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Abstract. Incremental linearization is a conceptually simple, yet effec-
tive, technique that we have recently proposed for solving SMT problems
on the theories of non-linear arithmetic over the reals and the integers.
Optimization Modulo Theories (OMT) is an important extension of SMT
which allows for finding models that optimize given objective functions.
In this paper, we show how incremental linearization can be extended to
OMT in a simple way, producing an incomplete though effective OMT
procedure. We describe the main ideas and algorithms, we provide an
implementation within the OptiMathSAT OMT solver, and perform an
empirical evaluation. The results support the effectiveness of the ap-
proach.

1 Introduction

Context. Satisfiability Modulo Theories (SMT) is the problem of deciding the
satisfiability of a first-order formula with respect to some theories of interest
(e.g. theory of linear arithmetic, of arrays, of bit-vectors,...) and combination
thereof [5]. Powerful and effective SMT techniques and tools are available for a
large variety of theories, including the quantifier-free theories1 of Uninterpreted
Functions (UF) and Linear Arithmetic (LA), either over the reals (LRA) or the
integers (LIA), as well as their combinations (UFLRA, UFLIA), of bit-vector
(BV) and floating-point arithmetic (FP).

When dealing with arithmetic, a fundamental challenge is to go beyond the
linear case, by introducing multiplications between variables, and hence between
complex terms – over the reals (NRA) or over the integers (NIA). (We also use the
term “NIRA” [resp. “LIRA”] when we do not distinguish between NRA and NIA
[resp. LRA and LIA].) Unfortunately, dealing with non-linearity is a very hard
challenge. Going from SMT(LRA) to SMT(NRA) yields a complexity gap that
results in a computational barrier in practice – most available complete solvers
rely on Cylindrical algebraic decomposition (CAD) techniques [15], which require
double exponential time in worst case. Reasoning in NIA is even undecidable [30].

1In the following, we only consider quantifier-free theories, and we abuse the ac-
cepted notation and omit the “QF_” prefix in the names of the theories.



Incremental Linearization. Recently, we have proposed a conceptually-simple, in-
complete yet effective practical approach for SMT dealing with the quantifier-free
theory of non-linear arithmetic over the reals, over the reals extended with tran-
scendental functions, and over integers, called Incremental Linearization [13].
Its underlying idea is that of trading the use of expensive, exact solvers for
non-linear arithmetic for an abstraction-refinement loop on top of much cheaper
solvers for linear arithmetic and uninterpreted functions.

Optimization Modulo Theories. Many SMT problems of interest, however, re-
quire the capability of finding models that are optimum wrt. some objective
functions. These problems are grouped under the umbrella term of Optimiza-
tion Modulo Theories – OMT [32,34,8]. OMT techniques have been conceived
for a variety of theories, including LRA [34,8], LIA [8,36], BV [31], FP [39]. In
general, they work by performing sequences of incremental SMT calls, possibly
combined with theory-specific optimization techniques for the conjunctive frag-
ment of the given theory, which progressively tighten the range of values of the
objective function.

OMT by Incremental Linearization. In this paper, we show how incremental
linearization can be extended from SMT to OMT in a very simple way, produc-
ing an incomplete though effective OMT procedure. As with the SMT case in
[13], the goal is to build an OMT(NIRA) solver on top of “cheap” ingredients:
SMT(UFLIRA) and OMT(UFLIRA) incremental calls driven by an abstraction-
refinement loop, with no expensive solver or optimizer for non-linear arithmetic,
so that the task of progressing towards the optimum is performed by a combi-
nation of Boolean search and optimization in the abstract UFLIRA space. We
describe the main ideas and algorithms.

We have implemented the novel OMT(NIRA) algorithms within the OMT
solver OptiMathSAT [37], which is built on top of the MathSAT5 SMT
solver [14], where the incremental linearization for SMT(NIRA) procedures have
been implemented [13]. We have experimentally validated our algorithm with an
analysis of the performance of OptiMathSAT in dealing with OMT(NRA) and
OMT(NIA) problems, and compared these results with those of another state-of-
the-art OMT solver, Z3 [8], which offers a limited support for OMT(NRA) and
OMT(NIA). Although quite preliminary to some extent, the results show that,
despite the simplicity of the implemented procedures, OptiMathSAT solves
the largest number of benchmarks overall, thus supporting the effectiveness of
the approach.

Related Work. Efficient SMT solving for non-linear arithmetic is an open research
problem for which a variety of approaches have been proposed; these are often
complementary with one another [13]. Methods for dealing with SMT(NRA)
are typically based on: cylindrical algebraic decomposition (CAD) [15,23,25,3],
virtual substitution (VS) [40], interval constraint propagation (ICP) [6,21], bit-
blasting [20,41], linearization [10,28,19,33,9,11] and incremental linearization
[13]. Methods for dealing with SMT(NIA) are based on the combination of
branch-and-bound search with some SMT(NRA) solving technique. See, for ex-
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ample, [22] and [26] based on CAD and CAD+VS respectively, and [12] based
on incremental linearization.

OMT for non-linear arithmetic, instead, is a largely unexplored territory:
the Z3 [8] OMT solver does not officially support optimization with NIRA con-
straints or objective functions.2 However, in practice, it can compute optimal
solutions for some of these problems, albeit without providing any guarantees.

dReal is a SMT(NRA) solver based on the notion of δ-satisfiability [21],
that basically guarantees that there exists a variant (within a user-specified δ
“radius”) of the original problem such that it is satisfiable. Importantly, we notice
that the approach cannot guarantee that the original problem is satisfiable, since
it relies on numerical approximation techniques that only compute safe over-
approximations of the solution space. dReal supports optimization with NRA
objective functions and/or in the presence of NRA constraints [24].

