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Abstract

Continued fractions have been widely studied in the field of p-adic numbers Qp, but cur-
rently there is no algorithm replicating all the good properties that continued fractions have
over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first
we propose a periodic representation, which we will call standard, for any quadratic irrational
via p-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic
representation provides simultaneous rational approximations for a quadratic irrational both
in R and Qp. Moreover given two primes p1 and p2, using the Binomial transform, we are
also able to pass from approximations in Qp1 to approximations in Qp2 for a given quadratic
irrational. Then, we focus on a specific p–adic continued fraction algorithm proving that it
stops in a finite number of steps when processes rational numbers, solving a problem left open
in [6]. Finally, we study the periodicity of this algorithm showing when it produces standard
representations for quadratic irrationals.
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1 Introduction

Continued fractions have been widely studied in the field of p-adic numbers Qp. Unlike the real case,
in Qp there is no standard algorithm for continued fractions. In fact, we can find the classical works
of Schneider [15], Ruban [13] and Browkin [5], where there are different approaches. Schneider [15]
defined an algorithm that produces p-adic continued fractions of the kind

a0 +
pb1

a1 +
pb2

a2 +
.. .

, (1)

with ai ∈ {0, 1, . . . , p− 1}. Ruban [13] modified this algorithm to obtain simple continued fractions,
i.e., continued fractions like (1) where any bi is zero. Browkin [5] proposed another algorithm for

obtaining simple continued fractions where the partial quotients belong to the set Z
[
1
p

]
. However,

none of the proposed algorithms satisfies all the good properties of classical continued fractions
in R, regarding in particular finiteness and periodicity. In R it is well known that the continued
fraction algorithm characterizes rational numbers and quadratic irrationals. Indeed, this algorithm
stops in a finite number of steps if and only if it processes a rational number and it is periodic if and
only if processes a quadratic irrational. Instead, Schneider and Ruban p-adic continued fractions
provide a finite or periodic expansion for rational numbers and they are not always periodic for
square roots of rational integers. Indeed, Ooto in his paper [10] has been the first to show that an
analogous of Lagrange’s theorem does not hold for Ruban’s continued fractions (for more details
see also [11] and [19]). In this case, recently Capuano, Veneziano and Zannier [7] have given an
effective criterion for periodicity of the expansion of quadratic irrationals for Ruban continued
fractions. Browkin definition is very interesting because it provides a finite representation for
rational numbers. However, its algorithm does not give a periodic expansion for any quadratic
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irrational, see also [3]. Thus, the problem of finding a p-adic continued fraction algorithm that it
is always periodic when it processes quadratic irrationals appears to be very interesting. For this
reason, Browkin proposed in [6] a further study, defining some new algorithms. Recently, some
authors generalized the study of continued fractions in Qp to the multidimensional case, see, e.g.,
[8], [9], [14], [18].

The paper is structured as follows. In Section 2, we start presenting and studying a periodic
representation, that we will call standard, via p-adic continued fractions for quadratic irrationals,
even if it is not determined by an algorithm. Then, in Section 3, we recall the classical algorithm
proposed by Browkin [5] and a variant proposed by the same author in [6], named Browkin al-
gorithm II, that appears to produce periodic expansions for more square roots than the original
algorithm. Here, we prove that Browkin algorithm II stops in a finite number of steps when pro-
cesses rational numbers, which is a problem left open in [6]. Finally, we study the periodicity
of this algorithm showing when it produces standard periodic representations extending a result
given in [6].

2 A standard periodic representation of quadratic irrationals
in Qp

In this section, we present a periodic representation for any quadratic irrational in Qp as a p-adic
continued fraction, thanks to a generalization of the Rédei rational functions. In what follows,
we will always use |·| for the Euclidean norm, |·|p for the p–adic norm and νp (·) for the p–adic
valuation, where p is an odd prime number.

The Rédei rational functions Cn (d, z) are defined by

Cn (d, z) :=
An (d, z)

Bn (d, z)
, where for n = 1, 2, . . . An (d, z) +Bn (d, z)

√
d =

(
z +
√
d
)n

,

and z, d ∈ Z, z 6= 0, d > 0 not square, see [12]. By an induction argument, one can prove that the
following matricial identity holds:(

z d
1 z

)n
=

(
An (d, z) dBn (d, z)
Bn (d, z) An (d, z)

)
.

