
UNIVERSITY OF TRENTO

DOCTORAL THESIS

Towards Network Automation: A
Multi-Agent Based Intelligent

Networking System

Author:
Sisay Tadesse ARZO

Supervisor:
Prof. Fabrizio GRANELLI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Next Generation Networking Lab
Department of Information Engineering and Computer Science

December 3, 2021

http://www.university.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

iii

Declaration of Authorship

I, Sisay Tadesse ARZO, declare that this thesis titled, “Towards Network Automa-
tion: A Multi-Agent Based Intelligent Networking System” and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“We are reminded that, in the fleeting time we have on this Earth, what matters is
not wealth, or status, or power, or fame, but rather how well we have loved and
what small part we have played in making the lives of other people better.” Barack
Obama

“We are slowed down sound and light waves, a walking bundle of frequencies
tuned into the cosmos. We are souls dressed up in sacred biochemical garments and
our bodies are the instruments through which our souls play their music.” Albert
Einstein

Social/altruistic Vs biological/physical perspectives of humans. We need both!

vii

Abstract

Sisay Tadesse ARZO

Towards Network Automation: A Multi-Agent Based
Intelligent Networking System

This P.h.D thesis has three parts. The first part is the mathematical modeling of
softwarized network. We studied network softwarzation through Virtual Network
Function (VNF) placement considering 5G and B5G’s stringent requirements of la-
tency, reliability, and support for heterogeneous devices. Since the existing wire-
less network architecture is limited to fulfill these constraints, a cloud radio access
network (C-RAN), along with network function virtualization, is suggested to pro-
vide flexibility and network agility. C-RAN decouples network functions, such as
firewall and packet gateway, from hardware to software deployed in the cloud.
Thus, a comprehensive end-to-end formulation of this architecture is required for
VNF placement. Most of the existing works focus on virtual function placement
with different objectives, addressing different service requirements separately. Six
5G constraints are considered simultaneously to find optimal VNF placement with
service differentiation. The selected six parameters reflect services’ requirements,
network constraints, and computing constraints. We first model the overall cloud
radio access network as a multi-layer loopless-random hypergraph and we provide
the overall formulation of the system. Then, we reformulate such a model consid-
ering backup virtual functions and CPU over-provisioning techniques to improve
both virtual function’s reliability and processing latency. Finally, we propose ser-
vice differentiation to reduce CPU utilization and energy consumption, while using
the above techniques. The results suggest that the application of service differenti-
ation can significantly improve the assignment of computing resources and energy
efficiency. We have also demonstrated a VNF design for IoT interoperability de-
veloping a translator as a VNF. Furthermore, we have tested the emulation of LTE,
LTE-A, and 5G over a lightweight open platform considering delay analysis.

The second part of the work focus on network automation. The advent of net-
work softwarization is enabling multiple innovative solutions through software-
defined networking (SDN) and network function virtualization (NFV). Specifically,
network softwarization paves the way for autonomic and intelligent networking,
which has gained popularity in the research community. Along with the arrival of
5G and beyond, which interconnects billions of devices, the complexity of network
management is significantly increasing both investments and operational costs. Au-
tonomic networking is the creation of self-organizing, self-managing, and self-protecting
networks, to manage complex and heterogeneous networks. To achieve full network
automation, various aspects of networking need to be addressed. So, we proposed
a novel architecture called multi-agent-based network automation of the network
management system (MANA-NMS). The architecture rely on network function at-
omization, which defines atomic decision-making units. Such units could represent
VNFs. These atomic units are autonomous and adaptive. In this part, first, we

viii

present a theoretical discussion of the challenges arisen by automating the decision-
making process. Next, the proposed multi-agent system is presented along with
its mathematical modeling. And then MANA-NMS architecture is mathematically
evaluated from functionality, reliability, latency, and resource consumption perfor-
mance perspectives. As an example for atomic agent design, we have developed an
autonomous network traffic classifier agent (NTCA). We design and implement an
NTCA using a machine learning algorithm as a cognitive component of the agent.
To compare, we used K-Nearest Neighbors (K-NN), Decision Tree, Support Vector
Machine (SVM), and Naive Bayes in the agent design. We perform an evaluation us-
ing classification accuracy, training latency, and classification latency. We also tested
the performance of the NTCA by implementing it in the MANA-NMS conceptual
framework.

The third part of this P.h.D. work is to use MANA-NMS principles to decompo-
sition SDN controllers and other monolithic systems and incorporate intelligence in
the subfunctions, creating loosely coupled units in the service-oriented architecture.
The existing controllers are monolithic, resulting in code inefficiency for distributed
deployment. microONOS controller has been proposed, showing a decomposed con-
troller architecture into logical subfunctions. These functions are implemented as
microservices and deployed as VNF, enabling flexible deployment. However, the
microONOS controller is in early-stage development and the full controller decom-
position is not availed. Moreover, the communication interface between the decom-
posed components of the controller is based on gRPC. Our proposed architecture im-
plements Ryu controller decomposition. In the decomposition, we used REST API
as a communication interface between the decomposed functions. Moreover, we
compared the performance using gRPC and WebSocket. We also further proposed
a multi-agent architecture for the next-generation network. In this regard, recently,
the 3GPP standard defines the service-based architecture (SBA) framework, where
the architecture elements are defined in terms of Network Functions (NFs). This
approach provides flexibility in terms of dynamic scaling and backup deployment
of functions. However, to fully utilize the flexibility and dynamicity that the archi-
tecture provides, intelligence should be introduced in the decomposed functions.
Here, we propose to unify well-defined standards for the 5G architecture such as
Software-defined Networking (SDN), ETSI network function virtualization (NFV),
ETSI generic autonomic networking architecture (GANA), and ETSI multi-access
edge computing (MEC) in a unified intelligent architecture. Moreover, we define
network functions and applications as atomic units, as in the case of MANA-NMS.
Using these agents as building blocks, we provide an intelligent pool of networking
resources and applications that can collaborate to form next-generation architectures
for future 6G networks.

ix

Acknowledgements

First of all, I would like to thank Prof. Fabrizio Granelli for giving me the wonderful
opportunity to join the P.h.D school. I also appreciate his friendly supervision and
tremendous support during the last three years. His philosophy of relaxed and lim-
ited constraint type of supervision has enabled me to have the freedom to think in-
dependently, developing self confidence, and grow as a mature academic researcher.
Moreover, I would like to extend my gratitude to a colleague of mine Dr. Riccardo
Bassoli for his meticulous review, suggestion, and comments on my work during the
PhD period in preparing, and submitting articles for journals or conferences publi-
cations. I also would like to thank the University of Trento administrative stuff for
their unwavering support under any difficulties, especially during the COVID pan-
demic period.

Beyond the academic world, my family has played great role in encouraging me
to be successful. Without their support, it would have been nearly impossible to
succeed as-such. In this regard, my wonderful mother has played great role and so
does my uncles, especially Eng. Adane Telore in cultivating and upbringing me to
this end. Their support lasted almost all my entire life. The most important moment
was when I had been having a difficult time when I lost my amazing father, who I
dedicate this work too. The sudden loss of him has done a huge physiological and
financial damage to me and our family as he was the main provider of the family at
the time. At that difficult time, as a young 14 year dreamer boy, my dreams were big
which momentarily felt shattered and the doors of my unambitious future seamed
to been closed.

However, my family said big NO to my fear, and standing by my side, they said
your a blessing to our family, nothing will be lost. So thanks to these wonderful,
courageous, and forward looking mother, uncles, ant, and grandmother, I have be-
come who I wanted to be while fulfilling my dream. The name "Adane" means to
save and the name "Mulu" means full in Amharic. These are the name of my el-
der uncle and my mother, respectively. Together, they saved me and made me a
complete person living up to their name.

In all these, even if I sometimes doubt His existence and His involvement in our
active life, without any doubt GOD has everything to me and my family. As a novice
scientist, I challenged His whereabouts and how He operates. However, during this
PhD period, He has worked in a mysteries way to support me in fulfilling my initial
dreams. Proving me terribly wrong! THANK YOU ALMIGHTY GOD.

I would also like to thank my wonderful Ethiopian, Italian, and others friends
from across the globe, who I meet in Trento, Italy and Albuquerque, USA. Trento
in fact is a wonderful international city and so does the University of Trento. The
combination of the two has created a tremendously vibrant and multi cultural envi-
ronment, where I entertained and learned a lot of interesting life lesson along with
so much fun. Even during the last difficult year, the city of Trento and the Univer-
sity of Trento have played very important roles in tackling the difficulties of COVID
pandemic through various means, including the scientific contribution towards the

x

solution of ending the pandemic. Thank you Trento, my second home next to my
birth city Wonji!

Finally, I would like to appreciate the funding agency for my P.h.D. This work
has been partially funded by NATO Science for Peace and Security (SPS) Programme
in the framework of the project SPS G5428 ”Dynamic Architecture based on UAVs
Monitoring for Border Security and Safety”.

xi

Contents

Acknowledgements ix

1 Introduction to Network Automation and Network Softwarization 3
1.1 Introduction . 3
1.2 Network Softwarization: Overview and Motivation 7

1.2.1 Network Softwarization . 7
1.2.2 Software Defined Networking (SDN) 8
1.2.3 Network Function Virtualization 9

1.3 Overview of Network Management Systems and Network Automation 10
1.3.1 Network Management and Control as a Cyclic Process 11

1.4 Edge Computing, Cloudification, and Containerization 13
1.4.1 Containerization and Cloudificaton 13
1.4.2 Edge Computing . 14
1.4.3 C-RAN . 15

1.5 Microservice and Multi-Agent Systems for Autonomic Networking . . 16
1.5.1 Microservice Architecture . 16
1.5.2 Application of Multi-Agent for Network Automation 17

1.6 Artificial Intelligence and Machine Learning for Networking 18
1.7 LTE, 5G, B5G, and 6G . 20

1.7.1 LTE Technologies . 20
1.7.2 5G Technologies . 20
1.7.3 5G Service Requirements . 22
1.7.4 B5G, and 6G . 23

2 Mathematical Models for Softwarized Networks, VNF Design, and Soft-
warized LTE/5G Functions’ Local Deployment 25
2.1 Introduction . 25
2.2 Existing VNF Placement Algorithms . 26

2.2.1 Resource Optimization . 26
2.2.2 Minimizing Service Delay . 26
2.2.3 Minimizing Energy Consumption 26
2.2.4 Maximizing Reliability, Availability and Service Admission . . 27
2.2.5 VNF Placement in Cloud, Fog and Edge Data Center Computing 27
2.2.6 Load balancing and Traffic Steering in Service Function Chain . 27

2.3 C-RAN Modeling as a Multi-layer Loopless-random Hypergraph . . . 28
2.3.1 System Model . 28
2.3.2 Service Modeling . 30
2.3.3 System Model Formulation . 31

End-to-end Service Latency . 32
End-to-end Service Reliability . 34
Edge Data Center’s Computing Capacity Constraint 34
End-to-End Power Consumption 35
Throughput Constraint . 36

xii

Overall Service Admission Probability 38
Overall Multi-Objective Formulation 39

2.3.4 System Model Formulation with Service Differentiation 42
Improving VNFs Reliability by Using Backup VNFs for Criti-

cal Services . 42
Allocating More Processing Resources to Reduce Edge Data

Center Processing Latency for Critical Services 42
Energy Efficiency Calculation . 43

2.4 Performance Evaluation of the VNF Placement Mathematical Model . 43
2.4.1 Reliability and Latency Constraint Analysis 45
2.4.2 Throughput Constraint Analysis 46

Edge Data Center Computational Capacity Constraint Analysis 48
2.4.3 Power Consumption and Energy Efficiency Analysis 52

2.5 A Translator as Virtual Network Function for Network Level Interop-
erability of Different IoT Technologies 53
2.5.1 Overview of IoT Technology Interoperability 55
2.5.2 Proposed Network Level Interoperability Architecture 58
2.5.3 A VNF Based IoT Interoperability Translator Simulation and

Performance Evaluation . 61
2.6 Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:

Re-configuration Delay Analysis . 65
2.6.1 Overview of Mobile and Cloud Technologies 66

LTE Technologies . 66
5G Technologies . 67

2.6.2 Cloud Based Wireless Technologies Deployment 68
Kubernetes . 68

2.6.3 4G/5G Emulation Testbed and Performance Evaluation 70
Creation of Kubernetes Cluster Using K3d 70
Migration of 4G/5G docker container images to Kubernetes

cluster . 73

3 Multi-Agent Based Network Management Automation 77
3.1 Introduction . 77
3.2 State of the Art in Multi-Agent Based Autonomic Networking 80

3.2.1 Autonomic Networking: Historical Perspective 80
Autonomic Networking before the Introduction of SDN and

NFV . 80
Autonomic Networking After the Widespread Adoption of SDN

and NFV . 81
3.2.2 Multi-Agent Systems for Autonomic Networking 83

3.3 Network Management Automation Challenges 84
3.3.1 Decision Theory from Network Automation Perspectives . . . 85

Data Analytics and Cognition . 87
Generating Cumulative Decision 87
Decision Organization . 88
Overall Autonomic Decision Assessment and Verification . . . 88
Decision Execution . 89
Monitoring System Behavior . 89

3.4 Multi-Agent Based Autonomic Network Management System 89
3.4.1 Multi-Agent based Network Management System 90

xiii

3.4.2 Multi-Agents and Microservices for Decentralized and Loosely-
coupled Softwarized Systems . 91

3.5 Proposed MANA-NMS Architecture . 91
3.5.1 Network Functions Atomization 92
3.5.2 Proposed MANA-NMS Architecture in Comparison with GANA

Architecture . 93
Proposed MANA-NMS Architecture in Comparison with SDN-

NFV Architecture . 94
3.6 Mathematical Representation of Multi-agent Autonomic Network Man-

agement System . 96
3.6.1 Service Arrival, Scheduling, and Admission 99
3.6.2 Service Latency in Edge Data Center 100
3.6.3 Data Center Based Multi-Agent System Reliability 101

3.7 MANA-NMS Architecture’s Performance Evaluation 102
3.7.1 System Description and Simulation Environment Specification 102
3.7.2 Service Arrival and Processing Evaluation 107
3.7.3 Agent Utilization and Edge Data Center Resource Consumption110
3.7.4 Service Queuing and Processing Latency Evaluation 113
3.7.5 System Evaluation for Fail-over Scenarios 115
3.7.6 System Reliability Evaluation and Service Differentiation for

Resource Efficiency . 116
3.8 Autonomous Network Traffic Classifier Agent for Autonomic Net-

work Management System . 119
3.8.1 Overview and Background . 119
3.8.2 Machine Learning Models For Network Traffic Classification . 120

Decision Tree Classifier Algorithm 121
Naive Bayes Classifier Algorithm 121
Support Vector Machine Classifier Algorithm 122
K-Nearest Neighbours Classifier Algorithm 123

3.8.3 Proposed Network Traffic Classifier Agent 124
Agents . 124
Network Traffic Classifier Agent Architecture 124
Communication in MANA-NMS 125

3.8.4 Performance Evaluation of Classifier Agent 125
Conceptual Framework for the Network Traffic Classifier Agent

Implementation . 126
Evaluation Results . 127

4 SDN Controller Decomposition Using Microservice 131
4.1 Introduction . 131
4.2 Background and Motivation . 133

Background . 133
4.3 Overview of SDN Controller Components 133

4.3.1 Ryu SDN Framework . 135
4.4 Motivation for SDN Controller Decomposition 138
4.5 Microservices-Based SDN Controller Decomposition 139

4.5.1 Decomposing SDN Controller 142
4.5.2 SDN Controller Internal Components as a Microservice 142
4.5.3 External Applications as a Microservice 143
4.5.4 Communication Interface Between Decomposed Services 144

xiv

Communication Interface Between the decomposed Microser-
vice based Controller Functions 144

4.6 Decomposed SDN Controller TestBed Implementation and Performance
Results . 145
4.6.1 Decomposing Ryu SDN Controller 146
4.6.2 Experimental Environment . 147
4.6.3 Benchmark of Network Communication Protocols 148
4.6.4 Resilience and Scalability Test . 149

Resilience Test . 150
Scalability Test . 150

5 MANA-NMS based Unified Architecture and Its Application in 6G and
Next Generation Network Management Systems 155
5.1 Introduction . 155

5.1.1 Motivation and Background . 156
5.1.2 Microservices-based SDN Controller 157
5.1.3 ETSI SDN-NFV MANO . 157
5.1.4 ETSI GANA . 158

Generic Autonomic Network Architecture 158
Multi-Agent System . 158

5.1.5 3GPP-ETSI MEC Architecture . 159
5.1.6 Proposed Unified Grad Architecture 159
5.1.7 Proposed Unified Architecture 159
5.1.8 Network Function Atomization 160
5.1.9 Agent Internal Architecture . 161
5.1.10 Multi-Agent Based SDN Controller Decomposition 161

6 Future Application of MANA-NMS 163
6.1 MANA-NMS for IoT Connectivity Technology Management for Space

Application . 163
6.1.1 Internet of Things . 163
6.1.2 Network Coverage, Network Softwarization, and Network Au-

tomation . 165
Backbone Network Technologies for Space Applications 165
Network Coverage Technologies on Remote Environment . . . 166
Virtualization and Softwarization 167
Network Automation . 167

6.1.3 Artificial Intelligence for Space Applications 168
6.1.4 Cloud, Edge, and Fog Computing 168

Teleoperation Using Edge Computing 169
6.2 Summary and Conclusion . 170

Bibliography 173

xv

List of Figures

1.1 SDN architecture. 6
1.2 High-level NFV framework [189]. 6
1.3 Automation Enabling Technologies. 7
1.4 Unified SDN-NFV Architectural Framework. 8
1.5 SDN Management Architecture with respect to autonomic manage-

ment[97] . 9
1.6 ETSI-NFV Architectural Framework[189] 10
1.7 Cyclic process of network management. 11
1.8 Cloud computing Vs. Fog computing Vs. Edge computing. 15
1.9 Downlink communication in heterogeneous 4G or LTE RAN and het-

erogeneous 5G Cloud RAN. The latter places baseband processing at
virtual baseband units (BBUs) in operators’ data centers and run them
as virtual machines or virtual functions in containers. RRH, radio re-
mote head . 16

1.10 Microservice Architecture . 17
1.11 4G/5G Core Network . 21
1.12 enhanced mobile broadband (eMBB), ultra-reliable low-latency com-

munications (URLLC), and massive machine-type communications
(mMTC) . 22

2.1 4G Architecture, 5G with Cloud Architecture and 5G with Edge Data
Center Architecture . 26

2.2 Physical Infrastructure and Representation of 5G Cellular Network . . 29
2.3 RAN, Backhaul and Edge Data Center 36
2.4 Sample C-RAN Infrastructure Deployed for Performance Evaluation

Scenario . 44
2.5 Total Service Throughput Demand . 46
2.6 Admission and Rejection of Service Throughput Due to RAN Constraint 47
2.7 Admission and Rejection of Service Throughput at Microwave Backhaul 47
2.8 Admission and Rejection of Services Throughput at Fiber Backhaul . . 48
2.9 Admission and Rejection of Services Throughput at the Edge Data

Center Network 1 Tbps Aggregation Links 48
2.10 Arriving Workload Traffic Distribution 49
2.11 Workload Requested and Rejected . 49
2.12 Total Workload Requested and Rejected using Backup VNFs and CPU

Over-provisioning for Reliability and Latency Improvements, Respec-
tively . 50

2.13 Total Workload Requested and Rejected using Backup VNFs and CPU
Over-provisioning for Reliability and Latency Improvements Respec-
tively with Service Differentiation . 51

2.14 Total Workload Admitted . 51
2.15 Edge Data Center Workload Admission Probability 51

xvi

2.16 Used CPU Resources Comparison for the Given Service Workload. . . 52
2.17 Total Power Consumption of Edge Data Center in Different Cases . . . 52
2.18 Energy Efficiency of Edge Data Center 53
2.19 Overall performance of the proposed model in comparison with the

existing 4G performance and the expected 5G requirements 54
2.20 Proposed Virtualized Solution Structure. 59
2.21 Proposed Virtualized Solution Workflow 60
2.22 Implemented Network Topology . 62
2.23 Translation Delay . 63
2.24 Translation and Transmission Delay . 63
2.25 Transmission Delay at Various Traffic Load Conditions 64
2.26 Transmission Delay Using a Virtualized Translator at Various Traffic

Load Conditions . 64
2.27 4G/5G Core Network . 67
2.28 Kubernetes service for both open5gs EPC and freee5gc 5GC 70
2.29 Final architecture for GEPC/5GC switch using Kubernetes service . . 71
2.30 Components and their interconnection for 4G EPC 71
2.31 Components and their interconnection for 5GC 72
2.32 Comparison between kind and k3d . 74
2.33 CPU usage of CN pod . 75
2.34 Memory usage of CN pod . 75
2.35 CPU usage of eNB pod . 75
2.36 Memory usage of eNB pod . 75
2.37 Overall CPU usage of kubernetes local cluster 76
2.38 Overall memory usage of kubernetes local cluster 76

3.1 Unified SDN-NFV Architectural Framework [148] 79
3.2 Network Management Cycle . 85
3.3 Multi-agent Based Representation of MANA-NMS for Cloud RAN . . 93
3.4 Simple Example for Network Level Agent Relationship 94
3.5 Multi-Agent Based Representation of GANA Architecture. 95
3.6 Multi-Agent-Based Network Management Automation on Unified SDN-

NFV Architectural Framework. 95
3.7 Fundamental Components of Autonomic Agent 97
3.8 Agent States . 98
3.9 Cyclic Step of Service Scheduling, Processing and Monitoring 103
3.10 Agent Sequencing and Scheduling for Arrival Service Processing . . . 104
3.11 Considered Network Topology For Path Computation 105
3.12 Workload Distribution . 108
3.13 Average Arriving Service Workload . 108
3.14 Service Rejection . 109
3.15 Service Admission Probability . 109
3.16 Average Number of Required Service Agents 110
3.17 Average Number of Idle Agents . 111
3.18 Average Number of Busy Agents . 111
3.19 Agents Utilization . 112
3.20 Edge Data Center Resource Utilization 112
3.21 Agent Busy Period . 113
3.22 Agents Average Communication Frequency for Database Update due

to Service Arrival . 113
3.23 Arrival Service Queuing Delay . 114

xvii

3.24 Service Processing Delay in the Service Processing Agents 114
3.25 End-to-End Service Latency in Edge Data Center 115
3.26 Impact of Server (Hosting Service Processing Agents) Failure on Ser-

vice Rejection . 116
3.27 Impact of Server Failure on End-to-End Latency in the Edge Data Center117
3.28 Impact of Server Failure on Service Admission Probability 117
3.29 Service Rejection with Backup Service Processing Agents 118
3.30 Service Admission Probability . 118
3.31 CPU Resource Consumption with Backup System 119
3.32 CPU Consumption with Backup System for uMTC Service Processing

Agents . 119
3.33 General overview of a MAS. 120
3.34 An Example of a Decision Tree. 121
3.35 An Illustration of a Hyperplane and Support Vectors. 122
3.36 An Illustration of the K-NN Classifier Algorithm in action. 123
3.37 Network Traffic Classifier Agent Architecture 125
3.38 The Process of Traffic Classification. 126
3.39 Proposed MAS Model. 127
3.40 Comparison of the Training Latency of the Network Traffic Classifier

Agent Designs. 129
3.41 Comparison of the Classification Latency of the Network Traffic Clas-

sifier Agent Designs. 130

4.1 A Unified Architecture for SDN and NFV 134
4.2 ONF’s Software-Defined Network Architecture 135
4.3 Ryu Internal Monolithic Logical Architecture 136
4.4 Microservices-based SDN deployment blueprint in IIoT Scenarios . . . 140
4.5 Architectural Overall of Proposed Microservices-based SDN Controller

Decomposition . 142
4.6 Proposed microservices-based SDN controller sample deployment ar-

chitecture . 144
4.7 Ryu-based MSN Implementation Architecture 146
4.8 Mininet Topology for Experimental Testbed 148
4.9 Performance results . 149
4.10 Resilience Test: Average Message Delay 150
4.11 Scalability test: scenario 1 (multiple NS) 151
4.12 Scalability test: Scenario 2 (Single NS - multiple VNF) 152
4.13 Scalability test: Network Topology . 152
4.14 Scalability test: Average Latency for the First Packet 153
4.15 Scalability test: Average Latency for Normal Flow 153

5.1 Architectures of SDN decomposed control plane (top left), ETSI SDN-
NFV MANO (top right), ETSI GANA (bottom left), and 3GPP-ETSI
MEC (bottom right). 156

5.2 Microservices and Multi-Agent Based Unified Architectural Model
for ETSI GANA, ETSI MEC, ETSI NFV, and SDN 160

5.3 Agent Internal Architecture . 161
5.4 Agent Instantation From a Template . 162

xix

List of Tables

2.1 The three type of services and their requirements 45
2.2 Different Components of C-RAN and Their Constraints 45
2.3 Values for emulation components docker image size 74

3.1 Microservice and Multi-Agent Comparison 91
3.2 Internal-Functional Specification of Agents 105
3.3 Detailed Agents Parametric-Specifications Used in Developing the over-

all Simulation System . 106
3.4 Service Specification . 106
3.5 Simulation Parameters . 106
3.6 Classification Accuracy of the different Network Traffic Classifier Agent

Designs. 128

4.1 Comparison between SDN Monolithic architecture and Microservices-
based SDN architecture [283] . 141

xxi

List of Abbreviations

SDN Software Dfiend Networking
NFV Network Function Virtualization
IoT Internet of Things
C-RAN Cloud Radio Access Network
RAN Radio Access Network
RRH Radio Remote Hheads
ML Machine Learning
AI Artificial Intelligence
GANA Generic Autonomic Network Architecture
ANMS Autonomic Network Management System
ANM Autonomic Network Management
CAPEX Capital Expenditure
OPEX Operational Expenditure
BBU Base Band Unit
S-GW Serving Gateway
P-GW Packet Gateway
VNF Virtual Network Function
M2M Machine To Machine
H2T Human To Thing
T2T Thing To Thing
IBM International Business Machines
ACL Autonomic Control Loop
DoS Denial of Service
NFVI Network Function Virtualization Infrastructure
NAT Network Address Translation
MANO Management and Network Orchestration
QoS Quality of Service
SBI South Bound Interface
NBI North Bound Interface
SDNVA SDN based Network Virtualization Architecture with Autonomic Management
MAPE-K Monitor Analyze Plan Execute Knowledge
VM Virtual Machines
eMBB enhanced Mobile BroadBand
URLLC Ultra-Reliable Low-Latency Communications
mMTC massive Machine-Type Communications
VIM Virtual Infrastructure Manager
4G Fourth-Generation
LTE Long-Term Evolution
NMS Network Management Systems
µONOS micro Open Network Operating System
OS Operating System
CPU Central Processing Unit
MANA-NMS Multi Agent based Network Automation of the Network Management System

xxii

B5G Beyond 5G
REST Representational State Transfer
gRPC gRPC Remote Procedure Calls
NATO North Atlantic Treaty Organization
SPS Science Peace and Security
UAV Unmanned Areal Vehicle
ASIC Application Specific Integrated Circuit
DSP Digital Signal Processing
FPGA Field Programmable Gate Array
IFFT Inverse Fast Fourier Transform
SOA Service Oriented Architecture
CDMA Code Division Multiple Access
MAS Multi Agent System
WSN Wireless Sensor Network
MDN Manual Defined Network
IDN Intelligent Defined Networks
z-TORCH zero Touch Orchestration
LTE-A Long Term Evolution- Advanced
ETSI European Telecommunications Standards Institute
MEC Mobile Edge Computing
vBBU virtual BaseBand Unit
VIM Virtual Infrastructure Manager
SFC Service Function Chaining
SLA Service Level Agreement
PP Random Point Processes
PPP Poisson Point Processes
MW Multiplicatively Weighted
IIoT Industrial Internet of Things
MW Mmicrowave
MIMO Multiple Input Multiple Output
ITU International Telecommunication Union
IMT International Mobile Telecommunications
BS Base Station
GOPS Giga Operation Per Second
PM Physical Machine
MTBF Mean Time Between Failure
MTTR Mean Time To Repair
MILP Mixed Integer Linear Program
MIP Mixed Integer Program
NBIoT NarrowBand IoT
LoRa Long Range
VAP Virtualized Access Point
WoT Web of Things
XML Full Extensible Markup Language
JSON JavaScript Object Notation
WSDL Web Services Description Language
REST API Representational State Transfer Aplication Programming Interface
SDR Software Defind Radio
CoAP Constrained Application Protocol
MQTT Message Queue Telemetry Transport
BLE Bluetooth Low Energy

xxiii

IP Internet Protocol
IPv6 Internet Protocol version 6
6LoWPAN IPv6 over Low Power Wireless Personal Area Networks
SQL Structured Query Language
HTTP HyperText Transfer Protocol
Wi-Fi Wireless Fidelity
AP Access Point
IaaS Infrastructure as a Service
3GPP 3rd Generation Partnership Project
6G 6 Generation Network
ITU The International Telecommunication Union
ITU-T Telecommunication Standardization Sector
ONF Open Network Foundation
DE Decision Eetwork Elements

xxv

This work is dedicated to my
wonderfully charming father

Tadessse Arzo, my humble
grand father Telore Tissore, and

my vibrant uncle Tesfalidet
Telore that are tragically passed

away and are being missed from
our lovely, laughing, and

hardworking family

1

Authors List Of Publications

1. S. T. Arzo, D. Scotece, R. Bassoli, D. Barattini, F. Granelli, L. Foschini, and
F. H. P. Fitzek, “MSN: a playground framework for desing and evaluation
of MicroServices-based sdN controller” J Netw Syst Manage 30, 19 (2022).
https://doi.org/10.1007/s10922-021-09631-7

2. C. Naiga, S. T. Arzo, F. Granelli, R. Bassoli, and F. H. P. Fitzek, “Autonomous
Network Traffic Classifier Agent for Autonomic Network Management Sys-
tem”, Accepted to IEEE Globecom 2021

3. N. K. Ostinelli, S. T. Arzo, F. Granelli, and M. Devetsikiotis, “Emulation of
LTE/5G Over a Lightweight Open-Platform: Re-configuration Delay Analy-
sis”, Accepted to IEEE Globecom 2021

4. S. T. Arzo, F. Zambotto, F. Granelli, R. Bassoli, M. Devetsikiotis and F. H. P.
Fitzek, “A Translator as Virtual Network Function for Network Level Interop-
erability of Different IoT Technologies”,2021 IEEE 7th International Conference
on Network Softwarization (NetSoft), 2021, pp. 416-422, doi: 10.1109/Net-
Soft51509.2021.9492677.

5. S. T. Arzo, C. Naiga, F. Granelli, R. Bassoli, M. Devetsikiotis and F. H. P. Fitzek,
"A Theoretical Discussion and Survey of Network Automation for IoT: Chal-
lenges and Opportunity," in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3075901.

6. S. T. Arzo, R. Bassoli, F. Granelli and F. H. P. Fitzek, "Multi-Agent Based Auto-
nomic Network Management Architecture," in IEEE Transactions on Network
and Service Management, doi: 10.1109/TNSM.2021.3059752.

7. S. T. Arzo, R. Bassoli, F. Granelli and F. H. P. Fitzek, "Study of Virtual Network
Function Placement in 5G Cloud Radio Access Network," in IEEE Transactions
on Network and Service Management, vol. 17, no. 4, pp. 2242-2259, Dec. 2020,
doi: 10.1109/TNSM.2020.3020390.

8. R. Bassoli, F. Granelli, S. T. Arzo, and M. D. Renzo, “Toward 5G cloud radio ac-
cess network: An energy and latency perspective,”Trans. Emerg.Telecommun.
Technol., vol. 27, no. 1, pp. 433–446, May 2019.

9. DZIMITRY KLIAZOVICH, SISAY T. ARZO, AND OTHERS, “ACCOUNTING
FOR LOAD VARIATION IN ENERGY-EFFICIENT DATA CENTRE”, IEEE ICC
2013 CQRM SYMPOSIUM PUBLISHED, JUN 2013.

10. DZIMITRY KLIAZOVICH, SISAY T. ARZO, AND OTHERS, “ENERGY-EFFICIENT
SCHEDULING FOR CLOUD COMPUTING APPLICATIONS WITH TRAF-
FIC LOAD BALANCING”, IEEE GREENCOM 2013 SYMPOSIUM, BEIJING,
CHINA.

11. S. T. Arzo, D. Scotece, R. Bassoli, F. Granelli, L. Foschini, and F. H. P. Fitzek, “A
6G Agent Based Intelligent Network Architecture”, Submitted for IEEE Com-
munication Standard Magazine

12. S. T. Arzo, D. Sikeridis, M. Devetsikiotis, F. Granelli, R. Fierro, "A Survey of Es-
sential Technologies and Concepts for Massive Space Exploration: Challenges
and Opportunities", submitted to IEEE Transactions on Aerospace and Elec-
tronic Systems.

2

13. S. T. Arzo, C. Naiga, F. Granelli, R. Bassoli, M. Devetsikiotis and F. H. P. Fitzek,
"Multi-Agent Based Traffic Prediction and Traffic Classification for Autonomic
Network Management Systems for 6G Networks" submitted to Special Issue
on “Edge Intelligence for 6G Networks”, Computer Communications, Elsevier.

14. H. Haridy, S. T. Arzo, F. Granelli, R. Bassoli, and F. H. P. Fitzek, “Agent Based
Autonomous Network Traffic Prediction: Design and Analysis”, To be submit-
ted

3

Chapter 1

Introduction to Network
Automation and Network
Softwarization

1.1 Introduction

Legacy communication networks were comprised of several devices such as routers,
switches, servers, firewalls, and end-user devices. These reasonably small-sized net-
works were managed mainly by human supervision [159, 233]. A human adminis-
trator was in change of configuring and making the desired changes in the settings
of the network. This was possible for the small-sized networks.

However, over the past decades, communication technologies and networks have
tremendously evolved enabling the connection of a large number of devices and
applications for billions of users. Such networks have a huge capital expenditure
(CAPEX) since new devices and services are implemented. This results in complex
networks that are difficult to manage. It has become humanly infeasible to manage
such networks as they grow thereby increasing the operational expenditure (OPEX)
since more human resources and expertise are needed.

The need for network automation is more pronounced when we consider the
requirements of a future network such as internet of things (IoT). IoT is the inter-
connection of highly heterogeneous networked entities and the networks that fol-
low several different communication patterns, such as machine to machine (M2M),
human-to-human (H2H), human-to-thing (H2T), thing-to-thing (T2T), or thing-to-
things (T2Ts). With newer wireless networks, superior sensors, self-healing soft-
electronics, and revolutionary computing capabilities, the IoT is the frontier in the
race for technological advancement. IoT also has a huge potential to revolutionize
space exploration. In all of these applications, network automation plays an impor-
tant role.

In general, in the past decades, communication systems have experienced sev-
eral technological advancements that have facilitated an increase in the use of the
Internet and the number of devices [187]. As a result of this development, networks
are evolving, showing an increase in network size and complexity. In parallel, net-
works’ hardware and computational complexity are also augmenting. However, this
makes network management very expensive and humanly infeasible. As networks
grows becoming very complex, there is a need for more efficient network manage-
ment methods. The challenges of managing complex networks are numerous.

Autonomic networking is management solution that equips the network system

4 Chapter 1. Introduction to Network Automation and Network Softwarization

with self-X properties; X can represent managing, configuring, healing, and protect-
ing capability of the network [187]. Networks designed with self-management capa-
bilities are able to independently predict, diagnose and circumvent problems with
the network functions. In this sense, an autonomic network management system
(ANMS) is able to capture, respond and adapt to the dynamic and evolving behav-
ior of the network, according to the users’ and services’ demands. With ANMS,
networks will be equipped with self-managing capabilities to make decisions both
in a supervised and unsupervised manner [278]. This ensures simplified control and
management of the networks and their associated services.

Autonomic networking is required to scale up the network management capabil-
ity to address the expected big growth in the next-generation networks. Moreover,
different stringent performance indicators should concurrently be satisfied such as
latency, reliability, and service continuity. This also requires increasing expenditure
and inefficiency as the network size expands. In other words configuration, monitor-
ing, control, and management of such networks become complex and costly [239].
This means, from a business perspective, network operators need to increase rev-
enues, while reducing CapEx and OpEx.

Recently, with the introduction of the concept of network softwarization, the ca-
pabilities of network management are enhanced by the programmability and adapt-
ability of the networking infrastructure. Software define networking (SDN) and net-
work function virtualization (NFV) have become de-facto standards in network soft-
warization. It is for several reasons such as network flexibility and innovation, which
could lead to reduced CapEx and OpEx. In particular, network orchestration is re-
quired for virtual network function (VNF) placement and service function chaining
to properly steer traffic. The paradigm NFV deals with the softwarization of net-
work functions, which are traditionally implemented in hardware, such as firewalls,
serving gateway (S-GW), packet gateway (P-GW) and baseband unit (BBU). While
modern networks provide a high level of programmability, still automation in net-
work management is supported by limited intelligence in the network.

Moreover, a dramatic increase in the amount of network information will come
from network softwarization and additional new verticals such as ultra-reliable mas-
sive machine-type communication. Due to this, a completely new mechanism for
network management is required. Therefore, future networks [63] should mainly
target alleviating the burden through autonomic networking.

Originally, network automation hails from a manifesto by International Busi-
ness Machines Corporation (IBM) in 2001 [29], [37], [159], which was applying self-
management on computing. Through network automation, the network can adapt
to any change in its environment, self-configure, and self-optimize without any hu-
man intervention [29, 278].

In particular, this can be through an autonomic control loop (ACL) that could
be implemented to collect detailed information about the network. Network data,
along with data management, and users’ metadata, could be extracted and used
to manage the network. Collecting such network data from big networks is very
challenging but critically useful to provide dynamic and adaptive responses to the
evolving service demands. Networks with these properties take their actions based
on a set of predefined policies. This can be overridden by the human network ad-
ministration if needed.

With a typical automation method such as monitoring, analyzing, planning, and
executing methods, the network can self-adapt to any changes in its environment.
The following self-management properties [29] are described in IBM’s manifesto:

1.1. Introduction 5

• Self-configuring is the capability of a network to configure and re-configure
itself based on predefined policies to achieve a given performance. This should
happen seamlessly and with no human intervention.

• Self-optimizing means to ensure that the network always uses the available
resources to provide the best possible performance even in highly-varying en-
vironments. The network should always measure its current performance and
set strategies to efficiently perform in case of any deviation from the set of
expectations and predefined-ideal standards.

• Self-protecting is related to the security of the network and it is a very crucial
issue. Self-protection ensures that the network is able to shield itself against
any potential attacks such as Denial-of-Service(DoS) attacks.

• Self-healing is needed in case of failure of any network element. A network
with self-healing capabilities is able to recover from such failures in the shortest
time possible. The network is able to discover and automatically repair any
failed elements to ensure service continuity.

As indicated above, current networking research mostly focuses on network soft-
warization, relying on SDN and NFV. Softwarization maps hardware-based network
functions into software. It is an important step in the automation process. SDN in-
volves the separation of the control plane from the forwarding (data) plane [152, 97].
The forwarding plane is made up of stateless forwarding tables, that are periodically
populated by the centralized controller.

On the other hand, NFV is a software implementation of network function, which
is traditionally implemented in preparatory hardware[189]. The architecture of NFV
contains three main components.

• Network function virtualization infrastructure (NFVI) consists of the hardware
and software that host different virtual network functions (VNFs).

• VNFs are softwarized network functions such as firewall, network address
translation (NAT), packet/serving-gateway(P/S-G), and baseband unit (BBU),
which could be deployed in an NFVI environment.

• NFV management and network orchestration (MANO) is the place where man-
agement and orchestration of VNFs are implemented.

SDN and NFV enable the traditional static network to be flexible, paving the
way for network innovation. This opens the door for rapid network evolution, tran-
sition to intelligent networking, and network automation. Today, the success of the
network automation industry is motivated by SDN, NFV, and Machine Learning
(ML). Even if SDN and NFV enable the possibility of network programming, vir-
tualization, and orchestration, they do not automate network management. There-
fore, a new framework should be developed to incorporate SDN for network control
and programmability, NFV for virtualization and orchestration, and lastly, ML for
knowledge management and cognitive ability. Figure 1.3 depicts a combination of
SDN, NFV and ML for network automation.

ML has recently seen great advancements. It is expected to play a significant
role in the automation process[43]. In fact, ML has been applied in various areas
of networking such as traffic prediction, resource management, Quality of Service
(Qo. S), and network security. ML provides cognition and reasoning in automated
decision-making. The goal of ML in networks is to extract knowledge from network
behavior, service, and users’ behavior, using historic data for training and learning.

6 Chapter 1. Introduction to Network Automation and Network Softwarization

FIGURE 1.1: SDN architecture.

FIGURE 1.2: High-level NFV framework [189].

1.2. Network Softwarization: Overview and Motivation 7

FIGURE 1.3: Automation Enabling Technologies.

1.2 Network Softwarization: Overview and Motivation

As discussed in the introductory section, numerous research areas of networking are
leading to network automation. These are network softwarization through SDN and
NFV, and ML. This chapter provides an overview of network automation enabling
technologies.

1.2.1 Network Softwarization

As we have introduced in the above section, SDN and NFV are the two build-
ing blocks of network softwarization [241]. They are complementary technologies.
Adopting them together provides a myriad of innovative possibilities, such as dy-
namic network slicing, dynamic network configurations, network state measure-
ment, and dynamic network management and control. They are enablers of network
automation through the softwarization and orchestration of network functions.

By rendering the network programmable, SDN enables accelerated innovation,
contributing to greater responsiveness, stability, productivity, and cost-effectiveness.
Since NFV replaces devices such as load balancers, firewalls, and intrusion detection
systems with software running on commodity hardware, it reduces the expense of
installing the network. The forwarding, control, and management functions may
also be implemented in software as in NFV [239]. These consolidated functions may
then share the same resources such as computing, storage, and power. This reduces
power consumption, maintenance costs and takes time to implement new services.
Examples of functions that may be virtualized include switching, routing, traffic
load balancing, etc. Management software that operates on converged SDN and
cloud infrastructure dramatically reduce CapEx and OpEx, as well as the overall
complexity of network operation [241].

Moreover, automating the network management system can supplement SDN
and NFV in harnessing the full benefits of the two technologies. For instance, some
of the important benefits of network slicing are network and service isolation. En-
abling network slicing requires dynamic network functions orchestration and dy-
namic resource allocation depending on the service requirements. An automated

8 Chapter 1. Introduction to Network Automation and Network Softwarization

FIGURE 1.4: Unified SDN-NFV Architectural Framework.

provisioning of resources and orchestration of network functions would enable sat-
isfying the dynamic service demands. A unified architecture for SDN-NFV, which is
presented in [148] is depicted in Figure 3.1.

1.2.2 Software Defined Networking (SDN)

Now let us see what SDN brings to network management. SDN is a promising
solution in network automation[152, 241, 218]. This is because, SDN involves the
separation of the control plane and the data plane, which significantly decreases the
difficulties experienced in controlling networks. The control plane is implemented
in a central controller while the hardware functions such as routing and switching
can be abstracted from hardware and implemented in software [291]. This allows for
a range of considerably more flexible and effective network management solutions,
using network programming. This improves the role of network management in
the event of any dynamic network changes. This gives room for autonomic network
management (ANM). In other words, the flexibility and dynamic programmability
of control enable network automation.

Figure 4.5 illustrates the SDN architecture. The data plane consists of all net-
work devices such as switches, routers, and firewalls. The control plane and the
data plane communicate over the South-Bound Interface (SBI) [38]. The concept be-
hind SDN was to use flow tables within network devices and a common interface for
configuring, controlling, and manipulating the flow table. OpenFlow is the standard
protocol employed at this interface. OpenFlow protocol is used by the centralized
controller to manipulate entries in flow tables. Functionalities such as fault detec-
tion, the discovery of topology changes, etc are performed by the SDN control plane
[38]. The control and the application planes communicate over the north-bound in-
terface (NBI). Over this interface, applications are able to exchange information with
the control plane about the status of the network devices.

Different authors [152], [218] have proposed a number of SDN-based architec-
tures for autonomic management. For example, [218] proposes an SDN-based net-
work virtualization architecture with autonomic management (SDNVA) with two

1.2. Network Softwarization: Overview and Motivation 9

FIGURE 1.5: SDN Management Architecture with respect to auto-
nomic management[97]

layers: autonomic virtual physical virtual network management. The major objec-
tive of this approach is to ensure isolation between the virtual network resources
using a virtualization module and also assert a hierarchical autonomic management
approach among the physical and virtual resources. Ahmed Binsahaq et. al. in [38]
discussed the current state of the art literature on SDN about QoS management. The
literature discussed in their work is classified based on the monitor, analyze, plan,
execute, knowledge (MAPE-K) reference model [37] serve as basic functions, moni-
tor, analyze, plan, execute, and knowledge.

1.2.3 Network Function Virtualization

NFV is another key component of network softwarization. Similar to SDN, NFV
provides flexibility and programmability through dynamic orchestration of network
functions. The idea of NFV is decoupling network functions from hardware and
deploying them as software in virtual machines (VMs) or containers [241]. NFV
originated from a white paper [56] that was presented at a conference in Darmstadt,
Germany, on SDN and OpenFlow in 2012. The architecture of NFV is illustrated in
Figure 1.2. It represents the three main working domains as; VNF, NFVI, and MANO
[189].

A VNF is software that implements a given network function. VNFs run in one or
more virtual environments(e.g. VM, containers, etc) that run on general hardware.
VNFs are deployed on-demand using an NFV architecture, removing the delivery
delays associated with traditional network equipment, as well as the need for on-site
specialist knowledge, when deployed remotely [189]. NFVI includes physical and
virtual network resources, hypervisors, VM, and virtual infrastructure managers. It
also includes the physical resources for deploying and handling VNFs. The NFVI

10 Chapter 1. Introduction to Network Automation and Network Softwarization

FIGURE 1.6: ETSI-NFV Architectural Framework[189]

requires the virtualization layer above the hardware, which abstracts hardware re-
sources into virtual resources that support VNFs. The NFVI is also essential to the
development of large, widely-dispersed networks without the regional limitations
associated with conventional network architectures [189].

MANO is responsible for the management and orchestration of the virtualized
network. NFV MANO consists of three modular components: NFV Orchestrator
manages VNF enrollment, lifecycle management, global view of resource manage-
ment, and NFVI resource request validation and authorization. VNF manager man-
ages the instance management of the VNF lifecycle, provides collaboration and adap-
tation function for the configuration of NFVI and element/network management
systems, and the recording of events. virtual infrastructure manager (VIM) controls
and manages resources for the NFVI computing, storing, and networking.

1.3 Overview of Network Management Systems and Network
Automation

Communication networks are very complex systems with numerous heterogeneous
devices, services, and users involved. This is more pronounced in automating net-
works interconnecting IoT devices, as there will be a huge number of interconnected
devices. For example, there are 20.6 billion connected devices in 2020[119]. Thus,
managing such networks involves handling real-time events in a sophisticated and
heterogeneous environment. The problem is also complicated by the continued and
huge amount of data generated by IoT devices, users, services, and networks. On
the other hand, even if it is cumbersome to manage this vast amount of data, data
also contains valuable information about users, services, and network status, that

1.3. Overview of Network Management Systems and Network Automation 11

FIGURE 1.7: Cyclic process of network management.

could be extracted for effective network management. Information could be used to
facilitate the provisioning of services. This could happen through systematic man-
agement and analysis of data to extract valuable information to self-manage the net-
work.

Legacy network management systems (NMSs) were mostly implemented in hard-
ware but today, an increasing number of them have been implemented in software.
These systems are responsible for the good health of a network [295]. They moni-
tor, maintain, and optimize the network. NMSs provide a number of functionalities
such as fault detection, device management, performance analysis. Network man-
agement raises new problems, that need to be tackled to ensure a robust and secure
networking system is completely achieved. The trend today is that future networks
should be more independent, requiring almost no human intervention for healing,
protection, optimization, and (re-)configuration. This results in ANM system [278].
It is generally agreed that a greater degree of service knowledge and efficient uti-
lization of network resources would be needed for the next phase of a multi-tenant
network.

1.3.1 Network Management and Control as a Cyclic Process

Network management and control is a cyclic process that starts from observing the
environment and ends the cycle to acting and changing also influenced by the varia-
tions in the environment. Figure 1.7 depicts a general network management process.

• Measuring and understanding the environment is performed through observ-
ing and taking some measurements to capture any behavioral change. Various
techniques could be employed to observe the environment. These techniques
could be independent of the environment to observe and the parameter to be

12 Chapter 1. Introduction to Network Automation and Network Softwarization

measured. It could be sampling the instance of events or continuous measure-
ment of network events and activities. Observing and measuring the environ-
ment provides important information about the status of the network being
managed. For instance, measuring the bandwidth across a given link or path
would provide valuable information that could be used in the routing decision
of new traffic and services. It could also be used to monitor and guarantee the
required QoS for a given service.

• Decision-making process is the process of extracting and utilizing valuable in-
formation for the final decision. For instance, a decision could be made for
routing of new traffic or rerouting of ongoing services by observing the current
network state or amount of traffic in a given link or path for optimal or max-
imum resource utilization depending on the policy stated by the network ad-
ministrator. The decision-making process is the most critical and complex part
of the network management process. Depending on the decision, it may in-
volve performing complex optimization algorithms including ML techniques.

• Planning action strategy is the procedural step needed in order to execute the
decisions such as what kind of actions or configurations should be performed
on an element to have the required network behavior. For example, once the
decision is made to allocate resources, a configuration file needs to be prepared
for execution in the network elements or devices. This allocates the required
network resources, as agreed upon in the decision-making process.

• Verification of planned action is the process of validating the plan before exe-
cuting it on the target network elements or devices. These could be configu-
ration files or steps, which have to be verified and checked for accuracy and
consistency. It is very important to verify the action as the execution of the
action may have undesirable consequences on the target device and/or the
network behavior in general. Since the network is a dynamic environment
and the process of settling for a given decision may take more time, the deci-
sion may be outdated or no longer useful, or sub-optimal depending on the
scenarios considered.

• Executing the planned action is done through implementing the verified and
accurate final action plan. It could be a configuration path because of a re-
quested service, reservation of end-to-end network resources, service isolation,
or a part of QoS provisioning and guaranteeing.

• Finally, monitoring the system behavior is analyzing the effect of the action on
the overall system behavior. This could be through loop-back control.

In the decision organization of any network, control loops are a very essen-
tial part of a network management to employ automation. They provide infor-
mation throughout different parts of the network in question thereby facilitating
self-adaptation and later, self-management [30]. They facilitate data collection from
which decisions are made. However, loop-back control problems arise together with
the increase in the cost and complexity of the system. Another challenge exists, in
the case of policy-based decisions where conflicts can arise from two policies with
similar conditions but different actions.

1.4. Edge Computing, Cloudification, and Containerization 13

1.4 Edge Computing, Cloudification, and Containerization

The current technological trends in the research and industry are taking the direc-
tion of systems being distributed and loosely coupled. This research journey can be
summarized as the move from centralized and hardware-based towards distributed
cloud-based and virtualization/softwarized approaches. Before virtualization, ap-
plications were installed as a complete system with its OS over some underlying
hardware. This, however, had several challenges such as constrained mobility and
difficulty running updates. As a result, virtualization came along and offered the
possibility of having many applications, each in its virtual environment, but sharing
the same hardware infrastructure and resources. This greatly improved configura-
tion and management of applications since VM are easy to clone and install in a
different location.

Applications are designed to run in different isolated spaces (e.g containers, dock-
ers, etc) while utilizing the same resources and operating system. The concept of
"containerization" [296] comes with a number of benefits such as efficient resource
utilization, quick development and debugging of applications, the possibility of
fault isolation, and easier management. With the network, automation arises the
possibility for any network to self-heal (fault isolation), self-configure in the shortest
time possible, self-protect, and self-manage.

Today, implementation is moving from on-premises applications to cloud-based
applications [157]. Applications can run at the customer premises i.e. in a server
in some server room in a building. This is becoming infeasible in terms of CapEx
and OpEx, scalability, and security (against theft and natural disasters like fires).
Containerization alone does not imply cloudification. Applications are hosted in the
cloud and as long as one has access (and an internet connection), the services are
available. This has resulted in inefficient resource utilization, security against theft,
and easy disaster recovery due to the availability of an off-site backup. The costs of
migrating services and maintenance of equipment are significantly lower than the
potential OpEx [229] without virtualization and automation.

1.4.1 Containerization and Cloudificaton

Network automation could employ the concept of distributed computing and cen-
tralized control. In a distributed computing the solution to a problem is obtained
through the division of tasks amongst a group of network management elements.
This results in improved performance, flexibility as tasks can be performed by differ-
ent machines irrespective of their geographical location and reliability since a glitch
in a single element does not mean total denial-of-service in the entire network. Dis-
tributed computing is employed in network automation through containerization,
where different services of applications are run in different containers while shar-
ing the same OS and other networking resources [296]. This happens in an effort to
implement virtualization of services, easy fault isolation, and lower system costs.

On the other hand, centralized network control is built around a single controller
that manages all the major network control. Network nodes or workstations con-
nect to the centralized controller and submit their requests to the central controller
rather than performing them directly, depending on the required network control
functions. The centralized controller manages the flow by programming the de-
vices to perform the required packet routing or management. The controller directs
traffic according to forwarding policies that a network operator puts in place. This

14 Chapter 1. Introduction to Network Automation and Network Softwarization

minimizes manual configurations for individual network devices. The centralized
control will have a global information about the network.

While maintaining a global view of the network and centralized control princi-
ples, the controller could be designed using a monolithic system or as a decoupled
microservices or multi-agent systems. The existing controller systems are designed
as monolithic systems, such as Ryu SDN controllers. However, very recently, a mi-
croserivce based controller design is proposed by the µONOS projectmicroONOS.
It decomposes the controller functions into virtual network functions and deployed
them as microservices in containers. The decomposition provides an independent
implementation of controller functions. Moreover, this approach provides flexibil-
ity in terms of dynamic scaling and backup deployment of functions. Such design
provides the option of distributed deployment of the centralized control.

The network functions, that are either be designed as microservice or multi-
agents, can be deployed as containers. A container is a lightweight computing pack-
age that is abstracted away from the host operating system (OS). OS making it easy
to migrate containers from one device to another without the need to adapt them
to the new device. The applications deployed in each container, each have their li-
braries and configuration files. The containerization technology today is divided
into:

• Container runtime, a software that executes container images on a given node.
These include Docker, Docker Enterprise, CRI-O, rktlet, containerd, Microsoft
Containers, etc.

• Cluster management and deployment technology such as Kubernetes, Docker
Swarm etc for workload management and resource assignment.

• Storage containers like BlockBridge and EMC / libstorage for storage pur-
poses.

• Container security like Twistlock, Aqua, Aporeto, etc to provide for detection
of any anomalies such as intrusion and aid in processes like single sign-on,
vulnerability scanning among others.

The distributed nature of computing is employed either on-premises or in the
cloud. The paradigm shift today is cloudification due to its advantages such as faster
disaster recovery, security, more resources, and easy access at any time regardless
of geographical location. Cloud computing can be described as a model enabling
the sharing of a variety of computing resources in the form of services through re-
mote access over the internet rather than a physical computer or storage disk. This
computer system is split into two parts i.e. front-end (clients or user devices) and
back-end (servers).

1.4.2 Edge Computing

Terms such as edge computing and cloud computing have arisen because of the
overwhelming need for faster and better technologies. Edge and fog computing
systems also bring data processing closer to the source of data generated i.e. the sen-
sors [79]. The key reason for this is to minimize the amount of data sent to the cloud,
thus reducing the latency. As a result, the response time of the system particularly
improves for applications requiring low latency, such as the 5G URLLC services.

Figure 1.8 illustrates clearly the difference between cloud, fog and edge com-
puting [275]. The cloud layer (cloud computing) can be described as a large and

1.4. Edge Computing, Cloudification, and Containerization 15

FIGURE 1.8: Cloud computing Vs. Fog computing Vs. Edge comput-
ing.

centralized data storage and processing facility, that exists far away from the data
source (sensors). Accessing services here means accessing resources on the Internet,
so experiencing considerably higher latency. Fog computing, on the other hand, is
closer to the information source and is characterized by its distributed nature, low-
latency. A number of standards and protocols are required in order to access it. Edge
computing (similar to fog computing) happens in the edge and at the devices, where
the sensors are placed thereby, resulting in lower latency and faster system response.

1.4.3 C-RAN

Cloud radio access network (C-RAN) is a virtualization paradigm, which aims at
moving RAN and baseband functions and procedures to cloud data centers. That
would help to reduce power consumption while increasing energy efficiency of het-
erogeneous RAN management, deployment, and updates.

Figure 1.9 depicts the idea behind C-RAN. Legacy 4G/LTE RAN requires base
stations (BSs), which equip a baseband unit (BBU) at each radio site. Nevertheless,
this solution is neither scalable nor optimized in large heterogeneous scenarios of
future generation networks. On the other hand, by implementing virtual BBUs (v-
BBUs), the network achieves higher flexibility in management and configuration of
the RAN by detaching baseband processing functionalities from standard BSs; thus,
BSs will become pure radio remote heads (RRHs), whereas baseband processing will
be moved to dedicated data centers with shared processing facilities. This approach
is expected to reduce complexity and power consumption of the RAN. However, the
allocation of virtual resources and processing tasks has to be assigned effectively not
to increase delays and loads.

