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Abstract—The problem addressed in this paper is the localisa-
tion of a mobile robot using a combination of on-board sensors
and Ultra-Wideband (UWB) beacons. By using a discrete-time
formulation of the system’s kinematics, we identify the geometric
conditions that make the system globally observable and cast
the state estimation problem into the framework of least-square
optimisation. The observability filter thus obtained is remarkably
different from classic Bayesian filters, such as the Kalman Filter,
since it does not need a-priori stochastic models of process and
measurement uncertainty contributions and thus proves to have
better performance than the Kalman filters if such contributions
are partly unknown or differ from the expected values. A second
important outcome of this work is the analytical study of the
uncertainty propagation. The effectiveness of the designed filter,
the validity of the theoretical analysis of estimation uncertainties
and the comparisons with a state-of-the-art extended Kalman
filter (EKF) are corroborated by extensive simulations and are
validated experimentally.

I. INTRODUCTION

Accurate robot positioning is essential for its correct nav-
igation [1]. Unfortunately, in indoor scenarios the Global
Positioning System (GPS) signals are not strong enough to
provide ubiquitous localisation. Therefore, a number of al-
ternative technological solutions have to be used for robot
position tracking. They include (but are not limited to) power
fingerprinting of Wi-Fi signals [2], detection of radio frequency
identification (RFID) tags [3], [4], computer vision techniques
using both natural [5] and artificial landmarks [6]–[8], and
Light Detection and Ranging (LiDAR) sensors [9]. Particularly
relevant to this paper are the multilateration solutions that
exploit the distance measured from a set of wireless nodes
(briefly referred to as anchors in the following [10]), with
a known position in a given reference frame. The distance
from each anchor node can be estimated indirectly from the
Received Signal Strength Indication (RSSI) values [11], [12]
or from the Time-of-Arrival (ToA), the Time-Difference-of-
Arrival (TDoA) or Round-Trip Time (RTT) of messages ex-
changed between each anchor node and the wireless transceiver
installed on the robot.

Some of the most promising wireless solutions for indoor
localisation rely on Ultra-Wideband (UWB) signals [13]. The
key advantage of UWB-based ranging is that the ToA or RTT
values can be measured at a low level with a much higher
accuracy and precision than using other wireless technologies.
As a result, the uncertainty associated with distance mea-
surements is in the order of a few centimetres. Moreover,
the recent availability of new-generation smaller and low-
cost transceivers offering decimeter-level accuracy (e.g., the

DecaWave DW1000 [14]) has lowered the adoption barriers
for this technology.

Indoor localisation is subject to two conflicting require-
ments: on one hand, in many applications planar position-
ing uncertainty should be at most in the order of a few
centimetres, with an orientation uncertainty in the order of
a few degrees. On the other, the infrastructural cost and
its maintenance (which heavily depends on the number of
anchor nodes deployed) should be kept as low as possible.
With these considerations in mind, it becomes imperative
to understand: i) how to provide accurate localisation with
the smallest possible number of anchors; ii) how to merge
the dead-reckoning information from low-cost proprioceptive
sensors (e.g., inertial measurement units or odometers) with a
variable (and sometimes sporadic) amount of distance values
from the wireless anchor nodes within the detection range
of the transceiver installed on the robot; iii) how to evaluate
the overall localisation uncertainty in order to meet desired
performance requirements.

The first issue is tightly related to the observability prob-
lem: i.e., deciding if the unknown state of the robot can be
reconstructed from a time series of measured quantities that
are also functions of the system state. Similar observability
studies have been proposed in the past for collaborative local-
isation [15] and for leader–follower formations [16]. Examples
of observability analyses for localisation problems are also
reported for instance in [7], [17]. However, most of these
results are local, meaning that they guarantee the convergence
of the estimated state to the actual one only if the initial
estimate is close enough. This paper instead builds on previous
results on global observability [18], which ensure convergence
of the estimated state to the actual one for any initial estimate
of the state. The main benefit of a global observability analysis
is that it can be used to define a dynamic state estimator,
namely a filter, that reconstructs, in a finite time, the robot’s
state (i.e., its position and orientation) from a finite sequence
of measurements.

The second and third issues above hinge on the fusion
algorithm adopted to merge dead-reckoning sensor data (which
suffer from unbounded uncertainty growth) with the distance
measures from the detected wireless anchor nodes. Data fusion
is often performed through Extended Kalman Filters (EKF) or
Unscented Kalman Filters (UKF) [19]. However, such filters
require to know the stochastic properties of both the process
noise and the random measurement uncertainty contributions
affecting the sensor data, otherwise they rely on additional
sensors [20], or on a bank of filters [21]. The structure of
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the observer adopted in this paper directly emanates from
the observability study: we collect the measured data over a
number of discrete–time steps and set up the sensor fusion
problem in terms of least–square optimisation. Contrary to
the Kalman Filtering schemes such as the EKF or the UKF,
this solution does not require any prior knowledge of the
covariance of the measurement uncertainty contributions. Even
if the accuracy of our estimates is comparable with the
accuracy of a properly tuned EKF, in practice it may happen
that process or measurement uncertainty contributions in real
operating conditions differ from those determined during the
preliminary uncertainty characterisation step. In such a case,
our approach returns much better results than the EKF since it
is actually employed in suboptimal conditions. This problem
is further stressed by the nonlinearity of both the system
and the measurement models. This paper complements and
extends the results of a previous conference paper [22] in
several respects. First, a revised notation for the discrete–time
evolution of the system is adopted to simplify the subsequent
analysis. Second, we provide a closed-form expression of state
estimation uncertainty when a two-step filter based on the
proposed global observability analysis is applied to an arbitrary
number of wireless anchor nodes. Such analytical expression of
localisation uncertainty closely matches the outcome of several
Montecarlo simulations. This result sets the basis for studying
the uncertainty propagation over multiple steps, which is the
third innovative aspect introduced in this paper. Importantly,
this study reveals the existence of two conflicting effects and
an optimal trade-off solution in the choice of the number
of past measurements that should be used for system state
(i.e., localisation) reconstruction. Finally, we report extensive
experiments and simulations that provide a conclusive and
unequivocal support to all the theoretical findings of this work.

The rest of this manuscript is structured as follows. Sec-
tion II presents the models and the observability analysis
underlying the formulation of the positioning problem. Sec-
tion III deals with the multi-step estimator design. Section V
reports several simulation results to confirm the validity and the
good performances of the proposed approach compared with
a classic EKF. Section VI reports some experimental results
collected on the field. Finally, in Section VII conclusions and
the future work directions are outlined.

