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Abstract

Crowdsourcing involves releasing tasks on the internet for people with diverse backgrounds

and skills to solve. Its adoption has come a long way, from scaling up problem solving

to becoming an environment for running complex experiments. Designing tasks to obtain

reliable results is not straightforward as it requires many design choices that grow with the

complexity of crowdsourcing projects, often demanding multiple trial-and-error iterations

to properly configure. These inherent characteristics of crowdsourcing, the complexity of

the design space and heterogeneity of the crowd, set quality control as a major concern,

making it an integral part of task design.

Despite all the progress and guidelines for developing effective tasks, crowdsourcing

still is addressed as an “art” rather than an exact science, in part due to the challenges

related to task design but also because crowdsourcing allows more complex use cases

nowadays, where the support available has not yet caught up with this progress. This leaves

researchers and practitioners at the forefront to often rely on intuitions instead of informed

decisions. Running controlled experiments in crowdsourcing platforms is a prominent

example. Despite their importance, experiments in these platforms are not yet first-class

citizens, making researchers resort to building custom features to compensate for the lack

of support, where pitfalls in this process may be detrimental to the experimental outcome.

In this thesis, therefore, our goal is to attend to the need of moving crowdsourcing from

art to science from two perspectives that interplay with each other: providing guidance on

task design through experimentation, and supporting the experimentation process itself.

First, we select classification problems as a use case, given their importance and pervasive

nature, and aim to bring awareness, empirical evidence, and guidance to previously un-

explored task design choices to address performance concerns. And second, we also aim

to make crowdsourcing accessible to researchers and practitioners from all backgrounds,

reducing the requirement of in-depth knowledge of known biases in crowdsourcing plat-

forms, experimental methods, as well as programming skills to overcome the limitations of

crowdsourcing providers while running experiments.

We start by proposing task design strategies to address workers’ performance, quality

and time, in crowdsourced classification tasks. Then we distill the challenges associated

with running controlled crowdsourcing experiments, propose coping strategies to address

these challenges, and introduce solutions to help researchers report their crowdsourcing

experiments, moving crowdsourcing forward to standardized reporting.

Keywords: crowdsourcing, classification, task design, crowdsourcing experiments
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Chapter 1

Introduction

The adoption of crowdsourcing to solve problems has come a long way, from mainly serving

as a tool to scale problem solving (e.g., label data for machine learning models [Snow et al.,

2008; Liu et al., 2016]) to becoming a surrogate to complex experiments typically run in

traditional laboratory settings [Paolacci et al., 2010; Mason and Watts, 2009; Schnoebelen

and Kuperman, 2010; Crump et al., 2013] — however, crowdsourcing is still addressed as

an “art” rather than an exact science.

Crowdsourcing involves releasing tasks on the internet for people with varying skills to

solve, capitalizing on what is known as the “wisdom of crowds” — the collective performance

outsmart the few individual ones. As such, crowdsourcing represents an attractive approach

to practitioners and researchers as it allows to scale solutions requiring human intervention

to levels where involving only experts is impractical. However, crowdsourcing is not

straightforward to apply as designing proper tasks to obtain reliable results from the

crowd is challenging and involves several design choices (e.g., instructions, compensation

levels, allotted time to complete the task). Task design involves, besides defining the task

interface, mechanisms to deploy, coordinate, collect, and curate the contributions from

non-experts annotators. Despite all the progress and guidelines for developing effective

tasks, getting the task right is still a trial-and-error process [Vaughan, 2017], amplified by

the complexity of the design space and the heterogeneity of the crowd, people (known as

workers) with diverse backgrounds, skills, and commitment levels [Gadiraju et al., 2015].

These inherent characteristics of crowdsourcing set quality control as a major concern. It is

indeed an active area of research within the crowdsourcing community, where researchers

propose techniques to control and assure quality, making quality control an integral part

of task design (see Daniel et al. [2018] for a review).

Crowdsourcing is treated as an art not only because of the challenges associated with

task design but because these challenges grow along with the complexity of crowdsourcing

projects. These challenges result from the fact that crowdsourcing enables more complex
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use cases nowadays, but the support and guidance available has not yet caught up with this

progress. This situation leaves researchers and practitioners at the forefront to often rely

on their intuition instead of delivering informed decisions. Running controlled experiments

in crowdsourcing platforms is a prominent example. Crowdsourcing researchers leverage

experiments to, for example, improve their understanding of human behavior in crowd-

sourcing environments, propose new methods for obtaining quality results, and develop

tools to support research and application of crowdsourcing. Despite their importance,

experiments in crowdsourcing platforms are not yet first-class citizens, making researchers

resort to building custom features to deploy their experiments [Mason and Suri, 2012].

These challenges may involve the selected experimental design (e.g., a between-subjects

study), how this design is mapped to micro-tasks in a crowdsourcing platform, and the

strategies used for sampling participants and running the experiments. Pitfalls in this

process may result in the introduction of bias [Difallah et al., 2018; Qarout et al., 2019],

wasted data due to invalid contributions [Kittur et al., 2008], or even deriving the wrong

conclusions [Mason and Suri, 2012; Chandler et al., 2013].

The goal of this thesis is, therefore, to attend to the need of “moving crowdsourcing from

art to science” from two perspectives that interplay with each other: providing guidance

on task design through experimentation, and supporting the experimentation process

itself. First, we aim to bring awareness, empirical evidence, and guidance to previously

unaddressed task design choices in well-known problems. And second, we also aim to make

crowdsourcing accessible to researchers and practitioners from all backgrounds, reducing

the requirement of in-depth knowledge of known biases in crowdsourcing platforms,

experimental methods, as well as programming skills to overcome the limitations of

crowdsourcing providers while running experiments.

The approach we follow in this thesis thus unfolds into two main interconnected parts

that take classification problems as a use case, aiming for results that apply to other

contexts and problems. The choice of classification is given because it is a fairly popular

task choice in major crowdsourcing platforms [Gadiraju et al., 2014], as well as within

and beyond academic environments [Wallace et al., 2017; Wulczyn et al., 2017; Lan

et al., 2017]. First, we focus on proposing previously unexplored task design choices to

address performance concerns in crowdsourced classification tasks. Indeed, task design

has many angles, and it is an active area of research, where explored dimensions (not only

applicable to classification tasks) include, for example, worker compensation [Ho et al.,

2015; Whiting et al., 2019], instructions [Wu and Quinn, 2017; Kittur et al., 2013], even

worker environment [Gadiraju et al., 2017a]. As we need empirical evidence, through

experimentation, to suggest what task design choices actually work, the second part of

this thesis devotes its attention to addressing potential biases that could emerge from
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pitfalls in the design, deployment, and reporting of crowdsourcing experiments.

Providing guidance on structuring crowdsourcing tasks

As scientists, we frequently face text classification problems as part of our daily activities

— a typical case being identifying documents that meet a set of conditions. In evidence-

based medicine and other domains, a critical part of systematic literature reviews involve

screening papers to select the subset of scientific articles that meet a set of inclusion

criteria (e.g., studies involving older adults 65+ years of age living in nursing homes)

[Wallace et al., 2017]. Places like Wikipedia Talk pages, where people collaborate (through

text comments) to produce, discuss, and improve articles, often require administrators to

moderate the discussion to avoid harmful and disrespectful behavior among contributors.

Researchers typically brand this as a content moderation problem, with approaches often

treating it as a classification task to identify negative comments and take some actions

[Wulczyn et al., 2017]. In fact, its ubiquitous nature makes classification problems go

beyond academic environments, as even simple tasks like choosing hotels matching a set of

characteristics of interests can be cast as classification tasks [Lan et al., 2017]. Formally,

these examples are instances of multi-predicate classification that aims to select items that

meet a set of predicates, where the predicates correspond to desired characteristics.

A common method to solve multi-predicate classification problems is to leverage

crowdsourcing [Parameswaran et al., 2012a; Park and Widom, 2013; Krivosheev et al.,

2017, 2018]. In principle, the Condorcet’s theorem from the 18th century states that if each

member of a jury gives a correct judgment with probability higher than random (p > 0.5)

and the votes are independent, then as the number of jurors grows the probability that

the majority would make a correct decision increases (approaching 1). An interpretation

of this theorem from a crowdsourcing perspective is that we can crowdsource any task

and obtain quality results. This part of the thesis, therefore, focuses on multi-predicate

classification problems to address task design challenges, considering the substantial share

of tasks in crowdsourcing platforms that can be regarded as classification and the potential

reusable knowledge that can be extracted from such problems. In fact, text classification

problems are by far the most popular tasks published in major crowdsourcing platforms1.

Specifically, this part investigates the following research question:

RQ1. How can we design the task shown to workers so as to support them and improve

their individual and collective performance in crowdsourced classification tasks?

By answering this question, we aim to provide guidance on how to structure the task

to obtain quality results, as well as how to render a complex question used to classify

1A recent survey shows that 45% of jobs in Appen, previously Figure Eight, can be regarded as classification

tasks [Gadiraju et al., 2014].



4

items. The task shown to workers consists of reading a piece of text and answering a

binary question (a predicate). Therefore, the complexity of the question comes from the

fact that it is composite, involving multiple predicates that documents must satisfy.

Providing guidance on running and reporting crowdsourcing experiments

Addressing RQ1 required us to run controlled experiments in rather uncontrolled envi-

ronments like crowdsourcing platforms, where gaps in the design and execution of an

experiment may threaten the experimental outcome. As mentioned previously, this process

involves overcoming challenges related to mapping and executing an experimental design

onto a crowdsourcing platform. In this process, weaknesses in the task and experimental

design may open room for inherent biases associated with crowdsourcing platforms that can

ultimately threaten the results. For example, failing to properly put in place mechanisms

to deal with deceiving workers could bias the population towards low-quality contributors

and jeopardize the experiments as contributions may not meet quality criteria [Kittur

et al., 2008]. From a deployment standpoint, the pool of active workers varies during the

day. For instance, in Amazon Mechanical Turk, the majority comprises workers from India

and the US [Difallah et al., 2018], available at distant time zones, and failing to account

for such variability could introduce confounds that may swing the results or render the

experimental treatments uncomparable [Qarout et al., 2019].

As crucial to delivering successful crowdsourcing experiments by overcoming challenges

related to task and experimental design, as well as its operationalization, it is to ensure

crowdsourcing experiments are reproducible. Reproducibility is the cornerstone of science

[Wacharamanotham et al., 2020], and crowdsourcing research is no exception. The scrutiny

of the different methodologies, by the research community, and the development of

standardized protocols and methods for communicating results are critical players in the

production of robust and repeatable experiments. Examples of this can be found in the

medical domain where checklists are used to assess the rigor of systematic reviews [Shamseer

et al., 2015], or in the machine learning community, we found checklists or datasheets to

communicate in full the details underlying the production of datasets and performance

of models [Bender and Friedman, 2018; Gebru et al., 2018; Mitchell et al., 2019; Arnold

et al., 2019; Pineau et al., 2020]. Efforts in this context have been regarded as repeatability,

replicability, or reproducbility to denote attempts at obtaining similar results, under certain

conditions and error margins, by the same or different teams and experimental conditions

[Plesser, 2018]. Setting terminology aside, it is critical that crowdsourcing experiments

are communicated in acceptable levels of detail as it is fundamental to research and the

scientific process.

The second part of this Ph.D. is devoted to addressing potential biases that could emerge
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from weaknesses in the design, deployment, and reporting of crowdsourcing experiments.

Specifically, this part investigates the following research questions:

RQ2. How can we provide support to researchers in designing and running crowd-

sourcing experiments so as to address potential biases associated with this process?

RQ3. How can we aid researchers in reporting crowdsourcing experiments to ensure

these are reproducible?

The research questions addressed by this thesis are complex, requiring more than a

Ph.D. to be fully covered, and critical to advancing crowdsourcing towards science.

We aim to distill the explicit choices one has to make to build effective tasks and

successful experiments, thus obtaining high-quality and reproducible results. These design

and implementation choices often go unnoticed (or partially ignored) by people resorting

to crowdsourcing, and this thesis also aims to address this issue by providing researchers

and practitioners tools that guide them in making such choices.

Thesis structure

This thesis comprises the work carried out during the three years of the Ph.D. program at

the University of Trento. The overall goal is to obtain high-quality contributions from crowd

workers. First, from a task design perspective for classification tasks, devising strategies to

support workers. And second, from the context of experiments, where quality also depends

on the design and operationalization of the experiment, as well as how effectively researchers

report the whole process to ensure reproducible research. The thesis starts by exploring

task design strategies to improve the performance of workers. The focus then switches

towards understanding and devising coping strategies to run controlled experiments in

crowdsourcing platforms successfully. This thesis ends by proposing solutions to help

researchers report their crowdsourcing experiments, thus directing crowdsourcing research

towards standardized reporting.

Chapter 2 explores the impact of text highlighting on workers’ performance in the

context of text classification. The work is rooted in understanding to what extent

highlighting relevant excerpts from the text could help workers solve the task and the

potentially harmful effect that irrelevant or even deceiving parts of the text could have on

workers’ behavior and performance (RQ1).

Chapter 3 turns its attention to the actual question shown to workers as part of the

task (RQ1). Here, we explore and provide guidance on a concrete but relevant aspect of

task design for multi-predicate classification: how to ask “complex” questions to the crowd

to classify a set of items.

Chapter 4 aims to understand the challenges associated with running controlled

experiments in crowdsourcing platforms as well as propose coping mechanisms and tools
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to facilitate the job of researchers in such endeavor, addressing potential biases that could

be detrimental to the validity of the experiments (RQ2).

Chapter 5 goal is to propose strategies to support researchers in reporting crowdsourcing

experiments (RQ3). As a first step, this chapter aims to understand what constitutes

crowdsourcing experiments. It then follows by identifying the current level of reporting

in the crowdsourcing literature. These insights are leveraged to propose a checklist for

crowdsourcing experiments to aid current reporting practices.

Publications

Research carried out during this Ph.D. resulted in the following publications.

Providing guidance on structuring crowdsourcing tasks

1. Jorge Ramı́rez, Marcos Baez, Fabio Casati, Luca Cernuzzi, Boualem Benatallah,

Ekaterina A. Taran, and Veronika A. Malanina. On the impact of predicate complexity

in crowdsourced classification tasks2. In Proceedings of the 14th ACM International

Conference on Web Search and Data Mining (WSDM 2021).

2. Jorge Ramı́rez, Marcos Baez, Fabio Casati, and Boualem Benatallah. Crowdsourced

dataset to study the generation and impact of text highlighting in classification tasks.

In BMC Research Notes 12, 820 (2019).

3. Jorge Ramı́rez, Marcos Baez, Fabio Casati, and Boualem Benatallah. Understanding

the Impact of Text Highlighting in Crowdsourcing Tasks. In Proceedings of the seventh

AAAI Conference on Human Computation and Crowdsourcing (HCOMP 2019).

4. Jorge Ramı́rez, Evgeny Krivosheev, Marcos Baez, Fabio Casati, and Boualem Bena-

tallah. CrowdRev: A platform for Crowd-based Screening of Literature Reviews. In

ACM Collective Intelligence Conference (CI 2018).

Providing guidance on running and reporting crowdsourcing experiments

5. Jorge Ramı́rez, Burcu Sayin, Marcos Baez, Fabio Casati, Luca Cernuzzi, Boualem

Benatallah, and Gianluca Demartini. On the State of Reporting in Crowdsourcing

Experiments and a Checklist to Aid Current Practices3. In Proceedings of the ACM on

Human-Computer Interaction (PACM HCI), presented at the 24th ACM Conference

on Computer-Supported Cooperative Work and Social Computing (CSCW 2021).

2This work was selected as an oral presentation at WSDM 2021.
3This work received the Methods Recognition award (intended to recognize significant methodological advances

or prime examples of good methods implementation).
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6. Jorge Ramı́rez, Marcos Baez, Fabio Casati, Luca Cernuzzi, and Boualem Benatallah.

DREC: towards a Datasheet for Reporting Experiments in Crowdsourcing4. In

CSCW’20 Companion: Conference Companion Publication of the 2020 on Computer

Supported Cooperative Work and Social Computing (CSCW 2020).

7. Jorge Ramı́rez, Marcos Baez, Fabio Casati, Luca Cernuzzi, and Boualem Benatallah.

Challenges and strategies for running controlled crowdsourcing experiments. In

Proceedings of the XLVI Latin American Computing Conference (CLEI 2020).

8. Jorge Ramı́rez, Simone Degiacomi, Davide Zanella, Marcos Baez, Fabio Casati,

and Boualem Benatallah. CrowdHub: Extending crowdsourcing platforms for the

controlled evaluation of tasks designs. In Works-in-progress & Demonstrations track of

the seventh AAAI Conference on Human Computation and Crowdsourcing (HCOMP

2019).

4This work received the Outstanding Poster Recognition award.



Chapter 2

Understanding the impact of text

highlighting in crowdsourcing tasks

Text classification is one of the most fundamental problems of machine learning (ML)

projects [Aggarwal and Zhai, 2012], and also one of the most frequent human intelligence

tasks in crowdsourcing platforms. It also occurs naturally in many activities we are faced

in our work as scientists, such as identifying if a paper is relevant to a research topic

[Wallace et al., 2017].

While ML has done impressive progress in some domains, it is still unable to accurately

classify in many complex contexts. In the latter case we can resort to crowdsourcing, but

this can be expensive especially when the problem is challenging or the text is long.

Recently, hybrid text classification algorithms, combining human computation and

machine learning, have been proposed to improve accuracy and reduce costs. These

techniques capitalize on the strength of humans and of machine classifiers to solve difficult

tasks [Krivosheev et al., 2018; Gomes et al., 2011; Kamar et al., 2012; Cheng and Bernstein,

2015].

One way to capitalize on these complementary strengths is to have ML highlight or

emphasize portions of text that it believes to be more relevant to the decision. Humans

can then rely only on this text or read the entire text if the highlighted information is

insufficient. Indeed, researchers in information management and psychology have shown

that text highlighting can improve the reading time of humans [Wu and Yuan, 2003].

However, it can also be harmful when it is inappropriate or not relevant [Gier et al., 2009].

Previous research has explored the benefits of highlighting in: supporting workers in

digitization tasks by highlighting target fields [Alagarai Sampath et al., 2014], recommend-

ing text excerpts to facilitate the job of text annotators [Wilson et al., 2016], requesting

highlights as evidence to support judgments [Schaekermann et al., 2018], and as a tool to
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explain the output ML models [Nguyen, 2018].

In this chapter, under the first part of this thesis, we study if and under what conditions

highlighting excerpts from the text can (or cannot) improve text classification cost and/or

accuracy, and in general, how it affects the process and outcome of the human intelligence

tasks. This is important both because highlighting can not only be a task in a two-step

crowd classification procedure (highlight, then classify) but, perhaps most importantly, can

also be used in hybrid classification processes where text summarization algorithms identify

relevant portions of a text, thereby simplifying the subsequent (human) classification task.

We do this through a series of crowdsourcing experiments running over different datasets

with varying classification difficulty and document length, and with task designs imposing

different cognitive demands.

Specifically, we make the following contributions:

• We are, to the best of our knowledge, the first to systematically study the effect of

text highlighting in human computation, identifying the quality requirements that

algorithms for text highlighting should possess to help with text classification and

estimating the potential impact of good (and bad) highlighting.

• We uncover the potential of aggregating highlighting by multiple, independent

annotators (or algorithms) showing that aggregation is practical and useful, somewhat

analogously to what happens in a crowdsourced classification where we aggregate

multiple votes on items.

• We discuss interesting and perhaps unexpected effects of highlighting, important

to make them effective, such as giving time to workers to get used to working with

highlights.

• We contribute an annotated dataset for researchers who want to study the problem.

2.1 Related Work

Highlighting is a common tool used to mark relevant sections in text [Strobelt et al.,

2016]. The act of identifying what is important to highlight in a text have been shown

useful for learning [Craik and Lockhart, 1972]. Fowler and Barker [Fowler and Barker,

1974] have shown that students had better recall of highlighted passages in a document

in comparison to non-highlighted portions, after reading a document with preexisting

highlighting. However, when the preexisting highlighting is inappropriate (the highlighted

portions are not relevant to the content of the document), Gier et al. showed [Gier et al.,

2009] that this could impair the reading comprehension. Besides understanding, studies
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have shown that highlighting could reduce the cognitive load, that is, the reading time

[Wu and Yuan, 2003].

In crowdsourcing, researchers have used highlighting to facilitate the job of workers.

Alagarai et al. [Alagarai Sampath et al., 2014] explored different variation of a form

digitation task, showing that highlighting of the target fields improved the accuracy of

workers. Wilson and colleagues [Wilson et al., 2016] studied the feasibility of crowdsourcing

for annotating privacy policies and how automatic highlighting of relevant paragraphs

can support annotators. They showed that highlighting reduces task completion time

without hurting nor improving the accuracy of the annotators. Besides helping workers,

highlighting have also been used to ask the crowd for evidence that support their judgement

[Schaekermann et al., 2018; McDonnell et al., 2016].

In the context of interpretability of machine learning models, text highlighting have

been used to present machine-generated explanations (relevant words) to humans for

evaluation. In these settings, Nguyen [Nguyen, 2018] asked workers on AMT to guess the

output of the model based on the text and the highlighted explanation, to determine how

automatic evaluation compares to the human-level evaluation of explanations.

Researchers have shown the feasibility of non-expert annotations for NLP tasks [Snow

et al., 2008], and the above works have shed some lights on the potential of highlighting

as a tool for assisting workers. However, no study discusses the effects of highlighting in

crowd classification, considering the quality and quantity of the highlighted text, and the

behavior of workers on documents with varying difficulty. This is central to any study as

it indicates how “good” highlighting needs to be to provide value to crowd classification.

2.2 Research Questions

The problem of hybrid classification via text highlighting has two sides: i) obtaining the

highlighting and ii) using it in crowdsourcing tasks. In this work we focus on the latter

problem, that of classifying using highlighted text support. The first problem is relevant

only in terms of obtaining a rich and diverse dataset of highlighted text, that as we will

see presents challenges in itself.

We set to study the impact of highlighting under different metrics, all important to

crowdsourcing: the classification accuracy and the decision time (time spent on the

task which, if we set the pay rate based on time, is directly related to costs). In analyzing

the impact of highlighting, we focus particularly on the following research questions:

– RQ1. Does highlighting increase worker accuracy? Specifically, we consider three

dimensions of the problem when assessing impact of highlighting: i) The quality of

highlighting, meaning, whether the emphasised texts actually facilitates the classification
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tasks, is neutral, or possibly even hurts it, ii) the difficulty of the classification task, and

iii) the length of the document and the proportion of highlighted text.

– RQ2. Does highlighting reduce decision time? And again, how is decision time impacted

based on quality, difficulty and length?

Considering these factors is important because it helps us understand how good high-

lighting needs to be in order to be useful, thereby setting the bar for human computation

or ML algorithms obtaining such highlighting. It also tells us for which kinds of tasks the

impact may be more or less significant.

2.3 Crowdsourcing and Generating Highlights

As basis for our study of highlighting effectiveness, we obtained and assessed highlights

for three datasets with different properties in terms of document length and classification

accuracy, used in prior art [Krivosheev et al., 2018]. We obtain highlights from both

humans and algorithms. Crowdsourced highlights allow us to obtain a wide set of highlights

and highlighting patterns (e.g., individual words, full sentences) and of highlighting quality

for the same text. Machine highlights, obtained via state of the art algorithms, help us

assess the effectiveness of the hybrid “highlight then classify” approach to text classification

that can be achieved today, as well as enabling us to assess machine highlighting quality

with respect to the downstream task of efficient and accurate classification. Therefore, our

focus here is not to improve ML algorithms but to assess how they perform.

Systematic Literature Review (SLR). This dataset contains a list of 900+ abstracts anno-

tated by experts according to their relevance to an SLR. The dataset defines two relevance

questions (filters): 1. SLR-OA: Does the paper describe a study that involves older adults

(60+)?1, and 2. SLR-Tech: Does the paper describe a study that involves technology for

online social interactions? We considered each filter separately and created two datasets

of 135 and 150 papers, respectively. The papers were randomly selected but controlled

for the abstract length. We first excluded a long tail of outlier abstracts of length over

4000 characters, divided the remainder in three buckets of equal number of abstracts (the

dividing points turned out to be 1050 and 2150 characters) and sampled an equal number

of abstracts from each bucket.

For SLR-OA we also balanced the number of papers that described the population age

explicitly vs those that refer to “older adults” or synonyms. We do so as we suspect (as it

turned out) that this can impact worker behavior and performance. The distribution of the

ground truth labels for SLR-OA is 41.5% no, 54.1% yes, 4.4% maybe; and for SLR-Tech is

56% no, 40% yes, 4% maybe.

160 is a commonly used age limit in scientific studies
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Amazon Reviews. The dataset contains reviews about products sold on Amazon. It

includes 100k items annotated with ground truth on two relevance questions, including Is

this review written on a book?. We selected 400 reviews randomly (50% about books and

50% about other products), focusing only on short (200 reviews with < 1050 characters,

but as long as at least the shortest SLR abstract that has 625 characters to make a fair

comparison) and long reviews (200 reviews with > 2159 characters).

Crowd-generated highlights. To test the effects of highlighting of different quality in

a controlled fashion, we ran a series of crowdsourcing tasks that requested users to classify

items and highlight the reasons supporting their judgment. We do not discuss this task

further as obtaining highlighting is not the focus of this work, but the interested reader

can see the task description and results in the supplementary material2. We collected 3-7

highlighted excerpts per document and filter, totaling 2722 highlights (610 for SLR-OA,

616 for SLR-Tech, and 1496 for Amazon).

Two researchers assessed the quality of the highlighting provided by workers according

to the following coding scheme: bad : the rationale could potentially lead a worker to make

a wrong decision; neutral : it does not provide information to make a decision; suboptimal :

it could potentially help but there are other fragments that are more suitable; good, it

holds enough information that could help a worker in making the right decision.

The procedure for coding the quality of highlights involved both coders going over 20%

of each dataset for tuning specific criteria, followed by independent coding on random splits

of each dataset. Disagreements were down to a minimum and within the same usefulness

class (mixing bad/neutral or good/suboptimal highlighting), the resulting Cohen’s Kappa

was 0.87 for SLR-OA, 0.72 for SLR-Tech and 0.66 for Amazon.

Machine-generated highlights. We generate highlights based on two approaches: state

of the art algorithms for extractive summarization [Liu, 2019; Narayan et al., 2018], which

are independent of the specific question being asked, and question-specific highlighting

[Devlin et al., 2018]. For the first approach, we selected BertSum [Liu, 2019] and Refresh

[Narayan et al., 2018]. These are recent algorithms for extractive summarization, where

BertSum produces state-of-the-art results on a commonly used dataset. For BertSum we

followed the training procedure with the indicated dataset, and for Refresh we used the

available pre-trained model.

Leveraging a “generic” extractive summarization algorithm might give useful summaries

but would not however be a fair comparison with crowd highlighting and probably not

efficient for question-specific classification. We, therefore, chose to generate question-

specific highlights by borrowing Q&A algorithms that provide answers as a subset of a

text (e.g., the answer is a sentence or paragraph from a Wikipedia page that the algorithm

2Material available at https: // tinyurl. com/ hcomp19-hl

https://tinyurl.com/hcomp19-hl
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believes to contain the information necessary to answer the question). In other words, we

use Q&A ML to obtain the rationale that can support an answer [Reddy et al., 2018], but

not the answer per se which is left to the crowd, who may or may not make use of the

rationale as a guide or as a way to help determine the answer more quickly.

Specifically, we leverage a fine-tuned version of BERT [Devlin et al., 2018] for question

answering, or Bert-QA for brevity. For Bert-QA, we used the BERT-Base (uncased) pre-

trained model and followed the fine-tuning procedure on the SQuAD dataset as indicated

in the BERT paper.