We start from this last identity to give a generalization of the Rédei rational functions. In particular
we define the sequences (Nn (h, d, z))n≥0 and (Dn (h, d, z))n≥0 by means of(

z + h d
1 z

)n
=

(
Nn (h, d, z) + hDn (h, d, z) dDn (h, d, z)

Dn (h, d, z) Nn (h, d, z)

)
(2)

where h, d, z ∈ Z and the generalized Rédei rational functions are defined by Qn (h, d, z) =
Nn (h, d, z)

Dn (h, d, z)
, for n = 1, 2, . . ..

It is immediate to see that the sequence of Rédei rational functions converges to
√
d in R, for

any integer value of z 6= 0. Moreover, they are the convergents of the following continued fraction[
z,

2z

d− z2
, 2z

]
,

see [1].
In the next propositions, we show that the generalized Rédei rational functions are the con-

vergents of a certain periodic continued fraction and they converge to a root of x2 + hx − d in
R.

Lemma 1. Let

[
a0,

a1

b1
, . . . ,

ai

bi
, . . .

]
be a continued fraction with ai, bi ∈ Z, bi 6= 0, and let (pn)n≥0,

(qn)n≥0 be the sequences of numerators and denominators of convergents; then, for every n ≥ 2,
we have {

pn = anpn−1 + bnbn−1pn−2

qn = anqn−1 + bnbn−1qn−2
, where

{
p0 = a0, p1 = a0a1 + b1

q0 = b0 = 1, q1 = a1
.
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Proof. The proof is straightforward using the linear recurrence relations for numerators and de-
nominators of the convergents of an irregular continued fraction (see, e. g., Section 9.1 of [4]).

For seek of simplicity, in the following, we set Nn = Nn (h, d, z), Dn = Dn (h, d, z), Qn =
Qn (h, d, z).

Proposition 2. Given h, d ∈ Z, the generalized Rédei rational functions Qn (h, d, z) are the con-
vergents of the continued fraction [

z,−
h+ 2z

z2 + hz − d
, h+ 2z

]
(3)

for every z ∈ Z not zero.

Proof. First, by (2) we can observe that the sequences (Nn)n≥0 and (Dn)n≥0 recur with charac-
teristic polynomial

x2 − (h+ 2z)x+ z2 + hz − d, (4)

with initial conditions 1, h + z and 0, 1, respectively. By Lemma 1, we have that the purely

periodic continued fraction

[
h+ 2z,−

h+ 2z

z2 + hz − d

]
has convergents

un+2

un+1
, where (un)n≥0 is a linear

recurrence sequence with characteristic polynomial (4) and initial conditions 0, 1, i.e., (un)n≥0 =
(Dn)n≥0. Hence, the convergents of the periodic continued fraction (3) are

un+2 − (h+ z)un+1

un+1
,

and we can see that un+2 − (h+ z)un+1 = Nn+1, for every n ≥ 0.

Proposition 3. Let α1, α2 be the real roots of x2 + hx− d, for h, d ∈ Z, then

lim
n→+∞

Qn (h, d, z) = α1, if |−α1 + z| < |−α2 + z|,

lim
n→+∞

Qn (h, d, z) = α2, if |−α1 + z| > |−α2 + z|,

where |·| stands for the Euclidean norm.

Proof. Since the sequences (Nn)n≥0 and (Dn)n≥0 recur with the characteristic polynomial (4) it
is straightforward to see that −α1 + z and −α2 + z are roots of the characteristic polynomial (4),
and consequently

lim
n→+∞

Nn+1

Nn
= lim
n→+∞

Dn+1

Dn
= −α1 + z,

if |−α1 + z| > |−α2 + z|. Using the equality Nn+1 = zNn + dDn, we have

α1 = lim
n→+∞

zNn −Nn+1

Nn
= lim
n→+∞

−
dDn

Nn
,

and
lim

n→+∞
Qn = α2,

since α1α2 = −d. Similarly, we get
lim

n→+∞
Qn = α1,

when |−α1 + z| < |−α2 + z|.