In current 4G cellular networks, baseband processing at BBUs3, 4 includes all
the processing due to lower layers of 4G protocol stack. The operations of a BBU
involve physical layer processing (4G baseband signal processing components in-
clude ASICs, DSPs, microcontrollers, and FPGAs), smart antennas, and multiuser
detection required to reduce interference, modulation/demodulation, error correc-
tion coding (which increases the complexity of the baseband processing at the re-
ceiver), radio scheduling, and encryption/decryption of packet data convergence
protocol communication (both downlink and uplink). Multicarrier modulation is

16 Chapter 1. Introduction to Network Automation and Network Softwarization

FIGURE 1.9: Downlink communication in heterogeneous 4G or LTE
RAN and heterogeneous 5G Cloud RAN. The latter places baseband
processing at virtual baseband units (BBUs) in operators’ data centers
and run them as virtual machines or virtual functions in containers.

RRH, radio remote head

also a baseband process. The subcarriers are created using IFFT in the transmitter,
and FFT is used in the receiver to recover the data. A fast DSP is needed for parsing
and processing the data. Multiuser detection is used to eliminate the multiple access
interference present in CDMA systems.

1.5 Microservice and Multi-Agent Systems for Autonomic Net-
working

Here we will introduce the thee contending technologies for service design. These
are monolithic, microservice, and multi-agent.

1.5.1 Microservice Architecture

Microservice is a variant of the service-oriented architecture (SOA) structural style in
software development [138]. It arranges an application as a collection of loosely cou-
pled services. In a microservices architecture, services are fine-grained decoupled
functions. The protocols are interconnecting the decoupled services are lightweight.
The architecture describes a particular way of designing software applications as
suites of independently deployable services. While there is no precise definition of
this architectural style, there are certain common characteristics around an organiza-
tion, business capability, automated deployment, intelligence in the endpoints, and
decentralized control of languages and data.

As per the above definition, microservices-based systems provide the possibil-
ity of building a system from small heterogeneous components. A lot of exist-
ing tools could be geared toward microservices such as communication interfaces.

1.5. Microservice and Multi-Agent Systems for Autonomic Networking 17

FIGURE 1.10: Microservice Architecture

Microservices-based systems have the advantages of scalability, reusability, flexibil-
ity, and agility. First, the functions that we are proposing to be designed as microser-
vice inherit the general microservice properties. Second, the microservice-based
function could be considered as separate functions that could be placed in a con-
tainer and cloud environment. Third, by instantiating and sequencing the necessary
functions, we can recreate the decomposed monolithic systems with only the impor-
tant and required functions hosting them in the nearest edge computing data center.
Figure 1.10 depicts the basic microservic architecture.

1.5.2 Application of Multi-Agent for Network Automation

There exist several research works emphasizing the application of the multi-agent-
based system in networking. MAS has been used in many areas [232] mainly fo-
cusing on works related to networking. We divide them by areas of application
e.g. wireless, wireless mesh, security, mobility management, and network manage-
ment system. A multi-agent-based configuration in a ubiquitous wireless network
is presented in [130]. The author showed how agents are used in the RAN where the
information is loaded and fed back with the help of communication between various
agents. Q–learning technique is used to provide the agent with cognitive abilities to
make decisions on when to apply load balancing.

A significant number of works exists utilizing agents for WSN [240, 53, 158, 121,
154, 314, 201, 45]. A multi-agent-based system architecture for WSN is proposed by
[121] with four types of agents: interface, regional, cluster, and query agents. In com-
parison to conventional client/server architecture, mobile agents have many advan-
tages for WSN. In [240], a multi-agent-based hybrid protocol is proposed, utilizing

18 Chapter 1. Introduction to Network Automation and Network Softwarization

the advantages of combining value and decision fusion. The aggregation is per-
formed to avoid data redundancy before arriving at the sink. Mobile agents perform
the task of data aggregation at the nodes rather than at the processing element result-
ing inefficient bandwidth usage and improved network lifespan. A source grouping
along with a tree-based ordering mechanism is proposed in [158]. Recently, the au-
thors in [53] designed a migration route planning algorithm based on mobile agents.
Other related works in the area of WSN considered: a multi-agent simulation [154]
and performance comparison of multi-agent middle-ware platforms [45]. The mech-
anism for Cooperation and consensus for multi-agent networked systems is dealt in
[201, 314, 55]. Using the tuple space model, in [127], MAS architecture for intelligent
home network is presented.

Moreover, some other works focused on more specific applications such as se-
curity, service discovery, and service migration. The article in [12] proposed an
approach for dynamic service discovery in service-oriented architecture based on
a multi-agent system using matchmaking technique. Patri et al. [211] developed
a generic migration algorithm derived from a search-based rational agent decision
process. Such an algorithm can deal with uncertainties to provide the migration
path. The migration is computed by using a maximized utility function. Several
works also exist showing the use of intelligent autonomic agents for security appli-
cations such as risk assessment [180], and network intrusion detection [208]. The
authors in [318] presented mobility management over the satellite networks based
on virtual agent clustering. In [120], the authors proposed the use of MAS method-
ology to facilitate the decentralized reconfiguration of power systems to offer more
flexibility and control as well as avoiding the problem of a single point of failure as
witnessed in centralized systems. The authors in [166] offer an ASBR model as a
solution to DoS attacks in WSN. They describe a model in which a network is able to
monitor and identify nodes compromised by DoS attacks and self-recover in time.

None of the works considered an organized management architecture, like in
[271, 155, 274], for the overall network system management. Guo-zhu et.al,[271] pre-
sented a multi-agent-based management system designed for distributed network.
They developed an intelligent management architectural framework. The architec-
ture organizes agents into three types: center layer-agent, region-layer agent, and
access-layer agent. The functions of each agent and cooperation mechanisms in the
framework are discussed in the article. Some interesting work about control systems
is presented in [262] from the control research community. Several works existing
related to steady-states of the closed-loop system and study-state analysis of multi-
agent-based system [242, 243].

1.6 Artificial Intelligence and Machine Learning for Network-
ing

Currently, there is a shift from manual defined network (MDNs) to intelligent de-
fined networks (IDNs) [43]. Operations, such as optimization and configuration, in
MDNs, are completely dependent on human intervention. Whereas the same op-
erations in IDNs are not. The complexity introduced by network automation can
be reduced by introducing ML technology into the network [85] thereby making it
an intelligent network. Intelligent networks, rather than following strictly defined
policies/laws, can learn from past data to guide new predictions or decisions.

On the one hand, through learning from new data, the IDN can dynamically
adapt to a changing situation of the network and develop its intelligence with it.

1.6. Artificial Intelligence and Machine Learning for Networking 19

There are various methods to extract information for given data. ML tools such
as fuzzy logic, case-based reasoning, evolutionary computing, artificial neural net-
works, and intelligent agents provide powerful aids in solving difficult applied prob-
lems, that are often real-time, involving large amounts of distributed data, and bene-
fiting from complex reasoning. Through sophisticated user interfaces and visualiza-
tions, IDN may also strive to help human-based decisions through pre-processing
data and providing insights to users and network administrators. Most intelligent
networks employ machine learning paradigms to predict/classify network traffic
patterns, application patterns and later make decisions based on these predictions
and/or classifications. The ML paradigms include: supervised learning, unsuper-
vised learning, and reinforcement learning [43]. These paradigms influence deci-
sions how data is collected, processed, and the inference of decisions from the data.

We continue to highlight some of the networking areas where machine learning
paradigms have been applied. An interesting comprehensive survey paper on the
application of ML towards network automation is presented in [43]. ML exploits
information from the network and users’ data to learn and perform the required
changes to suit the demands. Recently, using SDN’s capability in collecting an enor-
mous amount of packet and traffic data, lots of research has been done to explore
the applicability of ML in networking for traffic analysis [223, 181]. In [252], an au-
tonomic VNF placement is discussed considering a three data center hierarchy for
workload offloading between the data centers depending on the traffic load. Most
of the recent work on ML-based VNF placement has focused on exploring ML for
dynamic traffic-aware VNF placements [239, 212]. In [239], the authors presented
a method called z-TORCH orchestration mechanism that uses unsupervised learn-
ing to monitor VNF key performance indicator (KPI) and reinforcement learning to
find a trade-off solution for reliability and complexity of the monitoring system. In
[263], the authors discussed a classification approach to dynamic resource scaling
and VNF placement. They used a specific version of neural network with multi-
layer perceptron to predict the required number of VNFs at a given time using a
Dataset collected from a commercial mobile network. Time series prediction for
VNF placement is presented in [269]. The authors in [269] first analyzed the traffic
characteristics of the data center and devised a traffic forecasting technique. Based
on traffic forecasting, they develop a deterministic algorithm to determine the VNF
resource scaling.

The application of ML in network automation raises a few fundamental ques-
tions. To what extent should the network be autonomic or independent of the net-
work administrator? Does it mean zero involvement? If this is the case, then how
does the system know what to do at each stage of the network, either it is in tran-
sition state or steady-state? These are two extreme scenarios that should be consid-
ered. The network elements are assumed to be capable of interacting and learning
their working domain to perform a given function and form the overall network. In
this sense, they could start with a predetermined set of rules. On the other hand,
they could start with no rules at all. In order to realize full network automation, a
comprehensive approach for the cumulative decisions considering the overall deci-
sion latency, reliability, consistency, and computational efficiency is a necessity.

20 Chapter 1. Introduction to Network Automation and Network Softwarization

1.7 LTE, 5G, B5G, and 6G

1.7.1 LTE Technologies

Long-term evolution (LTE) is the fourth generation mobile broadband network that
attracted billions of mobile subscribers. There is still a demand that could even in-
crease subscribers. LTE delivered huge improvement over the predecessor with the
overall performance. It also paved the way towards more intensive softwarized
network functions compared to previous generations. There are different versions
of LTE. The most advanced and contemporary versions of LTE are known as LTE-
Advanced and LTE-A pro. LTE incorporated inter-cell interference coordination(ICIC),
multiple input multiple outputs (MIMO), the separation of control, and data plane
known as control user plane separation(CUPS). This helps transition towards next-
generation small cell technologies, such as network functional application platform
interface(nFAPI). Other fundamental changes are eNB splitting (BaseBand Unit and
Remote Radio Head), modification of core network (CN). The last releases of evolved
packet core(EPC) have lost circuit-switched mode, allowing all components to com-
municate only through IP. This enables full packet switching. The main components
of 4G EPC are described as follows:

• Mobility management entity(MME): is responsible for management and con-
trol of the EPC. It takes care of handover, paging, UE/eNB attachment. It also
manages the necessary information to accept or reject access requests to the
network.

• Home subscriber server (HSS): this function is responsible for the storage and
access of users’ information. It allows MME to have persistently archived all
identifiers necessary to accomplish identification operations.

• Packet data network (PDN)-gateway (PGW): is fundamental for the correct
functioning of EPC. PGW’s main job is to allocate and assign IP addresses. It
also allows access from EPC to the internet and the external world.

• Serving-gateway (SGW): S-GW is the complementary function of the user plane
for P-GW, connecting radio access network (RAN) to EPC and granting access
to PDN gateway.

• Policy and charging rules function (PCRF): it mainly manages different policies
for user access, allowing differentiation between planes and QoS access.

The above functions follow the legacy deployment of 4G/LTE network, which is
mostly hardware-based. This lucks the flexibility that the current network is requir-
ing, especially in the era of network softwarization and cloudification. Moreover, an
experimental tesbed is challenging to build since it requires using hardware-based
functions.

1.7.2 5G Technologies

The first version of 5G commercialization has started to roll out with softwarization
of functions. Its roll-out is facilitated by innovative possibilities derived from the
softwarization and reduction of hardware. This enables the innovative solution to
be developed to achieve the dynamic and heterogeneous demands of users. Since
release 15 of 3GPP, which is the last version of LTE, all the developments are consid-
ered as an early version of 5G that links with LTE. Release 15 is more of a transition

1.7. LTE, 5G, B5G, and 6G 21

FIGURE 1.11: 4G/5G Core Network

deployment, that allows new features but still being compatible with LTE-A. The
major novelties involved in next-generation RAN (gNB) is the fundamental split be-
tween central and distributed unit (CU/DU). Moreover, there is also a separation
between control and user plane (CUPS) with the dedicated entity for user plane
function(UPF). Furthermore, there is an independent design and implementation of
services such as RAN and CN. The 5G use service based architecture (SBA), utiliz-
ing micro-services for core component design. In general, 5G aimed at introducing
the functions based on service-oriented approach, specifically, as microservice and
multi-agent approach in service design[14].

Open projects on softwarized emulation of 4G and 5G are an emerging paradigm
in the development of 5G. There are several alternatives. For the sake of research,
it is preferable to consider open and free projects, which present anyway consis-
tent and advanced opportunities. 5G components could be deployed in a virtual
or docker virtualization environment. Examples of such works are OpenAirInter-
face(OAI) software alliance, Free5gc, Open5gs, SRS-LTE, and Labora projects are
among several initiatives aimed at the progress in democratization and open de-
ployment 5G deployment. These are an emulation of 4G/5G components in a con-
tainerized environment. The architecture of 4G/LTE and 5G are depicted in 2.27.

5G is expected to address the strange requirements of heterogeneous users. This
can be addressed by creating more flexibility in the legacy network, paving the way
for innovative solutions such as dynamic service orchestration and network automa-
tion[14]. In general, 5G needs to fulfill the requirements of the following categories
of services: enhanced Mobile BroadBand (eMBB), consider high speed of end user
data and system capacity as crucial, except for a slightly less focus on connection
density and latency; ultra-reliable Low latency communications (URLLC), latency
along with mobility will be crucial for reliability improvements; massive Machine-
Type Communications(mMTC) main concern is the connection density parameter
and network energy efficiency.

22 Chapter 1. Introduction to Network Automation and Network Softwarization

FIGURE 1.12: enhanced mobile broadband (eMBB), ultra-reliable
low-latency communications (URLLC), and massive machine-type

communications (mMTC)

1.7.3 5G Service Requirements

5G and beyond networks are expected to have a heterogeneous environment made
up of not just mobile phones but different devices that support a wide number of
applications. Some applications require a large number of devices or simultane-
ous connections at the same time while others require low latency in order to offer
efficiency and reliability. 5G services are divided into three main categories [147]
e.g. enhanced mobile broadband (eMBB), ultra-reliable low-latency communica-
tions (URLLC), and massive machine-type communications (mMTC). Figure 1.12
shows the three types of 5G services and their requirements.

eMBB services require high data rates. Some of the use-cases include large-scale
video streaming and virtual reality. This type of service requires an enhancement
of the existing fourth-generation (4G) long-term evolution (LTE) broadband data
rate capability. URLLC services include autonomous driving, remote surgery, and
industry control with robots. This second category of 5G services targets very low-
latency and ultra-reliability since it will support verticals such as remote surgery,
automated driving. These services are also referred to as mission-critical services
because they will provide an infrastructure for emergency-governmental communi-
cations. mMTC services include billions of devices connected at the same time. This
third category of 5G services includes devices such as those in the IoT, smart cities,
and smart buildings. The main performance requirement for mMTC networks is the
need for highly-dense connectivity (about 1 million devices per km2).

Due to the heterogeneous nature of 5G and beyond networks, stringent service
requirements are targeted e.g high data rates, connectivity, and low latency. Thus,
management and control of such networks are very difficult, the CapEx increases
with the need for connectivity, and more devices or sensors. Moreover, OpEx in-
creases due to the constant need for human intervention to manage the networks.
As previously mentioned, this motivates the need for network automation in 5G
environments.

1.7. LTE, 5G, B5G, and 6G 23

1.7.4 B5G, and 6G

Recently, the attention and the effort towards the next generation (6G) has started
both in the scientific, public, and private communities. Some consortia have already
started working on the definition and characterization of future 6G communication
networks, preparing the ground for its standardization by 2030. In Europe, some
of the major projects are the EU Flagship Hexa-X [36], the 5GPPP CORDIS RISE-6G
[226], and the 5GPPP RIA DEDICAT 6G [72]. In parallel, the US has also started the
Next G Alliance [188]. All those results are expected to be contributed towards the
ITU Radio communication.

However, various promises made by 5G are still not satisfied and there is the
feeling in part of the community that 6G could just be a 5G+. Moreover, network
softwarization brought 5G closer to the Internet community, which does not use any
’generation’ terminology, but it provides continuous network upgrades and soft-
ware updates. Next, 5G has already promised support to many verticals, which
are still waiting to receive the promised low-latency reliable connectivity and al-
most continuous service availability. In such a conceptual/technical still ’liquid’ and
changing situation, this article tries to state some important conceptual, terminolog-
ical, and technical characteristics and guidelines that will make 6G.

In the last few years, speculations have been proposed to give some shape to the
future 6G networks. After the imprint left by 5G, even 6G started from the definition
of potential targeted use cases. Among the various proposed verticals, Augmented
Reality (AR) and Virtual Reality (VR) have been the main and most popular drivers
of the 6G vision. Even if already proposed in a preliminary form during 5G, now
AR and VR visions have significantly been extended towards the realization of 3D
holographic video representations and interactions. Some initial studies have esti-
mated that a raw hologram, without any compression, with colors, full parallax, and
30 fps, would require 4.32Tbit/s. The latency requirement will hit sub-millisecond,
and thousands of synchronized view angles will be necessary [165]. Additionally,
the idea has also been to make holograms physically perceptible by associating not
only audiovisual information but also haptic data as in the Tactile Internet.

25

Chapter 2

Mathematical Models for
Softwarized Networks, VNF
Design, and Softwarized LTE/5G
Functions’ Local Deployment

In this chapter, we focus on the softwarized network analysis through mathematical
models, new type of network function design as VNF, and emulation of LTE/LTE-
A/5G network functions. The simulation of VNF design and emulation of LTE/5G
are performed by MSc students that I supervised.

2.1 Introduction

The current distributed wireless network architecture is unable to support 5G ser-
vices’ high computational demands, stringent requirements and massive number
of heterogeneous devices. It requires huge computing power in each cellular sites,
which is extremely expensive. Therefore, the proposal is to implement the BBU in
software and place it in a data center with large computational power, memory and
storage than the existing cell sites (see Figure 2.1). However, by considering only
computational demands, a traditional data center would not be the best choice for
deploying virtual BBU (vBBU) as it incurs in a significant transmission delay. There-
fore, European Telecommunications Standards Institute (ETSI) recommended mo-
bile edge computing (MEC) for vBBU placement to reduce the delay between the
user and processing unit. In addition to minimizing the latency, MEC gives some
level of distribution of computing power, which provides significant reduction of
unnecessary concentration of service traffic to a single data center.

However, moving the vBBU into the edge/MEC, and implementing it in soft-
ware, requires careful considerations regarding processing, latency, reliability, ser-
vice admission, network resource utilization, energy consumption, and service through-
put. To this end, several works have been published for VNF placement from vari-
ous perspectives. However, to the best of authors’ knowledge, none has considered
the trade-off among six parameters simultaneously, while considering service differ-
entiation in VNF placement.

Here we correlates the mathematical modeling in [26] by incorporating a theo-
retical analysis of VNF placement in an edge data center for C-RAN. Moreover, it
enhances the theoretical discussion in [26] not only by studying energy efficiency
but also jointly formulating 5G requirements. The results suggest that the proposed
modeling, along with the indicated techniques, provides admission of services close
to 5G requirements.

26
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.1: 4G Architecture, 5G with Cloud Architecture and 5G
with Edge Data Center Architecture

2.2 Existing VNF Placement Algorithms

We grouped some VNF placement research works into six categories according to
their final objectives.

2.2.1 Resource Optimization

Most related works deal with resource optimization for VNF placement[207, 288,
34]. For example, in [151], the authors considered resource utilization and workload
variation in service function chaining (SFC) and VNF placement, with the objective
of minimizing the number of physical resources. Similarly, in a recent article [207],
the authors presented a spacial resource-demand adaptive algorithm for VNF place-
ment.

2.2.2 Minimizing Service Delay

Another frequent objective in the literature focuses on minimizing end-to-end ser-
vice latency [169, 305, 58]. However, in most literature, overall quality of service
(QoS) constraint is not strictly taken into account, especially in comparison to 5G
stringent requirements. More recent works focus on VNF placement, while consid-
ering QoS or service level agreement (SLA) [202, 32, 144, 58]. Nevertheless, none
of them did account service differentiation for VNF allocation. They only aimed at
reducing the delay without considering reliability and energy consumption. In [10],
the authors hypothesised that instead of considering how much resource VNFs re-
quire to run, it could be possible to look at it as a problem of allocating as much
resources as possible for VNFs to meet the service constraints. However, achieving
such requirements, using CPU resource over-provisioning techniques, is costly in
terms of resources, and energy consumption in edge data centers.

2.2.3 Minimizing Energy Consumption

Few related works focus on energy efficiency in VNF placement [267, 255]. In [131],
the authors design a queue-based model for energy cost optimization that minimizes
the utilization of physical servers through workload consolidation. In [26], the au-
thors presented a comparative evaluation of energy consumption of BBU in three

2.2. Existing VNF Placement Algorithms 27

different scenarios; placing BBU (i) in the cell site as in the existing 4G/LTE architec-
ture, and placing vBBU in (ii) traditional data centers and (iii) in edge data centers.

2.2.4 Maximizing Reliability, Availability and Service Admission

The software implementation of VNFs raises the issue of reliability and fault tol-
erance [65]. However, reliability and fault tolerance constraint is by far the most
overlooked in the literature, in the context of VNF placement in edge data centers.
Few works, such as [84, 307, 213, 221, 132], considered reliability and fault toler-
ant systems, in which they recommend backup VNFs as a solution. In [84], authors
suggested that resource over provisioning through parallelization and replication of
VNFs, could increase the reliability. Though the solution is pragmatic, it is costly
in terms of resources as well as energy consumption in edge data centers. In [150],
the authors discussed availability constraint for VNF Placement. They attempted
to provide a backup solution with the consideration of resource efficiency in a data
center environment.

2.2.5 VNF Placement in Cloud, Fog and Edge Data Center Computing

To this end, several works have been done to model VNF placement in an edge
data center, considering its resource constraints [210, 190, 59, 88, 113]. In [294, 175,
319, 114, 212, 269], VNF placement in distributed data centers is considered. The
problem of VNF placement in distributed data center is mainly the VNF communi-
cation delay between different VNFs, that are placed in geographically distributed
data centers. These VNFs are part of a service function chain (SFC) that a given ser-
vice has to pass through. VNF placement in Fog computing is presented in [57]. It
aimed at minimizing the worst completion time of application and applications out-
age number. In [153], VNF placement in a hybrid data center is discussed. This work
focused on modeling hybrid data center as undirected graph where hosts, network
and switches are considered. Few works have focused on VNF placement in MEC
[142, 67, 185, 305].

2.2.6 Load balancing and Traffic Steering in Service Function Chain

Traffic routing and load balancing aspects are considered in some research [54, 117,
103]. Article [9] focuses on multi-cast service routing with load balancing in VNF
placement. They formulate the problem of VNF placement as a cost optimization of
VNFs, in terms of resource and cost of inter-VNF links. Some works also consider
optimal orchestration of VNFs and steering of traffic through it [313, 270, 5, 122, 11].

In addition to single specific objectives, some other works have focused on for-
mulating a joint objective function to be optimized simultaneously. In [32, 48], the
authors presented a heuristic multi-objective optimization taking into account delay
and CPU utilization. Whereas, in [134], network link utilization and overall cost
minimization is considered. Revenue maximization, while respecting service re-
quirements, is also considered in[174, 77]. In such context, very few research works
attempted to combine multiple parameters in their objective function. In [254, 268,
4], the author considered improving service rejection, energy consumption, scala-
bility and operator’s revenue. In general, however, there is no work, which jointly
considers six main constraints of 5G services.

28
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

2.3 C-RAN Modeling as a Multi-layer Loopless-random Hy-
pergraph

2.3.1 System Model

The analysis of techniques to place VNFs in 5G and beyond networks requires a
theoretical model, which tries to represent accurately network infrastructure and its
characteristics. As previously demonstrated in depth by the authors in [26], existing
models, used for network virtualization and specifically for C-RAN, were not able to
capture the system-level aspects of the problem. Especially, the evaluation of perfor-
mance metrics of C-RAN cannot overlook the fact that future generation networks
are quite more heterogeneous (consisting of different RANs, interconnected with
wired and wireless networks, as depicted in Figure 2.2) and complex than existing
and previous wireless cellular networks.

While undirected graphs are an accurate description of existing wired networks,
they have limited characteristics to model virtualization of physical network re-
sources at edge and core networks. Moreover, VNFs are hosted at servers in data
centers of different sizes and structure. Thus, multilayer graphs are suitable and
flexible theoretical models to address this problem [25].

Side by side, in the last decade, stochastic-geometric models were demonstrated
to be correct and accurate representations of RAN and wireless backhaul of heteroge-
neous cellular networks [110, 83]. Even if cellular networks with their base stations
(BSs) are already deployed, stochastic geometry allows for a general performance
study and evaluation, which is not referred to a specific city or geographical location
[83]. In fact, spatial deployment of BSs was demonstrated to follow random point
processes (PP). As an example, Poisson point processes (PPP) are an accurate model
for BSs in both London and Manchester [161]. Moreover, cellular coverage of BSs is
reproduced via Voronoi and multiplicatively weighted (MW) Voronoi tessellations
[83].

Given these premises, a random multilayer hypergraph [26] is a mathematical
hybrid structure that consists of layers where nodes are placed according to random
PPs and deterministic spatial distributions. Moreover, such a mathematical struc-
ture can be useful to describe the performances of VNF placement strategies since
such evaluations need a system-level end-to-end perspective. The following system
model borrows terminology and mathematica description of random multilayer hy-
pergraphs, which was developed in [26] to study latency and energy efficiency of
C-RAN. On the other hand, this section also provides and extension of that initial
model, in order to make it suitable and accurate for studying techniques to place
VNFs dynamically.

Let the future generation network be represented by a multilayer loopless-random
hypergraph. Next, let the problem of placing VNFs be formulated by using six
main constraints. A multilayer loopless-random hypergraph is a multilayer net-
work, which can describe, via its multilayer structure, end-to-end downlink com-
munication passing through heterogeneous RAN, wireless backhaul, edge and core
network and networks of servers (data centers). This scenario is depicted in Fig-
ure 2.2.

Let M = (XM, EM, X, L) be a multilayer loopless-random hypergraph where

• X is the set of random nodes, which can be placed according to either random
point processes (Φ) or deterministic spatial distributions;

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 29

FIGURE 2.2: Physical Infrastructure and Representation of 5G Cellu-
lar Network

• XM is the set of node-layer elements, in which each node in X can differently
appear since referred to the respective elementary layer;

• EM is the set of edge-layer elements, in which each edge can differently appear
because it is referred to the respective elementary layer;

• L = {L1, . . . , La} is the set of layers according to the number a of aspects; then,
subsets Li = {Λi1, Λi2, . . . , Λini} are the sets of elementary layers Λij, given
the ith aspect; variables n1, . . . , ni, . . . , na represent the number of elementary
layers per each aspect.

The total number of layers of M is obtained as ntot = ∑a
i=1 ni. Next, each elementary

layer represents a planar random hypergraph X = (XΛij , EΛij), where XΛij ⊆ X and
EΛij ⊆ E.

Let AH = (aij) be the adjacency matrix of size |V| × |V| obtained from the or-
dered vertex set (<, V) of planar loopless hypergraph H = (V, E), where < is
a binary relation over V. Next, let XH = (xij) be the incidence matrix of size
|V| × |E|, referred to the planar loopless hypergraph H = (V, E). The definition
of adjacency and incidence matrices of M require the generalisation to tensor the-
ory [143]. Hence, we define the fourth order adjacency tensor and incidence tensor,
which can be seen as the four-dimensional arrays AM = (aijk) and XM = (xijk) (the
third dimension is referred to the number of elementary layer). The former (tensor
AM) has size |V| × |V| × |L| × |L1| × . . .× |La|, while the latter (tensor XM) has size
|V| × |E| × |L| × |L1| × . . .× |La|.

Next, let’s define hyperedge attributes:

• the function c : E→ R, which associates a weight to the edges of M (the capac-
ity of the ’physical’ links measured in b/s);

30
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

• the function τ : E→ R, which associates a weight to the edges of M (the delay
of the edges measured in ms);

• the function ρ : E → R, which associates a weight to the edges of M (the reli-
ability of the edges defined as ρ = 1− Pe, with Pe the failure probability of an
edge).

The two functions c and τ allow the definition of two weight matrices referred to M,
the capacity matrix CG = (cij) and the delay matrix TM = (τij). These matrices have
the same size of the adjacency matrix AM. Especially, the delay matrix has members
calculated as the sum of two components TM = Tp + Tt

tr:

• Tp = (τp ij) is a matrix of constants, which identifies the propagation delay
(dependent on the distance weight between nodes);

• Ttr = (τtr ij) is the matrix of transmission delay, inversely proportional to the
available link capacity at time t;

• Tq = (τq ij) is the matrix of queuing delay.

Next, let’s define nodes attributes:

• the function fVNF : Q → Xi, where Q is the finite set of VNFs; this function
assigns each VNF to a specific node in the network.

• the function fe : X → R, which associates a weight to the vertices (energy
consumption of each node in the network).

2.3.2 Service Modeling

First, based on 5G standard, the three main service are characterized to suit our def-
inition of service category. Type 1 services are strictly inelastic so that their require-
ments must be satisfied to be admitted. They tolerate very low delay in the range of
few milliseconds or even less for some services. And that should be maintained dur-
ing the service life cycle. Moreover, they also require approximately 100% reliability.
This type of services is called URLLC: examples are remote surgery and industrial
internet of things (IIoT). Type 2 services have softer and relaxed constraints com-
pared to service Type 1. However, if the constraints are not met, there could still be
significant loss of users and revenues for violating SLA. These services include on-
line video streaming and virtual gaming. Type 3 services can be defined as elastic, in
a sense that their requirements have to be satisfied also allowing for ranges of values
instead of strict thresholds. Such type of services includes IoT such as temperature
or humidity sensor networks.

A chain of VNFs is assumed to be an ordered subset of queues Q, generated by
an ordering function. This ordered chain can be represented by a directed graph Gc.
Each node j has associated capacity (CPU, RAM, and Memory).

An end-to-end service (Sri) is identified by the ith commodity flow with a quadru-
ple parameters (si, σi, αi, Di), where si ∈ S is the source (S is the set of sources), σi ∈ Σ
is the sink (Σ is the set of sinks) and αi is the indicator function 1K : K → {0, 1}, which
assumes value 1 if the commodity ki belongs to subset K ∈ K of commodities with
elastic demand set (value 0 means inelastic demand). Then, let Di be the demand set,
which defines the requirements in terms of throughput, latency, reliability, process-
ing demand (workload), and service class (priority indicator) for that specific appli-
cation. If the commodity is elastic Di = {[T̃hmin, T̃hmax], [τ̃min, τ̃max], [ρ̃min, ρ̃max], Lij, β}.

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 31

The first three requirements are ranges that represent services’ Type 2 and Type 3,
otherwise inelastic cases which represents service Type 1. The set becomes Di =
{c̃, τ̃, ρ̃, β}, with constant first three members. The priority β is a value in the range
[0, 1], which is used to classify the serving priority of the commodity; the sum of all
the priorities is 1. The coexistence of multiple services is called a multi-commodity
flow and K = {ki} (with i = 1, . . . , m) is the set of m commodities.

2.3.3 System Model Formulation

Using the above system model, we first formulate the objective functions using the
constraint parameters while considering flat service scheduling (without service dif-
ferentiation). In the objective function, we balance between complexity and com-
prehensiveness. For practical applicability, simplistic formulation would not be ac-
curate to approximate system’s behavior. On the other hand, providing an exact
formulation of such complex system would be unbearably intricate with a dimin-
ished pragmatic applicability. This is because exact formulation must consider all
parameters with probabilistic modeling, such queuing dependence and topological
variation per operator, for each node and in each layer of the hypergraph. Therefore,
in the following formulation, expectation value of the parameters is considered with
a typical topological scenario.

We assign delay, reliability, throughput, service workload, energy consumption
and service admission constraint to each node and link. In that sense, the aver-
age and expectation measurement metrics are used in the formulation of RAN, mi-
crowave (MW) backhaul, wired (fiber) backhaul and edge data center network. How-
ever, the expectation value of the parameters at the servers of the edge data cen-
ter are calculated considering multiple queues for VNF placement and scheduling.
Note that the arrival process in a cascaded queue and a sequence of VNF nodes is
assumed to be the same. Therefore, in the model, the dependence of service process-
ing and service transmission between cascade VNFs is eliminated by approximating
the arrival process of each flow at the subsequent VNF (queues) as a Poisson pro-
cess. This enable us to employ an M/M/1 queuing model to calculate the average
measurement metrics. This approach was first proposed as the assumption of in-
dependence in Kleinrock’s seminal works on packet switching network modeling
using queuing theory. As per the Kleinrock’s independence assumption every time
a packet is received at a given node in a network, it can be assumed as an expo-
nential distributed that, for example, can be used to generate a new length for the
specific packet. Nevertheless, this is obviously inaccurate because packets maintain
their lengths as they progress through the cascaded network of queues, but Klein-
rock proved that the effect is negligible. Therefore, it should be noted that the as-
sumption of independence between subsequent VNF’s may not always be accurate,
specifically in the case of traffic mixing, strong positive correlation between service
and interarrival time[214]. The exact character and formulation of cascaded VNF’s
is highly affected by different aspects such as the presence of different traffic classes
with specific traffic characteristics which share the same queue, the presence of long
range dependence in traffic, the presence of links with different link utilization and
the presence of a large number of traffic sources sharing the network. Moreover,
our initial assumption of cascaded VNF as cascaded queue may need to be numeri-
cally verified. That means the use of more accurate models to approximate cascaded
independent queues for VNF sequence could be the scope of future work.

32
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

In [316], the authors model C-RAN in a single tier cellular network considering
mobile users and BS’s as randomly distributed according to two Poisson point pro-
cesses. We assume each tire as an independently distributed cellular network. Since
the sums of two independent Poisson random variables are also Poisson random
variables. In our formulation, a three tier access networks with users and base sta-
tions distributed according to PPP distribution is considered [316]. As previously
described in Section 2.3.1, PPP represents an accurate and reasonable description of
users’ and BSs’ spatial distributions, capable to model various real geographic sce-
narios. The distribution of overall arriving traffic workload to the edge data center
in 24 hours is shown in Figure 2.10.

A given user uij, from the jth tier, generates a computational workload demand
in Giga Operations Per Second (GOPS), which is given by[298]:

Lij =

[
30A + 10A2 + 20

MCL
6

]
R
50

(2.1)

where A is the number of antennas, M is the modulation scheme, C is the code rate,
L the number of spatial MIMO-layer, and R is the number of resource blocks.

Let M f , Np, and Om be the number of users, which requested service workload
Lij, at a given time, respectively from femto, pico and micro cells. The service work-
load is assumed to be Poisson distributed. Therefore, the total service workload
arrival rate (λtot), from all the three tiers is given by:

λtot =
M f

∑
i=1

λi +
Np

∑
j=1

λj +
Om

∑
k=1

λK (2.2)

Similarly, the total aggregated throughput Thtot (in Mbps) from all the three tiers,
which is also assumed to be Poisson distributed, is given by

Thtot =
M f

∑
i=1

Thi +
Np

∑
j=1

Thj +
Om

∑
k=1

Thk (2.3)

End-to-end Service Latency

We first formulate the end-to-end latency of the system, which is the overall latency
experienced by a given service. For C-RAN, the end-to-end latency experienced by
the service is the sum of the delays form source (user) to sink (edge data center)
which is given by:-

τ̃tot = τ̃RAN + τ̃bh + τ̃Edc (2.4)

Where τ̃RAN is the latency on the link between RRH and UE, τ̃bh is the propagation
delay on the backhaul network links and τ̃Edc is the delay experienced in the edge
data center. The first part of the equation consisting of RAN and backhaul delays
are discussed in our previous article [26]. We now break up and elaborate the delay
due to edge data center. It consists of data center network delay, processing delay,
process queuing delay at each VNF and virtualization overhead delay. In the anal-
ysis, virtualization overhead delay is neglected for the sack of simplicity. Therefore,
the total delay in a generic edge data center is given by

τ̃Edc = τ̃dc−ntk + τ̃proc + τ̃queue (2.5)

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 33

The data center transmission delay is due to the physical link and virtual link de-
lay. This links interconnect the hosts containing VNF sequences required for a given
service to pass through. Since propagation delay is not dependent on the incoming
service workload, it is reasonable to assume τ̃ntk as constant given both equal dis-
tance between hosts and equal link capacity ci, thus imposing a link delay δi. The
total delay experienced by a given user’s service, traversing the sequence of VNFs’
with K interconnecting links, is given by

τ̃dc−ntk =
K

∑
i=1

δi (2.6)

The processing delay (τ̃proc) is variable depending on the given service workload
(Lij), serving rate of each VNFs (Uvn f) from a group of VNFs (i.e. a so called service
function chain) and number of VNFs Nvn f of a given type. The dependencies are
given by

τ̃proc =
Nvn f

∑
i=1

Lij

Uvn f
(2.7)

The queuing delay (τ̃queue) is calculated assuming M/M/1 queuing discipline. The
total process queuing delay is dependent on the arrival rate, serving rate of each
VNFs and the number of VNFs of a given type. Moreover, to calculate the total delay
in passing through the required sequence of VNFs, we sum all the delays incurred
by the given service, in the service function chain (SFC), assuming a queue at each
stage of the VNF sequence. This is given by

τ̃queue =
N

∑
i=1

1
Ms f cUvn f − λ

(2.8)

where Ms f c is the processing capacity to host a VNFs sequence (the number of avail-
able VNF types that a service require (N) multiplied by each VNFs capacity Uvn f),
ignoring VNFs’ overhead CPU requirements. That means all the available capacity
of the data center would be used for service processing (without any other process-
ing overhead such as VNF instantiating), given by

Ms f c =
CPUtot

Nvn f
= Uvn f × Nvn f (2.9)

Therefore, to meet the end-to-end delay for a service that is constrained to pass
through a given sequence of VNFs, the data center delay is the sum of SFC decision
delay (overhead), queuing delay, processing delay at each VNF, and interconnecting
links delay (virtual links) between hosts, so that

τ̃Edc =
Klink

∑
i=1

δi +
Nvn f

∑
i=1

Lij

Uvn f
+

Nvn f

∑
i=1

1
Ms f cUvn f − λ

(2.10)

where Klink is the number of links interconnecting different sequence of VNFs in the
SFC. The above equation shows the total delay at edge data center. Therefore, the
overall end-to-end delay is given by

τ̃tot = τ̃RAN + τ̃bh +
Klink

∑
i=1

δi +
Nvn f

∑
i=1

Lij

Uvn f
+

Nvn f

∑
i=1

1
Ms f cUvn f − λ

(2.11)

34
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

Finally, the end-to-end delay constraint for a given service is given by

τ̃max > τ̃tot (2.12)

End-to-end Service Reliability

Considering our multilayer random hypergraph modeling, end-to-end reliability is
the reliability of interconnecting nodes in each sub-layer. This involves nodes from
source of an incoming service to the sink. The reliability of nodes up to the data
center gateway, which are the network nodes including the gateway router has been
discussed in most literature [126]. Therefore, even if all parts of the network are
considered in our analysis, here, we only elaborate the reliability of the servers host-
ing the VNF chain. The considered VNF chain is for a given service constrained to
traverse through, including the interconnecting links. The overall reliability is cal-
culated by considering the reliability of each sublayers to be mutually independent
events[109]. Therefore, the end-to-end reliability constraints becomes

ρ̃tot = [(ρ̃RAN)(ρ̃bh)(ρ̃Edc)] (2.13)

A given physical server’s reliability is given by [18, 39]

ρ̃phs =
MTBFphs

MTBFphs + MTTRphs
(2.14)

Similarly, a given VNFs reliability is given by [18, 39]

ρ̃vn f =
MTBFvn f

MTBFvn f + MTTRvn f
(2.15)

Therefore, the overall reliability of edge data center (EDC) is given by

ρ̃Edc = [(ΠN
i=1ρ̃vlink)(ΠK

i=1ρ̃phs)(ΠN
i=1ρ̃vn f)] (2.16)

End-to-end reliability constraint is given by

ρ̃tot > ρ̃min (2.17)

Edge Data Center’s Computing Capacity Constraint

For simplicity, we only consider the CPU representing the computational constraint
in the data center. We assume the equivalent memory and storage is allocated for
the required number of VNFs’ to function properly. The total capacity of a given
edge data center is the sum of all the available (Ns) server’s CPU capacity denoted
as CPUtot, which is given by

CPUtot =
Ns

∑
i=1

CPUi (2.18)

Alternatively, if we assume all servers having equal amount of processing capacity

CPUtot = CPUiNs (2.19)

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 35

The total incoming service workload, needed by all the three tiers at a give time, is
calculated as

λtot =
M f

∑
i=1

Li +
Np

∑
j=1

Lj +
Om

∑
k=1

Lk (2.20)

Therefore, the capacity constraint for an edge data center is given by

λtot < CPUtot (2.21)

End-to-End Power Consumption

As presented in [26], the total power consumption of cloud RAN with an edge data
center (e.g hosting vBBU) in 5G networks will be the sum of the power consumption
of all the three main components including: RAN (P̃RAN), backhaul(or fronthaul)
(P̃bh), and P̃Edc edge data center. It is given by

P̃tot = P̃RAN + P̃bh + P̃Edc (2.22)

The RAN and backhaul power consumption are formulated and discussed in our
previous work [26]. Here, we recall those formulations. RAN power consumption
is the sum of all base stations’ power consumption, which is given by

P̃RAN =
Ncell

∑
n=1

Pbs (2.23)

where Pbs is formulated as [17]

PBS = Ntrx((1− η)Pbs−idle + η∆pPbs−max) (2.24)

where Ntrx is the number of transmission chains. In other words, it is the ratio of
transmitting and receiving antennas per site, Pbs−idle is the idle power consumption
of a base station, ∆p is workload’s dependent power consumption’s slope, PBS−max
is the maximum RF output power at maximum workload, and η is the fraction of
workload variation.

Backhaul power consumption is given by

P̃bh =
Ncell

∑
n=1

Pn
sw + Nn

AntePn
link (2.25)

The data center’s power consumption is composed of server’s power consumption
and switches’ power consumption and it is given by

P̃Edc = P̃Edcsw + P̃Edcsr (2.26)

The server’s power consumption is dependent on the incoming total workload λtot
(in GOPS) for i number of users or services belonging to all the three tiers. The power
consumption is then given by

P̃Edcsr = P̃idl + (P̃max − P̃idl)λtot (2.27)

36
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.3: RAN, Backhaul and Edge Data Center

Similarly, the switches’ power consumption is dependent on the incoming load as
given below

P̃Edcsw = P̃idl−sw + (P̃max−sw − P̃idl−sw)λtot (2.28)

Therefore, the total power consumption of C-RAN is given by

P̃tot =
Ncell

∑
n=1

[Ntrx((1− η)Pbs−idle + η∆pPbs−max)]

+
Ncell

∑
n=1

Pn
sw + Nn

AntePn
link

+P̃idl−sr + (P̃max−sr − P̃idl−sr)λtot + P̃idl−sw

+(P̃max−sw − P̃idl−sw)λtot

(2.29)

Throughput Constraint

A given user from one of the three tiers generates service request imposing a given
amount of throughput demand, which is denoted by T̃hi−min and T̃hi−max. As per
the International Telecommunication Union’s (ITU) standard (IMT-2020 5G require-
ment objectives), the expected theoretical maximum downlink peak data rate is 20
Gbps and the user’s experienced data rate is ˜Thi−max = 100 Mbps (100− 200 Mbps
to support applications such as augmented reality) [69, 28]. Moreover, since the
user/service arrival rate is considered as Markovian Poisson process, it is consistent
to assume the overall throughput as random Poisson distribution [316]. For a ser-
vice to be admitted, its end-to-end average throughput demand has to be satisfied in
all the subsequent layers of the hypergraph (RAN, backhaul, and edge data center)
of the C-RAN. We formulate the service throughput constraint based on the total
average throughput in each layer.

In a typical implementation scenarios, backhaul network varies depending on
multiple factors such as the network areas that the operator would like to cover, and
operators’ preference from business point of view. Some operators, specially in the
urban areas, may have multiple stage backhaul aggregation links, while others may
have single link, to reach an aggregation point. Therefore, we consider a simplified
case where the RAN is taken as the aggregation point for active users. Whereas, for
backhaul network, we consider two layers assuming maximum of one microwave
backhaul layer and one fiber backhaul aggregation layer. Figure 2.3 shows the stages
of the network connecting RAN, MW and fiber backhaul and an edge data center.

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 37

In this scenario, the fiber network interconnects various aggregation points to
the edge data center through a ring fiber links. Each layer of the hypergraph have
a hierarchical network where links have different capacity to accommodate vari-
ous service traffic aggregations levels. Depending on the architectural layers in the
hypergraph, the network capacity may vary. The total average throughput is the su-
perposition of all active users’ throughput in a given link or aggregation port [162].
For example, if we consider the three tier base stations, the total throughput is the
sum of all active users’ throughput from all the three tier base stations. This is given
below for Mu active users:

Thbs =
Mu

∑
i=1

Thi (2.30)

Similarly, the overall service aggregation at a traffic aggregation link from the three
tiers is formulated as the sum of M f , Np, and Om active users, from all the three tiers,
and Ncells number of active base stations. Moreover, we are considering two stage
backhaul aggregation layer to approximate typical cellular network. Microwave
backhaul are assumed to aggregate base station traffic that are further away from
the fiber links (metro or ring network). Moreover, fiber backhaul is assumed to ag-
gregate all user traffic from a given area. The fiber backhaul includes a metro in an
urban area that interconnects the aggregation points with the edge data center. The
throughput at a microwave backhaul network aggregation point is given by:

Thbh−mw =
Ncell

∑
n=1

(
M

∑
i=1

Thi +
N

∑
j=1

Thj +
O

∑
k=1

Thk) (2.31)

Moreover, the throughput at a fiber backhaul network aggregation point, assuming
a single path to the edge data center, is given by

Thtot =
Nagg

∑
n=1

Thbh−mw (2.32)

where Nagg is the number of aggregation switches (sites). A service could not be
admitted if the minimum throughput demand of the service is not satisfied by the
available throughput at each point of the C-RAN. In other words, for system’s sta-
bility, we have to satisfy multiple constraints, which are RAN capacity, backhaul
capacity and edge data center network capacity constraints. The RAN network ca-
pacity constraint is then given by

Thbs < LcRAN−max (2.33)

The throughput constraint at a microwave backhaul network aggregation point is
given by

Lcbh−mw > Thbh−mw (2.34)

Similarly, the throughput constraint at a fiber backhaul network aggregation point

Lcbh− f iber > Thtot (2.35)

Edge data center aggregate throughput constraint is similar to the fiber backhaul.
However, we presented it for the sack of convenience:

Lctot−edc < Thtot (2.36)

38
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

For the edge data center network, we consider a three tier architecture, which has
both physical and virtual network. Thus, for each path a service is assigned to (from
one VNF Mv in a given physical node Ns to another VNF in another physical node),
the admitted service throughput demand must be satisfied at the edge data center
network links. This is given by

Lcedc >
Ns

∑
i=1

Mv

∑
j=1

aijThij (2.37)

aij is a binary variable indicating if the service is assigned that particular link.

Overall Service Admission Probability

The overall service admission probability of C-RAN system is defined as the ratio
between total admitted services and total requested services

ApC−RAN =
∑

Nsr−Adm
i=1 Sri

∑
Nsr−adm
i=1 Sri + ∑

Nsr−rej
i=1 Sri

(2.38)

The value of ApC−RAN is dependent on the composition of the constraints, imposed
by all the constituent nodes and edges of the hypergraph, that the service is required
to traverses through. In other words, for a given service to be admitted to an edge
data center, all services’ demands have to be satisfied. That is the admission of a
given service is constrained by the possibility of meeting the demand set (Di =
{[T̃hmin, T̃hmax], [τ̃min, τ̃max], [ρ̃min, ρ̃max], Lij) of a given service at the time and point
of service arrival. Here, we need to have a measure of service admission for C-
RAN system to allow for a comparison among different techniques. Therefore, we
can reasonably assume that the conditions of satisfying latency constraint, reliability
constraint, computing constraint, and throughput constraint for a given service as
independent events, even if the events are not completely mutually independent.
With this assumption, the overall service admission probability of the edge data
center could be formulated as the product of the probability of fulfilling end-to-
end services reliability constraint, the probability of fulfilling end-to-end services
latency constraint, the probability of fulfilling services throughput constraint and
the probability of fulfilling total computing capacity, as formulated by

ApC−RAN = (Prend−to−end−reliability)

(Prend−to−end−latency<τ̃max)

(Prtotal−capacity)(Prend−to−end−throughput)

(2.39)

where admission probability due to latency constraints is given by

Prend−to−end−latency = Pr(τ̃max > τ̃tot) (2.40)

Similarly, admission probability due to reliability constraint is also given by

Prend−to−end−reliability = Pr(ρ̃tot > ρ̃min) (2.41)

And admission probability due to overall edge data center processing capacity con-
straint is written as

PrCapacity = Pr(λtot < CPUtot) (2.42)

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 39

We include the RAN, the two stage backhaul network, and the data center network
as sequence of queues in calculating service admission. The service admission for-
mulation considers the service throughput constraints. The queuing sequence as-
sumption enables us to apply Burke’s queuing theorem. This gives us the possibility
of treating each event as independent events. Therefore, admission probability due
to throughput constraint becomes the product of the RAN throughput constraint,
the backhaul throughput constraint and the edge data center throughput constraint.

PrRAN−th = Pr(Thbs < LcRAN−max) (2.43)

The backhaul admission probability due to throughput constraint is the capacity
constraint in both level of the backhaul networks. At the microwave backhaul we
have:

Prbh−mw = Pr(Lcbh−mw > Thbh−mw) (2.44)

Similarly, at the fiber backhaul network aggregation point

Prbh− f iber = Pr(Lcbh− f iber > Thtot) (2.45)

The admission probability of the edge data center is dependent on the data cen-
ters’ network aggregation links’ capacity, interconnecting link capacity (virtual and
physical), overall processing capacity, overall data center processing latency, and
overall data center reliability. This is calculated by considering the minimum set of
nodes, physical (physical servers) and virtual nodes (sequence of VNFs) and links
(interconnecting the VNFs).

Prdc−th = Pr(Lcdc >
M

∑
i=1

N

∑
j=1

aThij) (2.46)

The overall admission probability, due to throughput constraint, is combined by
considering mutually independent events for the throughput constraints of all part
of the network[109] as

Prend−to−end−throughput = (PrRAN−th)(Prbh−mw)

(Prbh− f iber)(Prdc−th)
(2.47)

Substituting the above constraint equations for latency (Equation (40)), reliability
(Equation (41)), CPU capacity (Equation (42)), and network capacity at each stage of
C-RAN (RAN (Equation (43)), microwave backhaul (Equation (44)), fiber backhaul
(Equation (45)), and edge data center network (Equation (46))) in a single equation
gives us

ApC−RAN = Pr(τ̃max > τ̃tot)Pr(ρ̃tot > ρ̃min)

Pr(λtot < CPUtot)Pr(Thbs < LcRAN−max)

Pr(Lcbh−mw > Thbh−mw)Pr(Lcbh− f iber > Thtot)

Pr(Lcdc >
M

∑
i=1

N

∑
j=1

aThij)

(2.48)

Overall Multi-Objective Formulation

In this subsection, we combine the above equations into a single multi-objective for-
mulation that represents the constraint at each stage of the network. Therefore, the

40
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

overall formulation, that contains the 5G six constraints, is given by

Max(ApC−RAN), (2.49a)
Min(P̃tot), (2.49b)

while maintaining total CPU constraint:

CPUtot > λtot, (2.49c)
ρ̃tot ≥ ρ̃min, (2.49d)
τ̃tot > τ̃max, (2.49e)

ThRAN−max < LcRAN , (2.49f)
Thbh−mw < Lcbh−mw, (2.49g)

Thbh− f iber < Lcbh− f iber, (2.49h)

Lcdc >
M

∑
i=1

N

∑
j=1

aThij, (2.49i)

The above formulation is an NP hard problem. Therefore, we try to simplify the
method to reach good results by considering the constraint equations in a separate
manner and not applying them at the same time. Instead of trying to identify the
exact solution for the NP hard problem, we used a simpler approach to maximize
the admission probability, while at the same time aiming at satisfying the reliabil-
ity and latency constraints for ultra-reliable low-latency services. Let us first focus
on latency and reliability, which are related to CPU utilization in our next formula-
tion. Since 5G needs to support services with high reliability and low latency, we
proposed to improve these two parameters by using backup VNFs to increase reli-
ability of SFC and CPU over-provisioning to reduce latency. We then reformulate
the problem incorporating the proposed improvement methods. This is discussed
in the next subsection. Using reliability and latency improved methods, it increases
the admission of services, which could have been rejected due to these two con-
straints. However, the methods increase CPU resource usage and energy consump-
tion. The increase in CPU resource usage means that more services could be rejected
because of CPU constraints. Therefore, we further propose to use service differen-
tiation via the above latency and reliability improvement techniques. By applying
these techniques to inelastic services, it gives an improved CPU utilization and en-
ergy consumption, while maintaining better reliability and latency. This improves
the overall admission probability. Furthermore, admission of services is also depen-
dent on the throughput constraints imposed at each level of the C-RAN. Therefore,
we have also considered throughput constraints as an additional parameter that has
to be satisfied for a given service to be admitted. The evaluation is performed based
on the above intuitive analysis of the problem formulations.

For further elaboration, let us look at each equation separately. Equation (2.49d)
is the total CPU capacity constraint of the edge data center. This equation indi-
cates that the total CPU capacity of the edge data center must be higher than the
total service workload demand. At a given time this constraint should be checked
for an incoming service with a give workload to be admitted. Equation (2.49e) is
the overall reliability constraint. This constraint has to be satisfied for a given ser-
vice to be admitted, assuming other constraints, such as latency constraint, are sat-
isfied. Equation (2.49f) is the end-to-end latency constraint. This equation indicates
that the latency incurred at each stage of service’s path must be less than the one a

2.3. C-RAN Modeling as a Multi-layer Loopless-random Hypergraph 41

service can tolerate. This is also with the assumption that all other constraints are
satisfied. Equations (2.49g) to (2.49i) are throughput requirements constraint for mi-
crowave backhaul network, fiber backhaul network, and data center interconnecting
network, respectively. Similarly assuming the CPU capacity, reliability, and latency
constraint, the throughput constraints at each stage of the network at a given time
must also be satisfied for a given service to be admitted.

Now let us simplify the equations. Since we would like to admit as much service
as possible from all type of arriving services, let us consider the equation involving
the maximization of admission probability Max(ApC−RAN). Maximizing admission
probability of C-RAN ((ApC−RAN)) means that we would like to achieve the admis-
sion probability to be equal to one ((ApC−RAN) = 1). This means

ApC−RAN = Pr(τ̃max > τ̃tot)Pr(ρ̃tot > ρ̃min)

Pr(λtot < CPUtot)Pr(Thbs < LcRAN−max)

Pr(Lcbh−mw > Thbh−mw)Pr(Lcbh− f iber > Thtot)

Pr(Lcdc >
M

∑
i=1

N

∑
j=1

aThij) = 1

(2.50)

which also means maximizing every components of the equations:

Pr(τ̃max > τ̃tot) = 1 (2.51a)
Pr(ρ̃tot > ρ̃min) = 1 (2.51b)

Pr(λtot < CPUtot) = 1 (2.51c)
Pr(Thbs < LcRAN−max) = 1 (2.51d)

Pr(Lcbh−mw > Thbh−mw) = 1 (2.51e)
Pr(Lcbh− f iber > Thtot) = 1 (2.51f)

Pr(Lcdc >
M

∑
i=1

N

∑
j=1

aThij) = 1 (2.51g)

These would be possible when we meet the minimum services demands sets of all
the services at every component of C-RAN at a given time (or on average). In math-
ematical terms, this means

τ̃max = τ̃tot (2.52a)
ρ̃tot = ρ̃min (2.52b)

λtot = CPUtot (2.52c)
Thbs = LcRAN−max (2.52d)

Lcbh−mw = Thbh−mw (2.52e)
Lcbh− f iber = Thtot (2.52f)

Lcdc =
M

∑
i=1

N

∑
j=1

aThij (2.52g)

This is a theoretical minimum design criterion for C-RAN system. However,
meeting these criterion for all type of services with stringent requirements are very
challenging. Therefore, it is necessary to maximize the chance of admitting all type
of services by separately looking at some of the constraints. This could be possible
by improving C-RAN system’s end-to-end reliability and delay constraints, while

42
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

considering efficient resource utilization and energy consumption.

2.3.4 System Model Formulation with Service Differentiation

This section presents our reformulation of the overall C-RAN system considering
service differentiation: backup VNFs to improve VNFs’ reliability, and CPU over-
provisioning to reduce processing and VNFs’ queuing delay. However, providing
backup VNFs and CPU over-provisioning are costly leading to a decrease in CPU
usage efficiency and an increase in energy consumption. These have a direct impli-
cation on CaPex, OpEx and carbon footprint that operators strive to minimize.