Content. The paper is organized as follows. In §2 we provide some background
knowledge on OMT and incremental linearization; in §3 we present our main
ideas and new OMT(NIRA) procedures; in §4 we perform the empirical eval-
uation, discussing the results; in §5 we draw some conclusions, and illustrate
possible future research directions.

2 Background

2.1 Optimization Modulo Theories

We assume the reader is familiar with the main theoretical and algorithmic con-
cepts in SAT and SMT solving (see e.g. [29,5]). Optimization Modulo Theories
(OMT) is an extension of SMT which addresses the problem of finding a model
for an input formula ϕ which is optimal wrt. some objective function obj [32,34].
(In this paper we consider optimization as minimization; the narration for max-
imization is dual.) A little more formally, given some theory T admitting some
total order “≤” over its domain, an OMT(T ) problem is given by a pair 〈ϕ, obj〉
where ϕ, obj are a formula and a term over T , and consists in finding a model for
ϕ (if any) which makes the value of obj minimum according to the order given
by ≤.3

The basic minimization strategy implemented in all state-of-the-art OMT
solvers, is known as linear-search strategy [32,34,35]. It requires solving an SMT
problem with a feasible space that is progressively tightened by learning a se-
quence of unit clauses of the form (obj < ub), where ub is the current upper
bound of the optimization search. At each iteration, the SMT solver can either
find a model M of ϕ whose value of obj, denoted with M[obj], is smaller than
the current upper bound ub, or discover that the stack of formulas has become

2https://github.com/Z3Prover/z3/issues/2247
https://github.com/Z3Prover/z3/issues/5339

3More generally the formula can be built on a combination of T with other theories,
see e.g. [35]. However, to simplify the narration and the notation, here we refer to one
single theory.
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unsatisfiable. In the first case, the OMT solver invokes a T -specific minimiza-
tion procedure over the propositional truth assignment ψ induced byM on the
atoms of the formula, so as to generate a modelM′ of ϕ such that the value of
M′[obj] is minimum for the given propositional assignment ψ. Then, theM′[obj]
becomes the new upper bound ub of the optimization search. The OMT search
terminates when such procedure finds that obj is unbounded or when the SMT
search is unsat, in which case the last model Mi of ϕ (if any) is the optimal
solution.

If, for some theory T , T -specific minimization is hard to implement (e.g. for
floating-point arithmetic [39]) or computationally too expensive (e.g., for linear
integer arithmetic [36]), then we can rely on other strategies.

One possible approach for the latter case is to implement a cheaper though in-
complete T -specific minimization procedure, which may only improve the value
of M[obj] with no guarantee to find a minimum one for the given truth as-
signment. This comes at the risk of generating and exploring the same truth
assignment more than once, overall trading arithmetic minimization search for
extra Boolean search [36].

An alternative minimization approach is the binary-search strategy described
in [34]. At the beginning of each binary search step, the OMT solver calls a func-
tion ComputePivot() to compute a pivoting value contained in the current search
interval. (In its simplest implementation, ComputePivot() returns the value of
(ub−lb)

2 , where lb and ub are the lower and the upper bound currently delim-
iting the optimization search respectively). Then, the OMT solver temporarily
assumes a unit-clause of the form (obj < pivot). This effectively restricts the
search space so that it includes only satisfiable truth assignments (if any) for
which obj has a value included in the interval [lb, pivot). If any such solution is
found by the OMT solver, the algorithm proceeds like in linear-search mode, and
updates the current upper bound ub. Otherwise, if no such solution exists, then
the pivoting unit-clause (obj < pivot) is replaced by its negation ¬(obj < pivot)
and pivot becomes the new lower bound. Notice that, in case of continuous do-
mains (e.g., LRA, NRA) the binary search alone may not terminate, so that it
is necessary to interleave binary-search steps with linear-search ones [35].

2.2 SMT(NIRA) via Incremental Linearization

The main idea of incremental linearization [13] is to trade the use of expensive,
exact solvers for non-linear arithmetic for an abstraction-refinement loop on
top of much cheaper solvers for linear arithmetic and uninterpreted functions,
UFLIRA. The pseudo-code of the baseline procedure is shown in Fig. 1.

First, the input SMT(NIRA) formula ϕ is abstracted to the SMT(UFLIRA)
formula ϕ̂ (called its UFLIRA-abstraction) by substituting every non-linear mul-
tiplication term x ∗ y with f∗(x, y), where both x and y are variables4 and f∗

4As in [13] and with no loss of generality, hereafter we assume that all multiplica-
tions in ϕ are either between two variables or between one constant and one variable,
because more complex terms occurring in a multiplication can be renamed by fresh
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function SMT-incremental-linearization(ϕ)
1: ϕ̂ := SMT-Initial-Abstraction(ϕ) ; // ϕ̂ over-approximates ϕ
2: Γ := ∅ ; // linearization lemmas
3: while true do
4: 〈sat, µ̂〉 := SMT-UFLIRA-Check(ϕ̂ ∧

∧
Γ )

// ϕ̂ ∧
∧
Γ over-approximates ϕ

5: if not sat then
6: return 〈false, ∅〉
7: 〈sat, µ, Γ

′
〉 := SMT-Check-Refine(ϕ̂, µ̂)

8: if sat then
9: return 〈true, µ〉

10: else
11: Γ := Γ ∪ Γ

′

Fig. 1. Solving SMT(NIRA) via incremental linearization.