II. THEORETICAL BACKGROUND

In this section, first we present the robot model, and
then we subsume the global observability analysis under the
assumption that only wireless distance measurements are used
for localisation. This analysis stems from simple algebraic
manipulations presented in [18] and formalised in [23].

A. Models

Consider a unicycle robot moving according to the follow-
ing dynamics. ẋẏ

θ̇

 =

[
v cos θ
v sin θ
ω

]
, (1)

where s(t) = [x, y, θ]T is the state of the system, θ is the
orientation of the vehicle with respect to axis Xw of the
reference frame 〈W 〉, v is the robot forward velocity and

ω is the robot angular velocity. The vehicle moves across a
space instrumented with m wireless anchor nodes (e.g., based
on UWB signals), whose coordinates (Xi, Yi) are known.
Assuming that the sampling period of the ranging system is
Ts, at each time step kTs, k ∈ N, the moving agent collects
a set of distance measures. Such values can be gathered into
vector

Yk =

Y1, kY2, k
. . .
Ym, k

 =



√
(xk −X1)

2
+ (yk − Y1)

2√
(xk −X2)

2
+ (yk − Y2)

2

. . .√
(xk −Xm)

2
+ (yk − Ym)

2

 . (2)

Assuming that during the sampling period Ts the velocities
v and ω are held constant (a customary assumption when
feedback control is applied), it is possible to find the following
discrete–time equivalent dynamics for (1), i.e.

x((k + 1)Ts) = x(kTs) +

∫ (k+1)Ts

kTs

v cos(θ(τ))dτ,

y((k + 1)Ts) = y(kTs) +

∫ (k+1)Ts

kTs

v sin(θ(τ))dτ,

θ((k + 1)Ts) = θ(kTs) + ωTs.

(3)

Denoting s((k+ 1)Ts) = sk+1 = [xk+1, yk+1, θk+1]T and
considering basic trigonometric properties, it follows that

xk+1 =

{
xk + vkTs cos θk if ωk = 0,

xk + 2 vkωk sin
(
ωk
2 Ts

)
cos
(
θk + ωk

2 Ts
)

otherwise,

yk+1 =

{
yk + vkTs sin θk if ωk = 0,

yk + 2 vkωk sin
(
ωk
2 Ts

)
sin
(
θk + ωk

2 Ts
)

otherwise,

θk+1 = θk + ωkTs.
(4)

Let us introduce the following symbols, i.e.,

φk =
ωk
2
Ts and Ak = 2

vk
ωk

sin
(ωk

2
Ts

)
. (5)

Given that when ωk → 0, then

lim
ωk→0

Ak = lim
ωk→0

2
vk
ωk

sin
(ωk

2
Ts

)
= vkTs,

expression (4) simplifies to

xk+1 = xk + Φk cos (θk)−Ψk sin (θk) ,

yk+1 = yk + Ψk cos (θk) + Φk sin (θk) ,

θk+1 = θk + 2φk,

(6)

where Φk = Ak cos (φk) and Ψk = Ak sin (φk). This simpler
formulation than the one adopted in [23] is particularly useful
for the multi-step extension proposed in Section IV. Further-
more, for the sake of brevity, the following symbols Sk and
Tk will be used to denote if, at time step k, the robot moves
straight (i.e., ωk = 0) or if it moves along a curvilinear path
(i.e., ωk 6= 0), respectively.



B. Observability analysis

In this section, we will show that the measurement data
gathered into Yk up to time kTs from a given number m of
wireless anchor nodes can be actually use to design a filter
able to estimate the robot state sk. This study can be referred
to as a global observability analysis. A system is globally
observable when its initial state s0 can be determined without
ambiguity from the series of collected measurement data. It
is worth noting that, for non-linear systems, observability is
not a structural property of the system itself, but rather of
its trajectories. Therefore, we will first consider two types of
trajectories: 1. rectilinear trajectories (Sk,∀k), 2. curvilinear
trajectories (Tk for some k). Clearly, if the forward velocity
of the robot is vk = 0 (i.e., the robot is still or rotates
on the spot), its state will be unobservable regardless of the
number of anchors available (indeed, the orientation angle θ
cannot be estimated). Therefore, we will henceforth assume
that vk 6= 0,∀k.

A first simple result with just one wireless anchor node is
subsumed in the following:

Theorem 1: Consider a robot with kinematic (4), output
function (2) and m = 1 that moves with non-null forward
velocity vk 6= 0. The system state is unobservable for any
trajectory.

The proof can be readily obtained by simply noticing that for
any rotation of the vehicle trajectory with centre in the anchor
position, even if the ranging uncertainty is negligible, the set of
measurement data is the same, which implies that the trajectory
is actually unobservable.

When m = 2 anchor devices are available, observability
depends on the type of trajectory followed, as subsumed by
the following Theorem.

Theorem 2: Consider a robot with kinematic (4), output
function (2), m = 2 that moves with non-null forward velocity
vk 6= 0. Then:

• If the system follows rectilinear trajectories (i.e.,
Sk,∀k), then its state is not globally observable;

• If the system turns twice in a row (e.g. T0T1) then
its state is globally observable if ω0Ts 6= hπ, and
ω1Ts 6= hπ , for h ∈ N.

The complete proof of this Theorem can be found in [18].
However, its rationale is quite intuitive, as it stems from the
ambiguity generated by the trajectories that are symmetric
with respect to the segment joining the two available anchor
nodes, as shown Fig. 1 for clarity. Indeed, assuming that the
two ranging anchors are in positions P1 = [X1, Y1]T and
P2 = [X2, Y2]T and the vehicle is following a straight path
Sk from position sk to sk+1, it turns out that the ranging mea-
surements (2) are Yk = [‖P1− [xk, yk]T ‖, ‖P2− [xk, yk]T ‖]T
at time kTs and Yk+1 = [‖P1 − [xk+1, yk+1]T ‖, ‖P2 −
[xk+1, yk+1]T ‖]T at time (k + 1)Ts. As can be noticed from
Fig. 1, the same ranging measurements Yk and Yk+1 would
have been collected from robot positions s?k and s?k+1, i.e.
lying on the symmetric linear path. This condition holds for an
arbitrary number of robot positions and ranging measurements
if the path remains linear, i.e. ∀sk+i, s?k+i with i ≥ 2 if the
path is Sk+i. Therefore, since the state of the system cannot be
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Fig. 1. Motion of the robot along a linear trajectory (green line) and its alias
trajectory (blue line), for which the distance values in Yk , and Yk+1 are the
same if ranging uncertainty is negligible.

estimated from an arbitrarily large set of measurements, i.e.,
the robot’s position is not observable.