Improving VNFs Reliability by Using Backup VNFs for Critical Services

There are various reasons for VNFs failure such as software bugs or physical server
restarting or even failure of physical machine[178, 235]. In [220], the authors sug-
gested to use backup VNFs to improve the reliability of a service function chain.
Their proposed solution is to increase reliability through redundancy of VNF in-
stances. VNF instances are instantiated as backup VNFs to migrate services in case
of active VNFs failures.

Therefore, the reliability of SFC incorporating backup VNFs is defined as [220]

ρ̃vn f−with−backup = ΠN
i=1(1−ΠN

i=1[1− ρ̃vn f)] (2.53)

ρ̃Edc = [(ΠN
i=1Prlink)(ΠK

i=1Prphs)(ΠN
i=1ρ̃vn f−with−backup] (2.54)

Using these techniques, maximizing reliability increases the total number of idle
VNFs. Idle VNFs are backup VNFs, which are waiting to replace working VNFs in
case of failure or waiting to be scheduled in case of sudden and unexpected work-
load spikes. However, this requires additional physical servers to be activated. This
increases the total cost due to power consumption and computing resource utiliza-
tion. Therefore, we propose to use backup VNFs for those services that requires
ultra reliability. In other words, we only use this technique for Type 1 services. We
reserve some number of VNFs considering the required SFC for Type 1 services. Our
assumption here is that by providing the required amount of resources as a backup
VNF, we increase the reliability of the VNFs to meet Type 1 services’ reliability con-
straint. Nevertheless, that may not be required for Type 2 services. In fact, Type 2
services have softer and tolerable reliability constraint, and an increase in comput-
ing resources may not be necessary. Moreover, it could be invaluable and costly for
service Type 3 with much relaxed reliability constraint. Therefore, it is necessary to
differentiate services to apply backup VNF techniques in VNF placements and ser-
vice chaining. In doing so, we minimize the expected increase in resource utilization,
and energy consumption, while maximizing service admission.

Allocating More Processing Resources to Reduce Edge Data Center Processing
Latency for Critical Services

In case of flat scheduling (without service differentiation), the end-to-end latency
incurred by the service could be decreased by introducing a CPU over-provisioning
technique [10]. Nevertheless, using this method consumes more resources. Con-
sidering various services’ latency constraint, it is inefficient to dedicate more re-
sources for those services that do not have critical and strict constraints. Therefore,

2.4. Performance Evaluation of the VNF Placement Mathematical Model 43

by treating services according to their requirements, we could utilize the resources
efficiently.

For service Type 1, the approach is to give as much resource as possible to reduce
the processing latency. For the processing latency, we need to make the best possible
resource provisioning for VNFs to meet the latency constraint. For service Type 2,
the underlining idea is to give minimum resource as possible to meet the latency
requirements. This could be an optional decision for service providers to consider
making the cost within the tolerable range. In doing so, users of such type could
have affordable and flexible pricing. Here, cost is in terms of edge data center’s
computing resources and energy consumption. For service Type 3, the primary idea
is to perform tasks without too much delay or within the tolerable deadline.

Ucpu−vn f = a f (CPUvn f) + b (2.55)

where
a =

Dmax × Dmin

Φmin ×Φmax
(2.56)

b =
Dmax ×Φmin × Dmin ×Φmax

Φmin ×Φmax
(2.57)

In general, applying both techniques, to reduce processing delay and increase
reliability, change equation (2.11) and (3.17), respectively. These also change the
overall formulation.

Energy Efficiency Calculation

Equation (2.58) [125] is used to calculate the energy efficiency of the above tech-
niques. Using this, the techniques are compared in terms of energy cost. Energy cost
has an implication on the operating expense.

EE =
Thtot

Ptot
(2.58)

It should be noted that the above energy efficiency definition does not fully re-
flect the energy consumption in comparison to the QoS improvement, such as relia-
bility and latency. For example, we have suggested to use backup VNFs and more
CPU resources, to reduce reliability and latency respectively. This leads to higher
service admission, specially for Type 1 services. The increase in throughput could
not fully incorporate the QoS improvement of the C-RAN system. Therefore, we
suggested to develop a more comprehensive measurement technique of energy effi-
ciency, that incorporate QoS improvement as future work.

2.4 Performance Evaluation of the VNF Placement Mathe-
matical Model

In this section, we evaluate the performance of our mathematical model and our
proposed VNF resource allocation, based on service differentiation technique. The
performance is evaluated in an urban scenario, for the city of Manchester. Most of
the parameters are taken form Lu and Di Renzo [161]. An edge data center is as-
sumed to be located in the central offices of an operator. BSs density is assumed to
be 37 BS/A, where A = 1.8 km2. Considering a square side of 15 km for the city
center, we have about 125 areas, which contains a total of 4625 BSs. For 5G RAN, we

44
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.4: Sample C-RAN Infrastructure Deployed for Perfor-
mance Evaluation Scenario

have assumed a massive MIMO with multi-connectivity and interference manage-
ment and service optimized re-transmission mechanisms to achieve the throughput,
reliability and latency requirements of 5G services[213, 193].

We have considered two stage backhaul via MW and fiber links, with indicated
parameters as shown in Table 2.2 [126, 178, 235, 213]. We considered simplified
arrangement of the C-RAN as can be seen in Figure 2.4. It has a ring fiber network
interconnecting all aggregation points to the edge data center. It is assumed that the
traffic from all cellular network coverage is aggregated from left and right side of the
edge data center through the fiber links. Both links are assumed to have 500 Gbps
with the legacy metro link capacity and 1000 Gbps with our proposed link capacity,
see Table 2.2. A 54 GOPS processing capacity edge data center is considered for the
standard 5G C-RAN [91]. A number of servers are allocated to host various type
VNFs to be orchestrated to create the required SFC. A chain of VNFs is assumed
to be an ordered subset of queues Q, generated by an ordering function. The SFC
ordering constraints required to be applied on the incoming service is a nonlinear
complex problem. Instead of solving this problem, we considered a fixed number of
VNFs ordering, but flexible VNFs’ resource allocation technique. We set few VNFs
and some of them working in parallel. The VNFs allocate resources flexibly, being
expanded and contracted, in order to perform the required function[10]. Therefore,
the problem of VNF placement is considered as instantiating few numbers of VNFs
and flexibly allocating required CPU resource, instead of instantiating a number of
VNFs with fixed size. This enables to adjust VNFs’ resource requirements to efficient
and flexible map according to the demands. In other words, in flexible resource
allocation, we will not have oversized VNFs, which take extra computing resources.
This also provides latency reduction in two ways. First, it gives enough resources
to perform the computation as fast as possible, as discussed in the above sections.
Second, it avoids adding extra links between the VNFs, as it expands to suit the
needs. The reduction is due to the strict resource allocation approach, applied by the

2.4. Performance Evaluation of the VNF Placement Mathematical Model 45

Service type Reliability Latency Throughput Workload percentage

Type 1 98-100 0.5-50ms 100-200Mbs 15
Type 2 95-98 50-150ms 1-10Mbs 70
Type 3 90 150-650ms 1Mbs or less 15

TABLE 2.1: The three type of services and their requirements

TABLE 2.2: Different Components of C-RAN and Their Constraints

C-RAN
components

Latency(Ms) Reliability(Prct) Link Capac-
ity(Gbps)

Processing
Capac-
ity(GOPs)

RAN 1 ≈ 100 0.5/1 N/A
MW-BH 0.65 99.3 1/10 N/A
Fiber-BH 1 ≈ 100 500/1000 N/A
EdgeDC-Ntk 0.02 ≈ 100 500/2000 N/A
EdgeDC−Proc +
QuDelay

= 10/4 + 4/2 95/98.8 N/A 54/80

model.
We defined the end-to-end latency in the SFC as the sum of delays introduced

by each series of VNFs. So, the latency is dependent on the branch that introduces
longest delay. Therefore, the processing delay of each VNF is set in the range of 4
ms to 10 ms, depending on the workload Lij, on the allocated CPU and on the VNF
processing and waiting (queuing) delay [99, 310]. Processing queuing delay is the
waiting time in the queue before being assigned to a given VNF. Transmission delay
and network queuing delay of the edge data center network is σ = 0.01 ms [310].
The reliability of Physical Machine (PM) nodes and VNFs sequence are calculated to
be 0.978 and 0.956 respectively. This is the current value achieved by the standard
5G. See Table 2.2 and Subsection 2.4.1 for the values, calculated after applying the
backup VNFs.

The proposal is to differentiate traffic in allocating VNF sequences (SFCs). Thus,
the incoming 5G traffic is composed of three types of services, as defined in Section
2.3.1. The proportionality equation below is given by

Srvtot =
Nt1

∑
i=1

Mt1

∑
i=1

Srvt1 +
Nt2

∑
i=1

Mt2

∑
i=1

Srvt2 +
Nt3

∑
i=1

Mt3

∑
i=1

Srvt3

= α1Srvtot + α2Srvtot + α3Srvtot

(2.59)

where α1Srvtot is referred to Type 1 services, α2Srvtot is referred to Type 2 services
and α3Srvtot is referred to Type 3 services.

Since there is no representative data for 5G traffic, the fraction of service compo-
sition is assumed to be 15:70:15, in the evaluation. Please refer to Table 4.1 for the
service ratio and measurement values used in the evaluation.

2.4.1 Reliability and Latency Constraint Analysis

In this section, we focus on calculating and analyzing different scenarios using the
provided performance evaluation parameters. In other words, we would like to

46
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.5: Total Service Throughput Demand

evaluate the end-to-end reliability and latency imposed by the C-RAN system. End-
to-end reliability is calculated considering all components of the C-RAN system,
which consists of RAN, microwave backhaul, fiber backhaul, and edge data center
(data center network, physical servers hosting the VNFs and the VNFs sequence).
The values are provided in Table 2.2 [178, 235, 213]. For microwave backhaul, we
have MTBFntk−bh = 2029 and MTTRntk−bh = 13, using reliability equations (3.15),
(3.16) and (3.17).

Similarly, we have calculated the reliability of RAN, fiber backaul and data center
network and provided the result in Table 2.2. Moreover, we considered the edge
data center VNFs sequence reliability in two ways, with backup VNFs and without
backup VNFs. Thus, considering the value of MTBFPM = 5446, and MTTRPM =
60 for both physical and virtual machine, we will have ρ̃ = 0.978 without backup
VNFs sequence. Therefore, the overall end-to-end reliability becomes ρ̃tot = 0.95 for
standard 5G. On the other hand, when we apply backup VNF in the VNF sequence,
the overall end-to-end reliability changes, and it is calculated using equation (2.53).
The result improves the end-to-end reliability, which becomes ρ̃tot = 0.988.

End-to-end latency, without applying CPU over-provisioning, is calculated as
the sum of delays imposed by each components of the C-RAN. This is calculated
using value from Table 2.2 as

Dend−to−end = Dran + Dmw−bh + D f iber−bh + DDC−ntk + DProc + DQueue = 1ms +
0.65ms + 1ms + 0.02ms + 10 + 4 = 16.67ms ≈ 17.

After applying CPU over-provisioning to reduce the VNFs processing delay, the
end-to-end delay is recomputed as

Dend−to−end = Dran + Dmw−bh + D f iber−bh + DDC−ntk + DProc + DQueue = 1ms +
0.65ms + 1ms + 0.02ms + 4 + 2 = 8.67ms ≈ 9

2.4.2 Throughput Constraint Analysis

Figure 2.5 shows the distribution of throughput demand of arriving services in an
edge data center within 24hrs. Using this, we have calculated the required network
resources, considering all the three-tier users: femto, picco, and micro cells. For
each part of the C-RAN components, we have analyzed and calculated the required
network link capacity.

2.4. Performance Evaluation of the VNF Placement Mathematical Model 47

FIGURE 2.6: Admission and Rejection of Service Throughput Due to
RAN Constraint

FIGURE 2.7: Admission and Rejection of Service Throughput at Mi-
crowave Backhaul

Figure 2.6 shows the admission and rejection of services due to RAN capacity
constraints. As it can be seen from the figure, all the services are accepted. It is
because the average throughput for RAN is less than the total link capacity which
we assumed to be 1 Gbps.

The first stage of the C-RAN backhaul is the microwave backhaul, which imposes
link capacity constraints of 10 Gbps to aggregated BS sites’ service traffic. Figure 2.7
shows the admission and rejection of service throughput at microwave backhaul. As
it can be observed from the graph, the microwave backahul, with 10 Gbps, is able to
admit all the services. The second stage of the backhaul aggregation is the fiber back-
haul with a link capacity of 500 Gbps in the standard 5G. Based on this link capacity
values, we have calculated the service admission and rejection. As it can be seen
from Figure 2.8, there is a significant amount of service throughput rejection due to
the fiber link capacity constraint. This is true for services in both cases with average
throughput and maximum throughput. Therefore, we suggested an increase of the
link capacity to at least 1 Tbps in design of fiber backhaul network to admit more

48
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.8: Admission and Rejection of Services Throughput at
Fiber Backhaul

FIGURE 2.9: Admission and Rejection of Services Throughput at the
Edge Data Center Network 1 Tbps Aggregation Links

services. The edge data center network is the point where all the aggregated traffic
pass through and distributed for service scheduling and processing to the intercon-
nected servers in the data center. The main challenge of edge data center network
is the aggregation point congestion. As it can be seen from the Figure 2.9 with the
current aggregation link capacity of 500 Gbps at the edge data center, there is heavy
loss of service throughput due to aggregation node congestion.

Therefore, we suggested to have a network aggregation link capacity of at least 2
Tbps in the edge data center network design. This alleviates the congestion problem
to admit more service throughput.

Edge Data Center Computational Capacity Constraint Analysis

Figure 2.10 below shows arriving service workload demand distribution in an edge
data center in 24 hrs. Considering a 54 GOPS of computing resource for the standard

2.4. Performance Evaluation of the VNF Placement Mathematical Model 49

FIGURE 2.10: Arriving Workload Traffic Distribution

FIGURE 2.11: Workload Requested and Rejected

5G data center, we calculated the service rejection as depicted in Figure 2.12. The fig-
ure shows the total requested and total rejected service workload. The total rejected
service workload is a composition of workload rejection due to: standard C-RAN
inability to meet 5G latency and reliability requirements constraints for service Type
1 and computing resource constraints for service Type 2 and 3.

Figure 2.12 shows the total workload requested and rejected. The figure indicates
that there is an amount of service workload rejection due to computing capacity
constraints. Moreover, there is a complete rejection of Type 1 services because of
service constraints. Thus, we suggested to apply the above mentioned techniques to
increase reliability and reduce latency.

Therefore, to meet the reliability constraints, we use backup VNFs. However,
the resource demand becomes doubled resulting in more service rejection due to
computing resource constraints. Therefore, figure 2.12 shows the service requested
and rejected due to resource constraints in the edge data center with backup VNFs.
The figure shows the rejected workload nearly doubled while the total computing
capacity is fixed. Moreover, we would like to provide more computing resources
(over-provisioning) for each VNFs to reduce the service processing latency as much

50
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.12: Total Workload Requested and Rejected using Backup
VNFs and CPU Over-provisioning for Reliability and Latency Im-

provements, Respectively

as possible to admitted more Type 1 services. However, this also takes more com-
puting resources, resulting in greater service rejection (see Figure 2.12). To reduce
service rejection without increasing computing resources, we use backup VNFs and
CPU over-provisioning only for Type 1 services. This reduces the total required CPU
resources by 85%. Note that the result is based 15:70:15 service composition, see Fig-
ure 2.13. This may vary depending on network coverage areas and operators and so
on. Using the equation in Section 2.3.4, we calculate the admission probability for
different cases, see Figure 2.15. The result suggests that applying service differentia-
tion provides greater admission of services without increasing computing resources.
However, there is still significant amount of service rejection due to overload. There-
fore, we suggest the edge data center to have minimum of 80 GOPS for acceptable
admission of services’ workload.

Figure 2.16 shows, for a given service workload, the comparison of total resource
consumption among three different service function chaining and placement tech-
niques. The service workload demand is depicted in red color. The lines in blue,
purple and green are total resource consumption comparison among fixed offline,
fixed online and flexible offline techniques for comparison. Fixed offline strategy
follows allocating fixed number of VNFs with fixed amount of VNF resources in the
SFC. For fixed online each, VNFs are also allocated fixed resources but the num-
ber and ordering of VNFs is determined online. Th flexible offline that we adopted
allocates fixed number of VNFs in the SFC but the VNFs’ resource is dynamically
allocated as per the demand. The fixed offline and flexible offline resource allocation
techniques are formulated based on Mixed Integer Linear Program (MILP)[10] and
fixed online is based on Mixed Integer Program (MIP) [202]. Fixed allocation tech-
niques consume more than the flexible one that we have proposed. This is because
of multiple factors such as virtualization overhead due to oversized VNF instantia-
tion, online computation for placement and ordering solution, and communication
overhead [202]. Fixed online resource allocation provides the most CPU resource
consumption followed by the fixed offline. The gain is dependent on the amount of
workload at a give time. The relative gain of the flexible method over fixed offline
technique is 9.9% and over fixed online is 15.5%.

2.4. Performance Evaluation of the VNF Placement Mathematical Model 51

FIGURE 2.13: Total Workload Requested and Rejected using Backup
VNFs and CPU Over-provisioning for Reliability and Latency Im-

provements Respectively with Service Differentiation

FIGURE 2.14: Total Workload Admitted

FIGURE 2.15: Edge Data Center Workload Admission Probability

52
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.16: Used CPU Resources Comparison for the Given Service
Workload.

FIGURE 2.17: Total Power Consumption of Edge Data Center in Dif-
ferent Cases

2.4.3 Power Consumption and Energy Efficiency Analysis

Finally, we have calculated the power consumption for the two applied methods to
improve reliability, and latency. The result is plotted in Figure 2.17.

Figure 2.18 shows the energy efficiency for several cases. In general, the re-
sult suggests that the applied service differentiation technique saves more energy
than without applying it. However, because of the backup VNFs and CPU over-
provisioning that are applied to improve the SFCs’ reliability and processing latency,
our method consumes additional energy to serve a given service. Nevertheless, it
should be noted that this is the cost of attempting to admit Type 1 services meeting
its constraints.

The overall performance for our proposed model has suggested backhaul link ca-
pacity of 1 Tbps, edge data center aggregation link capacity of 2 Tbps and 80 GOPS
CPU resource capacity at edge data center. That is plotted in Figure 2.19. It is drawn

2.5. A Translator as Virtual Network Function for Network Level Interoperability
of Different IoT Technologies

53

FIGURE 2.18: Energy Efficiency of Edge Data Center

as a radar plot considering the six 5G representative requirements: latency, reliabil-
ity, user experienced throughput, CPU usage, energy efficiency, and admission prob-
ability. The figure summarizes the overall comparison among the existing 4G/LTE
standard capability, our proposed method and the standard 5G performance re-
quirements. In terms of the six 5G constraints, the existing standard 4G performance
is far from fulfilling most of 5G requirement, which can be seen from the figure.
However, the resulting evaluation with the proposed techniques shows a significant
improvements over the standard 4G capability. As it can be observed from the plot,
the performance of our proposed method is very close to the 5G requirements. This
is represented in the figure by the designated area.

2.5 A Translator as Virtual Network Function for Network
Level Interoperability of Different IoT Technologies

Now let us have a deture and provide an example of how to develop and network
function as VNF. Here we develop a translator as VNF for network level interoper-
ability of different IoT technologies. The Internet of Things (IoT) market is rapidly
growing revolutionizing and impacting various sectors such as healthcare, agricul-
ture, energy harvesting, transportation, etc. This is mainly because of the possibility
of pervasive connectivity among machines, objects, humans, and virtually anything.
Currently, there are billions of devices connected and hundreds of platforms inte-
grated. The technologies for IoT connectivity should enable the interconnection of
billions of heterogeneous devices with stringent and diverse requirements. To ad-
dress these requirements, different IoT technologies have been introduced. They
also use different protocols. They are designed differently according to the targeted
problem they address. Each IoT technology is suitable to address a particular chal-
lenge. For example, unlicensed (LoRa) is better suited for applications requiring a
long battery lifetime, low capacity, and cost. Whereas, licensed NarrowBand IoT
(NBIoT) suitable for applications requiring better Quality of Service (QoS), latency,
reliability, and range.

As mentioned above, to address specific requirements, the different IoT tech-
nologies are developed with different technical principles. For example, each may
use different techniques for signaling, coding, communication protocols, and data

54
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.19: Overall performance of the proposed model in compar-
ison with the existing 4G performance and the expected 5G require-

ments

2.5. A Translator as Virtual Network Function for Network Level Interoperability
of Different IoT Technologies

55

formatting. However, even if these techniques enable them to address a particular
application requirement, they can become a barrier to interoperability. This interop-
erability problem, for different IoT technologies, is prohibiting the full utilization of
IoT and its potential applications. For example, if we consider IoT for space applica-
tion, a single martial or space mission needs to gather multiple pieces of information
about the target planet. Hence, the mission may employ multiple IoT devices to be
deployed on the martial surface. For this, it may require having various types of
possible connection interfaces among units. Whereas, for environmental monitor-
ing requirement, it could be satisfied with unlicensed LoRa-based IoT-devices for
environmental measurement parameters, such as temperature, humidity, soil con-
tent, and so on. The processing of the collected data from different IoT technologies
would reduce the size of the integrated data for efficient transmission. Interoper-
ability enables this possibility.

The benefit of interoperability is even more pronounced on earth as we have
numerous IoT technologies being implemented in various locations. Mostly this is
applicable in overlapping network coverage using different IoT connectivity tech-
nologies. Different IoT technologies may exist in a given geographic location. The
overlapping and coexistence could be necessary to provide different types of connec-
tives for various applications. However, the coexistence could be utilized for further
exploitation of the IoT resources for more applications or more efficient utilization in
the same applications. Therefore, interoperability between each technology is cru-
cial in the progress and universal adaptation with efficiency, and cost-effectiveness
of IoT devices and connectivity technologies. This could also be for energy efficiency,
resource consumption, QoS, and so on to be exploited in time and space.

There are various levels of interoperability, such as device-level, network-level,
syntactic level, semantic level, cross-platform, cross-domain interoperability. For
full interoperability between IoT technologies, it is necessary to speak at each level.
However, depending on the application it could be sufficient to have one or two
levels of interoperability. There are few works on network-level interoperability.
Therefore, this work focuses on network-level interoperability. In particular, this
work aimed to define a unique virtualized access point (VAP) capable of connecting
devices belonging to different technologies. Network function virtualization and
software-defined networking technologies are considered to improve the developed
translator deployment and resource usage for dynamic, flexible, and cost-effective
deployment of the protocol translator.

2.5.1 Overview of IoT Technology Interoperability

Let us provide a brief discussion of the various levels of interoperability, along with
a possible structural representation. The ability of two different IoT systems to inter-
operate can be presented using different types of layered models. An example could
be the six-level structure;

• No connection: which means no interoperability between the IoT connectivity
systems

• Technical: which is basic and network connectivity

• Syntactical: which is data exchange interoperability

• Semantic: which is understanding the meaning of the data

• Pragmatic/dynamic: which is the applicability of the information

56
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

• Conceptual: which is shared view of the world

IoT interoperability can also be seen from different perspectives, such as device in-
teroperability, networking interoperability, syntactic interoperability, semantic inter-
operability, and platform interoperability. This can be used to study the problem at
different abstract levels.

Since our proposed solution focuses on network-level interoperability, particular
attention is devoted to this. In the literature, different types of layered models have
been provided to split the interoperability problem into more simple sub-problems.
Among them, [196] and [194] to be the most general ones. The former [196] provides
a well-structured representation by using a hierarchical arrangement, where details
increase as we go up the hierarchy. In this paper, we adopt the later [194] because
we believe it is better to combine completeness and simplicity. In the following the
structure provided by [194] will be used to define interoperability at each level. [196]
will also be used as a reference to provide a better description. Now, let us discuss
further details of the six-layer model which is defined in the above section.

• Device level interoperability is enabling the integration and interoperability
of heterogeneous IoT devices with various communication protocols and stan-
dards supported by the heterogeneous IoT devices. Device-level interoper-
ability is concerned with the exchange of information between heterogeneous
devices, heterogeneous communication protocols, and the ability to integrate
new devices into any IoT platform[31, 111]. Device-level different IoT plat-
forms can be characterized by different communication technologies possibly
operating at different frequencies. Since direct interoperability cannot yet be
achieved at this level, gateways are often used as an intermediary in commu-
nications.

• Syntactical level interoperability is interoperation of the format as well as the
data structure used in any exchanged information or service between heteroge-
neous IoT connectivity system devices. Syntactic level considers the possibly
different "rules" used to encode and decode messages. Semantic level syntactic
level interoperability provides a way to correctly encode and decode data. Se-
mantic interoperability aims instead at defining a way to correctly understand
data that may be represented in different ways. For instance "temperature" and
"temperatura" can be used as different words for the same concept and "Fahren-
heit" and "Celsius" as different units for the same value. On one hand, standard
semantics can be used to represent data, on the other hand, machine-readable
dictionaries can be used to translate from one semantic to another. Different
IoT technology will have different structures for data representation. The Web
of Things (WoT) as been exploited at this level since the web supports different
representations such as XML and JSON. According to some schema, to expos
some structure, An interface needs to be defined for each resource. Examples
of syntactical level interoperability are WSDL and REST APIs[196, 31, 111].

• Semantic level interoperability is defined as “enabling different agents, ser-
vices, and applications to exchange information, data and knowledge in a
meaningful way, on and off the Web"[286].

• Platform level interoperability is the interoperation of different platforms. In
IoT, this arises because of the existence of various operating systems, program-
ming languages, data structures, architectures, and device and data access

2.5. A Translator as Virtual Network Function for Network Level Interoperability
of Different IoT Technologies

57

mechanisms[196]. The cross-platform level provides interoperability for dif-
ferent platforms belonging to the same field of interest, e.g. an app able to
control the heating system both at home and in the office.

• Network level interoperability is mechanisms to enable seamless message ex-
change between systems through different networks (networks of networks)
for end-to-end communication. The network-level key point for this level is
to allow end-to-end message exchange when considering devices possibly be-
longing to different technologies. To make systems interoperable, each system
should be able to exchange messages with other systems through various types
of networks. Due to the dynamic and heterogeneous network environment in
IoT, the network interoperability level should handle issues such as address-
ing, routing, resource optimization, security, QoS, and mobility support[31,
111].

• Cross-domain level: further extends cross-platform interoperability by con-
sidering platforms from different domains, e.g. lightning and cooling sys-
tems. Usually, if Cross-domain interoperability is provided, so it is also Cross-
platform.

Our proposed method relies primarily on network-level interoperability. More-
over, the proposed solution utilizes the concept of SDN, NFV, and SDR. VMs and
containers and provides a flexible yet simple deployment of translators. The trans-
lators are used to enable the communication between the devices between two dif-
ferent IoT devices for different connectivity technologies.

There are more than 360 different IoT platforms available in the market [74]. Mo-
tivated by their primary goal of improving IoT devices’ performances and power
consumption, vendors have created more diverse structures for their devices thus
preventing reciprocal communication and cooperation possibilities. However, as
reported in [195], few efforts have been devoted to solving the interoperability prob-
lem at the network level. Some of the relevant works are [216] [222] [46] [76]. In [216]
a middleware has been used to tackle network-level interoperability in a publish-
subscribe fashion. It exploits both constrained application protocol (CoAP) and
message queue telemetry transport (MQTT). The middleware is used as a bridge
from BLE and 6LoWPAN technologies to the rest of the network. Since both tech-
nologies are not able to directly communicate with the rest of the network, some
additional modules have been implemented in the middleware. With this type of
design, where required components are hardcoded in the middleware, the introduc-
tion of new technology in the system is problematic. This is because it requires the
user to reach the middleware and implement the new necessary parts on it so that
the new technology can be connected to the network.

In [216], the central component chosen is a Raspberry-Pi and other IoT devices
are connected to it. Similar work has be conducted in [222]. In [216], a BLE module
and relative components has been used. However, in [222] Zigbee has been chosen
instead of 6LoWPAN as second technology.

Perhaps, a complete and general solution is described in [46]. In this work, sim-
ilarly to the above solutions, middleware is used to ensure interoperability among
heterogeneous devices. However, in this case, the designed solution exploits the
benefits of both cloud and edge middleware deployment to provide improvements
in different scenarios. The deployment could be on the cloud for deep analytics.
And on an edge data center, near the IoT Gateways, for local analytics to support
real-time applications [46]. Data Acquired from heterogeneous devices is stored in

58
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

an SQLite database using JSON format. Then the data is made available through
publish/subscribe fashions using dedicated protocols, such as MQTT and CoAP.

Interesting work has been conducted in [76]. A service-oriented architecture
(SOA) is proposed as an alternative to middleware-based solutions. The proposal
is based on multi-protocol translations. An intermediate format has been used as a
mid-step when translating among two different protocols. The authors have justi-
fied such a decision stating that direct protocol-to-protocol translation requires sev-
eral translators. Whereas, the use of an intermediate global protocol increases the
translation time. The translator is implemented in a local cloud. This solution to the
interoperability problem is designed to solve interoperability issues at the network
level since evaluation has been carried out studying HTTP and CoAP components.
However, the idea of protocol translators seems promising.

Virtualization of APs has recently been studied in the literature. In [282] a vir-
tual AP solution for Wi-Fi is designed to improve flexibility and load balance. In
the paper, virtual AP is indeed moved between physical APs to provide improved
resource balance. Besides being proof sustaining the possibility of implementing vir-
tual APs, this work also provides additional functionalities that could be exploited
in our proposal to provide better load sharing.

In general, the problem of interoperability has attracted attention both from the
research community and industries. As such several projects have been founded
both from worldwide organizations and by the European Commission. Among
them, Horizon 2020 European Project INTER-IoT [95] [183] aims to design, imple-
ment and test a framework that will allow interoperability among different IoT plat-
forms [183].

Furthermore, the Horizon 2020 European Project INTER-IoT [95] [183], which
is probably the closest one to our work, further strengthens the possibility and exi-
gency of works in this newly emerging field. With that being said, we decided to fur-
ther prove the possibility of creating such a system employing simulation. Accord-
ing to the authors’ knowledge, this is the first work studying a solution for network-
level interoperability using softwarization technologies such as SDN, SDR, and NFV,
where the solution is implemented on a virtualized access point. The translators are
designed as VM or Container to be instantiated and placed on demands.

2.5.2 Proposed Network Level Interoperability Architecture

In this section, we present the description of our proposed solution in comparison
with existing network-level interoperability architectures. We have identified four
main approaches, namely: devices’ vendors friendly, standard friendly, cumber-
some, and virtualized. Devices’ vendors-friendly solutions exploit dedicated access
points to connect heterogeneous IoT devices to the internet. In this case, vendors are
not required to change their device structure and can stand with their proprietary
protocols. This type of solution is the one with fewer interoperability capabilities.
Standard-friendly solutions could provide a higher level of interoperability by defin-
ing a unique standard, which is widely accepted and used by IoT devices. However,
considering the high resource constraint such as power, bandwidth for many IoT
applications and devices, interoperability solutions of this kind are not perceived as
efficient, at least for the moment. A natural alternative is protocol convergence. Is it
possible for IoT to converge on a single shared protocol? This is not unprecedented,
the Internet has seen convergence on the Internet protocol (IP). At this time, it is un-
likely to see convergence on a single IoT communication protocol. However, there
is no well-established reference standard for IoT platform technology [76, 95].

2.5. A Translator as Virtual Network Function for Network Level Interoperability
of Different IoT Technologies

59

FIGURE 2.20: Proposed Virtualized Solution Structure.

Cumbersome solutions have been introduced as a trade-off between devices’ ven-
dors friendly and standard friendly. Solutions of these types have been studied in
the literature to obtain a single Access Point to which devices belonging to different
technologies can be connected. The word cumbersome has been used in this context
to highlight low flexibility and costly operations characterizing such types of solu-
tions. Cumbersome-like solutions can deliver a reasonably quick and valid solution
to the interoperability problems with limited flexibility for a dynamic network.

IoT technologies are dynamic and heterogeneous. Therefore, more flexible solu-
tions are needed to sustain the increasing number and type of IoT devices. Moreover,
a flexible interoperability solution is required to address the dynamic requirements,
interaction, and behavior of the various IoT devices. Furthermore, under the cur-
rent technological trends, softwarization and containerization would provide flexi-
bility in deploying such solutions. Network softwarization paves the way for more
dynamic solutions such as the dynamic deployment of a translator based on the
current-network interaction and dynamic behavior.

Here we proposes a virtualized solution which is developing a translator to be
deployed as a container, such as a docker container. The approach exploits the
use of novel technology such as SDN, SDR, and NFV to increase the capabilities
of cumbersome-based solutions allowing for improved flexibility. There are other
similar works proposed that use SDN, SDR, and NFV technology to tackle the inter-
operability problem. However, a detailed description of how the joint use of such
technologies can be used to solve the network level interoperability problem is un-
available in the literature. Thus in Figure 2.20 we present our proposed architecture.
The key components used in our proposed architecture are the virtualized access
point, the controller, and network function virtualization. The controller is used to
enable seamless routing between the IoT devices that use different IoT connectivity
technologies. The NFV orchestrate enables the deployment of a particular translator
as virtual components needed by an access point. The key idea of our proposed ap-
proach is the development of network-level protocol translators. The translator can

60
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.21: Proposed Virtualized Solution Workflow

be used to translate from one device language to another. It provides protocol con-
version at the network level. Conversion can be achieved by instantiating dedicated
translators in the VAP, whenever needed. The development of this translator as vir-
tual components provides networks with the flexibility that cumbersome solution
was lacking. It is also possible to instantiate and deployed the translator as contain-
ers. Containers are well known to be more light-way and fast than VMsTo better
understand system components and behavior of the system the diagram in Figure
2.21 can be used. Since the translator is provided as virtual machines or contain-
ers, it can be easily instantiated and de-allocated. Following the diagram in Figure
2.21 can be observed how the system directly takes routing procedures when the AP
can understand the incoming message i.e. if it does have the correct translator. If it
does not have the appropriate translator, it has to be obtained first by instantiating
the required type of translator as VNF to be placed for translation. This dedicated
VNF translator will take care of the required procedures to understand the network-
level language used for the packet. And then the virtualized AP is provided with
the appropriate translator which will be used to translate the packet language and
forward its content towards its final destination. To optimize resource usage, the
de-allocation of unused translators will be also provided through the use of internal
policies.

The instantiation and placement of a new translator in the VAP is a procedure
that took place when a new type of IoT technology is introduced in the network or
has been in an idle state for a long time. Therefore, this can be handled using remote
components. The language detector module and the DB containing translators can
therefore be deployed on the cloud or the edge. It can not be the same for the trans-
lation operation. Nowadays IoT scenarios require ever decreasing latency to sustain
scenarios like self-driving cars in which networks resilience and low latency are vital
requirements. Therefore, a proactive allocation approach could also be implemented
once the translator is provided as a container.

Another component that can be deployed directly in the VAP is an SDR module.

2.5. A Translator as Virtual Network Function for Network Level Interoperability
of Different IoT Technologies

61

This module provides interoperability at the device level. This allows the proposed
solution to operating with more IoT technologies, operating at different frequencies.
Use of SDR modules in this context has already been studied in literature both for
IoT networks [265] and for cellular Networks [311].

Finally, it is noteworthy to highlight the fact that, given the non-triviality of the
proposed design, partially due to the ever-increasing number of IoT devices and
relative protocols, two main actors could help in realizing the proposed solution.
On one hand, vendors could provide translators since they are the ones that better
known their protocols and, in this way, they will see their devices immediately con-
nected to every VAP. On the other hand, the community may also be involved to
design new and original translators.

The choice of virtual machine deployment and container-based translator de-
ployment is dependent on the required application of the deployed IoT, availability
of resources, operator business policy, and other technical and business factors. For
example, the two technical aspects in choosing virtual machines over container or
vise versa are Data protection and available services. In [224] a description of the
dependency by several factors when considering security in VMs and container is
provided: "Comparing container and VM security yields no runaway winner. Much de-
pends on how the containers and VMs are used, and specifically on the architecture of the ap-
plications they support.". Containers are advantageous as they are light-way and fast
than VMs. However, the trend adopted by major Infrastructure as a Service (IaaS)
is to deploy Containers on Virtual Machines. This gives security and maintenance
advantages[64]. However, both technologies represent valid solutions depending on
the area of application.

2.5.3 A VNF Based IoT Interoperability Translator Simulation and Per-
formance Evaluation

In this section, we present a simulated implementation of our proposed solution
as a proof-of-concept. We used the implementation for performance evaluation of
the proposed approach in terms of protocol translation delay in a virtualized envi-
ronment. The simulation is a basic implementation of the cumbersome solution. It
demonstrates the possibility of providing different interfaces for different IoT con-
nectivity technologies. It provides a basic network-level translation mechanism for
packets traveling between different IoT connectivity technologies. Various types of
interconnecting technologies are deployed to interconnect IoT devices using the pro-
tocol translation functions. These translation functions could be deployed as VNF in
a standard container or virtualized environment.

The simulation environmental setup consists of a Linux workstation (Lenovo)
T480 i7 8550U quad-core with 16 GB of RAM. An ns3 simulation environment hosted
on Kubuntu 18.04 VM with 9 GB of RAM and four processors (acceleration VT-
x/AMD-V). A flow monitoring module from ns3 is used for sampling and gener-
ating the required statistics about packets transmitted through the developed IoT
network. However, there is current implementations limitation with the probes and
classifiers functions of the flow monitoring modules, these available only for IPv4
and IPv6 [94]. Thus the monitoring tools are used only to track the complete packet
flow from the translator and to the IP network. We measured the transmission delay,
assuming a similar delay in the transmission of other IoT connectivity networks.

The overall simulation scenario is depicted in Figure 2.22. As it can be seen from
the figure, it is organized into three levels. At the top, the BackBoneNode is used
as a connection from the local network to the internet or acts as a remote node. The

62
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.22: Implemented Network Topology

middle layer is a virtualized access point (VAP) containing our proposed translator.
It is linked to the BackBoneNode using a point-to-point connection. Finally, the third
layer contains the connectivity technologies used. Wireless connections are used to
connect the end devices with the AP depending on the connectivity technologies
considered. These are LoRAWAN, Wi-Fi, and 6LoWPAN. For each technology, four
nodes are used as the initial default value but their number can be changed at the run
time of the simulation. The simulation is implemented to provide the possible users
to change the number of nodes for each technology, the IP version, and to execute
the simulation for a portion of the network at a time. Moreover, logging and tracing
features can similarly be enabled through the command line at run time.

The NS3 simulator has a "lorawan" module which is provided with two classes:
forwarder-helper and forwarder. These can be used to forward the received LoRa pack-
ets to another node, by using the provided point-to-point connection. We have ex-
ploited and extend these two classes by adding UDP capabilities when forwarding
the packet. Using [289] as reference, a lookup table is created in the VAP to store
LoRa to IP addresses dependency. Since LoRa devices are not originally designed to
work with an IP network, they do not have an IP address.

In the simulation, the associated IP addresses are used in LoRa packet forward-
ing procedures, while a static node is chosen as the destination. Using the provided
logging feature and other tools such as Wireshark and NetAnim, measurements are
taken to verify packet reception in the destination node. Wi-Fi and 6LoWPAN im-
plementation follow standard NS3 network implementation using the correspond-
ing modules. Their implementation has been slightly redesigned to better match the
coding style used for the LoRa network.

A Python script has been used to generate statistics, assuming no packet priority
with the First come First service scheduling technique. Similarly, the time needed to
provide the basic translation mechanism has been measured. Using the NS-3 clock

2.5. A Translator as Virtual Network Function for Network Level Interoperability
of Different IoT Technologies

63

FIGURE 2.23: Translation Delay

FIGURE 2.24: Translation and Transmission Delay

modules, we measured the departure and arrival time of the packet when travers-
ing through the translator. The measurement is plotted in figure 2.25. Moreover,
the translator is expected to be deployed in the container. This will have further
virtualization overhead delay[202], adding to the translation delay.

Figure 2.23 shows the time needed to translate an arriving packet from LoRa net-
work to IP network at the network level. As depicted in the figure, the average
translation delay is approximately 0.4ms. This is only the time it takes for the trans-
lator after receiving a given packet and translator the packet format from source
network protocol format to the destination network protocol format.

Figure 2.24 shows the time needed to send a LoRa packet from the LoRa network to
the IP network, showing transmission delay incorporating translator delay. It does
not Consider the virtualization delay of the translator. It only shows the time needed
to send a given packet from one IoT network domain to another IoT network do-
main using the packet translator. The average delay is slightly below 60 ms. As can
be seen from the figure, the time slightly increases when the packet size increases.
However, in some cases, the same increment produces a higher variation of time, as
can be seen from the left part of the graph. The packet transmission time is coherent
with the one obtained in [146]. However, we have used 125kHz instead of 250 kHz

64
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.25: Transmission Delay at Various Traffic Load Conditions

FIGURE 2.26: Transmission Delay Using a Virtualized Translator at
Various Traffic Load Conditions

with SF:7. Moreover, a point-to-point channel is used, which introduces a 2ms delay.
The translation time may vary if sophisticated translation mechanisms are applied.
Nonetheless, we believe that its value will not influence too much the transmission
time, especially when considering limitations imposed on some IoT devices. More-
over, a proactive setting of the translator could further reduce both transmission and
translation latency.

Figure 2.25 shows the total transmission delay, considering various traffic load con-
ditions. As it can be seen from the figure, the transmission delay is dependent on
the traffic load condition at a given time. As the traffic load increase, the transmis-
sion delay increases. This is due to the added workload on the centralized transla-
tor implemented in our simulation. However, this may not significantly affect the
translation delay, as the translation delay if an appropriate translator placement is
performed. Dynamic translator placement problem could be considered as future
work.

Since our proposed architecture provides the translator as a virtual function, there
will be an additional delay due to the virtualization environment. Therefore, virtu-
alization overhead delay has to be considered. Figure 2.26 shows the overall delay

2.6. Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:
Re-configuration Delay Analysis

65

incorporating the virtualization overhead delay. As can be seen from the figure, de-
pending on the traffic load, the end-to-end delay increases.

2.6 Emulation of LTE, LTE-A, and 5G Over a Lightweight
Open-Platform: Re-configuration Delay Analysis

In this subsection, we provide a simplified functional deployment for LTE, LTE-
A, and 5G function over a lightweight containerized environment. Network soft-
warization, containerization, and cloudification in a distributed and centralized en-
vironment are the current tread in 5G, Beyond 5G, and 6G. In that sense, significant
activities are going on in the research community to softwarize the network func-
tions deploying them in a cloud-native environment. Cloud-native architecture is
an approach for network function and service to be built specifically to be deployed
in the cloud. In this paper, we emulated LTE/LTE-A/5G in lightweight containers.
We have evaluated the feasibility of using very lightweight environments such as
k3s. We show the possibility of emulating a simple 4G/5G scenario without requir-
ing a full Kubernetes infrastructure. The final results are based on open projects
made accessible and used as inspiration as well as a starting point to then modify
deployment techniques, configurations, and code. We have also explored scalability,
orchestration/automation, reliability of the deployments. Finally, we measured and
tested the performance. The performance evaluation shows the potential application
of the open platform-based emulations and deployment in 5G and beyond.

The network keeps evolving adapting to the network user’s dynamic demands.
The constant evolution of wireless technologies brings new challenges. Moreover,
several opportunities are also correlated to the continuous development and integra-
tion of new technologies. The network has gone through extensive changes to meet
users’ stringent demands. One main approach is network softwarization, which
provides flexibility to enable the network to adapt dynamically.

In particular, the adoption of cloud computing and network softwarization is
playing a very important role in network management and service provisioning.
The two technologies are complementary to each other. In this regard, most applica-
tions and services are migrating from traditional hardware-based environments to
remote and powerful cloud providers. Wireless networks are no exception to this
migration. This has been facilitated by technologies such as software-defined net-
works(SDN), network functions virtualization(NFV), containerization, cloud-native,
and microservices architectures. They are also expected to play a major role in the
roll-out of 5G [14].

The arrival of 5G is increasing deriving the network complexity in terms of user
density and stringent requirements such as ultra-low latency and reliability. To meet
these stringent requirements, various approaches are introduced such as edge/fog
computing. The introduction of edge and fog computing enables the possibility of
deploying 5G network functions in a sparse and distributed environment, which
are closer to the user to improve the network performance and user experience.
However, this imposes further needs such as service orchestration and/or automa-
tion techniques to provide the required network services, creating a service function
chain. It is expected cloud migration to be a top priority for the 5G core(5GC). More-
over, there is a growing interest in the wider availability of fully softwarized and
open TestBeds environments.

We study the emulation of LTE and 5G over on open platforms. Specifically, this
work focus on experimental evaluation by deploying and managing a completely

66
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

virtual and open LTE and 5G TestBed. This helps to implement and exploiting dif-
ferent automation and orchestration techniques. In regards to the deployment, par-
ticular attention is given to achieve compatibility toward cloud environments.

2.6.1 Overview of Mobile and Cloud Technologies

This section presents an overview of different aspects of important background con-
cept such as 5G, cloud technologies, and open software projects.

LTE Technologies

Long-term evolution (LTE) is the fourth generation mobile broadband network that
attracted billions of mobile subscribers. There is still a demand that could even in-
crease subscribers. LTE delivered huge improvement over the predecessor with the
overall performance. It also paved the way towards more intensive softwarized
network functions compared to previous generations. There are different versions
of LTE. The most advanced and contemporary versions of LTE are known as LTE-
Advanced and LTE-A pro. LTE incorporated inter-cell interference coordination(ICIC),
multiple input multiple outputs (MIMO), the separation of control, and data plane
known as control user plane separation(CUPS). This helps transition towards next-
generation small cell technologies, such as network functional application platform
interface(nFAPI). Other fundamental changes are eNB splitting (BaseBand Unit and
Remote Radio Head), modification of core network (CN). The last releases of evolved
packet core(EPC) have lost circuit-switched mode, allowing all components to com-
municate only through IP. This enables full packet switching. The main components
of 4G EPC are described as follows:

• Mobility management entity(MME): is responsible for management and con-
trol of the EPC. It takes care of handover, paging, UE/eNB attachment. It also
manages the necessary information to accept or reject access requests to the
network.

• Home subscriber server (HSS): this function is responsible for the storage and
access of users’ information. It allows MME to have persistently archived all
identifiers necessary to accomplish identification operations.

• Packet data network (PDN)-gateway (PGW): is fundamental for the correct
functioning of EPC. PGW’s main job is to allocate and assign IP addresses. It
also allows access from EPC to the internet and the external world.

• Serving-gateway (SGW): S-GW is the complementary function of the user plane
for P-GW, connecting radio access network (RAN) to EPC and granting access
to PDN gateway.

• Policy and charging rules function (PCRF): it mainly manages different policies
for user access, allowing differentiation between planes and QoS access.

The above functions follow the legacy deployment of 4G/LTE network, which is
mostly hardware-based. This lucks the flexibility that the current network is requir-
ing, especially in the era of network softwarization and cloudification. Moreover, an
experimental tesbed is challenging to build since it requires using hardware-based
functions.

2.6. Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:
Re-configuration Delay Analysis

67

FIGURE 2.27: 4G/5G Core Network

5G Technologies

The first version of 5G commercialization has started to roll out with softwarization
of functions. Its roll-out is facilitated by innovative possibilities derived from the
softwarization and reduction of hardware. This enables the innovative solution to
be developed to achieve the dynamic and heterogeneous demands of users. Since
release 15 of 3GPP, which is the last version of LTE, all the developments are consid-
ered as an early version of 5G that links with LTE. Release 15 is more of a transition
deployment, that allows new features but still being compatible with LTE-A. The
major novelties involved in next-generation RAN (gNB) is the fundamental split be-
tween central and distributed unit (CU/DU). Moreover, there is also a separation
between control and user plane (CUPS) with the dedicated entity for user plane
function(UPF). Furthermore, there is an independent design and implementation of
services such as RAN and CN. The 5G use service based architecture (SBA), utiliz-
ing micro-services for core component design. In general, 5G aimed at introducing
the functions based on service-oriented approach, specifically, as microservice and
multi-agent approach in service design[14].

Open projects on softwarized emulation of 4G and 5G are an emerging paradigm
in the development of 5G. There are several alternatives. For the sake of research,
it is preferable to consider open and free projects, which present anyway consis-
tent and advanced opportunities. 5G components could be deployed in a virtual
or docker virtualization environment. Examples of such works are OpenAirInter-
face(OAI) software alliance, Free5gc, Open5gs, SRS-LTE, and Labora projects are
among several initiatives aimed at the progress in democratization and open de-
ployment 5G deployment. These are an emulation of 4G/5G components in a con-
tainerized environment. The architecture of 4G/LTE and 5G are depicted in 2.27.

5G is expected to address the strange requirements of heterogeneous users. This
can be addressed by creating more flexibility in the legacy network, paving the way

68
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

for innovative solutions such as dynamic service orchestration and network automa-
tion[14]. In general, 5G needs to fulfill the requirements of the following categories
of services: enhanced Mobile BroadBand (eMBB), consider high speed of end user
data and system capacity as crucial, except for a slightly less focus on connection
density and latency; ultra-reliable Low latency communications (URLLC), latency
along with mobility will be crucial for reliability improvements; massive Machine-
Type Communications(mMTC) main concern is the connection density parameter
and network energy efficiency.

2.6.2 Cloud Based Wireless Technologies Deployment

An increasing number of network functions have been deployed in cloud environ-
ments. 5G roll-out is also expected to use cloud environments. Especially, 5G CN
could be deployed as virtual network function (VNF) and/or cloud-native functions
(CNF). Currently, there are several emulation environment developers to run com-
plete architectures in cloud-native environments.

As indicated above, for studying and testing, there are several projects available
with the aim of offering open and free access and actively implementing versions
of their software that embrace cloud principles. This allowing developers to run on
different local and clusters simulations of the core parts of LTE and 5G in the cloud.
The previously described open-air interface software for RAN implements a version
based on Cisco open/nFAPI standard, which is based on small cell forum protocol
specifications. This is to achieve reduced cell dimensions for a granular coverage of
particular cellular areas. This provides an advantage by the increase of the number
of eNBs for the same area with a little management and configuration times.

There is a need for an easy and efficient way to reconfigure eNBs towards the
correct version of CN in cloud management and orchestration of services. Deploying
4G/5G it is possible to measure and test the time required to reconfigure one or
more eNBs while connecting them to a new core network. This requires relying on
a cloud approach to the dynamic deployment problem. Measurement and analysis
of the feasibility of the cloud environment and the subsequent deployment of the
emulated 4G/5G component are necessary. Moreover, the performance evaluation
of the deployments with specific KPI is also needed.

Kubernetes

is a tool for cloud and container technologies. It provides the mechanism for manage
containers. It does not directly manage containers but it creates an entire structure to
provide more advanced and specific abilities to the application requests. Kubernetes
is an open-source project [60] that aims to automate the deployment and scaling of
applications using an orchestrated management. The applications and elements in a
cluster are the containerized, which has to run a container manager such as Docker.

Kubernetes has a central unit called a master node or control plane. It functions
as an orchestrator and is used as the repository for the necessary information to
maintain and restore application status in case of worker nodes failure. There are
options with multiple master nodes to prevent the loss of the state in case of a master
node failure. They are highly available clusters. The worker nodes are all the nodes
other than the master node. The master node itself can be a worker node if it is
allowed to run as a part of the application. Worker nodes have a couple of basic
utilities to function correctly. They may vary accordingly depending on the features.
The Kubernetes tool manages node and workload, which is also responsible for the

2.6. Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:
Re-configuration Delay Analysis

69

communications between nodes and all utility operations. The second component
is a container manager. The most common one is Docker which is delivered with
several variants of Kubernetes. This component is responsible for managing and
running all containers/pods that are designated for that locally worker node.

1. Pod: is the atomic component of Kubernetes. It composes the main functions
of an application which can be scheduled, resources assigned. A pod can be
composed of multiple different containers that can communicate with each
other while working together to provide the pod function. Generally, pods or
containers are managed manually once instantiated correctly;

2. ReplicaSet: pods are replicated to increase and scale a pod capacity. This is to
ensure the right number of replicas are instantiated.

3. Deployment: through a manifest a deployment, its pods and replicas are de-
fined. And then the deployment guarantees to restart failed pods and correctly
manage replicaset to achieve the number of required instances.

4. Service: this is a separated entity and targets directly certain pods, allowing
them to rely on or provide different "services". This is to connect them inside
the cluster. It allows access from outside of the cluster networks.

Docker can briefly be described as the direct manager of containers instantiated
from deployments as pods, it is necessary on every node which requires to run con-
tainers. It can perform several different operations, like the management of con-
tainer images and orchestration itself through other Docker tools like Docker Swarm.

Docker Hub is the set of sharing repositories for docker container images, it is
also the source from which the Kubernetes cluster downloads images of containers
once declared in the Yet Another Markup Language (YAML) manifests. Although
there are alternatives to Docker as a container manager, probably the main advan-
tage of using Docker is the massive amount of images present on Docker Hub.

The article’s in [137] discussed the improvement and study of the reliability in
the case of a virtual EPC(vEPC). The idea is to save the state of the running EPC with
a hot backup to restore the core network to a configuration and status identical state
before failure. The time required to restore a vEPC component is affected by the need
for the eNB to be reconfigured to attach it to the new working vEPC. The service
recovery time (SRT) in this case is 10s. Another crucial factor for the performance is
the distance of the hot backup recovery vEPC. This showed the importance of having
a solid and fast failure detection technique. Moreover, it also showed a responsive
method to redirect served components to new and functioning replicas. This enables
to save the state of the EPC and backup to the secondary deployment, by adjusting
the target of the functional component serving the eNB.

Another work focusing on software deployment of 4G/5G architectures is pre-
sented in[13]. The paper focuses more on RAN aspects. It considers the switch
between the two most advanced operating modes of eNB, the monolithic and the co-
operation of a DU and a CU, known also as desegregated RAN. The paper showed
another proof of the potential for a cloud-native deployment of 5G. In particular, it
demonstrated the ability to switch between the two working modes using a custom
openshift operator. This enables auto-reconfiguration of all the necessary compo-
nent parameters to decide which RAN to use without changing the core network.

By far the closest work to ours is in [116]. It aims at deploying a fully automated
4G/5G environment, providing custom resource allocation based on specific pa-
rameters. Moreover, it accomplishes optimizing and predicting resource demands,

70
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.28: Kubernetes service for both open5gs EPC and freee5gc
5GC

depending on traffic analysis. It is also possible to perform auto-scaling and de-
scheduling procedures to orchestrate the number and typology of pods running in
the cluster more efficiently. We focus on the deployment and usage of cloud degrees
of freedom to implement and test novel approaches. The main objective of our work
is to deploy and manage a cloud-native 4G and 5G system to study and perform
possible exploitation of the cloud architecture.

2.6.3 4G/5G Emulation Testbed and Performance Evaluation

This work aims to measure the reconfiguration delay and resource usage for the
4G/5G emulation. Therefore, we compare the time needed to manually reconfigure
an eNBs with a Kubernetes-based approach. The result shows a comparison for
the selected Kubernetes cluster environment along with the implemented 4G/5G
components. We also show the improvement provided in re-configuring the eNBs
in a service-based cloud environment for different versions of core networks. The
full deployment of 4G and 5G emulation is publicly available on Github that can be
accessed using the links provided in the introduction section above.

Fast reconfiguration of 4G EPC and 5GC are necessary to capture the dynamic
demands of users. The time required to reconfigure a high number of eNBs may
significantly impact the performance of the network. To mitigate this problem, one
approach could be to define a Kubernetes service for the deployment responsible for
running the working core. And it could be possible to modify the target label of the
core used, redirecting the eNBs traffic toward the new core version. However, we
need to preserve the IP address to reach the core functionalities. The deployment
of images from the Docker hub is easily supported if it is already functioning as
standalone containers communicating through IP or port mapping. To have repli-
cable and management configuration, we created YAML files manifest. It provides
a pre-defined structure, defining all the necessary information to correctly start and
manage an application inside the local Kubernetes cluster.

Creation of Kubernetes Cluster Using K3d

We first deploy a Kubernetes cluster. Then we deploy the 4G/5G emulations. We se-
lected the deployment tools based on reliability and a certain degree of simplicity for

2.6. Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:
Re-configuration Delay Analysis

71

FIGURE 2.29: Final architecture for GEPC/5GC switch using Kuber-
netes service

FIGURE 2.30: Components and their interconnection for 4G EPC

72
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.31: Components and their interconnection for 5GC

the management and configuration phases. First, we describe the installation, con-
figuration, and management of a cloud-native environment for effective deployment
of the migrated functions on a Kubernetes cluster. We used k3d v3.4.0, which is the
first to allow stream control transmission protocol (SCTP) services which are essen-
tial for the exposure of some important ports of both EPC and access and mobility
management function (AMF) services. The basic requirement for installing k3d is a
correctly install, configure, and run the instance of docker. For the testbed created
the release used has been docker version 20.10.0. Once docker is correctly installed
and running, for which purpose the following documentation can be followed [78],
it is possible to continue with the next steps; the recommended and supported ver-
sion of the operating system is Ubuntu 18.04 LTS. Once everything is set up correctly
we can proceed with the k3d latest version installation.

The installation of k3d can exploit several different commands and repositories,
such as Homebrew and Arch User Repository (AUR) packages. To locally deploy
a Kubernetes cluster, the first step is to emulate nodes as virtual machines or con-
tainers. The virtual machine nodes require high resources. They are also time to
instantiate and run the full system. The two best containers are kind and k3d. Both
are lightweight container nodes with less configuration burden in creating and con-
figuring the Docker containers images. We selected the k3d and compared its perfor-
mance with kind. We used the k3d v3.4.0. It allows SCTP services which is essential
for the exposure of some important ports of EPC and AMF services. The basic re-
quirement for k3d is to correctly install, configure, and running the instance of a
Docker. We used the Docker version 20.10.0. Ubuntu 18.04 LTS is used.

