 (Fig. 6c) due to the
compression of the spatial information. The choice of the
values of L depends on the spatial resolution of input images.
The higher the spatial resolution is, the more L can increase.
Very high spatial resolution images require more layers to
cover a larger receptive field and capture more spatial features.
In the Indonesia dataset, the CAE with L = 4 provided the
best CD performance. L = 2 achieved similar results to L = 4
(Table II), but L = 2 minimized MAs. L = 4 minimized
FAs and OE. A DL model with many layers increases its
receptive fields and thus the capability to capture spatial
features. This characteristic improved the performance when
dealing with HR images as the Sentinel-2 Indonesia dataset.
The CD performance decreased using a CAE with L = 6 and
L = 8 because of the small number of samples that limits
the capabilities in training the large number of parameters of
the model incurring in overfitting. Thus from now on the CAE
analyzing the Granada and Elba dataset is always composed of

(a) (b)

(c) (d)

Fig. 6. Change maps computed using (a) L′ = 1 of the CAE with L = 2,
(b) L′ = 2 of the CAE with L = 4, (c) L′ = 3 of the CAE with L = 6, and
(d) L′ = 4 of the CAE with L = 8. All the CAEs are trained for E = 50
using the Granada dataset. Standard-deviation-based reliability approach was
used to find the most reliable areas. (The white pixels represent no changes,
the black pixels the changes, and the grey ones are no data.)

TABLE II
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD VS THE NUMBER OF LAYERS L IN THE INDONESIA DATASET
TRAINED FOR E = 250.

L FA MA TP OE Sensitivity Specificity
2 6.0% 13.14% 64261 6.21% 86.86% 94.01%
4 5.3% 19.82% 59317 5.75% 80.18% 94.7%
6 16.64% 13.38% 64084 16.54% 86.62% 83.36%
8 17.41% 14.65% 63139 17.32% 85.35% 82.59%

three layers for both the encoder and the decoder (Table III).
The CAE that processes the Indonesia dataset is composed of
two layers for encoder and decoder (Table IV).

D. Experiment 2: Analysis of the performance varying the
window size of the standard-deviation-based reliability ap-
proach

Experiment 2 studied the performance of the proposed
method by varying the size of the moving window. In the
Granada dataset, the window size of 3 × 3 maximized the
detection of the changed areas and the sensitivity, whereas the
size of 7 × 7 minimized the FAs. However, the window size
of 5× 5 is the optimal trade-off between the other two cases.
The proposed method using a window size of 5× 5 detected
a similar number of changed areas with respect to the case
with a window size 3 × 3, but fewer FAs. For this reason,
we chose to use 5 × 5 window size for the Granada dataset
experiments. The window size affects the reliability of the
changed-area borders. The smaller the window size, the less
reliable the local standard deviation, and the higher the FA
number. The larger the window size, the lower the sensitivity
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TABLE III
STRUCTURE OF THE CONVOLUTIONAL AUTOENCODER USED DURING

TESTS FOR THE GRANADA AND THE ELBA DATASET.

Layer type Kernel size Output size
Input - 64× 64× 6

Strided Conv2D 5× 5× 32 32× 32× 32
Batch Normalization - 32× 32× 32

Leaky ReLU - 32× 32× 32
Strided Conv2D 5× 5× 64 16× 16× 64

Batch Normalization - 16× 16× 64
Leaky ReLU - 16× 16× 64

Strided Conv2D 5× 5× 128 8× 8× 128
Batch Normalization - 8× 8× 128

Leaky ReLU - 8× 8× 128
Deconv2D 5× 5× 64 16× 16× 64

Batch Normalization - 16× 16× 64
Leaky ReLU - 16× 16× 64
Deconv2D 5× 5× 32 32× 32× 32

Batch Normalization - 32× 32× 32
Leaky ReLU - 32× 32× 32
Deconv2D 5× 5× 6 64× 64× 6

TABLE IV
STRUCTURE OF THE CONVOLUTIONAL AUTOENCODER USED DURING

TESTS FOR THE INDONESIA DATASET.

Layer type Kernel size Output size
Input - 64× 64× 6

Strided Conv2D 5× 5× 32 32× 32× 32
Batch Normalization - 32× 32× 32

Leaky ReLU - 32× 32× 32
Strided Conv2D 5× 5× 64 16× 16× 64

Batch Normalization - 16× 16× 64
Leaky ReLU - 16× 16× 64
Deconv2D 5× 5× 32 32× 32× 32

Batch Normalization - 32× 32× 32
Leaky ReLU - 32× 32× 32
Deconv2D 5× 5× 6 64× 64× 6

to the geometrical details. The local standard deviation using
a moving window of dimension 5 × 5 proved to be a good
trade-off between the reliability of the statistic and sensibility.
However, the performance using window sizes of 3 × 3 and
5 × 5 are similar, so the choice of the window size between
these values is not critical.

In the Elba dataset, we observed the same behavior for the
three scenarios (Tabs. VI, VII, and VIII). The local standard
deviation with a window size of 3×3 maximized the detection
of the changed area with a relatively low number of FAs
and OE. In this dataset, a window size larger than 3 × 3
is too sensitive to the transition areas between ωc and ωnc.
Increasing the size reduced the FAs but increased the MAs
with an underestimation of the changed areas (Fig. 7). Since
the 3×3 window used to compute the local standard deviation
allowed detecting more changed areas than the other window
sizes with a low number of FAs, we chose to use this window
size for the Elba dataset.