Notice that the kinds of tasks we aim at covering include challenging tasks (such as

SLR screening) requiring very high accuracy (SLR experts achieve over 0.96 accuracy, and

the same is required – and can be obtained – by the crowd in this domain [Nguyen et al.,

2015b; Mortensen et al., 2016; Krivosheev et al., 2018]). Today these are outside what

machines can achieve when giving direct answers3.

2.4 Experiment Design

We now have datasets with items of varying length and difficulty and with highlighting of

different quality, corresponding to different control conditions. The basic task design to

assess impact is inspired by basic screening task designs [Ramı́rez et al., 2018; Krivosheev

et al., 2017], that have been modified to incorporate highlighting. The task is shown in Fig

2.1 for SLR-Tech and is analogous for the other datasets. Workers are presented with the

text to classify, with some parts highlighted, and we mentioned that highlighting might

(with emphasis) facilitate the classification.

The tasks were designed and run in Figure Eight (F8)4. This platform organises the

items in a task in pages, where the first page acts as a test page (contains gold items only).

Subsequent pages include a hidden test question to control for workers’ accuracy.

In the study we aim at observing the workers’ accuracy, the time to decision, and the

retention (how many pages a worker processes before deciding to quit) as key metrics.

Notice that retention is important as dropouts make the task slower and more expensive

(if a worker completes the initial tests, we are charged for the cost of test items as well,

which means that we waste money if the worker abandons shortly after)[Han et al., 2019].

Given this setting, we run three main rounds of experiments with the following

configurations.

Experiment 1, on the effects of highlighting of varying quality. Specifically, here we

generate six conditions: four of them contain different proportion of abstracts or reviews

3see, e.g., https://rajpurkar.github.io/SQuAD-explorer/ and https://stanfordnlp.github.io/coqa/
4Figure Eight https://figure-eight.com
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Instructions

a

bbad highlighting

good highlighting

These are shown separately depending on the experimental condition

aggregation

Figure 2.1: Task design, and example highlighting.

with “useful” highlighting (the good and suboptimal highlightings were considered as useful,

while the neutral and bad as not useful). We create four conditions with 0%, 33%, 66%,

and 100% useful highlighting. Notice that the percentage refers to documents: for example,

in the 66% condition two out of three documents have only useful highlighting, while the

third has non-useful ones. The purpose of this experimental design is to assess behaviors

in situations where crowd worker could consistently trust or mistrust the highlights, as

well as cases where the quality is mixed. During the qualitative assessment, the researchers

generated the missing highlighting of the items (papers or reviews) with unbalanced

highlights, those having only useful or not useful highlights.

In addition, we create an aggregation condition that fuses, for each item, all the

highlighting obtained on that item. The aggregation strategy computes a score for each

word in a text as the total number of highlighting that cover the word divided by the
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number of workers that produced these highlighting. With this score, the aggregation

condition places more emphasis on words highlighted more often. If the score of a word is

greater or equal than 0.33, then the word is highlighted, and the opacity value is equal to

the score. If the score is at least one standard deviation away from the mean, then the

word is boldfaced5. An example of how aggregated highlighting looks like can be seen in

Fig 2.1. Finally, we add a baseline condition where items have no highlighting.

We followed a between-subject design to assign workers to one of the 0%, 33%, 66%,

100%, aggregation, and baseline condition. We defined that a worker could give a maximum

of 18 judgments divided into 6 pages of 3 items each (6×3 design), and we set the accuracy

threshold to be 76% and 100% for the SLR and Amazon datasets respectively. We set

the payment to $0.05 for the SLR datasets and $0.02 for Amazon, aiming at a rate of

10USD/hour. We repeatedly ran the tasks over five weeks where each lasted between 2 to

5 days, collecting votes from F8’s middle tier contributors.

Experiment 2 focused on the impact of highlighting on difficult and demanding tasks.

We followed the same experimental setup as in Experiment 1, but modified the tasks to

impose higher cognitive demands on the worker. We focused only on long documents

and on the dataset with lower accuracy (SLR-Tech), and implemented two task designs:

Tech6×6, featuring longer pages with 6 documents instead of 3, while maintaining the

same number of pages; and Tech12×3, featuring a longer task with 12 pages, but keeping

page size. We tested a condition with 83% quality highlighting (based on the promising

range identified in the first experiment) against the baseline. We paid $0.05 per item.

Experiment 3 focused on determining if the same relationships between quality of

highlights and performance are observed in scenarios that rely on automatic highlighting.

This experiment relies on six experimental conditions: three corresponding to the automatic

highlight generation with BertSum, Refresh and Bert-QA, an aggregation of the output of

three algorithms (Aggregation-ML), a condition with only high-quality highlighting from

the automatic approaches (100%ML), and a baseline without highlighting – the last two

to provide a reference point for comparison. The highlight of the extractive summarization

algorithms (Bertsum and Refresh) is produced by taking the top ranked sentence from the

resulting summary. An additional pilot is also run considering the top three sentences as

the resulting highlight, so as to assess the impact of longer highlighted text.

We followed a between-subject design to assign workers to one of the six experimental

classification support conditions, and relied on the same task design (6×3), datasets

(SLR-OA, SLR-Tech, Amazon), budget constraints and process as in Experiment 1.

Figure 2.2 shows the experimental conditions. Each task is a factorial combination

5During our highlighting collection experiments, we developed a visual tool to evaluate the aggregation strategy

and determine the values that we end up using for opacity and boldface.



Experiment Design 16

bad

625 - 1050 chars
Short

Bucket-VEN

Bucket-SRB

33%

33%

33%

Medium
1065 - 2150 chars

Long
2159 - 4000 chars

good all (weighted)noneHighlight:Test Question  |

Bucket-EGY

Task 3 x 6

Task 6 x 6

Task 3 x 12

0%

base
aggr

33%
66%
100%

Algorithms

83%
base

Documents Task design

Long
2159 - 4000 chars

Dataset / filter

Long
2159 - 4000 chars

SLR-Tech

SLR-OA

Amazon

SLR-Tech

SLR-Tech

x x x
Ex

pe
rim

en
t 1

Ex
pe

rim
en

t 2

83%
base

Medium
1065 - 2150 chars

Long
2159 - 4000 chars

Task 3 x 6
BertSum

100%ML
base

Refresh
BertSum-QA
AggrML

SLR-Tech

SLR-OA

AmazonEx
pe

rim
en

t 3

Figure 2.2: Experimental conditions

of dataset, document length and design. An external service controlled the random

assignment of workers to the conditions. This allowed us to run all the conditions and

baseline in parallel and reduce potential noise in the results, due to the same worker taking

part in multiple tasks (something we experienced in the many preparation experiments

we did, and caused us to waste some of our budget). Specifically, we implemented an

external server that keeps track of the number of workers in each condition and uses

this information when a new worker arrives to perform a random assignment among the

conditions with the fewer number of workers (for balancing the assignment). F8 allows

adding custom JavaScript code to the task interface that runs on every page load on the

workers’ browsers. We added code to call our external server to i) determine the condition

for the worker (or retrieve a previous assignment), ii) obtain what parts to highlight for

each item in the current page (unless the condition is baseline), iii) compute the decision

time metric. To calculate decision time, we captured each time a worker clicks on one of

the possible answers and compute the difference between the first and last values stored
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for each of the items6.

To avoid workers judging items of different sizes (e.g., mixing short and long abstracts

in a page) we split items in the dataset along this dimension and ran separate jobs for

each size bucket respectively.

During our early pilot studies, we found that most workers came from a handful of

countries. So to avoid this potential bias, we defined three geographical buckets where

the head member of each bucket was one of the top three countries identified in our

pilots. We ran our experiments at three different time slots (morning, afternoon and

night) to orchestrate the assignment of geographical buckets to size buckets so that at

any given time slot one group of countries work on one size bucket. We swapped this

assignment of countries to size buckets at each time slot to make sure that one size bucket

(short abstracts, for example) gets contributions from all of our target countries. This

plan for running the jobs in F8 allowed us to block workers, during a particular time

frame, from jumping between jobs after they finish, that is, workers that complete judging

short abstracts and then continue with the long abstracts bucket (which would bias and

introduce a correlation in the results).

2.5 Results

2.5.1 Experiment 1: Impact of highlighting quality

We collected a total of 14085 judgments from 1337 workers. Table 2.1 shows the distribution

of these values considering the datasets. The number of workers was balanced among the

experimental conditions.

Dataset #judgments #workers

SLR-OA 3327 424

SLR-Tech 4014 464

Amazon 6744 449

Table 2.1: Distribution of workers and judgements per dataset

6We captured the page load time and used it as the starting point for computing decision time of the first

item of the page
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Worker accuracy

The median accuracy of the workers in the baseline conditions was 0.67 for SLR-OA and

SLR-Tech, and, as expected, much higher for Amazon (0.94). When comparing to the

conditions with highlighting (see Fig. 2.3), we can see that the workers in the 100%

condition featured the same or better median accuracy (SLR-OA: 0.78, SLR-Tech: 0.67,

Amazon: 0.94) than all the other conditions.
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Figure 2.3: Worker accuracy boxplot (the top row shows the number of items in the condition).

A Kruskal-Wallis rank sum tests showed no significant difference for SLR-OA (H(5) =

4.30, p = .51), despite the trend in favor of the conditions with higher quality highlighting.

In contrast, the results for SLR-Tech did show a statistically significant difference between

the conditions (H(5) = 12.74, p = .03), but with the test of multiple comparisons [Dunn,

1964] (using Benjamini-Hochberg adjustment) indicating a significant difference only

between the extremes 100% and 0% in favor of the former. In the Amazon dataset we

also observed a statistically significant difference (H(5) = 21.76, p < .001), with the test

of multiple comparisons showing the difference to be significant between 33% and all the

others conditions, and between 66% and 100% – these differences in detriment of the

conditions with lower quality.

The above tell us that despite the trend in favor of the conditions with higher quality

highlighting, and in particular the 100%, the highlighting support did not improve over the

baseline. Instead, we have seen the opposite effect: bad highlighting can hurt accuracy.
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Decision time

The median decision time in the baseline conditions was 12.75s for SLR-OA, 32.52s for

SLR-Tech and 15.62s for Amazon. Deciding whether an abstract is related to older adults

required less effort than for SLR-Tech, we believe because the nature of former was more

suitable for screening for keywords and age (e.g., “older adults”, “aged 60 and older”).

Surprisingly, workers took more time in screening Amazon reviews - a fairly easy task -

than screening abstracts with the SLR-OA dataset.

In comparison, the best performance for the highlighting conditions improved on the

baseline in all the filters (aggr=12.41s for SLR-OA; 0% =18.51s for SLR-tech; 100% =9.45s

for Amazon). The general trend, as shown in Fig. 2.4, is that of conditions with higher-

quality highlighting resulting in lower decision time, except for the curious case of 0%,

where workers achieved a performance not only better or at par with the baseline, but

also with the conditions with mixed quality highlighting when considering all filters. We

attribute this behavior to workers learning of the highlighting support not being useful

(or being deceitful), which might have led to them dismissing the highlighted text and

redirecting their attention to other parts of the document — thus having a similar effect

as in the 100% condition.
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Figure 2.4: Decision time per condition.

Kruskal-Wallis rank sum tests show statistically significant difference between the

conditions for all datasets (H(5) = 43.78, p < .001 for SLR-OA, H(5) = 40.31, p < .001 for

SLR-Tech, and H(5) = 50.52, p < .001 for Amazon). Multiple comparison tests show that

the 100% condition has significantly faster decision times with respect to the baseline for

SLR-Tech and Amazon and it significantly outperforms all other highlighting conditions
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(except for SLR-Tech where nearly every condition significantly outperforms the baseline).

The test also confirms the curious effect of the 0% condition outperforming the 33% one.

The detailed test results are available in the supplementary material.

Aside from the SLR-OA dataset, the above results indicate that good-quality highlights

give an advantage to workers, reducing the time to judge. The benefit is pronounced

in the 66% to 100% range, while the worst performance can be expected when mixing

good highlighting with a majority of bad highlighting. This situation has proven to harm

decision time more than having all documents with low quality highlighting.

2.5.2 Experiment 2: Impact in demanding tasks

In this experiment, we focused on understanding the impact of highlighting in situations

of higher cognitive demand.

We collected 2481 judgements in total from 255 workers. Of these, 864 judgements

from 76 workers in Tech6×6, and 1617 judgements from 179 workers in Tech12×3.

Accuracy. The median worker accuracy resulted in 0.67 for all of the designs and

conditions, even though the distribution was elongated above the median for the conditions

with highlighting. The Kruskal-Wallis test showed no statistically significant difference

between the conditions for Tech6×6 (H(1) = 0.17, p = .68) and Tech12×3 (H(1) = 0.20,

p = .65). Thus, accuracy did not improve in situations of higher cognitive demand.

In the case of longer pages (Tech6×6 ), what we did observe was a huge percentage of

task abandonment in the first page. The majority of workers selected the job and perhaps

even tried to complete it but ultimately did not submit their contributions. This happened

significantly more in the baseline, where only a 23% percent of the workers assigned to the

condition decided to take the task, compared to a 41% in the condition with highlighting.

In our experiment, this difference in task abandonment means that highlighting can lower

the perceived effort and attract more contributors, but at the same time, it also introduced

a potential bias in our comparison of accuracy in attracting more committed workers in

the baseline.

Decision time. The median decision time for longer pages (Tech6×6 ) resulted in 23.43s

for the baseline, and 13.09s in the highlighting condition. Highlighting reduced decision

time by 44% compared to no highlighting. A Kruskal-Wallis test showed the difference

between the conditions to be statistically significant (H(1) = 36.22, p < .001). For longer

tasks (Tech12x3 ) the median decision time was of 31.45s in the baseline, and 20.65s in

the highlighting condition (H(1) = 22.80, p < .001). In this case, highlighting reduced

decision time by 34% compared to the baseline.
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2.5.3 Additional analyses

Classification performance

We computed the F1 scores by aggregating the judgements by condition and highlighting

quality as shown in Table 2.2, so as to assess and compare the output of the classification

more in detail.

Bad Neutral Subopt Good All None

0% .333 .700 - - - -

33% .178 .685 .589 .731 - -

66% .551 .681 .556 .725 - -

100% - - .71 .744 - -

aggr - - - - .727 -

base - - - - - .717

Table 2.2: Aggregated F1 scores by condition and highlighting quality for SLR-Tech

The results show that F1 scores for highlighting aggregation (F1: SLR-OA=.845,

SLR-Tech=.727, Amazon=.945) and “good” highlighting in the 66% (F1: SLR-OA=.859,

SLR-Tech=.725, Amazon=.953) and 100% conditions (F1: SLR-OA=.845, SLR-Tech=.744,

Amazon=.960) to be superior to that of the baseline (F1: SLR-OA=.830, SLR-Tech=.717,

Amazon=.937) for all datasets.

This suggests that by focusing on the highlighting of highest quality, the resulting

classification can be superior to that of the baseline. Interestingly, aggregating the high-

lights can also result in superior classification performance, which opens up opportunities

for bypassing quality annotation steps in the case of crowdsourced highlights, or using

ensembles in the case of machine-generated ones. Part of the reason here is that useful

highlighting as generated with the method described earlier (that is, by multiple indepen-

dent annotators) outnumber non-useful ones, and aggregation enables to filter out the

“noise” generated by low-quality, but more rare highlights.

Factors contributing to decision time and accuracy

We performed additional analyses to investigate how the key factors of our dimensions,

such as quality and length of the highlighting, document size, worker experience (meaning
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number of “pages” contributed by the worker at the moment of providing the judgment),

modified the impact of highlighting. We performed i) logistic regression analyses to predict

correct judgment (true / false) and ii) multiple regression analyses to predict decision time,

and compared the results for the baseline condition and the highlighting conditions. We

include the regression analyses tables as supplementary materials. Below we summarise

the main findings:

Experience with the task increases the benefits of highlighting. Experience (progression

through the pages of the task) was a significant predictor of decision time, contributing to

lower decision time in all three datasets in the highlighting conditions. For the baseline

condition, it was significant for SLR-OA and Amazon datasets. However, in the highlighting

conditions, experience also translated in workers being less likely to make mistakes, as

it was a significant predictor of correct judgment, but not in the baseline. This insight

suggests that experience, and possibly the amount of work given to the worker, increases

the benefits of highlighting.

Workers adapt their behavior in longer documents. The size of the document was

a significant predictor of decision time and correct judgements for all datasets in the

highlighting models and baseline. The general insight is that workers are more likely to

spend more time deciding on longer documents as well as more prone to make mistakes.

However, we observed that, first, this is not the case in SLR-Tech where “long” documents

predict less time to judge compared to “short” documents in the highlighting conditions.

Second, judging a “long” document, despite being significant, predicts only from 1-5 seconds

more in decision time than short documents, even when the length of the document is

more than three times longer. Finally, deciding on “medium” documents but not on “long”

documents increase the likelihood of incorrect judgements.

These results, and the length of the highlighting as a significant predictor, suggest that

people adapt their behavior in longer documents, possibly relying more on the highlighted

text, and therefore modifying the effect of highlighting.

2.5.4 Experiment 3: Impact of machine-generated highlighting

We collected a total of 8129 judgements from 1035 workers. The quality distribution

of the highlights generated by the automated approaches - according to the qualitative

assessment - is shown in Table 2.3 to put the results into context.

Worker accuracy

The conditions with highlight support did not significantly improve on accuracy over

the baseline for any of the datasets. We should note, however, that the overall trend
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BertSum Refresh Bert-QA

SLR-OA .38 .24 .49

SLR-Tech .43 .18 .40

Amazon .56 .62 .59

Table 2.3: Proportion of useful highlights generated.

correspond to the quality distribution of each condition, i.e., lower quality translates into

a lower median accuracy or elongated tail, stressing our observation that bad highlighting

affects accuracy (see Figure 2.5a).

Decision time

Highlighting support did not improve over the baseline for SLR-OA, which is in lines

with our previous results for this dataset (Experiment 1), where highlighting support did

not improve decision time regardless of the quality. In contrast, highlighting support did

improve over the baseline for all conditions in SLR-Tech, as it was the case again in the

first experiment. In the Amazon dataset, only the 100ML condition with high-quality

highlighting improved over the baseline, but not the other conditions which are not in the

promising zone (66%-100%) identified in the first experiment. The results are summarised

in Figure 2.5b.

Classification performance

We computed the F1 scores for the aggregated performance of each condition and dataset,

as shown in Table 2.4. The low quality of the highlighting resulted in the automated

approaches performing below the baseline. Improvement, in this context, was only achieved

through aggregation or selecting the best highlights among the ones available. Notice that

the quality of the underlying algorithms, and the space for improvement, limits the benefit

of aggregation.

2.6 Discussion

The quality assessment of the machine-generated highlights provided us with insights into

the nature and potential limitations of automated approaches.
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Figure 2.5: Worker accuracy per condition.

Extractive summarization approaches are not trained for a specific filter and therefore

are prone to generate less useful highlights. BertSum, the algorithm of this class with the

overall better performance, was particularly bad targeting “participants” (SLR-OA), but

its performance improved when targeting the “objective” of the paper (SLR-Tech).

The Q&A-based approach, instead, generated shorter highlights specific for each dataset

and resulted in overall higher quality. However, it was sensitive to how the questions were

formulated, varying in the output with each attempt. Bert-QA also attempted to retrieve

evidence for a question even when there was none. For example, if the paper is not about

technology for social interaction, Bert-QA will still look for excerpts associated with these

concepts, which can sometimes lead to deceiving (bad) highlights. Instead, in these cases,

a counter-argument (e.g., highlighting a different focus) is desirable, or even indicating

that the question is “unanswerable” (e.g., no highlighting at all).

The impression we got working with Bert-QA is that by training it specifically on the

class of problems of interest (e.g., on SLRs in general), it could be possible to achieve a
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BertSum Refresh Bert-QA AggrML 100ML Base

SLR-OA .831 .817 .842 .860 .863 .858

SLR-Tech .684 .677 .678 .685 .712 .733

Amazon .891 .907 .911 .918 .924 .938

Table 2.4: Aggregated F1 scores by condition. Improvements over the baseline are highlighted.

high-quality result. Attempting this is in our work pipeline.

Besides these considerations on ML-generated highlights, the investigation into the

impact of highlighting quality provided us the following main insights:

– Bad highlighting support can hurt accuracy, while high quality offers no

significant benefits. High quality highlighting showed a positive trend in worker

accuracy, improved over conditions of lower quality, but ultimately did not significantly

improve over the baseline. Even when posing workers with tasks of higher cognitive

demand, worker accuracy was not significantly better when providing good quality

highlighting. The opposite however was consistent across all datasets: bad highlighting

can hurt accuracy.

– Higher quality highlighting can reduce decision time to almost a half. We

observed that highlighting quality in the 66% to 100% range offered significant improve-

ments in decision time over the baseline in two of the three datasets analysed. In high

demand scenarios, highlighting support can reduce the decision time by 44% compared

to no highlighting, while maintaining the same level of accuracy. In a different domain,

[Gaur et al., 2016] showed a similar insight, where automatic speech recognition (ASR)

could facilitate workers at transcription tasks, but only when the ASR support was good

enough.

– Aggregating highlighting can increase overall classification performance. The

additional analyses also uncovered the potential of aggregating highlighting by indepen-

dent annotators (or algorithms), which provided benefits analogous to that of aggregating

votes in crowdsourced classification: while it did not improve on individual worker ac-

curacy, the aggregated classification performance was superior to that of the baseline.

Compared to other conditions with similar accuracy, this suggests that errors in aggre-

gated highlighting might be more independent, an interesting effect that requires further

exploration.

– Highlighting can further decrease the decision time and perceived effort in
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high demand scenarios. The regression analyses also suggested that in higher demand

scenarios (e.g., longer documents and increasing the number of contributions requested

from workers) highlighting could increase its benefits. We confirmed the added benefits

in terms of decision time, a reduction going from 16% up to 44% compared to the

baseline for SLR-Tech, as well as perceived effort (lower task abandonment), but not

in terms of accuracy. The difference in abandonment that we observed is in line with

[Han et al., 2019], where the results on relevance judgements experiments show a similar

ratio of submission to abandonment; and most of the workers tend to quit early, after a

quick assessment of the effort for the tasks. [Wu and Quinn, 2017] observed a similar

situation, where tasks with longer instructions showed a higher abandonment rate than

more compact tasks.

– Task difficulty does not affect the impact of highlighting. According to our

results, the impact of text highlighting on decision time was not modified by task difficulty

(measured as accuracy at the baseline). The relative improvement of highlighting support

in the two significant cases SLR-Tech (accuracy: .67) and Amazon (accuracy: .94) was of

60% with respect to their baselines, while for SLR-OA (accuracy: .67) was not significant.

In the case of improvements in accuracy with respect to the baseline, the results were

not significant regardless of task difficulty.

The takeaway message is that highlighting is a promising direction for text classification

support, better suitable for situations where workers are faced with longer documents or

are expected to provide a large number of contributions. Highlighting approaches should

however consider the negative impact of bad highlighting, and use approaches that either i)

limit the recommendations of highlighting to those with high level confidence (quality), or

ii) aggregate the highlighting provided by independent annotators or algorithms – provided

that the distribution of quality favors good highlighting or is at least balanced.

Experiments also show that highlighting support of good quality can significantly

reduce the decision time by 44% while maintaining (but not necessarily increasing) worker

accuracy. These benefits are elevated in situations of high cognitive demand, where workers

not only see an effective decrease in decision time but also experience a lower barrier

to participation. We identified the promising quality range for highlighting support, as

well as the negative effects of bad highlighting, providing alternative approaches based

on highlighting aggregation and quality (or confidence) level filtering. The former is

a promising direction, as it can reduce the efforts in quality annotation and allow for

combining the output of ensembles of algorithms. We provide the datasets used in this

work in the supplementary material.



Chapter 3

On the impact of predicate

complexity in crowdsourced

classification tasks

Micro-task crowdsourcing today is still an art. Indeed, it is not surprising that companies

charge hefty consulting fees to help businesses set up and run crowdsourcing tasks.

Successful projects involve designing and harmonizing several aspects, from designing the

user experience to task design, training and test settings, and to seemingly easy problems

such as how to ask questions and elicit truthful, accurate answers [Daniel et al., 2018] —

all while meeting budget constraints and treating your workforce fairly and with respect.

For example, longer instructions affect the task uptake by workers by three times, while

showing concrete solution examples improve accuracy up to ten times [Wu and Quinn,

2017], depending on the type of task. Mechanisms to combat task spammers are often

essential, since without them a task can easily get half of the answer as invalid even on

simple tasks, although it raises the contributors’ efforts (and cost) [Kittur et al., 2008].

Budget is also a limiting factor, and reward strategies and optimization can also affect the

results [Cheng and Bernstein, 2015; Callaghan et al., 2018; Wallace et al., 2017; Krivosheev

et al., 2018]. The list is almost endless, so much that it is motivating crowdsourcing

researchers to prepare design and reporting guidelines for crowd experiments [Ramı́rez

et al., 2020b].

In this chapter, we follow up on the first part of the thesis devoted to developing task

design strategies contributing to improving worker individual and collective performance.

In the previous chapter, we have learned that text highlights could potentially help perform

the task faster without hurting quality. While this is good for settings where the focus is

on speed, this chapter instead concentrates on scenarios where the focus is on quality. This
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chapter explores and provides guidance on a specific but important aspect of crowdsourcing

task design: how to ask “complex” questions to the crowd to classify items. Classification

in general is by far the most popular type of crowdsourcing tasks1. We study classification

in the context of information retrieval and multi-predicate classification problems, that is,

tasks where the crowd has to select items that meet a set of conditions. The “complexity”

of the question comes therefore from the fact that it is composite, and we want our crowd

worker to state if items satisfy our set of conditions (predicates). This is a very common

task we do implicitly or explicitly countless of times in our daily life and that often appears

in crowd tasks as well (from selecting hotels that have certain characteristics of interest

[Lan et al., 2017] to screening papers for systematic literature reviews [Wallace et al., 2017]).

Indeed, any conjunctive query is an instance of such problem and abundant prior research

on crowd query processing studied how to efficiently retrieve items from a potentially large

set [Franklin et al., 2011; Parameswaran et al., 2012a; Park and Widom, 2013].

We tackle this problem because it is common enough to be of widespread interest and

nuanced enough (as we show in this chapter) to require a detailed investigation, and it

can be framed so that it can result in reusable knowledge for task designers. In particular,

we set to study the following research question:

How does the way we ask a composite question impacts the individual and aggregate

performance of crowd workers?

We investigate the question both in the context of crowd-only classification and in

hybrid classification, an increasingly common approach where humans and machines

work together to solve a classification problem. We analyze the problem based on both

characteristics of the question and of the task, such as task ”length” (e.g., length of the

document to read for text classification tasks), task domain, task difficulty, and class

balance.

Surprisingly, the crowdsourcing literature somewhat overlooked predicate complexity in

classification tasks. First, complex predicates may require longer task instructions, which is

known to correlate positively with the perceived complexity (as seen by workers [Yang et al.,

2016]), impact task intake (most workers tend to quit after inspecting the instructions

[Han et al., 2019]), and, therefore, the latency. Second, increased task complexity naturally

demands more effort from workers, challenging accurate and fair compensation [Whiting

et al., 2019]. Last, task complexity plays an important role in the quality of the results

obtained [Cheng et al., 2015; Krause and Kizilcec, 2015].

The main contributions of this work are as follows. We introduce the problem of

1A relatively recent worker survey on Appen, previously Figure Eight, shows that 45% of jobs are classification

tasks [Gadiraju et al., 2014]. Also, 60% of the builtin templates offered by Amazon Mechanical Turk constitute

classification tasks, and 40% in Yandex Toloka.
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predicate formulation for crowd classification tasks as a relevant design dimension (to en-

hancing worker performance and enabling Human-AI collaboration). We study complexity

in classification problems on a broad landscape of tasks considering categorization and

classification, verification, content moderation, and sentiment analysis tasks (see [Gadiraju

et al., 2014] for a taxonomy of task types in crowdsourcing). Our experiments, therefore,

cover multiple domains and leverages human and machine classifiers. We provide empirical

evidence on the impact of predicate formulation on classification outcomes, suggesting

performance gains when querying complex predicates as multiple simpler questions. We

also provide insights into the expected performance of different formulation strategies

under different i) problem settings such as predicate selectivity and class distribution,

and ii) task design choices such as querying predicates on the same or separate tasks.