function SMT-Check-Refine(ϕ̂, µ̂)
1: ψ̂ := ExtractAssignment(ϕ̂, µ̂) ; // Eq. (1)
2: ψ̂∗ := ψ̂ ∧ Linearization-Constraints(ψ̂) ; // Eq. (2)
3: 〈sat, µ̂

′
〉 := SMT-UFLIRA-Check(ψ̂∗)

4: if sat then
5: return 〈true, µ̂

′
, ∅〉 ; // µ̂

′
is a model of ϕ

6: else
7: Γ := Block-Spurious-Product-Terms(ϕ̂, µ̂)
8: return 〈false, ∅, Γ 〉

Fig. 2. The procedure checking whether µ̂ can be refined into a model of ϕ.

is an uninterpreted function symbol (function SMT-Initial-Abstraction in
line 1). Then, the set of linearization lemmas Γ (i.e. UFLIRA-abstraction of
NIRA-valid multiplication lemmas in Fig. 3) is initialized to the empty set, and
the loop begins.5

First, the UFLIRA-satisfiability of ϕ̂ augmented with the linearization lem-
mas in Γ is checked. If the SMT(UFLIRA) check returns false, then the input
formula is NIRA-unsatisfiable, because ϕ̂ ∧

∧
Γ is an over-approximation of ϕ

by construction (lines 4–6).
Otherwise, the abstract model µ̂ for ϕ̂ is used to build an UFLIRA under-

approximation ψ̂∗ of ϕ, with the aim of finding a model µ for ψ̂∗, and thus for
the original NIRA formula ϕ (function SMT-Check-Refine in line 7). If this
succeeds, then ϕ is also satisfiable. Otherwise, SMT-Check-Refine returns a
set Γ

′
of linear lemmas which are sufficient to rule out the spurious model µ̂. Γ

′

variables. Notice that this assumption is not necessary in practice, but it simplifies the
explanation.

5 In order to keep the narration simple, in Fig. 1 we have omitted some details. First,
the input formula can be simplified by some preprocessing steps. Furthermore, for each
fresh f∗(x, y) term, ϕ̂ can be extended from the beginning with simple multiplication
lemmas. We refer the reader to [13] for details.
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is then added to Γ , thus improving the precision of the abstraction, and another
iteration of the loop is performed.

The lemmas added are instances of the axioms of Fig. 3, obtained by replacing
the free variables with terms occurring in ϕ, selected among those that evaluate
to false under the current spurious model µ.

The pseudo-code of the model search procedure (SMT-Check-Refine) is
reported in Fig. 2. In particular, ψ̂∗ is built by first generating the truth assign-
ment ψ̂ for the atoms in ϕ̂ which is entailed by the current abstract model µ̂,
and then by adding multiplication line constraints that force all multiplications
in ψ to be linear (lines 1–2):

ψ̂ =
∧

[Â∈ atoms(ϕ̂) s.t. µ̂|=Â]

Â ∧
∧

[Â∈ atoms(ϕ̂) s.t. µ̂6|=Â]

¬Â (1)

ψ̂∗ = ψ̂∧
∧

f∗(x,y)∈ψ̂

(x = µ̂[x]∧f∗(x, y) = µ̂[x]∗y))∨(y = µ̂[y]∧f∗(x, y) = µ̂[y]∗x)) (2)

Then the UFLIRA-satisfiability of ψ̂∗ is checked: if satisfiable, then ϕ is NIRA-
satisfiable and its model µ̂

′
is also a model for ϕ (lines 3–5). Otherwise, a set Γ

of lemmas ruling out the spurious model µ̂
′
is produced and returned (lines 6–8).

3 Optimization Modulo Non-Linear Arithmetic

In this section, we present our novel Optimization Modulo Non-Linear Arith-
metic procedure based on the combination of the optimization schema described
in §2.1 and the incremental linearization approach described in §2.2. In §3.1,
we describe the basic version of this new algorithm, based on the linear opti-
mization search schema, and discuss the termination of the algorithm. Then,
in §3.2, we describe some simple improvements over the basic approach that
can significantly improve the effectiveness of the procedure, despite remaining
incomplete.

3.1 Linear Optimization Search

The pseudo-code of the basic approach to Optimization Modulo Non-Linear
Arithmetic, based on the linear optimization search schema, is shown in Fig. 4.

Input & Initialization. The algorithm takes as input an SMT(NIRA) formula
ϕ, a LIRA objective obj and a threshold precision value ε. (We can assume
wlog. that obj is a LIRA term because, if not so, we can rewrite 〈ϕ, obj〉 into
〈ϕ ∧ (v = obj), v〉, v being a fresh variable.) Lines 1–4 are part of the startup
phase of the OMT(NIRA) algorithm. First, the UFLIRA abstraction ϕ̂ over-
approximating ϕ is computed at line 1. Next, the current best modelM, the set
of optimization constraints Θ and the set of linearization lemmas Γ are initialized
to the empty set (lines 2–4).6

6The same considerations as in Footnote 5 apply here as well.
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Basic: Sign: v1 ∗ v2 = (−v1 ∗ −v2)

v1 ∗ v2 = −(−v1 ∗ v2)

v1 ∗ v2 = −(v1 ∗ −v2)