In the Indonesia dataset, we achieved similar CD perfor-
mance with all the window size values (Table IX). The CD
methods minimized the MAs using a window size of 3 × 3.
However, it increased the number of FAs in the changed area
borders. We chose using a window size of 5 × 5 during the
tests since it minimized the OE.

TABLE V
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD BY VARYING THE WINDOW SIZE WITH THE
STANDARD-DEVIATION-BASED RELIABILITY APPROACH IN THE GRANADA

DATASET. THE RESULTS WERE RETRIEVED BY USING L′ = 3
MULTI-SCALE FEATURE MAPS EXTRACTED BY A CAE TRAINED FOR

E = 50.

Window
size FA MA TP OE Sensitivity Specificity

3× 3 2.44% 8.31% 72596 3.01% 91.69% 97.56%
5× 5 2.38% 8.71% 72279 2.99% 91.29% 97.62%
7× 7 2.27% 9.78% 71430 2.99% 90.22% 97.73%

TABLE VI
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD BY VARYING THE WINDOW SIZE IN THE
STANDARD-DEVIATION-BASED RELIABILITY APPROACH. RESULTS WERE

RETRIEVED WITH IMAGES BY USING L′ = 3 MULTI-SCALE FEATURE MAPS
EXTRACTED BY A CAE TRAINED FOR E = 300 (ELBA DATASET

ACQUIRED IN AUGUST 1992 AND AUGUST 1994).

Window
size FA MA TP OE Sensitivity Specificity

3× 3 0.42% 15.13% 2412 0.73% 84.87% 99.58%
5× 5 0.32% 24.84% 2136 0.84% 75.16% 99.68%
7× 7 0.25% 39.51% 1719 1.08% 60.49% 99.75%

E. Experiments 3 and 4: Granada dataset

Experiment 3 showed that the method accuracy is not
significantly affected by the number of epochs E. The strategy
exploiting the Canny filter had a slightly higher number of
OE than the one using the standard deviation (Table X). On
this dataset, the method achieved the best trade-off in terms of
TPs, MAs, and FAs using a model trained for E = 50 that was
exploited to process the bi-temporal images and retrieve the
final change map. The proposed method performed better than
the SoA ones. It detected the changes in a more accurate way
than SoA methods (Table XI). It reduced the MAs by using
the standard-deviation-based strategy with respect to CVA-
MRF [51] of 3.73%. The proposed method detected more
MAs than the semiparametric CVA using MRF [52], but it
sharply reduced the OE from 40567 of [52] to 24637. Both
the proposed method and the self-supervised segmentation de-
tected the changed areas with similar performance. However,
the proposed method found fewer FAs (i.e., 2.38%) than the
self-supervised segmentation (i.e., 3.9%). The strategy using
the standard deviation overestimated the changes, so it detected
more FAs than the strategy using the Canny filter.

Since most of the FAs were on the changed-area borders,
the detection of less FAs depended on the higher accuracy
of the Canny filter in identifying areas of transition between
changed and unchanged regions. The standard-deviation-based
strategy (Fig. 8a) is less accurate (Fig. 8b).

Quantitative results (Table XI) are confirmed by the qual-
itative ones (Fig. 9). We can see that the proposed method
with both strategies (Fig. 9h, 9i) provided better maps than the
SoA methods. The adaptive CVA (Fig. 9b), the self-supervised
segmentation (Fig. 9e), and the semiparametric CVA using
MRF (Fig. 9d) detected most of the changed areas, also the
small ones (i.e., the lower part of the changed area), but
showed many FAs, especially the semiparametric one. It is
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TABLE VII
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD BY VARYING THE WINDOW SIZE IN THE
STANDARD-DEVIATION-BASED RELIABILITY APPROACH. RESULTS WERE

RETRIEVED WITH IMAGES BY USING L′ = 3 MULTI-SCALE FEATURE MAPS
EXTRACTED BY A CAE TRAINED FOR E = 150 (ELBA DATASET

ACQUIRED IN AUGUST 1994 AND SEPTEMBER 1994).

Window
size FA MA TP OE Sensitivity Specificity

3× 3 0.08% 36.7% 1528 0.74% 63.3% 99.92%
5× 5 0.04% 64.08% 867 1.18% 35.92% 99.96%
7× 7 0.02% 79.25% 501 1.44% 20.75% 99.97%

TABLE VIII
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD BY VARYING THE WINDOW SIZE IN THE
STANDARD-DEVIATION-BASED RELIABILITY APPROACH. RESULTS WERE

RETRIEVED WITH IMAGES BY USING L′ = 3 MULTI-SCALE FEATURE MAPS
EXTRACTED BY A CAE TRAINED FOR E = 200 (ELBA DATASET

ACQUIRED IN AUGUST 1992 AND SEPTEMBER 1994).