The experiments also offer preliminary evidence on the potential of predicate formulation

in the context of hybrid classification, suggesting performance gains even in its simplest

collaborative approach, by assigning crowd and machines parts of a complex predicate

they are more suited to classify. Last but not least, we contribute datasets derived from

our experiments2.

3.1 Related Work

Task design in crowdsourcing

Task design is a multi-dimensional problem with a rich body of work in the crowdsourcing

literature [Jain et al., 2017]. “Design” does not only mean the actual task interface, but

also the mechanisms to deploy, coordinate, and assign tasks to workers, the tools to assure

high-quality contributions, and budget management [Daniel et al., 2018]. The lessons

learned from this literature spawn on best practices for designing effective tasks (given

the impact task design has on the resulting performance), and methods for performing

crowdsourcing studies.

Crowdsourcing results are sensitive to subtle changes in task design. Poor instructions

may lead workers to misinterpret the task and produce subpar responses [Wu and Quinn,

2017]. The clarity of the task [Gadiraju et al., 2017b] and how it is framed (whether

meaningfully or not) [Chandler and Kapelner, 2013] may also swing workers’ performance.

The prevalence of malicious workers in platforms asks for design decisions that account for

this and guard quality (e.g., equip tasks with mechanisms to combat spammers [Kittur

et al., 2008]). Similarly, task design could aid worker performance, in the form of assistance

to workers [Wilson et al., 2016; Ramı́rez et al., 2019a], proper compensation for effort-

intensive tasks [Ho et al., 2015], or by rigorous training protocols [Liu et al., 2016] and

2https://github.com/TrentoCrowdAI/simpler-predicates

https://github.com/TrentoCrowdAI/simpler-predicates
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feedback loops [Dow et al., 2012]. Latency also matters and can be affected by ineffective

instructions causing task abandonment [Han et al., 2019] or generating mistrust in task

requesters [Kittur et al., 2013]. However, fair compensation can help to speed up task

intake and how much workers contribute [Ho et al., 2015].

These lessons provided valuable insight into properly designing and running crowdsourc-

ing studies. As design choices may swing the results obtained, it can also affect the validity

of experimental outcomes [Kittur et al., 2008]. Choices in task design can amplify biases

inherent to crowdsourcing environments. Task clarity influences how workers pick tasks

and, therefore, introduce selection effects [Gadiraju et al., 2017b]. The active pool of work-

ers varies as hours go by [Difallah et al., 2018], and with this, different decisions affecting

when a crowdsourcing job runs could result in unanticipated performance differences and

confounding factors [Qarout et al., 2019]. The lack of built-in support from crowdsourcing

platforms makes it difficult to run controlled experiments, making simple between-subjects

design a challenging endeavor [Kittur et al., 2008]. A common approach involves identifying

workers via browser fingerprinting [Gadiraju and Kawase, 2017] and then using an external

server to randomize participants to experimental conditions [Ramı́rez et al., 2019a]. These

challenges motivated the research community towards developing guidelines for designing

and reporting crowdsourcing experiments [Porter et al., 2020; Ramı́rez et al., 2020b].

Multi-predicate classification

We study predicate formulation in the context of problems regarded as finite pool classifi-

cation [Nguyen et al., 2015a], where we have a finite set of items to classify according to a

set of criteria (potentially) unique to the problem. Systematic literature reviews are one

instance of this problem, and have been heavily-studied in the crowdsourcing literature

[Mortensen et al., 2016; Krivosheev et al., 2017; Sun et al., 2016; Weiss, 2016]. Mortensen

and colleagues [Mortensen et al., 2016] tested the feasibility of leveraging crowdsourcing,

given the costs associated with producing SLRs [Wallace et al., 2017]. They found that

task design plays a major role in the quality of the results, as well as this can vary from

predicate to predicate. Krivoshev et al. [Krivosheev et al., 2017] proposed models and

algorithms to crowdsource SLRs, offering quality and budget trade-offs to guide how to

invest in the crowdsourcing tasks. Budget limits entire crowdsourced solutions, works

have also focused on leveraging machine classifiers in tandem with crowd workers [Wallace

et al., 2017; Krivosheev et al., 2018]. For example, leveraging strategies such as classifying

“easy” items first with ML and crowd for the rest [Wallace et al., 2017] or modeling tasks

and workers to determine promising predicates to filter out items.

Multi-predicate classification is also studied in the context of information retrieval. A

common problem is to determine an optimal order of the predicates (to query the crowd

for labels) to filter out tuples [Parameswaran et al., 2012a; Lan et al., 2017; Rekatsinas
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et al., 2019; Weng et al., 2017]. Similarly, work in crowd-powered databases studied how to

leverage crowdsourcing to extend the capabilities of database systems to answer complex

multipart queries over flexible (or on-demand) schemas [Franklin et al., 2011; Park and

Widom, 2013].

Despite the vast body of work on task design and on information retrieval / multi-

predicate classification, to the best of our knowledge, we are the first to study the impact

on how the (complex) information retrieval question is formulated, a dimension that

affects all of the prior art. Our experiments, over an ample range of tasks, emphasize the

importance of the predicate formulation as a problem, and show its impact on classification

outcomes.

3.2 Problem and Approach

We now define and scope the crowdsourced classification problem, and in Section 3.4, we

introduce the crowd-machine variant.

The task we seek crowd help for is to identify all items in a set I that meet a complex

predicate P , defined as the conjunction of predicates {p1, p2, . . . , pn}. For example, taking

a common problem from the literature (screening scientific papers [Krivosheev et al., 2017;

Wallace et al., 2017]) , I could be a set of scientific articles returned by a keyword-based

query on Scopus, and we may seek papers reporting experiments on older adults living

in Africa (P = p1 ∧ p2, where p1: “Is the study population 65+ years?” and p2: “Is the

population living in Africa?”). To solve this problem, we have to our disposal a set of

crowd workers W , a budget B, and a quality goal (or loss function) L to meet.

The predicate formulation problem seeks to determine how to ask the question in the

context of multi-predicate classification. There are different ways to formulate a complex

predicate, and, in this work, we study specifically three ways: i) ask the complex question

(e.g., “Is the study on 65+ years old adults living in Africa?”), ii) break the composite

question into component predicates, but ask them as part of the same task, and iii) make

each predicate a task of its own (which also means that a crowd worker only sees one

predicates and assesses many items for it).

We approach this problem systematically, considering both characteristics of the

question and tasks. To give breadth to our analysis, we explore a broad landscape of tasks

(categorization and classification, verification, content moderation, and sentiment analysis

tasks) representing different domains and task difficulty levels. We focus our experiments

on document retrieval (text classification) and consider documents of different lengths,

given the associated effort incurred on workers to (understand and) assess text, and the

potential influence of the documents’ length on performance [Cheng et al., 2015; Ramı́rez
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et al., 2019a]. Our focus on text stems from the fact that it is a recurrent use case in the

literature [Ho et al., 2015; Wilson et al., 2016; Krivosheev et al., 2017], and annotating

images are deemed simpler in comparison to annotating texts [Krause and Kizilcec, 2015].

Finally, crowdsourcing tasks are prone to worker biases [Faltings et al., 2014], which could

be caused by frequently assigning items to the same class. Therefore, we consider different

class distribution scenarios to study the predicate formulation problem in crowdsourcing

contexts.

3.3 Crowdsourcing Experiment

This experiment studies the impact of the task design alternatives on the performance

of crowd workers. We focus on the simpler case where a complex predicate is composed

of two simpler ones. We show the individual and collective performance gains related

to predicate reformulation, and how the nature of the problem influences the resulting

performance.

Datasets

We considered datasets with different characteristics in terms of domain, predicates,

document length, and difficulty (classification accuracy), in line with prior art [Ramı́rez

et al., 2019a; Krivosheev et al., 2018]. The datasets come from systematic literature reviews

(SLRs), customer feedback analysis, content moderation and crowd verification, and are

representative of multi-predicate screening problems from the literature [Krivosheev et al.,

2018; Ramı́rez et al., 2019c; Wulczyn et al., 2017]. See the supplementary material3 for

details on the predicate composition for each of the reference datasets.

Virtual reality exergames. This dataset was produced and annotated by the authors

as part of their investigation into overlaps between SLRs. We identified a pool of 80K+

scientific articles from multiple SLRs that share some predicates. From this pool of papers,

we built the Exergame-VR dataset that consists of 500 articles from 4 SLRs with high

overlap in terms of predicates and papers within their scope. Additionally, we split the

documents into two buckets based on their length: short (150 items with length ≤ 230

words) and long (350 items with length > 230 words).

Amazon product reviews. This dataset contains 100k reviews of products that are

sold in Amazon [Krivosheev et al., 2018]. It is labeled according to the following two

predicates: 1. Book: “Is it a book review?”, and 2. Negative: “Is it a negative review?”.

We randomly selected 236 reviews (118 short, and 118 long) to create the AMZ-reviews

3https://tinyurl.com/simpler-predicates-supp

https://tinyurl.com/simpler-predicates-supp
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dataset.

Wikipedia detox. This dataset from Wulczyn et al. [Wulczyn et al., 2017] contains

100k comments from “Talk pages” in Wikipedia, labeled by crowd workers on whether

each of the comments contains a personal attack (or an attack of another kind). From

this pool of 100k items, we built Content-Moderation, a dataset of 118 long documents

(comments with > 230 words) labeled on two predicates.

Verifying crowd contributions. In [Ramı́rez et al., 2019c], the authors contribute

datasets where workers provided a binary label to a relevance question, and a highlighted

excerpt to justify the labeling. We built the Verification dataset based on [Ramı́rez

et al., 2019c], selecting 118 long documents labeled according to predicates that determine

whether the judgment and highlighted passage are correct. These tasks are relevant to

iterative workflows, where workers act as reviewers [Little et al., 2010].

Economic inequalities in older adults. This dataset is part of an ongoing SLR

on assessing the inequalities in older adults. It contains 2619 papers. From this pool of

documents, we selected and labeled 151 items to build Inequality-OA, a dataset of long

abstracts.

Design

The task performed by workers in our experiment consisted of reading a piece of text and

answering one or two binary questions of different complexity levels depending on the task

design. Figure 3.1 shows an example of a task (inspired by prior art [Krivosheev et al.,

2017; Ramı́rez et al., 2018]).

We selected 118 items per dataset, reserving 18 for training workers (training items),

and 100 for the actual task, where 34 of these items were used for quality control (control

items). We consider two scenarios for the class distribution in these datasets: 60-40 and

80-20. In the 60-40 case, we selected items in each dataset according to a distribution of

roughly 40% included (IN ), 60% excluded (OUT ). Included means that the documents

satisfy all predicates pj ∈ P for a given dataset (i.e., documents have a value of 1 for the

predicates that constitute P). Excluded documents are those that satisfy only one of the

predicates or none of them. The excluded documents we distributed equally, whenever

possible, between the three exclusion cases4. As the name suggests, the 80-20 case

represents a setting with roughly 20% of items included and 80% excluded. This skewed

setting tends to be problematic in crowdsourcing since it may bias workers towards the

most frequent answer [Faltings et al., 2014]. For this reason, and quality control purposes,

4Representing the two predicates in each dataset as p1 and p2, the three exclusion cases are 1) p1 = 1, p2 = 0;

2) p1 = 0, p2 = 1; 3) p1 = 0, p2 = 0.
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instructions cropped to save space

Figure 3.1: The task interface used in the crowdsourcing experiments. The interface shows the

complex predicate P = p1 ∧ p2 for the Exergame-VR dataset, with p1: “Does the paper describe a

study that uses an exergame?”, and p2: “Does the paper describe a study that uses virtual reality

for physical training?”.

the training and control items follows a 30 IN and 70 OUT distribution, making sure that

each page of work shows items from both classes.

We consider four experimental conditions for our crowdsourcing experiments, each

condition represents a variation of the task interface shown in Figure 3.1. The baseline

condition we use as control, and it asks workers a complex predicate P (a question that

integrates both predicates in a dataset, as indicated in 3.1). The P1-P2 condition represents

the task alternative that asks the constituents of P on the same task. The conditions P1

and P2 represent tasks that asks workers only one simpler predicate (predicates p1 and p2,

respectively).

Initially, we considered both short and long documents. However, in a pilot study, we

observed that the task alternatives did not improve over the baseline when considering
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short documents, suggesting that these may be more suitable for tasks where workers face

longer documents [Wilson et al., 2016; Ramı́rez et al., 2019a]. Therefore, we consider only

long documents in our study.

We followed a between-subject design, assigning workers to one of the four experimental

conditions. Workers judged a maximum of 18 documents that we divided into 6 pages of 3

items per page (6× 3 design), and we only allowed workers that understand English. We

required workers to perform a training task (one page of work) before advancing to the

main task, a quality control mechanism typically done in crowdsourcing research [Mitra

et al., 2015]. Workers that scored 100% advanced to the main task, where we included

control items as an additional quality assurance mechanism. We required workers to

maintain an accuracy level of 100% for the AMZ-reviews dataset and 76% for the rest of

the datasets5. We paid workers between $0.09 and $0.21 per page of work (depending on

the condition and dataset), aiming at an hourly rate of 7.5 USD. We collected contributions

from workers on the Yandex Toloka platform6, asking 3 votes per item in the datasets. We

defined a timeframe from 14:00 to 21:00 GMT+1 for running the experiment, running each

dataset separately with a time gap between these. We executed each of the experimental

conditions in parallel and balanced the contributions from each geographical bucket (˜33%

per bucket within each condition).

We inspected the demographics of Toloka and noticed that roughly 90% of workers come

from Russian-speaking countries, where Russia and Ukraine contribute the majority of the

workers (∼79% and ∼10% respectively). Besides only allowing workers that understand

English, we decided to create 3 geographic buckets: Russia, Ukraine, and the “Rest of the

world”, balancing the contributions from these buckets in our experiments to avoid any

bias due to demographics.

We used an external server to assign workers to experimental conditions in a round-

robin fashion, blocking workers from jumping between conditions (to avoid learning effect).

We added a custom JavaScript code to the task interface to call the external server and

render the experimental condition accordingly [Ramı́rez et al., 2019b].

3.3.1 Results

We collected a total of 8250 judgments from 1185 workers across the datasets we considered

in this experiment. Here we describe our results to determine the impact of asking the

complex predicate P vs. leveraging its simpler constituents on the classification performance

of crowd workers.
5Prior art [Krivosheev et al., 2018] shows that the baseline performance was quite high for AMZ-reviews;

therefore, we defined the 100% quality threshold for this dataset.
6https://toloka.yandex.com/

https://toloka.yandex.com/
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Worker accuracy

We use the ground-truth labels available in the datasets to determine the classification

accuracy of workers in each of the experimental conditions. The median accuracy of

workers in the baseline was 0.89 for AMZ-reviews and 0.67 for the rest (Exergame-VR,

Content-moderation, Verification, and Inequality-OA), it would seem that workers found

it easier to judge product reviews than documents from the rest of the domains.

We test the significance of the difference in worker accuracy using the Kruskal-Wallis

H test7. The test indicates that there is a significant difference between the experimental

conditions in 4 out of 5 datasets (p < 0.05 for Exergame-VR, and p < 0.01 for the rest).

The results are depicted in Figure 3.2. We analyze all possible pairwise comparisons

using the Dunn’s Test of Multiple Comparisons [Dunn, 1964], using Benjamini-Hochberg

correction to reduce the probability of Type I error. It can be noted that either P1 or

P2 has a significant improvement over the baseline (3 out of 5 datasets). And that the

P1-P2 condition significantly outperforms the baseline in the Content-moderation and

Inequality-OA datasets.

In the skewed class distribution scenario, the 80-20 case, the median worker accuracy in

the baseline condition was 0.67 for both Exergame-VR and Inequality-OA (figure omitted

due to space limitations). The Kruskal-Wallis test shows no significant results between the

experimental conditions (though, there is an interesting advantage of the P1-P2 condition

where the median worker accuracy was 0.83 in both datasets).

For our predicate formulation problem, these results suggest that by asking simpler

predicates instead of a complex question, we are likely to see an increase in worker accuracy

in at least one of the simpler predicate. Furthermore, by asking more granular and simpler

predicates we obtain valuable detailed information about crowd and task characteristics.

For example, according to our results, workers were better at evaluating if a review was

about a book than whether it was a negative review (simple verification vs. sentiment

analysis tasks), suggesting different difficulty levels. This detailed information could equip

crowd-machine algorithms to make better decisions about what to crowdsource and what

to automate.

Classification performance

We analyze the results from a collective perspective and evaluate the impact of predicate

formulation in the resulting classification.

The overall classification, for a given P = {p1, p2} in our datasets, is derived from the

conjunction of the aggregated results from each of the simpler predicates (i.e., p1 ∧ p2 for

each item i ∈ I). We use majority voting to aggregate the contributions from multiple

workers and the F1 score to assess the classification quality. The baseline condition already

7In our pilot study, we noticed that the observations do not follow a normal distribution
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worker accuracy - balanced datasets

Content-ModerationAMZ-reviewsExergame-VR

Inequality-OAVerification

*

*
*

**

***

***

***
*

Figure 3.2: Worker accuracy by experimental condition for the 60-40 case. The lines indicate

significant differences, coding p-values as *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****:

p ≤ 0.0001.

provides classification on P since the simpler predicates are combined in a single question,

and for the P1-P2 condition we simply take the conjunction of {p1, p2}. To make the

results from P1 and P2 comparable to previous conditions, we introduce P1 & P2, which

also takes the conjunction of each simpler predicate. To compute the F1 score for these

conditions we use as ground-truth label the conjunction of the simpler predicates.

Table 3.1 summarizes the classification performance for the experimental conditions

across our five datasets for both 60-40 and 80-20 cases. The baseline performance ranges

between 0.6 (Exergame-VR) and 0.909 (AMZ-reviews).

We compared the performance of asking P directly vs. asking the simpler predicates

first and then combining the results (P1-P2 and P1 & P2). It can be observed that the

conditions P1-P2 and P1 & P2, outperformed the baseline condition but not consistently

across all datasets. P1-P2 outperformed the baseline in 3 out 5 datasets (Content-

moderation, Verification, and Inequality-OA), with an increase in performance of up to
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18%. P1 & P2 improved over the baseline in 2 out 5 datasets, with an increase of up to

9%. In the 80-20 case, the P1-P2 condition showed superior performance when compared

to the baseline, with an increase of up to 27% (while the P1 & P2 fell behind the baseline).

We also compared the simpler predicates against the complex one. We observed

superior classification results when formulating a composite predicate as multiple (more

straightforward) questions leveraged on the same or separate tasks, even when votes are

aggregated with simple majority voting. Asking two simple questions on the same task

(the P1-P2 condition) resulted in performance gains ranging from 6% to 48%. And the

conditions P1 and P2 that asked a simple question surpassed the baseline performance in

all datasets, with an increase in F1 score ranging from 2% and up to 47% In the 80-20 case

the F1 scores in the baseline were 0.571 for Exergame-VR, and 0.476 for Inequality-OA.

In both datasets, task formulating simple predicates outperformed complex ones (when

delivered separately or together on the same task), with an increase in classification

performance of up to 97%.

A closer look into the performance on the complex predicates (baseline condition)

across the two class distribution scenarios showed that overly skewed datasets may hurt

the classification performance of the crowd — F1 decreased 4% for Exergame-VR, and 31%

for Inequality-OA. While by leveraging simple predicates, the classification performance

could remain roughly the same, except for the unusual case of P1 for Inequality-OA, where

the performance decreased 20%. We believe the selectivity of P1 (see our supplementary

material) played a role in this drop in performance since it is equal to 0.44 in the 60-

40 version of Inequality-OA and 0.20 in the more skewed variant (also observed in the

baseline).

In summary, there is evidence suggesting that complex multipart questions may benefit

from disentanglement into simpler elements. As we observed, performance boosts can be

obtained by formulating and presenting complex predicates as simple and more granular

questions and combining back the results. However, there is no clear pattern for when

each task design alternative (presenting simple predicates on the same- or separate tasks)

will be the appropriate one to implement, an interesting direction for future work.

Worker effort

Although our main focus in this work is quality, we complement our analysis by looking at

the impact on worker effort. We consider decision time as a proxy to estimate the effort

incurred on workers.

The median decision time in the baseline condition was 22.66s for Exergame-VR, 33.88s

for AMZ-reviews, 30.77s for Content-moderation, 23.38s for Verification, and 25.59s for

Inequality-OA. In the 80-20 datasets, the median decision time in the baseline condition

was 33.62s for Exergame-VR, and 33.05s for Inequality-OA.
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Table 3.1: Classification performance (F1 scores) by experimental condition from the crowdsourc-

ing experiment.

Condition Exergame-VR Inequality-OA AMZ-reviews Wiki-detox Verification

Distribution 60-40 (80-20) 60-40 (80-20) 60-40 60-40 60-40

Baseline 0.600 (0.571) 0.691 (0.476) 0.909 0.697 0.674

P1 - P2 0.583 (0.696) 0.781 (0.606) 0.889 0.825 0.707

P1 & P2 0.656 (0.629) 0.698 (0.435) 0.947 0.642 0.619

P1 0.819 (0.817) 0.744 (0.595) 0.981 0.838 0.889

P2 0.881 (0.853) 0.887 (0.942) 0.926 0.719 0.776

While formulating complex predicates as simpler multipart questions offer gains in

quality, it results in slower task completion time. Workers in the P1-P2 condition spent

significantly more time than the baseline in all datasets (p < .01), which intuitively makes

sense since workers answered two questions rather than one (the decision time ranged

between 36.77s and 53.56s). Likewise, the P1 & P2 condition was also significantly slower

than the baseline (p < .01, with decision time between 36.96s and 45.08s)8. Also, there is

no substantial evidence to suggest which task alternative (P1-P2 or P1 & P2) is better in

terms of effort. The conditions P1-P2 and P1 & P2 had comparable results in 3 out of 5

datasets (p > .05), and P1 & P2 outperformed on the rest (p < .05).

Looking closer into the performance, we noticed that simpler predicates (when viewed

in isolation) could potentially be faster than asking a complex predicate, but not always.

When comparing P1 and P2 to the baseline, we noticed two competing observations.

One of the simpler predicates was significantly faster than the baseline in some cases

(40% faster for AMZ-reviews, 27% for Content-moderation, and 56% Verification) while

significantly slower in some others (20% slower for AMZ-reviews, 55% for Verification, and

32% Inequality-OA). A similar result can also be observed in the 80-20 scenario. This

suggests worker strategies such as short-circuit evaluation or focusing on simpler criteria

when evaluating complex predicates, but the behavior requires further exploration.

To complement our analysis, we also explore how the predicate formulation may have

influenced task intake. Overall, the percentage of workers who quit after a quick inspection

of the task (during training) ranged between 18% and 73%. In particular, the task

abandonment in the P1-P2 condition ranged between 50% and 73% (somewhat expected

given that workers faced the same amount of instructions as in the baseline and had to

8To approximate the decision time for P1 & P2, we determine the median decision time (per document) for

conditions P1 and P2 separately. Then for each document, we use the “slower” predicate as the decision time.
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answer two questions rather than one). Across all datasets, either P1 or P2 obtained the

highest task intake, aligning with the observation from the previous paragraph. To aid

task intake, as task designers, we may seek to formulate a complex predicate as multiple

(focused and simpler) questions and query them in isolation. Also, the instructions length

should be kept in mind, in the P1 and P2 conditions our instructions were between 21%

and 55% shorter than the baseline and P1-P2 . However, this suggestion demands further

research, and we find it an interesting direction to explore.

Our results show that, as current literature suggests, there is a trade-off between quality

and time. Besides, formulating complex predicates as multipart questions could also help

identify which predicates may be more effort-intensive. Please refer to our supplementary

material for a more detailed analysis.

3.3.2 Simulations

The high dimensionality of the problem makes it intractable to crowdsource for every

possible parameter value. Here, we rely on simulations to assess how the performance of

workers could vary under different parameterizations of the problem.

Conditions. The baseline task asks the complex predicate P directly, the same-task

alternative queries the simpler predicates {p1, . . . , pn} in one task (i.e., a worker answers

n questions), and separate-tasks delivers these predicates on different tasks (i.e., a worker

answers one of the pj predicates). We use the terms conditions, cases and task alternatives,

interchangeably.

Parameters & Metric. We parameterize the simulations based on 1) the number

of simpler predicates n that constitute P, 2) the selectivity sj for predicates pj ∈ P, 3)

the accuracy of workers drawn from a Beta distribution with mean µ and variance σ2, 4)

the budget b controlling the number of votes per item, and 5) the penalty γ that impacts

the accuracy of the complex predicate P . To assess different quality goals, we use Fβ, for

several values of β.

Worker accuracy. For a complex P, the separate-tasks condition defines a beta

distribution for each predicate with expected accuracy µj for pj ∈ P. The same-task

condition defines a beta distribution with accuracy µs = 1
n

∑
uj. In contrast, the baseline

defines a beta distribution with expected accuracy µb but adjusted based on the penalty γ.

We describe results for settings without penalty (γ = 0) and summarize the impact of

γ at the end of this section, referring readers to our supplementary materials for further

details on our parameterization and in-depth analysis.

Equal selectivity and accuracy. In this scenario, we define that predicates have equal

selectivity s, and workers come from the same distribution. Figure 3.3 depicts the results

for n = 2, s = 0.5, and for different expected accuracy values. It can be noticed than
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when precision and recall weight equally (β = 1), there is a difference between the task

alternatives in favor of the baseline. However, the gap decreases as the accuracy of

workers increases (until the conditions perform roughly the same). The same-task and

separate-tasks alternatives outperform the baseline when precision is more relevant than

recall (β = .1) and workers are better than random (µ ≥ 0.6). However, the conditions

perform roughly the same when we consider higher selectivity (s > 0.5). The baseline

outperforms the other alternatives when we value more recall (β = 10), and the difference

holds as we increase the accuracy and selectivity (except for s = 0.1, a extremely low

selectivity with high variance).

Increasing the budget (number of votes) does not affect the results in low-accuracy

settings. But when accuracy is high (µ ≥ 0.7), the differences narrow until the conditions

perform roughly the same. The number of predicates, however, harms the baseline

performance, making the same- and separate-tasks superior choices for all settings.

These observations suggest that we may seek to formulate a complex predicate as

a single question if we aim to optimize recall and the number of simpler predicates n

is low, which intuitively makes sense and aligns with current guidelines for multi-class

classification [Sabou et al., 2014]. While if we aim for precision or face scenarios with many

predicates, we are better off by querying a complex predicate via its constituents. However,

in the following, we assess more realistic settings (different selectivities and accuracies),

and see how asking the simpler questions is preferable over P .

Equal selectivity and accuracy

Figure 3.3: Classification performance for different accuracy values, number of predicates n = 2

and selectivity s = 0.5.

Different selectivity and same accuracy. We assign different selectivity values (either

low or high) to the predicates, and we assume the same expected accuracy for the individual
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predicates pj. We first considered two predicates p1 and p2 and two scenarios where the

predicates have selectivities 1) s1 = 0.3 and s2 = 0.7; and 2) s1 = 0.7 and s2 = 0.3. We

tested different accuracies µ ∈ [0.5, 0.9].

The results showed the same trend (figure omitted to save space) as in the simulations

where we set predicates with equal selectivity and accuracy. Likewise, varying the number

of predicates harmed the baseline performance, and increasing the budget narrowed

the difference between the conditions when accuracy is high (until the task alternatives

performed roughly equal).

Different selectivity and accuracy. Here we consider predicates with different selec-

tivities and accuracies, a setting that aligns better with what we observed in the real

crowdsourcing experiment. First, we simulated two predicates p1 and p2 with selectivity

s1 and s2, and expected accuracy µ1 and µ2, respectively (where s1 6= s2 and µ1 6= µ2).