We recall the usual notation for the Legendre symbol

(m
n

)
=


1 if m is a quadratic residue modulo n and m 6≡ 0 (mod n),

−1 if m is a non-quadratic residue modulo n,

0 if m ≡ 0 (mod n).

that we will use in the following theorem, where we study the convergence of the Rédei rational
functions in the field of p–adic numbers Qp.
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Theorem 4. Let p be a prime number and h, d, z ∈ Z such that z2+hz−d = p and

(
h2 + 4d

p

)
= 1.

Then
lim

n→+∞
Qn (h, d, z) = α,

where α root of x2 + hx− d in Qp. Moreover,

lim
n→+∞

Qn (h, d, z) = α1, if h+ 2z < p,

lim
n→+∞

Qn (h, d, z) = α2, if h+ 2z > p,

where

α1 = −
h

2
+

√
h2 + 4d

2
and α2 = −

h

2
−
√
h2 + 4d

2
.

Proof. First, we recall that the sequences (Nn)n≥0 and (Dn)n≥0 recur with characteristic polyno-

mial (4). Moreover by the hypothesis z2 + hz − d = p, we have

(h+ 2z)
2 −

(
h2 + 4d

)
= 4p. (5)

Since

(
h2 + 4d

p

)
= 1 we have p - h + 2z, otherwise from (5) we must have p | h2 + 4d and so(

h2 + 4d

p

)
= 0 by definition of Legendre symbol. Therefore p - Dn for any n ≥ 1, indeed for all

n ≥ 2 we have

Dn = (h+ 2z)Dn−1 − (z2 − hz + d)Dn−2 = (h+ 2z)Dn−1 − pDn−2

with D0 = 0 and D1 = 1, so for all n ≥ 1 we obtain Dn ≡ (h+2z)n−1 (mod p). From (2), we have(
z2 + hz − d

)n
= N2

n + hDnNn − dDn,

and
Q2
n + hQn − d ≡ 0 (mod pn),

i.e., (Qn)n≥0 converges to a root of x2 + hx− d in Qp.
From the recurrence relations of the sequences (Nn)n≥0 and (Dn)n≥0, we can easily see that
Nn = zDn − pDn−1, i.e.,

Qn ≡ z (mod p).

Hence, (Qn)n≥0 converges to the root α = a0 + a1p+ . . . of x2 + hx− d such that z ≡ a0 (mod p).

From (5), we note that the solutions of x2 ≡
h2 + 4d

4
(mod p) are y1 ≡

h+ 2z

2
(mod p) and

p− y1 ≡ −
h+ 2z

2
(mod p). Thus, if y1 <

p

2
then

h+ 2z

2
−
√
h2 + 4d

2
≡ 0 (mod p), while if y1 >

p

2

we have
h+ 2z

2
+

√
h2 + 4d

2
≡ 0 (mod p) and the thesis follows.

From the previous results, we have that given any quadratic irrational, the continued fraction (3)
provides a periodic representation, which we will call standard, in R (for any non-zero integer value
of z) and in Qp (when z satisfies the hypotheses of Theorem 4). It is very interesting to notice that,
in this way, we can also construct simultaneous rational approximations for a quadratic irrational
both in R and Qp. For the real case, surely the expansion does not provide best approximations;
for the p–adic case the quality of the approximations depends on the p–adic norms of µ1 and µ2

eigenvalues of the following matrix:(
1− (h+2z)2

p −h+2z
p

h+ 2z 1

)
=

(
−h+2z

p 1

1 0

)(
h+ 2z 1

1 0

)
.

Indeed, the rate of convergence of the continued fraction (3) is faster, the smaller is
∣∣∣µ1

µ2

∣∣∣
p

(or∣∣∣µ2

µ1

∣∣∣
p
).
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Remark 1. The Binomial transform (and its iterations) is a well–known and very studied trans-
form of sequences in rings, see, e.g., [17]. In general, given a ring R, the Binomial interpolated
operator L(y) with parameter y ∈ R transforms a sequence (an)n≥0 into a sequence (bn)n≥0 by
means of

bn =

n∑
i=0

(
n

i

)
yn−iai.

In [2], the authors showed that L(y) maps a linear recurrence sequence with characteristic polyno-
mial f (x) into another linear recurrence sequence with characteristic polynomial f (x− y). In the
case of the sequences (Nn (h, d, z))n≥0 and (Dn (h, d, z))n≥0, we have that

L(y) (Nn (h, d, z)) = Nn (h, d, z + y) , L(y) (Dn (h, d, z)) = Dn (h, d, z + y) .