Window
size FA MA TP OE Sensitivity Specificity

3× 3 0.65% 13.76% 4533 1.16% 86.24% 99.35%
5× 5 0.51% 26.5% 3863 1.52% 73.5% 99.49%
7× 7 0.39% 38.96% 3208 1.89% 61.04% 99.61%

worth recalling that for the CVA-based SoA methods, an a-
priori band selection was performed before the processing as
a function of the expected kind of change (if all the spectral
channels are used, the accuracy is degraded). The feature-
selection step performed by the proposed method chose the
features in an automatic and unsupervised way with no need
for a-priori information and detected most of the changes
with fewer FAs than CVA-based SoA methods. During the
tests, we observed that the feature selection chose, for each
layer, few feature maps (seven at most) providing the most
relevant information about the change. For some layers, it
did not select any difference feature maps since none of
them had sufficiently high standard deviation values. From the
qualitative viewpoint, we can notice that the use of a standard-
deviation-based strategy provided a more homogeneous map
than the one using the Canny filter. The latter strategy retrieved
changed areas with more precise borders but created some
artifacts due to the value of the standard deviation of the
Gaussian kernel used in the Canny filter.

Experiment 4 demonstrated the effectiveness of the multi-
scale analysis by comparing the results achieved using a detail-
preserving multi-scale CD [30] with the one using single-scale
feature maps. The use of multi-scale feature maps allowed
the proposed method to detect almost all the changes, even
the small ones (Fig. 9h), whereas the single-scale feature-map
option detected only the wider changed areas and lost all the
small ones. If we look at Table XI, we can observe that the
FAs are slightly low with single-scale feature maps because
of the smoothing effect of the deeper layers, but the MAs
increase of 17.04% with respect to the multi-scale feature case.
Hence the use of a multi-scale analysis allowed preserving
the geometrical details. As last analysis, we observed that the
proposed method using the feature selection step achieved
better results than without feature selection (Table XI). It

(a) (b)

(c) (d)
Fig. 7. Change maps retrieved by using a moving window size of (b) 3× 3,
(c) 5 × 5, and (d) 7 × 7 pixels in the standard-deviation-based reliability
approach. The change maps are obtained by using L′ = 3 multi-scale feature
maps extracted by a CAE trained for E = 50 with the Elba dataset (August
1994). The change maps are retrieved by processing the images acquired in
August 1994 and September 1994 and can be compared to the reference map
(the white pixels represent no changes, and the black ones the changes).

TABLE IX
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED

METHOD BY VARYING THE WINDOW SIZE IN THE
STANDARD-DEVIATION-BASED RELIABILITY APPROACH. RESULTS WERE

RETRIEVED WITH IMAGES BY USING L′ = 2 MULTI-SCALE FEATURE MAPS
EXTRACTED BY A CAE TRAINED FOR E = 250 (INDONESIA DATASET).

Window
size FA MA TP OE Sensitivity Specificity

3× 3 5.37% 19.79% 59342 5.81% 80.21% 94.63%
5× 5 5.3% 19.82% 59317 5.75% 80.18% 94.7%
7× 7 5.3% 19.82% 59317 5.75% 80.18% 94.7%

TABLE X
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED
METHOD VS THE NUMBER OF EPOCHS ON THE CAE TRAINING AND BY

USING A STANDARD-DEVIATION-BASED AND CANNY-FILTER-BASED
APPROACH TO FIND THE MOST RELIABLE AREAS (GRANADA DATASET).

E
Reliability
approach FA MA TP OE Sens. Spec.

50 Canny 2.14% 14.16% 67962 3.3% 85.83% 97.86%
Std. dev. 2.38% 8.71% 72279 2.99% 91.29% 97.62%

100 Canny 2.64% 21.52% 62138 4.45% 78.48% 97.36%
Std. dev. 2.82% 19.61% 63650 4.43% 80.39% 97.18%

150 Canny 1.77% 16.54% 66081 3.19% 83.46% 98.23%
Std. dev. 1.98% 11.67% 69935 2.91% 88.33% 98.02%

200 Canny 2.71% 19.06% 64088 4.28% 80.94% 97.29%
Std. dev. 3.08% 15.4% 66984 4.26% 84.6% 96.92%

250 Canny 2.59% 20.36% 63055 4.3% 79.64% 97.41%
Std. dev. 2.77% 16.51% 66102 4.09% 83.49% 97.23%

300 Canny 2.1% 15.34% 67033 3.37% 84.66% 97.9%
Std. dev. 2.02% 13.56% 68438 3.13% 86.44% 97.98%

resulted in fewer FAs. This is supported by qualitative analysis,
e.g., compare the bottom part of the changed area in Fig.
9h) and Fig. 9g. Hence the feature selection removed the
feature maps providing less information about the change, thus
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TABLE XI
FAS, MAS, SENSITIVITY, SPECIFICITY AND OE (IN NUMBER OF PIXELS

AND PERCENTAGE) OBTAINED BY THE SOA METHODS AND THE
PROPOSED ONE. WE TESTED THE PROPOSED METHOD USING THE TWO

RELIABILITY APPROACHES, A SINGLE-SCALE FEATURE, AND NO FEATURE
SELECTION (GRANADA DATASET).