The managed cluster is specified by the Kubernetes configuration file. It is placed
in the home directory. IP addresses are assigned to specific components. This is nec-
essary for the components such as the web user interface for the database and the

2.6. Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:
Re-configuration Delay Analysis

73

mongo database itself. The pods receive a specific IP only when the calico network-
ing solution [47] is configured for the cluster. Calico is an open-source project which
is designed to provide network security for virtual machines and containers in cloud
environments. Once calico is configured, it is possible to add some specific annota-
tions to the pod manifests. This is to enable them to obtain an IP address from the
Classless Inter-Domain Routing (CIDR) pool.

Migration of 4G/5G docker container images to Kubernetes cluster

We used LABORA project due to several advantages. It is easy and direct testing of
all the functioning components. This is because it uses an Ansible file which is re-
sponsible for all required operations. The images are also easily accessible since they
have been uploaded on the docker hub. Once properly tested all the components of
the docker environment, we can migrate the eNB and UE. This is to start testing in
the Kubernetes cluster functionalities. And then step by step all the manifests for
each component have been written, allowing to completely migrate the testbeds to
a cloud-native platform.

Once the Kubernetes cluster is created, the first step is to find and check a com-
plete 4G/5G deployment. The used images are provided by LABORA project and
the testing has been fast and optimized using a single ansible playbook for setting
and launching the simulation. The first step was to test and manage the deploy-
ments in the docker environment, before moving towards the Kubernetes one. After
obtaining the desired result, further customization has also be been performed. This
shows the ability of the deployment to increase the number of UEs up to 10 instances.
This is functioning with separated tunnel interfaces as well as the possibility to add
multiple eNBs attaching and allowing UEs to connect through the shared core net-
work.

The additional instances for both eNB and UEs, once the ansible file has been
customized, presented the following parameters: the UE MSIN has been used from
0000000001 to 0000000010 and also the public land mobile network (PLMN) of a sec-
ond eNB has been changed to 20894. To have the eNB recognized by the MME/AMF,
it is necessary to modify the MME configuration file. It is also necessary to set a new
entry with different PLMN and coherent Tracking Area Identity (TAI) and Globally
Unique MME Identifier (GUMMEI). Moreover, the DB creation required modifica-
tions to include the new Mobile Subscriber Identification Number (MSIN) for the ad-
ditional seven UEs. Finally, the UE configuration file is updated to recognize the new
PLMN ID of the second eNB, together with modifying the eNB own configuration
to correctly recognize the new identifiers. For correct functionality, the IP addresses
have been assigned coherently. Once everything is tested for both attachment and
connectivity, the process is included in the ansible file. This enables to replicate the
single command for previous default emulations but running an increased number
of UEs and multiple eNBs.

The first simplest test case considered for migration is the connection and com-
munication of an eNB and a UE via an emulated channel and with a no S1 config-
uration. There is no core network attached. Thus internet access is not provided.
To deploy the first scenario the eNB required the following manifest to be written
and then deployed using the kubectl command. To check its functionality, a second
pod containing the UEs emulation has been deployed and attached to the eNB per-
forming ping executions to check also the correct functioning and connectivity of

74
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.32: Comparison between kind and k3d

TABLE 2.3: Values for emulation components docker image size

CN component Image size

UEs 7.04 GB
eNB 7.75 GB
EPC 883 MB
5GC 1.5 GB

MongoDB 500 MB
WebUI 450 MB

openairinterface software. A very similar manifest is written to deploy the UEs in-
stances; changing name, IP address, and image. The images used are the LABORA
images re-uploaded after the configuration to be able to directly run the simulations.

Figure 2.32 shows a comparison between kind and k3d based on the time re-
quired to create cluster. The advantage of k3d over kind is the stability and robust-
ness.

As it seen from the Table 4.1 RAN consumes more resources. Figure 2.33 and 2.34
depicted CPU and memory usage of EPC. The resource usage change when the EPC
components are instantiated and an eNB is attached to EPC through MME. Once the
eNB has successfully attached 3 UEs is connected through eNB. Performing a ping
operation to each UE slightly increase the resource usage.

Figure 2.35 shows the resource usage for eNB a single eNB, which requires more
resources both in terms of CPU and memory. Figure 2.36 depicts the memory usage
of eNB pod showing the variation in the simulation duration.

A final consideration is for the overall consumption of resources, considering the
already specified different moments of the sample emulation. The overall impact of
emulation are presented in the Figure 2.37 and 2.38.

As it can be seen from the Figure 2.37, the overall usage of CPU is coherent with
the sum of single components usage. It is also possible to notice how the RAN
emulation impacted the result. The memory usage also the increase is significant
and coherent with the single components deployed and emulated.

2.6. Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform:
Re-configuration Delay Analysis

75

FIGURE 2.33: CPU usage of CN pod

FIGURE 2.34: Memory usage of CN pod

FIGURE 2.35: CPU usage of eNB pod

FIGURE 2.36: Memory usage of eNB pod

76
Chapter 2. Mathematical Models for Softwarized Networks, VNF Design, and

Softwarized LTE/5G Functions’ Local Deployment

FIGURE 2.37: Overall CPU usage of kubernetes local cluster

FIGURE 2.38: Overall memory usage of kubernetes local cluster

77

Chapter 3

Multi-Agent Based Network
Management Automation

3.1 Introduction

Autonomic networking is the ability of a communication network to self-manage
without (or with minimal) human intervention. In other words, it is the process of
enabling the network system to have a self-X property; X can represent managing,
configuring, healing, and protecting capability of the network. An autonomic man-
agement system has to be able to capture, respond and adapt to the dynamic and
evolving behavior of the network, according to the users’ and services’ demands. In
general, the primary aim of autonomic network management systems is not to com-
pletely exclude humans from the process. Rather it is aimed at shifting the burden of
routine works, such as maintenance, configuration, and management, from network
administrator to technology, alleviating tedious and repetitive tasks.

Traditionally, in the networking community, network management was typi-
cally performed either manually or by using pre-defined scripts to monitor and
control software and hardware. Those solutions implement pre-defined strategies
that are triggered by scenarios defined by the network managers. Recently, with
the introduction of the concept of network softwarization, the capabilities of net-
work management are enhanced by the programmability and adaptability of the
networking infrastructure. However, while modern networks provide a high level
of programmability, still automation in network management is supported by lim-
ited intelligence in the network.

Therefore, in the next generation networks, autonomic networking is required to
scale up the network management capability to meet the expected big growth in the
network introducing intelligence in the systems. This is because billions of devices
will access and use the network. Thus, it will be extremely complex and cumber-
some to continue managing future networks with the current practice. Moreover,
from a business perspective, network operators aim at reducing capital expenditure
(CapEx) and operating expense (OpEx), while increasing their revenues. Managing
next-generation networks would require numerous highly-skilled manpower. Espe-
cially, with the arrival of the Internet of Things (IoT), and ultra-reliable machine-type
communication (uMTC), there is a dramatic increase in the amount of network in-
formation to actively and proactively process. This requires a completely novel ap-
proach to network management. Therefore, 5G, and beyond networks [63] are trying
to address this issue through some form of network management automation, alle-
viating the need for a huge number of skilled human network administrators.

Current networking researches mostly focus on network softwarization relying
on SDN and NFV. These two emerging technologies enable the traditional static net-
work to be flexible paving the way for network innovation. This opens the door for

78 Chapter 3. Multi-Agent Based Network Management Automation

rapid network evolution and transition to intelligent networking, network automa-
tion, and smart networks. Network softwarization consists of mapping hardware-
based network functions into software.

Moreover, SDN implies the physical separation of the network control plane
from the forwarding data plane[97]. In the SDN architecture, the controller and
the forwarding elements in the network are decoupled. This allows for a range of
considerably more flexible and effective network management solutions using net-
work programming. SDN enables the network to be programmed and dynamically
re-configured, using software to outsource computing to external servers.

NFV is a software implementation of network function, which can run on general-
purpose hardware[189]. The architecture of NFV contains three main components,
such as

• Network functions virtualization infrastructure (NFVI) consists of the hard-
ware and software that hosts different virtual network functions (VNFs).

• VNFs are the implementation of network functions such as firewall, network
address translation (NAT), and packet/serving-gateway(P/S-G), and baseband
unit (BBU) in software that could be deployed in an NFVI environment.

• NFV management and network orchestration (MANO) is the place where man-
agement and orchestration of VNF are implemented.

SDN and NFV are complementary technologies. Adopting them together provided
myriad of innovative possibilities, such as dynamic network configurations, net-
work states estimation and measurement and dynamic network management and
control. They are enablers of network automation through the softwarization and
orchestration of network functions. A unified architecture for SDN-NFV, which is
presented in [148] is depicted in Figure 3.1.

Another enabling technology for network automation is machine learning (ML)/artificial
intelligence (AI), which has recently seen greater advancements. This is expected to
play a significant role in the automation of networks [43]. In fact, ML has been
applied in various areas of networking such as traffic prediction, resource manage-
ment, Quality-of-Service (QoS), and network security. ML provides cognition and
reasoning capability in automated decision making. The goal of ML is to extract
the hidden knowledge from the network, service, and users’ behavior using historic
data for its training and learning.

SDN and NFV enable the possibility of network programming, virtualization,
and orchestration; however, they do not actually automate network management.
Therefore, a new framework should be developed to incorporate SDN (for network
control and programmability), NFV (for network function virtualization and orches-
tration), and ML (for knowledge management and cognitive ability) in a single ar-
chitecture. Moreover, the current architectures typically use a ’monolithic process’ in
their implementations. However, in the monolithic process, there are strong depen-
dencies between sub-functions. If one of the function fails, it affects or hinders the
operation of other sub-functions[101, 279]. In addition, a monolithic SDN controller
and an NFV Network Management and Orchestration Architecture (MANO)[189]
result to be complex and difficult to scale. This is because a given sub-function
can not be modified or scaled independently. Moreover, monolithic implementa-
tion of network management is not flexible, reusable, and scalable for complex sys-
tems. This makes it unsuitable for network management automation[101, 279]. Sub-
system based approach has previously been introduced [101, 279]. However, their

3.1. Introduction 79

FIGURE 3.1: Unified SDN-NFV Architectural Framework [148]

discussion is limited to the sub-system creation and distributed deployment. They
are limited in the introduction of intelligence in the sub-systems.

Given the above open challenges, this article proposes a MANA-NMS architec-
ture. The core principle behind this architecture is network function division based
on autonomic agents. The idea is to subdivide the monolithic network management
and control function into sub-functions. It employs agents to be implemented in
a virtualized or containerized environments[205, 285]. A given sub-function is de-
ployed as an independent autonomous unit, called agent. Each agent is autonomous
and specialized in performing specific network sub-functions, such as network slic-
ing, path computation, and QoS monitoring. Agents are organized to perform the
overall network management functionalities. Next, agents could be orchestrated
with standard orchestration such as Kubernetes. However, orchestration could also
be considered as a sub-function to be implemented as an atomic agent.

Specifically, the overall system behavior and functions should be represented,
using multiple interacting autonomous agents. This requires a new architecture that
defines the interaction, functionality, communication, and coordination between the
agents in delivering the overall system functionality. In general, the overall sys-
tem behavior needs to encompass different attributes such as agent communication,
coordination strategies, decision making, learning, and cognition, in standard archi-
tecture.

We follow European Telecommunication Standards Institution (ETSI) standard’s
called Generic Autonomic Network Architecture (GANA) reference model[177]. The
main goal of the GANA reference model is to prescribe the design and operational
principles for Decision Elements (DEs) as the drivers for cognitive, self-managing,

80 Chapter 3. Multi-Agent Based Network Management Automation

and self-adaptive network behaviors. ETSI is performing several GANA instantia-
tions onto various targeted standardized reference network architectures, to enable
autonomic algorithm implementation and to design and implement DEs in such
architectures, in a standardized way. Our proposed autonomic architecture is pre-
sented in comparison with the ETSI’s GANA reference model. The authors had al-
ready proposed a general architecture for autonomic network management (in terms
of the autonomic operator) in [105, 106]. Moreover, they also described and exten-
sively evaluated the self-management of a virtual network based on SDN, via the
exploitation of adapted fuzzy cognitive maps at the SDN controller [20].

3.2 State of the Art in Multi-Agent Based Autonomic Net-
working

Automation is not a new subject since it was applied in several fields such as indus-
trial automation, business process automation, and vehicular-driving automation.
For clarity, we mainly divide the literature into two main categories: network au-
tomation and architecture, and the application of multi-agents in networking.

3.2.1 Autonomic Networking: Historical Perspective

Autonomics in communication networks can be reviewed considering state-of-the-
art before and after softwarization. In fact, SDN and NVF along with cloud comput-
ing created a seismic change in the way we design, implement, operate and manage
networks.

Autonomic Networking before the Introduction of SDN and NFV

Autonomic computing and networking were first envisioned by IBM in 2001 [133].
Inspired by autonomic computing, numerous research works had been done in au-
tonomic networking since 2004 [260, 261, 259, 276, 29]. Some works also specifically
focused on network management [276, 104]. In [276], the author proposed a system
for autonomic network control and management. In [104], the authors presented an
interesting approach to enable the self-X capability for network management. An
early study of autonomic network architecture is discussed in [171, 42, 37]. In par-
ticular, Ghazi B. et.al. [42] aimed at designing a generic architecture by introducing
the concept of abstraction. The main idea behind abstraction is to provide a plat-
form for the coexistence of heterogeneous networking styles and protocols. In [37],
the authors introduced an architecture called AutoXL. It adopts a knowledge plane
(responsible for the management of knowledge) and a Policy plane, (responsible
for managing policies). The study in [171] focuses on developing autonomic net-
work monitoring for decision-making through information gathering, using a ran-
dom number of monitoring devices. The work in [290] developed a specific network
architecture for cognitive radio nodes.

There are also other specific network-based autonomic architectures and con-
ceptual models. The works in [217, 24] mainly targeted transport networks. The
authors in [217] presented a discussion on an attempt to enable self-optimizing and
self-protecting optical burst-switched networks. Similarly, in [24] a model was de-
veloped using self-configuration, self-optimization, self-healing, and self-protection

3.2. State of the Art in Multi-Agent Based Autonomic Networking 81

for service provisioning in automatically switched transport networks. The devel-
oped architecture aimed at enabling autonomic capability through self-governing
systems.

Autonomic networking models for wireless networks are also a relatively well-
studied subject[160, 186, 44, 8, 166, 82]. A specific work that focuses on wireless
access networks, is presented in[238]. Specifically, it developed a distributed generic
and autonomic management paradigm for decentralized management of wireless
access networks. Considering the peculiar and inherent challenges of wireless net-
working, the authors in [160] provided an analysis of autonomic networking. In
particular, they aimed at providing autonomic support in the wireless network de-
sign process.

In [44], the idea of function atomization was presented. Moreover, a consideration
of composing autonomic elements was the scope in [8]. This composition aimed
at providing a self-governing management system for overlay networks and a self-
organizing composition towards autonomic overlay networks.

As per the authors’ knowledge, the work in [166] showed the first use of agent-
based modeling for automated elements. The authors argued the use of network
management automation for wireless sensor networks as a self-recovery model. An
interesting conceptual contribution could be extracted from the above works, which
is network element atomization. This provides the possibility of sub-dividing mono-
lithic network management systems into sub-units. The monolithic network man-
agement design has drawbacks such as reusability, scalability, tight coupling be-
tween components. Similarly, with a focus on a particular network type, few works
attempted to incorporate autonomic in the network operation and management[82,
172, 170, 219].

Apart from an application on particular network scenarios, there are also works
focusing on automating specific functionalities such as QoS monitoring, fault-management,
traffic management, and security [306, 272, 191, 315, 182, 192, 33]. For instance,
in [306], a discussion on a model-based approach is presented. The model-based
method is to equip the fault-management system with autonomic capabilities. Ar-
ticle [272] studied automation of network operations for fault-management and re-
silience, while the article in [182] analyzed a memory-enabled autonomic resilient
networking.

Autonomic Networking After the Widespread Adoption of SDN and NFV

SDN and NFV introduced a dramatic change in the legacy static network, paving
the way for network software-based evaluation. From an architecture point of view,
SDN provides centralized network provisioning and management capability, con-
sidering a global view of the network. Now, we focus on the most recent literature
on autonomic networks that have been done since the widespread acceptance of
SDN and NFV.

Ironically, after the introduction of SDN and NFV, there are relatively few orga-
nized efforts in the research community for network automation[257, 98, 317, 287,
177]. In [156], an experimental study on dynamic network reconfiguration in a vir-
tualized network environment, using autonomic management, is discussed. An
autonomic management system for a software-enabled network is also presented
in [98]. The article in [159] presented a novel management architecture and elab-
orated the ongoing standardization efforts. Most of the concepts in the reference

82 Chapter 3. Multi-Agent Based Network Management Automation

model, autonomic networking integrated model and approach (ANIMA) are heav-
ily inspired by GANA architecture [177]. This architecture for IPv6 based radio ac-
cess network (RAN) management. More recently, in[303], the authors presented a
demonstration of an open-source MANO framework, an extension within the scope
of the 5GTANGO H2020 project. They discussed automated service deployment,
considering policy-based service level agreement (SLA) provisioning and monitor-
ing. Aaron Richard et al. [225] discussed a data and knowledge-driven intelligent
network for future network transformation. In [278], a first attempt to integrate
SDN and autonomic network management was presented. This white paper shows
the challenges and opportunities along with the autonomous network framework.
An SDN-based autonomic architecture was envisioned in [218]. This architecture
aims at enabling the coexistence of heterogeneous virtual networks, supporting hi-
erarchical autonomic management. In [176], the authors introduced an architectural
framework to be integrated with the network device operating system. It can work
either independently on the device or can be aggregated across multiple devices in
a network deployment.

Inspired by the cognition process of human beings, a cognitive network imple-
ments intelligent and adoptive procedures in responding to network dynamic be-
havior. The authors in [107] presented an evolutionary road-map of communication
protocols towards the cognitive internet. They discussed the introduction of self-
aware adaptive techniques combined with reasoning and learning mechanisms. The
goal of these techniques is to tackle inefficiency and guarantee satisfactory perfor-
mance in complex and dynamic scenarios. In [20], the author proposes a cognitive
SDN architecture based on fuzzy cognitive maps. A specific design modifications
of fuzzy cognitive maps are proposed to overcome some well-known issues of this
learning paradigm. The authors also discussed the efficient integration with an SDN
architecture.

Significant standardization efforts are also taking place by prominent standard-
ization organizations such as ETSI and Internet Research Task Force (IRTF). The first
project launched to develop a network automation model is Autonomic Network
Architecture (ANA)[42]. The project aimed at designing an autonomic architecture
to mitigate network complexity enabling protocols and algorithms to operate in an
autonomic manner. Recently, ETSI has taken a prominent role in autonomic architec-
ture standardization and adaptation. An Industry Specification Group (ISG) on Au-
tonomic network engineering for the self-managing Future Internet (AFI) has been
established under ETSI [302]. Various versions of this model were presented since its
inception[177, 86, 87]. More recently, ETSI developed an autonomic network stan-
dard reference architecture[177], which is called GANA. In [51], SDN enablers in the
ETSI AFI GANA Reference Model for Autonomic Management Control (emerging
standard), and Virtualization impact.

In [50], an implementation guide for the ETSI AFI GANA model is presented
considering a standardized reference model for autonomic networking, cognitive
networking, and self-management. The document in [52] provides standardization
of resilience survivability and autonomic fault-management, in future networks:
this is an ongoing initiative recently launched in ETSI. As per the authors’ knowl-
edge, despite the tremendous effort to introduce an autonomic architecture and soft-
ware model, none of the works have given enough emphasis on the concept of func-
tion atomization. Network function atomization and multi-agent-based representation
of atomized functions are the core contribution of our work. Network function atom-
ization is the sub-division of the monolithic process into smaller functions with cog-
nitive and adaptive capability. With this added autonomic capability, sub-functions

3.2. State of the Art in Multi-Agent Based Autonomic Networking 83

are represented as autonomic agents. Autonomic agents are atomic units that will be
used as building blocks for autonomous network management systems.

Finally, the dawn of IoT and machine-type communications has dramatically in-
creased the network size and complexity [281]. 5G and Beyond networks are evolv-
ing towards autonomic.

3.2.2 Multi-Agent Systems for Autonomic Networking

Now, we present a brief overview of the part of the literature emphasizing the appli-
cation of multi-agent-based systems in networking. Multi-agent systems have been
used in many areas [232, 128, 71]. A multi-agent-based configuration in a ubiqui-
tous wireless network is presented in [130]. Where agents are used in the Radio
Access Network (RAN). The information is loaded and fed back through agent com-
munication. The Q–learning paradigm is used for the agent’s cognitive ability to
identifying whenever to make load balancing. In [71], the authors proposed the use
of multi-agent systems within AuRA-NMS. They presented the use of multi-agent
system (MAS) technology for distributed system automation and network control,
considering the issues associated with robustness of distributed MAS platforms, the
arbitration of different control functions, and the relationship between the ontologi-
cal requirements.

Other works focused on more specific applications such as security, service dis-
covery, and service migration. The article in [12] proposed an approach for dy-
namic service discovery in service-oriented architectures. The approach is based
on a multi-agent system using the matchmaking technique. Patri et al.[211] devel-
oped a generic migration algorithm. This algorithm is derived from a search-based
rational agent decision process. Such an algorithm can deal with uncertainties to
provide the migration path. This migration is computed by using a maximized util-
ity function. For military networks of computing and communication, the author in
[139] presented an initial reference architecture. The reference architecture is a cyber
defense application of intelligent software agents. Several works also exist showing
the use of intelligent autonomic agents for security application such as risk assess-
ment[180], and network intrusion detection [208]. The authors in [318] presented
mobility management over the satellite networks based on virtual agent clustering.

None of the previews works considered an organized management architecture,
like in [271, 155, 274], for the overall network system management. These works
are closer to our approach towards utilizing agents, hierarchically organized them
into specialized autonomous-atomic units. The work in [271] presented an attempt
to organize a multi-agent hierarchical system for a self-adaptive network service.
They discussed a hierarchical division of agents, effectively providing an abstract
model, in which multi-agents are divided and organized into principal agents and
sub-agents, according to different layers. Each principal agent is responsible for the
management and coordination of sub-agents. Similarly, Guo-zhu et al. [271] pre-
sented a multi-agent-based management system designed for distributed network.
They developed an intelligent management architectural framework. This architec-
ture organizes agents into three types: center layer-agent, region-layer agent, and
access-layer agent. An interesting work about control systems is presented in [262]
from the control research community. Several existing works related to steady-states
of the closed-loop systems studied state analysis of multi-agent-based system [242,
243]. Finally, an article developed a mathematical graph representation of agents’
coordination [309].

84 Chapter 3. Multi-Agent Based Network Management Automation

Despite all the effort to develop a specific or general architecture and several
applications of multi-agents, there is no work considering multi-agents for network
management system automation, combining the concept of SDN, NFV, and ML in
the context of the ETSI GANA reference model.

3.3 Network Management Automation Challenges

Future generation networks are very complex systems with numerous heteroge-
neous devices, users and services involved. However, they will be very dynamic
and consistently advancing. Thus, managing such a dynamic environment involves
handling heterogeneous real-time events in a sophisticated manner. This also means
dealing with complex events, which require complex event processing. The problem
is mainly complicated because of the huge amount of data generated by users, ser-
vices, and network devices. Managing such an amount of data in such a complex
environment, within a short period of time, requires a very tedious, enormous, and
sophisticated processing. However, data also contains valuable information about
users/services and network states even if it is cumbersome to manage them. Data
could systematically be managed and analyzed to extract and use the information
for self-management of the network. Extracted information could be used to facili-
tate services provisioning.

To automate a network management system, a comprehensive understanding of
the complete cycle of the automation process is required. This includes measuring
and understanding the environment, decision-making process, planning strategy,
verification of the action plan, execution of actions, and/or finally monitoring the
system behavior[105], as depicted in Figure 3.2.

• Measuring and understanding the environment determines a network behav-
ior in a reactive or proactive manner, based on continuous observation of the
constituent network elements. This enables the accumulation of network knowl-
edge in the knowledge domain. For example, self-monitoring means having
the ability to observe own internal state. Observation of this internal state can
be a continuous measurement of QoS metrics such as latency, reliability, con-
gestion, and throughput.

• A decision-making process is used to learn, understand and decide what ac-
tion to take to respond to network events. For example, in a decision-making
process, a machine learning model could be used to predict the incoming traf-
fic, which is trained based on the previously accumulated data. Based on the
prediction, a decision could be made on the type and quantity of resources
required to satisfy the service’s demand.

• Planning action strategy means executing the decision, such as what kind of
actions or configurations should be performed on an element to have the re-
quired network behavior. For example, once the decision is made to allocate
resources, a configuration file needs to be prepared to be executed in network
elements or devices. This allocates the required network resources, which are
decided in the decision-making process.

• Verification of action plan is the validation of the plan before executing it on the
target network elements or devices. This could be a configuration file, which
has to be verified and checked for accuracy and consistency.

3.3. Network Management Automation Challenges 85

FIGURE 3.2: Network Management Cycle

• Executing action and/or output is implementing the verified or validated ac-
tion plan. It could be a path configuration for the requested service or reser-
vation of end-to-end network resources for service isolation, as part of QoS
provisioning and guaranteeing.

• Monitoring the system’s behavior completes the cycle. It continues to analyze
the effect of the executed action on the overall system behavior while moni-
toring the environment for new events and changes. This could be through a
loop-back control.

3.3.1 Decision Theory from Network Automation Perspectives

Decision-making means selecting one or more courses of action among the avail-
able alternatives. Humans make decisions every day. Humans have characteristics
of weighing alternatives and deciding based on criteria such as good or bad (i.e
quality). Decisions are generally characterized by gathering knowledge, learning,
reasoning, and deciding distinctly. Gathering knowledge is the first step in the deci-
sion process. Based on the collected knowledge and experience, humans learn and
reason. Humans also learn how to respond without an identifiable reasoning ba-
sis, just following instinct. For instance, a child may touch fire just to fulfill his/her
curiosity. However, a reasonable decision is based on previous experience through
pattern-matching. The human decision-making process is a long-studied subject in
research and it is out of the scope of this article. Here, the aim is to get inspired by
the human decision process to delegate intelligent decisions in network automation.
In general, a decision is the key part of network management in the automation of
processes. We aim to emulate and replace human involvement in the network man-
agement process[280].

In a similar analogy with the human decision process, intelligent-decision sys-
tems could have a knowledge accumulation step to observe and experience the net-
work environment through parametric measurements. Besides, intelligent-decision

86 Chapter 3. Multi-Agent Based Network Management Automation

systems could overcome human cognitive limitations and biases by providing a ra-
tional basis for comparison of alternatives[280]. The observation and experience are
accumulated in a knowledge domain or metaspace. A cognitive process may modify
the metaspace and the elements of its instances or models[280]. This could be through
a learning process, by adding new rules, principles, and concepts to the metaspace,
or manipulating and modifying the existing instances or models of the metapace.
This goes with the assumption that the existing instances are already known. They
could already be in the knowledge base or they could be added via new instances
or models. The metaspace and instances constitute a knowledge base of the cognitive
process.

A domain expert could be considered to provide knowledge to the knowledge
acquisition module. That knowledge is encoded in the knowledge base, usually
as part of the development process. The user or decision maker enters the system
through an interface. Next, the user may directly access the knowledge such as a
reference for past cases, or the inference engine to infer from past cases to a new case.
The user may drill down for an explanation of the inference from the explanation
module. The intelligent system could have a mechanism to capture, collect and infer
knowledge from a domain expert, and pass that expertise to a decision-maker.

Generally, decision making is limited by available information and time to make
the decision, together with cognitive ability and resources. Input to a decision-maker
includes a knowledge database and model base. The database contains data relevant to
the decision problem, while the knowledge base may include, for example, guid-
ance in selecting alternatives. The model base holds formal models, algorithms,
and methodologies for developing outcomes. Processing involves using decision
models to simulate or examine different states and find the best solution under the
constraints. Feedback from processing can provide additional inputs that may be
updated in real-time to improve problem-solving. The output may generate fore-
casts and explanations to justify recommendations and offer advice. Results are pro-
vided to the decision-maker, who may interact with the system to provide additional
information or query the results.

Decisions could be categorized as structured, semi-structured or unstructured. An
example of a structured decision is the shortest path between two nodes that could
be computed as a closed-form solution. However, if we are to provide a routing
path for a packet or flow, then the shortest path may not be the best decision. It
may not consider the current state of the network that could affect the routing such
as congestion and available resources. The current state of the network could be so
dynamic that we may not have the complete and exact network state information.
This leads to a sub-optimal decision, which is considered semi-structured. In the
unstructured decision, the problems have no agreed-upon criteria or solution and
rely on the preferences of the decision making elements.

Depending on the time it takes to reach the final decision, decisions can also be
categorized as instant decisions and long-term decisions. Examples of instant deci-
sions are routing packets or flows from source to destination. Whereas, an example
of long-term decision is the scheduling of system or re-configuring decisions for pe-
riodic updates.

In general, taking care of the network without administrators’ conscious knowl-
edge requires making an intelligent decision through decision generation, organiza-
tion, verification, applying, and cheeking system behavior through loop-back con-
trol.

3.3. Network Management Automation Challenges 87

Data Analytics and Cognition

Managing the network is the ability of the network administrator or autonomic sys-
tem to maintain the network within the desirable behavior. This is a very complex
problem. It requires handling multiple and complex real-time events such as mon-
itoring the network and computing resources which could be a physical channel
(wired and wireless channels), encoding techniques, computing resources, stored
network, and user data, users, service, and network devices (ports, links, configura-
tion files) so on.

Reasoning and cognition are the key pillars in a decision-making process. Cogni-
tion is learning, analyzing, and reasoning to generate decisions. Useful information
could be generated about users, services, and networks by analyzing the data. And
then, this information could be used for reasoning out and generating management
decisions, such as allocating resources, monitoring and guaranteeing QoS, authenti-
cating users, and protecting the network from intruders.

There are various methods to extract information for given data. AI tools provide
powerful aids in solving difficult applied problems that are often real-time, involv-
ing large amounts of distributed data, and benefiting from complex reasoning. AI
tools could be fuzzy logic, case-based reasoning, evolutionary computing, artificial
neural networks, and intelligent agents[280, 155].

Currently, machine learning is the most adopted means of extracting valuable in-
formation about users, services, and networks. With the interconnection of machine
type devices, there is a colossal amount of data to learn from. The goal of machine
learning is to extract the hidden knowledge about the network and users through
training, using a network data set.

Generating Cumulative Decision

Communication networks will be very dynamic and complex. Handling events ap-
propriately to maintain the desired behavior of the network requires making vari-
ous intelligent and adaptive decisions. Autonomic generation of various decisions
through data gathering, analysis, and intelligent reasoning are critical steps. These
decisions are dependent on various internal and/or external factors. Events could
be triggered by external factors such as service requests, device discovery, new ser-
vice discovery, topology change discovery, traffic classification, traffic prediction
(amount of traffic on each link may be for congestion control), traffic scheduling,
fault or anomaly behavior detection, and security breach. Internal decisions could
be the network update, scheduled re-configuration for network optimization, avail-
able resource monitoring, handling network device failure or misbehavior. All types
involve complex correlations. For instance, network re-configuration for optimiza-
tion of decisions may affect the QoS as it may involve a configuration that may limit
the availability of allocated resources at a given time. The QoS for one service may
affect the decision for another service, in case of limited network resources.

Therefore, in the network automation process, decisions have to be made con-
sidering other interrelated decisions to see the cumulative effect on the overall net-
work behavior. Autonomous decision-making requires the generation of various
decisions such as automatic event handling through scheduling of events and tasks.
Moreover, the crucial part of autonomous decision-making is intelligent reasoning
and cognition that as discussed previously above. That could be supported by
AI/ML techniques.

88 Chapter 3. Multi-Agent Based Network Management Automation

Decision Organization

Networks systems consist of heterogeneous devices, which involve cross-layer complex-
events such as signal transmission, processing, coding, decoding, routing, load bal-
ancing, slicing, QoS monitoring, resource management. Decisions at various layers
have to be made and each decision has its peculiarities but also dependencies on one
another. For example, the decision made to provide end-to-end QoS for a certain
type of traffic involves decisions on protocols, the physical layer, the data-link layer,
and the network layer. Moreover, a decision made at the physical layer could impact
the once’s at the data-link layer or network layer. Hence, abstraction is necessary to
isolate and focus on particular aspects. Various approaches could be followed. One
approach could be using a standard seven-layer OSI or four-layer TCP/IP model.
Another one could be using a new customized version of these layers as followed
in the ETSI GANA model. In our proposed architecture, we followed ETSI’s GANA
model for decision abstraction and organization[177, 155]

Overall Autonomic Decision Assessment and Verification

The outcome of an autonomic decision should be assessed according to both the
process to and outcome of, decision making. The process of decision making is very
critical. And it should be assessed since it has a big implication on the time it takes to
decide and the additional computation and communication overhead. The quality
of a final decision is also very important that should be assessed based on a defined
criterion, which could be specific for a given management demand. Assessing a
decision requires defining measurement matrices.

In the network management automation process, we need to have a mechanism
to validate the final decision for consistency, accuracy, and optimality. The final
decision’s measurement and verification mechanisms should consider consistency
in collective system behavior. That is because, in a cumulative decision, individ-
ual decisions may not be the best or optimal one, since multiple factors should be
taken into considerations. It is important to model desired network behavior pattern
for proper evaluation of the performance of the automation techniques. Typically,
healthy network behavior initially is decided by a network service provider or net-
work administrator, through a set of behavior constraints.

Verification mechanisms could be a mathematical procedure to verify and vali-
date intelligent decisions for autonomic networking. It could be choosing the best
solution from a set of, sometimes infinite, possible solutions. This may involve mak-
ing sense out of ambiguity or contradiction in selecting the alternatives. A possible
simple example of contradicting or conflicting decisions in autonomic network man-
agement could be a security alert with credible threats, such as a DDoS attack on
the network that may require network reconfiguration for self-protection and attack
mitigation. However, at the same time, the network may be serving critical users or
verticals such as remote surgery or an automated car. An early act on the intruder
could prevent or reduce the damage. However, the response may require some pos-
sible configuration scenarios, which could impact the critical services. Therefore,
how to solve such conflicting situations has to be defined or acquired and devel-
oped through training, to be embedded in the network automation process. Finally,
the generated re-configuration files have to be verified for the impact that it would
have on the network (the accuracy of the intended outcome of the actions to be
taken). In general, we need to verify and validate the final solution before applying

3.4. Multi-Agent Based Autonomic Network Management System 89

it. And it is beyond the scope of this article to exhaustively discuss the validation
and verification mechanisms to each type of decision.

Decision Execution

In network management automation; action or decision execution is needed to fulfill
network management demands. An action could be re-configuration, database up-
dating, path re-computing, authentication, authorization, and monitoring[105]. The
outcome of decision generation needs to be applied to the system to change the part
of the (overall) network system to fulfill service or management demands. The net-
work’s behavior change comes by applying the final verified decision to change the
network environment so that it behaves as per the network management demands.
The response to the change has to be done appropriately and timely. This is very
critical. A simple example could be when we make a decision to route a flow based
on the currently available path. The path status or available resource changes very
quickly, which may invalidate or outdated the decision. This is mostly because, in
network automation, the aim is to develop a context-aware response to the demands.
Decision execution as apart of the automated process is also a vast and challenging
area that needs to be explored.

Monitoring System Behavior

After implementing the final decisions, the network behavior has to be monitored
to observe how the action affects the system behavior[105]. This is to evaluate the
applied solution, which could be for consistency, correctness, and appropriateness.
A typical mechanism that is applied in most automation comes from control the-
ory, such as loop-back or feedback control. This also requires data gathering and
data processing discipline, which correlates data from multiple sources to identify
patterns of events that the network is expected to behave. Exploring this from an au-
tonomic network management perspective is also a critical research area that needs
to be investigated.

3.4 Multi-Agent Based Autonomic Network Management Sys-
tem

MANA-NMS architecture divides the monolithic management system into sub-functions
to be performed by autonomic multi-agents. It can be considered as a way to orga-
nize parallel computing or task execution, as it includes the division of a compli-
cated task into several more simple ones. The tasks are performed by the group
of agents autonomously. In other words, we aim to provide a systems architecture
called MANA-NMS which partitions a complex network management system into
autonomic units or modules. These autonomic units are atomic units capable of per-
forming tasks autonomously while interacting with the environment as well as with
other agents. Modularity also helps in reducing network management complexity
through the independent implementation of sub-units and components. These units
are reusable.

As previously mentioned, we focus mostly on proposing general principles and
directions to follow for automated network management. Moreover, the proposed

90 Chapter 3. Multi-Agent Based Network Management Automation

MANA-NMS architecture requires to deal with a vast area and numerous challeng-
ing topics. Therefore, studying all potential areas and topics including implemen-
tation technologies are beyond the scope of this paper. Nevertheless, our article
attempts to investigate the feasibility of the proposed architecture through mathe-
matical analysis of a preliminary representative system.

3.4.1 Multi-Agent based Network Management System

A network management system is a complex system having multiple events such as
multiple-input, multiple-processing, and multiple-output or action. We identify that
multi-agent systems are the best candidate in developing such complex, distributed,
large-scale heterogeneous systems[128]. In addition to automation, the proposed
MANA-NMS architecture provides modularity, re-usability, scalability, robustness,
and re-configurable.

As a set of autonomous entities, agents are capable of performing a given task
autonomously. Agents have the capability to replicate a single or multiple collab-
orative decision-makers. In a multi-agent system, agents are the smallest building
blocks. The blocks are specialized in performing specific functions. Using the appro-
priate set of autonomic agents, it is possible to build a complete multi-agent system
to replace the complex and distributed monolithic systems like network manage-
ment systems. The constituting autonomic agents can communicate, collaborate,
cooperate, and coordinate to accomplish complex tasks. In building a multi-agent
system, several challenging aspects, such as autonomy, collaboration, activity, reac-
tivity, communicativeness, and goal setting, have to be addressed.

Agents could be distributed to perform distributed tasks or assigned to handle
different functions in a localized and specialized rule. Or they could be centrally
located to perform the tasks arriving into the central computing or task performing
multi-agents. Agents could also be homogeneous or heterogeneous. Homogeneous
agents are agents with identical characteristics. They could be designed or instanti-
ated to perform workload sharing. They could collaboratively perform large tasks
that could be sub-divided into sub-tasks to be assigned to different agents. More-
over, agents could also be organized hierarchically [271, 155]. They could be orga-
nized to handle different functionalities.

An example of a multi-agent based system for network automation could be to
perform network management functions. For example, some agents could be de-
signed to monitor and analyze the network parameters that are required to provide
given services or tasks. Other types of agents could be designed and dedicated for
QoS monitoring for a given type of service. Some other types of agents could be
decision aid or classifier or RAN slicer. Each of them is specialized in performing
a specific task as per the demand. Finally, the overall system could represent an
automated network management system.

A multi-agent system has been applied in implementing complex software sys-
tems[128]. They are capable of automating heterogeneous and complex real-time
systems. A network management system is a heterogeneous complex system with
real-time and complex environments. Therefore, we propose that a multi agent sys-
tem is an effective approach for the network automation process. However, several
challenges need to be addressed to exploit the solutions offered by this approach.
This includes decision generation which involves environment monitoring, data an-
alytic, cognition, complex event processing (CEP), and context-awareness.

3.5. Proposed MANA-NMS Architecture 91

Design Principles Microservice Multi-Agent System
Autonomy Require no human

intervention
Require no human
intervention

Interaction Interact with other
microservices using
RESTful APIs and HTTP

Interact with other
agents using ACL

Re-activity Response Respond to HTTP
requests in a timely
manner

Measure, understand
and perceive the
environment to respond
in a timely manner

Pro-activity Response Unable to take the
initiative

Respond and take the
initiative

Loose Coupling Monolithic systems are
decomposed into loosely
coupled sets of highly
cohesive co-located
services

Autonomous and
loosely-coupled solution
providers

TABLE 3.1: Microservice and Multi-Agent Comparison

3.4.2 Multi-Agents and Microservices for Decentralized and Loosely-coupled
Softwarized Systems

The industry is heading in the direction of highly decentralized and loosely-coupled
softwarized systems such as distributed NFV and mobile edge computing (MEC).
Currently, large-scale software development is based on microservices. A microser-
vice is a model, in which systems are built from small and loosely-coupled services.
They have the potential to be a tool for building systems such as network manage-
ment systems. They adhere to the Isolated state, Distribution, Elasticity, Automated
management, and Loose (IDEAL) coupling design principles. Multi-agent systems
have many similarities with microservices [205, 285]. Their core similarity is related
to independence and loose-coupling.

Despite their similarity, agents have an advantage over microservices for dy-
namic network management system’s design. Agents have the autonomic capability
to provide multi-agents the advantage in building automated systems. Recent work
presented in Collier et. al. showed the possibility of combining microservices and
multi-agent systems[285]. Table 4.1 presents a comparison between microservices
and multi-agent systems.

3.5 Proposed MANA-NMS Architecture

Currently, there is no universally accepted definition for what is an agent. We define
every component in the network management system as agents, in our context. We
propose agents to be implemented with full autonomic capability, which is derived
from agent-design principles. The overall network management becomes a multi-
agent system. In principle, agents are assumed to have multiple algorithms such as
cognitive and intelligent algorithms, which could be based on ML or Deep Learning
(DL), computational intelligence, and other intelligent algorithms. This provides a
cognitive ability for agents in their autonomic operations. In general, the internal
components and specification of agents vary depending on the functionality and

92 Chapter 3. Multi-Agent Based Network Management Automation

type of tasks or services they are designed to perform. A specification of a standard
agent is discussed later in Section 3.6.

3.5.1 Network Functions Atomization

To subdivide and organize functions into agents, let us first elaborate the concept
of network function atomization. Network function atomization (atomic agent in our
context) is the idea of organizing autonomic functions at different abstraction level.
This with the obvious reason of separately dealing with each layer. Functional unit
representation is based on autonomic agents. The abstraction is based on the GANA
model. Network management functions could be physical-layer, device-level, and
network layer functionality. Physical-layer functionality (low-level atomic actions)
could be network resource block (channel) allocation or physical transmission and
reception of frames, error correction, data framing, etc. Device-level functionality
could be packet/flow forwarding etc. Network-level functionality (high-level atomic
actions) could be end-to-end QoS provisioning and monitoring etc. All those func-
tions could be provided by autonomic agents with suitable internal components.
Since agents represent various functionalities, they need to be modeled and catego-
rized accordingly.

In a general category, the types of agents could be service-type or device-type
agents. Alternatively, to align with ETSI GANA model definition of decision units[177],
agents could be categorized into four types: protocol-level agents, representing protocol-
level DE, function-level agents representing, function-level DE, device-level agents,
representing device-level DE, and network-level agents, representing network-level
DE. Each function in each layer could be represented as agents in the proposed archi-
tecture. All agents are specialized and dedicated to performing tasks autonomously
while coordinating and communicating with other agents. However, we will limit
the description to only network-level functions. The following are the most typical
network-layer functions, that could be defined as agents:

• Topology Management Agents (TM-AG)

• Routing Management Agents (RM- AG)

• Network Slicing Agents (NS-AG)

• Service Function Chaining Agents(SFC-AG)

• Forwarding Management Agents (FM-AG)

• QoS Management Agents (QoS-AG)

• Mobility Management Agents (MM-AG)

• Security Management Agents (SM-AG)

• Fault Management Agents (FM-AG)

• Resilience and Survivability Agents (RS-AG)

• Service and Application Management Agents (SAM-AG)

• Monitoring Management Agents (MM-AG)

• Generalized Control Plane Management Agents (GCPM-AG)

3.5. Proposed MANA-NMS Architecture 93

FIGURE 3.3: Multi-agent Based Representation of MANA-NMS for
Cloud RAN

Now we focus on building the multi-agent-based autonomic network management
system. Therefore, by using the above atomic units as a building block, we should
be able to realize an autonomic network management system, replacing the exist-
ing monolithic management system. Figure 3.3 shows an example of a multi-agent
autonomic network management system. The figure also shows functions’ abstrac-
tion into four layers/levels/ protocol-level agents, function-level agents, node-level
agents, and network-level agent.

In the process of building the autonomic management system, there could be a
complex relationship between functions/sub-units that should clearly be defined.Each
function performs specific service processing. In doing so, there could be an inter-
action of functions or units to accomplish the overall goal of service processing in
the network management system. For example, when a given service arrives at the
input of the system, it has a set of service constraints that have to be satisfied by
the system for successful processing of the service. To perform that the functions or
units collaborate or cooperate or compete to satisfy and perform the required ser-
vice processing. This relationship could be complex in that in satisfying the service
constraints, there could be contradictory requirements. This means that for instance
to satisfy the reliability constraints of a given service while maintaining latency and
resource constraints could be a complex optimization if we consider the overall sys-
tem state. An example of the units composition relationship is presented in Figure
3.4. The overlapping of agents shows the close physical and/or logical proximity.

3.5.2 Proposed MANA-NMS Architecture in Comparison with GANA Ar-
chitecture

As indicated above, agents are used as building blocks, replacing the network func-
tion to autonomously perform network management functions. Agents communi-
cate by passing ACL messages to coordinate and they could share information with
each other. Moreover, there are also different types of agents that should be orga-
nized in layers/levels. Figure 3.5 shows agents’ layers organization in the proposed

94 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.4: Simple Example for Network Level Agent Relationship

multi-agent-based architecture. The picture also depicts a comparison between the
proposed MANA-NMS architecture and ETSI GANA architecture. Each agent rep-
resents an atomized network function such as QoS management function. Agents are
expected to perform the intended original functionality of the network components
or functional units. Multi-agents should represent all softwarized network compo-
nents and functions as a system. Using the MANA-NMS architecture, agents are
categorized as protocol level, function level, node/device level, and network-level
agents as depicted in Figure 3.5.

Proposed MANA-NMS Architecture in Comparison with SDN-NFV Architecture

As discussed previously, SDN and NFV are the enabling technologies for network
automation. The joint architecture is presented in Figure 3.1. Here, we present our
proposed architecture in comparison with SDN-NFV architecture. Figure 3.6 shows
a mapping of the proposed architecture in an SDN-NFV based architecture. As it can
be seen from Figure 3.6, the management units are built using autonomic units. These
autonomic atomic units are organized to cooperate and collaborate, and perform the
overall network management functions. Moreover, as indicated in the above sec-
tions, the function of SDN and NFV could themselves be built using agents as the
building blocks. Each component or modules of the SDN controller could be de-
signed as autonomic agents. And the overall controller as a multi-agent system. How-
ever, a detailed discussion of this topic is beyond the scope of this article and left as
future work.

3.5. Proposed MANA-NMS Architecture 95

FIGURE 3.5: Multi-Agent Based Representation of GANA Architec-
ture.

FIGURE 3.6: Multi-Agent-Based Network Management Automation
on Unified SDN-NFV Architectural Framework.

96 Chapter 3. Multi-Agent Based Network Management Automation

3.6 Mathematical Representation of Multi-agent Autonomic
Network Management System

We proposed a multi-agent system for network automation. In the system, sev-
eral agents are organized and coordinated to perform the network management au-
tonomously, based on underlying control rules, laws, or policies. Developing multi-
agent systems with a certain desired behavior requires analyzing the effect of each
constituent agents to understand the collective system dynamics. There are few sim-
ulation tools available in the research, which could be used to analyze our MANA-
NMS architecture. This is due to the complexity and dynamic nature of the network
management environment. Therefore, we use mathematical modeling and analy-
sis for the proposed multi-agent-based automated network management system to
understand the collective multi-agent-based system behavior.

Let us start with characteristic description and specification of agents, which are
considered as the atomic units of MANA-NMS. For the sake of simplicity and read-
ability, here we characterize an agent with a very general specification. As depicted
in Figure 3.7: an agent has an ID, for its identification; a TYPE describes agent
category; an INPUT, is a service-request accepting and/or environment measur-
ing points; FACTS, are knowledge database of the agent; COGNITION (REASON-
ING) UNIT gives agents the reasoning capability; PLANNING STRATEGY organizes
the steps or procedures for the action to be taken to satisfy the requested service;
VALIDATION is the unit that verifies the action plan for consistency; and an OUT-
PUT/ACTION is the final decision (result or action) to be taken by the agent. An
agent also has a mechanism to communicate with other agents through agent com-
munication units. Following the definition of Genesereth, in [102], an agent is de-
fined as a software component that is capable of exchanging knowledge and in-
formation. We consider the standard agent communication language called ACL
messaging[253]. ACL provides a complex knowledge exchange mechanism such as
facts, agent’s goal, strategy, and plans.

First, we denote an agent Ag with a characteristic specification: Ag = (AID, Atype, F, R, PS, V),
where ID is the agent’s identification number, Atype is its type which could be one of
the following Avh|Aprtcl |A f un|Anod|Antk. Avh stands for virtualized or containerized
agent type, which represents a hardware device such as switches or routers. Aprtcl
stands for protocol-level agents. A f un stands for function-level agents. Anod stands
for node-level agents. Antk stands for network-level agents. F stands for facts or
lists of characteristics parameters that describe agents’ knowledge base, which is ex-
tendable. The F list includes information such as the type of provided services and
the desired delivery time. R is a reasoning mechanism such as machine learning
techniques to generate decisions. PS is the action planning strategy such as configu-
ration values and procedures to be performed. Finally, V is the validation technique
along with the evaluation criteria to be used to verify the action plan for consistency
and correctness.

We employ a stochastic approach for the analysis and mathematical formula-
tion of the multi-agent system behaviour[149]. First, let us define a simplified agent
states assuming agents with zero probability of failure. Le us assume an agent hav-
ing four states: start/input, internal execution, action and waiting as depicted in Figure
3.8. This is a very general agent’s state definition. In actual scenarios, each of these
states may consist of a single state (action or behavior), or a set of states (behaviors).
For instance, when an agent is in the internal execution state, it could be performing
reasoning, strategy planning, validation or even communicating with other agent and

3.6. Mathematical Representation of Multi-agent Autonomic Network
Management System

97

FIGURE 3.7: Fundamental Components of Autonomic Agent

98 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.8: Agent States

waiting for responses. To find the collective system behavior of a multi-agent sys-
tem such as system stability, steady-state, and network equilibrium, we assume the
system as Markov process. Agents cannot meet Markov’s property directly since
they could use the memory of previous actions in decision making. It is commonly
right to assume to include the contents of an agent’s memory as part of its state
to maintain the Markov property. Even if this may increase the number of states,
many types of software agents and sensors do satisfy the Markov property with a
reasonable number of states.

Before delving into the description, let us restate the Markov property; the con-
figuration of a given system at time (t + ∆t) depends only on the configuration of
the system at time t. Let p(n, t) be the probability of an agent be in state n at time t.
With this assumption, the change in probability density is written as [149]:

∆p(n, t) = p(n, t + ∆t)− p(n, t) (3.1)

The configuration of the system, which is defined by the the occupation vector is
given by

Nk =
M

∑
j=1

nkũ (3.2)

where k is a discrete state with value k = 1, 2, 3..M. Nk is the number of agents in state
k. The probability distribution P(Nk, t) is the probability of the system being in the
configuration Nk at time t. ũ is the associated unit vector to each state. The transition
rates for a Markov process, which is defined by the conditional probabilities, is given
by [149]:

W(Nk|ñ, t) = lim
∆t→0

P(Nk, t + ∆t|ñ, t)
∆t

(3.3)

3.6. Mathematical Representation of Multi-agent Autonomic Network
Management System

99

The above equation describes the transitions to and from states in the configuration
of the system, and it is known as the Master Equation.

Let wi j be the transition rate from state j to state i then the Rate Equation is given
by:

∂nk

∂t
= ∑

j=1
wjk(〈Nk〉)nj − 〈nk〉∑

j=1
wkj(〈Nk〉) (3.4)

The first term describes an increase in the occupation number nk due to a transi-
tion to state k from other states, while the second term describes the loss due to the
transitions from the state k to other states. This equation could be used as a tool to
analyze the collective dynamics of an agent-based system. In simple terms, the rate
equation is useful to study the system configuration and evolution in time.

A more useful system equation could be found if we consider agents as queue
to model the overall system as M/M/1. Let us assume the service arriving at the
system has a service arrival rate (λtot) and a mean serving rate (µtot). Therefore, in
formulating the overall system dynamics, we use the overall system as an input-
output system to analyze the resource and reliability constraint, serving capability,
and processing latency.

3.6.1 Service Arrival, Scheduling, and Admission

Before presenting the formulation, let us define the incoming services to be sched-
uled for processing in the system. For the purpose of prioritizing service scheduling,
we characteristically define services. Each characteristic and preference is repre-
sented Di to be the demand set, which defines the requirements in terms of latency,
reliability, processing demand (workload), and service class (priority indicator) for that spe-
cific application. If the commodity is elastic Di = {[T̃hmax], [τ̃min, τ̃max], [ρ̃min, ρ̃max], Lij, β}.
The first two requirements (latency and reliability) are ranges that represent services’
Type 2 and service Type 3, otherwise inelastic cases which represents service Type 1.
The set becomes Di = {c̃, τ̃, ρ̃, β}, with constant first three members. The priority
β is a value in the range [0, 1], which is used to classify the serving priority of the
commodity; the sum of all the priorities is 1.

Based on the priority, services are categorized into three type of services: service
Type 1 (inelastic), service Type 2 (elastic), and service Type 3 (with relaxed latency de-
mand). In general, service traffic consists of all the three types of services. The total
service workload composition and proportionality equation at a given time is given
by

Srvtot =
Nt1

∑
i=1

Srvt1 +
Nt2

∑
i=1

Srvt2 +
Nt3

∑
i=1

Srvt3

= α1Srvtot + α2Srvtot + α3Srvtot

(3.5)

where α1Srvtot, α2Srvtot and α3Srvtot refers to Type 1, Type 2 and Type 3 services’
workload in GOPS, respectively, Nt1, Nt2 and Nt3 refer to the number services of
each type.

The overall service admission probability of C-RAN system is defined as the ratio
between total admitted services and total requested services

ApEDC =
∑

Nsrv−Adm
i=1 Srvi

∑
Nsrv−adm
i=1 Sri + ∑

Nsrv−rej
j=1 Srvj

(3.6)

100 Chapter 3. Multi-Agent Based Network Management Automation

where ApEDC is the total service admission probability of a given system (Edge Data
Center in our case), Nsrv−Adm is the total admitted service workload, Nsrv−rej is the
total rejected service workload.

Let us assume service arrival rate to be Poisson distribute. Using Poisson addi-
tion property, the total service arrival rate (λtot) at a given time is given by:

λtot =
Nt1

∑
i=1

λi +
Nt2

∑
j=1

λj +
Nt3

∑
k=1

λk (3.7)

where Nt(1−3) service generating sources. We assume the critical determining fac-
tor for the system processing capacity is only dependent on the service processing
agents, which are directly involved in service processing. The total serving rate of
the system is given by

µtot =
N

∑
i=1

M

∑
j=1

µij = NAgUsrv (3.8)

where N is the types of agents, M is the number of instantiated agents of a given
type, NAg represents the total number of service processing agents that are required
for a given service to complete its service cycle. We can calculate the mean number
of services in the system using

ρtot =
λtot

µtot
(3.9)

The agents have finite resources to perform the required service processing. Hence,
we need to consider this in the constraint equations. A constraint equation is devel-
oped considering the overall system to have multiple agents, working together per-
forming the tasks. Following the M/M/1 queueing modeling, we can apply Little’s
Law, which states that the incoming rate of services has to be equal to the service
rate to have a stable system with no rejected services. The overall load of the system
must be equal to or less than the processing speed of the overall system. That is
given by

µtot ≥ λtot (3.10)

3.6.2 Service Latency in Edge Data Center

The overall delay in the system is the sum of mean delay in the serving agents and
mean delay in the queues. In the model, the dependence of service processing and
service transmission between cascaded agents is eliminated by approximating the
arrival process of each flow at the subsequent agents as a Poisson process. This
enables us to employ an M/M/1 queueing model to calculate the average processing
latency. Therefore, the total delay is given by

Dtot =
K

∑
i=1

QuD +
K

∑
i=1

AgD (3.11)

where QuD and AgD are mean delay in the agent and mean delay in the service
scheduling queue, respectively. The above equation assumes all the required order-
ing sequences of agents. However, the real application varies from service to service,
because of the possibility of splitting services between multiple agents for a faster
process of a long single process.

Moreover, to calculate the total delay in passing through the required sequence
of service agents, we sum all the delays incurred by the given service in the service

3.6. Mathematical Representation of Multi-agent Autonomic Network
Management System

101

function chain (SFC), assuming a queue at each stage of the Agent sequence. This is
given by

τ̃queue =
N

∑
i=1

1
Ms f cUAg − λ

(3.12)

where Ms f c is the processing capacity of an agent sequence (the number of agent
types that a service require (N) multiplied by each Agents’ capacity UAg), ignor-
ing agents’ CPU (overhead) requirements. That means all the allocated capacity of
service processing agents in the data center would be used for service processing
(without any other processing overhead), given by

Ms f c =
CPUtot−srv

NAg
= UAg × NAg (3.13)

Therefore, to meet the end-to-end delay for a service that is constrained to pass
through a given sequence of agents, the data center delay is the sum of SFC decision
delay (overhead), queuing delay, processing delay at each agent, and interconnect-
ing links delay (virtual links) between hosts, so that

τ̃Edc =
Klink

∑
i=1

δi +
NAg

∑
i=1

Lij

UAg
+

NAg

∑
i=1

1
Ms f cUAg − λ

(3.14)

where Klink is the number of links interconnecting different sequence of agents in the
SFC. The above equation shows the total delay at edge data center.