Zero: (v1 = 0 ∨ v2 = 0)↔ v1 ∗ v2 = 0

((v1 > 0 ∧ v2 > 0) ∨ (v1 < 0 ∧ v2 < 0))↔ v1 ∗ v2 > 0

((v1 < 0 ∧ v2 > 0) ∨ (v1 > 0 ∧ v2 < 0))↔ v1 ∗ v2 < 0

Neutral: (v1 = 1 ∨ v2 = 0)↔ v1 ∗ v2 = v2

(v2 = 1 ∨ v1 = 0)↔ v1 ∗ v2 = v1

Proportionality: |v1 ∗ v2| ≥ |v2| ↔ (|v1| ≥ 1 ∨ v2 = 0)

|v1 ∗ v2| ≤ |v2| ↔ (|v1| ≤ 1 ∨ v2 = 0)

|v1 ∗ v2| ≥ |v1| ↔ (|v2| ≥ 1 ∨ v1 = 0)

|v1 ∗ v2| ≤ |v1| ↔ (|v2| ≤ 1 ∨ v1 = 0)

Order: (v1 ∗ v2 ./ v3 ∧ v4 > 0)→ v1 ∗ v2 ∗ v4 ./ v3 ∗ v4
(v1 ∗ v2 ./ v3 ∧ v4 < 0)→ v3 ∗ v4 ./ v1 ∗ v2 ∗ v4

Monotonicity: (|v1| ≤ |v2| ∧ |v3| ≤ |v4|)→ |v1 ∗ v3| ≤ |v2 ∗ v4|

(|v1| < |v2| ∧ |v3 ≤ |v4| ∧ v4 6= 0)→ |v1 ∗ v3| < |v2 ∗ v4|

(|v1| ≤ |v2| ∧ |v3| < |v4| ∧ v2 6= 0)→ |v1 ∗ v3| < |v2 ∗ v4|
Tangent plane: v1 = a→ v1 ∗ v2 = a ∗ v2

v2 = b→ v1 ∗ v2 = b ∗ v1
(v1 > a ∧ v2 < b)→ v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b

(v1 < a ∧ v2 > b)→ v1 ∗ v2 < b ∗ v1 + a ∗ v2 − a ∗ b

(v1 < a ∧ v2 < b)→ v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b

(v1 > a ∧ v2 > b)→ v1 ∗ v2 > b ∗ v1 + a ∗ v2 − a ∗ b

Fig. 3. Axioms of the multiplication function.

Main Loop. Given the current best model M, optimization constraints Θ and
linearization constraints Γ , the algorithm enters into its main loop (lines 5–19),
which can be virtually divided into two distinct blocks.

The first block, lines 6–9, corresponds to a single application of the incre-
mental linearization schema presented in Fig. 1, lines 4–7. The goal of this phase
is to find an initial abstract UFLIRA model µ̂ of ϕ̂ ∧

∧
Γ ∧

∧
Θ that is refined

into a NIRA model µ of ϕ ∧
∧
Θ. This step can have three possible outcomes.

(i) SMT-UFLIRA-check fails to find such µ̂ because ϕ̂∧
∧
Γ∧

∧
Θ is UFLIRA-

unsatisfiable. This implies that ϕ ∧
∧
Θ is also NIRA-unsatisfiable, because

the former is an over-approximation of the latter. Thus, there is no better
model than the current one (if any), so that the execution breaks out of the
loop (lines 6–8);

(ii) SMT-UFLIRA-check succeeds in finding an UFLIRA model µ̂, but SMT-
Check-Refine fails to refine µ̂ into a NIRA model µ for ϕ∧

∧
Θ (lines 6,9).7

If so, SMT-Check-Refine returns a set of UFLIRA constraints Γ
′
ruling

7We stress the fact that SMT-Check-Refine returning false does not mean that
ϕ̂ ∧

∧
Θ is NIRA-unsatisfiable, rather that it failed to prove it satisfiable.
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function omt-nira-linear-search(ϕ, obj, ε)
1: ϕ̂ := SMT-Initial-Abstraction(ϕ) // ϕ̂ over-approximates ϕ
2: M := ∅ // current best model
3: Θ := ∅ // optimization constraints as (obj < ub)
4: Γ := ∅ // linearization lemmas
5: while true do
6: 〈sat, µ̂〉 := SMT-UFLIRA-Check(ϕ̂ ∧

∧
Γ ∧

∧
Θ) // µ̂ abstract model

// ϕ̂ ∧
∧
Γ over-approximates ϕ

7: if not sat then
8: break
9: 〈sat, µ, Γ

′
〉 := SMT-Check-Refine(ϕ̂ ∧

∧
Θ, µ̂)

10: if sat then
11: M := µ
12: ψ̂ := ExtractAssignment(ϕ̂, µ) // Eq. (1)
13: µ̂

′
:= UFLIRA-Minimize(ψ̂, obj)

14: 〈sat, µ
′
, Γ
′
〉 := OMT-Check-Refine(ϕ̂ ∧

∧
Θ, µ̂

′
, obj)

15: if sat then
16: M := µ

′
// µ̂

′
[obj] ≤ µ

′
[obj] ≤ µ[obj]

17: ub := Get-Upper-Bound(µ̂
′
[obj],M[obj], ε)

18: Θ := Θ ∪ {(obj < ub)} // linear-search step

19: Γ := Γ ∪ Γ
′

20: if M 6= ∅ then
21: return 〈sat,M〉
22: else
23: return 〈unsat, ∅〉

Fig. 4. A baseline schema of our OMT(NIRA) procedure, with linear search.

function OMT-Check-Refine(ϕ̂, µ̂, obj)
1: ψ̂ := ExtractAssignment(ϕ̂, µ̂) // Eq. (1)
2: ψ̂∗ := ψ̂ ∧ Linearization-Constraints(ψ̂) // Eq. (2)
3: 〈sat, µ̂

′
〉 := OMT-UFLIRA-Check-Minimize(ψ̂∗, obj)

4: if sat then
5: return 〈true, µ̂

′
, ∅〉 // µ̂

′
is a model of ϕ

6: else
7: Γ := Block-Spurious-Product-Terms(ϕ̂, µ̂)
8: return 〈false, ∅, Γ 〉

Fig. 5. The OMT counterpart of the SMT-Check-Refine in Fig. 5.

out µ̂ (and other spurious solutions) from the feasible search space, and the
procedure skips the second block of lines 10–18, jumping directly to line 19;

(iii) µ̂ is successfully refined and rewritten into a NIRA model µ for ϕ ∧
∧
Θ,

allowing for entering into the second block of lines 10–18.