Method FA MA Sens. Spec. OE
Pixels %

Adaptive
CVA [50] 2.69% 12.49% 87.51% 97.31% 29927 3.59%

CVA +
MRF [51] 2.1% 12.44% 87.56% 97.9% 25523 3.06%

Semipar. CVA
+ MRF [52] 5.36% 0.77% 99.23% 94.64% 40567 4.86%

Self-supervised
segm. [22] 3.42% 8.4% 91.6% 96.58% 32145 3.9%

Proposed
w/ std. dev. 2.38% 8.71% 91.29% 97.62% 24637 2.95%

Proposed
w/ Canny 2.14% 14.16% 85.84% 97.86% 27187 3.26%

Proposed w/
single-scale feat. 1.92% 25.75% 74.25% 98.08% 34683 4.21%

Proposed
no feat. sel. 3.39% 18.95% 81.05% 96.61% 40296 4.83%

(a) (b)
Fig. 8. Reliability maps retrieved using the standard-deviation-based strategy
on the resolution level (a) l′sel = 1 (the highest spatial resolution), and the
Canny-filter-based strategy on (b) l′sel = 1. These maps are derived from
the feature maps retrieved by two layers of the CAE trained for E = 50
epochs using the Granada dataset. (The white pixels represent reliable areas,
the black ones the no reliable areas at l′sel = 1.)

improving the detection.

F. Experiments 3 and 4: Elba dataset

On this dataset, we tested the proposed method by using
the three scenarios described is Section III-A. Experiment 3
evaluated the method against E in three scenarios to observe
its robustness and the range of epochs in which it achieves
stable performance. We used the reference maps to estimate
the performance of the method during the tests. By increasing
E, the accuracy of the method improved by decreasing the
FA rate until a specific epoch before dropping due to the
overfitting. At E = 300, 150, 200, the method achieved the
best trade-off between OE, MAs, and FAs for the first (Tab
XII), the second (Table XIII), and the third scenario (Table
XIV), respectively. To test the first and the third scenario, we
used a model trained for E = 300 and E = 200, respectively.
For the second scenario, we used a model trained for E = 150.
As in Section III-E, we tested our method using both the
strategies to retrieve the reliability maps. As we can observe in
Tabs. XII, XIII, and XIV, the method provided differences in

TABLE XII
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED
METHOD VS THE NUMBER OF EPOCHS ON THE CAE TRAINING AND BY

USING A STANDARD-DEVIATION-BASED AND CANNY-FILTER-BASED
APPROACH TO FIND THE MOST RELIABLE AREAS (IMAGES OF ELBA

DATASET ACQUIRED IN AUGUST 1992 AND AUGUST 1994).

E
Reliability
approach FA MA TP OE Sens. Spec.

50 Canny 0.6% 15.27% 2408 0.91% 84.72% 99.4%
Std. dev. 0.64% 9.82% 2563 0.84% 90.18% 99.35%

100 Canny 0.47% 25.12% 2128 0.98% 74.88% 99.53%
Std. dev. 0.51% 20.87% 2249 0.94% 79.13% 99.49%

150 Canny 0.56% 17.87% 2334 0.93% 82.12% 99.44%
Std. dev. 0.6% 12.84% 2477 0.86% 87.16% 99.4%

200 Canny 0.43% 22.77% 2195 0.9% 77.23% 99.57%
Std. dev. 0.43% 18.58% 2314 0.82% 81.42% 99.57%

250 Canny 0.42% 22.77% 2195 0.89% 77.23% 99.58%
Std. dev. 0.48% 16.89% 2362 0.82 83.11% 99.52%

300 Canny 0.4% 19.18% 2297 0.8% 80.82% 99.6%
Std. dev. 0.42% 15.13% 2412 0.73% 84.87% 99.58%

TABLE XIII
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED
METHOD VS THE NUMBER OF EPOCHS ON THE CAE TRAINING AND BY

USING A STANDARD-DEVIATION-BASED AND CANNY-FILTER-BASED
APPROACH TO FIND THE MOST RELIABLE AREAS (IMAGES OF ELBA

DATASET ACQUIRED IN AUGUST 1994 AND SEPTEMBER 1994).

E
Reliability
approach FA MA TP OE Sens. Spec.

50 Canny 0.02% 23.24% 1853 0.44% 76.76% 99.98%
Std. dev. 0.02% 39.44% 1492 0.72% 60.56% 99.98%

100 Canny 0.01% 33.89% 1596 0.62% 66.11% 99.99%
Std. dev. 0.01% 43.5% 1364 0.78% 56.5% 99.99%

150 Canny 0.02% 23.2% 1854 0.43% 76.8% 99.98%
Std. dev. 0.08% 36.7% 1528 0.74% 63.3% 99.92%

200 Canny 0.02% 28.21% 1733 0.53% 71.79% 99.98%
Std. dev. 0.02% 44.74% 1334 0.82% 55.26% 99.98%

250 Canny 0.04% 25.14% 1807 0.48% 74.86% 99.96%
Std. dev. 0.02% 52.9% 1137 0.96% 47.1% 99.98%

300 Canny 0.02% 40.27% 1442 0.74% 59.73% 99.98%
Std. dev. 0.002% 53.23% 1129 0.95% 46.77% 99.99%

terms of FAs and MAs by exploiting the two strategies used to
retrieve the reliability maps. By using the standard-deviation-
based strategy, it minimized the MAs, while detecting more
FAs. By using the Canny-filter-based strategy, the method
reduced the FAs with a slight increase of the MAs.