This gives an interesting explicit formula to pass from a sequence that converges in Qp1 to a
quadratic irrational into a sequence that converges to the same quadratic irrational in Qp2 , for p1
and p2 certain prime numbers. We see this in the following examples.

Example 1 (p–adic approximations of the Golden ratio). Let us consider the polynomial x2−x−1,
obtained for h = −1, d = 1 following the above notation. There are many integers z such that

z2 − z − 1 is a prime number and

(
5

p

)
= 1. We have listed them in Table 1.

Table 1: Integers z such that z2 − z − 1 = p is prime and

(
5

p

)
= 1. The sequences of such z and

p are listed in OEIS [16] in sequences A002328 and A002327, respectively.
z 4 5 6 7 9 10 11 12 14 16 ...
p 11 19 29 41 71 89 109 131 181 239 ...

Thus, observing that we always have h+2z < p, we have the following standard representations
for the Golden ratio in several p–adic fields:[

4,−
7

11
, 7

]
in Q11,

[
5,−

9

19
, 9

]
in Q19,

[
6,−

11

29
, 11

]
in Q29,

[
7,−

13

41
, 13

]
in Q41,

and so on. Some p–adic approximations of the Golden ratio are(
Nn (−1, 1, 4)

Dn (−1, 1, 4)

)
n≥1

=

(
4,

17

7
,

75

38
,

338

119
,

1541

905
, . . .

)
in Q11,

(
Nn (−1, 1, 5)

Dn (−1, 1, 5)

)
n≥1

=

(
5,

26

9
,

139

62
,

757

387
,

4172

2305
, . . .

)
in Q19,

(
Nn (−1, 1, 6)

Dn (−1, 1, 6)

)
n≥1

=

(
6,

37

11
,

233

92
,

1490

693
,

9633

4955
, . . .

)
in Q29,

(
Nn (−1, 1, 7)

Dn (−1, 1, 7)

)
n≥1

=

(
7,

50

13
,

363

128
,

2669

1131
,

19814

9455
, . . .

)
in Q41.

Moreover, it is interesting to notice that the approximations in different p–adic fileds are related
by the Binomial transform. For instance, we have

Nn (−1, 1, 7)

Dn (−1, 1, 7)
=
L (Nn (−1, 1, 6))

L (Dn (−1, 1, 6))
=
L (Nn (−1, 1, 5))

L (Dn (−1, 1, 5))
=
L (Nn (−1, 1, 4))

L (Dn (−1, 1, 4))
.

The standard representation provides periodic continued fractions for any quadratic irrational
in Qp, however we are not able to show that there exists an algorithm that gives such expansions. In
the following, we focus on a specific algorithm that, under some conditions, provides the standard
representation.
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3 Finiteness and periodicity of a Browkin algorithm

In [5], the author defined the following function

s : Qp → Q, s (α) =

0∑
i=r

xip
i (6)

for any p-adic number α =
∑∞
i=r xip

i, with xi ∈
(
−p2 ,

p
2

)
, which plays the same role of the floor

function over the real numbers. In fact, the original p-adic continued fraction algorithm proposed
by Browkin [5] replicates the classical one over the real numbers. More pecifically, given a p-adic
number α0, its p-adic continued fraction expansion [a0, a1, ...] is obtained byai = s (αi)

αi+1 =
1

αi − ai
, i = 0, 1, . . . . (7)

In [6], the author defined a new algorithm that exploits also the following function:

t : Qp → Q, t (α) =

−1∑
i=r

xip
i (8)

for any p-adic number α =
∑∞
i=r xip

i, with xi ∈
(
−p2 ,

p
2

)
. Given a p-adic number α0, Browkin

Algorithm II works as follows:

ai = s (αi) , if i is even

ai = t (αi) , if i is odd and νp (α− t (α)) = 0

ai = t (αi)− sign (t (αi)) , if i is odd and νp (α− t (α)) 6= 0

αi+1 =
1

αi − ai

i = 0, 1, . . . , (9)

where νp (·) is the p-adic valuation and for a real number x

sign(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

Given a p–adic continued fraction [a0, a1, . . .], we can define as usual the sequences (pn)n≥0 and
(qn)n≥0 by {

p0 = a0, p1 = a0a1 + 1,

q0 = 1, q1 = a1,

{
pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2,
n ≥ 2.