In practice, the possible ambiguity is reduced to the case of
symmetric straight lines. Nonetheless, by using standard results
of nonlinear system analysis [24], it is possible to show that
the robot state is locally observable [25], as explained in [7]
as well. The bottom line of this discussion is that if we use
two anchor devices for ranging, the robot can disambiguate its
position as far as it turns for at least two time steps.

The use of m ≥ 3 non-collinear anchor nodes avoids
any ambiguity in estimating any trajectory with vk 6= 0, thus
enabling global observability if trilateration or multilateration
from the anchors is applied twice in a row when the robot
is in two different nearby positions. Indeed, as known the
Cartesian coordinates (xk, yk) of the robot as well as its initial
position can be determined from at least three distance values.
In particular, given

Y2
i,k = (xk −Xi)

2 + (yk − Yi)2 =

= X2
i + x2k + y2k + Y 2

i − 2Xixk − 2Yiyk,

with i = 1, . . . ,m, by subtracting Y2
i,k from Y2

1,k, i.e. ∆i,k =
Y2
1,k − Y2

i,k, we get

h
(m)
k =2Σ(m)

[
xk
yk

]
=


∆2,k −X2

1 − Y 2
1 +X2

2 + Y 2
2

∆3,k −X2
1 − Y 2

1 +X2
3 + Y 2

3
...

∆m,k −X2
1 − Y 2

1 +X2
m + Y 2

m

 , (7)

where

Σ(m) =


X2 −X1 Y2 − Y1
X3 −X1 Y3 − Y1

...
...

Xm −X1 Ym − Y1

 . (8)

Observe that (7) returns an estimate of the robot planar
position (xk, yk) provided that the Moore-Penrose pseudo-
inverse of Σ is invertible (which is always true if the anchor
nodes are not collinear). Finally, the trajectory angle θk can
be estimated indirectly from (6) once the pair of values
(xk, yk) and (xk+1, yk+1) in two consecutive positions are



estimated through (7). In particular, if R(φk) denotes the two-
dimensional rotation matrix of angle φk, we have that

AkR(φk)

[
cos (θk)
sin (θk)

]
=

[
xk+1 − xk
yk+1 − yk

]
, (9)

which finally returns θk = arctan
(

sin(θk)
cos(θk)

)
.

III. TWO STEPS ESTIMATOR DESIGN

As briefly explained in the Introduction, the ultimate ob-
jective of this work is to design a state estimation filter for
robot localisation based on the global observability analysis
described in Section II, regardless of the nonlinear nature of
both the system dynamic and the measurement model.

In particular, the observability analysis can be used to
design a two-step estimator, i.e. an estimator based only on
two consecutive records of distance data with m ≥ 3. This
result holds even under the realistic assumption that the linear
and angular velocities vk and ωk of the robot are affected by
additive random contributions εk and ηk, respectively, while
the wireless (e.g., UWB-based) distance measurement data
are affected by random fluctuations modelled by sequence
ρk. All uncertainty contributions are supposed to be white,
with zero mean and variances σ2

v , σ2
ω and σ2

ρ, respectively.
However, the probability density functions of such uncertainty
contributions is not relevant for the study at hand. Notice
that, for a differential-drive robot like the unicycle in (1), the
forward and angular velocities depend linearly on the speed
of two independent motors generating the angular wheels
velocity ωr and ωl the right and left wheel, respectively, i.e.
[v, ω]T = F [ωl, ωr]

T . Hence, σvω = E {εkηk} 6= 0.

If the ideal distance between the robot and the i-th anchor
node given by (2) at time kTs, is affected by a random
contribution ρi,k, the corresponding measurement result can
be modelled as

Yi, k =

√
(xk −Xi)

2
+ (yk − Yi)2 + ρi,k = Yi, k + ρi,k,

where, both here and in the following, · will denote measured
quantities. Therefore, from

Y2

i, k = Y2
i, k + ρ2i,k + 2Yi, kρi,k = Y2

i, k + ζi,k, (10)

(where ζi,k is a random variable with mean µζi,k = σ2
ρ and

variance σ2
ζi,k
≈ 4Y2

i, kσ
2
ρ given by the law of propagation of

uncertainties [26]), it follows that (7) can be rewritten as

Σ(m)

[
x̂k
ŷk

]
=

1

2
h
(m)
k +

1

2


ζ1,k − ζ2,k
ζ1,k − ζ3,k

...
ζ1,k − ζm,k

 =
1

2
h
(m)
k +


ν1,2,k
ν1,3,k

...
ν1,m,k

 ,
where ·̂ denotes an estimated quantity and ν

(m)
k =

[ν1,2,k, ν1,3,k, . . . , ν1,m,k]T is a zero–mean random vector with
covariance matrix

N
(m)
k =σ2

ρ


Y2
1, k+Y2

2, k Y2
1, k . . . Y2

1, k

Y2
1, k Y2

1, k+Y2
3, k . . . Y2

1, k
...

. . .
...

Y2
1, k Y2

1, k . . . Y2
1, k+Y2

m, k

 .
(11)

Of course, if m ≥ 3, the optimal estimates of the robot position
are given by the Weighted Least Squares (WLS) approach, i.e.[
x̂k
ŷk

]
=

1

2
(Σ(m)TN

(m)
k

−1
Σ(m))−1Σ(m)TN

(m)
k

−1
h
(m)
k . (12)

The estimation errors are defined with a tilde, i.e. x̃k = x̂k−xk
and ỹk = ŷk − yk, and are grouped in the position estimation
error vector ξk = [x̃k, ỹk]T , whose covariance matrix is

Ξ
(m)
k = (Σ(m)TN

(m)
k

−1
Σ(m))−1 =

[
σ2
x,k σxy,k

σxy,k σ2
y,k

]
, (13)

where

σ2
x,k =

σ
2m−4)
ρ

gk

∑
i∈I

m−2∏
j=1

Y2
j,k(Yim−1

− Yim)2,

σxy,k =
σ
2m−4)
ρ

gk

∑
i∈I

m−2∏
j=1

Y2
j,k(Xim−1

−Xim)(Yim − Yim−1
),

σ2
y,k =

σ
2m−4)
ρ

gk

∑
i∈I

m−2∏
j=1

Y2
j,k(Xim−1 −Xim)2.