The second block, lines 10–18, is responsible for advancing the optimization
search. First, the new current best NIRA model µ for ϕ∧

∧
Θ is stored intoM

(line 11). Then the algorithm finds a new UFLIRA model µ̂
′
for ϕ̂ ∧

∧
Γ ∧

∧
Θ
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with the best possible value of obj s.t. µ̂
′
assigns the same truth values as µ

to the atoms in ϕ̂ ∧
∧
Γ ∧

∧
Θ (lines 12–13). (The latter restriction forces the

minimization procedure to search for an improving solution in the same region
as the non-linear model µ.) To do this, the truth assignment ψ̂ induced by µ on
the atoms in ϕ̂∧

∧
Γ ∧

∧
Θ is extracted (line 12), and a standard minimization

algorithm for linear arithmetic is invoked on ψ̂ to find an UFLIRA model µ̂
′
for

ψ̂ which minimizes obj (line 13).
Notice that, µ̂

′
is a model for ϕ̂ ∧

∧
Γ ∧

∧
Θ, but not necessarily so for

ϕ ∧Θ. Therefore µ̂
′
is checked for spuriousness with a call to a function OMT-

Check-Refine (see Fig. 5), the OMT counterpart of SMT-Check-Refine
(line 14). If the refinement process succeeds, then M is updated with the new
current best NIRA model µ

′
(lines 15–16). Notice that µ̂

′
[obj] ≤ µ′ [obj] ≤ µ[obj],

because µ̂
′
[obj] is the lower bound for the value of obj in models sharing the

same truth assignment ψ̂. Otherwise, OMT-Check-Refine returns a set of
UFLIRA constraints Γ

′
ruling out µ̂

′
(and other spurious solutions) from the

feasible search space.
In either case, the optimization search is advanced by extending the set of

optimization constraints Θ with a fresh linear constraint of the form (obj < ub),
where ub is computed by an external call to Get-Upper-Bound (lines 17–18).
In its simplest form, Get-Upper-Bound simply returns the value of obj in
the current non-linear optimal model M. (A more sophisticate version will be
discussed later.)

At the end of each iteration of the loop (line 19), the set of linearization
constraints Γ is extended with the set of UFLIRA constraints Γ

′
, generated by

either SMT-Check-Refine (line 9) or OMT-Check-Refine (line 14), so as
to permanently rule out spurious solutions that have already been encountered.

The control-flow reaches lines 20–23 only after breaking the loop at line 8.
At this point the algorithm returns sat and the latest non-linear optimal model
M if available, and unsat plus an empty model otherwise.

OMT-Check-Refine in Fig. 5 is the OMT counterpart of SMT-Check-
Refine in Fig. 2. The only difference between these two functions is that OMT-
Check-Refine tries also to improve as much as possible the value of obj while
refining the input model. This happens in line 3, where an UFLIRA OMT call
is performed instead of an SMT one, so that the resulting model (if any) is the
best possible among those allowed by the multiplication line constraint in (2).

Notice that OMT-UFLIRA-Check-Minimize can even find that obj is un-
bounded, i.e., that ψ̂∗ has models with arbitrarily big negativeM[obj]. If so, then
the main procedure can return that obj is unbounded, because ψ̂∗ is an under-
approximation of the original formula, s.t. the latter has models with arbitrarily
big negativeM[obj] as well.

Progress. The progress towards an optimum solution within the same truth
assignment ψ̂ is achieved in two distinct steps.

First, in Fig. 4 line 13, UFLIRA-Minimize searches for the best abstract
model µ̂

′
which is compatible with the current truth assignment ψ̂, so that to
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search for a refined model µ
′
starting from a point µ̂

′
which is positioned in the

direction indicated by obj.
Second, in Fig. 5 line 3, OMT-UFLIRA-Check-Minimize finds the best

possible among the possible refinements of ψ̂ allowed by the multiplication line
constraint in (2).

Termination. We notice that the algorithm in Fig. 4 is not guaranteed to ter-
minate, even when the objective function is lower-bounded.

First, the SMT(NIRA) decision procedure based on incremental linearization
is incomplete, as described in [13]. Therefore, it is possible for the algorithm to
get indefinitely stuck in the main loop enumerating one spurious solution after
another.8

Second, whereas an OMT(NIRA) problem may admit irrational minimum
values for obj, the algorithm in Fig. 4 can return only rational values because it
is based only on UFLIRA SMT/OMT calls, so that it may produce an infinite
sequence of rational solutions progressively approaching the irrational minimum
one.

Third, the linear search strategy in the algorithm of Fig. 4 is not guaranteed
to converge towards the optimum value of obj in ϕ. In fact, each linear step
may improve the value of the objective function by a negligible amount only (in
particular when working on a continuous domain), even maintaining the same
truth assignment ψ̂, i.e., without toggling the truth values of the atoms of ϕ̂
(and hence of ϕ) induced by the current models. As a result, the algorithm may
end up enumerating an infinite sequence of improving solutions within the same
propositional branch of the search.