3.6.3 Data Center Based Multi-Agent System Reliability

Finally, we provide reliability formulation for server and agents. The overall relia-
bility is calculated by considering the reliability of server and agents to be mutually
independent events[109]. A given physical server’s reliability is given by [18, 39]

ρ̃phs =
MTBFphs

MTBFphs + MTTRphs
(3.15)

where MTBFphy is mean time between failure, and MTTRphy is mean time to repair.
Similarly, a given Agent’s reliability is given by [18, 39]

ρ̃Ag =
MTBFAg

MTBFAg + MTTRAg
(3.16)

where MTBFAg is mean time between failure and MTTRAg is mean time to repair.
Therefore, the overall reliability of edge data center (EDC) is given by

ρ̃Edc = [(ΠN
i=1ρ̃vlink)(ΠK

i=1ρ̃phs)(ΠN
i=1ρ̃Ag)] (3.17)

To improve agents reliability, we may need to apply backup and overprovisioning
of agents. If we apply backup for agents, the reliability increases. Therefore, the
reliability of SFC incorporating backup Agents is defined as [220], which is given by

ρ̃Ag−with−backup = ΠN
i=1(1−ΠN

i=1[1− ρ̃Ag)] (3.18)

102 Chapter 3. Multi-Agent Based Network Management Automation

The reliability of edge data center considering the data center links becomes

ρ̃Edc = [(ΠN
i=1Prlink)(ΠK

i=1Prphs)(ΠN
i=1ρ̃Ag−with−backup] (3.19)

Using these techniques, maximizing reliability increases the total number of idle
agents. Idle agents could be backup agents, which are waiting to replace working
agents in case of failure or waiting to be scheduled in case of sudden and unexpected
workload spikes. However, this requires additional physical servers to be activated.
This increases the total cost due to power consumption and computing resource uti-
lization. Therefore, we propose to use backup agents for those services that requires
ultra reliability. In other words, we only use this technique for Type 1 services. We
reserve some number of agents considering the required SFC for Type 1 services.

3.7 MANA-NMS Architecture’s Performance Evaluation

This section provides a proof-of-concept for the performance evaluation of the pro-
posed multi-agent autonomic network management system, using Matlab simula-
tion. We rely on the mathematical formulation presented in Section 3.6.

3.7.1 System Description and Simulation Environment Specification

The simulation environment is aimed at emulating a MANA-NMS hosted in a cloud-
based edge data center that autonomically manages a backhaul network and 5G ser-
vice processing. A depiction of the simulation environment is presented in Figure
3.3. As it can be seen from the figure, there are three types of 5G services arriv-
ing at the edge data center. These services are ultra-reliable low-latency services
(uMTC), machine-type communication (mMTC), and enhanced mobile broadband
service (xMBB). The figure also shows an edge data center network that intercon-
nects servers, which contain memory, CPU, and storage. In the edge data center,
multiple types of agents could be instantiated to provide different functions. These
functions could be service-traffic workload prediction, network-state database man-
agement, and synchronization, service authentication and admission, resource slic-
ing and service scheduling, path computation and routing, service QoS monitoring,
and security/firewall.

The evaluation is performed for a simple case of multiple types of agents, per-
forming service processing and network management. For the evaluation purpose,
we limit our consideration to only the following type of agents. All of them are
network-level agents Antk.

• Service workload arrival prediction agents

• Event handler and service scheduling agents

• Service-processing agents, performing service processing such as authentica-
tion and admission, routing, QoS monitoring, and path computation for the
arriving services

• Network state database updates, synchronization and management agents

• Service function chaining and orchestration agents

We categorized agents into two main types with the specification shown in Table
3.2. These two types of agents are system background service agents and user-
traffic processing agents. Background service agents provide necessary preliminary

3.7. MANA-NMS Architecture’s Performance Evaluation 103

FIGURE 3.9: Cyclic Step of Service Scheduling, Processing and Moni-
toring

functions such as service traffic workload prediction, agents instantiation, and re-
source allocation, network monitoring, and service-agents orchestration. Such types
of agents are assumed to have no direct impact on the service processing (eg. delay).
User/traffic/service workload processing agents perform functions that are directly
related to handling the incoming services. These could be path computing, authen-
ticating, admitting, and schedule while monitoring a given service’s QoS require-
ments for processing in the edge data center. Figure 3.9 shows a complete cyclic step
of the overall multi-agent-based autonomic service management and processing sys-
tem. The figure shows the steps needed to accomplish the scheduling, processing,
and monitoring tasks for a given service. Note that the simulation system is built
based on the proposed principles that the atomic agents are used as building blocks
for the automated network management system.

As discussed above, one of the agents is an event handler that responds to in-
coming services or any network-related events. Based on the events, it reacts and
dispatches the events (i.e arrival of tasks, services, packets, network changes, etc) to
appropriate agents for event handling and processing. There are also traffic predic-
tion agents, which predict the incoming service workload. Based on the predicted
amount of workload, the required number of service processing agents are instanti-
ated, and service function chains (a sequence of service processing agents) are cre-
ated. In the simulation, this is performed proactively, every hour. Based on the
predicted workload, additional agents are instantiated if an increase in workload
is predicted in the next hour compared to the current period. Or some agents are
destroyed to reduce and free edge data center resources if a decrease in incoming
service workload is predicted.

Depending on the service requirements, the service agents are sequenced as a ser-
vice function chain for a given service to pass through as a part of service processing.
We considered four service agents as a control plane and data plane functions[15].
Since the data plane service function chain normally would not span more than a few
service agents, the evaluation considers chains that are limited in size (four agents).
An example of agent sequencing is depicted in Figure 3.10. The service function

104 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.10: Agent Sequencing and Scheduling for Arrival Service
Processing

chain that we assumed is two serially connected agents working in parallel with
another two serially connected agents, see Figure 3.10 for agents sequencing (SFC).

Based on agents’ general specification guidelines presented in Section 3.6, let
us provide the specification of agents to be used in the evaluation. Agents have a
unique identifier number, service capacity, service state (information or facts), adap-
tive serving methods (mostly a machine learning model), strategy (how to perform
service processing), validation/verification techniques (optional), execution(output),
which are provided at the agent instantiation stage. The simulation only considered
ID, capacity, type, and status (busy, idle, or fail). In the agent specification Table
3.2, the agent IDs are given as Agsrvmx and Agb px. Where srvm indicates service
processing type of agents, bp indicates background processing type of agents and
X, which could take 1, 2, 3...N, indicates number used to identify a specific agent
instance from a given category. Table 3.3 presents all type of agents used in devel-
oping the overall simulation system, with detailed parameters. The table also shows
different type of agents are instantiated for each type of services. These agents are
use in creating SFC. Using the type of agents indicated in Table 3.3, a simulation of
an autonomic network management system is developed.

The network topology considered in the simulation is represented in Figure 3.11.
The figure shows a California Research and Education Network (CalREN), to be
used as a backhaul or metro network in the evaluation which aggregate traffics to an
edge data center. The nodes in the topology are forwarding SDN switches. Aggre-
gate traffic containing multiple types of services such as uMTC, mMTC, and xMBB.
The weights on the links and nodes are snapshot values indicating the cost of each
element.

In the evaluation, the fraction of service composition is assumed to be 10:20:70
for uMTC, mMTC, and xMBB respectively. This is because there is no representa-
tive data to infer the 5G traffic composition. Table 3.4 shows the service ratio and
measurement values used in the evaluation.

The overall simulation parametric values are presented in Table 3.5.
It should be noted that there are important assumptions made in the evalua-

tion. We assumed equal computational overheads for all service processing types of

3.7. MANA-NMS Architecture’s Performance Evaluation 105

Agent specification Service Processing
Agents

Background Processing
Agents

Agent ID Agsrvmx AgBPx
Input Arrived services Change in

resource/network states
Facts Service specifications

and processing demands
Resources specification
and service agents states
etc

Cognition Service identification,
and classification

Service workload
prediction and
monitoring status
change etc

Plan Mechanism of
authentication,
admission, path
computing, routing and
monitoring etc

Adaptive resource
(de)allocation, seating up
of SFC etc

Verification and
validation

Check the computed
path for consistence,
optimality and validity
in time and state

Verify resource state
before update

Output/Action authenticating,
admitting, and routing of
service in a given path or
the service chain

(de)allocate resources
and resource state
database

TABLE 3.2: Internal-Functional Specification of Agents

FIGURE 3.11: Considered Network Topology For Path Computation

106 Chapter 3. Multi-Agent Based Network Management Automation

Agent type Number of
Agents Required

Capacity(Gbps) Processing
Latency (ms)

uMTC Service
Agents

depends on the
incoming service
workload amount

100 Service-
workload/Agent-
Capacity

mMTC Service
Agents

depends on the
incoming service
workload amount

100 Service-
Workload/Agent-
Capacity

xMBB Service
Agents

depends on the
incoming service
workload amount

100 Service-
workload/Agent-
Capacity

Traffic Prediction
Agents

3 (fixed at the
start of the
simulation)

100 20

Even distribution
Agents

3 (fixed at the
start of the
simulation)

100 0.03

Orchestration
Agents

3 (fixed at the
start of the
simulation)

100 0.03

Database
management
agents

3 Agents (fixed at
the start of the
simulation)

100 0.03

TABLE 3.3: Detailed Agents Parametric-Specifications Used in Devel-
oping the overall Simulation System

Services type Service workload proportion Expected delay in the edge data center

uMTC (Type 1) 10% 0-2ms
mMTC (Type 3) 20% 2-4ms
xMBB (Type 2) 70% 4-10ms

TABLE 3.4: Service Specification

System Specification System value

Queue one service queue for each service type
CPU 10,000,000Tbps

Simulation time 120 hours (5 days of a week)
Service arrival process Random poisson arrival

Service arrival 3 database agents (db agents)

TABLE 3.5: Simulation Parameters

3.7. MANA-NMS Architecture’s Performance Evaluation 107

agents, which may not always be true. It is because agents could perform different
computations for each service type. The internal components are designed for the in-
tended function specialization of that agents. Agents could have event monitoring,
cognition, planning, verification, and action performing components to make auto-
nomic decisions and dynamic responses. These components require CPU processing
and processing delay, which can be added to the virtualization overheads (assuming
agents are normally instantiated in a given container or virtualized environment).

Other agents’ computational overhead is considered variable, depending on the
type of agents. For instance, traffic prediction agents are expected to have differ-
ent internal components than database management agents service orchestration
agents. Therefore, in the evaluation, a given CPU computing overhead is assumed
to be added as a computational processing workload. The detailed study of agent
computational overhead is left as future work.

In general, the evaluation is based on service workload prediction, path com-
putation, resource allocation, service workload scheduling, service processing, and
network and resource state updates. Service arrivals are considered as input to the
system and handling agents. The even handling agents may request the orchestra-
tion agent to instantiate and create a chain of agents for the services to be processed.
The chain of agents represents a service function chain required by the services. This
in fact is set proactively every hour by predicting the incoming service type and
amount of service workload.

Given service progress through the sequence of service processing agents getting
the necessary service treatments; it could be service authentication and authoriza-
tion to use a given set of resources, SFC path, and service management. A snapshot
of agents sequencing from a different type of service agents is provided in Figure
3.10. In a given type of agents, service agents are scheduled in a round-robin fash-
ion. That means the first arrived service is scheduled to be served by the first agent
from a given set of agents of that type, the second arriving services by the second
agent if the first agent is still busy, and so on. The evaluation is considered to show
agents’ interaction to perform a given service, service schedule, and processing.

Arriving services are classified into three categories. And each service is sched-
uled and stored into three separate queues depending on its service categories. These
are uMTC, mMTC, and xMBB queues. The scheduler allocates separate resources
and SFCs depending on each queue state. This way services are scheduled main-
taining service separation, priority, and service differentiation. The evaluation is
considered to show agents’ interaction to perform a given service, service schedule,
and processing.

Generally, based on the above evaluation specifications and developed simu-
lation environment (emulation of MANA-NMS), the simulation evaluation is per-
formed for: service admission and processing, agent utilization and service process-
ing, resource consumption, processing and queuing delay, agent and server (agent
host) failure analysis, and building a resilience system and its impact on resource
consumption and processing delay. We performed the simulation for 120hrs, repre-
senting a five days traffic pattern. The results are discussed in the following subsec-
tions.

3.7.2 Service Arrival and Processing Evaluation

Arriving services are allocated a network resource after the best available path is
computed. The service schedule is based on service priority. It is in the order of

108 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.12: Workload Distribution

FIGURE 3.13: Average Arriving Service Workload

URLLC (high priority)–> mMTC –> xMBB (least priority) in a given service schedul-
ing period. Based on the amount of arriving service workload, resources are allo-
cated to agents before they are instantiated. Based on the total serving capability
of agents, a service is injected using the workload percentage shown in Figure 3.12.
The evaluation also considers three types of services with a different workload de-
mand to the autonomic network management functions. The arrival is assumed to
be Poisson distributed with a workload distribution, shown in Figure 3.12. The ar-
riving service patter is plotted in Figure showing the total average service workload
for each type of service and the overall services workload arriving to the edge data
center. Based on the availability of service agents, services are scheduled until all
active agents are fully loaded. Figure 3.13 shows average arriving service work-
load over a 120hrs evaluation period. Figure 3.14 shows rejection of services due to
agents overload. The overall service admission probability of the multi-agent sys-
tem is calculated as the ratio of service admitted to service requested. The result
is presented in Figure 3.15. As it can be seen from the Figure, service admission is
approximately one during non-peak hours and whereas there is some probability of
services rejected at peak hours.

3.7. MANA-NMS Architecture’s Performance Evaluation 109

FIGURE 3.14: Service Rejection

FIGURE 3.15: Service Admission Probability

110 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.16: Average Number of Required Service Agents

3.7.3 Agent Utilization and Edge Data Center Resource Consumption

Agents require CPU resources to process services. The instantiating of multiple
agents consumes data center resources such as memory, storage, CPU, and network
bandwidth. In our simulation, we considered only CPU, assuming equivalent re-
quirements would be scaled for memory, storage, and bandwidth. As indicated in
Table 3.3, there is a fixed number of background processing agents. They are instan-
tiated at the beginning of the simulation. These agents are even handling agents,
service workload prediction agents, orchestration agents, and network and resource
state database management agents. There are also service agents that are scaled
according to the incoming service workload demands. In our simulation, we con-
sidered only the number of agents that are scaling with the workload. However,
it is also possible that a given agent could scale its processing capability according
to the service demands. This could be possible by dynamically adding the neces-
sary resource to the agent. Such kind of agent’s capacity scaling is called "horizontal
scaling". However, the discussion of such a scenario is out of the scope of this work.

The number of active agents instantiated at a given time is directly related to the
service prediction. Service workload is predicted by the service workload predicting
agents. On the other hand, the CPU consumption in the edge data center is directly
related to the number of active agents instantiated at a given time. Since active
agents consume resources, it is necessary to reduce the number of active (but idle)
agents to have efficient resource utilization. Figure 3.16 depicts the average number
of required agents in a given hour. This is calculated based on the predicted arriving
service workload.

Agents are assigned to provide service scheduling and monitoring functions.
Once agents are assigned to accomplish the given task, they will be locked into a
busy (internal execution) state before becoming the idle state. The average num-
ber of busy agents and idle agent during the 120hrs simulation period are depicted
in Figure 3.18 and Figure 3.17. The Figures indicate the average number of agents
that are actively performing service processing and waiting for service scheduling,
respectively. The idle number of agents is a total average over the whole period
which is approximately 4000 agents. This number indicates idle agents that are ac-
tively consuming resources without providing services. This shows the inefficiency
of resource consumption which is the consequence of the prediction model accuracy.

3.7. MANA-NMS Architecture’s Performance Evaluation 111

FIGURE 3.17: Average Number of Idle Agents

FIGURE 3.18: Average Number of Busy Agents

112 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.19: Agents Utilization

FIGURE 3.20: Edge Data Center Resource Utilization

However, if we reduce these idle agents, we may increase the service rejection and
service latency in the edge data center. This is because the service arrival is a ran-
dom process and an exact prediction is dependent on the prediction model used in
the prediction agents. Moreover, given the model used in the prediction agent, the
prediction is the optimal value to avoid further service rejection and service delay
in the data center. The overall service-processing-agents utilization by each type of
services is depicted in Figure 3.19.

Figure 3.20 shows the average amount of resource consumption in the edge data
center in terms of the consumed CPU. The maximum available CPU resource in
GOPS is given in Table 3.5. As can be seen from the Figure, the resource consumption
is directly related to the number of total active agents which is also directly related
to the service workload arrival pattern. As indicated the arrival pattern is predicted
by the service workload prediction agents.

Moreover, we have evaluated agents’ load ratio over 120hrs period for each ser-
vice type agent. This is an average busy period for a given type of agent. The evalu-
ation shows, on average, how much a given agent is utilized over the 120hrs period.
This parameter indicates the efficiency of agents in processing and delivering the

3.7. MANA-NMS Architecture’s Performance Evaluation 113

FIGURE 3.21: Agent Busy Period

FIGURE 3.22: Agents Average Communication Frequency for
Database Update due to Service Arrival

given service while the agents are in an active state.
One capability of an autonomic multi-agents network management system is the

ability to communicate between agents to accomplish a given task. In our evaluation
scenario, we considered agent communication between scheduling and monitoring
agents and resource database management agents. Accordingly, the evaluation indi-
cated the communication frequency needed to accomplish the given arriving service
workload. Figure 3.22 shows the average communication frequency over a 120hr pe-
riod.

3.7.4 Service Queuing and Processing Latency Evaluation

The simulation has two main stages of queuing for each type of service. These are
service a arrival queue and a service processing queue. As the services arrive at the
edge data center, they are first stored in the service arrival queue of the correspond-
ing service queue before they are scheduled for processing in the service agents.

114 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.23: Arrival Service Queuing Delay

FIGURE 3.24: Service Processing Delay in the Service Processing
Agents

Service is processed sequentially through the service function chain. Since we con-
sidered a maximum of two agents connected serially, there is a service processing
queue between the two serial connected service agents. In this scenario, the service
is scheduled and processed in the service function chain which is connecting service
agents. The simulation result depicted in Figure 3.23 presents the average delay in
the queues for each type of service. Figure 3.24 depicts the average processing delay
in service agents passing through the service function chain. The total delay in the
edge data center is assumed to be the sum of the two delays as formulated in the
above section. Figure 3.25 shows the total end-to-end latency in the edge data cen-
ter which ignores the communication link delay between subsequent service agent
delay in the SFC.

3.7. MANA-NMS Architecture’s Performance Evaluation 115

FIGURE 3.25: End-to-End Service Latency in Edge Data Center

3.7.5 System Evaluation for Fail-over Scenarios

In the above evaluation scenarios, agents are assumed to be 100% reliable and avail-
able. However, this may not be true as agents are software components with a non-
zero probability of failure. The agents are an event handler, orchestration, predic-
tion agent, and database management. These agents are very critical for system
resilience. Therefore, such agents are redundant with a well-synchronized backup
system. Such types of agents are fixed in our simulation, and a few are compared
to service processing types of agents. And assumed to be 100% reliable. However,
service processing agents are assumed to be less reliable and their number is scaled
according to the arrival service workload. In the simulated system, such types of
agents are not protected by a backup system. However, overpraising of 1% is con-
sidered to accommodate the imperfection of the service workload prediction, which
is dependent on the machine learning model incorporated in the service workload
prediction agents.

Different failure scenarios could be analyzed using the developed simulation en-
vironment. It could be a backhaul network node failure that affects the link utiliza-
tion and service admission or server/agent failure which affects the edge data center
service admission probability and service latency. A network node failure is handled
by recomputing new available paths until the node is back into operation. This is a
classical scenario thoroughly considered in the literature. We consider limited sce-
narios for the multi-agent-based autonomic network management system failure. In
simulation two fail-over scenarios are considered; a single or a very few numbers of
agents failure and single server failure. A single agent failure has an insignificant im-
pact on the overall service admission and service delay in the edge data center. This
is because agents are lightweight service units that can be instantiated easily and in
a few more for overprovisioning, with little increase in resource consumption. They
can also be easily and quickly instantiated to compensate for the reduction in the
number of service agents due to service agent failure.

However, the failure of a server, hosting several agents, could significantly affect
the edge data center processing capacity. The extent of the impacts depends on how
the SFC is created. That means if a single type of agent is hosted in a single server,
and if that server fails, the impact will be the highest. It is because a given service
may need to get service treatment from all types of service processing agents in the

116 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.26: Impact of Server (Hosting Service Processing Agents)
Failure on Service Rejection

SFC. The failure of such server would significantly reduce the number of agents of
a given type, creating a shortage of such agents for SFC creation. The least impact
could be achieved by rightly balancing and distributing the agent type to different
servers. With such considerations, the simulation is performed for maximum impact
of hosting a single type of agent in a single server. Moreover, a single server failure
at a random time within the 120hrs simulation period is introduced. And the impact
on service admission probability and service processing latency is evaluated.

As it can be seen from Figure 3.26, the impact of a server failure is significant
in that it increased the service rejection. However, the impact does not last long
because the agent monitoring and orchestrating other agents immediately detects
the reduction in the number of service processing, agents and next instantiate addi-
tional agents of such type. The instantiated agents are updated with the service state
and information to take over the service processing. After instantiating the required
service processing agents, as a replacement to the failed agents, the orchestrating
agents also create the necessary SFC. Figure 3.27 depicts the overall service latency
in the edge data center. As can be seen from the Figure, there is a significant latency
on each type of service processing, depending on the time of failure of the server
hosting a given type of service processing agents. Figure 3.28 shows the impact of
server failure on the service admission probability. As it can be observer from the
Figure, there are significant reduction in the admission probability for all type of
services,depending on the time of failure of server hosting a given type of service
processing agents.

3.7.6 System Reliability Evaluation and Service Differentiation for Re-
source Efficiency

Reliability of network management system is very important. In Section 3.6, we dis-
cussed and presented a reliability improvement technique based on a backup sys-
tem. We evaluate the system performance by introducing backup service processing
agents. Figure 3.30 shows the admission probability using backup system. Com-
pared to the result obtained without backup, which is depicted in Figure 3.15, the
admission probability has increased. Moreover, Figure 3.29 shows the reduction of

3.7. MANA-NMS Architecture’s Performance Evaluation 117

FIGURE 3.27: Impact of Server Failure on End-to-End Latency in the
Edge Data Center

FIGURE 3.28: Impact of Server Failure on Service Admission Proba-
bility

118 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.29: Service Rejection with Backup Service Processing
Agents

FIGURE 3.30: Service Admission Probability

service rejection compared to the system without back service processing agents, see
Figure 3.29 and Figure 3.14.

The spike (seen in the figure) in-service rejection is due to the introduced server
failure impacting the available service processing agents. This shows that even if we
have a backup system, the impact is significant for a small duration. This is because,
after the active serving agents’ unexpected sudden failure, it needs time until new
service agents are instantiated and taking over the service processing abandoned
by the failed agents. Figure 3.30 shows the admission probability improvement by
using backup system.

Figure 3.31 shows the increase in resource consumption compared to Figure 3.20,
which is plotted for the system without backup service processing agents. Since
there is a large number of service processing agents, having a backup for all of them
approximately doubles the resource consumption. This indicated that a backup sys-
tem has a huge cost of resources and energy consumption. To reduce such consump-
tion, we propose service differentiation in providing a backup system by providing
backup agents for only critical services or by providing flexibility to provide such

3.8. Autonomous Network Traffic Classifier Agent for Autonomic Network
Management System

119

FIGURE 3.31: CPU Resource Consumption with Backup System

FIGURE 3.32: CPU Consumption with Backup System for uMTC Ser-
vice Processing Agents

options to use by the network operator to decide. This makes the system more effi-
cient in resource utilization and resilient compared to a system without any backup
mechanism. A more detailed analysis is left for future work. Figure 3.32 shows
the reduction in CPU consumption compared to a backup system without service
differentiation. However, more critical services are admitted with a few increase in
resource consumption compared to the system without service backup.

3.8 Autonomous Network Traffic Classifier Agent for Auto-
nomic Network Management System

3.8.1 Overview and Background

In this section, we give an overview of the technologies and concepts that have been
used in this paper. As technology evolves, complex problem solving is also evolving
from centralized to distributed solutions. Distributed artificial intelligence (DAI)
is a solution where many entities work together to solve a complex problem [81,

120 Chapter 3. Multi-Agent Based Network Management Automation

Environment

Sensors Actuators

Inference
Mechanism

Knowledge
base

Sensors Actuators

Inference
Mechanism

Knowledge
base

ACL message

Agent Agent

FIGURE 3.33: General overview of a MAS.

244]. In DAI, historically, there are two sub-regions. The first is distributed problem
solving, which focuses on breaking down a problem and using slave nodes to fix
it. The micro solutions are then gathered and reconstructed to produce the actual
solution. The second sub-area is MAS that emphasizes agents with a certain degree
of autonomy and uncertainty, resulting from their interactions in their joint activity.

A MAS is made of autonomic entities referred to as agents as illustrated in Fig.
3.33. Similar to distributed problem solving, the agents jointly work to solve tasks
in a more flexible manner since they are also capable of making autonomous deci-
sions. These agents use information obtained through interacting with other agents
and the environment to learn new knowledge and perform actions to solve given
tasks accordingly [80]. MASs are characterized by some features such as Autonomy:
agents function without human or other direct intervention and have some form
of influence over their behavior and inner state, Social ability: agents communi-
cate through some kind of agent-communication language (ACL) with other agents,
Reactivity: agents perceive and react promptly to changes that occur in their envi-
ronment (which could be the physical world, a user via a graphical user interface,
a group of other agents, the Internet, or maybe all of these combined), Pro-activity:
agents are not merely behaving in reaction to their environment; by taking the ini-
tiative, they can display goal-directed actions.

3.8.2 Machine Learning Models For Network Traffic Classification

Machine learning (ML) is a paradigm that focuses on giving systems the capabil-
ity to learn from experience automatically without being programmed explicitly
[140, 159]. ML facilitates the analysis of vast volumes of data. While it typically of-
fers quicker, more specific outcomes to identify lucrative possibilities or hazardous
threats, it may also take additional time and resources to properly train it. To search
for patterns and trends in data and make informed choices in the future based on the
training examples, the learning process has to start with some training observations
or data. This could be from examples, direct experience, or guidance, from which a
model is developed based on the learned patterns and trends. The primary objective
is to allow computers to learn automatically and change behavior accordingly, with-
out human intervention. There are several ML methods e.g. supervised learning,

3.8. Autonomous Network Traffic Classifier Agent for Autonomic Network
Management System

121

FIGURE 3.34: An Example of a Decision Tree.

unsupervised learning, semi-supervised learning, and reinforced learning [198]. In
this work, supervised learning methods are considered.

Supervised learning algorithms apply past knowledge, learned from a training
dataset to predict future events and outcomes. In the training dataset, there are
labeled input-output pairs. The learning algorithm produces an inferred function
to make predictions about the output values, starting from the analysis of a known
training dataset. After ample preparation, the system can provide targets for any
fresh data. To adjust the model accordingly, the learning algorithm can also compare
its output with the right, expected output and find errors.

Decision Tree Classifier Algorithm

A non-parametric supervised learning approach, used for classification and regres-
sion is the decision trees. Decision trees learn from knowledge with a set of if-then-
else decision rules to approximate a sine curve. The deeper the tree, the more com-
plicated the laws of decision are and the fitter the model [43]. The decision tree helps
to develop classification or regression models in the context of a tree structure.

A dataset is broken down into smaller subsets, while an associated decision tree
is progressively built at the same time. A tree with decision nodes and leaf nodes
is the outcome. There are two or more divisions of a decision node. A classification
or decision defines the leaf node. In a tree, the top decision node corresponds to
the best predictor called the root node. Both categorical and numerical data can be
treated by decision trees.

Naive Bayes Classifier Algorithm

It is a classification method based on Bayes’ Theorem and the assumption of pre-
dictor independence. A Naive Bayes classifier, in simple terms, assumes that the
existence of one feature in a class is unrelated to the presence of any other feature
[43]. A football, for example, is a rigid, circular object with a diameter of about 9
inches. Even if these qualities are dependent on one another or on the existence of

122 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.35: An Illustration of a Hyperplane and Support Vectors.

other qualities, they all lead to the probability that this object is a football, which is
why it is called "Naive."

The Bayes theorem allows you to calculate posterior likelihood of class (c, target)
given predictor (x, features) P(c|x) from prior probability of class P(c), prior prob-
ability of predictor P(x), and the likelihood P(x|c) using P(c), P(x), and P(x|c) like
in the following equation:

P(c|x) = P(c) ∗ P(x|c)
P(x)

The Naive Bayes model is easy to develop and is especially useful when work-
ing with large data sets. Naive Bayes is considered to outperform even the most
advanced classification methods due to its simplicity[43].

Support Vector Machine Classifier Algorithm

SVM algorithm is to find a hyperplane that separately classifies the data points in
N-dimensional space (N is the number of features). There are a lot of potential hy-
perplanes that could be selected to distinguish any two groups of data points. The
goal is to find a plane with the highest margin, i.e. the maximum distance between
both classes’ data points. Maximizing the gap from the margin offers some support
so that further confidence can be classified in future data points [43].

Figure 3.35 illustrates hyperplanes, support vectors and margins in relation to
SVM [264]. Hyperplanes are boundaries of judgment that help to classify the data
points. It is possible to attribute data points falling on either side of the hyperplane
to various groups. Support vectors are data points that are closer to the hyperplane
and affect the hyperplane’s direction and orientation. We optimize the margin of the

3.8. Autonomous Network Traffic Classifier Agent for Autonomic Network
Management System

123

FIGURE 3.36: An Illustration of the K-NN Classifier Algorithm in ac-
tion.

classifier using these support vectors. Deleting the support vectors would change
the hyperplane’s location. These are the points that are helping to build the SVM.

K-Nearest Neighbours Classifier Algorithm

K-NN classifier [43] works by storing the different instances of the data in the train-
ing dataset. The classification here is solely based on a majority vote of all the neigh-
bors closest to the data point in question. For example, the data point in question
is assigned to a class that has the most data representatives within the neighbors
nearest to this point.

Given two categories of data, i.e., Category A and Category B, and a new data
point x. The question at hand is: in which of the two categories does the data point
lie? To solve this, the K-NN classifier algorithm comes in handy. The working prin-
ciple behind the K-NN algorithm is explained below.

1. In this first step of K-NN, the data set (training and test data) is loaded.

2. A choice of the value of K i.e. the nearest data points is made where K is an
integer.

3. For each sample in the test data, calculate the distance between test data and
each row of training data with the help of any of the methods namely: Eu-
clidean.

4. Take the K nearest neighbors as per the calculated Euclidean distance.

5. Among the K neighbors, count the number of the data points that belong to
each class. The class assigned to the test point is based on the most frequent
class.

This method helps a great deal when large training datasets are encountered. The
major challenge is the determination of the value of K. One more challenge associ-
ated with this algorithm is the high computational cost since the distance parameter
has to be calculated for each sample in the data set. The ambiguity with "distance"
as a parameter is another challenge.

124 Chapter 3. Multi-Agent Based Network Management Automation

3.8.3 Proposed Network Traffic Classifier Agent

In this section, we present the architecture for the proposed NTCA. Let us first define
and contextualize agents.

Agents

Agents have been defined in different ways based on different fields of study. How-
ever, the idea of agents is a generic one and can be applied across several disciplines
[80]. Therefore, a more generalized definition is presented, considering the agent’s
abilities and characteristics. An agent is an object that is put in an environment and
senses the various parameters used to make a decision based on the object’s target
goals or objectives. Based on this decision, the agent carries out an appropriate ac-
tion. This definition is made of four keywords. Object refers to the kind of agent. It
could be a software agent, e.g. network security agents, or a hardware agent, e.g. a
robot.

Environment is a location in which the agent is placed. The agent obtains some
information about the environment that guides the decision-making process. Pa-
rameters refer to the different forms of data collected from the environment by the
agents. For example, the parameters of an archaeological robot agent are material of
underground substance and depth from ground level. The agent takes actions that
influence changes in the environment in which they operate. The actions may be
continuous or discrete.

The key role of each agent is to solve tasks assigned to it under given constraints
such as time and available resources [80]. To perform its role diligently, the agent
first observes the environment for its parameters. Given these parameters, the agent
then builds up a knowledge base about the environment. This agent can also use
knowledge learned from other agents. This knowledge is shared among agents us-
ing an ACL as illustrated in Fig. 3.33. This knowledge base contains a history of
previous actions taken. This, together with the information from the sensors, is fed
into the inference mechanism, which decides the appropriate action to be taken by
the agent [227].

A single agent is well equipped to work autonomously and perform actions to
solve a given task. To harvest the benefits of agents, it is best to have them work
together and collaborate to find solutions towards complex tasks. These multiple
agents working together are known as MAS. This work contextualizes a MAS as
ANMS while the agents, contained in the MAS, are the network decision elements
(DEs). These agents work together while exchanging knowledge, towards a global
network decision.

Network Traffic Classifier Agent Architecture

The NTCA takes in network traffic flows as input and produces at the output differ-
ent classes or categories to which this traffic belongs. Network traffic classification
facilitates network decisions such as resource allocation in applications such as net-
work slicing. In order to classify traffic, the NTCA design architecture is proposed
and presented in Fig. 3.37.

It is possible to specify the characteristic description and specification of the NT-
CAs. These NTCAs are considered as the atomic units in MANA-NMS. Agents have
an input to accept a traffic classification service-request and environment measuring
points. Moreover, the classifier agent is equipped with a number of facts such as

3.8. Autonomous Network Traffic Classifier Agent for Autonomic Network
Management System

125

Facts
Cognitive
Reasoning

AI/ML tools
DT/KNN/
SVM/NB

-TC

TCA's
Extendable list

of characteristic
parameters
knowledge

Planning
Strategy Validation

Evaluation/
Verification

rules for
final decision

Rules,
Procedures
for Overall

Classification
/Re-training/

Input/Sensors Output/
Action

Communication Interface (ACL)

Communication
Interface (ACL)

FIGURE 3.37: Network Traffic Classifier Agent Architecture

the features of the incoming traffic such as the packet size, internet protocol (IP) ad-
dresses, labels (protocols), etc. Cognition (reasoning) unit is the brain of the agent
that gives it the reasoning capability. Planning strategy unit of the agent organizes
the steps or procedures for the action to be taken to satisfy the requested service.
The validation process comprises of some rules upon which a final decision can be
made i.e. knowing the classes of traffic coming in can be very helpful in making
network-related decisions. And the last component of a NTCA is an output/action
unit which is the final decision (result or action) to be taken by the agent.

Communication in MANA-NMS

Agent work with other agents. In other words, the overall system such as MANA-
NMS is built using the atomic agents as a building block. Since these agents are
loosely coupled and could be deployed in a distributed environments, there should
be a mechanism to communicate among the agents in the system. In general, com-
munication between the agents can be classified based on the architecture of MAS
and the type of information which is to be communicated between the agents. ACL
is mostly used in the literature. However, other communication languages such as
REpresentational State Transfer application program interface (Restful API), Web-
Socket, google Remote Procedure Calls (gRPC), GraphQL, etc. In this paper, we
used ACL as a communication language among the agents. Evaluation of the per-
formance of the system is dependent on the type of communication language used.

3.8.4 Performance Evaluation of Classifier Agent

The design and implementation of the NTCA is done using Python programming.
osBrain, a general-purpose MAS module implemented in Python by OpenSistemas,
is used to design the MANA-NMS system and test the performance of the NTCA. A
number of other modules have also been considered such as pandas for data manip-
ulation and data analysis, Numpy for scientific computing, and Scikit-learn for ML
algorithms.

126 Chapter 3. Multi-Agent Based Network Management Automation

FIGURE 3.38: The Process of Traffic Classification.

Conceptual Framework for the Network Traffic Classifier Agent Implementation

Based on the proposed NTCA design guideline, as presented in Fig. 3.37, the agent
implemented. The NTCA takes in network traffic flows as input and produces at the
output different classes or categories to which the traffic belongs. Network traffic
classification facilitates network decisions such as resource allocation in applications
such as network slicing.

To offer autonomic service management, such as resources allocating , services
scheduling, etc., it is required that all incoming network traffic be classified accord-
ing to the protocol to which it refers. Protocols then relate to different applications
and services. To perform network traffic classification, an agent having an ML model
as an internal component is considered.

Since we assumed the network traffic to be have labels (protocols or port num-
bers), a supervised ML model is used in the NTCA design. Supervised learning
algorithms such as K-NN, Decision Tree, SVM, and Naive Bayes are employed for
performance comparison. We also assumed the agent is capable of collecting incom-
ing traffic as a historic dataset to label it and use it to train and re-train its model. We
assume the data to be stored in a network database, which we assumed to be able to
manage the data accordingly and provide access whenever required.

To start the network traffic classification, data is first collected. This is the first
step of the process. Data is captured in real-time and stored in a usable format. We
used Wireshark as the data collection tool. While using the internet to surf, data
flows were captured for about an hour and over 100,000 entries are produced.

Using Wireshark, the data is saved in a comma-separated values (CSV) format
for further analysis. Feature extraction and feature selection are performed. The
features include the length of the packet, source IP address, destination IP address,
and the protocol. Since our primary target is to show how to develop an agent as
a part of MANA-NMS system, we do not discuss on improving the design an ML.
After feature extraction, the data is then sampled and divided into two sets, namely
the training set and the test set with a data-split ratio of 80/20. During sampling,
care should be taken to ensure that all the data samples have correct labels. In this
case, the label is the protocol associated with each data packet.

After completing the agent design and using agents as a building block, the
MANA-NMS model is designed as shown in Fig. 3.39. Incoming network traffic is
collected and classified accordingly into three categories/classes. In our implemen-
tation, we considered high priority (HP), representing Ultra-Reliable-Law-Latency

3.8. Autonomous Network Traffic Classifier Agent for Autonomic Network
Management System

127

Incoming
Traffic

Traffic Classifier
AGENT

Agent A

Agent C

Agent E

Agent B

Agent D

Agent F
Task Manager
(Dispatcher)

Finished

High Priority Traffic Queue

Medium Priority Traffic
Queue

Low Priority Traffic Queue

Agent A Agent B

Agent C Agent D

Agent FAgent E

Finished

Finished

FIGURE 3.39: Proposed MAS Model.

Communication (URLLC) services, medium priority (MP) representing Massive Ma-
chine Type Communication (mMTC) services, and low priority (LP) representing
Extreme Mobile Broadband (xMBB) services. Once classified, the traffic is passed
to a task manager (dispatcher), what decides which server or agent should handle
the traffic based on the scheduling policy. We used a first-in-first-out (FIFO) policy
when the traffic belongs to the same class. Service traffic is then scheduled on the
corresponding service agent for service processing.

Task Manager and Queuing

Once the traffic is classified into the different classes, it is sent to the task manager.
The task manager works as a supporting service agent in the MANA-NMS. In the
task manager, each class of traffic is termed as task. The role of the task manager is
to decide which server/agent is going to process the service. This decision can only
be made if there exists a policy.

Scheduling Policy

The policy employed here is the "Join Class Related Queue" policy. This is a dynamic
policy that sends jobs/tasks to the queue related to a server/agent which subscribes
to that job (traffic class). For example, once a task belonging to the high priority traf-
fic class is released by the task manager, this task joins the queue of the server/agent
that subscribes to handle the high priority traffic class.

Queuing Model Employed

Each queue is modeled as an M/M/1 type of queue where the M stands for Marko-
vian. The queuing model used is FIFO implying that the first job to join the queue is
processed first and the rest follow in order of earliest arrival. After the task manager
releases a task/job, the job is sent to one of three queues depending on the traffic
class it belongs to. There are three queues and therefore, three classes of agents e.g.
HP, MP, and LP.

Evaluation Results

The results reported in this section include a quantitative analysis of performance
measurements of all NTCA designs, namely SVM, Decision Tree, K-NN, and Naive
Bayes. The performance metrics include classification accuracy, training latency, and

128 Chapter 3. Multi-Agent Based Network Management Automation

TABLE 3.6: Classification Accuracy of the different Network Traffic
Classifier Agent Designs.

3*kth run of algorithm Classifier Agent Designs
K-NN Decision SVM Naive

(%) Tree (%) (%) Bayes (%)
1 98.95 99.6 94.77 88.01
2 98.87 99.44 94.45 88.01
3 98.79 99.52 94.53 89.14
4 98.79 99.6 94.53 87.61
5 98.63 99.44 95.17 88.42
6 98.63 99.52 95.09 88.09
7 98.63 99.36 94.21 87.77
8 98.87 99.68 94.85 88.9
9 98.87 99.44 94.93 87.93
10 98.95 99.44 94.93 88.74

Mean 98.798 99.504 94.746 88.262
Variance 0.01628 0.00967 0.09394 0.26282

classification latency. The NTCA designs are compared and evaluated according to
these performance metrics.

Classification Accuracy

The NTCA designs presented are analyzed using a 80/20 split of the data set into
training and test sets respectively. The classification accuracy is affected by a number
of factors and these include the number of features considered, the data set size and
correctness of features considered to obtain the target class.

The NTCA designs are evaluated by running their respective algorithms 10 times.
The mean and variance of the accuracy values was calculated and reported in Table
3.6. It demonstrates that the Decision Tree NTCA design is the most robust of all
the classifier agent designs since it has the smallest variance and the highest mean
accuracy when the algorithm is performed numerous times.

Training Latency

Training Latency is the time taken to train the traffic classifier model. Training la-
tency is a measure related to the real time performance of the NTCA design consid-
ered. Less latency means better agent design performance.

The mean training latency values for the Decision Tree, K-NN, Naive Bayes, and
SVM NTCA designs are 154.3, 154.9, 155.1 and 162.2 ms respectively. It should be
noted that the Decision Tree NTCA design has the least mean training latency of
154.3 ms. Fig. 3.40 shows the training latency of all the NTCA designs over a number
of training trials. It is evident that Naive Bayes, Decision Tree, and K-NN NTCA
designs take a relatively shorter time to train a model as compared to the SVM NTCA
design.

Classification Latency

The time it takes to categorize a single instance of previously unknown data is
known as classification latency. Because latency is linked to a system’s real-time

3.8. Autonomous Network Traffic Classifier Agent for Autonomic Network
Management System

129

0 2 4 6 8 10 12 14 16 18 20

80

100

120

140

160

180

200

220

240

260

280

300

FIGURE 3.40: Comparison of the Training Latency of the Network
Traffic Classifier Agent Designs.

performance, it is an important performance metric for NTCA designs. Less latency
is better since the agent’s input-output transformation takes the shortest time possi-
ble. A comparison of the classification latency of the NTCA designs observed over a
simulation period of one hour was evaluated and presented in Fig. 3.41.

On average, the K-NN, SVM, Naive Bayes, and Decision Tree NTCA designs
have classification latency values of 28.01, 3.668, 2.773, and 1.593 µs. Generally, SVM,
Naive Bayes, and Decision Tree NTCA designs have relatively small mean classifi-
cation accuracy of less than 4 µs. However, the Decision Tree NTCA design has the
lowest mean classification latency of 1.593 µs.

130 Chapter 3. Multi-Agent Based Network Management Automation

0 500 1000 1500 2000 2500 3000 3500

0

5

10

15

20

25

30

35

FIGURE 3.41: Comparison of the Classification Latency of the Net-
work Traffic Classifier Agent Designs.

131

Chapter 4

SDN Controller Decomposition
Using Microservice

4.1 Introduction

Note:this is a collaboration work between the University of Trento, University of
Bologna and Technical University of Dresden. The testbed is developed at the Uni-
versity of Bologna. My contribution is the conceptual development, proposed archi-
tecture, testbed development guidance, and final article development.

As defined in the early section SDN is a networking paradigm that aims to give
a definitive solution to break the limitations of traditional network infrastructure
[236]. It breaks the vertical integration by separating the network control logic (i.e.,
the control plane) from the underlying routers and switches that forward the traf-
fic (i.e., the data plane). With the separation of control and data planes, network
switches have become simple forwarding devices, while the control logic is logi-
cally centralized in a controller entity, thus simplifying policy definition and net-
work (re)configuration and evolution [135].

In particular, the SDN architecture consists of three layers [97]: data plane, con-
trol plane, and the application plane as an additional layer sitting atop them. Moving
from the uppermost to the lowest layer, the application plane contains software appli-
cations to provide network services and performs ranges of functionalities such as
Quality of Service (QoS), advanced security, and advanced routing. The control plane
is the central agent which interfaces the application and data plane to implement
applications network requirements: it communicates through the northbound inter-
face to the applications and via the southbound interface to the forwarding devices.
The data plane, is responsible for handling and forwarding packets and contains a
group of data plane resources that can forward and manipulate packets. These re-
sources include forwarding devices that have physical/logical interfaces to receive
the incoming packets and forward them to an outgoing interface(s). The controller
communicates with forwarding devices using several network communication pro-
tocols, in most of the cases the OpenFlow protocol [173].

The main issues of the centralized control plane range from latency constraints to
fault tolerance and load balancing, to tackle those challenges, the distribution of the
SDN controllers has been proposed to reduce typical issues of centralized controllers
[22]. However, existing controllers are implemented as monolithic entities, even in
the case of distributed deployments. In particular, in the case of distributed SDN
controllers, there are replicas of the SDN controller, which means all SDN sub func-
tionalities are replicated even if not all are necessary. For instance, Ryu SDN Con-
troller [230], an open-source SDN controller implementation, provides a single piece
of code installable on heterogeneous operating systems that enables the machine (or
virtual machine) to act as an SDN controller. At the current time, all opensource and

132 Chapter 4. SDN Controller Decomposition Using Microservice

proprietary releases of SDN implementations adopt a monolithic software approach,
which include ONOS [204], OpenDayLight [206], and Floodlight [93]. The main is-
sue of monolithic implementations is that it does not allow network administrators
and developers to choose SDN components and/or functionalities to (de-)activate
for having the SDN controller functionalities according to SDN deployment and ap-
plication needs in different scenarios. This results in limited flexibility in the network
and creates multiple problems in terms of scalability, fault isolation, and latency. In
particular, future 5G network infrastructures will leverage the network softwariza-
tion and network slicing concepts using SDN and Network Function Virtualization
(NFV) in 5G [23]. However, in some scenarios system constraints can be very strict,
such as in Industrial 4.0 and 5G Tactile Internet, which require a high rate of reli-
ability and low latency communications [168] [2], and therefore, the adoption of a
monolithic SDN deployment may result not suitable.

At the same time, the legacy definition of the SDN reference architecture does
not mandate the internal composition, implementation, and design of an SDN con-
troller [97]. Thus, the SDN controller can be decomposed and implemented as a set
of software components, running in a distributed manner. Specifically, it is possi-
ble to design the SDN controller as a composition of logical sub-functions, sharing
the network service load and creating a robust system against failures. These sub-
functions are loosely coupled units that can be executed in different and distributed
computing platforms [3]. The possibility of decomposing the monolithic SDN con-
troller and designing the controller as loosely coupled provides a possibility of flex-
ible controller deployment.

Accordingly, some research efforts have been started to decompose an SDN con-
troller into microservices. For instance, the ONOS project proposes µONOS, which is
the next-generation architecture for the Open Network Operating System controller
[96]. µONOS adopts a microservices-based architecture disaggregating the con-
troller and the core itself as an assembly of various subsystems. However, µONOS
has been specialized mainly for cloud datacenter scenarios by employing a service
orchestrator, Kubernetes, to manage microservices that are realized as Docker con-
tainers.

Even if µONOS, faced the issues discussed above, the implementation is in an
early stage that needs more works to provide a playground framework. In addi-
tion, their approach has some limitations: first, is limited to certain technologies,
not all 5G compliant, for instance, Kubernetes instead of ETSI MANO or containers
instead of VNFs. Second, inter-functionalities communication is limited to Google
Remote Procedure Call (RPC), which does not give a fair degree of flexibility in cer-
tain scenarios. Finally, the implementation is not completed yet and that hinders the
possibility to thoroughly test it.

To overcome all those limitations, we propose a novel microservices-based SDN
controller decomposed architecture based on Ryu SDN Controller called MSN that
has been specifically designed for next-generation 5G RAN Edge deployments and
shows several original elements. First, it shows original design guidelines for im-
plementing a microservices-based SDN controller; second, presents a novel decom-
position architecture for SDN controller by showing the use of REST-API or gRPC
or WebSocket as different possible interfaces between the decomposed and virtu-
alized/containerized functions of the controller; third, it presents an implementa-
tion proposal using Ryu SDN Framework that is completely agnostic to particu-
lar technologies and is 5G compliant (e.g., ETSI MANO and Virtual Machines or
Docker Containers); fourth, it presents an evaluation of the proposed implementa-
tion, which indicates the robustness of the system and the low latency achieved by

4.2. Background and Motivation 133

showing a comparison of communication interfaces such as REST-API, gRPC, and
WebSocket; finally, an open-source version of our proposed framework is available
for the community at the link: https://gitlab.com/dscotece/ryu_sdn_decomposition/.

4.2 Background and Motivation

In this section, we briefly review the existing standard architectures for softwarized
networks such as SDN and NFV by analyzing the large numbers of synergies be-
tween them. Once clarified the standard monolithic SDN controller, we present the
motivational factors for decomposing the SDN controller. Finally, we provide a list
of SDN functionalities and we motivate the benefits for distributing these function-
alities as microservices.

Background

SDN and NFV are network softwarization paradigms that are transforming the net-
work management and design approaches. Network softwarization is the mapping
of hardware-based network functions into software. Network softwarization en-
hances the possibilities of innovation due to flexibility, programmability, virtualiza-
tion, and slicing. SDN and NFV enable the traditional static network to be flexible
paving the way for network innovation.

What we have discussed above implies the physical separation of the network
control plane from the forwarding data plane. NFV is an architecture proposed by
ETSI for network function softwarization. In other words, it is a softwarized im-
plementation of network functions. The functions are traditionally implemented in
preparatory hardware [189] such as firewall, load-balanced, deep packet inspection
(DPI), and network address translator (NAT).

An attempt to unify and find a single architecture considering the two paradigms
is done in [148]. The SDN controller provides the possibility of programming the
network to have a virtualized network that NFV could use to orchestrate virtual
functions that are deployed in a data center or distributed environment. Whereas,
NFV could provide a virtualized SDN controller that can be deployed in a cloud.
Such possibility provides flexibility and full network function softwarization. Figure
4.1 shows the unified SDN and NFV architecture.

4.3 Overview of SDN Controller Components

Existing legacy SDN controllers are typically implemented as the composition of
various function modules and libraries in a single monolithic system [204, 206, 93,
230]. For instance, Ryu controllers have internal components such as event distrib-
utor, topology discovery, and firewall and libraries such as Netconf, NetFlow, and
sFlow. The Open Network Foundation (ONF) defined the basic elements and con-
ceptual framework for an SDN controller design [97]. As defined by ONF, the inter-
nal components of the SDN controller typically contain the following basic network
elements and basic functions. The very basic network elements that an SDN con-
troller has to manage are:

• Devices are units such as switches, routers, ports, and other physical network-
ing units.

https://gitlab.com/dscotece/ryu_sdn_decomposition/

134 Chapter 4. SDN Controller Decomposition Using Microservice

FIGURE 4.1: A Unified Architecture for SDN and NFV

• Links are physical or wireless interconnections that connects one physical/logical
port to another physical/logical port(s).

• Hosts represent the end devices such as computers.

• Packets/flows are the fundamental units of information in user and manage-
ment services, at the network layer.

An inventory of these elements is registered and their state is updated in the
controller’s database. The common functions are:

• Topology management is managing a topology and determining which nodes
and edges are present in the topology.

• Device and link discovery and management is a mechanism to configure and
incorporate new devices into the network system.

• Route management is determining the path for a packet/flow to route through
the network from the source to the destination. It computes the path for a given
packet of flow based on the packet information.

• Routing/forwarding rule-setting enables the packet to route from the source
to the destination based on the computed path.

• Performance monitoring is the mechanism of ensuring the performance of a
network such as QoS for a given service.

• Network-state management is the management of the network information
such as links status, available path, the available device along with their status,
etc.

Depending on SDN controller types, the internal components of a controller
may vary. Figure 4.2 depicts the ONF’s SDN architecture. The functionalities men-
tioned above are confined in the Control Plane as part of the SDN controller. In
addition, there are possible to have a set of sub-functions that we can consider as

4.3. Overview of SDN Controller Components 135

Application Plane External Applications
External Applications

External Applications

North Bound Interface API API

South Bound Interface OpenFlow

Control Plane External Applications
External Applications
Network Services

SDN
Controller

Data Plane External Applications
External Applications

Network Devices

FIGURE 4.2: ONF’s Software-Defined Network Architecture

additional/high-level functions. These functions in most existing SDN controller
implementations are implemented as external applications confined in the Applica-
tion Plane. In particular, the SDN controller supports a set of APIs (via the North
Bound Interface) that make it possible to implement external network services. The
most common SDN-based external applications are:

• Virtualization and slicing;

• Tenant creation and tunneling;

• Traffic flow measurement and statistics (telemetry);

• Performance monitoring;

• Firewall and security;

• Network address translation;

• Load balancing.

4.3.1 Ryu SDN Framework

Due to its simplicity and components-based architecture, the Ryu SDN framework
is the starting point for our MSN implementation. In particular, a Ryu application
consists of a Python script that extends the RyuApp base class and implements the
Observable and Observer interface. These interfaces allow the application to in-
teract with the event-based communications in the Ryu framework. For instance,

136 Chapter 4. SDN Controller Decomposition Using Microservice

Data flow
OpenFlow Event

Ryu Framework

ofp_handler
(OpenFlowController)

Datapath Datapath Datapath

.

Ryu App Ryu App

FIGURE 4.3: Ryu Internal Monolithic Logical Architecture

the OFPPacketIn event is the event generated when the switch sends the packet to
the controller. This event invokes the subscribed functionality that can process the
packet and can create the OpenFlow rule. First, the Ryu Framework starts the Ap-
plication Manager that loads all the applications and registers the associated events.
The most important application in the Ryu Framework is ofp_handler which allows
the framework to interact with OpenFlow protocol (OpenFlowController class). To
efficiently communicate with switches, Ryu Framework creates a virtual representa-
tion of switches called Datapath.

Figure 4.3 shows the logical architecture of the monolithic Ryu SDN Framework.
The ofp_handler operates as the event dispatcher of the Framework and manages the
Datapaths. In particular, it manages the Hello and Echo messages and updates the
status of the ports when necessary. The Ryu apps, once invoked by an event can
reply directly to the Datapaths. By default, if nothing is specified, Ryu starts with
only ofp_handler as application. The ofp_handler is the core-fundamental component
of the Ryu SDN framework as it contains all the basic SDN functionalities.

In recent years, there has been a lot of interest in SDN-based mobile networks,
and several papers are proposing SDN-based mobile network architectures and list-
ing the benefits they can bring to the mobile industry [108]-[200]. In particular, the
high numbers of researches and the high interest in this topic have led to an evolu-
tion of the traditional SDN architecture and due to the widespread of the IoT, the
SDN paradigm has started to be used to manage the IoT in several domains in-
cluding smart city [7], smart home [258], smart health [164] and so on. The SDN
paradigm helps the IoT networks to challenge several issues such as latency, reli-
ability, privacy, flow control, etc. However, it still has some issues caused by the
logical centralization of the SDN controller, the main of them being scalability and
robustness [199].

There are also numerous SDN controller implementation both from the open-
source community and from commercial vendors. Typical examples are NOX, POX,
Ryu, OpenDayLight, and ONOS. Even if the core principle of all SDN controllers is
the same, each of them has a slightly different implementation approach. NOX is the
first OpenFlow-based SDN controller written in C++[197]. In the early exploration

4.3. Overview of SDN Controller Components 137

of the OpenFlow and SDN space, NOX has been the basis for many research and
development projects. The NOX internal components mainly contain event handlers
to receive and dispatch events such as incoming packets. POX is similar to NOX with
a Python-only implementation. It is considered as a general, open-source OpenFlow
controller [215]. Ryu is also a component-based SDN controller[230]. OpenDayLight
is a collaborative open-source controller[206]. It is a modular, extensible, scalable,
and multi-protocol SDN controller deployment. ONOS is also an open-source SDN
controller [204]. The ONOS SDN controller software is written using Java and it
provides a distributed SDN application platform atop Apache Karaf OSGi container.
The controller has been designed to operate as a cluster of nodes that are similar in
terms of their software stack and can endure the failure of individual nodes without
causing disruptions in its ability to control the network operation.

All of above SDN implementations are based on a modular approach. How-
ever, all of them are based on monolithic architecture. NFV has changed the way
we deploy network functions [189]. It enables easier, flexible, and dynamic deploy-
ment of a given network functions. SDN and NFV are complementary technologies
[189][97], but SDN controller function could be considered as a network function and
it can be deployed as a VNF in a container [189]. However, the overall controller is
a cumbersome and monolithic process. ONF specification indicated a possibility of
implementing the SDN controller as either monolithic or decomposed in microser-
vices [97]; however, only a few recent efforts have started exploiting this second
possible design choice.