In [5], [6], the author proved that actually the sequence (pn/qn)n≥0 converges in Qp to the starting
number α0 when the partial quotients ai are obtained by (7) or (9). The author introduced the
second algorithm since some experimental results showed that periodic expansions provided by
this one are usually shorter than those produced by (7), and more square roots have a periodic
expansion using (9). Thus, Browkin algorithm II appears to be very interesting, however the
author left open the problem to prove that it stops in a finite number of steps when it processes
a rational input. We are going to show that this is the case. The partial quotients ai and the
complete quotients αi provided by (9) satisfy the following conditions:{

νp (a2i) = νp (α2i) = 0, i = 1, 2, . . . ,

νp (a2i+1) = νp (α2i+1) < 0, i = 0, 1, 2, . . . ,
(10)

see Lemma 1 and Algorithm II in [6].
We provide two examples about the use of Browkin algorithm II compared with the original

one. We will denote with ai and αi the partial and complete quotients provided by Browkin
algorithm I (see [5]), whereas bi and βi will be the partial and complete quotients provided by
Browkin algorithm II.
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Example 2. Let us consider α0 = β0 =
3

5
in Q11; then, we have:

a0 = b0 = s

(
3

5

)
= 5, α1 = β1 = − 5

22
= 3 · 11−1 + 5 + 5 · 11 + 5 · 112 + . . . ,

indeed the first step of the algorithms are equal. In the second step, Browkin algorithm I still uses
the function s, whereas Browkin algorithm II uses the function t:

a1 = s

(
− 5

22

)
=

58

11
, b1 = t

(
− 5

22

)
=

3

11
.

Consequently the second complete quotients are different:

α2 = − 2

11
, β2 = −2,

and both the algorithms stop with

a2 = − 2

11
, b2 = −2.

Finally, we get the following p–adic continued fractions for
3

5
:[

5,
58

11
,− 2

11

]
,

[
5,

3

11
,−2

]
.

Example 3. Let us consider α0 = β0 =
√

11 in Q5; then we have

a0 = b0 = s
(√

11
)

= 1, α1 = β1 =
1 +
√

11

10
= 1 · 5−1 − 2− 1 · 5− 2 · 52 + . . . ,

from which we get

a1 = s

(
1 +
√

11

10

)
= −9

5
, b1 = t

(
1 +
√

11

10

)
=

1

5
,

and

α2 =
19−

√
11

35
= −1 · 5−1 + 2− 2 · 5 + . . . , β2 = 1 +

√
11 = 2 + 1 · 5 + . . . .

Thus

a2 = s(α2) =
9

5
, b2 = s(β2) = 2,

and

α3 =
−44 +

√
11

55
, β3 =

1 +
√

11

10
= β1.

Hence, using Browkin algorithm II we get a periodic expansion of
√

11, namely

√
11 =

[
1,

1

5
, 2

]
,

whereas the expansion of
√

11 obtained using Browkin algorithm I the expansion of
√

11 appears
not to be periodic:

√
11 =

[
1,−9

5
,

9

5
,−8

5
,

9

5
,

6

5
,

2

5
,

56

25
, . . .

]
.

Lemma 5. We have
l∑

j=1

rjp
−j > 0⇒

l∑
j=1

rjp
−j ≥ 1

pl
(11)

and
l∑

j=1

rjp
−j < 0⇒

l∑
j=1

rjp
−j ≤ − 1

pl
(12)

given any integer ri ∈
(
−p2 ,

p
2

)
and l ≥ 1.
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Proof. It is easy to see that (12) follows from (11), thus we just prove (11) by induction on l.
If l = 1, then r1

p > 0 implies r1
p ≥

1
p as wanted. Now, let us suppose that (11) is true for all

l = 1, . . . , n − 1 and we prove it for l = n. First, we can observe that if
∑n
j=1 rjp

−j > 0, with

rn 6= 0, then we can not have
∑n−1
j=1 rjp

−j < 0. Indeed, we have

pn
∑n−1
j=1 rjp

−j + rn

pn
=
p
(∑n−1

j=1 rjp
−j+n−1

)
+ rn

pn
> 0 (13)

with
∑n−1
j=1 rjp

−j+n−1 ≤ −1. Since kn ≤
p− 1

2
, we have p

(∑n−1
j=1 rjp

−j+n−1
)

+ rn < 0 that

contradicts (13). Hence, we can not have
∑n−1
j=1 rjp

−j < 0. In the case that
∑n−1
j=1 rjp

−j > 0, by

inductive hypothesis we have
∑n−1
j=1 rjp

−j ≥ 1
pn−1 . Consequently, if

∑n−1
j=1 rjp

−j +
rn

pn
> 0, then

n−1∑
j=1

rjp
−j +

rn

pn
≥

1

pn−1
+
rn

pn
>

1

pn
.