The latter fact deserves some more explanation. Let ∆ def
= M[obj] − µ̂′ [obj]

be the difference between the optimization search upper bound ub computed
at line 17 by the basic implementation of Get-Upper-Bound (M[obj], i.e.
either µ

′
[obj] or µ[obj]), and the UFLIRA-optimum µ̂

′
[obj] computed by OMT-

UFLIRA-minimize at line 13. Then ∆ ≥ 0 because µ̂
′
[obj] ≤ µ

′
[obj] ≤ µ[obj].

When ∆ = 0, the unit clause (obj < ub) learned at line 18 forces the change
to a new propositional branch ψ̂ of the search because ψ̂ ∧ (obj < ub) is LIRA-
inconsistent, and moves the optimization search to explore a new region of the
search space. Instead, when ∆ > 0 this is not the case, so that the OMT solver
may keep looking for an improving NIRA solution in the same region.

Early termination. We remark that, when forced to terminate by external events
(e.g., a timeout), our procedure can return the current best result as a partial-
optimum solution.

3.2 Algorithm Improvements

Incrementality of SMT(UFLIRA) and OMT(UFLIRA) calls. In the algorithms
of Fig. 4 and Fig. 5, all the calls to SMT(UFLIRA) and OMT(UFLIRA) (func-

8For the sake of simplicity, here we do not take into consideration the special ter-
mination condition based on a finite budget described in [13].
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tions SMT-UFLIRA-Check and OMT-UFLIRA-Check-Minimize) can be
performed incrementally (in our implementation, by exploiting the incremental
interface of OptiMathSAT), so that to avoid exploring the same portions of
the search space multiple times.

Linear-Search Strengthening. In order to increase the pruning power of the linear
search constraints learned during the optimization search, we modify the behav-
ior of the function Get-Upper-Bound called at line 17 in Fig. 4 as follows.
First, we compute

γ
def
=

|µ̂′ [obj]−M[obj]|
max{|µ̂′ [obj]|, |M[obj]|}

, (3)

where M is the current best NIRA model for ϕ ∧
∧
Θ and µ̂

′
is the UFLIRA-

optimal model for ϕ̂ ∧
∧
Γ ∧

∧
Θ. (We recall that µ̂

′
[obj] is the lower bound for

the value of obj in models sharing the same truth assignment ψ̂.)
If the value of γ is greater than the input threshold precision value ε, then

Get-Upper-Bound returnsM[obj] as above. Otherwise, we are not interested
in further improving the current best solution in the interval [µ̂

′
[obj],M[obj]).

Therefore, Get-Upper-Bound returns µ̂
′
[obj] instead of M[obj] as the new

upper bound ub, which is such that ψ̂ ∧ (obj < ub) is UFLIRA-inconsistent.
Thus in the next loop the procedure is forced to search for models in a new
propositional branch.

Henceforth, M is considered the current best model unless/until some new
model M′ is found s.t. M′[obj] < µ̂

′
[obj]. If this is the case, then the search

proceeds. Otherwise, if the procedure concludes that no such model exists (line 8)
thenM is returned as best model, within the relative error margin of γ (3).

Notice that, in this case, it is also possible to further refine the search by
setting Θ := Θ \ {(obj < µ̂

′
[obj])} ∪ {¬(obj < µ̂

′
[obj]), (obj <M[obj])}, and then

proceed the search for a better solution within the interval [µ̂
′
[obj],M[obj]),

either by linear or binary search.

Binary Search. We use the binary search strategy to gain some control on the
amount of progress that is made at each step of the optimization search. The
ComputePivot() procedure is displayed in Fig. 6.

If a lower bound lb 6= −∞ is available, then (lb+ub)/2 is returned (lines 1–2).
The main difference with the binary search strategy described in §2.1 is in how
an initial pivot is computed when no lower bound lb is available (lines 3–8). In
this case, the procedure determines the best pivoting value heuristically:

– if µ̂
′
[obj] 6= −∞, then its value is returned as the new pivot (lines 3–4).

Intuitively, this results in a pivoting constraint that is just strong enough to
force the OMT solver to look for a model of ϕ̂ ∧

∧
Γ ∧

∧
Θ on a different

propositional branch;
– otherwise, if the current interval contains 0, then a pivoting step on 0 is

forced (lines 5–6). The idea is to discover as quickly as possible the sign of
the optimum solution;

11



function ComputePivot(obj, lb, ub, µ̂
′
,M)

1: if lb 6= −∞ then
2: return (lb+ub)/2

3: else if µ̂
′
[obj] 6= −∞ then

4: return µ̂
′
[obj]

5: else if 0 <M[obj] then
6: return 0
7: else
8: return 2 · M[obj]

Fig. 6. The ComputePivot function for OMT(NIRA) in OptiMathSAT.

– if none of the above apply, so that the actual optimal value of obj can be
anywhere within the negative interval (−∞,M[obj]], then the double of the
(negative) value of M[obj] is returned (lines 7–8). Doubling the negative
value at each iteration ensures that the search proceeds as quickly as possible
to the discovery of an initial lower bound, or to a concrete solution as close
as possible to −∞ if no such lower bound exists.