Consider that, in the expressions above,

gk = |Σ(m)TN
(m)
k

−1
Σ(m)||N (m)

k |,
(with |M | denoting the determinant of a square matrix M ),
while the set I in (13) comprises all the permutations of
the anchor indexes {1, . . . ,m}. Thus, one element of I, say
i ∈ I, has elements i1, i2, . . . , im. Notice also that since ν(m)

k
has zero mean, the elements of ξk have zero mean as well,
thus ensuring that the filter designed on the basis of (12) is
unbiased.

Remark 1: A correct description of the covariance matrix
N

(m)
k in (11) usually is not available since the actual range

distances are unknown. However, we can either assume no
knowledge at all (in this case N (m)

k can be replaced by the
identity matrix, thus turning the WLS into a standard Least
Squares (LS) formulation) or use the measured range value
Yi,k in (10) as the best approximation of the actual values Yi,k
that are needed to fill in N (m)

k . Observe that, since the range
measurement variance σ2

ρ acts as a scaling factor of N (m)
k , it

does not play any role in the estimates of the position [x̂k, ŷk].
Hence, it is not a tuning parameter of the filter performance.

The estimate θ̂k of the orientation angle given by (9) is
affected by the uncertainty contributions acting on both φk
and the pair [x̂k, ŷk] and [x̂k+1, ŷk+1]. More precisely

φk =
Tsωk

2
=
Tsωk

2
+
Tsηk

2
= φk + αk, (14)

where αk is a zero–mean white noise with variance σ2
αk

=
σ2
ωT

2
s /4. Given the estimated orientation angle

θ̂k = arctan

(
cos(φk)(ŷk+1 − ŷk)− sin(φk)(x̂k+1 − x̂k)

sin(φk)(ŷk+1 − ŷk) + cos(φk)(x̂k+1 − x̂k)

)
,

(15)
by computing the first–order Taylor series of (15) at time step
k and recalling that the position errors ξk and ξk+1 have zero
mean, the following approximated expression is derived

θ̂k ≈ θk−αk +
1

A2
k

Bk+1ξk−
1

A2
k

Bk+1ξk+1 = θk + θ̃k, (16)



where Bk+1 = [yk+1 − yk,−(xk+1 − xk)], A2
k = (xk+1 −

xk)2+(yk+1−yk)2 (see (6)), and θ̃k is a zero–mean uncertainty
term with variance

σ2
θk

=
σ2
ωT

2
s

4
+

1

A4
k

Bk+1(Ξk + Ξk+1)BTk+1, (17)

derived from the fact that ξk and ξk+1 are uncorrelated. More-
over, the first term on the right-hand side of (17) is a function
of the motion uncertainty σ2

ω , while the second accounts for
the ranging uncertainty σ2

ρ. Notice that the Bk+1/Ak is the
unit vector oriented along the direction of motion of the robot.
Hence, Bk+1/A

2
k is the direction of motion with magnitude

1/Ak. Therefore, the smaller Ak (i.e., the smaller the forward
velocity vk or the higher the sampling time Ts in (5)), the
higher the orientation angle uncertainty becomes. Observe that
θ̂k, with variance (17), is computed from the measurement data
collected at times kTs and (k+1)Ts. Since to design a dynamic
estimator like a filter, we need the orientation angle estimate
at the same time instant of the last collected measurement, i.e.
at (k+1)Ts, we can exploit the vehicle dynamic (6) (although
affected by uncertainty) to propagate the estimate one step
forward, i.e.

θ̂k+1 = θ̂k + 2φk. (18)

As a consequence, the uncertainty contribution θ̃k+1 = θ̃k +
ηkTs affecting θ̂k+1 also exhibits zero mean and variance
σ2
θk+1

= σ2
θk

+ T 2
s σ

2
ω . Observe that σ2

θk+1
is proportional to

both the ranging variance σ2
ρ and the angular velocity variance

σ2
ω . Finally, the state estimate ŝk+1 = [x̂k+1, ŷk+1, θ̂k+1]T is

affected by an uncertainty contribution [ξTk+1, θk+1]T , whose
covariance matrix is

Γk+1 =

[
Ξk+1 Ξk+1B

T
k+1

Bk+1Ξk+1 σ2
θk+1

]
. (19)

Remark 2: θ̂k+1 is determined as a function of the esti-
mates x̂k+1 and ŷk+1. Hence, due to the correlation given by
the off-diagonal elements of Γk+1, the variance σ2

θk+1
will be

considered henceforth as a figure of merit for the performance
of the filter.

The two-step observability-based filter with m ≥ 3 anchors
can then be designed as follows:

1) Build the matrix Σ(m) in (8), set θ̂0 as the initial guess
of the robot orientation, and set k = 0;

2) Collect the measurements of the velocities vk and ωk, and
compute φk;

3) Collect the set of measurements Yi,k in (10) at time k and
builds the vector of noisy measurements Yk as in (2).
Then, build the vector h(m)

k as in (7) using the noisy
ranging measurements Yk;

4) If the LS solution is used (assuming no knowledge
about the distribution of uncertainty contributions), set
N

(m)
k = Im−1 (i.e., the identity matrix of dimension

m − 1). Otherwise, use σ2
ρ and Yk to build N

(m)
k as

in (11);
5) Estimate x̂k and ŷk using (12);
6) If k = 0, only one set of measurements is available, then

go to Step 9. Otherwise, go to the next step;

7) Use (15) to compute θ̂k−1, then apply (18) to finally have
θ̂k;

8) Return the value of ŝk = [x̂k, ŷk, θ̂k]T and the associated
covariance matrix Γk based on (19);

9) Set k = k + 1, then go to Step 2.

As a final comment, we would like to point out that if an
LS solution is considered, the statistical characterisation of all
the involved standard uncertainties needed to obtain σ2

v , σ2
ω ,

σ2
v,ω , σ2

ρ, is not needed (indeed, the ranging measurements
may be affected by different uncertainties, i.e. σ2

ρi 6= σ2
ρj , with

no effect on the proposed solution). Of course, recalling (19),
the actual estimation error is proportional to all the system
uncertainties, but their knowledge is not needed to correctly
execute the filter. This property is inherited by the multi-step
solution which is presented next.