In wireless cellular networks, a recent article [41] showed how to split BaseBand
units (BBU) of wireless RAN deployment. The authors propose to split it into differ-
ent configurations; in each configuration, the functional units of BBU are split to be
deployed as a virtualized functions. The BBU is virtually stored in a network cloud
and accessible, as a shared resource. Similar to other network functions, such as BBU
in wireless networks, SDN controller could be decomposed [61].

The first work showing an externalization of packet processing in SDN is pre-
sented in [61]. As an extension of this work, the author in [62] provided steps that
are required to migrate from a monolithic to a microservice-based architecture. The
functional components are distributed as microservices and a gRPC is used to com-
municate between the core modules and external components or applications.

µONOS is the latest solution proposed towards a standard architecture for dis-
tributed and split control plane. The µONOS project aims at creating a new gener-
ation of SDN architectures based on ONOS, splitting it into a set of microservices.
These split functionalities are deployed as Docker containers and managed by Ku-
bernetes orchestrator. The µONOS project is relatively young (it started in October
2019) and it is based on the P4/P4runtime [209] protocol which is a different con-
trol protocol compared to the standard de-facto for the SDN paradigm, namely, the
OpenFlow protocol. P4 protocol can emulate the behavior of OpenFlow; in addition,
the communication between functionalities is via gRPC-based protocols, including
gRPC Network Management Interface (gNMI) for network management interface
configuration and gRPC Network Operations Interface (gNOI) for network com-
mand operations. However, the µONOS implementation is still in its infancy and
there is still no available implementation to play with. Moreover, and most impor-
tant, some implementation choices are not compliant with ongoing 5G standards.
First, µONOS has limited integration with and support for ETSI-NFV standards be-
cause it neither implements the OpenFlow abstraction nor that of legacy network
elements. In particular, the use of Kubernetes does not allow an easy integration

138 Chapter 4. SDN Controller Decomposition Using Microservice

within the 5G Edge architecture which requires ETSI-based protocols such as ETSI-
MEC and ETSI-MANO. On the contrary, MSN framework exploits ETSI-NFV stan-
dard to define its architecture and ETSI-MANO for managing microservices, which
allows MSN to easily operate within 5G-based networks. Second, in µONOS the
communication between microservices is based on gRPC, a Remote Procedure Call
framework developed by Google, which allows network entities to communicate
(once defined an agreement) by serializing data with the Protocol Buffers, another
Google solution. This results in a not so easy interaction with most available third-
party applications which are using more open protocols such as REST-APIs. Because
of that, in our MSN solution, we defined a generic communication module between
microservices that allow users to choose the network communication technologies
according to scenario requirements. This operation can be done at developing time,
but, thanks to the dynamicity of containers/VMs orchestration via ETSI-MANO,
it is possible to change dynamically the network communication technology. Fi-
nally, µONOS is based on the ONOS SDN system that forces users to have previous
knowledge on it. Also, this may result inefficient in several scenarios where net-
work entities are not powerful enough to run the (rather heavy) ONOS system such
as the Industrial IoT scenario. To overcome this, MSN framework provides general
guidelines to decompose an SDN system that is completely agnostic to specific SDN
software and communication means.

In general, to the best of the authors’ knowledge, the MSN solution is the first
seminal work implementing complete guidelines for the SDN controller decompo-
sition in microservices that fit 5G requirements including an implementation based
on VNFs, Docker containers, and ETSI-MANO.

4.4 Motivation for SDN Controller Decomposition

Recently, the application of distributed SDN controllers has been widely studied in
the literature, from different deployment perspectives. The main efforts were on
the applications IoT device for smart city, disaster management [35, 301, 184], and
Industrial Internet of Things (IIoT). In the following of this paper, we focus on the
application of distributed deployment for IIoT. This because is a challenge scenario
due to very strict requirements in terms of latency, reliability, and scalability. In par-
ticular, IIoT is a new paradigm in Industry 4.0 and it consists of the remote operation
of machines, computers, and robots enabling intelligent industrial operations. More-
over, it is aimed at complete automation of the manufacturing process, from the raw
material input to manufacturing, storage, distribution, and end-user marketing. In
such scenarios, various heterogeneous devices and users are involved [200]. IIoT
network requires real-time controlling, e.g., to control robots. These applications re-
quire, resilient, dynamic, and autonomous networking with low-cycle times (around
100 ms), and a high-reliability rate (close to 99,99%) [168, 2]. These requirements are
very difficult to achieve with the existing SDN centralized controller deployment,
especially for a large network. It is because SDN deployment incurs in propagation
latencies as they have to be deployed at the center, which could be at a significant
distance from the network device or forwarding switches to be managed. There-
fore, despite the expected benefits of centralized controller design, it raises many
challenges, including scalability and reliability.

The existing technique proposed to alleviate this problem is the hierarchical de-
ployment of the SDN controller. Using the physical decentralization of the control
plane approach, it is expected to address the scalability and latency problems [200].

4.5. Microservices-Based SDN Controller Decomposition 139

However, such physically distributed, but logically centralized, systems bring an
additional set of challenges. First, the distributed deployment of a monolithic SDN
controller requires (unnecessary) replication of code so to deploy the whole SDN
controller at each location. That means whenever a new controller is deployed the
whole SDN system has to be replicated in the distributed location. In other words,
the monolithic system further provides a granular level challenge in terms of increas-
ing the required functionalities. As the SDN system’s internal modules are tightly
coupled, it is difficult to dynamically increase the serving capability of the controller
without adding a new SDN controller. In other words, the whole SDN has to be
replicated in response to the workload demand that could have been performed by
increasing just the required functional modules of the SDN controller. Furthermore,
in terms of resilience, the monolithic system also has further disadvantages as a sin-
gle controller fails in a given local area, it has to use the central controller which is
further away from the center creating latency and congestion [283]. This is because
instead of instantiating the specific function that leads to failure, either it has to in-
stantiate the whole SDN controller or contact the nearby controller. See Table 4.1 for
comparison between monolithic systems and microservice system.

However, if we can decompose the monolithic SDN controller into sub-functions,
we could deploy only the required functionality in the required location as per net-
work size and network management workload demands. Moreover, dynamic re-
sponse to dynamic network demand is possible by dynamically instantiating the
required functions of the controller components to meet the service and network de-
mands. This means dynamically scaling the controller capability with the dynamic
service demand.

Therefore, a decomposed SDN controller deployment could provide a flexible
and efficient local deployment of required controller’s functionalities, while decep-
tively scaling controller’s unctions on demand. This would potentially be advanta-
geous in terms of latency and reliability, due to reduced code size and the flexible
scaling of resources and controller functions. It would become possible to dynam-
ically increase the number of functions and resources, which could be a horizontal
and vertical extension of functions deployed as virtual network functions (VNFs) to
meet the service demands. A typical application of a decomposed SDN scenario is
depicted in Fig. 4.4. The SDN controller with the minimum required functionality
could be hosted in an edge data center.

4.5 Microservices-Based SDN Controller Decomposition

The monolithic SDN controller is easier to develop and deploy. However, since
a monolithic SDN controller is built as a single and indivisible unit, updates or
changes are very difficult because they require the replacement of the whole stacks of
the control system. Moreover, handling a huge codebase, adopting new technology
such as AI, dynamic scaling, deploying, and implementing changes is very difficult.
This is a big disadvantage in the era of functions containerization and cloudification
where features of loose-coupling, distributed deployment, and dynamic scaling of
resources are required. In general, the monolithic SDN controller has disadvantages
of scalability, reliability, and reusability.

In principle, monolithic SDN controllers have pros and cons compared to mi-
croservices. Microservices are a means of creating loosely-coupled sub-functions or
sub-services, replacing a large software system. So far we have mentioned its disad-
vantages. An alternative approach that we have indicated so far is microservices. A

140 Chapter 4. SDN Controller Decomposition Using Microservice

FIGURE 4.4: Microservices-based SDN deployment blueprint in IIoT
Scenarios

4.5. Microservices-Based SDN Controller Decomposition 141

TABLE 4.1: Comparison between SDN Monolithic architecture and
Microservices-based SDN architecture [283]

Design Prin-
ciples

SDN controller as monolithic system SDN controller as Microservices

Scalability Monolithic SDN controller is difficult to
scale because it requires replicating over-
all SDN controller for smaller increase
in demands. This is because tight cou-
pling of internal structure of the Mono-
lithic SDN controller. Moreover, it is very
hard to upgrade as it requires working
on the big system instead of replacing or
maintaining just the failed functions.

Microservices-based SDN controller can
be placed in a container or any virtual
environment. Using function sequenc-
ing, dynamic instantiate of containerized
services, and function orchestration, it is
possible to recreate the SDN functional-
ity, which can easily scale by adding only
those components that require additional
resources.

Cloud
Readiness

Monolithic SDN controller is bulky to de-
ploy the system in a containerized envi-
ronment.

Microservices can easily be deployed and
orchestrated in containerized environ-
ment. Therefore, a microservice-based de-
sign of SDN controller enables easy de-
ployment in a distributed environment
such as cloud

Loose Cou-
pling

Monolithic SDN controller’s internal
modules are tightly coupled which pre-
vents it to be deployed in a distributed
environment without replicating the
controller. Wherever and/or whenever
SDN controller functions are needed, the
whole system must be deployed instead
of the required functions only

On the contrary to Monolithic based con-
troller, SDN controllers based on mi-
croservices have loosely coupled compo-
nents which enables flexible deployment
in a distributed environment for dynamic
scaling along with the dynamic service
demand

Maintenance If a Monolithic SDN controller internal
component fail, locating the problem to
make changes is difficult and may take a
lot of time. This is because the SDN con-
troller is a big complex set of code that are
tightly coupled

Instead, in the case of microservice-based
design of SDN controller has enough de-
coupling of the functional components to
identify, isolate, and replace with new
function of that particular function with-
out requiring to replace or work on the
whole system. I means, If one part of the
system fails, mostly only a single compo-
nent of the SDN controller function may
damaged, and it can be isolated and re-
placed/fixed. This could be by instanti-
ating a new container for example

Component
reuse

For a monolithic based SDN controller, it
is difficult to reuses the sub-components
as every function or internal modules are
part of a single system

However, microservice-based compo-
nents of an SDN controller functions
could be reused and orchestrated to be
deployed with other functions for dy-
namic response to the workload increase.
So microservice-based SDN controller
functions reusable as components are
loosely coupled, independently imple-
mented and deployed

142 Chapter 4. SDN Controller Decomposition Using Microservice

FIGURE 4.5: Architectural Overall of Proposed Microservices-based
SDN Controller Decomposition

multi-agent system is also another alternative to have a decomposed management
system. Since we are focusing on a microservice-based decomposition technique, we
will limit our discussion to only microservices instead of multi-agent approaches,
which is discussed in detail in [16].

4.5.1 Decomposing SDN Controller

This section provides the proposed decomposed architecture of an SDN controller,
presenting a functional definition of components and interfaces. The proposed SDN
controller decomposition architecture shows the decoupling of internal components
of the SDN controller to be deployed as a microservice.

4.5.2 SDN Controller Internal Components as a Microservice

The main principle to retain in decomposing an SDN controller is that the network
information and state should be synchronized and self-consistent providing a global
view of the network. That allows an independent implementation and components
reuse. We consider a decomposition of SDN controller, as depicted in Figure 4.5
which shows a decomposed three-layer SDN architecture reflected in an NFV archi-
tecture [189].

Figure 4.6 depicts our proposed deployment architecture of the decomposed
SDN controller, based on microservice architecture. The main principle behind the
architecture is the use of microservice based functions to replace the monolithic SDN
controller and develop it as a lossless coupled composition of containerized ser-
vices.As discussed in Section 4.3, we identified and defined the internal components
of the SDN controller that could be developed independently as a microservice. This

4.5. Microservices-Based SDN Controller Decomposition 143

requires delineating the system based on specific service functions. In other words
it should be possible to specifically define as function that could independent be
developed as microservice and deployed in a virtual environment or container.

This also mean that the control layer core sub-functions are decomposed into
sub-functions and implemented as microservice and deployed as VNFs in contain-
ers. Each sub-function is developed as a microservice and creates an independent
and autonomous service unit. These microservices are able to independently per-
form the required service function. The independence of microservices would pro-
vide the possibility of deploying them in a distributed environment while scaling
them as per the service workload. This may require instantiating multiple instances
of the same service or new instances of additional microservices.

Once the necessary functions are developed as microservices, the SDN system
requires a service aggregation to deliver a final functional system. Therefore, the
final controller system becomes the organization of the independently developed
microservices to create the equivalent SDN controller functions. As indicated above,
the controller’s components can be executed on arbitrary computing platforms on
distributed and virtualized resources such as virtual machines (VMs) or containers
in data centers. The loosely-composed system can be viewed as a black box, de-
fined by its externally-observable behavior, emulating the original monolithic SDN
controller. However, a distributed implementation must consider maintaining a syn-
chronized and self-consistent view of network information and states. The indepen-
dently developed microservices based functions could be orchestrated by a standard
orchestrator, such as MANO. This would create a service function chain to equiva-
lently perform the legacy SDN controller’s functions.

As can be seen from Figure 4.5, the upper layer is a pool of independently im-
plemented microservice based SDN components such as topology manager, event
handler, and other applications. Each component performs a specific function such
as traffic routing, topology management, and even handling. It is possible to cate-
gorize functions as basic SDN controller functions and additional functions or ap-
plications. Basic SDN controller functions are mandatory to provide the minimum
possible function of the SDN controller.

4.5.3 External Applications as a Microservice

In addition to the network services, external applications could be incorporated to
extend the controller basic functionality [97, 96]. Depending on the network to be
controlled, various types of applications could be implemented in the application
layer such as additional QoS service, traffic predictions, traffic classification, slicing,
firewall, and novel deep packet inspection, see Figure 4.6. All these functions can
be developed based on microservice and could be considered as VNF in container
which can be deployed in a distributed environment. In doing so, we are effectively
eliminating the traditional delineation between the control layer and the application
layer. This is interesting concept to notice as the legacy architecture of the SDN con-
troller has three layers, which are forwarding, control, and application, see Figure
4.2. However, in the proposed MSN framework there is no apparent difference be-
tween an SDN internal function and network application that are deployed as VNF
in containers. This is because all components could be implemented as loosely cou-
pled microservices, and running in a container that can be deployed anywhere. Our
implementation is a testbed showing this by splitting the Ryu controller into two
separate functions that are deployed in a docker container.

144 Chapter 4. SDN Controller Decomposition Using Microservice

FIGURE 4.6: Proposed microservices-based SDN controller sample
deployment architecture

4.5.4 Communication Interface Between Decomposed Services

As indicated above, in our proposed MSN framework, the components can be de-
ployed as VNF in a distributed environment as a web service. A web service is a ser-
vice that can be called by an application. Therefore, the decomposed SDN controller
sub-functions could be considered as web services, which can separate programs
that are independent of other applications and can be run on different machines.
Such functions communicate with each other or with the event distributor, such
as sending and receiving event notifications through the communication interface.
These communication interfaces between the decomposed and containerized appli-
cations are based on open-source communication interfaces. These generic commu-
nication interfaces are tested in our implementation which are REST, WebSocket, and
gRPC. Each of them has its pros and cons in terms of latency for web-based services.

Communication Interface Between the decomposed Microservice based Controller
Functions

Our proposed MSN framework uses RESTful API for as the communication inter-
face. RESTful is an application program interface that uses HTTP requests to GET,
PUT, POST, and DELETE data [138, 49]. It provides interoperability between differ-
ent network application developers of the SDN controller sub-functions. These APIs
can be used to facilitate efficient microservices-based function orchestration and au-
tomation of the network to align with the needs of different applications. RESTful
API is a stateless architecture for data transfer. We chose REST for multiple reasons
such as performance, scalability and, most important, is the standard declared in the
3GPP white-paper about Release 15 of 5G networks [1]. RESTful API also allows the
support of large numbers of components and interactions among them which makes
it ideal for IIoT deployment scenario indicated above. Moreover, RESTful API has a
uniform interface which simplifies and decouples functions making it suitable for a
microservice-based SDN function communication.

4.6. Decomposed SDN Controller TestBed Implementation and Performance
Results

145

As a comparison with RESTful API while testifying our hypothesis on how the
use of REST has advantages for SDN controller decomposition, we used gRPC and
WebSocket [49]. gRPC is an open-source remote procedure call (RPC) system ini-
tially developed. It uses HTTP/2 for transport, Protocol Buffers as the interface
description language, and provides features such as authentication, bidirectional
streaming and flow control, blocking or non-blocking bindings, and cancellation and
timeouts. gRPC is roughly seven times faster than REST when receiving data and
roughly ten times faster than REST when sending data for this specific payload. This
is mainly due to the tight packing of the Protocol Buffers and the use of HTTP/2 by
gRPC. Moreover, WebSocket is another communications protocol that provides a
full-duplex communication channel between the servers and the clients, using a sin-
gle TCP connection. It was standardized by the IETF as RFC 6455 in 2011 [49]. It
provides real-time communication between a client and the server.

Finally, we would like to indicate that the drawback of an SDN controller de-
composition and deploying it as a distributed system could create an additional
challenge of synchronization between components. Even if the decomposition has
advantages compared to a centralized SDN architecture in terms of availability, re-
silience, and flexibility for a reconfigurable system, the distribution of functions im-
poses a continuous network state synchronization challenge. The network state
database could be centralized or distributed. In other words, the network state is
replicated or distributed between the controllers requiring repeated synchroniza-
tion. In each case, maintaining synchronization is a challenge. However, the prob-
lem of synchronization of the database in a distributed system is a long-studied sub-
ject that could be considered for the case of decomposed SDN controller [70, 237].
For example, the existing controller synchronization strategies developed for dis-
tributed controllers improve joint controller decision making for inter-domain rout-
ing. Given existing solutions in the literature, in this work, we consider the proposed
MSN system precisely synchronized.

This assumption is made reasonable by the system’s characteristics. The various
modules, composing the distributed SDN controller, are virtual containers placed
in and running on servers and, more in general, on network computing hardware.
The containers get the synchronization from the clocks of their hosting hardware.
In fact, this network hardware is accurately synchronized via well-known standard-
ized synchronization protocols like IEEE 1588 Precision Time Protocol (PTP) [163,
123], which has already been used to achieve a synchronization accuracy in the or-
der of tens of nanoseconds.

4.6 Decomposed SDN Controller TestBed Implementation and
Performance Results

For the evaluation of the MSN implementation, we proposed an implementation
based on Ryu SDN controller [230] due to its component-based characteristics that
blend well with the microservices-based SDN controller perspective. The following
subsections introduce first the fundamentals of our proposed microservices-based
decomposition framework and, finally, we present our experimental environment
and the performance results of the MSN implementation.

146 Chapter 4. SDN Controller Decomposition Using Microservice

ETSI MANO
Orchestrator

Infrastructure Layer

Data flow
OpenFlow Event

Middleware

ofp_emitter

ofctl_rest

Datapath

ofp_handler

.

Ryu Applications

simple_switch

Ryu Applications

Communication
Network Module

Management
Orchestration

FIGURE 4.7: Ryu-based MSN Implementation Architecture

4.6.1 Decomposing Ryu SDN Controller

As theoretically described in the Section 4.5.1, we identified in the Ryu implementa-
tion the essential modules that describe a basic SDN system:

• Event Handler System Management: this module is in charge of catching an
OpenFlow event and forwarding it to the destination. This module works re-
actively and may be considered as the core module for a decomposed SDN
implementation.

• Routing System: this function is used to generate Flow rules to allow the net-
work to exchange packets among nodes and switches.

• South-bound Management: this module allows the system to interact with the
underlying system with several protocols.

The starting point for the microservices-based SDN decomposition is the charac-
terization of the core part of the SDN system that allows the communication from
network components to the applications (i.e.: from the control plane to the data
plane). In particular, the externalization of that SDN core part allows the network to
be observable and manageable from external processes. The proposed MSN imple-
mentation follows that principle and its implementation is provided to demonstrate
the feasibility of using a middleware that allows the interaction between the core of
the SDN and external processes.

First, we isolated the event emitter from the core of Ryu Framework and we
created a support middleware module (the yellow block in the Figure 4.7), incorpo-
rating the REST APIs block with the emitter to be able to transform events in REST
calls. The middleware is the fundamental block for a microservices-based SDN de-
composition, precisely because connects the legacy SDN environment with external
microservices. Second, we turned each Ryu App in a separate block (i.e., microser-
vices) external to the Ryu Framework which can communicate with the Framework

4.6. Decomposed SDN Controller TestBed Implementation and Performance
Results

147

via REST APIs through the middleware. In this way, we transform an SDN function-
ality into an atomic block (microservice) releasing it from the whole SDN Frame-
work. For implementation purpose, we leverage the already existing REST-based
APIs in the Ryu framework, precisely the ofctl_rest module. Figure 4.7 shows the re-
sulted Ryu-based MSN implementation architecture. The described approach can be
used for different network technologies, not only REST-based, such as gRPC, Web-
Socket, RPC, and so on. What is changing is the block internal to the middleware
(the ofctl_rest block in the Figure 4.7) module that connects to external microservices.

Once demonstrate the feasibility of the MSN framework, to improve reliability
and scalability is important to leverage a solution like virtualization and/or con-
tainerization that results easy to orchestrate via an orchestrator. In our solution, we
adopted Docker Container as containerization ecosystem, Open Source MANO for
the orchestration and OpenStack as the infrastructure layer. We produced differ-
ent Dockerfile for reproducing the architecture shown in Figure 4.7. In particular,
we created a Docker container for our middleware that incorporates the ofp_emitter
and ofctl_rest blocks inside and another Docker container for the event handler func-
tionalities such as the ofp_handler block. Finally, Ryu Apps are considered as sep-
arated Docker Containers that include SDN functionalities including routing func-
tionality or Firewall. For major details, we have all codes available at repo source:
https://gitlab.com/dscotece/ryu_sdn_decomposition/.

4.6.2 Experimental Environment

Our performance evaluation aims to prove the feasibility of the MSN framework
and evaluates its performance by proposing a benchmark of several communication
technologies to enable needed interconnections and interoperability across microser-
vices. The tests show results in terms of reliability, scalability, and latency of the
system. To achieve this, we separated our testbed into two different parts: first, we
tested the system latency introduced by splitting the SDN controller in microservices
for different network interconnection technologies; finally, we tested our system to
calculate the improvements in terms of reliability and scalability.

The performance of the MSN framework has been evaluated in a simulated
testbed environment. We used the implementation details described in the Section
4.6.1. In addition, the OpenFlow protocol will be used for the forwarding plane of
switches. However, it should be noted that the vision of the MSN framework is
completely agnostic to any specific SDN implementation. Our testbed consists of a
Linux workstation (Ubuntu Server 18.04 LTS) equipped with a 2x AMD Opteron(tm)
Processor 6376 3.2GHz 16 cores processor and 32 GB 1600MHz DDR3 memory. We
employ the following software, used to implement and test the proposed architec-
ture:

• The Microstack version of the Openstack which plays the physical infrastruc-
ture of our testbed

• The docker community edition version 19.03.7 for dockerized microservices

• The open-source MANO release 8 as the system orchestrator

• Ryu SDN Framework

• Python 3

• Mininet for creating a virtual network

https://gitlab.com/dscotece/ryu_sdn_decomposition/

148 Chapter 4. SDN Controller Decomposition Using Microservice

FIGURE 4.8: Mininet Topology for Experimental Testbed

We evaluated the feasibility and performance of the solution for three different
network communication technologies such as WebSocket, gRPC, and REST. Finally,
all results obtained in the testbed are an average of 30 runs that exhibited a limited
variance of under 5%.

4.6.3 Benchmark of Network Communication Protocols

First, the testbed calculates the overhead introduced by the microservices-based ap-
proach in-terms of response time. To ensure this, we calculated three different la-
tency: the response time of the first packet, the response time of the normal flow,
and the average response time of rule updating packets. The response time for the
first packet means, the time needed to send the first packet from one node to another.
In an SDN network, with a reactive approach, the controller adds rules to the data-
plane when it receives a new packet. This generates latency for the first packet of
the flow. Once that is done, the flow can reach the destination node without passing
through the SDN controller. Sometimes, during the flow, there are some updating
packets to update, for instance, the expiration time of a rule. These packets generate
latency because as in the case of the first packet, the flow must reach the SDN con-
troller before. We repeated these experiments for different nodes of the network (H1
and H3 first, and then H1 and H10). As it can be seen from Figure 4.8, there are two
switches between H1 and H3, and there are five switches between H1 and H10. To
calculate these latencies, we sent a video streaming across the network and we kept
the average round trip time. We repeated this test for each network communication
technology.

The results, shown in Figure 4.9, show that the major delay is on the first packet
latency. REST protocol appears to be seven times slowest than WebSocket technol-
ogy, in H1 and H3 scenario, whereas gRPC protocol provides performance like the
REST protocol but a little faster. The performance further degrades in the H1 and
H10 scenario for all protocols. In particular, the REST protocol results around ten
times slower than WebSocket technology. This is due to the multiple connections
between switches. Finally, the performance of all protocols during the normal flow

4.6. Decomposed SDN Controller TestBed Implementation and Performance
Results

149

FIGURE 4.9: Performance results

was omitted due to the very low latency time (0.01 ms average around all protocols)
but proves that all protocols are consistent and similar to each other.

In conclusion, we note that the REST protocol has a high response time for the
first packet and rule updating packets compared to WebSocket and also to stan-
dard Ryu. However, the response time during the normal flow remains the same
for all protocols. Therefore, it is apparent that the benefits of the microservice-
based SDN model need to be balanced with any trade-offs incurred. On the one
hand, despite the WebSocket protocol proves to be faster, it strongly depends on the
Socket concept which means rely on the IP address and the Port number of the ser-
vices. On the other hand, the gRPC protocol could become dominant in the future
thanks to the adoption of the HTTP/2 protocol and to the use of Protobuf as the
payload format. Furthermore, factors such as scalability and reliability (or availabil-
ity) should be taken into account when deciding whether to use standard SDN or
the microservices-based one. Moreover, the best choice of the right communication
protocol depends on many factors including the context. For instance, a heteroge-
neous and ultra-reliable industrial scenario may require REST as a communication
protocol to guarantee high connectivity among devices.

4.6.4 Resilience and Scalability Test

Finally, the testbed is designed to calculate the improvements of our solution in
terms of the reliability and scalability of the system. To achieve these features, we
used the ETSI MANO standard such as the open-source MANO implementation.
The microservices-based approach allows the system to develop a horizontal scal-
able to easily adapt to the dynamics of the input workload and to tolerate poten-
tial run-time faults. Indeed, the OSM Autoscaling functionality automatically scales

150 Chapter 4. SDN Controller Decomposition Using Microservice

FIGURE 4.10: Resilience Test: Average Message Delay

VNFs based on available metrics such as CPU and memory consumption, packets
received, packets sent, and so on. Each SDN component is a Docker container that
will be encapsulated in a VNF. Therefore, there will be single or multiple VNFs that
represent SDN applications or functionalities. As discussed before, the OSM Au-
toscaling function provides an automatic solution for fault tolerance management.
This is possible through a scaling descriptor, that is part of the Virtual Network Func-
tion Descriptor (VNFD) which specifies the metrics and thresholds to be monitored.

Resilience Test

To test the resilience of the system, a node sends a continuous flow of packets. This
test simulates the fault for an SDN routing path component and the possibility of
instantiating a new instance as a backup. In this test, the communication between
VNFs is via REST protocol and the MANO orchestrator helps to manage them by
automatic scaling process. In particular we used a video streaming simulation, from
a source to a sink node while the SDN routing microservice goes down. Figure 4.10
shows the average message delay recorded during the experiment. Each observation
shows the delay in the control plane and the data plane. Since there is no message
lost between time T1 and T2 but only small glitches in both the average message
delay in the control plane and data plane at two instants prove the robustness of the
system. The other small peaks correspond to the controller’s rule updating pack-
ets at the datapath. The first delay is the delay introduced by the first packet, see
the next experiments. This experiment shall be understood as a way to highlight
the robustness achieve by the SDN system in its microservices-based deployment.
Therefore, the standard SDN Controller, if some issues occur, is not able to react un-
less it is used in a distributed way. However, this means having two o more SDN
Controllers deployed at the same time.

Scalability Test

We evaluate the scalability of the system in two different scenarios: multiple net-
work service, and single network service. ETSI MANO defines network services
(NSs) as a composition of VNFs that specifies a service such as an SDN controller.
The first scenario - multiple NS - relates to the scalability of the entire NS that is
comparable to a distributed SDN scenario. Figure 4.11 shows the related scenario

4.6. Decomposed SDN Controller TestBed Implementation and Performance
Results

151

Network Service #1

Middleware

VNF VNF

Network Service #2

Middleware

VNF VNF

Management Network

Data Network

Mininet Network

S1 S2 S3 SN. . .

Load Balancer

simple_switch simple_switch

Data flow

OpenFlow Event

FIGURE 4.11: Scalability test: scenario 1 (multiple NS)

in the OpenStack and Open Source MANO platforms. The OpenStack provides a
management network and a data network to correctly connect entities to each other,
in particular, the Mininet network and the SDN system. In this scenario, we instan-
tiate different NS to provide scalability. The load balancer in the mininet network
provides a distributed control plane where each controller is in charge of a sub-set
of the switches.

In the other scenario - single NS - we simulate the scalability of VNFs for in-
stance the routing capabilities of the MSN prototype by keeping a single NS. Figure
4.12 shows the related scenario in the OpenStack and Open Source MANO plat-
forms. The SDN system is composed of a single NS in which each microservices (as
VNFs) can be instantiated multiple times to provide robustness and scalability. The
autoscaling feature of the Open Source MANO allows to define the scaling descrip-
tor as a part of the VNF definition. In particular, is possible to define several metrics
to monitor and a load balancer (included in the middleware) that redirects requests
to the routing service following a balancing strategy such as Round Robin and so
on.

We calculated the average latency time for the first packet and for the normal
flow by considering different host at different distances. The reference topology
shown in Figure 4.13 is composed of 16 hosts and relates to a hierarchical network
topology that is the most widely used in real data centers [136]. In the Figure 4.14
we show the average latency time for the first packet in both scenarios with 2 and 3
replicas, while the average time for normal flow is depicted in Figure 4.15. In conclu-
sion, we tested two different scenarios in the OpenStack and Open Source MANO
for the scalability concern, and we noted that replicating the entire NS performs bet-
ter than a single NS. This because in our test the middleware is the bottleneck for
the switches while splitting the management of the network to more middleware is
more efficacy. However, in the second scenario, it is possible to replicate the middle-
ware as well.

152 Chapter 4. SDN Controller Decomposition Using Microservice

Network Service

Middleware

VNF VNF #1

simple_switch

Management Network

Data Network

Mininet Network

S1 S2 S3 SN. . .

Load Balancer

VNF #2

simple_switch

VNF #3

simple_switch

Data flow
OpenFlow Event

FIGURE 4.12: Scalability test: Scenario 2 (Single NS - multiple VNF)

Distribuzione e testing

57

uguale a 2. Nella figura [NUMERO] è possibile osservare una
rappresentazione grafica della rete.

4.1.4 Aggiunta VIM e creazione immagini

Una volta avviati ed attivi i due servizi principali necessari al testing, bisogna
passare all’aggiunta di Microstack come gestore dell’infrastruttura
virtualizzata, e aggiungere le immagini che dovranno essere avviate alla
creazione di una nuova VNF. Per quanto riguarda l’aggiunta del VIM, è
necessario usare il comando

osm vim-create --name unibo_openstack --user admin --password <opetsack-password> /
--auth_url http://<openstack-url>:5000/v3/ --tenant admin --account_type openstack /
--config='{security_groups: default, keypair: local_key, use_floating_ip: true}'

In questo commando è importante notare la presenza di alcune
configurazioni. In primo luogo la specifica della chiave da usare in tutte le
macchine che verranno create, attraverso l’aggiunta di ‘keypair: local_key’.
È inoltre necessario impostare a true il flag use_floating_ip, che indica ad

Figura 18 - Rappresentazione grafica topologia impiegata per i test FIGURE 4.13: Scalability test: Network Topology

4.6. Decomposed SDN Controller TestBed Implementation and Performance
Results

153

FIGURE 4.14: Scalability test: Average Latency for the First Packet

0.248 0.255

0.312

0.52

Average time for normal flow
0

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

[m
s]

Scenario 1 - 2 replicas
Scenario 1 - 3 replicas
Scenario 2 - 2 replicas
Scenario 2 - 3 replicas

FIGURE 4.15: Scalability test: Average Latency for Normal Flow

155

Chapter 5

MANA-NMS based Unified
Architecture and Its Application in
6G and Next Generation Network
Management Systems

5.1 Introduction

The advent of 5G and the design of its architecture has become possible because of
the previous individual scientific works and standardization efforts on cloud com-
puting and network softwarization. SDN and NFV started separately to find their
convolution into 5G network architecture. Then, the ongoing design of the future
6G network architecture cannot overlook the pivotal inputs of different independent
standardization efforts about autonomic networking, service-based communication
systems, and multi-access edge computing. In this context, this work provides the
design and the characteristics of an agent-based, softwarized, and intelligent 6G ar-
chitecture, which coherently condenses and merges the independent proposed ar-
chitectural works by different standardization working groups and bodies. This
novel work can be a helpful means for the design and standardization process of
the future 6G network architecture.

The standardization of 5G started in 2016. The International Telecommunica-
tion Union (ITU) Telecommunication Standardization Sector (ITU-T) Focus Group
on IMT-2020 concluded its pre-standardization activities in December 2016. The
core reform that 5G introduced in communication was the idea of virtualization,
or more specifically, network softwarization. This has also implied a tremendous
paradigm shift from the previous store-and-forward to the current-future compute-
and-forward. This has made computing as important as communication in future
communication networks [92]. However, 5G did not come out abruptly. The design
of its architecture and core characteristics has leveraged the previous experience,
obtained during the successful development of cloud computing and network vir-
tualization instances such as SDN – led by the no-profit consortium Open Network
Foundation (ONF) and NFV started by the industry and standardized by the Euro-
pean Telecommunications Standards Institute (ETSI).

Recently, ITU has started writing a report about the future technology trends
towards 2030 and beyond, which is going to be released in June 2022. This report
will mainly provide the very general vision for future 6G communication networks.
Then, in the last few years, speculations have been proposed to start shaping future
6G architecture, by research, industry, and standardization bodies. In this context,

156
Chapter 5. MANA-NMS based Unified Architecture and Its Application in 6G and

Next Generation Network Management Systems

FIGURE 5.1: Architectures of SDN decomposed control plane (top
left), ETSI SDN-NFV MANO (top right), ETSI GANA (bottom left),

and 3GPP-ETSI MEC (bottom right).

among the core technical drivers of 6G architecture, there have been complete soft-
warization and modularization, and intelligence [115]. As it has been mentioned
for 5G, this is also not coming out of the blue. The last few years of research and
standardization efforts in these areas have now given the mature input for the envi-
sioned architectural evolution towards the next generation.

In this context, this article provides an architectural design and guidelines for
future 6G networks by leveraging the various standardization works by ETSI and
3GPP, considering the current popular trends on microservice- and agent-based in-
telligent communication systems. In this vision, all softwarized network functions
become atomic entities, playing as autonomous, intelligent, and collaborative agents.
To the best of the authors’ knowledge, this is the first architectural attempt to unify
the four existing individual architectures, microservices-based SDN control plane,
ETSI SDN-NFV Management and Orchestration (MANO), ETSI Generic Autonomic
Networking Architecture (GANA), and 3rd Generation Partnership Project (3GPP)-
ETSI Mobile Edge Computing (MEC), namely a unique and homogeneous frame-
work for 6G.

5.1.1 Motivation and Background

This section provides an overview of the main existing independent architectures
adopting microservice-based communication systems, autonomic networking, and
in-network intelligence.

5.1. Introduction 157

5.1.2 Microservices-based SDN Controller

The centralized nature of the SDN control plane leads to several issues ranging from
latency constraints to fault tolerance and load balancing [21]. These issues have been
partially overcome by using the distributed SDN controller approach. However, the
SDN controller is a monolithic system that results inefficient in several scenarios
because it is costly to have replicas of SDN systems. Moreover, monolithic SDN de-
ployment does not allow dynamic management of SDN components and/or func-
tionalities to (de-)activate according to the scenario.

To alleviate this, the SDN controller can be decomposed and implemented as
a set of software components running in a distributed fashion. In particular, it is
possible to design the SDN controller as a composition of logical sub-functions, i.e.
microservices. They can share network service load and creating a robust system
against failures. The possibility of decomposing the monolithic SDN controller and
designing the controller as loosely coupled components provides the possibility of a
flexible controller deployment. That represents a step towards the cloud continuum
and is in line with the vision of the edge/cloud hybrid architecture [40].

Accordingly, some research efforts have started to decompose an SDN controller
into microservices. For instance, the Open Network Operating System (ONOS)
proposes µONOS [203], which is the next-generation SDN architecture. However,
µONOS has been specialized mainly for cloud datacenters scenarios and is limited
to certain technologies, not all 5G compliant. In particular, µONOS uses gRPC proto-
cols family for microservices intercommunication which is not the standard declared
in the 3GPP white-paper v15 [1], which specifies REST APIs as the standard-de-facto
for services intercommunication.

In this regard, we have started implementing a microservices-based SDN con-
troller deployment that complies with the 5G standard, see Figure 1 (top left). Our
implementation based on Ryu SDN Framework is still under development, but it
is available to the community at the link: https://gitlab.com/dscotece/ryu_sdn_
decomposition/.

5.1.3 ETSI SDN-NFV MANO

ETSI released it’s ETSI SDN-NFV MANO architecture [92], to provide a unified ar-
chitecture effectively combining SDN and NFV characteristics. Figure 5.1 (top right)
depicts its structure. This architecture consists of three main entities, called the Net-
work Management System (NMS), the Network Function Virtualization Infrastruc-
ture (NFVI), and the Operation/Business Support Scheme (OSS/BSS). The first man-
ages the virtual network, the second set the resources (hardware or software) that are
used to run and to connect virtual network functions, and the third sets the appli-
cations used by service providers to provide network services. Each one of these
layers has an interface to the MANO entity, which hosts the virtual infrastructure
managers (VIMs), that aim at controlling the NFVI resources. Next, the virtual net-
work function manager (VNFM) configures and manages the life cycle of virtual
network functions in its network domain. Finally, there is the orchestrator for the
NFVI who manage the resources across different VIMs, and subsequently the life
cycle of network services. Finally, the virtualization layer groups all the element
management entities with their respective virtual network functions (VNFs).

https://gitlab.com/dscotece/ryu_sdn_decomposition/
https://gitlab.com/dscotece/ryu_sdn_decomposition/

158
Chapter 5. MANA-NMS based Unified Architecture and Its Application in 6G and

Next Generation Network Management Systems

5.1.4 ETSI GANA

Generic Autonomic Network Architecture

ETSI unveiled a standard reference architecture as an implementation guide for
GANA architectural framework for network automation [177]. The main goal of the
GANA reference model is to prescribe the design and operational principles for De-
cision Elements (DEs) as the drivers for cognitive, self-managing, and self-adaptive
network behaviors. ETSI is performing several GANA instantiations onto various
target standardized reference network architectures. This is to enable autonomic
algorithms to be integrated into the design and implementation of DEs. The integra-
tion also aimed at standardizing the autonomic network architectures at four levels
as depicted in Figure 1 (bottom left). These are:

• Network Level Decision Element: this level is designed to operate the outer
closed control loops on the basis of network wide views or state as input to the
DEs’ algorithms and logics for autonomic management.

• Node Level Decision Element: this level is in charge of controlling the behav-
ior of the Network Element (NE) as a whole, and also managing the orchestra-
tion and policing of the Function Level Decision Elements. GANA Function
Level specifies the following four decision elements: security management,
fault management, auto configuration and discovery, resilience, and surviv-
ability.

• Function Level Decision Element: represent a group of protocols and mech-
anisms that abstract, as atomic units, networking or a management/control
function. The GANA model defines the following six Function Level Decision
Elements: routing management; forwarding management; Quality of Service
management; mobility management; monitoring management; service and ap-
plication management.

• Protocol Level Decision Element: this is the lowest level decision element in the
system. This kind of element is protocols or other fundamental mechanisms
that may exhibit intrinsic control-loops or decision element logic and associ-
ated DE—as is the case for some protocols such as Open Shortest Path First
(OSPF). These can be considered an example of the instantiation of a protocol-
level decision element.

• GANA Knowledge Plane (GANA KP): enables advanced management and
control intelligence at the Element Management (EM), Network Management
(NM), and Operation and Support System (OSS).

A close look at the GANA model reveals the close alignment with the microservices-
based approach. In other words, it defines the network functions as services con-
sidering them as an application that can be deployed in a virtual environment or
container.

Multi-Agent System

Multi-Agent System (MAS) is a sub-branch of distributed artificial intelligence, where
it has multiple interacting intelligent agents solving problems. Multi-agent sys-
tems include different attributes such as architecture, communication, coordination

5.1. Introduction 159

strategies, decision making, and learning abilities. We identified a multi-agent sys-
tem as a competing candidate for defining atomic and autonomous DEs in the GANA
model. DEs could be network function units that could be used as a building block
in any automated system. Network function atomization is the mechanism that
defines the smallest possible network function units in a service-oriented system.
Multi-agent is comparable to microservices but with more autonomy and proactive
capability. A comparative analysis and use of microservice and multi-agent are pre-
sented in [16].

5.1.5 3GPP-ETSI MEC Architecture

The basic idea of MEC is to provide capabilities closer to the end-users to overcome
mobile difficulties. This promotes a new three-layer device-edge-cloud hierarchical
architecture, which is recognized as very promising for several application domains
[179]. With the advent of 5G networks, the MEC is one of the key technologies for
supporting ultra-reliable and low-latency communications.

The 5G system architecture specified by 3GPP has been designed to fit a wide
range of use cases including IoT networks management and tightly constrained sce-
narios. In particular, the 3GPP defines the Service-Based Architecture (SBA) for the
5G core network, whereby the control plane functionality and common data repos-
itories are delivered by way of a set of interconnected Network Functions (NFs),
each with authorization to access each other’s services [266]. The SBA framework
provides the necessary functionality to authenticate the consumer and to authorize
its service requests, as well as flexible procedures to efficiently expose and consume
services. Even the ETSI MEC defines an API framework aligned with the SBA frame-
work to provide a set of functionalities and services. The resulting integrated archi-
tecture described in the white paper [266] is presented in Figure 5.1 (bottom right).

The complete softwarization of network functions and applications allow the uni-
fied management of these microservices by a standard orchestrator, such as MANO.
This allows independent implementation and component reuse. Moreover, NFs
could be deployed flexibly while performing functions autonomously and appli-
cations (i.e., services hosted at the edge) can belong to one o more network slices.

5.1.6 Proposed Unified Grad Architecture

This section discusses the unified architecture, providing conceptual analysis.

5.1.7 Proposed Unified Architecture

This section presents our novel fully unified architecture for automated network
systems. As indicated before, our architecture combines four different standards
namely, SDN, ETSI NFV, ETSI GANA, and ETSI MEC, and intends to propose virtu-
alized network agents instead of virtualized network functions. The definition of an
agent and its design is discussed in the next subsection. Figure 5.2 shows our unified
architecture reporting its general structure. While the infrastructure and virtualiza-
tion layers are directly derived from NFV architecture, the MANO layer is modified
so that the internal components of the MANO are defined to be intelligent orchestra-
tion agents. The application layer of NFV is significantly modified and contains the
four layers of the ETSI GANA model and its decision elements defined to be agents.
Therefore, the modified ETSI GANA divides the application layer of NFV into proto-
col level agents, function level agents, node-level agents, and network-level agents.

160
Chapter 5. MANA-NMS based Unified Architecture and Its Application in 6G and

Next Generation Network Management Systems

FIGURE 5.2: Microservices and Multi-Agent Based Unified Architec-
tural Model for ETSI GANA, ETSI MEC, ETSI NFV, and SDN

The event distribution layer allows the interrelationships among the components of
the unified architecture and the SDN controller. Note that for event management
several strategies are available including centralized, distributed, and hybrid [277].

The application layer is also divided vertically showing the decomposed SDN
controller on the left side. The functions are built as autonomous and atomic agents.
The interconnection of these agents would create the required SDN controller func-
tionality depending on the requirements in a given environment. The final SDN
controller system becomes a multi-agent system. The same could be said about
the wireless functions 5G and 6G networks where functions are designed as au-
tonomous agents and the collection creating the full wireless functionality.

The interface between the infrastructure layer, virtualization layer, and the ap-
plication layer is the same as in NFV; however, the orchestration layer is based on
agents. Therefore, we recommended interfaces to be open and adaptive based on
the specific applications. This could be achieved by equipping agents with a Pro-
grammable Protocol Stack (PPS), which represents the implementation of a software-
based environment of network protocols and layers [27]. In the currently proposed
scenario, the interface between the agents is mainly through restful API. However,
as will be discussed shortly, we suggested equipping the agent with a dynamic pro-
tocol stack.

5.1.8 Network Function Atomization

First, let us define the concept of network function atomization. Network functions
can be divided into atomic units to allow for maximum re-composition freedom.
The concept of network function atomization is first discussed in [44], where the
authors presented the idea for Wireless Sensor Network (WSN) node organization.
As per the original concept, every node in the WSN is equipped with an autonomic
element which is the smallest object in an autonomic network. Besides, the idea in
[8] was a considering the composition of autonomic elements. This composition is

5.1. Introduction 161

FIGURE 5.3: Agent Internal Architecture

intended to include an autonomous overlay network management structure and a
self-organizing composition against autonomous overlay networks.

Here we re-define the atomic units as a network functional unit with the full
capability to perform a given function such as resource allocation, QoS monitoring,
etc. In the proposed architecture, we define the service or internal components of
a decomposed SDN controller to be agents. Since there is no universally accepted
definition for what is an agent, we first provide a basic definition of what is an agent
from our context.

5.1.9 Agent Internal Architecture

As depicted in Figure 5.3: an agent is composed by an INPUT, which is an incoming
request; FACTS, are the knowledge database of the agent; COGNITION (REASON-
ING) UNIT gives agents the reasoning capability; PLANNING STRATEGY organizes
the steps or procedures for the action to be taken to satisfy the requested service;
VALIDATION is the unit that verifies the action plan for consistency; and an OUT-
PUT/ACTION is the final decision (result or action) to be taken by the agent. An
agent also has an interface to communicate with other agents or microservices via
the PPS.

Future generation networks should be equipped with effective and efficient pro-
tocols. Agents in the application layer of the proposed architecture are various
types that will use combinations of multiple protocols for communication for var-
ious kinds of applications including real-time applications. A programmable pro-
tocol stack is a software-based stack that inputs information from the higher logical
layers and configures various parameters at each layer, repeating the procedure at
each network device. This update of parameters is dynamic according to network
changes and end-to-end service requirements.

5.1.10 Multi-Agent Based SDN Controller Decomposition

It is possible to design the SDN controller as a single monolithic process, as a con-
federation of identical processes arranged to share the load or protecting each other

162
Chapter 5. MANA-NMS based Unified Architecture and Its Application in 6G and

Next Generation Network Management Systems

FIGURE 5.4: Agent Instantation From a Template

from failures, or as a set of distinct functional and collaborative components. More-
over, any combination of these alternatives is possible. Decomposing the SDN con-
troller, designing the components as autonomic agents, and recomposing them to
create the SDN controller is a big advantage in the era of functions’ containerization,
and cloudification, where features of loose-coupling and distributed deployment are
required [100]. The main principle to retain in decomposing an SDN controller is
that the network information and state should be synchronized and self-consistent.
This allows an independent implementation and component reuse. Instead of using
microservice, the proposed architecture re-define every SDN controller component
as an atomic agent. Controller’s decomposed components can be executed on arbi-
trary computing platforms on distributed and virtualized resources such as virtual
machines (VMs) or containers in edge or cloud data centers. The loosely-composed
system can be viewed as a black box, defined by its externally observable behavior,
emulating the original monolithic SDN controller. The agents could be orchestrated
by a standard orchestrator, such as MANO, creating an agent chain to equivalently
perform what the legacy SDN controller does. In particular, the controller could be
deployed flexibly while performing the function autonomously.

163

Chapter 6

Future Application of
MANA-NMS

6.1 MANA-NMS for IoT Connectivity Technology Manage-
ment for Space Application

6.1.1 Internet of Things

Internet of Things (IoT) applications are bringing immense value into our lives touch-
ing ranging areas such as health monitoring, green energy, environment monitoring,
smart home, and smart city[228, 304, 6, 249]. With newer wireless networks, supe-
rior sensors, self-healing soft-electronics, and revolutionary computing capabilities,
the IoT is already the frontier in the race to explore and provide technological ad-
vancement in the livelihood of a human being. Due to this, IoT has caught the at-
tention of researchers and private industries. The rate of interconnected IoT devices
is overwhelmingly increasing and continuously growing with time. As more IoT
objects are connected, there is an increase of information in the form of data in the
interconnected system[247].

IoT for space application is starting to take shape. Currently, IoT in space is at the
conceptual development stage than actual applications. It is because of many obsta-
cles to overcome before organizations can start to deploy and use IoT in space for
practical applications. However, a different and alternative approach may need to be
explored. Spacial on-site manufacturing and utilization of IoT devices are more vi-
able than transporting them from the earth over a long distance. Both mechanisms
have huge challenges before being realized and are sometimes complementary in
that what can not be manufactured or important to initial materials should be trans-
ported. What can be manufactured in remote sites could help the exploration paving
the way for human transportation and presence preparing for human arrival. This
article reviews the most recent research activities on the application of IoT technol-
ogy for space applications.

This challenging issue is difficult to resolve with the existing infrastructure. It
means that there should be a solution with a new concept and approach that takes
data rate, performance, and physical environment into consideration in trying to
come up with interplanetary communication. When communication and control-
ling technology are advanced enough, IoT is expected to have a huge potential to
revolutionize space exploration. The peculiarity of space exploration which comes
due to the vast distance to the target environment to be studied has tremendous
challenges. The challenge is to effectively deploy, configure, control, and manage
remotely which requires extremely expensive operations.

NASA is putting an incredible effort into the adoption of IoT for space applica-
tion. It has already setup an IoT lab[129] at Johnson space center and other virtual

164 Chapter 6. Future Application of MANA-NMS

labs in anther places such as at Ames research center, Kennedy space center, and jet
propulsion laboratory. It was setup in the federal government, which has completed
the first phase and documentation, searching for an IoT platform and collecting data
on the twenty selected devices.

More recently, in another effort, NASA and Stanford collaborated to launch a
tiny IoT satellite into Earth’s Orbit"[256]. NASA named the centimeter-scale satel-
lites sprites or ChipSats. The main purpose of the IoT satellites is to perform research
activities. More than hundred of them are already in orbit by the spring 2019. First
confirmation signals had been received the back by next day. By enabling communi-
cation between the satellites, they would like to demonstrate how the satellites can
work together. This is necessary if they eventually operate in a swarm.

The launching of TechEdSat-5 nanosatellite, which is a Technical Education Satellite-
5, is a specific example of the application of IoT in space[273]. The TechEdSat-5
nano-satellite is a 3U CubeSat which sometimes alre called as TES-5. It is devel-
oped by students of San Jose State University, the University of Idaho, and NASA’s
Ames research center. The main objectives of the TES-5 are to establish an improved
uncertainty analysis for eventually controlled flight through the thermosphere. It
performs a detailed comparison to the TES-3 and TES-4 concerning key thermo-
sphere variable uncertainty. It also improves the prediction of re-entry location while
providing the base technology for sample return technology from orbital platforms.
Moreover, it provides the eventual testing of independent TDRV-based planetary
missions. Furthermore, it provides engineering data for an on-orbit tracking device
that could improve the prediction of jettisoned material from the ISS[124].

Lander to mars-rover communication may require better connectivity in terms of
QoS, latency, reliability, and range. Whereas, for environmental monitoring require-
ments, it could be satisfied with unlicensed LoRa-based IoT devices for environmen-
tal measurement parameters, such as temperature, humidity, soil content, and so on.
Moreover, the connectivity between the two technologies could further increase the
possibility of more types of device interconnection at various locations of the planet
and times of the mission. This gives the mission further possibility of exploring more
information about the target planet in a single mission. Moreover, the same mission
may have single backbone connectivity from landers to the geostationary satellite
station or directly to earth stations. These with the interoperability of IoT networks,
the collected information using various technologies could be forwarded through
a single interconnection point. Moreover, this enables the processing of each data
collected from each type of IoT device at some aggregation point such as edge com-
puting. The processing of the collected data would reduce the size of integrated data
for efficient transmission. Interoperability enables this possibility.

Edge computing has also seen its way in space demanding a new way of design-
ing and transporting satellites. The challenges and functions of edge in space appli-
cation demand are presented in[118]. Many IoT applications have requirements that
cannot be met by the traditional cloud[245].

Space is not free from adverse competitive animosity which could result in se-
curity concerns between major space players in the race for space exploration. IoT
devices implanted in space for measurement and other exploration activity could be
attacked or hijacked by the adversary. Unattended access or hijacking of a single IoT
device or robot or wireless sensor network may result in unintended consequences,
in which the sensors are placed on territory accessible by adversaries. Therefore,
the security mechanism for IoT devices and connectivity networks is of the essence.
In [89], the authors discuss adaptive feedback-supported communication for IoT in

6.1. MANA-NMS for IoT Connectivity Technology Management for Space
Application

165

space application. The suggested technique is to minimize the amount of transmis-
sion from the wireless sensors making the task more difficult or impossible for the
adversarial observer. In this sense, it is to take advantage of hiding the sources of
wireless communication. Moreover, the technique has a further advantage in that
any decrease in the number of transmitted signals from the source node can also
contribute to energy savings. This can prolong its operational time giving by min-
imizing the energy expenditures for communication from a spacecraft or wireless
sensor node. In[234], a security framework is provided which is intended to pro-
vide support to IoT device producers. The author proposed a framework called
IoT-HarPSecA (A Framework and Roadmap for Secure Design and Development of
Devices and Applications in the IoT Space) [234]. IoT-HarPSecA offers three main
functional features: security requirement elicitation, security best practice guidelines
for secure development, and a feature that recommends specific LightWeight Cryp-
tographic Algorithms (LWCAs) for both software and hardware implementations.

6.1.2 Network Coverage, Network Softwarization, and Network Automa-
tion

Network connectivity on remote sites such as mars and the moon and communi-
cation with earth are the main aspects that we will consider in this section. There
is a great advancement in the networking industry that is implemented as well as
under development to be deployed in the near future. These technologies are pro-
viding a tremendous benefit in various sectors of human development. These are
from simple voice communication to the video call services, from simple computer
interconnection up to the worldwide web from simple on-demand video access to
the critical for remote surgery. The advancement has enabled various types of de-
vices to interconnect providing worldwide coverage with various types of technolo-
gies wireless and wired. To enable this various mechanisms are developed such as
twisted pair cable, coaxial cable, and fiber access as a physical transmission. The
same is true in the wireless domain. Several (de)encoding, channel access protocols,
(de)encryption techniques, security tools have been developed to enable communi-
cation through both wired and Wireless. Numerous architectural models, theoretical
concepts, implementation mechanisms, have also been developed and continuously
improved. In this subsection, we review important advancements in networking
that could have the potential to be adopted in space exploration.

Backbone Network Technologies for Space Applications

The existing communication between moon/mars and earth is through wireless
links. For example, the Curiosity rover, which had touched down mars, sends radio
waves through its ultra-high frequency (UHF) antenna with 400 Mhz to communi-
cate with Earth through NASA’s Mars Odyssey and Mars Reconnaissance Orbiters.
To serve as both its "voice" and its "ears.", curiosity has three antennas. They are lo-
cated on the rover equipment deck, at its back. Having multiple antennas provides
backup options. There are networks of antennas deployed in three strategic loca-
tions of the earth. They are called Deep Space Network (DNS) which are located in
the United States (California), Spain (Madrid), and Australia (Canberra). They sup-
port NASA’s interplanetary spacecraft missions[299]. Each DSN site has one huge,
70m diameter antenna. The antennas are the largest and most sensitive DSN anten-
nas. They are capable of tracking a spacecraft traveling tens of billions of km from
Earth [73, 299].

166 Chapter 6. Future Application of MANA-NMS

There is some advancement in satellite-based networks that could be extended
to encompass deep space communication. This technological advancement and con-
vergence of satellite communications would provide a converged network of net-
works such as a worldwide web in mars, moon, earth, etc. In [308], the authors sug-
gested a potential architecture of Space-Terrestrial Integrated Network (STIN) that
integrates the existing Internet, mobile wireless networks, and the extended space
network. The architecture is aimed at providing comprehensive services globally
that can be accessed anytime and anywhere.

In this regard, the backbone plays a crucial role in interconnecting geographically
distributed and vast distant networks. On earth, the transitional backbone network
extends 100 to 1000 km distances. However, when it comes to space the backbone
network ranges in millions of km. Thus it is significantly affected by the distance
in terms of electromagnetic wave propagation and physical deployment possibility.
The difficulty of erecting a wired technology for space communication hinders the
use of traditional backbone technologies such as coaxial cable and optical networks.
The most viable technology that could be used as a backbone network is wireless
communication. This could be through radio links as in the case of DSN, microwave
links, and free-space optical networks.