4 Experimental Evaluation

Tools under test. We have implemented the novel OMT(NIRA) algorithm de-
scribed in §3 within the OMT solver OptiMathSAT [37]. We have experimen-
tally validated our algorithm with an analysis of the performance of OptiMath-
SAT in dealing with OMT(NRA) and OMT(NIA) problems, and compared these
results with the other available OMT solver, Z3 4.8.10 [8]. Although Z3 does not
officially support optimization with non-linear constraints, we use it as a base-
line for the evaluation of the presented approach as no other tools can handle
our benchmarks. We did not compare against dReal [21] because it supports
neither OMT(NIA) problems, nor our generated OMT(NRA) problems com-
ing from planning applications. We did not modify default options of any of
the tools, besides using the option smt.arith.solver=2 for Z3.9 We have
tested OptiMathSAT with two configurations: OptiMathSAT(lin), using lin-
ear search for optimization, and OptiMathSAT(bin), using binary search. For
OptiMathSAT we have set the relative-error value ε (see §3) to its default value
ε

def
= 10−6.
We have run the experimental evaluation on a cluster consisting of 20 identi-

cal machines. Each of the machines is equipped with Intel Xeon CPU E5-2440 0
2.40GHz CPU and 96 GB of RAM. The time limit for finding the optimal solu-
tion was set to 300 seconds for each job pair. Memory limit per job pair was set
to 8 GiB.

The benchmark-sets, the results and the scripts necessary to reproduce the
experiment are made publicly available and can be downloaded from [1].

9This option has the effect of enabling the legacy arithmetic solver. Without this
option, Z3 produced a significant number of incorrect results.
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Benchmark sets. We have automatically generated OMT(NRA) benchmark set
using the tool OMTPlan [27] extended to dump OMT(NRA) problems in files
to enable experimenting with different solvers.10 OMTPlan is an AI Planner,
which uses Z3 as backend OMT engine, that searches for a sequence of actions
of increasing length from one initial completely-specified condition to a goal
state, so that a given cost function is minimized. The tool encodes the search
for a given plan length leveraging on the Z3 Python API to build and solve
the OMT problem. To generate the OMT(NRA) problems, we took existing
planning problems from the AI planning literature, and we adapted them to
include non-linear constraints in action preconditions, effects and cost functions.
We then ran the tool to generate OMT problem files corresponding to problem
encodings of increasing length (namely 10,15,20,25,35,50,75,100). This yielded
752 OMT(NRA) benchmarks that were used for the evaluation.

To evaluate the proposed approach also on OMT(NIA), we have automati-
cally generated OMT(NIA) benchmark sets by starting from the SMT problems
contained in the SMT-LIBv2 repository [4]. First, we selected 6680 SMT(NIA)
instances that are marked as satisfiable in the repository. In order to transform a
SMT instance into an OMT problem, we randomly select an arithmetic variable
and use it as the objective of the optimization search. We have repeated this step
up to 5 times for each instance, depending on the available number of variables,
and generated 33397 OMT(NIA) problems. The vast majority – 92.3% – of the
generated OMT(NIA) benchmarks comes from the benchmark family VeryMax.
Therefore, to keep the evaluation time reasonable, we randomly selected 10% of
the benchmarks from this family and evaluated the tools only on this subset.
We used all the benchmarks from the other families. In total, we thus evaluated
the tools on 5744 OMT(NIA) benchmarks.

Verification of results. We have independently verified the correctness of the
optimal results found in this experiment using a portfolio of three SMT solvers:
CVC4 [38], MathSAT5 [14] and Z3 [17]. OptiMathSAT and Z3 produce in
output a minimum-cost value min.11 Thus, in order to verify the correctness of
such solution, we act as follows. For every OMT problem 〈ϕ, obj〉 s.t. the solver
terminated and returned a model M with minimum value min

def
= M[obj], we

verify (i) that there exists indeed a solution of obj = min by checking if ϕ∧(obj =
min) is NIRA-satisfiable and (ii) that min is a minimum solution by checking
that ϕ∧ (obj < min) is NIRA-unsatisfiable. In some cases, OptiMathSAT and
Z3 can also decide that the optimization problem is unbounded. In these cases,
we checked whether the formula ϕ ∧ (obj < −106) is NIRA-satisfiable. Note
that this is not sufficient to prove that the problem indeed is unbounded; this
would require quantified reasoning. On the OMT(NRA) formulas, the solvers
can also decide that the optimum is infinitesimally close to a given real number,
i.e., return an optimum k + ε. For these cases, we checked that (i) the formula

10The modified version of OMTPlan, together with the planning domain and prob-
lems used to generate this benchmark set, is available at [2].

11Here we describe the case for minimization; the case for maximization is dual.
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terminated
tool & configuration total t/o partial unsat unver. incor. correct time (s.) unique s.

OptiMathSAT(lin) 752 360 231 144 1 0 16 887 0
OptiMathSAT(bin) 752 360 236 140 0 0 16 827 0
Z3 752 266 312 161 6 0 7 315 1
v. best(OptiMathSAT) 752 356 235 144 1 0 16 810 10
v. best(all) 752 260 318 161 6 0 17 899 -

Fig. 7. Experimental results over the OMTPlan benchmark-set.

ϕ ∧ (obj > k) ∧ (obj < k + 10−6) is NIRA-satisfiable and that (ii) the formula
ϕ∧ (obj ≤ k) is NIRA-unsatisfiable. Note that this would also require quantified
reasoning to confirm the real optimum. If the result passes these checks, we
consider it as verified.

During the verification, we imposed a timeout of 1200 seconds on the portfo-
lio’s execution for each problem, i.e., 600 seconds for checking (i) and 600 seconds
for checking (ii). To get more independent verification results, we did not stop the
portfolio after the first obtained result and let all the solvers finish. We did not
observe any incorrect results; unverified results are discussed in the presentation
of the results.