IV. MULTISTEP STATE ESTIMATOR DESIGN

As known, increasing the number of measurements into the
Weighted LS estimator reduces the state estimation uncertainty.
We now present an extension of the previous solution exploit-
ing all the measurements available not just for steps k and k+1
as in Section III, but up to k+n. While the position estimates
at time step k can still be obtained with (12) only, we are
here interested in synthesising the observability-filter to obtain
θ̂k,n, that is the estimate of θk given all the measurements for
n steps ahead. To actually determine the optimal number of
backward steps n, we need a closed–form description for the
uncertainty affecting θ̂k,n, which is the main objective of what
follows. If (4) is applied iteratively for n steps, the following
recursive relationship results[
xk+n − xk
yk+n − yk

]
=

n−1∑
i=0

Ak+iR(Λk,i)

[
cos(θk)
sin(θk)

]
=Dn

[
cos(θk)
sin(θk)

]
,

(20)
where Λk,i = φk+i + 2

∑i−1
j=0 φk+j is the overall angular

variation over i-steps and

Dn =

[
Cn −Sn
Sn Cn

]
⇒ D−1n =

1

|Dn|

[
Cn Sn
−Sn Cn

]
,

where the components Cn and Sn can be derived from (20)
as

Cn =

n−1∑
i=0

Ak+i cos(Λk,i) = Cn−1 +Ak+n−1 cos(Λk,n−1),

Sn =

n−1∑
i=0

Ak+i sin(Λk,i) = Sn−1 +Ak+n−1 sin(Λk,n−1),

|Dn| =
n−1∑
i=0

A2
k+i + 2

n−1∑
j=i+1

Ak+iAk+j cos(Λk,i − Λk,q)

 .
(21)

A useful relation is that by definition |Dn| = C2
n + S2

n.
Recalling that the bar quantities are computed using measured
quantities (hence affected by uncertainties) and by invert-
ing (20), an extended version of (15) can be obtained, i.e.

θ̂k,n = arctan

(
Cn(ŷk+n − ŷk)− Sn(x̂k+n − x̂k)

Sn(ŷk+n − ŷk) + Cn(x̂k+n − x̂k)

)
. (22)



To derive a closed–form expression of the standard deviation of
the uncertainties of θ̃k,n = θ̂k,n−θk,n, we need to characterise
Cn and Sn in (22). To this end, we first notice the presence of
the terms Ak in (21). Therefore, recalling (5) and computing
again the Taylor expansion truncated to the first order, it
follows that

Ak+i = 2
vk+i + εk+i
ωk+i + ηk+i

sin (φk+i + αk+i) ≈ Ak+i + βk+i,

where βk+i can be regarded as a zero–mean white sequence
with variance

σ2
βk+i

=A2
k+i

[
σ2
v +

(
Ts

tan(φk+i)
− 2

ωk+i

)
σvω+

+

(
1

ω2
k+i

+
Ts

4 tan(φk+i)2
− Ts
ωk+i tan(φk+i)

)
σ2
ω

]
.

(23)

As a consequence, Cn and Sn in (22) are affected by the
uncertainty terms βk+i and αk+i (which is the one acting on
φk+i as reported in (14)), whose covariance is given by

σβk+i,αk+i =
Ak+iTs

2
σvω +

(
Ak+iT

2
s

4 tan(φk+i)
− Ak+iTs

ωk+i

)
σ2
ω.

Since we are considering n steps, we have i = 0, . . . , n − 1.
By stacking such uncertainty terms in two column vectors, i.e.
βk,n = [βk, . . . , βk+n−1]T and αk,n = [αk, . . . , αk+n−1]T ,
and recalling that are both white sequences, their covariance
matrix is diagonal and its (i + 1)-th diagonal element is
σβk+i,αk+i .

Therefore, using a first–order Taylor expansion, we have

Cn ≈ Cn +∇βCnβk,n +∇αCnαk,n = Cn + δCn ,

Sn ≈ Sn +∇βSnβk,n +∇αSnαk,n = Sn + δSn ,

where βk,n and αk,n are the vectors of the overall un-
certainty contributions affecting Ak, . . . , Ak+n−1 and angles
φk, . . . , φk+n−1 in Λk, . . . ,Λk+n−1, respectively. Hence, the
(i+1)-th elements of the gradient of Cn (for i = 0, . . . , n−1)
with respect to βk,n and αk,n are respectively

(∇βCn)i = cos(Λk,i),

(∇αCn)i = −Ak+i sin(Λk,i)− 2

n−1∑
q=i+1

Ak+q sin(Λk,q),

(∇βSn)i = sin(Λk,i),

(∇αSn)i = Ak+i cos(Λk,i) + 2

n−1∑
q=i+1

Ak+q cos(Λk,q).

Therefore, the zero-mean uncertainty term δCn affecting Cn is

σ2
δCn

=

n−1∑
i=0

σ2
βk+i

(∇βCn)2i + σ2
αk+i

(∇αCn)2i+

+ 2σβk+i,αk+i(∇βCn)i(∇αCn)i =

= σ2
δCn−1

+ σ2
βk+n−1

cos(Λk,n−1)2 + σ2
αk+n−1

A2
k+n−1·

· sin(Λk,n−1)2−Ak+n−1 sin(Λk,n−1)[2σβk+n−1,αk+n−1
+

+ 4

n−2∑
i=0

σβk+i,αk+i sin(Λk,i)− σ2
αk+i
·

· (Ak+n−1 sin(Λk,n−1)− (∇αCn−1)i)] = σ2
δCn−1

+ ∆2
δCn

,

(24)

which can be similarly obtained for σ2
δSn

acting on Sn. From
this explicit form, it can be noticed that σ2

δCn
> σ2

δCn−1
and

σ2
δSn

> σ2
δSn−1

. Moreover,

σδCn ,δSn =

n−1∑
i=0

σ2
βk+i

(∇βCn)i(∇βSn)i+

+ σ2
αk+i

(∇αCn)i(∇αSn)i + σβk+i,αk+i ·
· [(∇βCn)i(∇αSn)i + (∇αCn)i(∇βSn)i] .

It is now possible express the estimation error θ̃k,n by using
a first order Taylor approximation of (22), that is

θ̂k,n ≈ θk +
Sn
|Dn|

δCn −
Cn
|Dn|

δSn+

+
Bk+n

Bk+nBTk+n
ξk −

Bk+n
Bk+nBTk+n

ξk+n = θk + θ̃k,n,

(25)
which extends (16) to the multistep case. We can finally
generalise the result in (17), noticing that θ̃k,n is a zero-mean
random sequence with variance

σ2
θk,n

=
S2
n

|Dn|2
σ2
δCn

+
C2
n

|Dn|2
σ2
δSn
− 2

SnCn
|Dn|2

σδCn ,δSn+

+
Bk+n

(Bk+nBTk+n)2
(Ξk + Ξk+n)BTk+n,

(26)
where Ξk and Ξk+n are reported in (13). Notice that the first
three terms account for the motion uncertainties σ2

v , σ2
ω and

σvω , while the last term depends on σ2
ρ.