We can notice that the proposed method provided compa-
rable or better results than SoA methods in all the scenarios
(Tables XV, XVI, XVII). It generally detected most of the
changed areas with a reduction of the OE with respect to
the SoA methods. Only in the second scenario, the SoA
methods achieved better performance than the proposed one.
However, the SoA method performance dropped in the other
two scenarios, even with an a-priori spectral-band selection.
Overall, the SoA technique results in unstable performance
through the scenarios, whereas the proposed method achieved
stable results in all of them without the need to use any a-priori
band-selection process.

The qualitative analysis of the CD maps (Fig. 10, 11, 12)
confirmed the quantitative results. The SoA method results
varied through different scenarios. In the second scenario
(Fig. 11), the SoA methods detected the changed area slightly
more accurately than the proposed one. However, in scenarios



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 12

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 9. Comparisons between (a) the reference map of the dataset of Granada and (b) the maps achieved by applying adaptive CVA, (c) CVA using a MRF
based method, (d) semiparametric CVA using MRF, (e) the self-supervised segmentation, the proposed method exploiting (f) a single-scale feature, (g) no
feature selection, (h) standard-deviation-based reliability maps, and (i) canny filter. (The white pixels represent no changes, the black pixels the changes, and
the grey ones are no data)

one and three, SoA techniques incurred in higher FAs (Fig.
10b, 10c 10e) or underestimated the oldest change (Fig. 10d,
12d), which may present vegetation regrowth, and therefore
has a weaker spectral contrast. Whereas the proposed method
detected all the changes in every tested scenario. Through the
use of the CAE and the automatic feature selection process, it
handled the multiple spectral bands of the considered images
by selecting the most relevant feature maps. The CVA-based
SoA methods needed to select the bands before the processing.
Otherwise, if all the spectral bands were used, the accuracy
decreased.

In the Experiment 4, we can observe that the multi-scale
approach detected the changed areas more accurately than the
single-scale one. In some scenarios, the method using single-
scale feature maps detected more changed areas. However,
it did not preserve the geometrical details and the changed-
area borders, whereas the proposed method using multi-scale

features detected the changed areas with more accurate con-
tours by keeping the spatial information and demonstrating
the goodness of selected feature maps. In the second sce-
nario, the use of all the feature maps achieved comparable
results with respect to the feature-selection case. However,
the feature selection allowed achieving better and more stable
performance through the different scenarios and minimizing
the error. Following, we provide further observation of the
experimental results for each scenario:

1) Scenario 1: Self-supervised segmentation (the SoA
method achieving the best performance) achieved comparable
performance in the detection of changed areas with respect
to the proposed method. However, the latter generally found
fewer OE than self-supervised segmentation. In the qualitative
results, we can observe that the proposed method accurately
detected the changed area with few FAs (Fig. 10h, 10i),
whereas the SoA ones underestimated it (Fig. 10d) or found
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 10. Comparisons between (a) the reference map of the dataset of Elba acquired in August 1992 and August 1994, and (b) the results achieved by
applying adaptive CVA, (c) CVA using a MRF based method, (d) semiparametric CVA using MRF, (e) the self-supervised segmentation, the proposed method
exploiting (f) a single-scale feature, (g) no feature selection, (h) standard-deviation-based reliability maps, and (i) canny filter. (The white pixels represent no
changes, the black pixels the changes, and the grey ones are no data)

TABLE XIV
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED
METHOD VS THE NUMBER OF EPOCHS ON THE CAE TRAINING AND BY

USING A STANDARD-DEVIATION-BASED AND CANNY-FILTER-BASED
APPROACH TO FIND THE MOST RELIABLE AREAS (IMAGES OF ELBA

DATASET ACQUIRED IN AUGUST 1992 AND SEPTEMBER 1994).

E
Reliability
approach FA MA TP OE Sens. Spec.

50 Canny 0.77% 24.51% 3968 1.7% 75.49% 99.23%
Std. dev. 0.83% 18.68% 4274 1.53% 81.32% 99.17%

100 Canny 0.59% 23.12% 4041 1.47% 75.46% 99.48%
Std. dev. 0.64% 18.7% 4273 1.35% 81.3% 99.36%

150 Canny 0.52% 24.54% 3966 1.46% 75.46% 99.48%
Std. dev. 0.58% 26.88% 3843 1.6% 73.11% 99.42%

200 Canny 0.58% 19.14% 4250 1.3% 80.86% 99.42%
Std. dev. 0.65% 13.76% 4533 1.16% 86.24% 99.35%

250 Canny 0.49% 23.21% 4036 1.37% 76.79% 99.55%
Std. dev. 0.52% 22.43% 4077 1.37% 77.57% 99.48%

300 Canny 0.21% 37.9% 3264 1.68% 62.1% 99.79%
Std. dev. 0.23% 36.13% 3357 1.62% 63.87% 99.77%

many errors (Fig. 10b, 10c, 10e). This showed the effectiveness
of the proposed method in the detection of changes with

low spectral contrast in time due to vegetation regrowth.
From the Experiment 4, we can observe that the single-
scale option detected more changed areas than the multi-scale
one (Table XV). However, the multi-scale method preserved
the geometrical details and retrieved more accurate borders
(Fig. 10h). The use of feature selection minimized the OE. It
resulted in less FAs (Fig. 10h) than without feature selection
(Fig. 10g). This proved that the feature selection filters out
no-informative feature maps.