Network Coverage Technologies on Remote Environment

Network coverage in the remote site could take some inspiration from the existing
technology that is implemented on earth[246]. The most convenient connectivity
technology that could have an important contribution to space exploration is wire-
less technologies. For example, a wireless cellular network could be used to provide
a wireless access network on mars[231, 68]. The authors in [68] discuss the possi-
ble use of IEEE 802.11 a and b wireless local area network (WLAN) standards for
proximity wireless networks on the Martian surface. They presented modeling of
the physical layer. Moreover, in [231] discussed the communication aspects of Mar-
tian missions, based on the deployment of a Martian wireless network infrastruc-
ture using LTE on Mars (LTE-M). Other existing works in the area of access coverage
through cellular, drone and balloon-based network coverage could be considered
to adopt in Mars[248]. The physical layer modeling of the Martian surface is de-
pendent on the Maritain atmosphere and terrain. Depending on the geography of
mars, it also varies from place to place that should be considered in the design and
modeling of the physical layer signaling propagation.

Depending on the mission plane, which could be long term or short-term plane,
the technological adaptation in providing the coverage could also be considered.
Dynamic changes as the exploration mission being executed the technology needs
changes over time. E.g., first the mission could be to evaluate the composition of
a given place and weather conditions of the same place and time. In that scenario
what kind of device should be used, and what kind of rover should perform the
task should be defined. Based on the required exploration task the network could
be dynamically provided. Moreover, when the mission changes, which could be to
check on the other part of the martian surface such as Eberswalde, Holden Crater a
different network dynamics could be configured that could be based on drones or
balloons.

The work in [284], presents initial results concerning modeling the RF environ-
ment on Mars in support of determining the characteristics of potential wireless,
rovers, and sensor networks. The work utilized commercial RF propagation model-
ing software, designed for cellular telephone system planning, together with recent

6.1. MANA-NMS for IoT Connectivity Technology Management for Space
Application

167

topographic data for Mars to determine ally construct propagation path, loss mod-
els.

A code division multiple access communication system for Mars based on geo-
stationary relay satellite is presented in [19]. The paper defines CDMA based com-
munication system between various assets such as rovers/landers on Mars surface,
low Mars orbiters such as MRO, CubeSats. They are in the vicinity of Mars, and they
use a geostationary relay satellite at 17,000 km above Mars’s surface. Using 8.40 GHz
frequency, the assumed data rates are between 50 Kbps and 1 Mbps. In[89] proposed
an adaptive feedback-supported communication technique that can minimize the
energy expenditures for communication from a spacecraft or wireless sensor node.

There are various IoT connectivity technologies with the potential to revolution-
ize space exploration. The first IoT connectivity technology to be adopted in space is
Wi-Fi. Wi-Fi® has enabled a networked space exploration. NASA has provided wi-
fi access by installing the first access points (APs) on the International Space Station
in 2008[300]. Lora could also be the next to provide connectivity in mars or moon
exploration.

Virtualization and Softwarization

Virtualization and Softwarization of the network will help tremendously for two
main reasons: reduction of the need for physical equipment and generalization of
the hardware required (general purpose CPU, Memory, and storage).

Software-defined networking(SDN) is a centralized and programming of net-
works through a centralized controller. This provides flexibility and dynamic con-
trolling of networks. In remote exploration like that of mars, SDN is an ideal ap-
proach for network operation and management. It provides the possibility of de-
veloping a dynamically adaptive network. Moreover, it paves the way for the auto-
nomic controlling of a network through artificial intelligence (AI). Network function
virtualization (NFV) is also an important network technology that provides a soft-
ware version of network functions that provide the controlling, management, and
operation of the network.

A Software Defined Radio (SDR) is a softwarized radio communication system.
It uses software for the modulation and demodulation of radio signals in a com-
munication. In the future communication subsystems for space exploration mis-
sions could potentially benefit from SDRs controlled by machine learning based al-
gorithms.

Network Automation

Automated network management is necessary for deep space exploration due to the
difficulty of human presence in space. Network automation is the capability of the
network to manage itself independently. Autonomic networking is required to scale
up the network management capability to address the expected dynamic growth
networks. Due to the obvious reasons for the unavailability of humans to install and
manage the network, we require the following capability of a network that should
be deployed on mars.

• Self-Installation:installing hardware equipment is required to provide cover-
age. Once the required equipment is delivered in the appropriate places, the
network equipment has to install itself. The delivery could be through a mar-
tian rover or drone. The installation could require digging holes on the Marian

168 Chapter 6. Future Application of MANA-NMS

surface to fix the antenna or other required hardware equipment. The dig-
ging, placement, and fixing of the hardware may need to consider the Marian
surface for dust and rocky areas.

• Self-Configuration is the capability of a network to configure and re-configure
itself based on predefined policies to achieve a given performance. This should
happen seamlessly and with no human intervention.

• Self-optimizing means to ensure that the network always uses the available
resources to provide the best possible performance even in highly varying en-
vironments. The network should always measure its current performance and
set strategies to efficiently perform in case of any deviation from the set of
expectations and predefined-ideal standards.

• Self-protecting is related to the security of the network and it is a very crucial
issue. Self-protection ensures that the network can shield itself against any
potential attacks such as Denial-of-Service(DoS) attacks.

• Self-healing is needed in case of failure of any network element. A network
with self-healing capabilities is able to recover from such failures in the shortest
time possible. The network is able to discover and automatically repair any
failed elements to ensure service continuity.

• Self-drone based areal coverage which requires driving drone in unknown en-
vironments.

6.1.3 Artificial Intelligence for Space Applications

Artificial intelligence would play a significant role in the massive Martian explo-
ration in a range of areas. This includes the automatic controlling of the navigation of
rovers in the Martian surface; areal maneuvering of Martian helicopters for various
missions; Controlling of networking management system; performing analysis of
the collected scientific experimental data; automated manufacturing of equipment,
tools, chemical products (e.g CO2), etc. Few works explore the application of AI
for space exploration. For example, the authors in [90], presented a multi-objective
reinforcement learning-based deep neural network for cognitive space communica-
tions. They presented a hybrid radio resource allocation management and control
algorithm that integrates multi-objective reinforcement learning and deep artificial
neural networks. By monitoring performance functions with common dependent
variables that result in conflicting goals, they aim to efficiently manage communica-
tions system resources. Another interesting work is the data mining application of
AI[112]. The authors presented an ML-based telemetry data mining of space mis-
sions. An application of AI in aerospace is presented in[145].

6.1.4 Cloud, Edge, and Fog Computing

Computing is required to perform various analyses on mars or any remote mis-
sion. This could be the weather condition soil content, chemical composition of
rocks, analysis, and before sending them back. Even autonomic control of rovers,
drones, and networks that provides coverage requires huge storage and computa-
tional power.

As demonstrated by the recent perseverance rover landing on Mars, it is possible
to reprogram the onboard device for a different mission. For the perseverance, once

6.1. MANA-NMS for IoT Connectivity Technology Management for Space
Application

169

the rover has landed, the computer is re-programmed by commands sent from Earth
by NASA engineers to perform mobility visual processing. This demonstrates the
possibility of complex task execution by a single rover or more collaborative rovers
in the future.

However, for massive and complex missions it may need various rovers, drones,
autonomous equipment, or other IoT devices. The collaboration of such a mission
requires both network coverage and standard computing. It is possible to fully equip
the collaborating devices with internally embedded computing. However, it will
be inefficient in a distributed and collaborating mission. Therefore, a cloud-based
computing provisioning to a remote mission will demonstrate significant efficiency
in availing storage and computing power to the exploration missions.

Computing, networking, and control cannot be alienated in a space mission.
Moreover, computing, control, and networking are complementary technologies that
could facilitate the Martian massive exploration. Principles of control help for net-
work control, edge computing for networking, networking for clustering, and inter-
connecting of separate computing units. Computing provides a resource for sophis-
ticated controlling algorithm computation. An interesting work on Mission-critical
control at the edge and over 5G network are presented in[251].

Teleoperation Using Edge Computing

Remote controlling of a networked system has been studied as discussed above.
However, recent advancements in networking through network softwarization and
automation, cloud computing, edge computing, machine learning, IoT, UAV, and
automation have instigated the need for a new approach considering the current ad-
vancement in these cross multidisciplinary domains[250]. Moreover, the target of
this literature server is space exploration martian and moon exploration in particu-
lar. Edge computing is an emerging paradigm aiding the responsiveness, reliability,
and scalability of terrestrial computing and sensing networks. To alleviate the prob-
lems caused by the long distance between the processing platform and the terminal,
edge computing provides a new paradigm for space applications. An interesting
work on orbital edge computing is proposed in [75], presenting conceptual defini-
tion and characterization. They described power and software optimizations for the
orbital edge. They also discussed the use of formation flying to parallelize compu-
tation in space.

Since the concept of edge computing in space is relatively new, there are few
works on the deployment for deep space exploration. However, an application
based on space edge computing is also discussed in [141]. The authors presented a
real-time motion control method using measured delay information on access edge
computing. Similarly, the work on optimal control design for connected cruise con-
trol with edge computing, caching, and control[293] is used for remote operation
on earth. In the paper, considering the communication delays, an optimal control
design is proposed for the system with edge controllers having the capability of
computing, caching, and control. First, the dynamics of each vehicle in the platoon
are modeled in detail, and then a linear quadratic optimization problem is formu-
lated when the sampling period and the communication delay are considered. To
minimize the deviations of the vehicle’s headway and velocity, the optimal control
strategy is iteratively solved using backward recursion. A survey on edge comput-
ing for the IoT is presented in [312].

A recent interesting work using satellite for edge computing for IoT in aerospace
is presented by Wang and et.al [292]. They propose converting the legacy satellite

170 Chapter 6. Future Application of MANA-NMS

into a space edge computing node. This enables to dynamically load software in or-
bit, to flexibly share on-board resources, and to provide services coordination with
the cloud[245]. They also provided the hardware structure and software architecture
of the satellite. The work in [297] discussed the application of edge intelligent com-
puting in satellite IoT. Similar work with a focus on latency and energy optimization
for MEC on enhanced SAT-IoT networks is presented in[66]. Interesting recent work
for industrial remote control application is presented in [167]. The paper explored
the use of edge computing for multi-tier industrial control system.

6.2 Summary and Conclusion

The first part presented an end-to-end comprehensive formulation of C-RAN sys-
tem that deploys VNFs in an edge data center. Based on the formulation, we have
analyzed the service throughput, end-to-end latency, end-to-end reliability, compu-
tational and energy consumption, and overall service admission. Moreover, we re-
formulated and analyzed our C-RAN system mathematical modeling, considering
backup VNFs and computational over-provisioning techniques for reliability and la-
tency improvement, respectively. Furthermore, we proposed service categorization
and differentiation in applying the indicated techniques to improve resource utiliza-
tion and power consumption. The performance evaluation suggested that reliability
and latency improvements could be achieved while increasing the admission of ser-
vice Type I. However, this is achieved with an increase in both resource utilization
and power consumption having a direct implication on CaPex and OpEx. The same
is for the admission probability on operators’ total revenue. Therefore, the appli-
cation of service differentiation provides a degree of freedom for the operator to
optimize, considering CaPex, Opex and revenue.

We have also extended the work to provide a solution to tackle the network level
interoperability problem in IoT connectivity technology. We have developed a net-
work protocol for translator to be deployed as a virtual machine or a container. The
translator can be instantiated within the Access Point on-demand, and de-allocated
when it is no more necessary. We have also implemented the proposed approach im-
plementing it using the NS-3 simulator as proof-of-concept. The proposed approach
enables the flexible deployment of a standard translator. Moreover, the dynamic
deployment provides efficient usage of the translator for applications with resource
constraints. The performance evaluation shows the functionality of the proposed
techniques. Moreover, we have evaluated the delay in the translation. As an emu-
lation example, we emulated LTE, LTE-A and 5G deploying all the components of
4G/5G on a single laptop. It can be used and adapted to implement the more diverse
and complex scenarios. The advantages of deploying 4G/5G as a cloud application
are: an autonomous management of resources and services, a better migration of ap-
plications across different environments, a central control, etc. Beside autonomous
reconfiguration that reduce time and costs, we have a centralized and efficient way
to re-configuring components. This avoids errors due to manual handling of config-
uration files.

The second part focus on a network automation architecture using multi-agents.
Network softwarization enables myriad innovative possibilities. The most impor-
tant innovations of network softwarization are design flexibility and programmabil-
ity. SDN and NFV architecture miss network automation. The advancement and
explosion of machine learning would further enable the realization of full network
automation. Autonomic networking is becoming the necessity for future networks,

6.2. Summary and Conclusion 171

that are aiming at interconnecting billions of heterogeneous device, with stringent
services’ requirements. We first presented a review of autonomic networking since
2004, categorizing literature into before and after the introduction of SDN and NFV.
We then discussed the challenges of network automation. Multi-agent based net-
work automation architecture is presented along with the Markovian mathematical
model of the system. Finally, we presented the performance of the system for a sim-
plified case. The performance analysis showed the possibility of utilizing a multi-
agent system for network management system automation. What we can guess from
the preliminary analysis is that the use of multi-agent in automating network man-
agement provides a scalable, flexible, dynamic, and resource-efficient system. How-
ever, due to the distributed nature of the system, the effect of virtualization and
communication overhead has to be evaluated as future work. Testbed implemen-
tation of MANA-NMS and the exact implementation of agents for specific network
functions are also left as future works.

Moreover, we have also showed how to design an agent using ML as internal
component of the agent. We integrated two main technologies, ML and MAS. To
achieve network automation, these agents were charged with making decisions on
behalf of the network. The brain of the NTCA designs considered were four machine
learning algorithms: SVM, K-NN, Naive Bayes, and Decision Tree. We evaluated the
best performing NTCA design based on performance metrics such as; classification
accuracy, training latency, and classification latency. The results showed that the
Decision Tree NTCA has the highest mean classification accuracy, the smallest mean
training latency, and the smallest mean classification latency.

The third part of the PhD work focus on monolithic system decomposition into
loosely coupled functions using the two comptting service oriented architectures,
Microservice and Multi-agent systems. We first decomposed SDN controller using
Microservices. Here a microservices-based decomposition architecture is proposed
for the SDN paradigm to improve agility, scalability, and reliability. The SDN fea-
tures including dynamic flow control and the possibility to reconfigure the network
according to application needs make it an enabler for the 5G next-generation IIoT
networks. However, most SDN controllers are deployed as a monolithic block, and
that can make them not efficient enough to cover the requirements of the IIoT net-
works such as scalability and robustness.

The MSN framework paves the way to a new generation of microservices-based
approaches for the next generation 5G-ready SDN networks. The use of microser-
vices represents a big step ahead for the Cloud Continuum also in the vision of the
Edge/Cloud hybrid architectures [40]. This paper inspects the use of microservices
in the SDN paradigm presenting pros and cons of this novel paradigm when em-
ployed in this specific domain. The results presented in this paper are focused on
the delay for the first packet, which means the latency introduced by the decomposi-
tion and distribution of microservices. Obtained results demonstrate the feasibility
of applying microservices-based architecture to the SDN paradigm, which offers a
wide range of benefits including deployment agility, scalability, and robustness that
can be granted for each different SDN controller functionality. In the proposed solu-
tion, we take into account more ways to interconnect microservices with each other
by analyzing different protocols such as REST, gRPC, and Websocket. That allowed
to compare not only the introduced delay by the mentioned technologies, but also
the benefits that each protocol could bring. The tests show significant improvement
in terms of reliability of the system in the case of a microservice become unavailable.
Moreover, tests on the scalability show how to achieve scalability on the MANO or-
chestrator with two different scenarios. Therefore, orchestrating microservices for

172 Chapter 6. Future Application of MANA-NMS

managing fault tolerance or for distributing the load will be a task for the MANO
orchestrator. We also provide to the community working in the field our implemen-
tation 1

Boosted by obtained results, we are now working along different ongoing work
directions. First, we are using a reactive approach in the evaluation, we are working
on implementation also a proactive approach so to further improve some aspects
of latency. In fact, a reactive approach allows a system to react when something
happens, for instance when a fault of a specific functionality occurs. In particular,
MSN reacts by instantiating a new instance of the functionality as an VNF via the
MANO orchestrator. On the contrary, using a proactive approach for the orches-
trator would guarantee less downtime service by leveraging intelligent algorithms
to predict fault at functionalities. Second, we are considering the possibility to add
intelligence at the orchestration level to dynamically and proactively manage net-
work entities according to network behavior. For instance, if the network is not
performing as expected (e.g., because of congestion), an intelligent orchestrator can
predict that and can allocate useful functionalities to overcome the congestion. This
vision can be extended to all system components including every single SDN (sub-
)functionality, by bringing intelligence at functionality level. So, each functionality
can set up its behavior to fit network requirements. Third, we are working on a
resource provisioning strategy, where a plan is needed for the careful identification
of network nodes, VNFs, and services that will fulfill the application requirements.
In particular, the provisioning strategy must consider both applications and control
network functionalities as resources to manage. Following the plan instructions, the
orchestrator will deploy and configure all resources needed by the application.

Furthermore, we presented a multi-agent based grand architecture using MANA-
NMS architecture. We developed a unified architecture combining SDN, NFV, MEC,
and GANA architectural and conceptual models for future networks, such as 6G.
The main principles addressed by the architecture are an agent-based design of net-
work systems. Moreover, it also shows the organization of agents to produce an
overall automated system. The architecture is expected to address future network
demands in terms of flexibility, heterogeneity, reliability, and latency in an auto-
mated environment.

1For more details on the implementation and to reproduce the presented tests, we provide the entire
project at https://gitlab.com/dscotece/ryu_sdn_decomposition/

https://gitlab.com/dscotece/ryu_sdn_decomposition/

173

Bibliography

[1] 3GPP TR 21.915 version 15.0.0 Release 15. [Online; accessed 01-May-2021].

[2] 5G-PPP. White Paper: 5G and the Factories of the Future. URL: https://5g-ppp.
eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-
of-the-Future-Vertical-Sector.pdf. (accessed: 01.11.2020).

[3] I. Afolabi et al. “Network slicing and softwarization: A survey on principles,
enabling technologies, and solutions”. In: IEEE Commu. Surveys Tutorials 20.3
(2018.), 2429–2453.

[4] S. Agarwal et al. “VNF Placement and Resource Allocation for the Support of
Vertical Services in 5G Networks”. In: IEEE/ACM Transactions on Networking
27.1 (2019), pp. 433–446. ISSN: 1558-2566. DOI: 10.1109/TNET.2018.2890631.

[5] S. Ahvar et al. “SET: a Simple and Effective Technique to improve cost effi-
ciency of VNF placement and chaining algorithms for network service provi-
sioning”. In: 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). 2018, pp. 293–297. DOI: 10.1109/NETSOFT.2018.8459908.

[6] Zeinab Akhavan et al. “Internet of Things-enabled Passive Contact Tracing
in Smart Cities”. In: Internet of Things (2021), p. 100397.

[7] A. Gharaibeh et al. “Smart Cities: A Survey on Data Management, Security,
and Enabling Technologies.” In: IEEE Communications Surveys & Tutorials 19.4
(2017), pp. 2456–2501. DOI: 10.1109/COMST.2017.2736886.

[8] I. Al-Oqily and A. Karmouch. “A self-organizing composition towards auto-
nomic overlay networks”. In: NOMS 2008 - 2008 IEEE Network Operations and
Management Symposium. Salvador, Bahia, Brazil, April 2008, pp. 287–294.

[9] O. Alhussein et al. “Joint VNF Placement and Multicast Traffic Routing in
5G Core Networks”. In: 2018 IEEE Global Communications Conference (GLOBE-
COM). 2018, pp. 1–6. DOI: 10.1109/GLOCOM.2018.8648029.

[10] A. Alleg et al. “Delay-aware VNF placement and chaining based on a flexible
resource allocation approach”. In: 2017 13th International Conference on Net-
work and Service Management (CNSM). 2017, pp. 1–7. DOI: 10.23919/CNSM.
2017.8255993.

[11] D. Amaya et al. “VNF Placement with Optimization Problem Based on Data
Throughput for Service Chaining”. In: 2018 IEEE 7th International Conference
on Cloud Networking (CloudNet). 2018, pp. 1–3. DOI: 10.1109/CloudNet.2018.
8549543.

[12] T. Amudha, N. Saritha, and P. Usha. “A Multi-agent based framework for Dy-
namic Service Discovery and access using matchmaking approach”. In: 2009
International Conference on Intelligent Agent Multi-Agent Systems. Chennai, In-
dia, July 2009, pp. 1–4.

[13] Osama Arouk and Navid Nikaein. “5G Cloud-Native: Network Management
& Automation”. In: IEEE Symposium on Network Operations and Management
(2020).

https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf
https://doi.org/10.1109/TNET.2018.2890631
https://doi.org/10.1109/NETSOFT.2018.8459908
https://doi.org/10.1109/COMST.2017.2736886
https://doi.org/10.1109/GLOCOM.2018.8648029
https://doi.org/10.23919/CNSM.2017.8255993
https://doi.org/10.23919/CNSM.2017.8255993
https://doi.org/10.1109/CloudNet.2018.8549543
https://doi.org/10.1109/CloudNet.2018.8549543

174 Bibliography

[14] S. T. Arzo et al. “Multi-Agent Based Autonomic Network Management Ar-
chitecture”. In: IEEE Transactions on Network and Service Management (2021),
pp. 1–1. DOI: 10.1109/TNSM.2021.3059752.

[15] S. T. Arzo et al. “Study of Virtual Network Function Placement in 5G Cloud
Radio Access Network”. In: IEEE Transactions on Network and Service Manage-
ment (2020), pp. 1–1. ISSN: 1932-4537. DOI: 10.1109/TNSM.2020.3020390.

[16] Sisay Tadesse Arzo et al. “Multi-Agent Based Autonomic Network Manage-
ment Architecture”. In: IEEE Transactions on Network and Service Management
(2021), pp. 1–1. DOI: 10.1109/TNSM.2021.3059752.

[17] G. Auer et al. “How much energy is needed to run a wireless network?”
In: IEEE Wireless Communications 18.5 (2011), pp. 40–49. ISSN: 1536-1284. DOI:
10.1109/MWC.2011.6056691.

[18] S. Ayoubi, Y. Zhang, and C. Assi. “RAS:Reliable auto-scaling of virtual ma-
chines in multi-tenant cloud networks”. In: 2015 IEEE 4th International Confer-
ence on Cloud Networking (CloudNet). 2015, pp. 1–6. DOI: 10.1109/CloudNet.
2015.7335271.

[19] A. Babuscia, D. Divsalar, and K. Cheung. “CDMA communication system for
mars areostationary relay satellite”. In: 2017 IEEE Aerospace Conference. 2017,
pp. 1–10. DOI: 10.1109/AERO.2017.7943941.

[20] G. Baggio, R. Bassoli, and F. Granelli. “Cognitive Software-Defined Network-
ing Using Fuzzy Cognitive Maps”. In: IEEE Transactions on Cognitive Commu-
nications and Networking 5.3 (2019), pp. 517–539. DOI: 10.1109/TCCN.2019.
2920593.

[21] F. Bannour, S. Souihi, and A. Mellouk. “Distributed SDN Control: Survey,
Taxonomy, and Challenges”. In: IEEE Communications Surveys Tutorials 20.1
(2018), pp. 333–354. DOI: 10.1109/COMST.2017.2782482.

[22] F. Bannour, S. Souihi, and A. Mellouk. “Survey, taxonomy, and challenges in
IEEE Communications Surveys Tutorials”. In: IEEE Communications Surveys
Tutorials 20.1 (2018.), 333–354.

[23] A. A. Barakabitze et al. “5G network slicing using SDN and NFV”. In: A sur-
vey of taxonomy, architectures and future challenges in Computer Networks 167
(2020.).

[24] F. Baroncelli, B. Martini, and P. Castoldi. “Autonomic service provisioning for
Automatically Switched Transport Network”. In: COIN-NGNCON 2006 - The
Joint International Conference on Optical Internet and Next Generation Network.
Jeju, South Korea, July 2006, pp. 15–17.

[25] R. Bassoli and F. Granelli. “An Algebraic Approach to Network Slicing”. In:
European Wireless 2019; 25th European Wireless Conference. 2019, pp. 1–6.

[26] R. Bassoli et al. “Towards 5G Cloud Radio Access Network: An Energy and
Latency Perspective”. In: Transactions on Emerging Telecommunications Tech-
nologies 27.1 (2019), pp. 433–446. ISSN: 1063-6692. DOI: 10.1002/ett.3669.

[27] Riccardo Bassoli. “Chapter 7 - Network function virtualization”. In: Comput-
ing in Communication Networks. Ed. by Frank H.P. Fitzek, Fabrizio Granelli,
and Patrick Seeling. Academic Press, 2020, pp. 119–132. ISBN: 978-0-12-820488-
7.

https://doi.org/10.1109/TNSM.2021.3059752
https://doi.org/10.1109/TNSM.2020.3020390
https://doi.org/10.1109/TNSM.2021.3059752
https://doi.org/10.1109/MWC.2011.6056691
https://doi.org/10.1109/CloudNet.2015.7335271
https://doi.org/10.1109/CloudNet.2015.7335271
https://doi.org/10.1109/AERO.2017.7943941
https://doi.org/10.1109/TCCN.2019.2920593
https://doi.org/10.1109/TCCN.2019.2920593
https://doi.org/10.1109/COMST.2017.2782482
https://doi.org/10.1002/ett.3669

Bibliography 175

[28] E. Bastug et al. “Toward Interconnected Virtual Reality: Opportunities, Chal-
lenges, and Enablers”. In: IEEE Communications Magazine 55.6 (2017), pp. 110–
117. ISSN: 0163-6804. DOI: 10.1109/MCOM.2017.1601089.

[29] M. Behringer et al. “Autonomic Networking - from theory to practice”. In:
2014 IEEE Network Operations and Management Symposium (NOMS). 2014, pp. 1–
17.

[30] Michael Behringer, John Strassner, and Joel Halpern. The Use of Control Loops
in Autonomic Networking. [Accessed:31-Aug-2020].

[31] O. Bello, S. Zeadally, and M. Badra. In: ().

[32] F. Ben Jemaa, G. Pujolle, and M. Pariente. “QoS-Aware VNF Placement Op-
timization in Edge-Central Carrier Cloud Architecture”. In: 2016 IEEE Global
Communications Conference (GLOBECOM). 2016, pp. 1–7. DOI: 10.1109/GLOCOM.
2016.7842188.

[33] M. Bencheikh Lehocine and M. Batouche. “Self-management in IP networks
using autonomic computing”. In: 2014 International Conference and Workshop
on the Network of the Future (NOF). 2014, pp. 1–3.

[34] I. Benkacem et al. “Optimal VNFs Placement in CDN Slicing Over Multi-
Cloud Environment”. In: IEEE Journal on Selected Areas in Communications 36.3
(2018), pp. 616–627. ISSN: 0733-8716. DOI: 10.1109/JSAC.2018.2815441.

[35] S. Bera, S. Misra, and A. V. Vasilakos. “Software-Defined Networking for
Internet of Things: A Survey”. In: IEEE Internet of Things Journal 4.6 (2017),
pp. 1994–2008. DOI: 10.1109/JIOT.2017.2746186.

[36] Carlos J. Bernardos et al. European Vision for the 6G Network Ecosystem. Jun,
2021. DOI: 10.5281/zenodo.5007671.

[37] W. Berrayana, H. Youssef, and G. Pujolle. “A generic cross-layer architec-
ture for autonomic network management with network wide knowledge”.
In: 2012 8th International Wireless Communications and Mobile Computing Con-
ference (IWCMC). Limassol, Cyprus, Aug. 2012, pp. 82–87.

[38] A. Binsahaq, T. R. Sheltami, and K. Salah. “A Survey on Autonomic Provi-
sioning and Management of QoS in SDN Networks”. In: IEEE Access 7 (May
2019), pp. 73384–73435.

[39] R. Birke et al. “Failure Analysis of Virtual and Physical Machines: Patterns,
Causes and Characteristics”. In: 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks. 2014, pp. 1–12. DOI: 10.1109/DSN.
2014.18.

[40] Luiz Bittencourt et al. “The Internet of Things, Fog and Cloud continuum:
Integration and challenges”. In: Internet of Things 3-4 (2018), 134–155. ISSN:
2542-6605.

[41] Stefano Bonafini et al. “Virtual Baseband Unit Splitting Exploiting Small Satel-
lite Platforms”. In: 2020 IEEE Aerospace Conference. Mar. 1, 2020, pp. 1–11. pub-
lished.

[42] G. Bouabene et al. “The autonomic network architecture (ANA)”. In: IEEE
Journal on Selected Areas in Communications 28.1 (December 2009), pp. 4–14.

https://doi.org/10.1109/MCOM.2017.1601089
https://doi.org/10.1109/GLOCOM.2016.7842188
https://doi.org/10.1109/GLOCOM.2016.7842188
https://doi.org/10.1109/JSAC.2018.2815441
https://doi.org/10.1109/JIOT.2017.2746186
https://doi.org/10.5281/zenodo.5007671
https://doi.org/10.1109/DSN.2014.18
https://doi.org/10.1109/DSN.2014.18

176 Bibliography

[43] Raouf Boutaba et al. “A comprehensive survey on machine learning for net-
working: evolution, applications and research opportunities”. In: Journal of
Internet Services and Applications 9.1 (2018), p. 16. ISSN: 1869-0238. DOI: 10.
1186/s13174-018-0087-2. URL: https://doi.org/10.1186/s13174-018-
0087-2.

[44] T. Braga et al. “A Tiny and Light-Weight Autonomic Element for Wireless
Sensor Networks”. In: Fourth International Conference on Autonomic Computing
(ICAC’07). Jacksonville, FL, USA, June 2007, pp. 17–17.

[45] M. A. B. Brasil et al. “Performance Comparison of Multi-Agent Middleware
Platforms for Wireless Sensor Networks”. In: IEEE Sensors Journal 18.7 (Jan-
uary 2018), pp. 3039–3049.

[46] J. Budakoti, A. S. Gaur, and C. Lung. “IoT Gateway Middleware for SDN
Managed IoT”. In: 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data). 2018, pp. 154–161.

[47] Calico. Calico. URL: https://www.projectcalico.org/. (accessed: 6.1.2021).

[48] R. Chai et al. “Multi-Objective Optimization-Based Virtual Network Embed-
ding Algorithm for Software-Defined Networking”. In: IEEE Transactions on
Network and Service Management (2019), pp. 1–1. ISSN: 2373-7379. DOI: 10 .
1109/TNSM.2019.2953297.

[49] C. L. Chamas, D. Cordeiro, and M. M. Eler. “Comparing REST, SOAP, Socket
and gRPC in computation offloading of mobile applications: An energy cost
analysis.” In: IEEE 9th Latin-American Conference on Communications (LATIN-
COM) (2017), pp. 1–6. DOI: 10.1109/LATINCOM.2017.8240185..

[50] R. Chaparadza et al. “Implementation Guide for the ETSI AFI GANA model:
A Standardized Reference Model for Autonomic Networking, Cognitive Net-
working and Self-Management”. In: 2013 IEEE Globecom Workshops (GC Wk-
shps). 2013, pp. 935–940.

[51] R. Chaparadza et al. “SDN enablers in the ETSI AFI GANA Reference Model
for Autonomic Management Control (emerging standard), and Virtualization
impact”. In: 2013 IEEE Globecom Workshops (GC Wkshps). Atlanta, GA, USA,
Dec. 2013, pp. 818–823.

[52] R. Chaparadza et al. “Standardization of resilience survivability, and auto-
nomic fault-management, in evolving and future networks: An ongoing ini-
tiative recently launched in ETSI”. In: 2013 9th International Conference on the
Design of Reliable Communication Networks (DRCN). 2013, pp. 331–341.

[53] J. Chen et al. “On wireless sensor network mobile agent multi-objective opti-
mization route planning algorithm”. In: 2017 IEEE International Conference on
Agents (ICA). Beijing, China, July 2017, pp. 101–103.

[54] X. Chen et al. “On Incentive-Driven VNF Service Chaining in Inter-Datacenter
Elastic Optical Networks: A Hierarchical Game-Theoretic Mechanism”. In:
IEEE Transactions on Network and Service Management 16.1 (2019), pp. 1–12.
ISSN: 2373-7379. DOI: 10.1109/TNSM.2018.2866400.

[55] Z. Cheng, T. Wang, and Y. Xin. “High-Order Distributed Consensus in Multi-
Agent Networks”. In: 2018 IEEE 7th Data Driven Control and Learning Systems
Conference (DDCLS). Enshi, China, May 2018, pp. 965–969.

https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1186/s13174-018-0087-2
https://www.projectcalico.org/
https://doi.org/10.1109/TNSM.2019.2953297
https://doi.org/10.1109/TNSM.2019.2953297
https://doi.org/10.1109/LATINCOM.2017.8240185.
https://doi.org/10.1109/TNSM.2018.2866400

Bibliography 177

[56] Margaret BT Chiosi et al. Network Functions Virtualisation. Tech. rep. URL:
http://portal.etsi.org/NFV/NFV{_}White{_}Paper.pdf.

[57] F. Chiti et al. “Virtual Functions Placement With Time Constraints in Fog
Computing: A Matching Theory Perspective”. In: IEEE Transactions on Net-
work and Service Management 16.3 (2019), pp. 980–989. ISSN: 2373-7379. DOI:
10.1109/TNSM.2019.2918637.

[58] D. Cho et al. “Real-Time Virtual Network Function (VNF) Migration toward
Low Network Latency in Cloud Environments”. In: 2017 IEEE 10th Interna-
tional Conference on Cloud Computing (CLOUD). 2017, pp. 798–801. DOI: 10.
1109/CLOUD.2017.118.

[59] M. Chowdhury, M. R. Rahman, and R. Boutaba. “ViNEYard: Virtual Net-
work Embedding Algorithms With Coordinated Node and Link Mapping”.
In: IEEE/ACM Transactions on Networking 20.1 (2012), pp. 206–219. ISSN: 1063-
6692. DOI: 10.1109/TNET.2011.2159308.

[60] CNCF. Kubernetes. URL: https://kubernetes.io/. (accessed: 14.12.2020).

[61] D. Comer and A. Rastegarnia. “Externalization of Packet Processing in Soft-
ware Defined Networking”. In: IEEE Networking Letters 1.3 (2019), pp. 124–
127. ISSN: 2576-3156. DOI: 10.1109/LNET.2019.2918155.

[62] Douglas Comer and Adib Rastegarnia. “Towards Disaggregating the SDN
Control Plane”. In: CoRR abs/1902.00581 (2019). arXiv: 1902 . 00581. URL:
http://arxiv.org/abs/1902.00581.

[63] Consensus on 6G is Gradually Forming. Accessed: 2020-03-24.

[64] CONTAINERS ON VIRTUAL MACHINES OR BARE METAL?

[65] D. Cotroneo et al. “Network Function Virtualization: Challenges and Direc-
tions for Reliability Assurance”. In: 2014 IEEE International Symposium on Soft-
ware Reliability Engineering Workshops. 2014, pp. 37–42. DOI: 10.1109/ISSREW.
2014.48.

[66] G. Cui et al. “Latency and Energy Optimization for MEC Enhanced SAT-IoT
Networks”. In: IEEE Access 8 (2020), pp. 55915–55926. DOI: 10.1109/ACCESS.
2020.2982356.

[67] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros. “Dynamic Latency-Optimal
VNF Placement at Network Edge”. In: IEEE INFOCOM 2018 - IEEE Confer-
ence on Computer Communications. 2018, pp. 693–701. DOI: 10.1109/INFOCOM.
2018.8486021.

[68] A. Daga et al. “Terrain-based simulation of IEEE 802.11a and b physical lay-
ers on the martian surface”. In: IEEE Transactions on Aerospace and Electronic
Systems 43.4 (2007), pp. 1617–1624. DOI: 10.1109/TAES.2007.4441762.

[69] E. Dahlman et al. “5G wireless access: requirements and realization”. In: IEEE
Communications Magazine 52.12 (2014), pp. 42–47. ISSN: 0163-6804. DOI: 10.
1109/MCOM.2014.6979985.

[70] T. Das and M. Gurusamy. “Controller Placement for Resilient Network State
Synchronization in Multi-Controller SDN.” In: IEEE Communications Letters
24.6 (2020), pp. 1299–1303. DOI: 10.1109/LCOMM.2020.2979072..

[71] E. M. Davidson and S. D. J. McArthur. “Exploiting Multi-agent System Tech-
nology within an Autonomous Regional Active Network Management Sys-
tem”. In: 2007 International Conference on Intelligent Systems Applications to
Power Systems. Toki Messe, Niigata, Japan, Nov. 2007, pp. 1–6.

http://portal.etsi.org/NFV/NFV{_}White{_}Paper.pdf
https://doi.org/10.1109/TNSM.2019.2918637
https://doi.org/10.1109/CLOUD.2017.118
https://doi.org/10.1109/CLOUD.2017.118
https://doi.org/10.1109/TNET.2011.2159308
https://kubernetes.io/
https://doi.org/10.1109/LNET.2019.2918155
https://arxiv.org/abs/1902.00581
http://arxiv.org/abs/1902.00581
https://doi.org/10.1109/ISSREW.2014.48
https://doi.org/10.1109/ISSREW.2014.48
https://doi.org/10.1109/ACCESS.2020.2982356
https://doi.org/10.1109/ACCESS.2020.2982356
https://doi.org/10.1109/INFOCOM.2018.8486021
https://doi.org/10.1109/INFOCOM.2018.8486021
https://doi.org/10.1109/TAES.2007.4441762
https://doi.org/10.1109/MCOM.2014.6979985
https://doi.org/10.1109/MCOM.2014.6979985
https://doi.org/10.1109/LCOMM.2020.2979072.

178 Bibliography

[72] DEDICAT 6G: Dynamic coverage Extension and Distributed Intelligence for human
Centric Applications with assured security, pri- vacy, and Trust: from 5G to 6G.
Accessed: 19-Oct-2021. 2021.

[73] Deep Space Network. Accessed: 26-Feb-2021.

[74] Deliverable D03.01 Report on IoT platform activities - UNIFY-IoT.

[75] B. Denby and B. Lucia. “Orbital Edge Computing: Machine Inference in Space”.
In: IEEE Computer Architecture Letters 18.1 (2019), pp. 59–62. DOI: 10.1109/
LCA.2019.2907539.

[76] H. Derhamy, J. Eliasson, and J. Delsing. “IoT Interoperability—On-Demand
and Low Latency Transparent Multiprotocol Translator”. In: IEEE Internet of
Things Journal 4.5 (2017), pp. 1754–1763.

[77] M. Dieye et al. “CPVNF: Cost-Efficient Proactive VNF Placement and Chain-
ing for Value-Added Services in Content Delivery Networks”. In: IEEE Trans-
actions on Network and Service Management 15.2 (2018), pp. 774–786. ISSN: 1932-
4537. DOI: 10.1109/TNSM.2018.2815986.

[78] Docker docs. Install Docker Engine on Ubuntu. URL: https://docs.docker.
com/engine/install/ubuntu/. (accessed: 26.12.2020).

[79] K. Dolui and S. K. Datta. “Comparison of edge computing implementations:
Fog computing, cloudlet and mobile edge computing”. In: 2017 Global Inter-
net of Things Summit (GIoTS). Geneva, Switzerland, June 2017, pp. 1–6.

[80] A. Dorri, S. S. Kanhere, and R. Jurdak. “Multi-Agent Systems: A Survey”. In:
IEEE Access 6 (April 2018), pp. 28573–28593.

[81] M. L. Dowell and R. D. Bonnell. “Learning for distributed artificial intelli-
gence systems”. In: [1991 Proceedings] The Twenty-Third Southeastern Sympo-
sium on System Theory. Columbia, SC, USA, Mar. 1991, pp. 218–221.

[82] M. ElGammal and M. Eltoweissy. “Towards Aware, Adaptive and Autonomic
Sensor-Actuator Networks”. In: 2011 IEEE Fifth International Conference on
Self-Adaptive and Self-Organizing Systems. 2011, pp. 210–211.

[83] H. ElSawy et al. “Modeling and Analysis of Cellular Networks Using Stochas-
tic Geometry: A Tutorial”. In: IEEE Communications Surveys Tutorials 19.1 (2017),
pp. 167–203. ISSN: 2373-745X. DOI: 10.1109/COMST.2016.2624939.

[84] A. Engelmann and A. Jukan. “A Reliability Study of Parallelized VNF Chain-
ing”. In: 2018 IEEE International Conference on Communications (ICC). 2018,
pp. 1–6. DOI: 10.1109/ICC.2018.8422595.

[85] " ETSI". “Next Generation Protocols (NGP)- Intelligence Defined Network
(IDN) ”. In: (2018).

[86] "ETSI". “Autonomic network engineering for the self-managing Future In-
ternet (AFI): Scenarios, Use Cases and Requirements for Autonomic/Self-
Managing Future Internet”. In: (2011).

[87] "ETSI". “Network Technologies (NTECH): Autonomic network engineering
for the self-managing Future Internet (AFI): Autonomicity and Self-Management
in the Broadband Forum (BBF) Architectures”. In: (2018).

[88] Fangxin Wang et al. “Bandwidth guaranteed virtual network function place-
ment and scaling in datacenter networks”. In: 2015 IEEE 34th International
Performance Computing and Communications Conference (IPCCC). 2015, pp. 1–8.
DOI: 10.1109/PCCC.2015.7410276.

https://doi.org/10.1109/LCA.2019.2907539
https://doi.org/10.1109/LCA.2019.2907539
https://doi.org/10.1109/TNSM.2018.2815986
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://doi.org/10.1109/COMST.2016.2624939
https://doi.org/10.1109/ICC.2018.8422595
https://doi.org/10.1109/PCCC.2015.7410276

Bibliography 179

[89] P. Farkaš. “Adaptive Feedback Supported Communication for IoT and Space
Applications”. In: 2019 NASA/ESA Conference on Adaptive Hardware and Sys-
tems (AHS). 2019, pp. 61–64. DOI: 10.1109/AHS.2019.00005.

[90] P. V. R. Ferreira et al. “Multi-objective reinforcement learning-based deep
neural networks for cognitive space communications”. In: 2017 Cognitive Com-
munications for Aerospace Applications Workshop (CCAA). 2017, pp. 1–8. DOI:
10.1109/CCAAW.2017.8001880.

[91] C. Fiandrino et al. “Performance and Energy Efficiency Metrics for Commu-
nication Systems of Cloud Computing Data Centers”. In: IEEE Transactions on
Cloud Computing 5.4 (2017), pp. 738–750. ISSN: 2168-7161. DOI: 10.1109/TCC.
2015.2424892.

[92] Frank H. P. Fitzek, Fabrizio Granelli, and Patrick Seeling, eds. Computing in
Communication Networks - From Theory to Practice. 1st ed. Vol. 1. 1. Elsevier,
Jan. 1, 2020. ISBN: tbd. published.

[93] Floodlight: Floodlight Controller. 2021.

[94] Flow Monitor.

[95] Giancarlo Fortino et al. “Towards Multi-layer Interoperability of Heteroge-
neous IoT Platforms: The INTER-IoT Approach”. en. In: Integration, Intercon-
nection, and Interoperability of IoT Systems. Ed. by Raffaele Gravina et al. In-
ternet of Things. Cham: Springer International Publishing, 2018, pp. 199–232.
ISBN: 978-3-319-61300-0. DOI: 10.1007/978-3-319-61300-0_10. (Visited on
08/17/2020).

[96] Open Networking Foundation. Open Network Operating System (ONOS). URL:
https://docs.onosproject.org/.

[97] "Open Networking Foundation". “Software-Defined Networking: The New
Norm for Networks”. In: (2012).

[98] A. Galis, S. Clayman, and L. Mamatas. “Towards autonomic management
of software enabled networks”. In: 2013 8TH International Symposium on Ad-
vanced Topics in Electrical Engineering (ATEE). Bucharest, Romania, May 2013,
pp. 1–3.

[99] G. Garg et al. “DAVIS: A Delay-Aware VNF Selection Algorithm for Service
Function Chaining”. In: 2019 11th International Conference on Communication
Systems Networks (COMSNETS). 2019, pp. 436–439. DOI: 10.1109/COMSNETS.
2019.8711442.

[100] Sahil Garg et al. “SDN-NFV-Aided Edge-Cloud Interplay for 5G-Envisioned
Energy Internet Ecosystem”. In: IEEE Network 35.1 (2021), pp. 356–364. DOI:
10.1109/MNET.011.1900602.

[101] D. Gavalas et al. “A hybrid centralised-distributed network management ar-
chitecture”. In: Proceedings IEEE International Symposium on Computers and
Communications (Cat. No.PR00250). 1999, pp. 434–441. DOI: 10.1109/ISCC.
1999.780940.

[102] Michael R. Genesereth and Steven P. Ketchpel. “Software Agents”. In: Com-
mun. ACM 37.7 (July 1994), 48–ff. ISSN: 0001-0782. DOI: 10.1145/176789.
176794. URL: https://doi.org/10.1145/176789.176794.

[103] M. Ghaznavi et al. In: IEEE Journal on Selected Areas in Communications, ti-
tle=Distributed Service Function Chaining 35.11 (2017), pp. 2479–2489. ISSN:
1558-0008. DOI: 10.1109/JSAC.2017.2760178.

https://doi.org/10.1109/AHS.2019.00005
https://doi.org/10.1109/CCAAW.2017.8001880
https://doi.org/10.1109/TCC.2015.2424892
https://doi.org/10.1109/TCC.2015.2424892
https://doi.org/10.1007/978-3-319-61300-0_10
https://docs.onosproject.org/
https://doi.org/10.1109/COMSNETS.2019.8711442
https://doi.org/10.1109/COMSNETS.2019.8711442
https://doi.org/10.1109/MNET.011.1900602
https://doi.org/10.1109/ISCC.1999.780940
https://doi.org/10.1109/ISCC.1999.780940
https://doi.org/10.1145/176789.176794
https://doi.org/10.1145/176789.176794
https://doi.org/10.1145/176789.176794
https://doi.org/10.1109/JSAC.2017.2760178

180 Bibliography

[104] H. Gogineni et al. “MMS: An autonomic network-layer foundation for net-
work management”. In: IEEE Journal on Selected Areas in Communications 28.1
(2010), pp. 15–27.

[105] F. Granelli and R. Bassoli. “Autonomic Mobile Virtual Network Operators
for Future Generation Networks”. In: IEEE Network 32.5 (September 2018),
pp. 76–84. DOI: 10.1109/MNET.2018.1700455.

[106] F. Granelli and R. Bassoli. “Towards Autonomic Mobile Network Operators”.
In: 2018 IEEE 7th International Conference on Cloud Networking (CloudNet). 2018,
pp. 1–4. DOI: 10.1109/CloudNet.2018.8549552.

[107] Fabrizio Granelli, Dzmitry Kliazovich, and Neumar" Malheiros. “Towards
Cognitive Internet: An Evolutionary Vision”. In: Cognitive Radio and Network-
ing for Heterogeneous Wireless Networks: Recent Advances and Visions for the Fu-
ture (2015), pp. 181–200. DOI: 10.1007/978-3-319-01718-1_6.

[108] Aditya Gudipati et al. “SoftRAN: software defined radio access network.” In:
2018. 25–30. DOI: 10.1145/2491185.2491207.

[109] R. Guerzoni et al. “Modeling Reliability Requirements in Coordinated Node
and Link Mapping”. In: 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems. 2014, pp. 321–330. DOI: 10.1109/SRDS.2014.17.

[110] M. Haenggi et al. “Stochastic geometry and random graphs for the analysis
and design of wireless networks”. In: IEEE Journal on Selected Areas in Com-
munications 27.7 (2009), pp. 1029–1046. ISSN: 1558-0008. DOI: 10.1109/JSAC.
2009.090902.

[111] O. Hahm et al. “Operating Systems for Low-End Devices in the Internet of
Things: A Survey”. In: IEEE Internet of Things Journal 3.5 (2016), pp. 720–734.
DOI: 10.1109/JIOT.2015.2505901.

[112] Aboul Ella Hassanien, Ashraf Darwish, and Sara Abdelghafar. “Machine learn-
ing in telemetry data mining of space mission: basics, challenging and fu-
ture directions”. In: Artificial Intelligence Review 53 (2020), pp. 1573–7462. DOI:
10.1007/s10462-019-09760-1. URL: https://doi.org/10.1007/s10462-
019-09760-1.

[113] H. Hawilo, M. Jammal, and A. Shami. “Network Function Virtualization-
Aware Orchestrator for Service Function Chaining Placement in the Cloud”.
In: IEEE Journal on Selected Areas in Communications 37.3 (2019), pp. 643–655.
ISSN: 0733-8716. DOI: 10.1109/JSAC.2019.2895226.

[114] H. Hawilo, M. Jammal, and A. Shami. “Network Function Virtualization-
Aware Orchestrator for Service Function Chaining Placement in the Cloud”.
In: IEEE Journal on Selected Areas in Communications 37.3 (2019), pp. 643–655.
ISSN: 1558-0008. DOI: 10.1109/JSAC.2019.2895226.

[115] Hexa-X. D1.2 – Expanded 6G vision, use cases and societal values — including
aspects of sustainability, security and spectrum. 2021. URL: https://hexa-x.eu/
wp-content/uploads/2021/05/Hexa-X_D1.2.pdf (visited on 2021).

[116] Shiku Hirai et al. “Automated Provisioning of Cloud-Native Network Func-
tions in Multi-Cloud Environments”. In: IEEE Conference on Network Soft-
warization (NetSoft) (2020), pp. 359–361.

[117] A. Hirwe and K. Kataoka. “LightChain: A lightweight optimisation of VNF
placement for service chaining in NFV”. In: 2016 IEEE NetSoft Conference and
Workshops (NetSoft). 2016, pp. 33–37. DOI: 10.1109/NETSOFT.2016.7502438.

https://doi.org/10.1109/MNET.2018.1700455
https://doi.org/10.1109/CloudNet.2018.8549552
https://doi.org/10.1007/978-3-319-01718-1_6
https://doi.org/10.1145/2491185.2491207
https://doi.org/10.1109/SRDS.2014.17
https://doi.org/10.1109/JSAC.2009.090902
https://doi.org/10.1109/JSAC.2009.090902
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1007/s10462-019-09760-1
https://doi.org/10.1007/s10462-019-09760-1
https://doi.org/10.1007/s10462-019-09760-1
https://doi.org/10.1109/JSAC.2019.2895226
https://doi.org/10.1109/JSAC.2019.2895226
https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf
https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf
https://doi.org/10.1109/NETSOFT.2016.7502438

Bibliography 181

[118] et al. Hong. IoT Edge Challenges and Functions draft-irtf-t2trg-iot-edge-00. Ac-
cessed: 20-Feb-2021. Expires 4 March 2021.

[119] How Big is IoT? 20.6 Billion Connected Devices By 2020. Accessed: Dec. 03,
2020. URL: {https://mitechnews.com/internet- of- things/how- big-
is-iot-20-6-billion-connected-devices-by-2020/\#:~:text=Big\
%20is\%20IoT\%3F-,20.6\%20Billion\%20Connected\%20Devices\%20By\
%202020.,smart\%20cities\%20and\%20connected\%20healthcare.}.

[120] K. Huang, S. Srivastava, and D. Cartes. “Decentralized Reconfiguration for
Power Systems Using Multi Agent System”. In: 2007 1st Annual IEEE Systems
Conference. Honolulu, HI, USA, April 2007, pp. 1–6.

[121] S. Hussain, E. Shakshuki, and A. W. Matin. “Agent-based system architecture
for wireless sensor networks”. In: 20th International Conference on Advanced
Information Networking and Applications - Volume 1 (AINA’06). Vol. 2. Vienna,
Austria, April 2006, pp. 1–5.

[122] N. Hyodo et al. “Virtual Network Function Placement Model for Service
Chaining to Relax Visit Order and Routing Constraints”. In: 2018 IEEE 7th
International Conference on Cloud Networking (CloudNet). 2018, pp. 1–3. DOI:
10.1109/CloudNet.2018.8549553.

[123] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems. IEEE Std 1588-2019 (Revision of IEEE Std 1588-
2008). 2020.

[124] Is the IoT in space about to take off? https://www.networkworld.com/article/
3315736/is-the-iot-in-space-about-to-take-off.html.

[125] M. Ismail et al. “A Survey on Green Mobile Networking: From The Per-
spectives of Network Operators and Mobile Users”. In: IEEE Communications
Surveys Tutorials 17.3 (2015), pp. 1535–1556. ISSN: 1553-877X. DOI: 10.1109/
COMST.2014.2367592.

[126] M. Jaber et al. “5G Backhaul Challenges and Emerging Research Directions:
A Survey”. In: IEEE Access 4 (2016), pp. 1743–1766. ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2016.2556011.

[127] Jae Chul Moon and Soon Ju Kang. “A multi-agent architecture for intelligent
home network service using tuple space model”. In: IEEE Transactions on Con-
sumer Electronics 46.3 (Aug 2000), pp. 791–794.

[128] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. “A Roadmap
of Agent Research and Development”. In: Autonomous Agents and Multi-Agent
Systems 1.1 (Jan. 1998), 7–38. ISSN: 1387-2532. DOI: 10.1023/A:1010090405266.
URL: https://doi.org/10.1023/A:1010090405266.

[129] Sprague Jhon. NASA’s Internet of Things Lab. https://internet-of-things.
cioreview.com/cxoinsight/nasa- s- internet- of- things- lab-- nid-
13174-cid-133.html.

[130] Q. Jiang et al. “Research on Load Balancing Based on Multi-agent in Ubiq-
uitous Networks”. In: 2010 International Conference on Intelligent Computation
Technology and Automation. Vol. 3. Changsha, China, May 2010, pp. 10–13.

[131] B. Kar, E. H. Wu, and Y. Lin. “Energy Cost Optimization in Dynamic Place-
ment of Virtualized Network Function Chains”. In: IEEE Transactions on Net-
work and Service Management 15.1 (2018), pp. 372–386. ISSN: 1932-4537. DOI:
10.1109/TNSM.2017.2782370.

{https://mitechnews.com/internet-of-things/how-big-is-iot-20-6-billion-connected-devices-by-2020/\#:~:text=Big\%20is\%20IoT\%3F-,20.6\%20Billion\%20 Connected\%20Devices\%20By\%202020.,smart\%20 cities\%20and\%20connected\%20healthcare.}
{https://mitechnews.com/internet-of-things/how-big-is-iot-20-6-billion-connected-devices-by-2020/\#:~:text=Big\%20is\%20IoT\%3F-,20.6\%20Billion\%20 Connected\%20Devices\%20By\%202020.,smart\%20 cities\%20and\%20connected\%20healthcare.}
{https://mitechnews.com/internet-of-things/how-big-is-iot-20-6-billion-connected-devices-by-2020/\#:~:text=Big\%20is\%20IoT\%3F-,20.6\%20Billion\%20 Connected\%20Devices\%20By\%202020.,smart\%20 cities\%20and\%20connected\%20healthcare.}
{https://mitechnews.com/internet-of-things/how-big-is-iot-20-6-billion-connected-devices-by-2020/\#:~:text=Big\%20is\%20IoT\%3F-,20.6\%20Billion\%20 Connected\%20Devices\%20By\%202020.,smart\%20 cities\%20and\%20connected\%20healthcare.}
https://doi.org/10.1109/CloudNet.2018.8549553
https://www.networkworld.com/article/3315736/is-the-iot-in-space-about-to-take-off.html
https://www.networkworld.com/article/3315736/is-the-iot-in-space-about-to-take-off.html
https://doi.org/10.1109/COMST.2014.2367592
https://doi.org/10.1109/COMST.2014.2367592
https://doi.org/10.1109/ACCESS.2016.2556011
https://doi.org/10.1109/ACCESS.2016.2556011
https://doi.org/10.1023/A:1010090405266
https://doi.org/10.1023/A:1010090405266
https://internet-of-things.cioreview.com/cxoinsight/nasa-s-internet-of-things-lab--nid-13174-cid-133.html
https://internet-of-things.cioreview.com/cxoinsight/nasa-s-internet-of-things-lab--nid-13174-cid-133.html
https://internet-of-things.cioreview.com/cxoinsight/nasa-s-internet-of-things-lab--nid-13174-cid-133.html
https://doi.org/10.1109/TNSM.2017.2782370

182 Bibliography

[132] M. Karimzadeh-Farshbafan, V. Shah-Mansour, and D. Niyato. “Reliability
Aware Service Placement Using a Viterbi-based Algorithm”. In: IEEE Transac-
tions on Network and Service Management (2019), pp. 1–1. ISSN: 2373-7379. DOI:
10.1109/TNSM.2019.2959818.

[133] J. O. Kephart and D. M. Chess. “The vision of autonomic computing”. In:
Computer 36.1 (January 2003), pp. 41–50. ISSN: 1558-0814. DOI: 10.1109/MC.
2003.1160055.

[134] S. Khebbache, M. Hadji, and D. Zeghlache. “A multi-objective non-dominated
sorting genetic algorithm for VNF chains placement”. In: 2018 15th IEEE An-
nual Consumer Communications Networking Conference (CCNC). 2018, pp. 1–4.
DOI: 10.1109/CCNC.2018.8319250.

[135] H. Kim and N. Feamster. “Improving network management with software
defined networking”. In: IEEE Commun. Mag. 51.2 (2013), 114–119.

[136] Dzmitry Kliazovich et al. “e-STAB: Energy-Efficient Scheduling for Cloud
Computing Applications with Traffic Load Balancing”. In: 2013 IEEE Inter-
national Conference on Green Computing and Communications and IEEE Internet
of Things and IEEE Cyber, Physical and Social Computing. 2013, pp. 7–13. DOI:
10.1109/GreenCom-iThings-CPSCom.2013.28.