All the estimates θ̂k,i can be averaged together, i.e.

θ̂k =
1

n

n∑
i=1

θ̂k,i = θk +
1

n

n∑
i=1

θ̃k,i. (27)

Due to the recursive nature of (21), the correlation between
θ̂k,n and θ̂k,i (for i = 1, . . . , n − 1) is not negligible, hence
their covariance is

σθk,i,θk,j =
SiSj
|Di||Dj |

σδci ,δcj −
SiCj
|Di||Dj |

σδci ,δsj+

− CiSj
|Di||Dj |

σδsi ,δcj +
CiCj
|Di||Dj |

σδsi ,δsj+

+
Bk+i

Bk+iBTk+i
Ξk

BTk+j
Bk+jBTk+j

.

Therefore, the variance of the estimation error of θ̂k is given
by

σ2
θk

=
1

n2

n∑
i=1

σ2
θk,i

+
2

n2

n∑
i=1

n∑
j=i+1

σθk,i,θk,j .

By virtue of (24) and (26), we have that σ2
θk,n

≥ σ2
θk,n−1

and unknown. Therefore, if σ2
θk,n

grows with n less than
quadratically (which is a quite reasonable assumption), the
minimum value of σ2

θk
will be attained for n→ +∞.

However, if the measurement results up to time (k+ n)Ts
are used to retrieve θ̂k, the estimate should be propagated n



steps ahead to obtain θ̂k+n. Therefore, by using the angular
velocity values of n subsequent steps, it follows from (6) that

θ̂k+n = θ̂k +

n−1∑
i=0

(ωk+i + ηk+i)Ts. (28)

Thus, the corresponding variance is

σ2
θk+n

= σ2
θk

+ nT 2
s σ

2
ω. (29)

Observe that in (29), while a larger number of steps n reduces
σ2
θk

, the term due to σ2
ω tend to grows linearly. Therefore, an

optimal number of steps must exists which minimises (29).
Such a value that will be evaluated in the following sections.

Remark 3: When only straight-line trajectories are consid-
ered (i.e., if ωk = 0, ∀k), then βk,n and αk,n in (25) are
uncorrelated. Moreover, (23) simplifies to σ2

βk
= T 2

s σ
2
v . In

such a case, a remarkable reduction of σ2
θk,n

can be observed.
This fact can be exploited to control the trajectory of the robot
in order to achieve the minimum uncertainty associated with
θk when the observability-based filter is used for localisation.

As reported for the two-step case, the multi-step
observability-based filter with m ≥ 3 anchors can now be
derived. In particular, the only difference in this case affects
the computation of θk, hence Steps 7) and 8) of the two-step
case, which are detailed next:

7) If k < n, use (22) to compute θ̂0,i, i = 1, . . . , k, then
average those results to estimate θ̂0 by means of (27) and
then apply (28) to finally have θ̂k. Otherwise, if k ≥ n,
use (22) to compute θ̂k−n,n, then average those results to
estimate θ̂k−n by means of (27) and then apply (28) to
finally have θ̂k;

8) Return the value of ŝk = [x̂k, ŷk, θ̂k]T and the associated
covariance matrix, which is a function of (29);

V. SIMULATION RESULTS

The objective of the simulation-based analysis is twofold.
First, we want to provide sufficient evidence that the standard
uncertainties based on analytical expressions (13) and (17)
are actually close to those obtained with Monte Carlo (MC)
simulations. For the sake of brevity, only the results for the
two-step filter will be reported in the following. Then, the
results of further MC simulations are used to evaluate the
estimation performance of the proposed observability-based
filter compared with a standard EKF.

A. Verification of closed–form estimation uncertainty

To evaluate the correctness of expressions (13) and (17),
100 different initial positions s0 = [x0, y0, θ0]T of the robot
and as many anchor locations (Xi, Yi) with i = 1, . . . ,m
and m = 20 were generated with uniform distributions within
[±40 m,±40 m,±π rad] and [±40 m,±40 m], respectively.
For each initial configuration, we assumed that vk ∈ (0, 2] m/s
and ωk ∈ [−π/5, π/5] rad/s. The sampling period for position
estimation is set to Ts = 100 ms. One million realisations of
the normally distributed and white uncertainty contributions
ρk, εk and ηk were generated assuming that such sequences
exhibit zero mean and standard deviations σρ = 0.5 cm,
σv = 0.1 m/s and σω = 0.1 rad/s, respectively. Also, the
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Fig. 2. Comparison between the theoretical curves (solid lines) and the
corresponding simulation-based values (dashed lines with cross markers) of
σx, σy and |σxy | in (a) and of σθ in (b), as a function of the available anchor
nodes m. A further comparison between Monte Carlo simulations obtained
when a plain LS (dotted line) estimator is adopted instead of the WLS (dashed
lines with cross markers) is also shown in (b).

covariance of angular and forward velocity uncertainties is set
to σvω = 0.08 m rad/s2. Consider that such values are purely
indicative, since the purpose of the present simulation-based
analysis is to evaluate the correctness of (13) and (17). Fig. 2(a)
shows the comparison between the theoretical standard devi-
ations σx and σy of the robot position uncertainty and |σxy|
of (13). In particular, both the theoretical curves of σx, σy and
|σxy| (solid lines) and the corresponding curves resulting from
MC simulations (dashed lines with cross markers) are plotted
as a function of the number of anchor nodes m. Fig. 2(b) shows
a similar comparison between the theoretical behaviour of σθ
(solid line) and the corresponding simulation-based standard
deviation (dashed lines with cross markers). Therefore, (13)
and (17) can be regarded as an effective measure of the
uncertainties acting on the actual estimation error on the
system state s̃k = ŝk − sk for any given trajectory. In all
cases, the simulation results are in excellent accordance with



the theoretical curves. Moreover, from the same picture, it is
possible to see that by increasing m (namely, by increasing the
amount of available anchor nodes), state estimation uncertainty
improves, as expected. In addition, Fig. 2(b) shows also a
slight difference of the estimation uncertainty associated with
the orientation angle θ̂k when a plain LS filter (dotted line)
replaces a WLS filter (which is instead perfectly consistent
with the theoretical analysis). This result supports the claim
that good estimation performances can be achieved even if
no specific information on individual measurement uncertainty
contributions is available.