Result Tables and Scatter-plots. The results of the experimental evaluation are
summarized in the two tables in Figures 7–8. The columns list the total number of
instances (col. total), the number of timeouts (col. t/o), the number of timeouts
after which the solver was able to provide a partial minimum (col. partial), the
number of formulas decided as unsatisfiable, if any (col. unsat.), the number of
formulas with an unverified optimal result (col. unver.), the number of formulas
with a verified incorrect optimal result (col. incor.), the number of formulas with
a verified correct optimal result (col. correct), the total solving time including all
formulas solved correctly (col. time (s.)) and the number of formulas that were
uniquely solved by the given solver configuration (col unique s.). (The unique s.
column for the v. best(OptiMathSAT) configuration reports the number of
formulas that were solved only by one or both of OptiMathSAT versions.)

In the scatter-plots (Fig. 9), we compare the size of the partial minima found
by OptiMathSAT(lin) and OptiMathSAT(bin) vs. those of Z3, when the
solvers were able to provide at least a partial minimum after the timeout, on
OMTPlan problems (1st row) and OMT(NIA) problems (2nd row) respectively.
The plots also include results where one of the solvers reported the minimum
but the other only finished with a partial minimum. As OMT(NIA) problems are
not bounded from below, their partial minima can happen to be arbitrarily big
negative numbers. We thus show partial minima smaller than −104 on the very
left and very bottom lines marked as < −10000. Because OMT(NIA) problems
are also discrete, we apply a small random jitter to their results, to better show
the number of benchmarks with identical results, which would otherwise overlap.

OMTPlan Results. Fig. 7 presents the results for the OMTPlan benchmark set.
We note that the generated problems are very difficult for all the solvers; only
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terminated
tool & configuration total t/o partial unver. incor. correct time (s.) unique s.

OptiMathSAT(lin) 5744 1449 1019 14 0 3262 97011 85
OptiMathSAT(bin) 5744 1433 1047 11 0 3247 96329 72
Z3 5744 2664 1105 18 0 1957 55319 127
v. best(OptiMathSAT) 5744 1415 972 15 0 3342 104454 1512
v. best(all) 5744 1130 1122 23 0 3469 95367 -

Fig. 8. Experimental results over the OMT(NIA) benchmark-set.
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Fig. 9. Size of the partial minima found by OptiMathSAT(lin) (left) and
OptiMathSAT(bin) (right) on Y axis vs. those of Z3 on X axis.
First row shows OMTPlan problems, second row shows OMT(NIA) problems.

17 benchmarks were solved by any of the solvers. On the whole, OptiMathSAT
solved the largest number of benchmarks within the timeout. On the other hand,
there is one benchmark12 that was correctly solved by Z3 but not by any of the
OptiMathSAT configurations.

While OptiMathSAT with linear search solves one more instance than with
binary search, our verification portfolio solver was not able to verify the correct-
ness of this result. More generally, 16 out of 17 results of OptiMathSAT(lin)

12nl_counters_simple/fn-counters-simp__instance_2_75.smt2
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were verified (7 by one solver, 2 by two solvers, and 7 by all three solvers);
all 16 results of OptiMathSAT(bin) were verified (7 by one solver, 2 by two
solvers, and 7 by all three solvers); and 7 out of 13 results of Z3 were verified
(all by all three solvers). The remaining 6 results of Z3 on which the verification
did not finish were of form k + ε.

Note that by the nature of how the benchmarks were generated, some of
them are not satisfiable. Although the numbers of unsatisfiable benchmarks are
reported in the table, they are not relevant to the evaluation, as they depend
only on the performance of the base SMT(NRA) solver and do not compare
capabilities of its OMT(NRA) extension.

Looking at the scatterplots (Fig. 9) we notice that, whereas OptiMathSAT
finds more minima, Z3 partial minima within the timeout are generally much
better than those of OptiMathSAT. We do not have a clear-cut explanation
of this apparently-contradictory fact.

OMT(NIA) Results. Fig. 8 presents the results for the OMT(NIA) benchmark
set. In general, almost all the results produced by the solvers were verified to
be correct. For OptiMathSAT(lin), 3262 of total 3276 results were verified
(128 by one of the solvers, 1076 by two of the solvers, and 2058 by all three); for
OptiMathSAT(bin), 3247 of total 3258 results were verified (124 by one of the
solvers, 1078 by two of the solvers, and 2045 by all three); for Z3, 1957 of total
1975 results were verified (28 by one of the solvers, 518 by two of the solvers,
and 1411 by all three).

On the whole, OptiMathSAT solved the largest number of benchmarks
within the timeout. We note that there is not a significant difference between
the performance of OptiMathSAT(lin) and OptiMathSAT(bin).

Looking at the scatterplots (Fig. 9) we notice that, unlike with the OMTPlan,
there is no tool whose partial minima are definitely better than the others.

5 Conclusions and Future Work

In this paper, we have shown how incremental linearization can be extended
from SMT(NIRA) to OMT(NIRA) in a very simple way, producing an incom-
plete though effective OMT procedure. We believe that this procedure, in its
simplicity, can also be used as a baseline for more elaborated procedures.

To this extent, we believe that many possible extension are possible. In a
short term, we plan to extend it to work also with transcendental functions,
exploiting the full expressive power of incremental-linearization approach in SMT
presented in [13], and then to test the effectiveness of the procedures on real word
verification problems, in particular of cyber-physical systems. In the middle term,
we plan to extend our encoders from MiniZinc to OMT and vice-versa [16] to
work with non-linear constraints, so that to be able to compare with tools and
problems coming from the Constraint Solving & Optimization community. In a
longer term, we plan to integrate our approach with more elaborated –though
possibly expensive– procedures.
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