2) Scenario 2: The proposed method achieved comparable
performance than the best SoA method (i.e., the CVA using
MRF). However, the proposed method found fewer FAs (Fig.
11h, 11i) than the self-supervised segmentation (Fig. 11e), and
detected most of the changed area especially using the Canny-
based reliability approach (Fig. 11i). The Canny filter delin-
eated borders accurately (Fig. 13b). The standard-deviation-
based strategy classified as not reliable many changes in
the borders between ωc and ωnc (Fig. 13a). The results
achieved in the Elba dataset confirmed that the Canny-filter
strategy is more accurate in detecting borders. The proposed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 11. Comparisons between (a) the reference map of the dataset of Elba acquired in August 1994 and September 1994, and (b) the results achieved by
applying adaptive CVA, (c) CVA using a MRF based method, (d) semiparametric CVA using MRF, (e) the self-supervised segmentation, the proposed method
exploiting (f) a single-scale feature, (g) no feature selection, (h) standard-deviation-based reliability maps, and (i) canny filter. (The white pixels represent no
changes, the black pixels the changes, and the grey ones are no data)

method increased its sensitivity by 28.62% using single-scale
feature maps with less accurate borders and geometrical details
(Fig. 11f). The proposed method using multi-scale features
preserved the spatial information and retrieved more accurate
borders but detected slightly fewer changes (Fig. 11h) due to
the standard deviation reliability approach. Without applying
the feature selection, the method achieved comparable perfor-
mance with respect to the feature selection option (Fig. 11g).

3) Scenario 3: Adaptive CVA detected fewer FAs than the
proposed method at the cost of decreasing the sensitivity by
21.29%. The proposed method also found fewer OE than the
adaptive CVA. From the qualitative results, we can observe
that the proposed method accurately detected both the changed
areas (Fig. 12h, 12i), and therefore the two kinds of change.
Whereas the SoA methods found the most recent and thus
stronger one but missed most of the older ones mitigated
by vegetation regrowth (Fig. 12b, 12c). This is because the
proposed method analyzed all the spectral bands. It is worth
noting that the proposed method outperformed the other DL
CD method (self-supervised segmentation) that had problems

in the detection of the two kinds of changes and found many
FAs. The proposed method using multi-scale feature maps
overcame the single-scale case since it detected more changed
areas with fewer FAs than the single-scale option. It also
preserved better the changed-area borders, especially the ones
of the most recent change (Fig. 12h), than using single-scale
feature maps (Fig. 12f). The proposed method using the feature
selection minimized the OE. The feature selection chose only
the informative feature maps that helped the method detecting
the changed areas (Fig. 12h), whereas, by using all the feature
maps, some changes may not be found (Fig. 12g).

G. Experiments 3 and 4: Indonesia dataset

In Experiment 3, the proposed method using a CAE trained
with the Indonesia dataset for E = 50 detected most of
the changed areas. However, it is sensitive to changes due
to environmental conditions, so it found many FAs. With
the increase of E, the method detected fewer changed areas,
but it decreased the FA rate of 8.19%. With E ≥ 100, the
CD results were stable (Table XVIII). The standard-deviation-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 12. Comparisons between (a) the reference map of the dataset of Elba acquired in August 1992 and September 1994, and (b) the results achieved by
applying adaptive CVA, (c) CVA using a MRF based method, (d) semiparametric CVA using MRF, (e) the self-supervised segmentation, the proposed method
exploiting (f) a single-scale feature, (g) no feature selection, (h) standard-deviation-based reliability maps, and (i) canny filter. (The white pixels represent no
changes, the black pixels the changes, and the grey ones are no data)

(a) (b)
Fig. 13. Reliability maps retrieved using the standard-deviation-based strategy
on the resolution level (a) l′sel = 1 (the highest spatial resolution), and
the Canny-filter-based strategy (b) l′sel = 1. These maps derive from the
feature maps retrieved by the layers of the CAE trained for E = 150 epochs
using images acquired in August 1994 and September 1994. (The white pixels
represent reliable areas, the black ones the no reliable areas at l′sel = 1.)

based strategy detected more change areas but with more FAs,
whereas the Canny-filter-based reliability approach was more
conservative than the other one, as in the other datasets. It
detected fewer changed areas but with less FAs, and it had

slightly smaller OE than the standard-deviation strategy. The
CD method achieved the best trade-off between TPs, MAs,
and FAs using a model trained for E = 250 with the Canny-
based reliability approach. For this reason, we exploited these
settings to process the bi-temporal images and retrieve the
change map.