We considered selectivity values sj ∈ {0.3, 0.7}, a fixed accuracy µ1 ∈ {.6, .9} and varied

accuracy for µ2 with µ2 ∈ [0.6, 0.9]. We tested all combinations combinations of selectivity

and accuracy.

Different selectivity and accuracy

Figure 3.4: Classification performance for predicates with different selectivity and accuracy,

n = 2 and β = 1.

Figure 3.4 shows the results for β = 1 (more details in the supplementary material).

When we weight recall and precision equally, we noticed a difference in performance in favor
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of the same- and separate-tasks conditions (though less pronounced for µ1 = .9). Like in

previous simulations, putting more weight to precision favors the same- and separate-tasks

conditions. As for β ≥ 2, the same- and separate-tasks condition also showed superior

performance for the settings where the first predicate had an accuracy u1 = 0.6. In

contrast, for high-accuracy settings, u2 = 0.9, the difference between the baseline and

separate-task conditions narrowed until these performed roughly the same (both better

than same-task).

We also considered the case of multiple predicates (n = 4) with different accuracies and

selectivities. Like in previous simulations, a higher number of predicates hurts the baseline

performance. In this setting, the same- and separate-tasks conditions outperformed the

baseline across different values of budget b.

Summary. Our simulations without penalty showed how formulating a composite predi-

cate as a single question is preferable for recall if we consider a small number of predicates

with equal selectivity and accuracy. However, this is not always the case in real-world

settings, where we have many predicates with different accuracy and selectivity. In these

contexts, we noticed that formulating a complex predicate P as multiple simpler questions

showed superior performance in general, which aligns with our real-world experiment. As

we increase the penalty (γ > 0), the baseline tends towards 0.5 (random guessing), and

naturally, the performance deteriorates, making the conditions that ask the individual

predicates more suitable.

3.4 Hybrid Classification

3.4.1 Problem definition

We extend the crowdsourced classification by allowing to employ a set M of machine

learning (ML) classifiers. We want to identify the items in I that meet the complex

predicate P , but we now can use ML classifiers alongside crowd workers.

To solve this problem, we now consider training ML classifiers as we cast votes from

the crowd W . The classifiersM can be trained for P directly, or for (some of) the simpler

predicates pj ∈ P . Therefore, the solution space is naturally impacted by how well the ML

classifiers can learn P or the individual constituents, and thus help in the crowdsourced

classification problem.
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Table 3.2: The cells correspond to F1 scores for the best crowd performance (P1-P2 vs. P1 & P2),

the best ML result on average (among single and ensemble of classifiers), and the best hybrid

performance (Crowd-ML vs. ML-Crowd). The standard deviation for ML is ≤ 0.07.

Classifier Exergame-VR Inequality-OA AMZ-reviews Content-moderation

Distribution 60-40 (80-20) 60-40 (80-20) 60-40 60-40

Crowd 0.656 (0.696) 0.781 (0.606) 0.947 0.825

ML 0.866 (0.821) 0.853 (0.651) 0.753 0.183

Hybrid 0.775 (0.762) 0.800 (0.588) 0.931 0.485

3.4.2 Experiment

The crowdsourcing experiment showed how performance gains are obtained by querying a

complex predicate as multiple (simpler) questions and then combining back the results.

Here we situate the predicate formulation problem in the context of hybrid classification

and test our insight from the crowdsourcing experiment. The literature suggests that

hybrid classification offers superior results. And our intuition is that formulating a complex

predicate as multiple questions would allow us to capitalize on the strength of crowd and

ML classifiers and, therefore, obtain superior performance.

Design. We consider four datasets from the crowdsourcing experiment (excluding

Verification), with 118 items in each dataset. The crowd judgments from the crowdsourcing

experiment are aggregated using majority voting, and we combine these with machine

predictions in two (simplistic) ways: Crowd-ML and ML-Crowd, where Crowd-ML leverages

the crowd for the first predicate (p1) and machine for the second (p2), while ML-Crowd

does the opposite (computing p1 ∧ p2 to derive the complex P).

We use classifiers and ensembles of classifiers in this experiment. The four machine

learning classifiers correspond to Logistic Regression (LR), Support Vector Machine (SVM),

BERT [Devlin et al., 2018] and DistilBERT [Sanh et al., 2019]. The aim of covering different

ML techniques is to give our analysis breadth and not to compare the models, primarily

since we are operating with small datasets. The ensemble methods use LR, SVM, and

Multinomial Naive Bayes (MNB) as base estimators. We considered voting classifiers

(“hard”, using majority voting, and “soft”, using the predicted probabilities), a bagging

classifier (with SVM as its base estimator), and a stacking classifier.

The models were trained on the complex P and its constituents. We used 10-fold

stratified cross-validation, repeating the experiment 10 times (with different seeds) and

reporting averages. We fine-tuned the deep learning models for 4 epochs with a learning
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rate of 0.001 using the AdamW optimizer [Loshchilov and Hutter, 2019]. We used an

over-sampling technique [Chawla et al., 2002] to aid the LR, SVM, and MNB classifiers

(alone and within an ensemble) in dealing with imbalanced classes.

3.4.3 Results

Hybrid classification, Table 3.2, showed a superior (or comparable) performance when

compared to crowd classification for most of the datasets we considered (see our supple-

mentary material for a more in-depth analysis). For the 60-40 case, the hybrid classifier

outperformed the crowd for the Exergame-VR and Inequality-OA datasets (16% and 2%

difference in performance, respectively). For AMZ-reviews, the performance was compa-

rable (both classifiers with F1 > 0.9) while for Content-moderation the crowd showed

superior classification with a score of F1 = 0.82 in comparison to only 0.48 for the hybrid

approach (this was a difficult dataset in general for both crowd and ML classifiers). The

hybrid classification outperformed in the 80-20 variant of the Exergame-VR dataset (9%

difference in F1), while the crowd obtained a slightly better performance for the 80-20

version of Inequality-OA (3% difference).

Hybrid classification outperformed ML for AMZ-reviews (21% difference) and Content-

moderation datasets, although the hybrid performance was almost random for Content-

moderation. In contrast, ML performed better for Exergame-VR and Inequality-OA

datasets (11% and 6% difference, respectively), including the imbalanced variants, where

the difference was at most 10%.

From a task design perspective, these results suggest that framing a complex predicate

as multiple simpler questions translates into performance gains and plays nicely with

recommendations from hybrid classification research. Querying a complex predicate P via

its constituents allows for a (potentially) better coupling of crowd and machine classifiers.

Our experiment showed that even this simple Human-AI collaboration approach gives a

solid and consistent performance across different datasets and domains.

3.5 Discussion

Performance gains could be obtained depending on how we formulate a composite question

in the context of crowdsourced and hybrid classification. From a task designer perspective,

leveraging focused more straightforward questions offers more detailed information about

crowd workers, and can inform the use of different approaches more adapted to the

characteristics (difficulty, selectivity) of each simpler predicate, instead of committing to a

single strategy (e.g., hiring different workers based on task difficulty [Haas et al., 2015;

Retelny et al., 2017]).
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Querying simpler predicates could enable more effective coupling of ML classifiers and

favor long term reusability of already trained models. We believe that there is potential

for training highly-specialized models that couple effectively with the performance of

workers (instead of learning models classify items based on complex predicates directly).

Besides, answering simpler questions outputs reusable (and detailed) knowledge about the

capabilities of crowd and machine classifiers. For example, if we were to work on an SLR

about exergame usage in older adults, we could rely on the current knowledge that we

have built by querying the simpler predicates from the Exergame-VR and Inequality-OA

datasets. From the perspective of crowd workers, this means reapplying learned skills, and

for machines, it involves classifying unseen papers (and filter out at least articles that are

“obviously” not relevant).

We focused on a specific but relevant aspect for task designers: how to frame a

composite question used to classify items. Our results showed that superior classification

performance could be obtained by querying a complex predicate as multiple (simpler)

questions instead of asking a single coarse predicate. In a scenario with low accuracy and

selectivity, asking the constituents of P (i.e., n questions) may increase the chances of

misclassifying items, as observed in our simulations. In this case, we may rely on framing

the complex P as a single question (limited by the number of predicates it contains) or

framing P as a mix of simpler and coarse questions. To some extent, our competing results

from either asking predicates on the same task vs. on separate tasks is related to this

point (i.e., the error rate of a single worker answering n questions vs. n workers answering

a question each). Both task design choices offer superior results over the baseline, but

there is not enough evidence to inform decisions based on given problem settings. We

find this an interesting direction of future work, where we design algorithms that model

workers, tasks, and predicates to automatically learn how to formulate complex predicates

to meet quality goals while operating under a budget.



Chapter 4

Challenges and strategies for

running controlled crowdsourcing

experiments

This chapter introduces the second part of this thesis, where we focus on providing

support to run and report experiments in crowdsourcing platforms. This shift in focus

is motivated by the lessons we have learned in developing task design strategies for

addressing performance concerns in crowdsourced classification tasks, which required

us to run controlled experiments to provide empirical evidence on the approaches we

proposed in Chapters 2 and 3. Moreover, we aim to make crowdsourcing more accessible

to researchers and practitioners, offloading the need for in-depth knowledge of the inherent

characteristics of crowdsourcing platforms and programming skills to make controlled

experiments possible.

A crucial aspect in running a successful crowdsourcing project is identifying an appro-

priate task design [Jain et al., 2017], typically consisting of trial-and-error cycles. Task

design goes beyond defining the actual task interface, involving the deployment, collection,

and mechanisms for assuring the contributions meet quality objectives [Daniel et al., 2018].

The design of a task represents a multi-dimensional challenge. The instructions are

vital for communicating the needs of requesters since poorly defined guidelines could

affect the quality of the contributions [Wu and Quinn, 2017; Kittur et al., 2013; Gadiraju

et al., 2017b; Liu et al., 2016], as well as task acceptance [Schulze et al., 2011]. Moreover,

enriched interfaces could also help workers in performing tasks faster, and with results

of potentially higher-quality [Sampath et al., 2014; Wilson et al., 2016; Ramı́rez et al.,

2019a]. Accurate task pricing is also a relevant aspect since workers are paid for their

contributions [Whiting et al., 2019], representing an incentive mechanism that impacts the
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Figure 4.1: A summary of the experimental design used to discuss the challenges of running

controlled crowdsourcing experiments. We use this experiment as our running example, and

its goal is to study the impact of text highlighting in crowdsourcing tasks. In this case, the

experiment uses a between-subjects design and considers datasets from multiple domains with

documents of varying sizes, six experimental conditions, and tasks organized in pages. The figure

is adapted from [Ramı́rez et al., 2019a].

number of worker contributions [Mason and Watts, 2009], as well as the quality, especially

for demanding tasks [Ho et al., 2015]. The time workers are allowed to spend on a task

can also affect the quality of the contributions [Maddalena et al., 2016; Krishna et al.,

2016], and even characteristics of the crowd marketplace and work environment [Gadiraju

et al., 2017a]. These insights constitute guidelines for articulating effective task designs

and highlight the feasibility of running controlled experiments in crowdsourcing platforms.

Over the years, a vast body of work grew the scope of crowdsourcing [Paolacci et al.,

2010; Buhrmester et al., 2011; Mason and Watts, 2009; Schnoebelen and Kuperman, 2010;

Sun and Stolee, 2016; Crump et al., 2013], expanding its application beyond serving as

a tool to create machine learning datasets [Snow et al., 2008; Liu et al., 2016]. Paid

crowd work thus establishes as a mechanism for running user studies [Kittur et al., 2008;

Buhrmester et al., 2011; Sun and Stolee, 2016], complex work that initially does not fit in

the microtask market [Kittur et al., 2011; Ahmad et al., 2011; Kulkarni et al., 2012], and

experiments beyond task design evaluation [Crump et al., 2013; Paolacci et al., 2010; Mason

and Watts, 2009; Schnoebelen and Kuperman, 2010]. Naturally, the set of challenges

also increases along with the scope and ambition of crowdsourcing projects, especially for

crowdsourcing experiments.

Figure 4.1 depicts the study we use as our running example throughout this chapter to

describe the challenges and strategies for running controlled experiments in crowdsourcing

platforms. The goal of this project was to understand if, and under what conditions,

highlighting text excerpts relevant to a given relevance question would improve worker

performance [Ramı́rez et al., 2019a; Ramı́rez et al., 2019c]. This required testing different
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highlighting conditions (of varying quality) against a baseline without highlighting, given

different document sizes and datasets of different characteristics. The resulting experimental

design featured a combination of dataset (3) x document size (3) x highlighting conditions

(6) — a total of 54 configurations.

The potential size of the design space, along with the individual and environmental

biases [Barbosa and Chen, 2019; Balahur et al., 2010; Cheng and Cosley, 2013; Eickhoff,

2018; Nguyen et al., 2014; Sen et al., 2015], and the limitations of crowdsourcing platforms

[Qarout et al., 2019; Paritosh, 2012], makes it difficult to run controlled crowdsourcing

experiments. This means that researchers need to deal with the challenging task of

mapping their study designs as simple tasks, managing the recruitment and verification of

subjects, controlling for the assignment of subjects to tasks, the dependency between tasks,

and controlling for the different inherent biases in experimental research. This requires

in-depth knowledge of experimental methods, known biases in crowdsourcing platforms,

and programming using the extension mechanisms provided by crowdsourcing platforms.

Current systems that extend crowdsourcing platforms focus on specific domains [Bern-

stein et al., 2010; Ramı́rez et al., 2018; Correia et al., 2018; Franklin et al., 2011] or kinds

of problems that split into interconnected components [Kittur et al., 2011; Ahmad et al.,

2011; Kulkarni et al., 2012]. The general purpose tooling available to task requesters comes

in the form of extensions to (or frameworks build on top of) programming languages [Little

et al., 2010; Minder and Bernstein, 2012; Barowy et al., 2012], which could potentially

demand considerable work or lock the requester to a specific crowdsourcing platform.

Contributions. First, this chapter describes the challenges and strategies for running

controlled crowdsourcing experiments, as a result of the lessons we have learned while

running experiments in crowdsourcing platforms. And second, we introduce CrowdHub1, a

web-based platform for running controlled crowdsourcing projects. CrowdHub blends the

flexibility from programming with requester productivity, offering a diagramming interface

to design and run crowdsourcing projects. It offers features for systematically evaluating

task design to aid researchers and practitioners during the design and deployment of

crowdsourcing projects across multiple platforms, as well as features for researchers to run

controlled experiments.

4.1 Related Work

Crowdsourcing platforms such as Amazon Mechanical Turk, Figure Eight, or Yandex

Toloka, expose low-level APIs for common features associated with publishing a task to

a pool of online workers. These features involve creating a task with a given template,

1https://github.com/TrentoCrowdAI/crowdhub-web

https://github.com/TrentoCrowdAI/crowdhub-web
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uploading data units, submitting and keeping track of the progress, rewarding workers,

defining quality control mechanisms, among others. Naturally, exposing APIs open the

room for additional extensions to the feature space, and we describe the related literature on

technologies that extend the capabilities of crowdsourcing platforms. We identify that these

technologies can be roughly categorized in domain-specific tooling and general-purpose

platforms.

Domain-specific tools. Soylent [Bernstein et al., 2010] is a word processor that

offers three core functionalities that allow requesters to ask crowdsourcing workers to

edit, proofread, or perform an arbitrary task related to editing text documents. Soylent

articulated and implemented the idea that crowdsourcing could be embedded in interactive

interfaces and support requesters in solving complex tasks. Tools to support researchers

in performing systematic literature reviews (SLRs) have also been developed. CrowdRev

[Ramı́rez et al., 2018] is a platform that allows users (practitioners and human computation

researchers) to crowdsource the screening step of systematic reviews. Practitioners can

leverage crowd workers via an easy-to-use web interface, leaving CrowdRev in charge

of dealing with the intricacies of crowdsourcing. For human computation researchers,

however, CrowdRev offers the flexibility to tune (and customize) the algorithms involved

in the crowdsourcing process (i.e., querying and aggregation strategies). SciCrowd [Correia

et al., 2018] is a system that embeds crowdsourcing workers in a continuous information

extraction pipeline where human and machine learning models collaborates to extract

relevant information from scientific documents.

Crowdsourcing databases extend the capabilities of database systems to allow answering

queries via crowd workers to aid data cleansing pipelines. CrowdDB [Franklin et al., 2011]

extends the standard SQL by introducing crowd-specific operators and extensions to

the data definition language (DDL) that the query engine can interpret and spawn

crowdsourcing tasks accordingly. CrowdDB manages the details related to publishing

crowdsourcing tasks, automatically generating task interfaces based on the metadata

specified by developers using the extended DDL. Several other declarative approaches were

proposed to embed crowdsourcing capabilities into query processing systems [Parameswaran

et al., 2012b; Demartini et al., 2013; Marcus et al., 2011; Morishima et al., 2012].

General-purpose platforms. Several approaches have been proposed to manage

complex problems that partition into interdependent tasks. Inspired by the MapReduce

programming paradigm [Dean and Ghemawat, 2004], CrowdForge [Kittur et al., 2011]

offers a framework to allow solving complex problems via a combination of partition, map

and reduce tasks. Jabberwocky [Ahmad et al., 2011] is a social computing stack that

offers three core components to tackle complex (and potentially interdependent) tasks.

Dormouse represents the foundations of Jabberwocky, and it acts as the runtime that can
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Figure 4.2: The challenges that arise while running controlled crowdsourcing experiments.

process human (and hybrid) computation, offering for cross-platform capabilities (e.g.,

going beyond Amazon Mechanical Turk). The ManReduce layer is similar to CrowdForge

but implemented as a framework for the Ruby programming language, allowing map and

reduce steps to be executed by either crowd or machines. Finally, Jabberwocky offers a

high-level procedural language called Dog that compiles down to ManReduce programs.

Turkomatic [Kulkarni et al., 2012], unlike previous approaches, allows the crowd to play

an active role in decomposing the problem into the set of interdependent components.

Turkomatic operates using a divide-and-conquer loop where workers actively refine the

input problem (supervised by requesters) into subtasks that run on AMT, where a set of

generic task templates are instantiated accordingly.

Turkit [Little et al., 2010] is a JavaScript programming toolkit for implementing human

computation algorithms that run on Amazon Mechanical Turk. It offers functions that

interface with AMT and introduce the crash-and-rerun programming model for building

robust crowdsourcing scripts. CrowdLang [Minder and Bernstein, 2012] is a framework

and programming language for human and machine computation, relying on three core

components to allow requesters to implement complex crowdsourcing workflows. First,

a programming library that encapsulates operators and reusable computation workflows

(e.g., find-fix-verify [Bernstein et al., 2010], iterative improvements [Little et al., 2010]).

Then, the engine component orchestrates and run human computation algorithms (and

deals with the underlying challenges). And last, the integration layer bridges CrowdLang

with distinct crowdsourcing platforms for cross-platform support. Similar to Turkit,
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AUTOMAN [Barowy et al., 2012] embeds crowdsourcing capabilities into a programming

language (Scala in this case). However, it also offers features to automatically manage

pricing, quality control, and scheduling of crowdsourcing tasks.

Substantial efforts have been devoted to offering solutions that sit on top of crowdsourc-

ing platforms. However, these tools still demand considerable work from requesters (e.g.,

programming the complete workflows or experiments). For running controlled experiments,

we find the TurkServer platform [Mao et al., 2012] to be closely related to our work.

TurkServer is based on a JavaScript web framework and offers builtin features that enable

researchers to run experiments on AMT. Even though programming frameworks give full

flexibility to researchers, CrowdHub aims to offer a paradigm that blends flexibility with

productivity. Concretely, we propose an easy-to-use platform that allows task requesters

to focus on designing crowdsourcing workflows via a diagramming interface, reducing the

programming efforts that current tooling would require.

4.2 Challenges in Evaluating Task Designs

In this section, we describe the challenges that arise when running crowdsourcing experi-

ments. These challenges are derived from our own experiences in evaluating task designs

while studying the impact of highlighting support in text classification [Ramı́rez et al.,

2019a; Ramı́rez et al., 2019c].

We return to the study we use as our running example (see Figure 4.1) to describe the

challenges while running controlled crowdsourcing experiments. The datasets used in this

experiment come from two domains: systematic literature reviews (SLR) and Amazon

product reviews. Using the number of characters as a proxy for document length, we

categorized the documents as short, medium, or long. The workers that participated in

the experiment performed the task in pages (up to six), where each page showed three

documents with one item used for quality control[Daniel et al., 2018], except the first

page which was used entirely for quality control. Each document in the datasets was

associated with a list of text excerpts of varying quality. The highlighting conditions

0%-100% indicate the proportion of items in a given page that will highlight text excerpts

of good quality (0% means non-useful highlights). The baseline was used as the control

condition (no highlights), and the aggr condition first aggregated the available excerpts

and then highlighted the result.

The left half of Figure 4.2 depicts the desired experimental setup, a between-subjects

design. A representative sample of workers from the selected crowdsourcing platform

is randomly assigned to one of the experimental conditions, assuring a well-balanced

distribution of participants. Also, within each of the conditions, workers are restricted to
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assess only documents of a specific size. However, running this experiment on crowdsourcing

platforms is far from being a straightforward task. Researchers need to put a lot of effort

into overcoming the limitations of crowdsourcing platforms and successfully executing the

desired experimental design. And in this process, challenges emerge that could hurt the

outcome and validity of the experiment, as depicted in the right half of Figure 4.2.

In order to identify the challenges and quantify potential experimental biases in running

an uncontrolled evaluation of task designs, we created individual tasks in Figure Eight for

a subset (1 dataset) of the experimental conditions. We ran the tasks one after another,

collecting a total of 6993 votes from 631 workers (16 tasks). In the following, we lay out

the challenges that we encountered during the process (Figure 4.2).

Platforms lack native support for experiments. Crowdsourcing platforms such

as Figure Eight (F8), Amazon Mechanical Turk (AMT), and Toloka offer the building

blocks to design and run crowdsourcing tasks. In F8, for example, this implies defining i)

data units to classify, ii) gold data to use for quality control, iii) task design, including

instructions, data to collect, assignment of units to workers, iv) the target population

(country, channels, trust), and v) the cost per worker contribution. F8 then manages the

assignment of data units, the data collection and the computation of basic completion

metrics. These features are suitable for running individual tasks, but less so when

experimenting with different task designs with a limited pool of workers, where special

care must be taken to run even simple between-subject designs [Kittur et al., 2008].

This lack of support left researchers with the laborious job of actually implementing

the necessary mechanisms to deploy a controlled experiment. For our running example,

this means that researchers need to create the tasks for each of the experimental conditions

and document sizes (6 conditions and 3 document sizes, a total of 18 tasks). Eligibility

control mechanisms are crucial to identify workers and randomly assign them to one of

the tasks, controlling that workers only participate once. Besides, during deployment,

researchers need to constantly monitor the progress of the crowdsourcing task to avoid

potential demographic biases presence in the crowdsourcing platforms, assuring that a

well-balanced and representative sample of the population participates in the experiment.

Ultimately, this means that researchers need deep knowledge in both programming and

experimental methods to implement the necessary mechanisms and controlling inherent

biases in experimental research and crowdsourcing platforms.

Timezones Ê. A wide range of countries constitutes the population of workers in

crowdsourcing platforms. However, the majority of workers tend to come from a handful

of countries instead. The pool of workers that can participate in a task varies at different

times of the day since workers come from a diverse set of countries with different timezones.

For example, the population of active US workers could be at its pick while workers from
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India are just starting the day, as shown by Difallah, Filatova, and Ipeirotis for the AMT

platform [Difallah et al., 2018].

Running experiments without considering the mismatch of worker availability during

the day could introduce confounding factors that hurt the experiment’s results. In the

case of our running example, this means that the experimental conditions may not be

comparable. For instance, we noticed the worker performance in independent runs of our

study varied by different factors even between runs of the same condition (e.g., from 24s

to 14s in decision time between a first and a second run considering only new workers).

Collecting reliable and comparable results thus requires multiple systematic runs over

an extended period of time. For our study, this means executing the experiment over

chunks of time during the day and spread it over weeks, balancing across the experimental

conditions.

Population demographics Ë Ì. The demographics of a crowdsourcing platform (e.g.,

gender, age, country) defines the pool of active workers, along with the time an experiment

runs. Researchers tend to resort to crowdsourcing since it represents a mechanism to

access a large pool of participants. However, demographic variables tend to follow a

heavy-tailed distribution. For example, workers from the US and India constitute the

majority of the available workforce in Amazon Mechanical Turk [Difallah et al., 2018].

Many kinds of experiments could potentially be sensitive to the underlying population

demographics. Thus, ensuring a diverse set of workers is a crucial endeavor that researchers

must undertake to perform methodologically sound experiments.

Uncontrolled worker demographics could result in an imbalanced sample of the popula-

tion Ë and subgroups of workers dominating the task Ì, potentially amplifying human

biases and produce undesired results [Barbosa and Chen, 2019]. In running uncontrolled

tasks, we observed a participation dominated by certain countries, which prevented more

diverse population characteristics. For example, the top contributing countries provided

48.1% of the total judgements (Venezuela: 28.5%, Egypt: 11.8%, Ukraine: 7.8%).

Crowdsourcing platforms offer basic demographic variables that can be tuned to control

the population of workers participating in tasks. For our experiment, we identified the top

three contributing countries and created buckets with each of the top countries as head of

the groups. We then manually assigned the country buckets to the experimental conditions,

distributing uniformly the tasks that these could perform and swapping buckets accordingly.

This tedious but effective mechanism allowed us to overcome the heavy-tail distribution

of the population demographics and give equal opportunity to the top countries that

constitute the crowdsourcing platform.

Recurrent workers may impact the results Í. While returning workers are

desirable in any crowdsourcing project, they represent a potential source of bias in the
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context of crowdsourcing experiments, and special care must be taken to obtain independent

contributions within and across similar experiments [Paolacci et al., 2010].

In our study, we published the combination of experimental conditions and document

sizes as independent tasks in the crowdsourcing platform. Therefore, since tasks run in

parallel, nothing prevents workers from proceeding with another of our tasks upon finishing

the task where they first landed, which is the scenario depicted by point Í in Figure 4.2.

This situation is potentially problematic since workers that return to complete more tasks

might perform better due to the learning effect. As shown in Figure 4.3, we observed 38%

of returning workers, who featured a lower completion time (i.e., workers were faster) but

not higher accuracy2.

Researchers must implement custom eligibility control mechanisms to deal with re-

current workers, and in general, to manage the population of workers that participate in

the experimental conditions. Fortunately, crowdsourcing platforms provide the necessary

means to extend its set of features. The task interface shown to workers is usually a

combination of HTML, JavaScript, and CSS that researchers need to code. As part of this

interface, special logic could be embedded to control worker participation. For our study,

we identified workers by levering browser fingerprinting [Gadiraju and Kawase, 2017]

and sending this information to an external server that performed control and random

assignment of workers to conditions. Our task interface included JavaScript code that

upon page load requested the server information about the worker, resulting in a “block”

or “proceed” action that prevented or allowed the worker to continue with the task (in

the case of the former the page showed a message with the reasons of the block).

Recurrent workers may cross conditions Î. Closely related to the previous issue

is the fact that returning workers can also land in a different experimental condition, as

depicted by point Î in Figure 4.2. This scenario could make the experimental conditions

difficult to compare, threatening the validity of the experiment, since returning workers

that cross conditions could modify their behavior and resulting performance.

In our study, by comparing the 30% workers who crossed the experimental conditions

with the “new workers” (those that never performed the task), we observed that switching

between highlighting support and not support resulted in lower decision time (“highlighting

to base” and “base to highlighting” in Figure 4.3). However, those workers that came

from the “bad highlighting” condition and arrived at the condition with good highlighting

support showed a higher decision time, possibly due to the lack of trust in the support.

Workers switching from support to no support also featured higher accuracy than the new

workers and those returning to the same condition.