Finally, in the case that
∑n−1
j=1 rjp

−j = 0, we have

rn
pn

> 0⇒ rn
pn
≥ 1

pn
.

Lemma 6. Given the sequence of partial quotients (ai)
∞
i=0 obtained applying algorithm (9), we

have

|a2k+1| ≤ 1− 1

pl

for every k ≥ 0, where l = −νp (α2k+1) .

Proof. Since a2k+1 is obtained by applying equations (9), we have that a2k+1 = t (α2k+1) or
a2k+1 = t (α2k+1)− sign (t (α2k+1)). In the first case, we have

|a2k+1| ≤
−1∑
i=−l

|ri,2k+1| pi ≤
p− 1

2

 l∑
j=1

p−j

 =
p− 1

2

(
1− p−l−1

1− p−1
− 1

)
=

1

2

(
1− 1

pl

)
.

In the second case, by the previous Lemma, if t (α2k+1) > 0 then t (α2k+1) ≥ 1
pl

and

1

pl
≤ t (α2k+1) <

1

2

(
1− 1

pl

)
⇒ −

(
1− 1

pl

)
≤ t (α2k+1)− 1 < −

(
1

2
+

1

2pl

)
.

Similarly, if t (α2k+1) < 0 then t (α2k+1) ≤ − 1
pl

and

1

2
+

1

2pl
≤ t (α2k+1) + 1 ≤ 1− 1

pl
.

Thus, we get

|a2k+1| = |t (α2k+1)− sign (t (α2k+1))| ≤ 1− 1

pl
,

and |a2k+1| ≤ 1− 1
pl
.

Theorem 7. If α ∈ Q, then the p-adic continued fraction expansion provided by Browkin algorithm
II (9) is finite.

Proof. Given α ∈ Q, by equations (9) we have αn = an+ 1
αn+1

with an ∈ Z
[
1
p

]
∩
(
−p2 ,

p
2

)
, for every

n ≥ 0. We can observe that νp (an) = νp (αn) for every n ≥ 1, and we recall that also equalities
(10) hold. Thus, considering an = cnp

νp(an), we have a2k = c2k with

|a2k| = |c2k| <
p

2
. (14)
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If we consider a2k+1 = c2k+1p
νp(a2k+1), since |a2k+1| ≤ 1− 1

pl
, by Lemma 6 we have

|a2k+1| = |c2k+1| ≤ pl
(

1− 1

pl

)
. (15)

Now, taking

αn =
An

p−νp(αn)Bn
, An, Bn ∈ Z, (An, Bn) = 1, p - AnBn,

since αn+1 = 1
αn−an , we obtain

A2k+1

plB2k+1
= α2k+1 =

1
A2k

B2k
− c2k

⇒ B2kB2k+1p
l = A2k+1 (A2k − c2kB2k) , (16)

hence
A2k+1 = ±B2k, B2k+1 = ±p−l (A2k − c2kB2k) . (17)

Since νp (α2k) = 0, and recalling that α2k+1 = A2k+1

plB2k+1
and a2k+1 = c2k+1p

−l we have

A2k+2

B2k+2
= α2k+2 =

1
A2k+1

plB2k+1
− c2k+1

pl

⇒ B2k+2B2k+1p
l = A2k+2 (A2k+1 − c2k+1B2k+1) , (18)

from which we have

A2k+2 = ±B2k+1, B2k+2 = ±p−l (A2k+1 − c2k+1B2k+1) . (19)

By (17) and (14), it follows that

|B2k+1| ≤
1

pl
(|A2k|+ |c2k| |B2k|) <

1

pl

(
|A2k|+

p

2
|B2k|

)
. (20)