The proposed method outperformed the SoA ones since it
detected most of the changed areas by keeping the number
of FAs relatively low (Table XIX). The semiparametric CVA
using MRF [52] detected more changed areas than the pro-
posed method using the Canny-based strategy. However, the
proposed method increased the specificity by 16.31% with
respect to the semiparametric CVA using MRF and incurred
in the lowest number of OE (i.e., 126886). The qualitative
results confirmed the quantitative ones since the SoA methods
detected most of the changed areas but found many FAs due
to the cloud coverage (Fig. 14b). The proposed methods using
both the reliability approaches achieved good performance. It
detected most of the changed areas without the FAs due to
the cloud coverage (Fig. 14e, 14f). However, the SoA and
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TABLE XV
FAS, MAS, SENSITIVITY, SPECIFICITY AND OE (IN NUMBER OF PIXELS

AND PERCENTAGE) OBTAINED BY THE SOA METHODS AND THE
PROPOSED ONE. WE TESTED THE PROPOSED METHOD USING THE TWO

RELIABILITY APPROACHES, A SINGLE-SCALE FEATURE, AND NO FEATURE
SELECTION (IMAGES OF ELBA DATASET ACQUIRED IN AUGUST 1992 AND

AUGUST 1994).

Method FA MA Sens. Spec. OE
Pixels %

Adaptive
CVA [50] 0.42% 25.72% 74.28% 99.58% 1281 0.95%

CVA +
MRF [51] 1.04% 26.43% 73.57% 98.96% 2123 1.57%

Semipar. CVA
+ MRF [52] 0.21% 46.66% 53.34% 99.79% 1607 1.19%

Self-supervised
segm. [22] 0.64% 14.32% 85.68% 99.36% 1252 0.93%

Proposed
w/ std. dev. 0.42% 15.13% 84.87% 99.58% 988 0.73%

Proposed
w/ Canny 0.4% 19.18% 80.82% 99.6% 1078 0.8%

Proposed w/
single-scale feat. 0.88% 10.49% 89.51% 99.12% 1457 1.08%

Proposed
no feat. sel. 0.56% 14.67% 85.33% 99.44% 1158 0.86%

TABLE XVI
FAS, MAS, SENSITIVITY, SPECIFICITY AND OE (IN NUMBER OF PIXELS

AND PERCENTAGE) OBTAINED BY THE SOA METHODS AND THE
PROPOSED ONE. WE TESTED THE PROPOSED METHOD USING THE TWO

RELIABILITY APPROACHES, A SINGLE-SCALE FEATURE, AND NO FEATURE
SELECTION (IMAGES OF ELBA DATASET ACQUIRED IN AUGUST 1994 AND

SEPTEMBER 1994).

Method FA MA Sens. Spec. OE
Pixels %

Adaptive
CVA [50] 0.04% 20.38% 79.62% 99.96% 539 0.4%

CVA +
MRF [51] 0.1% 1.57% 98.43% 99.9% 176 0.13%

Semipar. CVA
+ MRF [52] 0.01% 16.11% 83.89% 99.99% 397 0.29%

Self-supervised
segm. [22] 0.32% 17.69% 82.31% 99.68% 853 0.63%

Proposed
w/ std. dev. 0.08% 36.7% 63.3% 99.92% 998 0.74%

Proposed
w/ Canny 0.02% 23.2% 76.8% 99.98% 581 0.43%

Proposed w/
single-scale feat. 0.5% 8.08% 91.92% 99.5% 861 0.64%

Proposed
no feat. sel. 0.09% 28.96% 71.04% 99.91% 815 0.6%

proposed methods detected some changed areas not present in
the reference map. Those are due to the vegetation regrowth
not considered in the reference map that only provides infor-
mation about deforestation.

Experiment 4 proved the effectiveness of the multi-scale
analysis in the proposed method. Using the multi-scale analy-
sis (Fig. 14f), the CD method is less sensitive to the changes
due to the cloud coverage than the single-scale option (Fig.
14c). The latter detected most of the changed areas but was
less accurate than the multi-scale approach in the identification
of the related borders. These observations were confirmed by
the quantitative results, where both the sensitivity and speci-
ficity of the proposed method using the multi-scale analysis
increased with respect to the single-scale ones (Table XIX).
Finally, the proposed method without the feature selection

TABLE XVII
FAS, MAS, SENSITIVITY, SPECIFICITY AND OE (IN NUMBER OF PIXELS

AND PERCENTAGE) OBTAINED BY THE SOA METHODS AND THE
PROPOSED ONE. WE TESTED THE PROPOSED METHOD USING THE TWO

RELIABILITY APPROACHES, A SINGLE-SCALE FEATURE, AND NO FEATURE
SELECTION (IMAGES OF ELBA DATASET ACQUIRED IN AUGUST 1992 AND

SEPTEMBER 1994).

Method FA MA Sens. Spec. OE
Pixels %

Adaptive
CVA [50] 0.5% 35.05% 64.95% 99.5% 2493 1.85%

CVA +
MRF [51] 0.55% 38.96% 61.04% 99.45% 2759 2.04%

Semipar. CVA
+ MRF [52] 0.56% 38.05% 61.95% 99.44% 2723 2.02%

Self-supervised
segm. [22] 0.52% 35.18% 64.82% 99.48% 2517 1.86%

Proposed
w/ std. dev. 0.65% 13.76% 86.24% 99.35% 1568 1.16%

Proposed
w/ Canny 0.58% 19.14% 80.86% 99.42% 1758 1.3%

Proposed w/
single-scale feat. 0.89% 14.38% 85.62% 99.11% 1914 1.42%

Proposed
no feat. sel. 0.62% 18.38% 81.62% 99.38% 1769 1.31%

TABLE XVIII
FAS, MAS, TPS, OE, SENSITIVITY AND SPECIFICITY OF THE PROPOSED
METHOD VS THE NUMBER OF EPOCHS ON THE CAE TRAINING AND BY

USING A STANDARD-DEVIATION-BASED AND CANNY-FILTER-BASED
APPROACH TO FIND THE MOST RELIABLE AREAS (INDONESIA DATASET).