2We noticed, however, that accuracy remained mostly unaffected by conditions and other factors across all our

experiments, and it might have been less susceptible to the learning effect.
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Figure 4.3: Decision time and accuracy for recurrent workers in the highlighting support experi-

ment. For comparison purposes, the performance values from all conditions are aggregated using

a normalized z-score that considers the median from the valid contributions in its computation.

The distribution of values from non-valid contributions, organized under the different sources of

bias, thus depict the deviation in performance from the normal population (i.e., new workers).

The same eligibility control mechanism via browser fingerprinting takes care of recurring

workers that land in different conditions since it allows controlling for recurrent workers in

the first place.

The above challenges emphasize that running a systematic comparison of task designs

using the native building blocks of a crowdsourcing platform is thus a complex activity,

susceptible to different types of experimental biases, which are costly to clean up (e.g.,

discarding 38% of the contributions). While our example may represent an extreme case,

and it focuses on task design evaluation, it is still indicative of many of the challenges

that task designers and researchers face in general when running controlled experiments in

crowdsourcing platforms.

4.3 CrowdHub Platform

The above challenges motivated us to design and build a system that extends the capabilities

of crowdsourcing platforms and allow researchers and practitioners to run controlled

crowdsourcing projects. By extending major crowdsourcing platforms, CrowdHub offers

cross-platform capabilities and aims to provide the building blocks to design and run

crowdsourcing workflows, and for researchers, in particular, the features to run controlled
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crowdsourcing experiments.

4.3.1 Design goals

We now describe the design goals behind CrowdHub:

– Offer cross-platform support. CrowdHub extends crowdsourcing platforms and

integrates the differences between these into features that allow task requesters to design

tasks that can run across multiple platforms. This means that we can design a task

(e.g., one that asks workers to classify images) and then run it on multiple platforms

without dealing with the underlying details that set the platforms apart. This goal is

particularly relevant for crowdsourcing experiments since there is evidence suggesting

that results could vary across crowdsourcing platforms [Qarout et al., 2019].

– Blend easy-of-use with flexibility. While offering crowdsourcing capabilities by

extending a programming language gives complete control to task requesters, it also

demands more effort since requesters would need to code their solutions. With CrowdHub,

we aim to mix the flexibility of programming with productivity, and thus instead offer a

diagramming interface that does not require task requesters to code every piece of the

crowdsourcing puzzle.

– Support interweaving human and machine computation. CrowdHub is designed

to allow researchers and practitioners to extend its set of features and incorporate

machine computation alongside human workers. This means, following on the image

annotation example, that researchers could incorporate a machine learning model for

classifying ”easy” images and then derive ”hard ones” to crowd workers.

4.3.2 Architecture

Figure 4.4 shows the internal architecture of the CrowdHub platform. We used a client-

server architecture to implement CrowdHub, where both the backend and the frontend are

implemented using the JavaScript programming language. CrowdHub offers a diagramming

interface where visual blocks are the foundation to design crowdsourcing workflows. A

workflow is essentially a graph representing a crowdsourcing project (e.g., an experiment)

that allows data units to flow through the nodes, where the nodes represent tasks or

executable code to transform data units.

The Workflow Manager exposes features that allow requesters to create, update,

delete, and execute workflows. It uses the crash-and-rerun model [Little et al., 2010] to offer

a robust mechanism for executing workflows. A node in the graph defining the workflow

is called block. These blocks can be seen as “functions” that the workflow manager can

run. The current implementation of CrowdHub offers two blocks Do and Lambda. The
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Figure 4.4: The architecture of the CrowdHub platform.

Do block represents a task that is published on a crowdsourcing platform. Using a Do

block, requesters can configure the task interface using a builtin set of UI elements that

safes requesters from coding the interface (which typically consists of HTML, CSS, and

JavaScript). In addition to configuring the interface, other crowdsourcing task parameters

can be specified (e.g., number of votes, monetary rewards). The Lambda block, accepts

JavaScript code, and it represents an arbitrary function that receives and returns data

(useful for data aggregation and partitioning, for example).

The Worker Manager offer features for eligibility control and population man-

agement. The eligibility control gives researcher the functionality to define the policy

regarding returning workers and condition crossovers associated with the experimental

design (between- or within-groups design). Through population management requesters

can control for subgroups of workers dominating a dataset by assigning a specific quota.
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Figure 4.5: Example workflow for a between-subjects design using CrowdHub.

Altogether, these features allow requesters to be in control of their crowdsourcing project.

The Scheduler enables to control for confounding factors by scheduling task execution

over a period of time. Task requesters specify the time and progress intervals at which

the workflow should run, and the scheduler notifies the Workflow Manager accordingly to

pause and resume the execution.

The Integration Layer implements the cross-platform capabilities that CrowdHub

provides. This layer offers a set of functions that handle the differences between the

crowdsourcing platforms, thus allowing requesters to publish tasks across multiple platforms.

The workflow manager module uses the Integration Layer to publish, pause, and resume

jobs in the crowdsourcing platforms supported by CrowdHub. When publishing a task,

the Integration Layer first translates the UI components that constitute the task interface

into the actual interface that will be shown to workers on the selected crowdsourcing

platform. The worker manager module relies on the Integration Layer to handle worker

demographics in a platform-agnostic manner, as well as implementing the eligibility control

policy. CrowdHub manages the interactions with the crowdsourcing platform through

their public APIs, and JavaScript extensions incorporated into the tasks interface allows

for additional features such as worker control and identification (browser fingerprinting)

[Gadiraju and Kawase, 2017]. The current implementation of CrowdHub supports Figure

Eight and Toloka, with Amazon Mechanical Turk as a work in progress.

The Data Store is a SQL database that contains user information, workflow definition

and runs (which allow for running a workflow multiple times), block definition and cache
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(to store the results from running the blocks), worker information and the data units.

4.3.3 Deployment

Figure 4.5 shows an example workflow using CrowdHub, where we define a crowdsourcing

experiment following a between-subjects design to systematically evaluate task interface

alternatives.

CrowdHub enables the entire task evaluation process, as shown in Figure 4.5. At design

time, requesters use the workflow editor to define the experimental design, which includes

the tasks (Do boxes) and the data flow (indicated by the arrows and the lambda functions

describing data aggregation and partitioning). Experimental groups can also be defined

and associated to one or more tasks, denoted in the diagram using different colors. When

deploying the experiment, the Workflow Manager parses the workflow definition and

creates the individual tasks in the target crowdsourcing platform with the associated data

units and task design, relying on the Integration Layer to handle the selected platform. At

run time, the requester can specify the population management strategy and time sampling,

if any, and the platform will leverage the Worker Manager and Scheduler modules to

launch, pause and resume the tasks, and manage workers participation.

4.4 Discussion

Running controlled experiments in crowdsourcing environments is a challenging endeavor.

Researchers must put special care in formulating the task and effectively communicating

workers what they should perform [Kittur et al., 2008]. Unintended worker behavior could

be observed if researchers fail at delivering the task; for example, poor instructions could

lead workers to produce low-quality work or discourage them from participating in the first

place [Wu and Quinn, 2017]. The inherent biases associated with experimental research

and those present in the crowdsourcing platforms hinder the job of researchers. However,

most of these biases are unknown to researchers approaching crowdsourcing platforms

and could harm the experimental results, reducing the acceptance of crowdsourcing as

an experimental method [Crump et al., 2013; Paolacci et al., 2010]. For example, the

underlying population demographics characterizes the workers that can take part in an

experiment. If run uncontrolled, the sampled population may not be representative and

include biases that hurt the experimental outcome [Barbosa and Chen, 2019].

We showed specific instances of how running crowdsourcing experiments without coping

strategies can impact the experimental design, assignment, and workers participating in

the experiments. Using task design evaluation, we distilled the challenges and quantified

how it could change the outcomes of experiments. However, these challenges are not
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only tied to task design evaluation, and in general, they play a role in the success of

crowdsourcing experiments. Qarout et al. [Qarout et al., 2019] identified that worker

performance could vary significantly across platforms, showing that workers in AMT

performed the same task significantly faster than those on F8. This difference highlights

the importance and impact of the underlying population demographics [Difallah et al.,

2018]. Recurring workers naturally affects longitudinal studies. Over prolonged periods,

the population of workers could refresh [Difallah et al., 2018]; however, this still depends

on the actual platform. Therefore, it is common for researchers to resort to employing

custom mechanisms [Gadiraju and Kawase, 2017] or leveraging the actual worker identifiers

to limit participation [Qarout et al., 2019]. This forces researchers to fill the gaps by

programming extensions to crowdsourcing platforms and make it possible to run controlled

experiments, one of the core challenges highlighted by behavioral researchers [Crump et al.,

2013].

The lack of native support from crowdsourcing platforms to deliver experimental

protocols could potentially affect the validity and generalization of experimental results.

Researchers are forced to master advanced platform-dependent features or even extend their

capabilities to implement coping strategies and bring control to crowdsourcing experiments.

This is because crowdsourcing platforms were built with micro-tasking and data collection

tasks in mind where results are important. However, the potential downside of manually

extending crowdsourcing platforms is the learning curve that it incurs on researchers. This

could lock researchers to specific platforms and discourage running experiments across

multiple crowdsourcing vendors — potentially threatening how well results generalize to

other environments [Qarout et al., 2019].

The reliability of results, associated with choosing the right sample size, is a critical

challenge in experimental design. The inherent cost of recruiting participants forces

researchers to trade-off sample size, time, and budget in laboratory settings [Kittur et al.,

2008]. For crowdsourcing environments, this is not necessarily the case, since it naturally

represents easy access to a large pool of participants [Crump et al., 2013]. In laboratory

settings, it is possible to resort to magic numbers and formulas to derive the sample

size, but these rely on established recruitment criteria that can ensure a certain level of

homogeneity — in general, a homogenous population would require a small sample size.

In crowdsourcing, however, it is not easy to screen participants, and sometimes researchers

just accept whoever is willing to participate. This can bring a lot of variability into the

results. One way to address this issue is to rely on techniques used in adaptive or responsive

survey design, i.e., stopping when we estimate that another round of crowdsourcing (e.g.,

data collection) will have a low probability of changing our current estimates [Rao et al.,

2008]. Another approach would be to run simulations inspired by k-fold cross validation
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[James et al., 2013], which relies on specific data distribution (e.g., unimodal).

As crucial as controlling different aspects of task design, experimental protocol, and

coping strategies to deal with the crowdsourcing environment is the fact that researchers

must communicate these clearly to aid repeatable and reproducible crowdsourcing experi-

ments [Qarout et al., 2019; Paritosh, 2012]. In the context of systematic literature reviews,

PRISMA [Shamseer et al., 2015] defines a thorough checklist that aids researchers in the

preparation and reporting of robust systematic reviews. For crowdsourcing researchers

and practitioners, there is currently no concise guideline on what should be reported to

facilitate reproducing results from crowdsourcing experiments, beyond those guidelines

addressing concrete crowdsourcing processes [Liu et al., 2016; Barbosa and Chen, 2019;

Sabou et al., 2014; Blanco et al., 2011]. We find this an exciting direction for future

work, and we are currently initiating our project on developing guidelines for reporting

crowdsourcing experiments and encouraging repeatable and reproducible research.

We created CrowdHub to provide features that enable requesters to build crowdsourcing

workflows, such as creating datasets for training machine learning models or designing

and executing complex crowdsourcing experiments.

CrowdHub is not a monolithic system but rather a collection of components that

interact with each other. Requesters can register new adapters with the Integration Layer

to add support for new crowdsourcing platforms, therefore growing the list of vendors

that CrowdHub provides out-of-the-box. This could be particularly useful for integrating

private in-house platforms that suites the specific needs of task requesters. The Workflow

Manager enables researchers and practitioners to add new blocks to the set of available

nodes for creating crowdsourcing workflows. With this feature, requesters can grow the

scope of crowdsourcing workflows that can be created using CrowdHub. Therefore, new

forms of computation could be added that run alongside crowd workers. An example is

adding an “ML block” that uses data units to train a machine learning classifier.

To create task interfaces, requesters can resort to the built-in set of UI elements that

encapsulates the necessary code for rendering the interface on the underlying crowdsourcing

platforms. CrowdHub’s frontend application exposes these UI elements as visual boxes

that requesters can drag and drop to arrange and configure the interface accordingly. The

current set consists of elements for rendering text, images, form text inputs, and inputs for

multiple- and single-choice selection. We also incorporated the possibility of highlighting

text and image elements. This is useful, for example, to generate datasets for natural

language processing and computer vision (e.g., question-answering and object detection

datasets, respectively), or studying the impact of text highlighting in classification tasks

[Ramı́rez et al., 2019a]. We plan to add support for actually coding the task interface,

allowing requesters to use HTML, JavaScript, and CSS instead of using the current editor



Discussion 63

that offers draggable visual elements. This modality will give full flexibility to experienced

requesters for designing task interfaces, and in this context, the current UI components

will be available as special “HTML tags”.

We presented a demo of CrowdHub [Ramı́rez et al., 2019b] and received positive and

constructive feedback from researchers in the human computation community. These

discussions allowed us to arrive at the current design goals and set of features that constitute

CrowdHub. The current implementation offers all the features we described for the

Workflow manager, and a subset of the functionality associated with the Worker Manager

that enables eligibility control, allowing researchers to map experimental designs and

control worker participation. The system also supports collaboration between requesters

and generating URLs for read-only access to workflows — a feature that aims to foster

repeatability and reproducibility of results in crowdsourcing experiments. CrowdHub

currently supports two crowdsourcing platforms: Figure Eight and Yandex Toloka. Support

for Amazon Mechanical Turk is also in the roadmap.



Chapter 5

On the state of reporting in

crowdsourcing experiments and a

checklist to aid current practices

Crowdsourcing platforms are being widely adopted as an environment to run experiments

with human subjects [Kittur et al., 2008; Mason and Watts, 2009; Paolacci et al., 2010;

Crump et al., 2013]. Researchers are leveraging crowdsourcing to test hypotheses, compar-

ing different study methods, designs or populations, as well as to run studies aiming at

observing user behavior. For example, crowdsourcing is helping researchers evaluate the im-

pact of different interface designs on user performance, comprehension and understanding

[Steichen and Freund, 2015; Dimara et al., 2017; Ramı́rez et al., 2019a], assess the difference

in performance between users with different expertise, background and even mood levels

[Wu and Bailey, 2016; Hube et al., 2019; Xu et al., 2019]. These platforms (e.g., Amazon

MTurk) give researchers easy access to a large and diverse population of participants,

allowing them to scale experiments previously curbed to constrained laboratory settings.

Researchers need to articulate many elements to successfully map and run an experiment

in a crowdsourcing platform, as depicted in Figure 5.1. The relevance of this is rooted

in the need of incorporating more control and safeguards in an otherwise uncontrolled

environment [Gadiraju et al., 2015]. For example, an experiment testing the quality of

two alternative approaches to text summarization would require researchers to define,

among others, i) how to implement the two text summarization conditions as micro-tasks

in the crowdsourcing platform (e.g., both conditions in the same task or in different tasks),

ii) how to sample and allocate crowd workers to have representative, diverse (e.g., in

culture, education or mother-tongue) and comparable groups assigned to both experimental
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conditions,1 iii) quality control measures to avoid malicious or low-quality contributions

from workers, and iv) task design and configuration, including the user interface, training

examples, number of text summaries to show to each contributor, and the compensation

for their participation. In doing so, researchers also need to ensure that their entire setup

meets ethical standards for research with human subjects.
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Figure 5.1: Mapping an experimental design to a crowdsourcing platform involves articulating

many elements (none of which have a unique implementation). These elements constitute sources

of variability if not properly reported.

While guidelines and best practices have emerged to help researchers navigate the

implementation choices and inherent challenges of running experiments in a crowdsourcing

environment [Rogstadius et al., 2011; Mason and Suri, 2012; Chandler et al., 2013], little

attention has been paid to how to report on crowdsourcing experiments to facilitate

assessment and reproducibility of the research. If not properly reported, the elements

mentioned above constitute sources of variability that can introduce confounds affecting

the repeatability and reproducibility of the experiments, and preventing a fair assessment

of the strength of the empirical evidence provided.

Reproducibility of experiments is essential in science [Wacharamanotham et al., 2020].

The scrutiny of the research methods, by the academic community, and the development

of standardized protocols and methods for communicating results are critical in the

production of robust and repeatable experiments. Examples of this can be found in

evidence-based medicine where systematic reviews follow a strict elaboration protocol

[Shamseer et al., 2015], or, more recently, in the machine learning community where authors

are encouraged to follow pre-established checklists or datasheets to communicate their

1While a perfect sampling and allocation strategy (of workers to conditions) may represent an ideal scenario

detached from reality, we as researchers should ensure a reasonable balance in the underlying population to avoid

confounds affecting the experimental outcome.
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models and datasets effectively [Bender and Friedman, 2018; Gebru et al., 2018; Mitchell

et al., 2019; Arnold et al., 2019; Pineau et al., 2020]. Efforts in this regard have been

branded under the definitions of repeatability, replicability and reproducibility, to denote

attempts at obtaining similar results, by the same or different teams and experimental

conditions, under acceptable margins of error [Plesser, 2018]. Terminology notwithstanding,

the importance of reporting experiments in sufficient detail has long been acknowledged

as a fundamental aspect of research and of the scientific process.

The reporting of crowdsourcing experiments should be held to the same standards.

Studies, under the umbrella of reproducibility and experimental bias, report on multiple

aspects that affect the outcome of crowdsourcing experiments. These aspects include

task design (e.g., instructions [Wu and Quinn, 2017], compensation [Ho et al., 2015], task

interface [Sampath et al., 2014], and time [Maddalena et al., 2016] among others), external

factors such as the workers’ environment [Gadiraju et al., 2017a], platforms [Qarout et al.,

2019], and population [Difallah et al., 2018] — all of which serve as the foundation for

running user studies. In addition to the standard reporting for experimental research, it is

paramount to identify and report the critical aspects and all possible knobs that take part

in crowdsourcing experiments. In this regard, existing literature has barely grappled with

proposing guidelines that aid the reporting of crowdsourcing experiments, with existing

guidelines limited to crowdsourced data collection in the social sciences [Porter et al.,

2020].

In this chapter we aim to fill this gap. We do so by identifying salient issues associated

with the reporting of crowdsourcing experiments and propose solutions that can help

address these issues. Specifically, we derive a taxonomy of attributes associated with

crowdsourcing experiments and turn this into a checklist for reporting. The checklist aims

at facilitating the reporting of crowdsourcing experiments so that they can be repeated

and so that a reader can assess if the experiment design matches the desired intent. This

chapter focuses on the reporting of experiments ran via crowdsourcing, that is, studies

aiming to answer research questions/hypotheses by following an experimental design,

mapping the design to a crowdsourcing task and the features of the platform that supports

it, and recruiting crowd workers as subjects. This chapter therefore excludes qualitative

crowdsourcing studies (e.g., surveys) from its scope and, in general, other kinds of tasks

that are not experiments (e.g., data labeling tasks are often not framed as experiments).

However, the challenges in reporting on experiments are likely to be a superset of those or

generic crowdsourcing tasks.

Contributions. To aid the reporting of crowdsourcing experiments, we first need to

understand the main factors that affect repeatability and that enable assessment of the

quality of experiments by reviewers. We start by deriving the major design decisions of
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crowdsourcing experiments that play a role in crowdsourcing tasks and, therefore, on an

experiment’s outcomes. We do so by following an iterative approach — where we rely

on literature reviews and interviews with experts — and derive a taxonomy of relevant

attributes characterizing crowdsourcing studies. Using this taxonomy, we analyze the

state of reporting in crowdsourcing literature and identify aspects that are frequently

communicated and those that tend to go under-reported. We leverage these observations

to discuss potential pitfalls and threats to validity of experiments. With feedback from

experts, we then propose a checklist for crowdsourcing experiments to help researchers be

more systematic in what they report.2 This checklist seeks to help experimenters describe

their setup in a standardized format and readers to understand the used methodology

and how it was implemented, serving as a tool that complements existing experimental

research guidelines

5.1 Related Work

Guidelines for reproducibility and reporting of scientific studies

Reporting and reproducibility are at the heart of science. Experiments allow researchers

to manipulate a set of variables to test their influence into another group of variables of

interest [Shadish et al., 2002]. Guidelines for reporting scientific studies emerge from the

observed variance in the methodological rigor associated with the studies. Indeed, the

output of experimental research is only meaningful as long as it is reproducible [Paritosh,

2012]. This property guides the adopted methodology, as well as how this methodology

and the results are communicated.

For example, in the study and synthesis of scientific results obtained via systematic

literature reviews (SLRs), papers adhere to precise reporting guidelines that describes

the (systematic) approach to investigating a problem as discussed in the literature. The

existence of study and study report protocols is what gives systematic reviews its method-

ological rigor, avoiding issues like a biased selection of clinical outcomes [Chan et al., 2004].

In this context, the PRISMA [Shamseer et al., 2015] guidelines propose a checklist to

support the preparation and reporting of SLRs, making sure that such protocols exist and

are reproducible.

In medicine, randomized control trials (RCTs) are the gold standard methodology to

evaluate medical interventions. In this regard, guidelines like the CONSORT statement

[Schulz et al., 2010] help authors properly report their RCTs and avoid potential issues

resulting from the lack of methodological rigor (e.g., biased outcomes).

2The checklist can be found at https://trentocrowdai.github.io/crowdsourcing-checklist/

https://trentocrowdai.github.io/crowdsourcing-checklist/
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Guidelines in crowdsourcing contexts

Research has shown how crowdsourcing could be leveraged in a wide range of tasks and

domains (e.g., from labeling data for ML [Snow et al., 2008; Sorokin and Forsyth, 2008] to

serving as a platform for experimental research [Mason and Watts, 2009; Paolacci et al.,

2010; Crump et al., 2013]). Existing guidelines and best practices focus on how to run

experiments in crowdsourcing environments successfully, proposing strategies to overcome

common pitfalls found in crowdsourcing platforms [Kittur et al., 2008; Rogstadius et al.,

2011; Mason and Suri, 2012; Chandler et al., 2013]. However, how to properly report

crowdsourcing experiments has, to the best of our knowledge, been somewhat overlooked.

Our work complements experimental research in crowdsourcing by providing guidelines to

aid researchers in reporting crowdsourcing studies.

Crowdsourcing acts as a surrogate to traditional participant samples, but with additional

challenges that are not present in traditional experimental settings. The quality of the

contributions provided by crowd workers is a major concern due to the diversity in worker

skills and the level of commitment crowd workers put into the task [Gadiraju et al., 2015].

Many quality control mechanisms have been proposed (e.g., see [Daniel et al., 2018] for a

review) as well as studies analyzing performance as a function of internal and external

factors, showing that intrinsic motivation could help in increasing the performance of

workers [Rogstadius et al., 2011]. Factors related to the design of the task could also

contribute to obtaining subpar responses. Poorly written task instructions could misguide

workers and result in low-quality work [Wu and Quinn, 2017; Kittur et al., 2013; Gadiraju

et al., 2017b; Liu et al., 2016]. In contrast, enhanced interfaces may facilitate the job of

crowd workers and aid these to improved performance [Sampath et al., 2014; Wilson et al.,

2016; Ramı́rez et al., 2019a; Ramı́rez et al., 2019c], as well as adequately limiting the time

to judge can accelerate task completion without compromising the quality of the results

[Maddalena et al., 2016].

Another challenge relates to how we operationalize an experimental design in a crowd-

sourcing platform. As opposed to laboratory settings, there is an inherent lack of control

over the participants of crowdsourcing (and online) experiments that represents a concern

to researchers, amplified by the absence of built-in support from crowdsourcing platforms

[Kittur et al., 2008]. Random assignment, although simple in principle, is not straight-

forward to implement. Using multiple tasks to map different experimental conditions

is a typical approach [Ho et al., 2015]; however, self-selection effects could arise due to

participants preferring a subset of the conditions over others. And ensuring that new

workers arrive in the experiment is crucial to proper random assignment [Mason and Suri,

2012; Chandler et al., 2013], avoiding scenarios where workers participate multiple times

in longitudinal studies or experiments that must run multiple times. The characteristics of
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the platform should also be kept in mind. The underlying demographics associated with

the active workers [Difallah et al., 2018] play an important role since differences in the

conditions could be attributed to differences in the population of workers rather than the

conditions themselves [Qarout et al., 2019].

Recent guidelines also safeguard the ethics behind crowdsourcing experiments. Previous

literature on humanizing crowd work pointed out relevant ethical issues present in common

crowdsourcing practices (e.g., initially, crowdsourcing was seen as a “cheap labor market”,

as briefly reviewed in [Barbosa and Chen, 2019]). One aspect of this regards to accurate

and fair task pricing [Whiting et al., 2019], which previous work has shown to impact

the number of contributions produced by workers [Mason and Watts, 2009], the quality

of their work [Ho et al., 2015], and being a relevant aspect from an ethical perspective.

Another aspect concerns privacy, especially if some properties of the workers are being

requested as part of the experiments [Mason and Suri, 2012].

As crucial as successfully conducting experiments in crowdsourcing environments, it is

to make sure crowdsourcing experiments are reproducible [Paritosh, 2012; Qarout et al.,

2019]. In this regard, proper reporting of the methodology, operationalization, and results

of crowdsourcing experiments plays a relevant role. Surprisingly, guidelines for reporting

crowdsourcing experiments have received little attention even though underreporting

is a serious concern in science, and crowdsourcing is no exception [Buhrmester et al.,

2018]. Existing literature has identified how current studies fail to adequately report the

methodology behind their crowdsourcing experiments, showing that most of the papers

tend to omit information about worker qualifications, task design, rejection or validation

criteria [Porter et al., 2020; Ramı́rez et al., 2020b]. These efforts propose templates for

reporting studies, capturing essential aspects of crowdsourcing experiments. However,

these works are so far focused on specific use cases and platforms (data collection for social

sciences in Amazon Mechanical Turk [Porter et al., 2020]), or are still work-in-progress

[Ramı́rez et al., 2020b].

Existing guidelines cover very well how to effectively leverage crowdsourcing in different

contexts, but it has barely grappled with how to report crowdsourcing studies properly.

We aim to fill this gap by proposing guidelines for reporting the relevant aspects of

crowdsourcing experiments. As a starting point, our work leverages on the preliminary

taxonomy proposed in [Ramı́rez et al., 2020b]. The final taxonomy we propose differs

from DREC’s in terms of validation and scope of the attributes. The validation stems

from a mixed approach involving a large-scale analysis of papers reporting crowdsourcing

experiments, 171 articles from the literature, and feedback from experts in the field. This

approach helped us to scope down and refine the taxonomy to only attributes relevant to

crowdsourcing experiments, leaving off attributes that are well-understood and covered in
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guidelines for experimental research 3. The final taxonomy also avoids narrow or too broad

attributes (e.g., DREC’s synchronous and data analysis attributes, respectively), as well

as having attributes that can collapse into a single one (e.g., reputation and environment

attributes are now part of the target population). In addition, our mixed approach allowed

us to shape the final taxonomy into a checklist to aid how researchers report experiments

in crowdsourcing.

5.2 Data & Methods

We aim to i) understand the status of reporting on crowdsourcing experiments to assess

which aspects are covered or neglected and the extent to which reporting is consistent across

the literature, and ii) provide guidelines for reporting to assist in achieving consistency in

current practices and facilitate reproducibility and assessment.

To achieve these goals, we draw inspiration from standardizing efforts in evidence-

based medicine and software engineering for the reporting of systematic literature reviews

[Shamseer et al., 2015; Barbara and Charters, 2007]. We follow a mixed approach that

involves (1) deriving a taxonomy of relevant attributes characterizing crowdsourcing

experiments, (2) leveraging this taxonomy to analyze 171 papers published in major venues

and get a picture of the current state of reporting, and (3) exploring potential alternatives

of guidelines for reporting.

These steps were supported by literature reviews and interviews with experts in the

field. Specifically, literature reviews informed the first two steps, with a specific review

for each step, and we describe them in detail in Sections 5.3 and 5.4, respectively. The

interviews with field experts provided a formative feedback along the entire process.