Further results, obtained by considering other potential
probability density functions of the measurement uncertainty
contributions (e.g., uniformly or Beta-distributed) are quite in
accordance with those shown in Fig. 2 and therefore are not
shown for the sake of brevity. Such results just confirm the
that the performance of the observability-based filter is weakly
dependent on the distribution of measurement uncertainty
contributions.

B. Performance of the observability-based filter

An additional set of 500 MC simulations was per-
formed to evaluate the estimation uncertainty of the proposed
observability-based filter with respect to an EKF implemented
with the following equations for the prediction step:

ŝ−k+1 = f(ŝk, vk, ωk),

P−k = FkPk−1F
T
k +GkQkG

T
k

where the superscript ·− denotes the predicted quantities,
f(ŝk, vk, ωk) is reported in (6), Fk = ∂f(ŝk,vk,ωk)

∂ŝk
, Gk =

∂f(ŝk,vk,ωk)
∂[vk,ωk]T

and Qk =

[
σ2
v σvω

σvω σ2
ω

]
. In the update step, we

have

Kk+1 = P−k+1H
T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1
,

ŝk+1 = ŝ−k+1 +Kk+1

(
Zk+1 − Ŷk+1(ŝk+1)

)
,

P−k+1 = (I3 −Kk+1Hk+1)P−k+1,

where Zk+1 is the set of the m ranging measurements at time
k+ 1, Ŷk+1(ŝk+1) is given by (2) once the predicted position
estimates x̂−k+1 and ŷ−k+1 are used instead of xk+1 and yk+1,

Hk+1 = ∂Ŷk+1(ŝk+1)
∂ŝk

, and Rk+1 = σ2
ρIm.

In the considered scenario, the robot starts from the po-
sition s0 = [x0, y0, θ0]T = [0.2 m, 0.4 m, 43 deg]. The
system evolution was simulated for 20 s with a sampling time
Ts = 100 ms. The velocity profiles v and ω are piecewise
linear. In the first 10 seconds, v = 3 m/s and ω = −57.3 deg/s
(i.e. −π rad/s, clockwise rotation). Between 10 and 15 seconds,
the velocities change linearly till reaching v = 2.4 m/s and
ω = 57.3 deg/s, respectively, (i.e. π rad/s, counterclock-
wise rotation). Finally, both velocities remain constant for
the remaining 5 seconds. Since the simulated robot moves
within a large environment, m = 4 wireless anchor nodes
placed at coordinates (Xi, Yi) = (±20,±20) (i.e. the corners
of a square of 40 m side) are considered to be sufficient
for a proper localisation. For each trial, the results obtained
with the observability-based filter are compared with those
obtained with a standard EKF, under the assumption that all
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Fig. 3. σ2
θ results for different values of σv (expressed in m/s), σω (expressed

in rad/s) and σρ (expressed in m), for the proposed observability-based filter
without any knowledge about the uncertainties (solid line) and for a properly
tuned EKF (dashed line).

the uncertainty contributions (i.e. εk, ηk and ρk) are normally
distributed, white and with a zero mean. Different values of σv ,
σω and σρ are considered. The variance σ2

θk
of the orientation

estimated with the proposed observability-based filter and with
the EKF are reported in Fig. 3.

The chosen scenario is optimal for the EKF, which operates
under the effect of known normally-distributed and white
uncertainty contributions, while the observability-based filter
relies just on the two-step filter defined in Section III, i.e.
for n = 2, using an LS solution (no a-priori knowledge on
the noise is exploited). Of course, the uncertainty of both
state estimators is affected by the ranging uncertainty σρ.
For large values of σρ (σρ ≈ 10−1 m), the EKF exhibits
better performance. For small values of σρ (σρ ≈ 10−3

m) the observability-based filter clearly dominates, while for
intermediate values (σρ in the order of cm) the performance
of the two solutions is close. The reason of this behaviour is
due to the emphasis that the observer gives to the external
measurements, whereas the EKF can shift the weight between
the internal model and the external measurements according
to the relative weight of the process and measurement noise
covariances. The results obtained with the EKF deviate from
the theoretical ones in the case of small values of σρ due to
the errors caused by the system nonlinearities.

The estimation uncertainty of the observability-based filter
can be significantly reduced by increasing the number of back-
ward steps n. However, the improvement is non monotonic
for the reasons explained in Section IV. In fact, the optimal
number of steps depends on σω , as reported in (29) and shown
in Fig. 4 for σv = 10−3 m/s, σω = 10−3 rad/s σρ = 10−1 m.
In this example, the optimal number of backward steps is
n ≈ 20. It has to be noted that this choice is a distribution-free
structural property of the observability-based filter. As shown
in the next section, the experimental data exhibit a close match
with these theoretical findings.

VI. EXPERIMENTAL RESULTS
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Fig. 4. σθ for a variable number of backward steps n when σv = 10−3 m/s,
σω = 10−3 rad/s σρ = 10−1 m.
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Fig. 5. (a) Unicycle-like vehicle adopted for the experimental validation
and representation of the reference system with the deployment of the UWB
anchors, as adopted in [19]. (b) UWB ranging error.

The effectiveness of the proposed observer-based filter is
further substantiated and discussed with experiments on an
actual robot moving in an environment equipped with 14
OptiTrack cameras covering a 12 × 8 m2 area and providing
millimetre level localisation at 125 Hz adopted as ground
truth. The unicycle-like wheeled robot and the testing area
[Fig. 5(a)] are instrumented with DecaWave EVB1000 UWB
anchors. These platforms are equipped with an STM32F105
MCU, a DW1000 UWB transceiver, and a PCB antenna.
The firmware is implemented atop a Contiki OS. Fig. 5(b)
shows the histogram of the UWB-based distance errors. The
distribution is approximately Gaussian, with zero-mean and
standard deviation σρ = 0.06 m. In the experimental setup,
one UWB platform is placed approximately on top of the
centre of the robot. Robot’s ego-motion is measured also
by two wheel encoders sampled at 50 Hz. The distance
between the UWB device on board of the robot and the
m = 5 anchors is measured through a Single-Sided Two-Way
Ranging (SS-TWR) scheme, which is based on the time-of-
flight measurement of a two-way message exchange between
two UWB nodes at a maximum rate of 200 Hz [27]. However,
in the present experimental study the actual rate for position
estimation is 50 Hz (i.e., Ts = 0.02 s), as in [19]. UWB

and odometry data are sent via WiFi to a laptop, which also
stores the ground truth data acquired from the OptiTrack vision
system. As far as the wheels encoders are concerned, after
estimating and compensating the systematic deviations due to
the differences between the nominal and actual wheel diameter
values on a direct and a circular path, the covariance of
the random uncertainty contributions affecting odometry was
modelled by using the robot movement increments of the right
and left wheels as explained in [1]. In this way, we found that
σv = 0.1 m/s and σω = 0.08 rad/s.