E
Reliability
approach FA MA TP OE Sens. Spec.

50 Canny 12.78% 16.35% 61885 12.89% 83.65% 87.22%
Std. dev. 13.76% 13.1% 64288 13.74% 86.9% 86.24%

100 Canny 4.59% 26.11% 54663 5.25% 73.89% 95.41%
Std. dev. 5.15% 22.31% 57473 5.68% 77.68% 94.85%

150 Canny 4.74% 25.82% 54875 5.39% 74.18% 95.26%
Std. dev. 5.34% 22.2% 57552 5.86% 77.78% 94.66%

200 Canny 4.66% 23.61% 56512 5.25% 76.39% 95.34%
Std. dev. 5.28% 20.38% 58901 5.75% 79.61% 94.71%

250 Canny 4.77% 21.97% 57724 5.31% 78.03% 95.23%
Std. dev. 5.3% 19.82% 59317 5.75% 80.18% 94.7%

300 Canny 4.89% 23.32% 56729 5.46% 76.68% 95.11%
Std. dev. 5.57% 19.79% 59336 6.01% 80.21% 94.43%

detected more changed areas than the one with feature se-
lection. However, it incurred in more OE (i.e., 317535) than
the proposed method using the feature selection (i.e., 126886).
In particular, it increased the FA rate by 8.59%. Using all the
features extracted by the CAE, the CD method is sensitive to
the changes due to environmental conditions (Fig. 14d). The
feature selection removed the feature sensitive to this kind of
changes and allowed reducing the FAs (Fig. 14f).

IV. CONCLUSION

We have proposed a multi-scale Change-Detection (CD)
method that exploits the spatial-context feature maps retrieved
by a Convolutional Autoencoder (CAE). We tested our method
using three datasets composed of bi-temporal images acquired
by Landsat-5, Landsat-8 and Sentinel-2 sensors. The proposed
technique can accurately detect the changes by processing all
the spectral bands of the considered images with no a-priori
band-selection, as required by other SoA methods to optimize
results. The CAE aggregates and processes the spectral bands,
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(a) (b) (c)

(d) (e) (f)
Fig. 14. Comparisons between (a) the reference map of the Indonesia dataset and the change detection maps obtained by (b) the semiparametric CVA using
MRF, the proposed method exploiting (c) a single-scale feature, (d) no feature selection, (e) standard-deviation-based reliability maps, and (f) canny filter.
(The white pixels represent no changes, the black pixels the changes, and the grey ones are no data)

TABLE XIX
FAS, MAS, SENSITIVITY, SPECIFICITY AND OE (IN NUMBER OF PIXELS

AND PERCENTAGE) OBTAINED BY THE SOA METHODS AND THE
PROPOSED ONE. WE TESTED THE PROPOSED METHOD USING THE TWO

RELIABILITY APPROACHES, A SINGLE-SCALE FEATURE, AND NO FEATURE
SELECTION (INDONESIA DATASET).

Method FA MA Sens. Spec. OE
Pixels %

Adaptive
CVA [50] 16.22% 24.45% 75.55% 83.78% 393992 16.48%

CVA +
MRF [51] 10.84% 33.18% 66.82% 89.16% 275715 11.53%

Semipar. CVA
+ MRF [52] 21.08% 11.7% 88.3% 78.92% 497070 20.79%

Self-supervised
segm. [22] 8.11% 54.83% 45.17% 91.89% 228391 9.55%

Proposed
w/ std. dev. 5.3% 19.82% 80.18% 94.7% 137488 5.75%

Proposed
w/ Canny 4.77% 21.97% 78.03% 95.23% 126886 5.31%

Proposed w/
single-scale feat. 5.87% 23.83% 76.17% 94.13% 153570 6.42%

Proposed
no feat. sel. 13.36% 10.67% 89.33% 86.64% 317535 13.28%

and the automatic feature selection step chooses the most
relevant feature maps representing the changes. The proposed
method achieved stable performance by varying the number of
epochs during the training of the CAE feature extractor. It also

obtained similar performance in different scenarios. This is
mainly due to the capability of the CAE to automatically learn
effective features during the unsupervised training. It is worth
noting that supervised and transfer-learning based methods
may provide better performance when labeled multi-temporal
data or suitable pre-trained network are available, respectively.
However, the proposed method represents an effective alter-
native in many applications where these requirements cannot
be satisfied. It improves the performance of other SoA CD
methods and does not require a-priori band selection.

In future activities, we plan to test the method on other
kinds of changes (such as urban changes or floods) and data
(i.e., Sentinel 1). We want to develop a multi-change detection
strategy and design a hierarchical loss function for CAE
training that allows preserving the spatial information of the
hidden-layer feature maps.
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