They consisted of semi-structured interviews with researchers with ample experience i)

performing experiments to study crowdsourcing (i.e., crowdsourcing was the main area of

research), or ii) leveraging crowdsourcing platforms to run user studies and experiments on

different domains. Participants were recruited from the extended network of the authors,

considering as eligibility criteria a research track involving crowdsourcing experiments and

publishing in SIGCHI conferences. Ten experts agreed to participate (2F, 8M) including 1

Ph.D. student, 6 senior researchers from academia and industry, and 3 professors.

The interviews took place over Skype and Zoom between August and September 2020.

Before the start of the sessions, participants were informed of the goal and scope the

interview and provided their consent to participate and for the session to be recorded. The

3In the final taxonomy, the experimental design dimension has 7 attributes vs. 13 in DREC. Here, the taxonomy

omits attributes covered in guidelines for reporting study design and protocols (e.g., [Gergle and Tan, 2014]).

Likewise, the outcome dimension, for example, omits the data analysis attribute in DREC, as this is addressed by

guidelines for reporting statistics (e.g., [Association, 2010]).
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interview (see the protocol in Appendix A.3) was organized into three parts that provided

input to each of the three main steps in our methodology. The interviews were carried out

independently by two researchers. All interviews were held in and transcribed to English

by the interviewer. Only the transcripts were accessed for the analyses. The analyses

performed and how they inform our entire process are described in its proper context in

the following sections.

5.3 A Taxonomy of Relevant Attributes

This section introduces the taxonomy of relevant attributes that characterize different

aspects of crowdsourcing experiments. The attributes are grouped around six main

dimensions denoting: the task requester, the experimental design used, the participants of

the experiments (i.e., the crowd), the task design and configuration, the quality control

mechanisms used to guard the quality of the results, and the outcome of the experiment.

The resulting taxonomy is summarized in Figure 5.2. In the following we describe the

methods and described in detail the final taxonomy, highlighting the literature support

and expert opinions.

5.3.1 Methods

We consider four sources to elicit the taxonomy: i) guidelines for research experiments in

general and specific to crowdsourcing experiments, ii) features available in crowdsourcing

platforms to support the deployment of experiments, iii) scientific papers describing

crowdsourcing experiments, and iv) interviews with experts. With these sources we

aim to convey in the taxonomy the landscape of elements taking part in crowdsourcing

experiments: elements from experimental research, those inherent to crowdsourcing, and

what features platforms offer.

We started by identifying relevant attributes from existing guidelines. For this, we took

a small seed of well-known guidelines for experimental design and crowdsourcing [Gergle

and Tan, 2014; Hosseini et al., 2015; Porter et al., 2020; Mason and Suri, 2012; Gadiraju

et al., 2015] and expanded it through snowballing and keywords search using Google

Scholar (“crowdsourcing + guidelines”, “crowdsourcing + best practices”, “crowdsourcing

+ recommendations”, and “crowdsourcing + reporting + experiment”) and screening the

results based on title. This perspective was complemented with the analysis of practical

task design attributes available in a example micro-task platform, Toloka 4, which provides

all common features for managing microtask crowdsourcing. The analysis of platforms’

4https://toloka.yandex.com/

https://toloka.yandex.com/
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features allowed us to ground attributes to practical ”knobs” that researchers need to

consider to operationalize their experiments, and that often fall into assumptions (e.g.,

training steps, mapping of experimental design to concrete micro-tasks). Leveraging these

sources, two researchers extracted an initial set of attributes (e.g., task interface, task

instructions, compensation, crowd demographics, research design, random assignments,

platform used, fair payments, among others) in a spreadsheet to form an emerging list. The

two researchers then jointly discussed and organized these attributes into six dimensions

as depicted by the top-level entries in Figure 5.2.

This organization of attributes required the two researchers to iteratively group the

attributes identified in the seed of papers and selected crowdsourcing platform around

common themes (e.g., dimensions like pool of participants, workers, and study participants

were unified as the crowd dimension). This was followed by an analysis of the initial set

of attributes extracted, merging (whenever possible) equivalent attributes from different

sources (e.g., task template and task UI as task interface). Notice that during this

process, the researchers defined the semantics and scope of each of the six dimensions,

as well as that of the individual attributes. We should stress, however, that our aim is

on the comprehensiveness in terms of the attributes we identified and not the way we

organized these into dimensions, which is a specific way of viewing things. For example,

we include the demographics attribute under Outcome, as we define this dimension as the

one capturing the results of the different aspects of the crowdsourcing process (including

the recruitment, application of quality control techniques, etc). Under different semantics,

one might put demographics under the Crowd dimension, but we defined this dimension

as the one capturing attributes and mechanisms to identify and sample participants from

the Crowd.

This initial taxonomy was then refined by analyzing and piloting the extraction of

relevant crowdsourcing experiment attributes from a list of research papers reporting

crowdsourcing experiments. The process of identifying these papers is described in Section

5.4.1, as part of the analysis of the state of reporting. From this list, we took a random

sample of 15 papers published in the last eight years, which we drafted incrementally until

we reached saturation [Saunders et al., 2018]. In this piloting phase, researchers took note

of the applicability of the attributes for certain types of experiments, new attributes not

initially considered, as well as attributes to be discarded or merged. These observations

were discussed and addressed jointly by the two researchers.

We then further refined and validated this taxonomy with the input from crowdsourcing

experts. To this end, we used the input collected in Part 1 and (some bits of) Part 2 of

the semi-structured interviews with experts. The goal was to tap into their experience to

identify, through different trigger questions, relevant attributes that we might have missed.
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We leveraged their input by inquiring about their experience running and designing

crowdsourcing experiments (e.g., “What design choices you found to be more critical,

possibly affecting experiment outcomes?”), reporting or trying to replicate experiments

(e.g., ”What aspects you deem relevant and should be reported?”), and their own experience

reading or reviewing papers (e.g., ”What aspects do you find to be typically under-reported

or poorly reported?”). In doing so, the interviewer would bring up only the top level

dimensions (e.g., quality control or task design) if they were not discussed by the participant.

We avoided providing any details about specific attributes so as not to bias the participants

towards our taxonomy. Then, Part 2 introduced a portion of the taxonomy (one or two

dimensions) and asked participants to assess the relevance of the attributes and to suggest

any missing one.

Transcripts were organized around the trigger questions in a document, where the

interviewer highlighted excerpts touching on crowdsourcing attributes (e.g., “[...] depending

on the design of the interface you might get wide results.”). These excerpts were then

moved to a spreadsheet for analysis. The interviewer then coded the excerpts with the

associated attribute if covered by our taxonomy or flagged them for discussion otherwise.

The two researchers then discussed the coded excerpts and assessed whether i) the attribute

was relevant to the scope of the taxonomy, ii) the scope and name of an attribute had be

updated to cover a more general case, iii) the scope of the attribute had to be limited to

account for scenarios where an attribute is not applicable.

The inclusion criteria we used to refine the taxonomy considered three main reasons.

First, the taxonomy should focus on attributes directly associated with crowdsourcing,

offloading general attributes to existing guidelines.5 Second, the focus should also be on

practical and essential attributes for the reproducibility of experiments in crowdsourcing

(e.g., instead of just describing the experimental conditions, authors should explain how

these were mapped to tasks in crowdsourcing platforms). And last, the attributes in the

taxonomy should have a clear scope, avoiding “unique cases” or attributes that are too

broad.6 The resulting taxonomy is the starting point to develop a checklist for reporting

crowdsourcing experiments.

5Initially, the taxonomy considered attributes such as hypotheses, independent, dependent, and control

variables. In later iterations, we omitted these attributes since they are well understood and covered in guidelines

for experimental research.
6For example, the taxonomy considered whether an experiment was “synchronous” (experiments with multiple

phases where one phase’s output serves as input to the next [Mason and Suri, 2012; Gadiraju et al., 2015]). We

ultimately replaced this by introducing more specific attributes describing how the experimental design maps to

crowdsourcing tasks and how they are executed.



A Taxonomy of Relevant Attributes 74

Experimental Design Crowd Task Quality Control Outcome

Input dataset
Allocation to 
experimental 
conditions

Experimental 
design to task 
mapping
Execution of 
experimental 
conditions

Execution timeframe

Pilots

Returning 
workers

Target 
population

Sampling 
mechanism

Task type

Task interface

Task interface 
source

Instructions

Reward strategy

Time allotted

Rejection 
criteria
Number of 
votes per item

Aggregation 
method

Training

In-task checks

Gold items 
configuration
Post-task 
checks
Dropouts 
prevention 
mechanisms

Number of 
participants
Number of 
contributions

Excluded 
participants
Discarded 
data

Dropout rate

Participant 
demographics
Data 
processing
Output 
dataset

Taxonomy of attributes for crowdsourcing experiments

Requester

Platform(s) 
used
Implemented 
features
Fair 
compensation
Requester-worker 
interactions
Privacy & Data 
treatment
Informed 
consent
Participation 
awareness
Ethical 
approvals

Figure 5.2: A taxonomy of relevant attributes characterizing experiments in crowdsourcing.

5.3.2 Experimental Design

The experimental design represents the building block for experiments of any kind, allowing

to set the tone of the study and what level of conclusions can be derived from the

experimental results. Proper experimental research involves several elements, from the

research questions to the study design and analysis. These are well-understood aspects

covered in experimental research guidelines and textbooks on research methods (e.g.,

[Gergle and Tan, 2014; Olson and Kellogg, 2014]).

The experimental design section of the taxonomy we propose focuses instead on those

attributes that are more closely related to crowdsourcing, and that allow experiments to

be run in such platforms. The limited support for running experiments in crowdsourcing

platforms translates into many alternative strategies to map the experimental design

to crowdsourcing tasks. Having multiple alternatives (and failing to accurately report

these) can introduce confounds and ultimately affect the reproducibility of crowdsourcing

experiments [Qarout et al., 2019]. The l experimental design to task mapping attribute

indicates how the experimental conditions (e.g., Condition A and Condition B) were

mapped to crowdsourcing tasks. For example, as shown in Figure 5.1, a between-subjects

design could map each experimental condition to a different micro-task (Condition A

→ Task 2, Condition B → Task 1) or randomize them within a single task (Conditions

A,B → Task 1). Followed by this design choice, it is also relevant to define whether the

experimental conditions were executed in parallel or sequentially (i.e., the l execution

of experimental conditions entry in the taxonomy) as different execution strategies may
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result in experimental conditions leveraging different sets of active crowd workers (e.g.,

population samples with different underlying characteristics).

Another factor comprises participant’s l allocation to experimental conditions. This

attribute captures if and also how the randomization of the assignments was performed,

considering the effect on the strength of the resulting experimental evidence. In crowdsourc-

ing environments, where multiple micro-tasks may be running in parallel or sequentially

to serve the overall experimental design, crowd workers may be able to engage in more

than one micro-task, leading to what we refer to as l returning workers. Depending

on the experimental design and how it was handled, this situation may be desirable or

introduce unintended biases affecting the integrity of the experimental conditions and,

ultimately, the experiment results [Paolacci et al., 2010; Ramı́rez et al., 2019b]. Therefore,

this entry in the taxonomy captures whether crowdsourcing experiments account for and

communicate how returning workers were dealt with (or prevented in the first place).

The global scale of crowdsourcing platforms makes the active pool of workers to vary

throughout the day [Difallah et al., 2018]. Thus, failing to account for (and therefore

report on) this aspect may add confounding factors to the experiment that hurt its

reproducibility [Qarout et al., 2019]. The taxonomy, therefore, needs to capture the l

execution timeframe of the experiment, by answering the simple question: over what

timeframe was the experiment executed? (e.g., the experiment ran between January 1 and

10, every day at 2 PM). The l input dataset fuels the task workers solve and is therefore

crucial to indicate how this dataset was obtained and whether it is publicly available.

Lastly, the crowdsourcing literature advises to fine-tune a crowdsourcing experiment

through multiple pilots [Vaughan, 2017; Mason and Watts, 2009], and it is intuitively

relevant that authors report whether l pilots were performed before the main study.

Expert opinion

The interviews with experts organically touched on several of the experimental design

attributes of crowdsourcing experiments, and while no new attributes emerged, their input

allowed us to better scope and articulate the attributes. Their comments also provide a

window into the challenges faced by experts in porting (and reporting on) experimental

designs into crowdsourcing platforms.

Experts highlighted the importance of the experimental design in crowdsourcing exper-

iments, indicating that “the design is very critical”, and at the same time acknowledging

the challenges posed by the uncontrolled environment provided by crowdsourcing platforms.

One participant illustrated this aspect while bringing up the importance of the allocation

of crowd workers to experimental conditions
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“In the ideal case, if you [had] a full control of the crowdsourcing platform,

you would actually be able to do [a proper] randomization of crowd workers [to

experimental conditions]. And being a requestor in a crowdsourcing platform

such as AMT or Crowdflower, you don’t have this opportunity (...) Therefore,

by not having these opportunities you kind of [perform] certain workarounds.”

The importance of experimental design to task mapping, execution dates, execution of

experimental conditions and returning workers were all covered by the participants during

the interview. One expert conveyed through an illustrative example how all these aspect

are interconnected:

Let’s say you have two [conditions], like in an A/B test, and what differs in

the two [associated] tasks is a design, literally a UI design. Then what you do

is you run one task at 1pm today, and the other task tomorrow at 1pm as well.

Well, time of the day is kind the same, but at the same time tomorrow [the

platform would have a] slightly different population than today. It is very hard

to control for some things. Maybe some participants that participate in your

task today, will participate in your task tomorrow (recurrent workers), which

definitely creates a certain bias and a “feel of work” effect.

Accessing input dataset and other more general aspects of experimental design not

covered by the taxonomy (e.g., hypotheses, research questions) were also mentioned. One

participant went as far as to say that even in ideal case where all information is available,

even running the experiment under a different requester name could introduce bias “your

requester name might be NASA (..) and people are just so excited to participate in studies

run by NASA. It doesn’t mean that the effect is huge, but we know it [introduces] bias”.

5.3.3 Crowd

The active pool of workers in crowdsourcing platforms constitutes the population of human

subjects who can participate in crowdsourcing experiments. The l target population aims

to explicitly capture the eligibility criteria used to screen crowd workers and determine

potential participants of the experiment. Conversely, this entry captures if no specific

criteria were applied, thus implicitly using the characteristics of workers in the selected

crowdsourcing platform as eligibility criteria (i.e., the entire crowdsourcing population

is considered eligible). For example, studies may consider using specific demographic

attributes, concrete environments in which workers perform their work (OS, web browser,

mobile phones), a threshold to the task acceptance rate, or the number of tasks completed

(typically provided by the platforms).
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Once the target population is defined, the l sampling mechanism describes what

strategies were used to recruit a diverse or representative set of participants from the target

population. Crowdsourcing environments give researchers more affordable access to a large

and diverse pool of subjects with a wide range of demographic attributes, as opposed to

laboratory settings where scale (and diversity) is constrained by time and available funds

[Rand, 2012; Gadiraju et al., 2015]. This diversity plays an essential part in the external

validity of an experiment, similarly to how the soundness of the methodology contributes

to its internal validity (indeed, crowdsourcing experiments can be both internally and

externally valid as their laboratory counterparts [Horton et al., 2011]). However, sampling

strategies in crowdsourcing environments face additional challenges not found in traditional

settings. For example, how the underlying demographics are in flux based on the active

workers [Difallah et al., 2018]; the lack of control over the subjects [Gadiraju et al., 2015];

and how easy it is for workers to quit, potentially causing non-random attrition and

rendering the experimental conditions unbalanced [Rand, 2012].

Expert opinion

The interviews with the experts addressed and enriched the two attributes associated to

this dimension. Participants also emphasized how crucial (and challenging) it is to find

the right workers who suit the needs of the study and can participate in it, and make sure

a reasonable and representative sample is obtained from this target population.

Accordingly, both the worker profile making up the target population and the mecha-

nisms used to sample participants were deemed relevant by participants, giving examples

such as demographics (“I think is important to get to know some properties of the workers”)

and screening and qualification strategies applied to workers (“First is your recruiting

requirement that includes the screening process: how you selected your participants, you

need to describe that”).

Some participants went as far as to suggest that the mechanisms for inferring the

properties of the target population, such as demographics and qualifications, are important

and should be reported. For example,

“Some tasks are designed in a so academic way. You are literally being asked

‘what do you see in the picture’ [prompting the worker to annotate the picture],

and then you have 25 questions about your age, income, race and something like

that. I am a bit skeptical about this task design because first of all, it creates a

huge bias. You know it’s an academic study, you might really enjoy faking it,

(..) or produce irrelevant results for example. It might depend on [the] platform,

in some you might get some data about the population.”



A Taxonomy of Relevant Attributes 78

In relation to the above, another participant reflected on some uncertainties about

using demographics, casting some light into the above behavior “it’s not always clear if

the gender of the participants is expected to be collected and reported, since not always [it]

is relevant but it might be required by the reviewers”.

The participants also provided specific examples of sampling strategies used in their

experience, including sampling over time and geographical regions.

5.3.4 Task

The actual crowdsourcing tasks solved by workers can be regarded as the actual instru-

ments or materials presented to the participants. The group of attributes presented

here characterizes the tasks delivered as part of crowdsourcing experiments, considering

organizational and operational details known to affect the results.

The nature and goal of the experiment shape the kind of tasks that are sent down

to workers in crowdsourcing platforms, these aspects have been considered by previous

research to propose a categorization of micro-tasks [Gadiraju et al., 2014]; we included in

the taxonomy the l task type attribute to capture this information.

The l task interface in tandem with the l instructions concern the exact user interface

and guidelines presented to workers. Poorly written instructions can misdirect workers

and affect their performance in the experiments, resulting in subpar responses [Wu and

Quinn, 2017]. Besides, it can also reduce task intake and negatively affect how long the

experiment takes to finish [Han et al., 2019]. Variants of a task interface could unravel

performance differences [Mortensen et al., 2016]. And similarly, current evidence suggests

enriched interfaces may aid workers, allowing them to attain higher performance [Sampath

et al., 2014; Wilson et al., 2016; Ramı́rez et al., 2019a]. The full disclosure of operational

details such as task and instructions materials favors reproducible research. To this end,

the taxonomy also captures the exact l task interface source (typically a combination of

HTML, CSS, and JavaScript) uploaded to the crowdsourcing platform or related system

(e.g., TurkServer [Mao et al., 2012]).

The l time allotted workers to perform the task, as well as the l reward strategy

used to motivate them, can also influence the progress of the experiment and resulting

performance of workers. In general, extrinsic factors such as proper monetary rewards

can impact how much workers contribute [Mason and Suri, 2012]. For effort-intensive

tasks, in particular, adequate payments can motivate workers to produce results of higher

quality [Ho et al., 2015]. Low payments, however, may curb task intake and affect how

fast experiments progress [Rogstadius et al., 2011; Han et al., 2019]. Payment mechanisms

are not limited to the amount being paid but also how. Different payment strategies could

also lead to effects on how workers perform [Difallah et al., 2014]. Tasks can also include
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elements that target intrinsic motivational factors, for example, to aid how workers engage

and commit [Gadiraju and Dietze, 2017] (although one could argue that intrinsic factors

are effects we may want to reduce in an experimental setting unless it is the subject of

study). The time allotted workers to spend on the task naturally limits the associated

cost of the experiment, besides studies in cost-effective crowdsourcing shed light on the

impact of time on worker behavior and performance [Maddalena et al., 2016; Krishna et al.,

2016]. We draw on these reasons to include in the taxonomy attributes that capture what

mechanisms were employed to reward and motivate workers and whether time constraints

where imposed.

Expert opinion

Aspects of task design such as the clarity of the instructions, the task interface and

compensation were all suggested as critical design choices for the success of crowdsourcing

experiments. Intuitively, participants indicated that these aspects are relevant and must

be reported.

Participants weighted in regarding different levels of information provided about the

task interface, some mentioning that, for example, the reporting of the task interface

should go beyond screenshots to include links to source files (“people report task design

like a screenshot [...] It is maybe relevant to report the actual task design, like HTML,

JavaScript, CSS files, so that people can reproduce it”). Other experts, provided more

nuanced opinions, e.g., “If there is a paper that talks about different treatments that are

interface-related and there is no interface, it is a red flag. If there is no source code, it’s

a yellow flag - for me at least.”

In relation to the above, instructions and task descriptions were deemed critical. One

participant illustrated how this information could completely shape the outcomes of an

experiment, in the specific case of open-ended input:

“The prompts and tips that we are giving before starting the task will definitely

impact the final result. So, for example, if you give any useful examples of the

feedback that crowd workers can generate, most probably, all of the workers will

start imitating the same examples.”

Instructions, along with the payment and perceived effort (time) affect were reported

as influencing not only the quality of the results but the decision to participate in the first

place.
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5.3.5 Quality Control

The varying skills, motivations, backgrounds, and behavior of online workers make quality

control a major challenge in crowdsourcing [Daniel et al., 2018]. Therefore, quality control

mechanisms are fundamental to any crowdsourcing task to safeguard the resulting quality of

the contributions. An initial step concerning quality is to define what constitutes an invalid

answer or contribution, and the l rejection criteria aims to capture this information.

Quality mechanisms can be set at different points in the crowdsourcing task. l Training

protocols can be used to prepare workers for the job, which can have a positive impact

on their resulting performance [Liu et al., 2016]. Another group of mechanisms can be

categorized as l in-task checks or strategies embedded in the task to safeguard quality as

contributions are collected. Whenever the nature of the task allows it, a fairly common

practice is to embed gold items or attention checks to monitor the collected answers

against the ground truth regularly. This simple technique can help to deal with malicious

workers and avoid wasting collected contributions [Kittur et al., 2008]. The l gold items

configuration attribute then captures how these items were selected (typically a subset of

the input dataset), how frequently these gold items appear in the task, and what threshold

was used to filter out workers underperforming on these items. Other strategies involve

imposing quality by design, such as adding feedback loops (where workers self-assess or

receive external feedback) [Dow et al., 2012], or making workers collaborate [Drapeau

et al., 2016; Schaekermann et al., 2018; Chen et al., 2018].

Another set of approaches are l post-task checks or mechanisms leveraged upon

task completion, which can complement in-task checks and training protocols. Manual

inspection (e.g., by an expert) can be used to review contributions from workers, limited

by the scale of crowdsourcing and the cost associated with expert feedback [Dow et al.,

2012]. The assessment can also be computation-drive, for example, removing contributions

that do not fall above a minimum time or agreement threshold [Marshall and III, 2013;

Hansen et al., 2013].

Depending on the type of task in the experiment, one may rely on redundancy,

considering the l number of votes per item to be more than one, and leverage the same

task to multiple workers to compensate potential noise. The l aggregation method comes

in tandem with redundancy. A typical strategy is to use majority voting; however, more

sophisticated and effective alternatives have been developed to derive the right answer

even when the majority may be wrong (e.g., [Dawid and Skene, 1979; Whitehill et al.,

2009; Dong et al., 2013]).

Participants may drop out of experiments for different reasons and at different rates

depending on the experimental conditions, introducing potential selection and attrition

bias. Different experimental treatments may be less appealing to workers and therefore
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result in non-random or selective attrition, introducing confounds in the experiment

affecting the comparisons of the conditions [Horton et al., 2011; Rand, 2012]. Copying

with attrition, especially in online experiments, is instrumental to the study’s internal

validity, making sure dropouts stay roughly the same across conditions. Therefore, the

taxonomy captures what l dropouts prevention mechanisms were used to deal with the

prevalence of task abandonment in crowdsourcing [Han et al., 2019; ?]. For example, on

Amazon Mechanical Turk, one can resort to using (neutral) qualification tasks to create

a pool of potential participants and then send invitations to the actual tasks based on

the assigned conditions [Ho et al., 2015]. Or, if one treatment incurs different effort levels

than another, one may manipulate both treatments to include an effort-intensive activity

and align how the difficulty of both tasks are perceived, regularizing the attrition rates

[Rand, 2012].

Expert opinion

Quality control was a hot topic during the interviews, cited as “one of the biggest concerns

in designing the tasks”. Participants considered quality control mechanisms as critical

design choices that impact the results of experiments.

The quality control mechanism suggested by the participants focused on the task flow,

from strategies applied before (e.g., training or qualification assessment), during (e.g.,

gold items and attention checks) and after the completion of the task (e.g., filtering out

contributions). In describing the control mechanisms applied to specific experimental

settings, the participants highlighted that quality control mechanisms and when they are

applied depend on the type of task. In some contexts, involving open-ended tasks such as

content-creation, strategies such as gold items may not be applicable, requiring manual

checks after task completion.

“In my experiments, the main problem - and that you would always have - is

that there is no golden data for the answers that the crowd workers provide.

When we are asking the crowd workers to provide open-ended text or feedback

or anything, they can write anything they like. Here the quality control is very

challenging and almost near to impossible to achieve.”

Indeed, a participant cited the exploration of automatic approaches as a “major area

of research” in his/her domain.

5.3.6 Outcome

The outcome dimension concerns details of the experimental results, more closely related to

crowdsourcing, to aid their understanding, verification, and reproducibility. The soundness
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of the data analysis process and how to articulate the findings aid to derive the right

conclusions from experiments [Gergle and Tan, 2014]. However, capturing these aspects

are well beyond the scope of the taxonomy and refer them to available guidelines (e.g.,

[Abelson, 1995; Association, 2010]).

The l number of participants and the l number of contributions collected (in total

and across conditions) help to understand the scale of the experiment. Also, the l

dropout rate and l demographics quantify the level of attrition and diversity present in the

experimental treatments, respectively. Based on the rejection criteria, the experimenter

may regard some of the contributions as invalid. The taxonomy identifies two related

elements, the number of l excluded participants, perhaps malicious (or underperforming)

workers, rendering a whole batch of answers from them as invalid. And l discarded data,

i.e., specific contributions that were excluded before the data analysis.

While the previous attributes cover different quantities in the outcome, the l data

processing captures any data manipulation step performed on the collected data. Intuitively,

this information foster reproducible research alongside providing the l output dataset

derived from the experiment (i.e., the raw or aggregated contributions from crowd workers).

Expert opinion

Interestingly, the comments from the participants would naturally flow more towards

attributes that would allow researchers to repeat crowdsourcing experiments, and to

a lesser extent the assessment of the outcomes. Among the few to touch on outcome

attributes, two participants mentioned that the output dataset, as well as potential

confounds like demographics, are relevant aspects of crowdsourcing experiments that

should be reported (“it is important to report those aspects you did not control, such as

demographic information”).

5.3.7 Requester

The task requester is the person (or group of people) responsible for the design and

execution of the experiment. The organizational and operational details related to how

the requester set up the experiment are also important. The selected crowdsourcing

l platform(s) constitutes the environment in which the experiment runs. It represents

an essential element that guides how the requester operationalizes the study based on

the features offered by the platform. However, the available functionality tend to be

limited for the requirements imposed by the experimental design [Kittur et al., 2008], often

requiring requesters to implement additional features to cover this lack of support. These

l implemented features represent additional experimental instruments that also affect how
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feasible it is to replicate an experiment.

This limited support also translates into the available tools to facilitate interactions with

workers (e.g., chat rooms and emails). l Requester-worker interactions could potentially

impact how workers engage and perform in the tasks from the experiment [Dow et al.,

2012], so it is important to capture in the taxonomy if and how these interactions happen.

However, simple designs may not require complex interactions (or no interaction at all).

For example, requesters may not need to interact with workers to study task design in the

context of classification tasks, relying entirely on leveraging clear guidelines to articulate

what they expect from workers [Ramı́rez et al., 2019a; Mortensen et al., 2016].

Crowdsourcing environments define new legal grounds where policies may not be suffi-

ciently defined (see [Felstiner, 2011] for a review of the legal aspects around crowdsourcing).