[137] K. Kondepu et al. “Experimental Demonstration of 5G Virtual EPC Recovery
in Federated Testbeds”. In: IFIP/IEEE International Symposium on Integrated
Network Management (2020), pp. 712–713.

[138] P. Kookarinrat and Y. Temtanapat. “Design and implementation of a decen-
tralized message bus for microservices”. In: 13th International Joint Conference
on Computer Science and Software Engineering (JCSSE) (2016), pp. 1–6. DOI: doi:
10.1109/JCSSE.2016.7748869..

[139] Alexander Kott et al. Autonomous Intelligent Cyber-defense Agent (AICA) Refer-
ence Architecture. Release 2.0. 2018. arXiv: 1803.10664 [cs.CR].

[140] Herleen Kour and Naveen Gondhi. “Machine Learning Techniques: A Sur-
vey”. In: Innovative Data Communication Technologies and Application. Ed. by
Jennifer S. Raj, Abul Bashar, and S. R. Jino Ramson. Cham: Springer Interna-
tional Publishing, 2020, pp. 266–275. ISBN: 978-3-030-38040-3.

[141] Y. Koyasako et al. “Real-Time Motion Control Method Using Measured De-
lay Information on Access Edge Computing”. In: 2020 IEEE 17th Annual Con-
sumer Communications Networking Conference (CCNC). 2020, pp. 1–4. DOI: 10.
1109/CCNC46108.2020.9045470.

[142] A. Laghrissi et al. “Towards Edge Slicing: VNF Placement Algorithms for a
Dynamic amp; Realistic Edge Cloud Environment”. In: GLOBECOM 2017 -
2017 IEEE Global Communications Conference. 2017, pp. 1–6. DOI: 10.1109/
GLOCOM.2017.8254653.

[143] J. M. Landsberg. Tensors: Geometry and Applications. American Mathematical
Society, 2012, pp. 1–493.

[144] S. Lange et al. “A Multi-objective Heuristic for the Optimization of Virtual
Network Function Chain Placement”. In: 2017 29th International Teletraffic Congress
(ITC 29). Vol. 1. 2017, pp. 152–160. DOI: 10.23919/ITC.2017.8064351.

[145] David Lary. “Artificial Intelligence in Aerospace”. In: Jan. 2010. ISBN: 978-
953-7619-96-1. DOI: 10.5772/6941.

https://doi.org/10.1109/TNSM.2019.2959818
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/CCNC.2018.8319250
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.28
https://doi.org/doi: 10.1109/JCSSE.2016.7748869.
https://doi.org/doi: 10.1109/JCSSE.2016.7748869.
https://arxiv.org/abs/1803.10664
https://doi.org/10.1109/CCNC46108.2020.9045470
https://doi.org/10.1109/CCNC46108.2020.9045470
https://doi.org/10.1109/GLOCOM.2017.8254653
https://doi.org/10.1109/GLOCOM.2017.8254653
https://doi.org/10.23919/ITC.2017.8064351
https://doi.org/10.5772/6941

Bibliography 183

[146] Alexandru Lavric and Valentin Popa. Performance Evaluation of LoRaWAN Com-
munication Scalability in Large-Scale Wireless Sensor Networks. en. Research Ar-
ticle. ISSN: 1530-8669 Publisher: Hindawi Volume: 2018. June 2018. DOI: https:
//doi.org/10.1155/2018/6730719.

[147] W. Lee, T. Na, and J. Kim. “How to Create a Network Slice? - A 5G Core
Network Perspective”. In: 2019 21st International Conference on Advanced Com-
munication Technology (ICACT). PyeongChang Kwangwoon_Do, Korea, Feb.
2019, pp. 616–619.

[148] Ángel Leonardo Valdivieso Caraguay. et al. “SDN/NFV Architecture for IoT
Networks”. In: Proceedings of the 14th International Conference on Web Informa-
tion Systems and Technologies - Volume 1: ITSCO, INSTICC. SciTePress, 2018,
pp. 425–429. ISBN: 978-989-758-324-7. DOI: 10.5220/0007234804250429.

[149] Kristina Lerman, Aram Galstyan, and Tad Hogg. Mathematical Analysis of
Multi-Agent Systems. 2004. arXiv: cs/0404002 [cs.RO].

[150] D. Li et al. “Availability Aware VNF Deployment in Datacenter Through
Shared Redundancy and Multi-Tenancy”. In: IEEE Transactions on Network
and Service Management 16.4 (2019), pp. 1651–1664. ISSN: 2373-7379. DOI: 10.
1109/TNSM.2019.2936505.

[151] D. Li et al. “Virtual Network Function Placement Considering Resource Op-
timization and SFC Requests in Cloud Datacenter”. In: IEEE Transactions on
Parallel and Distributed Systems 29.7 (2018), pp. 1664–1677. ISSN: 1045-9219.
DOI: 10.1109/TPDS.2018.2802518.

[152] H. Li et al. “An autonomic management architecture for SDN-based multi-
service network”. In: 2013 IEEE Globecom Workshops (GC Wkshps). 2013, pp. 830–
835.

[153] Z. Li and Y. Yang. “Placement of Virtual Network Functions in Hybrid Data
Center Networks”. In: 2017 IEEE 25th Annual Symposium on High-Performance
Interconnects (HOTI). 2017, pp. 73–79. DOI: 10.1109/HOTI.2017.15.

[154] C. Liao et al. “Wireless Sensor Network Performance Research for Leach
Based on Multi-agent Simulation”. In: 2016 IEEE International Conference on
Agents (ICA). Matsue, Japan, Sept. 2016, pp. 98–99.

[155] G. Liu and D. Juan. “Design of Distributed Network Management System
Based on Multi-agent”. In: 2010 Third International Symposium on Information
Processing. Qingdao, China, Oct. 2010, pp. 433–436.

[156] X. Liu, P. Juluri, and D. Medhi. “An experimental study on dynamic network
reconfiguration in a virtualized network environment using autonomic man-
agement”. In: 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013). 2013, pp. 616–622.

[157] B. Loganayagi and S. Sujatha. “Creating virtual platform for cloud comput-
ing”. In: 2010 IEEE International Conference on Computational Intelligence and
Computing Research. Coimbatore, India, Dec. 2010, pp. 1–4.

[158] D. Lohani, P. Singh, and S. Varma. “Multi-Agent data aggregation in wireless
sensor network using source grouping”. In: 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI). New Delhi,
India, Sept. 2014, pp. 2174–2179.

[159] X. Long et al. “Autonomic Networking: Architecture Design and Standard-
ization”. In: IEEE Internet Computing 21.5 (2017), pp. 48–53.

https://doi.org/https://doi.org/10.1155/2018/6730719
https://doi.org/https://doi.org/10.1155/2018/6730719
https://doi.org/10.5220/0007234804250429
https://arxiv.org/abs/cs/0404002
https://doi.org/10.1109/TNSM.2019.2936505
https://doi.org/10.1109/TNSM.2019.2936505
https://doi.org/10.1109/TPDS.2018.2802518
https://doi.org/10.1109/HOTI.2017.15

184 Bibliography

[160] A. A. F. Loureiro and L. B. Ruiz. “Autonomic Wireless Networks in Smart
Environments”. In: Fifth Annual Conference on Communication Networks and
Services Research (CNSR ’07). 2007, pp. 5–7.

[161] Wei Lu and Marco Di Renzo. “Stochastic Geometry Modeling of Cellular
Networks: Analysis, Simulation and Experimental Validation”. In: Proceed-
ings of the 18th ACM International Conference on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems. MSWiM ’15. Cancun, Mexico: ACM, 2015,
pp. 179–188. ISBN: 978-1-4503-3762-5. DOI: 10.1145/2811587.2811597. URL:
http://doi.acm.org/10.1145/2811587.2811597.

[162] M. Y. Lyazidi, N. Aitsaadi, and R. Langar. “Resource Allocation and Admis-
sion Control in OFDMA-Based Cloud-RAN”. In: 2016 IEEE Global Communi-
cations Conference (GLOBECOM). 2016, pp. 1–6. DOI: 10.1109/GLOCOM.2016.
7842217.

[163] Martin Lévesque and David Tipper. “A Survey of Clock Synchronization
Over Packet-Switched Networks”. In: IEEE Communications Surveys & Tutori-
als 18.4 (2016), pp. 2926–2947. DOI: 10.1109/COMST.2016.2590438.

[164] M. Guizani K. Shuaib M. A. Salahuddin A. Al-Fuqaha and F. Sallabi. “Soft-
warization of Internet of Things Infrastructure for Secure and Smart Health-
care in Computer.” In: Journal of Cleaner Production 50.7 (2017), pp. 74–79. DOI:
10.1109/MC.2017.195..

[165] S. Rommer L. Frid M. Olsson S. Sultana and C. Mulligan. SAE and the Evolved
Packet Core: Driving the Mobile Broadband Revolution. Accessed: 19-Oct-2021.
2021.

[166] C. Ma et al. “ABSR: An Agent Based Self-Recovery Model for Wireless Sensor
Network”. In: 2009 Eighth IEEE International Conference on Dependable, Auto-
nomic and Secure Computing. Chengdu, China, Dec. 2009, pp. 400–404.

[167] Y. Ma et al. “Exploring Edge Computing for Multitier Industrial Control”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
39.11 (2020), pp. 3506–3518. DOI: 10.1109/TCAD.2020.3012648.

[168] M. Maier et al. “The tactile internet: vision, recent progress, and open chal-
lenges”. In: IEEE Communications Magazine 54.5 (2016), pp. 138–145. DOI: https:
//doi.org/10.1109/MCOM.2016.7470948..

[169] G. Marchetto et al. “Formally verified latency-aware VNF placement in in-
dustrial Internet of things”. In: 2018 14th IEEE International Workshop on Fac-
tory Communication Systems (WFCS). 2018, pp. 1–9. DOI: 10.1109/WFCS.2018.
8402355.

[170] B. Mathieu et al. “Autonomic Management of Context-Aware Ambient Over-
lay Networks”. In: 2007 Second International Conference on Communications and
Networking in China. 2007, pp. 727–733.

[171] M. May et al. “Monitoring as first class citizen in an autonomic network uni-
verse”. In: 2007 2nd Bio-Inspired Models of Network, Information and Computing
Systems. Budapest, Hungary, Dec. 2007, pp. 247–254. DOI: 10.1109/BIMNICS.
2007.4610121.

[172] J. A. McCann and R. Sterritt. “Autonomic Pervasive Networks (APNs) - Ex-
tended Abstract”. In: 2010 Seventh IEEE International Conference and Workshops
on Engineering of Autonomic and Autonomous Systems. 2010, pp. 145–148.

https://doi.org/10.1145/2811587.2811597
http://doi.acm.org/10.1145/2811587.2811597
https://doi.org/10.1109/GLOCOM.2016.7842217
https://doi.org/10.1109/GLOCOM.2016.7842217
https://doi.org/10.1109/COMST.2016.2590438
https://doi.org/10.1109/MC.2017.195.
https://doi.org/10.1109/TCAD.2020.3012648
https://doi.org/https://doi.org/10.1109/MCOM.2016.7470948.
https://doi.org/https://doi.org/10.1109/MCOM.2016.7470948.
https://doi.org/10.1109/WFCS.2018.8402355
https://doi.org/10.1109/WFCS.2018.8402355
https://doi.org/10.1109/BIMNICS.2007.4610121
https://doi.org/10.1109/BIMNICS.2007.4610121

Bibliography 185

[173] N. McKeown et al. “Openflow: Enabling innovation in campus networks in
SIGCOMM Comput.Commun. Rev.” In: 38.2 (2008), 69–74.

[174] M. Mechtri, C. Ghribi, and D. Zeghlache. “A Scalable Algorithm for the Place-
ment of Service Function Chains”. In: IEEE Transactions on Network and Service
Management 13.3 (2016), pp. 533–546. ISSN: 1932-4537. DOI: 10.1109/TNSM.
2016.2598068.

[175] M. Mechtri, C. Ghribi, and D. Zeghlache. “VNF Placement and Chaining in
Distributed Cloud”. In: 2016 IEEE 9th International Conference on Cloud Com-
puting (CLOUD). 2016, pp. 376–383. DOI: 10.1109/CLOUD.2016.0057.

[176] Anu Mercian et al. “UDAAN: Embedding User-Defined Analytics Applica-
tions in Network Devices”. In: Proceedings of the 2019 Workshop on Network
Meets AI & ML. NetAI’19. Beijing, China: Association for Computing Ma-
chinery, 2019, 70–75. ISBN: 9781450368728. DOI: 10.1145/3341216.3342216.
URL: https://doi.org/10.1145/3341216.3342216.

[177] "Tayeb Ben Meriem et al. “GANA - Generic Autonomic Networking Archi-
tecture”. In: (2016).

[178] Justin Meza et al. “A Large Scale Study of Data Center Network Reliability”.
In: Proceedings of the Internet Measurement Conference 2018. IMC ’18. Boston,
MA, USA: ACM, 2018, pp. 393–407. ISBN: 978-1-4503-5619-0. DOI: 10.1145/
3278532.3278566. URL: http://doi.acm.org/10.1145/3278532.3278566.

[179] Mobile Edge Computing A key technology towards 5G - White Paper. https://
www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_
technology_towards_5g.pdf. [Online; accessed 01-May-2021].

[180] M. Mohammadian. “Network Security Risk Assessment Using Intelligent
Agents”. In: 2018 International Symposium on Agent, Multi-Agent Systems and
Robotics (ISAMSR). Putrajaya, Malaysia, Aug. 2018, pp. 1–6.

[181] O. Mohammed and J. Kianfar. “A Machine Learning Approach to Short-Term
Traffic Flow Prediction: A Case Study of Interstate 64 in Missouri”. In: 2018
IEEE International Smart Cities Conference (ISC2). 2018, pp. 1–7. DOI: 10.1109/
ISC2.2018.8656924.

[182] B. Mokhtar and M. Eltoweissy. “Memory-enabled autonomic resilient net-
working”. In: 7th International Conference on Collaborative Computing: Network-
ing, Applications and Worksharing (CollaborateCom). 2011, pp. 132–141.

[183] Benjamin Molina. INTER-Iot - Interoperability Internet of Things. en-US. (Vis-
ited on 08/18/2020).

[184] C. Mouradian, N. T. Jahromi, and R. H. Glitho. “NFV and SDN-Based Dis-
tributed IoT Gateway for Large-Scale Disaster Management”. In: IEEE Inter-
net of Things Journal 5.5 (2018), pp. 4119–4131. DOI: 10.1109/JIOT.2018.
2867255.

[185] C. Mouradian, S. Kianpisheh, and R. H. Glitho. “Application Component
Placement in NFV-based Hybrid Cloud/Fog Systems”. In: 2018 IEEE Inter-
national Symposium on Local and Metropolitan Area Networks (LANMAN). 2018,
pp. 25–30. DOI: 10.1109/LANMAN.2018.8475055.

[186] A. Moursy et al. “Testbed implementation for Autonomic Network Perfor-
mance Management of wireless mesh networks”. In: 2012 IEEE Globecom Work-
shops. 2012, pp. 903–907.

https://doi.org/10.1109/TNSM.2016.2598068
https://doi.org/10.1109/TNSM.2016.2598068
https://doi.org/10.1109/CLOUD.2016.0057
https://doi.org/10.1145/3341216.3342216
https://doi.org/10.1145/3341216.3342216
https://doi.org/10.1145/3278532.3278566
https://doi.org/10.1145/3278532.3278566
http://doi.acm.org/10.1145/3278532.3278566
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://doi.org/10.1109/ISC2.2018.8656924
https://doi.org/10.1109/ISC2.2018.8656924
https://doi.org/10.1109/JIOT.2018.2867255
https://doi.org/10.1109/JIOT.2018.2867255
https://doi.org/10.1109/LANMAN.2018.8475055

186 Bibliography

[187] Z. Movahedi et al. “A Survey of Autonomic Network Architectures and Eval-
uation Criteria”. In: IEEE Communications Surveys Tutorials 14.2 (May 2011),
pp. 464–490.

[188] Next G Alliance: Building the Foundation for North American Leadership in 6G and
Beyond. Accessed: 19-Oct-2021. 2021.

[189] NFV Technology. Accessed: 2019-10-30.

[190] D. T. Nguyen et al. “Placement and Chaining for Run-time IoT Service De-
ployment in Edge-Cloud”. In: IEEE Transactions on Network and Service Man-
agement (2019), pp. 1–1. ISSN: 2373-7379. DOI: 10.1109/TNSM.2019.2948137.

[191] J. C. Nobre and L. Z. Granville. “Towards Consistency of Policy States in
Decentralized Autonomic Network Management”. In: 2009 IEEE International
Symposium on Policies for Distributed Systems and Networks. London, UK, July
2009, pp. 170–173.

[192] L. Noirie et al. “Semantic networking: Flow-based, traffic-aware, and self-
managed networking”. In: Bell Labs Technical Journal 14.2 (2009), pp. 23–38.

[193] Nokia. Nokia white paper on 5G for Mission Critical Communication. Nokia, Fin-
land, 2018.

[194] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. “Interoper-
ability in Internet of Things Infrastructure: Classification, Challenges, and
Future Work: Third International Conference, IoTaaS 2017, Taichung, Taiwan,
September 20–22, 2017, Proceedings”. In: Jan. 2018, pp. 11–18. ISBN: 978-3-
030-00409-5. DOI: 10.1007/978-3-030-00410-1_2.

[195] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. “Interoper-
ability in Internet of Things Infrastructure: Classification, Challenges, and
Future Work: Third International Conference, IoTaaS 2017, Taichung, Taiwan,
September 20–22, 2017, Proceedings”. In: Jan. 2018, pp. 11–18. ISBN: 978-3-
030-00409-5. DOI: 10.1007/978-3-030-00410-1_2.

[196] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. “Interoper-
ability in Internet of Things: Taxonomies and Open Challenges”. In: Mobile
Networks and Applications 24.3 (2019), pp. 796–809. ISSN: 1572-8153. DOI: 10.
1007/s11036-018-1089-9.

[197] NOX Controller. Accessed: 2020-07-08.

[198] O. Obulesu, M. Mahendra, and M. ThrilokReddy. “Machine Learning Tech-
niques and Tools: A Survey”. In: 2018 International Conference on Inventive Re-
search in Computing Applications (ICIRCA). Coimbatore, India, 2018, pp. 605–
611. DOI: 10.1109/ICIRCA.2018.8597302.

[199] Yustus Eko Oktian et al. “A survey on design choice, Computer Networks.”
In: Journal of Cleaner Production 121 (2017), pp. 100–111. ISSN: 1389-1286. DOI:
10.1109/MC.2017.195..

[200] J. Okwuibe et al. “SDN Enhanced Resource Orchestration of Containerized
Edge Applications for Industrial IoT.” In: IEEE Transactions on Network and
Service Management 8 (2020.), pp. 229117–229131. DOI: 10.1109/ACCESS.2020.
3045563.

[201] R. Olfati-Saber, J. A. Fax, and R. M. Murray. “Consensus and Cooperation
in Networked Multi-Agent Systems”. In: Proceedings of the IEEE 95.1 (March
2007), pp. 215–233.

https://doi.org/10.1109/TNSM.2019.2948137
https://doi.org/10.1007/978-3-030-00410-1_2
https://doi.org/10.1007/978-3-030-00410-1_2
https://doi.org/10.1007/s11036-018-1089-9
https://doi.org/10.1007/s11036-018-1089-9
https://doi.org/10.1109/ICIRCA.2018.8597302
https://doi.org/10.1109/MC.2017.195.
https://doi.org/10.1109/ACCESS.2020.3045563
https://doi.org/10.1109/ACCESS.2020.3045563

Bibliography 187

[202] D. B. Oljira et al. “A model for QoS-aware VNF placement and provision-
ing”. In: 2017 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). 2017, pp. 1–7. DOI: 10.1109/NFV-SDN.2017.
8169829.

[203] ONOS. micro ONOS. [Online; accessed 01-May-2021]. 2020.

[204] ONOS Controller. Accessed: 2020-07-08.

[205] G. A. Oparin et al. “Distributed solvers of applied problems based on mi-
croservices and agent networks”. In: 2018 41st International Convention on In-
formation and Communication Technology, Electronics and Microelectronics (MIPRO).
2018, pp. 1415–1420. DOI: 10.23919/MIPRO.2018.8400255.

[206] OpenDaylight Controller. Accessed: 08-Jul-2020.

[207] M. Otokura et al. “Evolvable Virtual Network Function Placement Method:
Mechanism and Performance Evaluation”. In: IEEE Transactions on Network
and Service Management 16.1 (2019), pp. 27–40. ISSN: 2373-7379. DOI: 10.1109/
TNSM.2018.2890273.

[208] S. Ouiazzane, M. Addou, and F. Barramou. “A Multi-Agent Model for Net-
work Intrusion Detection”. In: 2019 1st International Conference on Smart Sys-
tems and Data Science (ICSSD). Rabat, Morocco, Oct. 2019, pp. 1–5.

[209] P4. P4 Consortium. [Online; accessed 31-Dec-2020]. 2020.

[210] C. Papagianni et al. “On the optimal allocation of virtual resources in cloud
computing networks”. In: IEEE Transactions on Computers 62.6 (2013), pp. 1060–
1071. ISSN: 0018-9340. DOI: 10.1109/TC.2013.31.

[211] S. K. Patri et al. “Rational Agent-Based Decision Algorithm for Strategic Con-
verged Network Migration Planning”. In: IEEE/OSA Journal of Optical Com-
munications and Networking 11.7 (June 2019), pp. 371–382.

[212] J. Pei et al. “Efficiently Embedding Service Function Chains with Dynamic
Virtual Network Function Placement in Geo-Distributed Cloud System”. In:
IEEE Transactions on Parallel and Distributed Systems 30.10 (2019), pp. 2179–
2192. ISSN: 2161-9883. DOI: 10.1109/TPDS.2018.2880992.

[213] V. Petrov et al. “Achieving End-to-End Reliability of Mission-Critical Traffic
in Softwarized 5G Networks”. In: IEEE Journal on Selected Areas in Communi-
cations 36.3 (2018), pp. 485–501. ISSN: 0733-8716. DOI: 10.1109/JSAC.2018.
2815419.

[214] Kouvatsos D.D. (eds) Popescu A. Constantinesu D. On Kleinrock’s Indepen-
dence Assumption In:Network Performance Engineering;Lecture Notes in Computer
Science,Berlin, Heidelberg. Vol. 5233. 2011. DOI: https://doi.org/10.1007/
978-3-642-02742-0_1.

[215] POX Controller. Accessed: 2020-07-08.

[216] E. S. Pramukantoro et al. “Middleware for Network Interoperability in IoT”.
In: 2018 5th International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI). 2018, pp. 499–502.

[217] J. Praveen, B. Praveen, and C. S. Ram Murthy. “A First Step Towards Auto-
nomic Optical Burst Switched Networks”. In: Second International Conference
on Autonomic Computing (ICAC’05). Seattle, WA, USA, June 2005, pp. 306–307.

[218] Q. Qi et al. “A SDN-based network virtualization architecture with autonomie
management”. In: 2014 IEEE Globecom Workshops (GC Wkshps). Austin, TX,
USA, Dec. 2014, pp. 178–182.

https://doi.org/10.1109/NFV-SDN.2017.8169829
https://doi.org/10.1109/NFV-SDN.2017.8169829
https://doi.org/10.23919/MIPRO.2018.8400255
https://doi.org/10.1109/TNSM.2018.2890273
https://doi.org/10.1109/TNSM.2018.2890273
https://doi.org/10.1109/TC.2013.31
https://doi.org/10.1109/TPDS.2018.2880992
https://doi.org/10.1109/JSAC.2018.2815419
https://doi.org/10.1109/JSAC.2018.2815419
https://doi.org/https://doi.org/10.1007/978-3-642-02742-0_1
https://doi.org/https://doi.org/10.1007/978-3-642-02742-0_1

188 Bibliography

[219] Y. Qiang, Y. Li, and J. Chen. “The Workload Adaptation in Autonomic DBMSs
Based on Layered Queuing Network Model”. In: 2009 Second International
Workshop on Knowledge Discovery and Data Mining. Moscow, Russia, Jan. 2009,
pp. 781–785.

[220] L. Qu, M. Khabbaz, and C. Assi. “Reliability-Aware Service Chaining In Carrier-
Grade Softwarized Networks”. In: IEEE Journal on Selected Areas in Communi-
cations 36.3 (2018), pp. 558–573. ISSN: 0733-8716. DOI: 10.1109/JSAC.2018.
2815338.

[221] L. Qu et al. “Reliability-Aware Service Function Chaining With Function De-
composition and Multipath Routing”. In: IEEE Transactions on Network and
Service Management (2019), pp. 1–1. ISSN: 2373-7379. DOI: 10 . 1109 / TNSM .
2019.2961153.

[222] T. Rahman and S. K. Chakraborty. “Provisioning Technical Interoperability
within ZigBee and BLE in IoT Environment”. In: 2018 2nd International Confer-
ence on Electronics, Materials Engineering Nano-Technology (IEMENTech). 2018,
pp. 1–4.

[223] B. Raouf et al. “DeepNFV: A Lightweight Framework for Intelligent Edge
Network Functions Virtualization”. In: Journal of Internet Services and Applica-
tions 9.1 (2018), p. 16. ISSN: 1869-0238. DOI: 10.1186/s13174-018-0087-2.

[224] Jim Reno. Linux containers vs. VMs: A security comparison. en. May 2016. (Vis-
ited on 08/07/2020).

[225] "Aaron Richard et al. Autonomous Networks: Empowering Digital Transformation
For Telecoms Industry. Accessed: 08-Jan-2021. May, 2019.

[226] RISE-6G: Reconfigurable Intelligent Sustainable Environments for 6G Wireless Net-
works. Accessed: 19-Oct-2021. 2021.

[227] Y. Rizk, M. Awad, and E. W. Tunstel. “Decision Making in Multiagent Sys-
tems: A Survey”. In: IEEE Transactions on Cognitive and Developmental Systems
10.3 (May 2018), pp. 514–529.

[228] K. Routh and T. Pal. “A survey on technological, business and societal aspects
of Internet of Things by Q3, 2017”. In: 2018 3rd International Conference On
Internet of Things: Smart Innovation and Usages (IoT-SIU). 2018, pp. 1–4. DOI:
10.1109/IoT-SIU.2018.8519898.

[229] M. Ruffini and F. Slyne. “Moving the Network to the Cloud: The Cloud Cen-
tral Office Revolution and Its Implications for the Optical Layer”. In: Journal
of Lightwave Technology 37.7 (January 2019), pp. 1706–1716.

[230] Ryu Controller. Accessed: 2020-07-08.

[231] C. Sacchi and S. Bonafini. “From LTE-A to LTE-M: a Futuristic Convergence
between Terrestrial and Martian Mobile Communications”. In: 2019 IEEE In-
ternational Black Sea Conference on Communications and Networking (BlackSea-
Com). 2019, pp. 1–5. DOI: 10.1109/BlackSeaCom.2019.8812825.

[232] G. Sakarkar and V. M. Thakar. “Autonomous software Agent for localiza-
tion”. In: 2009 International Conference on Intelligent Agent Multi-Agent Systems.
Chennai, India, July 2009, pp. 1–4.

[233] N. Samaan and A. Karmouch. “Towards Autonomic Network Management:
an Analysis of Current and Future Research Directions”. In: IEEE Communi-
cations Surveys Tutorials 11.3 (2009), pp. 22–36. DOI: 10.1109/SURV.2009.
090303.

https://doi.org/10.1109/JSAC.2018.2815338
https://doi.org/10.1109/JSAC.2018.2815338
https://doi.org/10.1109/TNSM.2019.2961153
https://doi.org/10.1109/TNSM.2019.2961153
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1109/IoT-SIU.2018.8519898
https://doi.org/10.1109/BlackSeaCom.2019.8812825
https://doi.org/10.1109/SURV.2009.090303
https://doi.org/10.1109/SURV.2009.090303

Bibliography 189

[234] M. G. Samaila et al. “IoT-HarPSecA: A Framework and Roadmap for Secure
Design and Development of Devices and Applications in the IoT Space”. In:
IEEE Access 8 (2020), pp. 16462–16494. DOI: 10.1109/ACCESS.2020.2965925.

[235] S. Sankar and S. Gurumurthi. “Soft Failures in Large Datacenters”. In: IEEE
Computer Architecture Letters 13.2 (2014), pp. 105–108. ISSN: 1556-6056. DOI:
10.1109/L-CA.2013.25.

[236] S. Schenker. The future of networking, the past of protocols. [Online; accessed
01-May-2021]. 2021.

[237] Liron Schiff, Stefan Schmid, and Petr Kuznetsov. “In-Band Synchronization
for Distributed SDN Control Planes”. In: SIGCOMM Comput. Commun.

[238] S. Schuetz et al. “Autonomic and decentralized management of wireless ac-
cess networks”. In: IEEE Transactions on Network and Service Management 4.2
(November 2007), pp. 96–106. DOI: 10.1109/TNSM.2007.070905.

[239] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez. “z-TORCH: An Automated
NFV Orchestration and Monitoring Solution”. In: IEEE Transactions on Net-
work and Service Management 15.4 (2018), pp. 1292–1306. DOI: 10.1109/TNSM.
2018.2867827.

[240] P. Sethi, N. Chauhan, and D. Juneja. “A multi-agent hybrid protocol for data
fusion and data aggregation in non-deterministic wireless sensor networks”.
In: 2013 International Conference on Information Systems and Computer Networks.
Mathura, India, March 2013, pp. 211–214.

[241] A. H. Shamsan and A. R. Faridi. “Network softwarization for IoT: A Survey”.
In: 2019 6th International Conference on Computing for Sustainable Global Devel-
opment (INDIACom). New Delhi, India, March 2019, pp. 1163–1168.

[242] M. Sharf and D. Zelazo. “Analysis and Synthesis of MIMO Multi-Agent Sys-
tems Using Network Optimization”. In: IEEE Transactions on Automatic Con-
trol 64.11 (March 2019), pp. 4512–4524.

[243] M. Sharf and D. Zelazo. “Network Feedback Passivation of Passivity-Short
Multi-Agent Systems”. In: IEEE Control Systems Letters 3.3 (May 2019), pp. 607–
612.

[244] M. J. Shaw, B. Harrow, and S. Herman. “Distributed artificial intelligence
for multi-agent problem solving and group learning”. In: Proceedings of the
Twenty-Fourth Annual Hawaii International Conference on System Sciences. Vol. iv.
Kauai, HI, USA, Jan. 1991, 13–26 vol.4.

[245] Dimitrios Sikeridis et al. “A Comparative taxonomy and survey of public
cloud infrastructure vendors”. In: arXiv preprint arXiv:1710.01476 (2017).

[246] Dimitrios Sikeridis et al. “Context-aware wireless-protocol selection in het-
erogeneous public safety networks”. In: IEEE Transactions on Vehicular Tech-
nology 68.2 (2018), pp. 2009–2013.

[247] Dimitrios Sikeridis et al. “Energy-efficient orchestration in wireless powered
internet of things infrastructures”. In: IEEE Transactions on Green Communica-
tions and Networking 3.2 (2018), pp. 317–328.

[248] Dimitrios Sikeridis et al. “Self-adaptive energy efficient operation in UAV-
assisted public safety networks”. In: 2018 IEEE 19th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC). IEEE. 2018,
pp. 1–5.

https://doi.org/10.1109/ACCESS.2020.2965925
https://doi.org/10.1109/L-CA.2013.25
https://doi.org/10.1109/TNSM.2007.070905
https://doi.org/10.1109/TNSM.2018.2867827
https://doi.org/10.1109/TNSM.2018.2867827

190 Bibliography

[249] Dimitrios Sikeridis et al. “Unsupervised crowd-assisted learning enabling
location-aware facilities”. In: IEEE Internet of Things Journal 5.6 (2018), pp. 4699–
4713.

[250] Dimitrios Sikeridis et al. “Wireless powered Public Safety IoT: A UAV-assisted
adaptive-learning approach towards energy efficiency”. In: Journal of Network
and Computer Applications 123 (2018), pp. 69–79.

[251] P. Skarin et al. “Towards Mission-Critical Control at the Edge and Over 5G”.
In: 2018 IEEE International Conference on Edge Computing (EDGE). 2018, pp. 50–
57. DOI: 10.1109/EDGE.2018.00014.

[252] F. Slim et al. “Towards a dynamic adaptive placement of virtual network
functions under ONAP”. In: 2017 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN). Berlin, Germany, Nov.
2017, pp. 210–215. DOI: 10.1109/NFV-SDN.2017.8169880.

[253] Gan Kim Soon et al. “A Review on Agent Communication Language”. In:
Computational Science and Technology. Ed. by Rayner Alfred et al. Singapore:
Springer Singapore, 2019, pp. 481–491. ISBN: 978-981-13-2622-6.

[254] O. Soualah et al. “A Green VNF-FG Embedding Algorithm”. In: 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft). 2018, pp. 141–
149. DOI: 10.1109/NETSOFT.2018.8460013.

[255] O. Soualah et al. “Energy Efficient Algorithm for VNF Placement and Chain-
ing”. In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). 2017, pp. 579–588. DOI: 10.1109/CCGRID.2017.84.

[256] Stanford and NASA Launch Tiny IoT Satellites Into Earth’s Orbit. https : / /
theiotmagazine.com/stanford-and-nasa-launch-tiny-iot-satellites-
into-earths-orbit-9e5f92487500.

[257] R. Sterritt. “Autonomous and Autonomic Systems: Paradigm for Engineer-
ing Effective Software-Based Systems?” In: 2009 33rd Annual IEEE Software
Engineering Workshop. Skovde, Sweden, Oct. 2009, pp. 57–57.

[258] B. L. R. Stojkoska and K. V. Trivodaliev. “A review of Internet of Things for
smart home: challenges and solutions.” In: Journal of Cleaner Production 140.4
(2017), 1454–1464. DOI: 10.1016/j.jclepro.2016.10.006.

[259] J. Strassner. “Autonomic Networking”. In: Fifth IEEE Workshop on Engineering
of Autonomic and Autonomous Systems (ease 2008). 2008, pp. 3–3.

[260] J. Strassner. “Autonomic networking - theory and practice”. In: 2004 IEEE/IFIP
Network Operations and Management Symposium (IEEE Cat. No.04CH37507).
Vol. 1. 2004, 927 Vol.1–. DOI: 10.1109/NOMS.2004.1317811.

[261] J. Strassner and J. O. Kephart. “Autonomic Systems and Networks: Theory
and Practice”. In: 2006 IEEE/IFIP Network Operations and Management Sympo-
sium NOMS 2006. 2006, pp. 588–588.

[262] N. A. M. Subha, G. Liu, and N. H. M. Yusof. “External Consensus in Net-
worked Multi-Agent Systems with Random Network Delay”. In: 2018 57th
Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE). Nara, Japan, Sept. 2018, pp. 427–432.

[263] T. Subramanya and R. Riggio. “Machine Learning-Driven Scaling and Place-
ment of Virtual Network Functions at the Network Edges”. In: 2019 IEEE
Conference on Network Softwarization (NetSoft). Paris, France, June 2019, pp. 414–
422. DOI: 10.1109/NETSOFT.2019.8806631.

https://doi.org/10.1109/EDGE.2018.00014
https://doi.org/10.1109/NFV-SDN.2017.8169880
https://doi.org/10.1109/NETSOFT.2018.8460013
https://doi.org/10.1109/CCGRID.2017.84
https://theiotmagazine.com/stanford-and-nasa-launch-tiny-iot-satellites-into-earths-orbit-9e5f92487500
https://theiotmagazine.com/stanford-and-nasa-launch-tiny-iot-satellites-into-earths-orbit-9e5f92487500
https://theiotmagazine.com/stanford-and-nasa-launch-tiny-iot-satellites-into-earths-orbit-9e5f92487500
https://doi.org/10.1016/j.jclepro.2016.10.006
https://doi.org/10.1109/NOMS.2004.1317811
https://doi.org/10.1109/NETSOFT.2019.8806631

Bibliography 191

[264] Support Vector Machine - Mitosis Technologies. Accessed on January 5, 2021.

[265] M. Surligas, A. Makrogiannakis, and S. Papadakis. “Empowering the IoT
Heterogeneous Wireless Networking with Software Defined Radio”. In: 2015
IEEE 81st Vehicular Technology Conference (VTC Spring). 2015, pp. 1–5.

[266] System Architecture for the 5G System. https://www.etsi.org/deliver/etsi_
ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf. [Online;
accessed 01-May-2021].

[267] M. M. Tajiki et al. “Joint Energy Efficient and QoS-Aware Path Allocation
and VNF Placement for Service Function Chaining”. In: IEEE Transactions on
Network and Service Management 16.1 (2019), pp. 374–388. ISSN: 1932-4537. DOI:
10.1109/TNSM.2018.2873225.

[268] M. M. Tajiki et al. “Joint Energy Efficient and QoS-Aware Path Allocation
and VNF Placement for Service Function Chaining”. In: IEEE Transactions on
Network and Service Management 16.1 (2019), pp. 374–388. ISSN: 2373-7379. DOI:
10.1109/TNSM.2018.2873225.

[269] H. Tang, D. Zhou, and D. Chen. “Dynamic Network Function Instance Scal-
ing Based on Traffic Forecasting and VNF Placement in Operator Data Cen-
ters”. In: IEEE Transactions on Parallel and Distributed Systems 30.3 (2019), pp. 530–
543. ISSN: 2161-9883. DOI: 10.1109/TPDS.2018.2867587.

[270] L. Tang et al. “Queue-Aware Dynamic Placement of Virtual Network Func-
tions in 5G Access Network”. In: IEEE Access 6 (2018), pp. 44291–44305. ISSN:
2169-3536. DOI: 10.1109/ACCESS.2018.2862632.

[271] Z. Taoqing and H. Xiaoying. “Self-adaptive Network Service Research Based
on Multi-Agents in Hierarchy”. In: 2010 First International Conference on Net-
working and Distributed Computing. Hangzhou, China, Oct. 2010, pp. 314–316.

[272] N. Tcholtchev and R. Chaparadza. “Autonomic Fault-Management and re-
silience from the perspective of the network operation personnel”. In: 2010
IEEE Globecom Workshops. 2010, pp. 469–474.

[273] TechEdSat-5 (Technical Education Satellite-5). Accessed: 25-Feb-2021.

[274] H. Tianfield. “Multi-agent based autonomic architecture for network man-
agement”. In: IEEE International Conference on Industrial Informatics, 2003. IN-
DIN 2003. Proceedings. Banff, Alberta, Canada, 2003, pp. 462–469.

[275] H. Tianfield. “Towards Edge-Cloud Computing”. In: 2018 IEEE International
Conference on Big Data (Big Data). Seattle, WA, USA, Dec. 2018, pp. 4883–4885.

[276] A. Tizghadam and A. Leon-Garcia. “AORTA: Autonomic network control
and management system”. In: IEEE INFOCOM Workshops 2008. Phoenix, AZ,
USA, April 2008, pp. 1–4.

[277] Amin Tootoonchian and Yashar Ganjali. “HyperFlow: A Distributed Control
Plane for OpenFlow”. In: Proceedings of the 2010 Internet Network Management
Conference on Research on Enterprise Networking. USA, 2010, p. 3.

[278] K. Tsagkaris et al. “Customizable Autonomic Network Management: Inte-
grating Autonomic Network Management and Software-Defined Network-
ing”. In: IEEE Vehicular Technology Magazine 10.1 (February 2015), pp. 61–68.

[279] Weinan William Tseng and et al. “Distributed service subsystem architecture
for distributed network management”. In: U.S. Patent 6,308,207 (2001).

https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/15.03.00_60/ts_123501v150300p.pdf
https://doi.org/10.1109/TNSM.2018.2873225
https://doi.org/10.1109/TNSM.2018.2873225
https://doi.org/10.1109/TPDS.2018.2867587
https://doi.org/10.1109/ACCESS.2018.2862632

192 Bibliography

[280] G. Uma, B.E. Prasad, and O.Nalini Kumari. “Distributed intelligent systems:
issues, perspectives and approaches”. In: Knowledge-Based Systems 6.2 (1993),
pp. 77 –86. ISSN: 0950-7051. DOI: https://doi.org/10.1016/0950-7051(93)
90022-L. URL: http://www.sciencedirect.com/science/article/pii/
095070519390022L.

[281] S. van der Meer, J. Keeney, and L. Fallon. “5G networks must be autonomic!”
In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Sympo-
sium. Taipei, Taiwan, April 2018, pp. 1–5.

[282] J. L. Vieira and D. Passos. “An SDN-based access point virtualization solution
for multichannel IEEE 802.11 networks”. In: 2019 10th International Conference
on Networks of the Future (NoF). 2019, pp. 122–125.

[283] M. Villamizar et al. “Evaluating the monolithic and the microservice architec-
ture pattern to deploy web applications in the cloud”. In: 2015 10th Computing
Colombian Conference (10CCC). Accessed: 2021-05-01. 2015, pp. 583–590.

[284] Vishwanath Chukkala et al. “Modeling the radio frequency environment of
Mars for future wireless, networked rovers and sensor Webs”. In: 2004 IEEE
Aerospace Conference Proceedings (IEEE Cat. No.04TH8720). Vol. 2. 2004, 1329–
1336 Vol.2. DOI: 10.1109/AERO.2004.1367731.

[285] Rem W. Collier et al. “MAMS: Multi-Agent MicroServices*”. In: Companion
Proceedings of The 2019 World Wide Web Conference. WWW ’19. San Francisco,
USA: Association for Computing Machinery, 2019, 655–662. ISBN: 9781450366755.
DOI: 10.1145/3308560.3316509. URL: https://doi.org/10.1145/3308560.
3316509.

[286] W3C, “W3C Semantic Integration Interoperability Using RDF and OWL.” Ac-
cessed: 14-Jan-2021.

[287] L. Wang and E. Gelenbe. “Demonstrating Voice over an Autonomic Net-
work”. In: 2015 IEEE International Conference on Autonomic Computing. 2015,
pp. 139–140.

[288] L. Wang et al. “Joint Optimization of Service Function Chaining and Resource
Allocation in Network Function Virtualization”. In: IEEE Access 4 (2016), pp. 8084–
8094. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2016.2629278.

[289] S. Wang and C. Chang. “Supporting TCP-Based Remote Managements of
LoRa/LoRaWAN Devices”. In: 2019 IEEE 90th Vehicular Technology Conference
(VTC2019-Fall). 2019, pp. 1–5.

[290] S. Wang et al. “An autonomic communication based conceptual and architec-
ture model for cognitive radio nodes”. In: IET 3rd International Conference on
Wireless, Mobile and Multimedia Networks (ICWMNN 2010). 2010, pp. 200–204.

[291] W. Wang et al. “Autonomic QoS management mechanism in Software De-
fined Network”. In: China Communications 11.7 (2014), pp. 13–23.

[292] Yuxuan Wang et al. “Satellite Edge Computing for the Internet of Things in
Aerospace”. In: Sensors 2019. 20-4375. 2019, pp. 19–20.

[293] Z. Wang et al. “Optimal Control Design for Connected Cruise Control with
Edge Computing, Caching, and Control”. In: IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2019,
pp. 1–6. DOI: 10.1109/INFOCOMWKSHPS47286.2019.9093766.

https://doi.org/https://doi.org/10.1016/0950-7051(93)90022-L
https://doi.org/https://doi.org/10.1016/0950-7051(93)90022-L
http://www.sciencedirect.com/science/article/pii/095070519390022L
http://www.sciencedirect.com/science/article/pii/095070519390022L
https://doi.org/10.1109/AERO.2004.1367731
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1145/3308560.3316509
https://doi.org/10.1109/ACCESS.2016.2629278
https://doi.org/10.1109/INFOCOMWKSHPS47286.2019.9093766

Bibliography 193

[294] Z. Wang et al. “Service Function Chain Composition, Placement, and Assign-
ment in Data Centers”. In: IEEE Transactions on Network and Service Manage-
ment 16.4 (2019), pp. 1638–1650. ISSN: 2373-7379. DOI: 10.1109/TNSM.2019.
2933872.

[295] C. Wannachakrit and T. Anwar. “Development of network management sys-
tem for network services provider”. In: 2011 Malaysian Conference in Software
Engineering. Johor Bahru, Malaysia, Dec. 2011, pp. 439–444.

[296] J. Watada et al. “Emerging Trends, Techniques and Open Issues of Container-
ization: A Review”. In: IEEE Access 7 (October 2019), pp. 152443–152472.

[297] J. Wei and S. Cao. “Application of Edge Intelligent Computing in Satellite
Internet of Things”. In: 2019 IEEE International Conference on Smart Internet of
Things (SmartIoT). 2019, pp. 85–91. DOI: 10.1109/SmartIoT.2019.00022.

[298] T. Werthmann et al. “Task assignment strategies for pools of baseband com-
putation units in 4G cellular networks”. In: 2015 IEEE International Conference
on Communication Workshop (ICCW). 2015, pp. 2714–2720. DOI: 10.1109/ICCW.
2015.7247589.

[299] What is the Deep Space Network? Accessed: 26-Feb-2021.

[300] Wi-Fi enables next generation space exploration. Accessed: 25-Feb-2021.

[301] D. Wu et al. “Towards Distributed SDN: Mobility Management and Flow
Scheduling in Software Defined Urban IoT”. In: IEEE Transactions on Parallel
and Distributed Systems 31.6 (2020), pp. 1400–1418. DOI: 10.1109/TPDS.2018.
2883438.

[302] M. Wódczak et al. “Standardizing a reference model and autonomic network
architectures for the self-managing future internet”. In: IEEE Network 25.6
(November 2011), pp. 50–56.

[303] G. Xilouris et al. “Towards Autonomic Policy-based Network Service De-
ployment with SLA and Monitoring”. In: 2018 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). Verona, Italy,
Nov. 2018, pp. 1–2. DOI: 10.1109/NFV-SDN.2018.8725695.

[304] P. Yadav and S. Vishwakarma. “Application of Internet of Things and Big
Data towards a Smart City”. In: 2018 3rd International Conference On Internet
of Things: Smart Innovation and Usages (IoT-SIU). 2018, pp. 1–5. DOI: 10.1109/
IoT-SIU.2018.8519920.

[305] L. Yala, P. A. Frangoudis, and A. Ksentini. “Latency and Availability Driven
VNF Placement in a MEC-NFV Environment”. In: 2018 IEEE Global Communi-
cations Conference (GLOBECOM). 2018, pp. 1–7. DOI: 10.1109/GLOCOM.2018.
8647858.

[306] Yan Liu et al. “A model-based approach to adding autonomic capabilities
to network fault management system”. In: NOMS 2008 - 2008 IEEE Network
Operations and Management Symposium. 2008, pp. 859–862.

[307] B. Yang et al. “Algorithms for Fault-Tolerant Placement of Stateful Virtualized
Network Functions”. In: 2018 IEEE International Conference on Communications
(ICC). 2018, pp. 1–7. DOI: 10.1109/ICC.2018.8422444.

[308] H. Yao et al. “The Space-Terrestrial Integrated Network: An Overview”. In:
IEEE Communications Magazine 56.9 (2018), pp. 178–185. DOI: 10.1109/MCOM.
2018.1700038.

https://doi.org/10.1109/TNSM.2019.2933872
https://doi.org/10.1109/TNSM.2019.2933872
https://doi.org/10.1109/SmartIoT.2019.00022
https://doi.org/10.1109/ICCW.2015.7247589
https://doi.org/10.1109/ICCW.2015.7247589
https://doi.org/10.1109/TPDS.2018.2883438
https://doi.org/10.1109/TPDS.2018.2883438
https://doi.org/10.1109/NFV-SDN.2018.8725695
https://doi.org/10.1109/IoT-SIU.2018.8519920
https://doi.org/10.1109/IoT-SIU.2018.8519920
https://doi.org/10.1109/GLOCOM.2018.8647858
https://doi.org/10.1109/GLOCOM.2018.8647858
https://doi.org/10.1109/ICC.2018.8422444
https://doi.org/10.1109/MCOM.2018.1700038
https://doi.org/10.1109/MCOM.2018.1700038

194 Bibliography

[309] A. Y. Yazıcıoğlu, M. Egerstedt, and J. S. Shamma. “Formation of Robust Multi-
Agent Networks through Self-Organizing Random Regular Graphs”. In: IEEE
Transactions on Network Science and Engineering 2.4 (2015), pp. 139–151.

[310] Q. Ye et al. “End-to-End Delay Modeling for Embedded VNF Chains in 5G
Core Networks”. In: IEEE Internet of Things Journal 6.1 (2019), pp. 692–704.
ISSN: 2327-4662. DOI: 10.1109/JIOT.2018.2853708.

[311] H. Yu et al. “Implementation of C-RAN Architecture with CU-CP and CU-
UP Separation Based on SDR/NFV”. In: 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall). 2019, pp. 1–5.

[312] W. Yu et al. “A Survey on the Edge Computing for the Internet of Things”.
In: IEEE Access 6 (2018), pp. 6900–6919. DOI: 10.1109/ACCESS.2017.2778504.

[313] M. Zeng, W. Fang, and Z. Zhu. “Orchestrating Tree-Type VNF Forwarding
Graphs in Inter-DC Elastic Optical Networks”. In: Journal of Lightwave Tech-
nology 34.14 (2016), pp. 3330–3341. ISSN: 0733-8724. DOI: 10.1109/JLT.2016.
2565002.

[314] D. Zhang, C. Lu, and X. Jia. “Leader-following consensus of for multi-agent
systems under event-triggering communication and network-induced delays”.
In: 2016 Chinese Control and Decision Conference (CCDC). Yinchuan, China,
May 2016, pp. 2344–2349.

[315] H. Zhang et al. “A novel autonomic architecture for QoS management in
wired network”. In: 2010 IEEE Globecom Workshops. Miami, FL, USA, Dec.
2010, pp. 529–533.

[316] L. Zhang et al. “Performance Analysis and Optimal Cooperative Cluster Size
for Randomly Distributed Small Cells Under Cloud RAN”. In: IEEE Access 4
(2016), pp. 1925–1939. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2016.2550758.

[317] P. Zhang and J. Wang. “SIP based scheme for collaborative autonomic net-
work management”. In: 2013 5th IEEE International Conference on Broadband
Network Multimedia Technology. Guilin, China, Nov. 2013, pp. 323–326.

[318] X. Zhang et al. “Virtual Agent Clustering Based Mobility Management Over
the Satellite Networks”. In: IEEE Access 7 (July 2019), pp. 89544–89555.

[319] R. Zhou. “An Online Placement Scheme for VNF Chains in Geo-Distributed
Clouds”. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS). 2018, pp. 1–2. DOI: 10.1109/IWQoS.2018.8624140.

https://doi.org/10.1109/JIOT.2018.2853708
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/JLT.2016.2565002
https://doi.org/10.1109/JLT.2016.2565002
https://doi.org/10.1109/ACCESS.2016.2550758
https://doi.org/10.1109/IWQoS.2018.8624140

	Acknowledgements
	Introduction to Network Automation and Network Softwarization
	Introduction
	Network Softwarization: Overview and Motivation
	Network Softwarization
	Software Defined Networking (SDN)
	Network Function Virtualization

	Overview of Network Management Systems and Network Automation
	Network Management and Control as a Cyclic Process

	Edge Computing, Cloudification, and Containerization
	Containerization and Cloudificaton
	Edge Computing
	C-RAN

	Microservice and Multi-Agent Systems for Autonomic Networking
	Microservice Architecture
	Application of Multi-Agent for Network Automation

	Artificial Intelligence and Machine Learning for Networking
	LTE, 5G, B5G, and 6G
	LTE Technologies
	5G Technologies
	5G Service Requirements
	B5G, and 6G

	Mathematical Models for Softwarized Networks, VNF Design, and Softwarized LTE/5G Functions' Local Deployment
	Introduction
	Existing VNF Placement Algorithms
	Resource Optimization
	Minimizing Service Delay
	Minimizing Energy Consumption
	Maximizing Reliability, Availability and Service Admission
	VNF Placement in Cloud, Fog and Edge Data Center Computing
	Load balancing and Traffic Steering in Service Function Chain

	C-RAN Modeling as a Multi-layer Loopless-random Hypergraph
	System Model
	Service Modeling
	System Model Formulation
	End-to-end Service Latency
	End-to-end Service Reliability
	Edge Data Center's Computing Capacity Constraint
	End-to-End Power Consumption
	Throughput Constraint
	Overall Service Admission Probability
	Overall Multi-Objective Formulation

	System Model Formulation with Service Differentiation
	Improving VNFs Reliability by Using Backup VNFs for Critical Services
	Allocating More Processing Resources to Reduce Edge Data Center Processing Latency for Critical Services
	Energy Efficiency Calculation

	Performance Evaluation of the VNF Placement Mathematical Model
	Reliability and Latency Constraint Analysis
	Throughput Constraint Analysis
	Edge Data Center Computational Capacity Constraint Analysis

	Power Consumption and Energy Efficiency Analysis

	A Translator as Virtual Network Function for Network Level Interoperability of Different IoT Technologies
	Overview of IoT Technology Interoperability
	Proposed Network Level Interoperability Architecture
	A VNF Based IoT Interoperability Translator Simulation and Performance Evaluation

	Emulation of LTE, LTE-A, and 5G Over a Lightweight Open-Platform: Re-configuration Delay Analysis
	Overview of Mobile and Cloud Technologies
	LTE Technologies
	5G Technologies

	Cloud Based Wireless Technologies Deployment
	Kubernetes

	4G/5G Emulation Testbed and Performance Evaluation
	Creation of Kubernetes Cluster Using K3d
	Migration of 4G/5G docker container images to Kubernetes cluster

	Multi-Agent Based Network Management Automation
	Introduction
	State of the Art in Multi-Agent Based Autonomic Networking
	Autonomic Networking: Historical Perspective
	Autonomic Networking before the Introduction of SDN and NFV
	Autonomic Networking After the Widespread Adoption of SDN and NFV

	Multi-Agent Systems for Autonomic Networking

	Network Management Automation Challenges
	Decision Theory from Network Automation Perspectives
	Data Analytics and Cognition
	Generating Cumulative Decision
	Decision Organization
	Overall Autonomic Decision Assessment and Verification
	Decision Execution
	Monitoring System Behavior

	Multi-Agent Based Autonomic Network Management System
	Multi-Agent based Network Management System
	Multi-Agents and Microservices for Decentralized and Loosely-coupled Softwarized Systems

	Proposed MANA-NMS Architecture
	Network Functions Atomization
	Proposed MANA-NMS Architecture in Comparison with GANA Architecture
	Proposed MANA-NMS Architecture in Comparison with SDN-NFV Architecture

	Mathematical Representation of Multi-agent Autonomic Network Management System
	Service Arrival, Scheduling, and Admission
	Service Latency in Edge Data Center
	Data Center Based Multi-Agent System Reliability

	MANA-NMS Architecture's Performance Evaluation
	System Description and Simulation Environment Specification
	Service Arrival and Processing Evaluation
	Agent Utilization and Edge Data Center Resource Consumption
	Service Queuing and Processing Latency Evaluation
	System Evaluation for Fail-over Scenarios
	System Reliability Evaluation and Service Differentiation for Resource Efficiency

	Autonomous Network Traffic Classifier Agent for Autonomic Network Management System
	Overview and Background
	Machine Learning Models For Network Traffic Classification
	Decision Tree Classifier Algorithm
	Naive Bayes Classifier Algorithm
	Support Vector Machine Classifier Algorithm
	K-Nearest Neighbours Classifier Algorithm

	Proposed Network Traffic Classifier Agent
	Agents
	Network Traffic Classifier Agent Architecture
	Communication in MANA-NMS

	Performance Evaluation of Classifier Agent
	Conceptual Framework for the Network Traffic Classifier Agent Implementation
	Evaluation Results

	SDN Controller Decomposition Using Microservice
	Introduction
	Background and Motivation
	Background

	Overview of SDN Controller Components
	Ryu SDN Framework

	Motivation for SDN Controller Decomposition
	Microservices-Based SDN Controller Decomposition
	Decomposing SDN Controller
	SDN Controller Internal Components as a Microservice
	External Applications as a Microservice
	Communication Interface Between Decomposed Services
	Communication Interface Between the decomposed Microservice based Controller Functions

	Decomposed SDN Controller TestBed Implementation and Performance Results
	Decomposing Ryu SDN Controller
	Experimental Environment
	Benchmark of Network Communication Protocols
	Resilience and Scalability Test
	Resilience Test
	Scalability Test

	MANA-NMS based Unified Architecture and Its Application in 6G and Next Generation Network Management Systems
	Introduction
	Motivation and Background
	Microservices-based SDN Controller
	ETSI SDN-NFV MANO
	ETSI GANA
	Generic Autonomic Network Architecture
	Multi-Agent System

	3GPP-ETSI MEC Architecture
	Proposed Unified Grad Architecture
	Proposed Unified Architecture
	Network Function Atomization
	Agent Internal Architecture
	Multi-Agent Based SDN Controller Decomposition

	Future Application of MANA-NMS
	MANA-NMS for IoT Connectivity Technology Management for Space Application
	Internet of Things
	Network Coverage, Network Softwarization, and Network Automation
	Backbone Network Technologies for Space Applications
	Network Coverage Technologies on Remote Environment
	Virtualization and Softwarization
	Network Automation

	Artificial Intelligence for Space Applications
	Cloud, Edge, and Fog Computing
	Teleoperation Using Edge Computing

	Summary and Conclusion

	Bibliography