Four different sample trajectories, named T1 to T4, are
considered and depicted in Fig. 6 with a solid black line.
Fig. 7 depicts the standard uncertainty σθ for the four different
trajectories as a function of the number of steps for the multi-
step observability filter. From the obtained behaviours, we
have chosen an average optimal number of steps n = 88.
Notice that these curves experimentally validate the simulation
results in Fig. 4. The trajectories estimated by the EKF
and the LS multistep state observability-based estimator with
n = 88 steps are plotted in Fig. 6, with red dashed and blue
dotted lines, respectively. For a quantitative comparison, the
standard localisation uncertainties σx, σy and σθ, are reported
in Table I. As a comparison, we report also the WLS solution
(i.e., assuming to set the standard uncertainty weights equal
to the correct values, as in the EKF case). From this table
it is evident that the experimental performance of the three
algorithms (namely their accuracy) is quite similar. However,
the proposed LS observability-based filter does not embed
nor require any prior knowledge on sensor uncertainties. On
the contrary, the EKF results obtained with values of σv , σω
and σρ that are significantly smaller (over-confident) or larger
(under-confident) than the respective true standard deviation
values resulting from a preliminary sensor characterisation are
consistently worse than the results reported in Table I for all
the considered trajectories T1 to T4, as expected.

We have paid specific attention to test the robustness of the
proposed multi-step estimator by down-sampling the available
UWB measurements (i.e. if the UWB sampling frequency
decreases from 50 Hz to 1 Hz). As shown in Fig. 8 for the
four trajectories, in this situation the EKF may have large
errors (red dashed lines) since a larger sampling period implies
a change of σv and σω that, if not correctly determined,
leads to inconsistency. The effect of the nonlinearities in (1)
makes the uncertainties associated with larger sampling periods
dependent on the particular trajectory considered. However, the
proposed multi-step observability-based filter, which heavily
relies on the measurements when available, can compensate for
this phenomenon, as confirmed by the stability of the estimated
trajectories (blue dotted lines in Fig. 8).

Finally, in Table II we report the maximum, minimum and
average execution times for a single iteration of the LS and
WLS multi-step observability-based filter with n = 88 and the
EKF. It should be noted that the quantities here reported are
obtained for a Matlab implementation executed on a laptop
equipped with 2.60-GHz Intel Core i7 microprocessor and 16
GB RAM. The maximum processing times per iteration of all
estimators is less than the actual sampling time Ts = 20 ms,
thus ensuring real–time performances.



  

(T1) (T2)

  

(T3) (T4)

Fig. 6. Actual paths of the robot (solid lines), EKF estimate trajectories (red dashed lines) and paths estimated by the observability-based filter (blue dotted
lines) in four cases labelled as T1–T4. Both position estimators are qualitative efficient in tracking the trajectory examples.

EKF LS WLS
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

σx [cm] 4.1 4.2 6 2.1 4.8 4.1 6.6 2.6 4.5 4.3 5.3 2.4
σy [cm] 4 3.5 6.6 3.3 4.6 3.8 6.7 3.2 4 3.4 4.9 3.2
σθ [rad] 0.16 0.17 0.20 0.20 0.18 0.28 0.21 0.45 0.17 0.29 0.20 0.44

TABLE I. AVERAGE STANDARD UNCERTAINTIES OF ROBOT LOCALISATION OBTAINED WITH THE EKF AND THE OBSERVER-BASED FILTER,
RESPECTIVELY, (WITH BOTH WLS AND LS SOLUTIONS WITH n = 88 STEPS) FOR THE FOUR SAMPLING TRAJECTORIES IN FIGURE 6.

  

(T1) (T2)

  

(T3) (T4)

Fig. 7. σθ for different values of n (solid lines) along the four trajectories
considered and obtained with the LS approach. For comparison, the result
attained by the EKF is also reported (dashed line).

VII. CONCLUSION

In this paper we have presented a technique for the
estimation of the position and orientation of a mobile robot

  

(T1) (T2)

  

(T3) (T4)

Fig. 8. Tracking errors for the EKF (red dashed line) and the observer-based
filter (dotted blue line) with UWB sampling rates ranging from 50Hz to 1Hz.

based on the fusion of dead-reckoning data from on-board
sensors (e.g., encoders) and distance measurements from a set



EKF LS WLS
Average [ms] 0.05 0.65 2.3

Max [ms] 0.59 1 19
Min [ms] 0.04 0.13 1.7

TABLE II. COMPUTATION TIMES OF A SINGLE ITERATION OF THE
EKF, LS AND WLS (FOR THE OBSERVER-BASED FILTER WITH n = 88

STEPS) APPLIED TO THE EXPERIMENTAL DATA.

of wireless anchor nodes (e.g. based on UWB signals to ensure
higher accuracy). Previous research results have provided
conditions for the global observability of the robot state to
be estimated. The least-squares estimation technique presented
in this paper is a direct derivation of global observability.
Unlike Kalman filtering schemes, the proposed solution does
not require any specific assumption on the distributions of
the measurement uncertainty contributions associated with the
sensors employed. is not negatively affected by The analytical
structure of the filter lends itself to an elegant analysis of
state estimation uncertainty. Moreover, an optimal number of
steps that should be considered in the estimation process to
minimise positioning uncertainty can be determined. Several
simulation and experimental results corroborate and confirm
the correctness of the theoretical analysis in all its different
parts.

A few points remain open for future work. First, in our
scheme the cartesian component of the state are directly de-
rived from the latest distance measurements from the anchors.
A possible alternative approach is to set up a least-squares
scheme similar to the one used for orientation angle estimation
in order to reduce uncertainty. Second, possible spurious or
missing distance measurements (e.g., due to the presence of
occlusions in the line of sight between the robot and some
anchors) could thwart the convergence of the algorithm. The
use of robust regression could be a useful tool to tackle this
issue. Finally, we could use the proposed localisation technique
to set up and solve a Simultaneous Localisation and Mapping
(SLAM) problem.
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