The community is increasingly voicing the need for l ethical approvals for experiments run

in crowdsourcing environments [Graber and Graber, 2013; Martin et al., 2014]. l Informed

consent tends to be often required for research with human subjects, as well as l privacy

and data treatment statements for experiments that need to collect and store sensitive

information. l Fair compensation is also a relevant aspect from an ethical perspective.

Computing fair wages indeed represents an active research area, considering that providing

a minimum wage is not necessarily fair [Whiting et al., 2019]. Initially, crowdsourcing

platforms such as Amazon Mechanical Turk were deemed a “marked for lemons” [Ipeirotis,

2010 (accessed August 26, 2020], an environment restraining committed workers from

earning at least a legal minimum wage due to the prevalence of less-committed or malicious

workers. Proper compensation can become a more frequent practice due to current features

(like qualifications or badges) in crowdsourcing environments, advances in techniques to

safeguard quality, plus underpayment issues being a reiterating topic addressed by recent

literature [Kittur et al., 2013; Hara et al., 2018; Barbosa and Chen, 2019; Whiting et al.,

2019]. Additional context can be given to online workers, so they become aware they take

part in an experiment. This l participation awareness is a relevant aspect because it is

known to play a role in participant behavior [McCambridge et al., 2012].

Expert opinion

The operational context navigated by the requester was prompted by the participants in

terms of the treatment of crowd workers, data management, and the technical environment.

In terms of ethics and data management, participant stressed that workers should

receive a fair compensation for their contributions and protected from potential harm,

and that it should be clear that this is the case (“from the ethical perspective, [it should

be reported] how much [crowd workers] were paid, whether they were exposed to certain

content they were not naturally expected to see, like watching porn, cut bodies, and so
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on”). Reflecting on the role of the different stakeholders in ensuring these practices,

and whether ethical approvals should be required, some participant turned to practical

recommendations:

“I think [ethical] approval is a different thing. It is up to the institution where

the researchers are from, but on the very generic case we just want to make sure

that the crowd workers were told in advance [what they were exposed to]”.

The friction between observing the privacy of the crowd workers while making sure

enough data was collected was also raised “I think is important to get to know some

properties of the workers. But of course, it has implications in privacy”.

As for the technical environment, participants expressed the importance of reporting

from simple attributes, such as the actual crowdsourcing platform, to platform-specific

features and complex configurations. One participant illustrated the latter for quality

control configurations (“the whole quality control mechanism has a set of parameters that

you have to set up, complex parameters that can lead to complex settings”). But even for

platform, it was argued that the role should be properly described (“You can say that

F8/Append is kind of a hub for accessing other different platforms”). Moreover, the case

of F8 (now Append) serving as a hub to other platforms could be problematic if it is not

reported properly, as indicated by the participant:

“Very few papers tell you, I ran my stuff on F8, but under the hood, F8 was

forwarding the tasks to these 50 different platforms [...] These are like variables

you add to your experiment and make the whole thing so complex”.

5.4 Analyzing the State of Reporting

To study the state of reporting we surveyed 171 crowdsourcing experiments from the

literature, and assessed them on the basis of the relevant crowdsourcing experiment

attributes from our taxonomy. We used the attributes to assess the completeness and

reporting style used in communicating the attributes. By doing this, we aim to shed light

on the level of reporting in current practices. In the following, we describe the methodology

and results.

5.4.1 Methods

The assessment considered the i) completeness, referring to whether the attribute in

question could be derived from the reported experiment, and ii) reporting style, i.e., how

the attribute was reported in the paper. We detail the process below.



Analyzing the State of Reporting 85

We started with a systematic search for scientific papers describing crowdsourcing

experiments. We iteratively refined a query for Elsevier’s Scopus database to cover a

wide range of crowdsourcing experiments in computer science and ensure the taxonomy

fits well with a broad range of experiments. The query consisted of keywords covering

different usages or words associated with crowdsourcing (e.g., “crowd-sourcing”, “micro-

task”, “human-computation”) and experiments (e.g., “experimental design”, “study”,

“evaluation”, “analysis”, “intervention”). We also limited the search space to papers

published in major conferences (e.g., CSCW, CHI, IUI, UIST, HCOMP) between January

2013 and June 2020, excluding journal papers from the query to keep the search space

focused. We complemented this search by downloading from DBLP the list of papers in

the proceedings of relevant conferences not indexed by Scopus.

The search identified a total of 670 candidate papers. These papers were screened

by two researchers to include papers describing experiments or user studies engaging

crowd workers as subjects through a crowdsourcing platform. We excluded experiments

leveraging on existing crowdsourced datasets, engaging workers in a role not related to the

evaluation, experiments in laboratory settings, purely qualitative studies (e.g., surveys)

and experiments where crowd workers did not come from an open call to a crowdsourcing

platform but rather from a more restricted environment. The screening started with a

random subset of 50 papers to calibrate the aforementioned eligibility criteria between

the researchers, and then proceeded with the researchers screening independently the

rest of the documents (the researchers agreed on 94% of the decisions in the set of 50

papers, resolving disagreements by consensus). This process identified 172 papers reporting

crowdsourcing experiments. We refer readers to the Appendix A.2 for more details on the

search and screening process, including the query and eligibility criteria.

The analysis then proceeded in three phases that aimed at assessing the reporting of

experiments in terms of the taxonomy of relevant crowdsourcing experiment attributes. It

started with a small sample of 15 papers, as explained in the above section, to iteratively

refine the initial taxonomy and the assessment metrics. Second, to calibrate the interpreta-

tion of the taxonomy and the assessment metrics, a subset of 40 papers (∼25% of the total

number of included papers) was analyzed by three researchers, resulting in an average

agreement of 90%. The researchers assessed all the taxonomy attributes for the same set of

papers, considering as a match if they agreed on the completeness value (i.e., the presence

of an attribute in a paper). Finally, the rest of the documents were distributed equally

among the researchers and assessed independently. Only one experiment was analyzed

per research article, and in the case of papers reporting on multiple experiments, one

experiment was randomly selected. Any doubts emerging during the independent tagging

were flagged by the researchers for discussion and resolved by consensus.
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The analysis followed a meticulous procedure where the researchers leveraged on their

experience (and the input from experts) to assess the completeness of the attributes of an

experiment, evaluating only those applicable to i) the type of experiment reported in the

paper, and ii) the objective of the study. This approach was followed as it was clear from

our pilots, interviews with experts and our own experience that not all attributes were

relevant for each experiment. With these criteria, the researchers ended up applying 26 of

the 39 attributes in all cases, with the other 13 deemed not applicable (N/A) depending

on the type and goal of the experiment. We found that, on average, four attributes were

N/A and that 80% of the papers in our analysis had at most six N/A attributes. Notice

that we adjusted the total number of attributes on a per-paper basis, excluding the N/A

attributes. Similarly, the percentages we report for each attribute in Figure 5.4 are also

adjusted by removing N/A cases. We refer readers to Appendix A.4 for further details.

Taking the quality control attribute In-task checks as a concrete example, the researchers

first checked whether the paper explicitly mentioned any quality checks performed during

the task (e.g., gold items, attention checks), and to the best of their abilities assessed

whether they were indeed applicable for the particular type of experiment (e.g., the exper-

iment studied cheating behavior where in-task checks would not make sense). Researchers

then continued by checking if the details relevant to this quality control check could be

derived from the description, even if the papers did not explicitly describe it (and in

this case, it was counted as “implicit reporting”). There are also some attributes with

a “directional association”. For example, we considered the interface and instructions as

complete if the paper provided the source code (and, for example, omitted screenshots of

these). Likewise, if informed consent was explicitly reported, we considered as complete

the participation awareness attribute.

The assessment of the reporting covered not only the main content of the paper but also

the appendix, supplementary materials and any source code or repository associated to the

paper. To identify these additional sources, the researchers checked for links referenced or

cited in the paper, as well as the official page of the paper in the publisher’s website. This

procedure was followed to assess the completeness of all the attributes in the taxonomy.

5.4.2 Results

We analyzed 1717 papers published in major venues to understand how (and to what

extend) crowdsourcing experiments are reported. As mentioned previously, we used the

attributes in the taxonomy to guide the analysis, assessing the completeness (e.g., is

the attribute addressed? And, is it explicitly reported? ), and the reporting style used in

communicating the attributes (e.g., using screenshots, a figure, etc.). By doing this, we

7One paper was excluded from the analysis as the full-text was not available to the researchers.
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Figure 5.3: Some descriptive statistics of the 171 papers we analyzed. a) The distribution of

papers by completeness, i.e., the proportion of attributes reported. The dashed line indicates the

median. b) The distribution of papers based on their length (“d”stands for double-column and

“s” for single-column format. c) The distribution of papers based on their year of publication.

seek to elucidate the level of reporting in current practices. We limited the analysis to 38

attributes, excluding the implemented features attribute.8

Figure 5.3 depicts some descriptive statistics of the papers we analyzed. The papers

reported, on average, 49.9% of the attributes (19 attributes), with 89 of the 171 articles

reporting at least 50% of the attributes. Of the papers analyzed, 89 of 171 were published

between 2013 and 2016, and 82 of 171 were published between 2017 and June of 2020. Most

of the documents (167 papers) were in double-column format and four in single-column

format. The majority (143/171) are long articles (defined as those with #pages ≥ 6

double-column, with 3 papers of 12+ pages long in single-column format), and 28 are

short (#pages < 6 double-column, and one paper with 8 pages single-column).

We analyzed the level of reporting by year and length to contrast past and recent

reporting efforts and differences based on paper length due to more pages available. We did

not observe a clear pattern of recent papers addressing more attributes when compared to

older ones, but we noticed an interesting trend of increasing reporting in longer documents.

As for the attributes in our taxonomy, in 32/38, we noticed an increase in the percentage

of papers reporting them, with relative differences of up to 3x. However, the reporting was

low, as the number of attributes covered by at least 50% of the papers was 14 for short

and 16 for long. Overall, the median completeness for short papers was 42.4% and 51.5%

for long. Also, we did not observe any trend in the usage of supplementary materials to

cover the lack of space, as only 15/171 papers provided supplementary material9. Of these,

8It is important to report on the features implemented to operationalize an experiment, but we found it

difficult to reliably determine whether this attribute was applicable and being reported when analyzing the papers.
9The supplementary material included screenshots of the task (7/15), task source code (5/15), input dataset
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three were short papers. A detailed breakdown of the results by year and length can be

found at https://tinyurl.com/ReportingState.

Figure 5.4 summarizes the analysis for each of the six dimensions in the taxonomy.

In the following, we discuss the results for the attributes in each dimension, and when

necessary, we will touch on interesting and relevant differences on the reporting level based

on the year and length.
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Figure 5.4: The state of reporting, based on the attributes in the taxonomy, for a set of 171

papers describing crowdsourcing experiments published in major venues. The number of papers

to which the attribute applied is indicated in parenthesis, and in boldface, the percentages of

papers reporting on it (explicitly and implicitly).

Experimental design

Despite being the cornerstone of crowdsourcing experiments, the explicit reporting of

experimental design attributes is for the most part shallow and unclear, as indicated by

the low levels of explicit as well as high levels of unclear reporting – the highest among

the rest of the dimensions. Overall, 4/7 attributes in the experimental design dimension –

those defining the design, mapping and execution of the experiment in the crowdsourcing

platform – are reported explicitly by 52.4% to 65.2% of the papers, representing the

highest reported attributes for this dimension. When the experimental design is relatively

(8/15), output dataset (8/15), and other details related to data analysis (e.g., scripts, notebooks). Most of this

material was provided as external links to a code repository (9/15) or document (3/15), two were in the appendix,

and one was found via the publisher’s digital library (video presentation).

https://tinyurl.com/ReportingState
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simple and straightforward to map to a crowdsourcing environment (e.g., a within-subjects

design mapping to a single crowdsourcing task), these four attributes can be derived with

sufficient confidence, as indicated by the 16.4% to 24.7% of implicit reporting. But as

soon as the design is more complex (e.g., a mixed design with multiple conditions and no

clear hint on how these map to tasks), this is no longer the case, as indicated by the 0.6%

to 7.7% of shallow and unclear reporting.

In terms of reporting style, the input dataset allowed for the richer set of approaches,

compared to the rest of the attributes that were reported mostly in text. A 65.2% of the

papers reported the actual input dataset used in the tasks given to workers, providing

references or a link to an external site. However, some papers only indicated the process

that was followed to prepare the input dataset and that would allow a researcher to

construct a dataset of similar characteristics (which we coded as implicit, 16.4% of papers).

In two cases, the provided link was no longer reachable, which brings a different issue:

reporting links to supplementary materials that do not survive the “test of time.”

Under-reported details include whether pilots were performed, if and how returning

workers were controlled, and the experiments’ execution timeframe. Pilots help tune the

design of the experiment; however, it was only reported by 27.5% of the papers. Returning

workers, applicable depending on the design and how it is mapped, was reported by very

few papers (only 27.1%). Similarly, only 14.6% of the papers reported the period in which

the experiment run. For long papers, all of the attributes show an increase in explicit

reporting, with relative differences of up to 2x. But, only 4/7 attributes are reported by

at least 50% of papers against 3/7 in short articles.

Crowd

In general, 62% of the papers explicitly reported properties characterizing the target

population of workers suitable for the study, with 2.3% of the papers implicitly suggesting

what constitutes the target population (e.g., based on the goal of the study, we inferred

that the task was open to everybody in the selected platform). Ultimately, this information

was not clear in 2.3% of the analyzed articles. The exact mechanism used to sample a

diverse and representative set of participants was reported in only 12.9% of the papers

(e.g., one possible strategy would be to sample systematically at different times of the

day). In 3.5% of the papers, this information was not explicitly addressed, but we derived

by inference, which we coded as implicit (e.g., by providing the name of an external

tool, by an auxiliary task to reach potential participants first). The above comes at a

surprise, given the highly diverse and changing nature of crowd workers, and the potential

influence of participants’ characteristics and associated environment in task performance.

In terms of reporting styles, these attributes are embedded in the paper as text. The



Analyzing the State of Reporting 90

target population was reported by 64.3% of long papers vs. 50% for short. And while the

sampling mechanism was largely under-reported, it also shows an increase (14% for long,

and 7% for short).

Task

The task dimension is relatively well covered. The type of task, the reward strategy, and

how the task looks like (including the instructions) are the attributes reported by most

of the papers. Of the papers analyzed, 83.6% of them explicitly described the strategy

used to reward workers for their contributions (almost all papers described monetary

compensations as the reward strategy, except for three articles resorting to volunteering).

The task interface was explicitly reported by 66.1% of the papers. Some articles (17.5%)

did not explicitly include a screenshot of the task and instead described it partially

in text (which we coded as implicit). When reported, the interface is mostly depicted

using screenshots and just a handful of papers (4.1%) provided the actual source code

of the interface, and in two cases the link provided was no longer available (coded as

implicit). But even relevant information such as the instructions is reported explicitly by

61.4% of the papers. The instructions can be reconstructed from partial screenshots and

textual descriptions in some cases (19.3% of the papers). Explicit time constraints are

reported in only 38% of the papers. In longer documents, we noticed an improvement in

explicit reporting for details regarding the task interface (72% for long, 35.7% for short),

instructions (66.4% for long, 35.7% for short), and the reward strategy (88.1% for long,

60.7% for short). The other attributes also show an increase, but the level of reporting is

under 50%.

Quality control

Quality control mechanisms can take place before, during, and after the task. Despite their

importance, the papers did not fully report the mechanisms employed. Most reported

attributes include the criteria used to reject contributions (rejection criteria, 64.1%), the

mechanisms used after the task to safeguard quality (post-task checks, 55.6%), and in-task

mechanisms for quality control (in-task checks, 57.1%). Though we found cases where

these attributes were addressed rather implicitly (12.4% for rejection criteria, 3.3% for

post-task checks, and 1.7% for in-task checks)10. Training sessions, when applicable, were

reported by only 34.1% of the papers. And details regarding the redundancy employed

(number of votes per item) and aggregation method were reported by 44.6% and 35.2%

10Examples of implicit reporting of rejection criteria would be when one could infer a paper actually accepted

all contributions and filtered out on the data analysis part based on a metric like completion time, or a participant

was not considered because they did not provide some demographic information.
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of papers, respectively. In cases where gold items where used as quality checks, only

29.2% of papers reported explicitly the configuration (gold items configuration). Dropout

prevention mechanisms, closely related to engagement, were reported by very few papers

(7.1%). As for the reporting style, quality control attributes are described as text, with

few cases relying on additional tables and figures to report information such as the number

of votes per item (1 paper) and training sessions (2 papers). Although, for the most part,

still inadequate, there is an increase in explicit reporting in 6/8 attributes for long papers,

though only two of these are reported by at least 50% of papers (rejection criteria 64.6%,

and in-task checks 57.6%).

Outcome

The number of participants is reported in most cases (by 90.1% of the papers), and by

inference, the number of contributions, described explicitly in just 56.2% of papers. In

some cases, 5.8% of papers for number of participants and 10% for number of contributions,

these details were not explicitly addressed, and we coded as implicit (e.g., the number

of participants could be inferred based on the total number of contributions and the

contributions per annotator). Data processing steps on top of the contributions from the

crowd are reported by 61.5% of the papers. For the rest of the attributes, the papers do not

paint a clear picture. For example, only 21.6% to 31.6% of the papers reported explicitly

discarded data and excluded participants (due to quality or rejection criteria), and just

9.9% described dropouts (workers leaving the experiment for different reasons). The

output dataset and participant demographics were also poorly reported, with only 8.8%

and 34.7% of the papers providing these details explicitly. Papers reported the attributes

mostly as text, accompanied by figures and tables for attributes such as the number of

participants (21 papers) and contributions (11 papers), and participant demographics (5

papers). For long documents, we noticed an increase in explicit reporting of 5/8 attributes,

though, for the most part, reporting of these attributes is under 40%, except for data

processing (63.5% for long, 50% for short) and the number of contributions (57% for long,

52.2% for short).

Requester

Overall, the attributes in this dimension were vastly under-reported. The papers reported

the most basic information, the selected platform, but they poorly addressed the rest of the

attributes (6/7 attributes reported explicitly by 6.5% to 22.9% of the papers). Most of the

under-reported attributes relate to the ethics of the experiment. These attributes cover if

compensation was fair (at least a minimum wage), whether workers gave their consent and
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were aware they took part in an experiment, if the study received ethical approvals and

were in compliance with data privacy policies. Regarding the reporting style, the papers

described these attributes as text. Interestingly, we noticed an improvement in recent

years from an ethical perspective, when comparing papers from 2013-2016 and 2017-2020.

Reporting ethical approvals, fair compensation, and privacy and data treatment attributes

increased. This insight aligns with current works addressing issues such as underpayments

in crowdsourcing (see [Barbosa and Chen, 2019] for a brief overview). However, these

improvements in reporting are still far from ideal.

5.4.3 Potential threats to validity

The strength of the experimental evidence, as well as the ability of researchers to repeat and

reproduce experiments, relies on the underlying methodology and how well this methodology

and results are described. We have observed a reporting gap for the different dimensions

in our taxonomy, which raises questions about experimental validity of crowdsourcing

experiments reported in the literature. This section briefly discusses issues associated

with under-reported attributes and how these connect to known biases from experimental

research [Pannucci and Wilkins, 2010] that affect the validity and integrity of scientific

experiments.

Sampling bias

Researchers can introduce bias by inferring conclusions from a sample that is not repre-

sentative of their target population. In crowdsourcing this can happen by not properly

defining (or reporting on) a target population or because the mechanisms provided by the

platform (or implemented by the researchers) fail to obtain a proper sample. As observed,

the concrete target population and sampling mechanisms were not properly reported by

38% and 84.2% of the papers, respectively. The resulting demographics were omitted for

62.9% of the experiments – without weighing in the mechanisms to derive this information.

Even returning workers, under-reported by 68.7% of the papers, may also bias the sample

since these can hinder the goal of reaching a broader and more diverse set of workers.

The lack of proper reporting of these attributes not only affects the proper assessment of

population samples, but it may also introduce practical challenges to replicability given

the diverse characteristics of crowd worker populations.

Selection bias

Bias can also occur due to the strategies chosen to assign participants to different conditions

or cohorts. In crowdsourcing this could happen, for example, when the tasks associated
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to different conditions are executed under different operational settings (such as the ones

mentioned in the following). Of the analyzed papers, 83.6% did not report over what

timeframe the experiment run, which is known to determine the characteristics of the active

pool of workers [Difallah et al., 2018]. In this context, under-reporting how the conditions

were executed, as in 33.9% of the papers, can amplify this issue and render conditions

with different sets of workers (e.g., conditions run sequentially with one capturing workers

typically active during the morning and other conditions with night workers). Task

design attributes can also influence what type of workers are attracted to the tasks in the

experiment. We observed 19.3% of papers failing to report the instructions, 12.3% the

compensation, and 57.3% the time constraints associated with the tasks. Reporting on

these attributes is thus important, as they can reveal unintentional and intentional bias

benefiting experimental conditions.

Observation and response bias

Also called the “The Hawthorne Effect” [Sedgwick and Greenwood, 2015], observation

bias arises when participants, being aware that they are taking part to a study, modify

their behavior or contributions. In a crowdsourcing experiment, this might be triggered

when providing informed consents and acknowledging the scientific purpose of the task or,

as made clear by the experts, in a more subtle way by the requester name, task design

and even by the (fair) compensation. In relation to this, participants might feel compelled

to orient their responses towards what they believe the expected findings are, in what is

called response bias. Only a few papers reported on participation awareness, and 90.1%

failed to report whether participants were informed of contributing to a study.

Design bias

Researchers may fail to account for inherent biases present in experiments leading to what

is called design bias. In crowdsourcing, in addition to other forms of experimental bias,

there is a large body of literature on different forms of bias introduced by all aspects of

task design and execution [Wu and Quinn, 2017; Ho et al., 2015; Sampath et al., 2014;

Maddalena et al., 2016; Gadiraju et al., 2017a; Qarout et al., 2019]. Our analysis shows

that 20.6% of the papers under-report how the experimental design was mapped to the

selected crowdsourcing platform. Moreover, papers omitted information related to task

design such as interface (16.4%), instructions (19.3%), and compensation (12.3%). Even

the implementation of desirable practices, such as running pilots to refine the experiments

design, was reported explicitly in only 27.5% of the papers. This information gap can

open the room to non-comparable conditions, especially when translating the experiment
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to other platforms with different features and workers.

Measurement bias

Bias can arise from measuring instruments of varying quality or errors in the data collection

process. In crowdsourcing contexts, we can associate this bias to quality control. Overall,

quality control attributes were under-reported, with 41.9% of papers failing to report

post-tasks checks, 41.2% in-task checks, and 64.5% did not describe training sessions.

Omitting these details may raise questions about the quality of the collected data, and

allow for differences in quality when trying to rerun (or build upon) an experiment. For

example, one could obtain better results by including training sessions.

Ethical integrity

We observed that the vast majority of the papers failed to report on attributes such as fair

compensation (77.6%), informed consent (84.2%), privacy & data treatments (90.5%), and

ethical approvals (90.6%). Not reporting on these attributes makes it difficult to assess

whether experiments followed ethical guidelines and made sure workers were treated fairly

and not exposed to any harm. This is clearly the ultimate goal. Understandably, processes

for securing the ethics of experiments may vary from one institution to another, with

some institutions enforcing ethical approvals on all studies while some put the burden

on the researchers. What is clearly missing, and reflected on the interviews with experts

and our own experience, are practical ethical guidelines that would allow researchers to

make informed decisions about their crowdsourcing experiments, and proper support from

crowdsourcing platforms to make sure these guidelines can be properly observed.

5.5 A Checklist for Reporting

The insights from the literature overview, expert interviews and the state or reporting,

paint a daunting image for the reporting of crowdsourcing experiments, calling for the

development of better guidelines and resources. In this section we take a small step in this

direction, and describe the process that led to the development of a reporting checklist

for crowdsourcing experiments. We stress that the goal of the type of support we explore

here is to contribute to more a transparent reporting that can enable a better assessment

of the validity of experiments, as well as to repeatability.
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5.5.1 Methods

The checklist is the result of a process that involved three main steps: i) internally growing

the taxonomy into a reporting sheet that was used in the internal assessment and pilots; ii)

obtaining feedback from experts on the generic reporting sheet and views on alternatives

strategies for reporting, and iii) developing and refining the checklist.

Starting from the taxonomy, two researchers defined each of the attributes and prepared

questions that would require authors to specify if and how each attribute is reported in a

paper. These definitions were then used as the initial template for piloting the reporting of

three papers of the authors, leading to the definition of the first “sheet” for reporting. The

sheet contained the attributes in our taxonomy as rows along with their definitions. We

filled out the sheet with excerpts from the papers explicitly addressing the attributes in

our taxonomy. This step gave us a concrete example that we could use to discuss among

the team members. This discussion led to a reframing of attributes and deciding what to

include as part of the reporting. The discussion also led to brainstorming alternatives for

the presentation, where we considered datasheets Gebru et al. [2018]; Mitchell et al. [2019]

or checklists Shamseer et al. [2015]; Pineau et al. [2020] as potential options for guidelines

for reporting.

We focused Parts 2 and 3 of the interview with experts on assessing the definition

of the attributes (as well as spotting missing ones) and collecting suggestions on how to

present the guidelines for reporting. Part 2 of the interview introduced participants with

a portion of the final taxonomy (one or two dimensions). Participants (besides giving

feedback on the relevance of the attributes and spot any missing one) were asked to read

aloud attributes description and to assess and provide feedback on the framing. Part 3

asked, “How do you think these aspects of crowdsourcing experiments could be framed into

a tool for reporting?”, providing examples such as datasheets or checklists.

The answers collected from these parts of the interview were used, first, to improve

the definitions of the attributes and, second, to derive the final form of the guidelines: a

checklist for reporting crowdsourcing experiments.

5.5.2 Proposed checklist

The second and third parts of the interview with experts focused on 1) assessing the

clarity and completeness of the attributes in the taxonomy, and 2) how we could exploit

this taxonomy and turn it a tool for reporting. Based on the taxonomy and feedback we

received in the interviews, we derived a checklist for reporting crowdsourcing experiments,

detailed in Appendix A.1.

The completeness of the taxonomy makes sure the major ingredients of crowdsourcing
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experiments are well covered, while the clarity concerns the interpretation and understand-

ing of the attributes in the taxonomy. We found the taxonomy to be quite complete: the

participants who identified missing elements (6/10) suggested attributes that were already

present, but in other parts of the taxonomy they did not assess. One of the participants,

P2, suggested a “when to stop” attribute (not present in the taxonomy) for quality control,

saying, “[...] when we are trying to collect quality data, we do not want to stop the task

until we reach a threshold. Also, we might finish the task because we have already collected

very good quality data”. While we find this to be an excellent point, we argue that it is

more related to data collection practices, for instance, to obtain data for ML, than for

experiments in crowdsourcing. Therefore, we ultimately did not incorporate this aspect

as an attribute in the taxonomy (besides, it could be covered by the existing post-task

checks attribute).

ChecklistTaxonomy definition

added  
reputation and 

difficulty

improved clarity

Attributes omitted Attributes omitted

Experimental design

Figure 5.5: Example of updates we introduce to the attribute definitions in the taxonomy based

on the feedback from the interviews (Experimental design dimension in this case), including the

final framing as a checklist.

In general, the attributes were clear and relevant to the participants. The suggestions

of what attributes to add were used instead to improve the definition of the existing

attributes, adding to the concrete feedback that focused on improving the definitions.

Figure 5.5 depicts some of the changes to the experimental design dimension and the

final framing as a checklist. Of the 39 attributes in the taxonomy, 31 were assessed by

participants.11 Participants provided feedback, on average, to 10 attributes (between 7

and 14), with an attribute being assessed by 2 to 4 participants. We noticed that 16

11The requester dimension was not discussed with any of the participants. But aspects such as platform, ethics,

and privacy were considered by some participants in the initial part of the interview.