Moreover, by (19) and (15), we have

|B2k+2| ≤
1

pl
(|A2k+1|+ |c2k+1| |B2k+1|) ≤

1

pl
|A2k+1|+

(
1− 1

pl

)
|B2k+1| . (21)

Using equations (19), the last inequality can be written as

|B2k+2| ≤
1

pl
|A2k+1|+ |B2k+1| −

1

pl
|A2k+2| ⇒ |A2k+2|+ pl |B2k+2| ≤ |A2k+1|+ pl |B2k+1|

and using (20), we finally get

|A2k+2|+ pl |B2k+2| < |A2k+1|+ |A2k|+
p

2
|B2k| . (22)

From (17) and (19), we can observe that |B2k+2| = |A2k+3| and |A2k+1| = |B2k|. Thus, from
pl > p

2 + 1 and (22), we have(p
2

+ 1
)
|A2k+3|+ |A2k+2| < |A2k+2|+ pl |B2k+2| <

(p
2

+ 1
)
|A2k+1|+ |A2k| . (23)

Now, defining Nk = A2k+1 and Mk = A2k, (23) is equivalent to

(p+ 2) |Nk+1|+ 2 |Mk+1| < (p+ 2) |Nk|+ 2 |Mk| ,

i.e., the sequence of natural numbers (p+ 2) |Nk|+ 2 |Mk| is strictly decreasing and consequently
is finite. Hence, the sequences |Nk| = |A2k+1| and |Mk| = |A2k| are finite, as well as |An| and |Bn|,
since by (17) and (19) we have |An+1| = |Bn|, concluding the proof.

Finally, in the next theorem, we address the problem of periodicity for Browkin algorithm II. In
[6], the author observed experimentally that the algorithm (9) provides more periodic representa-
tions for square roots than the algorithm (7), and usually the period also appears to be shorter in
the first case. Moreover, the author also gave some conditions for which the algorithm (9) produces
a continued fraction of period 2 or period 4 and pre-period of length 1 for square roots. Here, we
characterize when the algorithm (9) provides the standard representation for quadratic irrationals.
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Theorem 8. Given α 6∈ Q a root of the polynomial x2 + hx − d, with h, d ∈ Z, algorithm (9)
produces the p–adic continued fraction[

z,−
h+ 2z

p
, h+ 2z

]

if and only if

1 ≤ |z| ≤
p− 1

2
, 1 ≤ |h+ 2z| ≤

p− 1

2

for z such that z2 + hz − d = p.

Proof. From α2 + hα− d = 0 and z2 + hz − d = p, we have

α = z −
p

α+ z + h
= z −

p

(α− z) + h+ 2z
.

Now, without loss of generality, we suppose νp (α+ z + h) = 0. Indeed, νp (α+ z + h) can not be
greater than 1 because (α− z) (α+ z + h) = −p and, if νp (α+ z + h) = 1, then it is sufficient to
consider z̃ = −h − z instead of z (note that z̃2 + hz̃ − d = p). Thus, if z and h + 2z belong to(
−
p

2
,
p

2

)
, then a0 = s (α) = z and

α1 =
1

α− a0
= −

h+ 2z

p
−
α− z
p

.

Since νp

(
−
α− z
p

)
= νp

(
1

α+ z + h

)
= 0, we have

a1 = t (α1) = −
h+ 2z

p
.

Finally,

α2 =
1

α1 − a1
= α+ z + h = (α− z) + h+ 2z

with νp (α− z) = 1 and νp

(
−

p

α− z

)
= 0. Hence, a2 = h+2z and α3 = α1. Clearly, if z or h+2z

do not belong to

(
−
p

2
,
p

2

)
, equations (9) can not provide the standard representation.

Remark 2. If a quadratic irrational α has standard representation

[
z,−

h+ 2z

p
, h+ 2z

]
using

algorithm (9), then also −α has a standard representation that is[
−z,−

h+ 2z

p
,−(h+ 2z)

]
,

as well as the conjugate −h− α =

[
−h− z,

h+ 2z

p
,−(h+ 2z)

]
, when 1 ≤ |h+ z| ≤

p− 1

2
.

Question 1. Might it be possible to define an algorithm that always produces standard represen-
tations for quadratic irrationals? We think that some modifications of Browkin algorithm II could
give a new algorithm of such kind. We experimentally observed that Browkin algorithm II provides
more standard representations than the algorithm defined by equations (7).
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