A Checklist for Reporting 97

attributes were clear “as is”, 9 were clear, but received suggestions to improve them, 3

were clear only after some clarification from the interviewer, and only 3 were not clear.12

As for how we could exploit the taxonomy, we asked participants, “How do you think

these aspects could be framed into a tool for reporting?”. We clarified that the framing

naturally depends on the intended usage and shared two examples. The first example was

the PRISMA checklist [Shamseer et al., 2015] that assesses the methodological rigor of

systematic reviews. And the other was datasheets found in the ML community, which are

self-contained structured summaries of a dataset creation pipeline or model performance

[Gebru et al., 2018; Mitchell et al., 2019]. The participants favored the checklist format

(5/10) over the datasheet alternative (1/10), while the rest did not explicitly mention a

checklist but suggesting it based on their answer.

5.5.3 Intended usage and adoption

The intended usage of the taxonomy, how it is framed as a tool for reporting, and the

adoption by the research community go hand in hand.

A checklist format gives paper authors more flexibility to describe the different aspects

of the experiments in the paper’s main content and supplementary materials (weighing

in typical page limits), indicating where an attribute is being described. We aim for

the checklist to serve as a resource that guides researchers in what they report, helping

them be thorough and systematic in communicating the details of their crowdsourcing

experiments (i.e., serving as a reminder, “when we are very deep into our data analysis

part we forget the basic stuff that should be reported”). Unlike a datasheet, a checklist is

not self-contained, which was indicated by one of the participants, “To me, it is easier to

see it as a report, with all the information on the same page [...]”. While a self-contained

summary as a supplementary material could be more convenient to readers, it demands

more effort from authors since the main ingredients of the experiment would still need

to be described in the paper, at least at a high level. Guided by the feedback from the

experts, we ultimately opted for the checklist format, considering that it helps authors

report their experiments, while avoiding additional efforts, and readers to navigate the

details of a crowdsourcing experiment.

During the interviews, the participants raised challenges associated with the adoption

of a checklist — “it all comes down to motivation”. One of this challenges was associated

with the research community and the current practices around crowdsourcing experiments.

As explained by a participant: “you can probably check 30% of those boxes and the

12We coded an attribute as clear if it was clear to all the participants who assessed it. To code as “clear with

suggestions”, “clear after clarification”, or “not clear”, we only expected at least one feedback to fall in these

categories, prioritizing the not clear option.
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paper will be published [...] no major motivations in the academic world other than your

paper being published”. Adopting a checklist would go in tandem with evolving current

community practices for assessing papers reporting on crowdsourcing experiments (as

seen, for example, in the ML community, where reproducibility checklists are part of

the submission/reviewing process13). However, we hope that bringing awareness about

the potential issues of not standardizing practices can push the community in the right

direction. In response to this challenge, the experts highlighted the importance of growing

adoption organically by making people aware of the benefits and lowering the barriers

to adoption. As commented by the participants: “convince the people that these are the

important things that you should follow”, and “make researchers’ life easier”.

We foresee promising avenues of future work that could address these challenges and

facilitate adoption by the research community. In this chapter, however, we limited

ourselves to starting the conversation towards reproducible crowdsourcing experiments.

For instance, convincing people to adopt the checklist could be addressed by providing

empirical evidence on how using the checklist aids reproducible results. Or making its

usage so trivial that researchers just adopt it. For example, “As a way to make their lives

easier, you say, hey, tell me the platform, tell me the task ID, provide credentials, click

ENTER, and a GitHub repository is created with all this information”.

5.6 Discussion

The current state of reporting in crowdsourcing research still misses providing details beyond

basic attributes associated with task design, quality control, requester, and experiment

design and outcome. According to our analysis, at least 70% of papers report the selected

platform, how the experimental design maps and executes, reward strategy, task interface,

instructions, rejection criteria, and the number of participants. However, if we consider

only explicit reporting, this list narrows to reward strategy, the number of participants, and

the selected platform. While these attributes are relatively well-covered, either explicitly

or implicitly, most tend to be under-reported by at least 50% of the papers. Among the

six dimensions in our taxonomy, the requester — with attributes covering the ethics of

experiments — was among the least reported by the papers. These issues open the room

for potential threats to validity associated with missing details regarding the experimental

design and its operationalization.

Under-reporting poses the interesting question of why the attributes are poorly reported

in the first place and how we can overcome this situation. Our analysis and feedback

from experts attribute this issue to the limited guidance and awareness on what needs to

13https://neurips.cc/Conferences/2021/PaperInformation/PaperChecklist

https://neurips.cc/Conferences/2021/PaperInformation/PaperChecklist
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be reported. It is therefore of paramount importance to encourage further transparency

in reporting, as to ensure that we as a community aim for higher standards of evidence

and reproducibility of results. As our results shows, however, we are still lacking in this

regard. By providing a checklist and depicting where the research community stands in

terms of reporting practices, we expect our work to stimulate additional efforts to move

the transparency agenda forward.



Chapter 6

Conclusions and Future work

We devoted our efforts in this thesis to move crowdsourcing forward and closer to being

treated as a science rather than art. We approached this goal on two related fronts in

crowdsourcing research: providing guidance on task design, and supporting the process of

running and reporting experiments. The selection of multi-predicate classification problems

as our use case was driven by its importance, emphasized by the share of relevant tasks in

crowdsourcing marketplaces. The first part of this thesis proposed strategies to aid worker

performance in classification tasks and highlighted relevant unexplored dimensions of task

design. This required us to provide empirical evidence by running controlled experiments in

rather uncontrolled environments like crowdsourcing platforms, which in turn motivated the

second part of the thesis. This part aimed to aid in running and reporting crowdsourcing

experiments to make crowdsourcing more accessible to researchers and practitioners,

offloading the need for in-depth knowledge of the inherent characteristics of crowdsourcing

platforms and programming skills to make controlled experiments possible.

This chapter introduces the lessons learned as a result of these three years of the Ph.D.

program at the University of Trento. Here we reflect on these lessons and introduce a

summary of our contributions, as well as discuss limitations and avenues of future work.

6.1 Lessons Learned

To structure crowdsourced classification tasks such as to provide support and obtain perfor-

mance improvements (RQ1).

We systematically studied the effect of text highlighting in human computation in

Chapter 2, identifying the quality requirements that automatic techniques for text high-

lighting should possess to help with text classification and estimating the potential impact

of good (and bad) highlighting. We uncovered the potential of aggregating highlighting by

multiple, independent annotators (or algorithms) showing that aggregation is practical and
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useful, somewhat analogously to what happens in a crowdsourced classification where we

aggregate multiple votes on items. Then, we discussed interesting and perhaps unexpected

effects of highlighting, important to make them effective, such as giving time to workers

to get used to working with highlights. Our results ultimately show that text highlighting

could support workers in solving the tasks faster without sacrificing quality.

In Chapter 3, we explored and provided guidance on a somewhat unexplored aspect of

task design in multi-predicate classification: how to ask complex questions to classify items.

A comprehensive crowdsourcing experiment involving multiple datasets from domains

comprising systematic literature reviews, customer feedback analysis, content moderation,

and crowd verification allowed us to provide empirical evidence on the impact of predicate

formulation strategies on individual and collective worker performance. Our results showed

that superior classification performance could be obtained by querying a complex predicate

as multiple (simpler) questions instead of asking a single coarse predicate. The results

also highlight that the predicate formulation strategies we explored could result in slower

task completion time, representing an important trade-off for task designers.

The preliminary results from our experiment on hybrid classification in Chapter 3

emphasizes the importance of predicate formulation as a task design dimension. We showed

that querying simpler predicates could enable more effective coupling of ML classifiers and

favor long term reusability of already trained models. We believe that there is potential

for training highly-specialized models that couple effectively with the performance of

workers (instead of learning models classify items based on complex predicates directly).

Besides, answering simpler questions outputs reusable (and detailed) knowledge about

the capabilities of crowd and machine classifiers. From the perspective of crowd workers,

this means reapplying learned skills, and for machines, it involves classifying unseen items

(and filter out at least items that are “obviously” not relevant).

Providing support to researchers in designing and running crowdsourcing experiments

so as to address potential biases associated with this process (RQ2).

We draw from our experience and distilled the challenges and coping strategies to

run controlled experiments in crowdsourcing environments. We showed specific instances

of how running crowdsourcing experiments without coping strategies can impact the

experimental design, assignment, and workers participating in the experiments. Using

task design evaluation, we distilled the challenges and quantified how it could change

the outcomes of experiments. However, these challenges are not only tied to task design

evaluation, and in general, they play a role in the success of crowdsourcing experiments.

Inspired by these lessons, and how frequently they occur in the literature, we designed

and implemented CrowdHub, a system that extends crowdsourcing platforms and allows

requesters to run controlled crowdsourcing projects. We presented a demo of CrowdHub
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[Ramı́rez et al., 2019b] and received positive and constructive feedback from researchers in

the human computation community. These discussions allowed us to arrive at the current

design goals and set of features that constitute the system. The available features enable

task requesters to build crowdsourcing workflows, such as creating datasets for training

machine learning models or designing and executing complex crowdsourcing experiments.

CrowdHub is an open-source project, and we made available on GitHub the source code

of the frontend1 and backend2 layers.

Aiding researchers in reporting crowdsourcing experiments to ensure these are repro-

ducible (RQ3).

Chapter 5 brought to light the gap in current reporting practices for the different

dimensions in our taxonomy. The state of reporting in crowdsourcing research still misses

providing details beyond basic attributes like the task interface, instructions, what was

the rejection criteria, and the platform used. However, how the experiment was actually

mapped and run on a crowdsourcing platform is, for the most part, shallow and unclear.

We also noticed that the vast majority of the papers failed to report on attributes related

to the ethics of the experiment. For example, attributes covering if compensation was

fair and if the study received ethical approvals. The bottom line here is that “the bias

is in the details”, and we stress this in Section 5.4.3 by connecting the under-reported

attributes to known biases from experimental research.

Our insights have many implications and aim to push the community towards stan-

dardized reporting of crowdsourcing experiments. However, current guidelines somewhat

overlook advising researchers on what and how to report, and they instead focus primarily

on effective task design and practical recommendations for running experiments. The

research community should also seek to develop guidelines and best practices for reporting

and reproducibility of crowdsourcing experiments. As a first step in this direction, we

introduced a taxonomy of relevant ingredients characterizing crowdsourcing experiments

and used this taxonomy to analyze the state of reporting of 171 articles published in top

venues. This process allowed us to identify gaps in current reporting practices. To help

address these issues, we leveraged the resulting taxonomy and feedback from experts to

propose a checklist for reporting crowdsourcing studies.

It is clear from Chapter 5 that improved transparency in reporting is a shared respon-

sibility among the different stakeholders in the crowdsourcing ecosystem. Researchers

may be asked to agree to a code of conduct or follow guidelines, like our checklist, to

improve the current level of reporting. As a research community , we need to develop

guidelines and best practices (e.g., on how we set up and report experiments) to increase

1CrowdHub frontend: https://github.com/TrentoCrowdAI/crowdhub-web
2CrowdHub backend: https://github.com/TrentoCrowdAI/crowdhub-api

https://github.com/TrentoCrowdAI/crowdhub-web
https://github.com/TrentoCrowdAI/crowdhub-api
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transparency, strength, and reproducibility of crowdsourcing experiments. And such

guidelines should also emphasize the ethics and fairness behind experiments. In turn,

venues need to enforce and adopt higher reporting standards, mirroring the initiatives

taking place in other communities.

Platforms can benefit from the insights and design recommendations emerging from

this thesis and address operational barriers to running and reporting experiments. Platform

providers may aim for solutions that are “experiment-aware” (e.g., by offering features to

treat experiments as first-class citizens). Indeed, platforms can play a major role in both

i) helping task requesters to design experiments that are consistent with accepted ethical

guidelines (from informed consent to minimum wage) and ii) helping to generate reports

that facilitate publication of relevant experiment information to aid reproducibility.

6.2 Contributions

Our contributions can be summarized as follows:

1. We provide evidence on the positive impact of text highlights as a tool for supporting

workers in classification tasks, specifically for scenarios where the focus is on task

completion speed. We show that text highlights can reduce task completion speed

without losses in quality of the derived contributions. The experiments in Chapter 2

indicate that providing text highlights of good quality can significantly reduce the

decision time by almost half while maintaining (but not necessarily increasing) the

accuracy of workers [Ramı́rez et al., 2019a].

2. The quality assessment of the machine-generated highlights in Chapter 2 provided

us with insights into the nature and potential limitations of automated approaches.

Extractive summarization approaches are not trained for a specific predicate and

therefore are prone to generate less useful highlights. Instead, a question-answering

model generated shorter highlights specific for each predicate and dataset and resulted

in overall higher quality (but sensitive to how the predicate was formulated) [Ramı́rez

et al., 2019a].

3. We introduce the predicate formulation problem as an additional task design dimen-

sion to consider when structuring classification tasks and show how the resulting

performance is affected by different predicate formulation strategies. Our compre-

hensive experiments in Chapter 3 provide empirical evidence on how the different

strategies to pose a complex question to the crowd can offer gains in quality but at a

slower task completion speed [Ramı́rez et al., 2021a].
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4. The experiments in Chapter 3 also offer preliminary evidence on the potential of

predicate formulation in the context of hybrid classification, suggesting performance

gains even in its simplest collaborative approach, by assigning crowd and machine

classifiers parts of a complex predicate they are more suited to classify [Ramı́rez

et al., 2021a].

5. In Chapter 4, we discuss the challenges associated with running controlled exper-

iments in crowdsourcing platforms and propose coping mechanisms to deal with

these challenges, as well as highlight the potential impact of running experiments

uncontrolled [Ramı́rez et al., 2020a].

6. The insights from Chapter 4, the lessons we learned from running crowdsourcing

experiments, and the limitations of current systems that extend crowdsourcing

platforms led us to design and implement a tool for running controlled crowdsourcing

projects. It offers features for systematically evaluating task design to aid researchers

and practitioners during the design and deployment of crowdsourcing projects across

multiple platforms, as well as features for researchers to run controlled experiments

[Ramı́rez et al., 2019b, 2020a].

7. Chapter 5 derives the major design decisions of crowdsourcing experiments that

play a role in crowdsourcing tasks and, therefore, on an experiment’s outcome. A

bottom up approach rooted in the literature allowed us to derive a taxonomy of

attributes characterizing experiments run in crowdsourcing platform [Ramı́rez et al.,

2020b; Ramı́rez et al., 2021b]. We then leveraged this taxonomy to analyze the

state of reporting in crowdsourcing literature and identify aspects that are frequently

communicated and those that tend to go under-reported.

8. To address the gap in reporting practices, Chapter 5 then proposes a checklist

to facilitate the job of understanding and replicating crowdsourcing experiments

[Ramı́rez et al., 2021b]. The checklist seeks to help experimenters describe their

setup in a standardized format and readers to understand the used methodology and

how it was implemented, serving as a tool that complements existing experimental

research guidelines.

9. There is a limited amount of datasets with individual crowd votes to study multi-

predicate classification problems. Therefore, this thesis also contributes multiple

datasets covering a broad landscape of tasks and expanding different domains and

difficulty levels [Ramı́rez et al., 2019c, 2021a].
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6.3 Limitations

Our work on structuring tasks to aim for better performance in multi-predicate classification

has many limitations. The experiments on the impact of text highlighting on annotation

speed and accuracy were focused on binary text classification tasks. We see the potential

of highlighting as a tool to support workers in other kinds of tasks. However, we did not

cover different use cases for text highlighting, such as supporting information retrieval

and question answering tasks. This work also looked at additional factors influencing

the impact of text highlighting, showing that, for example, experience with the task

increases the benefits of highlighting, and workers adapt their behavior when documents

are longer. However, we did not consider the environment in which tasks are being solved

(e.g., working from a laptop or a phone, and other behavioral traces), which could also

potentially play a role in the resulting performance of workers [Gadiraju et al., 2017a].

Chapter 3 is limited to studying predicate formulation for the simpler case: a complex

predicate composed of two individual predicates. Indeed, a relevant question is whether or

not similar results on predicate formulation can be achieved if the predicate complexity

goes beyond two predicates. Focusing on the simpler case allowed us to study one aspect

of the predicate formulation problem — task design — as the high dimensionality of this

problem makes it intractable to crowdsource for every possible scenario in our experiment.

Therefore, we did not consider settings with more than two individual predicates to

make the crowdsourcing experiment manageable. Yet, the results from the simulations to

cover settings (like going beyond two predicates) are encouraging, as they align with the

insights we derived from our crowdsourcing experiment. However, further experiments are

needed to support our insights in these settings. Another relevant aspect of this problem

concerns developing algorithms for querying complex predicates (e.g., to know how to split

a predicate and “route” predicates to the more suitable workers). Our work did not study

this aspect, but we see some potential connections with existing work on multi-predicate

classification [Krivosheev et al., 2021].

Chapter 4 summarized the challenges and coping strategies for running controlled

crowdsourcing experiments, showed the impact of uncontrolled experiments, and proposed

CrowdHub based on these learnings — but this chapter leaves unexplored how (and to what

extent) CrowdHub would support researchers running controlled experiments. Answering

this question would require user studies (for problems beyond multi-predicate classification)

to assess the extent to which CrowdHub supports researchers and practitioners in designing

and running crowdsourcing projects. While CrowdHub’s features emerged from lessons

we learned by running controlled experiments for a specific problem, we believe they

are generic enough to serve as building blocks to a wide range of crowdsourcing studies.
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Besides, researchers can easily extend CrowdHub to other kinds of tasks, despite its

support limiting to multi-predicate classification. These points suggest that CrowdHub

could support different kinds of experiments and problems, but further studies are needed

to validate its support.

Our work on aiding current reporting practices in crowdsourcing research is limited to

what is reported, which might be an incomplete picture of the design and operationalization

of the experiments — but that is what is eventually available to the community to

build upon and replicate. While a systematic process was followed to cover as much

research landscape as possible, the search can not be considered an exhaustive account

of crowdsourcing experiments in the literature. Yet, the 670 conference papers screened

and the 171 analyzed in detail provide a representative sample of the current state of

affairs. Also, it is worth noting that we did not manage to cover the four stakeholders

we mentioned in Section 6.1, as we did not interview people (e.g., managers and crowd

workers) from major crowdsourcing platforms. However, the participants we interviewed

possess ample experience designing and executing crowdsourcing experiments in these

platforms, with research output published in major SIGCHI conferences; they helped

provide thoughtful design and operational angles to the attributes in the taxonomy and

the final checklist. Finally, while we proposed a checklist to aid current reporting practices,

we did not explore how to facilitate the adoption of such checklist.

6.4 Future Work

This thesis identifies many interesting avenues of future work.

Our work on text highlighting leveraged human- and machine-generated highlights,

identifying the quality range for text highlights to become useful, as well as the impact of

low-quality highlights — but we ultimately focused on the effects and not “the how”. How

to effectively and efficiently obtain text highlights is indeed a relevant research question.

We see the efficient and effective generation of text highlights as a relevant problem for

Human-AI approaches, and we expect the insights from Chapter 2 to stimulate and inform

research in this direction. Here, we envision pipelines combining crowd and machines to

produce useful text highlights. For example, the crowd may help in giving feedback to

automatic highlighting techniques (e.g., by assessing the quality of machine-generated

highlights or even providing concrete examples of good highlights) following an active

learning setup.

In our experiments, workers spent more time on the task as the documents grew in

size, but this was not the case for one of the datasets in our study on text highlights. We

left this behavioral aspect unexplored, and we find it an interesting direction of future
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work because it shows how people adapt their behavior when documents are longer, which

could change the effect of highlighting.

Our work on the predicate formulation problem considers two task design choices for

presenting individual predicates to the crowd: either asking the predicates on the same task

vs. on separate tasks. Both task design choices offer superior results over the baseline that

asks the complex predicate directly, but there is not enough evidence to inform decisions

based on given problem settings. We find this an interesting direction of future work,

where we design algorithms that model workers, tasks, and predicates to automatically

learn how to formulate complex predicates to meet quality goals while operating under a

budget.

As part of our future work, we plan to run user studies to evaluate the extent to which

CrowdHub supports researchers in running crowdsourcing experiments and practitioners

in deploying crowdsourcing workflows.

Our work on aiding current reporting practices also identifies promising avenues of

future work. We plan to evaluate if and how the proposed checklist aid reproducible

research, explore methods to automatically derive crowdsourcing experiment reports from

existing crowd platforms, extend the scope of the reporting to other crowdsourcing tasks

such as data collection, and develop a system with crowdsourcing experiments as first-class

citizens.
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Appendix A

Supporting material for Chapter 5

A.1 Checklist for Crowdsourcing Experiments

In this section, we introduce the checklist, depicted in Table A.1. The checklist should be

filled out per experiment, in case the paper reports on multiple studies involving the crowd

as subjects. Besides, suppose an experiment uses different (potentially interconnected)

micro-tasks. In that case, the Task and Quality control sections should be reported per

task (or at least the Task section in case the quality control mechanisms are the same for

all tasks).

Table A.1: Checklist for reporting crowdsourcing experiments

Item
Item

N.
Recommendation

Page

N.

Experimental design

Input dataset 1 Describe how the input dataset for the ex-

periment was obtained and if it is publicly

available. Also, touch on its reputation and

difficulty (if applicable)

Allocation to exper-

imental conditions

2 State how the participants were assigned to

the experimental conditions or treatments,

and how this step was implemented in the

crowdsourcing platform
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Experimental

design to task

mapping

3 Describe what research design was used in the

experiment and how were the experimental

conditions mapped to crowdsourcing tasks

Execution of exper-

imental conditions

4 Report how the crowdsourcing tasks, repre-

senting the experimental conditions, were exe-

cuted (e.g., in parallel, sequentially, or mixed)

Execution time-

frame

5 State over what timeframe the experiment

was executed

Pilots 6 Describe if pilot studies were performed be-

fore the main experiment

Returning workers 7 Report the strategies used to prevent return-

ing workers, i.e., workers who finish the ex-

periment and then reenter it later because

the study was still running

Crowd

Target population 8 Describe the criteria used to determine the

workers who are allowed to participate (e.g.,

acceptance rate, tasks completed, demograph-

ics, working environment). And also indicate

the strategy used to identify such workers

Sampling mecha-

nism

9 Report what strategies were used to recruit a

diverse or representative set of workers from

the target population

Task

Task interface 10 Report and show the task interface as seen

by workers

Task interface

source

11 Provide a link to an online repository with the

source code of the task interface (typically a

combination of HTML, CSS, and JavaScript)

Instructions 12 Describe and show the instructions of the task

as seen by workers
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Reward strategy 13 State the mechanisms used to reward and

motivate workers (e.g., payments)

Time allotted 14 Report if a time constraint was defined for

workers to complete the task (if so, describe

also how much)

Quality control

Rejection criteria 15 State the criteria used to accept or reject a

contribution from a worker (e.g., workers can

be allowed to submit the task and reject it

afterward, submissions can be blocked based

on prior rejections or on time spent on the

task)

Number of votes

per item

16 Describe, if applicable, how many workers

solved the same item or data unit

Aggregation

method

17 Report, if applicable, how the contributions

from workers were aggregated (e.g., majority

voting)

Training 18 State if workers performed a training session

or pre-task qualification test. If so, describe 1)

the training, 2) the items used as the training

set, and 3) if it was performed before or as

part of the task

In-task checks 19 Report the mechanisms embedded in the task

to guard the quality of the results. Also, state

if and how workers were allowed to revise

their answers. In case gold items or attention

checks were used, describe how these items

were selected, how frequently they appear,

and the threshold used to filter out workers

underperforming on these items.

Post-task checks 20 Report the steps performed upon task com-

pletion to safeguard the quality of the results

(e.g., post hoc analysis)



Checklist for Crowdsourcing Experiments 124

Dropouts preven-

tion mechanisms

21 Indicate the strategies used to deal with

worker dropouts (i.e., workers who leave the

task unfinished)

Outcome

Number of partici-

pants

22 Indicate how many workers participated in

the experiment (in total and per condition)

Number of contri-

butions

23 Report the number of contributions (e.g.,

votes) in total and per condition

Excluded partici-

pants

24 Indicate the number of participants Nt con-

sidered for the data analysis, including the

reason for exclusion.

Discarded data 25 State the number of contributions excluded

before the data analysis

Dropout rate 26 Describe the dropout rate of the participants

in the experimental conditions. If applica-

ble, also show breakdowns per milestone of

progress within the task (e.g., after 2, 3, and

5 questions).

Participant demo-

graphics

27 Report the demographics of the participants

(e.g., age, country, language)

Data processing 28 Report any data transformation, augmenta-

tion, and/or filtering step performed on the

raw dataset obtained from the crowdsourcing

platform.

Output dataset 29 Provide a link to the dataset resulting from

the experiment. Also indicate if the dataset

contains the aggregated or individual contri-

butions from workers

Requester

Platform(s) used 30 Indicate the crowdsourcing platform(s) se-

lected for the experiment



Identifying Papers Reporting Crowdsourcing Experiments 125

Implemented fea-

tures

31 Report any additional feature implemented

to support the experiment, covering missing

functionality from the selected platform(s)

Fair compensation 32 State whether workers were compensated

fairly and according to legal minimum wage

Requester-Worker

interactions

33 Describe concrete requester-worker interac-

tions taking place as part of the experiment

Privacy & Data

Treatment

34 Report any relevant privacy regulations and

methods used to comply, especially if the

output is put online (e.g., the data could be

aNnymized to meet privacy policies).

Informed consent 35 Indicate if an informed consent was used

Participation

awareness

36 State if workers were informed they took part

in an experiment

Ethical approvals 37 Report if the study received ethical approval

from the corresponding institutional author-

ity

A.2 Identifying Papers Reporting Crowdsourcing Experiments

This section introduces the query that was used to retrieve papers (potentially) reporting

crowdsourcing experiments and the exact eligibility criteria used to filter out retrieved

articles.

A.2.1 Scopus query

TITLE-ABS-KEY(crowdsource OR crowd-source OR crowd-sourcing OR

crowdsourcing OR "human computation" OR

crowdsourc* OR crowd-sourc* OR m*cro-task OR m*crotask)

AND

TITLE-ABS-KEY(experiment OR "experimental design" OR stud* OR evaluation OR

intervention OR analysis)

AND

TITLE-ABS-KEY(user* OR behavio* OR worker*)

AND
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(CONF(CHI) OR CONF(HCI) OR CONF(CSCW) OR CONF(WWW) OR CONF(HCOMP) OR

CONF(WSDM) OR CONF(CIKM) OR CONF(SIGIR) OR CONF(ICWE) OR CONF(IUI) OR

CONF(UIST) OR CONF(ICWSM) OR CONF("Human Factors"))

AND

(LIMIT-TO (DOCTYPE , "cp"))

A.2.2 Screening instructions

Figure A.1 depicts the instructions used by the researchers to identify papers reporting

crowdsourcing experiments.

Figure A.1: The screening instructions for identifying papers reporting crowdsourcing experiments.

A.3 Interview Protocol

The interview protocol can be found at https://tinyurl.com/ReportingInterviewProtocol.

A.4 Applicability of Attributes

As we mentioned in Section 5.4.1, we considered 13 of the 39 attributes as potentially not

applicable (N/A) based on the experiment’s goal. Here, we detail these attributes.

The input dataset was N/A if the paper does not necessarily use an input dataset for

the crowdsourcing tasks. For example, in creative tasks, workers are just given instructions,

https://tinyurl.com/ReportingInterviewProtocol


and they provide input. The returning workers attribute was N/A if the paper studied

mechanisms to deal with workers that return to the experiment, or the study needed

returning workers as part of their setup. The attributes in the quality control dimension

were considered N/A if the paper actually studied quality control in crowdsourcing,

including also strategies to deal with workers dropouts. The aggregation method was N/A

if the aggregation of contributions was not suitable for the experiment, and likewise, the

gold items configuration was N/A if the experiment did not use gold items. The number

of contributions and discarded data were N/A if they were just equal to the number of

participants and excluded participants, respectively. An example of this is a study on

worker behavior, which could collect a single contribution from each participant. Finally,

the data processing was N/A if contributions were used as-is.
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