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Abstract. Empathy, reciprocity and turn-taking are critical therapeu-
tic targets in conditions of social impairment such as Autism Spectrum
Disorder (ASD). These aspects are related to each other, converging into
the construct of synchrony, which includes emotional, behavioural and,
possibly, physiological components. Therefore, being able to quantify the
synchrony could impact the way therapists adapt and maximise the ef-
ficacy of the interventions. However, current methods are based on the
observational coding of behavior which is time-consuming and usually
only performed after the interaction is over. In this study we propose to
apply Artificial Intelligence (AI) methods on physiological data in order
to obtain a real-time and objective quantification of synchrony. In partic-
ular, we introduce the Multi-Modal Synchrony dataset (M-MS), which
includes 3 sources of information - electrocardiographic signals, video
recordings and behavioral coding - to support the study of synchrony
in ASD. As a first AI application, we are currently developing an unsu-
pervised model to extract a multivariate embedding of the physiological
data. The multivariate embedding has to be compared with the behav-
ioral synchrony label to create a map of physiological and behavioural
synchrony. The application of AI in the treatment of ASD may become a
new asset for the clinical practice, especially if the possibility of providing
real-time feedback to the therapist is exploited.
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1 Introduction

Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmen-
tal disorder with severe impacts on quality of life. The symptoms have a pre-
cocious onset and affect multiple areas, social impairment in particular being a
core feature [1].

A pivotal form of social interaction is the dyadic one, which represents both
a developmental tool available to the child [2, 3] and a key therapeutic channel
available for ASD therapy. This one-on-one interaction has been viewed from
different perspectives, with the construct of synchrony being one of the most
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relevant [4, 5]. Described in terms of mutuality, reciprocity, rhythmicity, har-
monious interaction, turn-taking and shared affect [6], synchrony reflects ASD
deficits and has been used to study development trajectories in children with
ASD [7]. Being able to quantify and promote synchrony is therefore important
to track and improve the efficacy of the intervention and guide the activity of the
therapist [8]. However, observational procedures are time consuming, have a cer-
tain degree of subjectivity and often can be performed only after the intervention
is concluded, thus limiting the usability of such information.

Leveraging on Artificial Intelligence (AI) methods to achieve an objective
synchrony evaluation process and provide this information to the therapist in
real time can offer a new asset to the clinical practice. There is already promis-
ing evidence of successful applications of AI methods to study ASD such as the
detection of the occurrence of stereotypical motor movements using wearable
accelerometers [9, 10] and the identification of meltdown-related behaviors from
video recordings [11]. An AI approach to quantify the synchrony during social
interaction could solve the problems related to subjectivity and temporal re-
quirements, enabling an objective real-time inference on the current state of the
therapy.

However, accuracy and reliability of AI models rest on appropriate datasets
which are meager in our scenario due to the requirement of being based on
clinically valid information.

We therefore composed the Multi-Modal Synchrony dataset (M-MS), a new
AI-ready dataset including physiological and behavioral data acquired in a nat-
uralistic clinical setting during actual therapeutic activities involving children
with ASD. Physiological data consist of electrocardiographic (ECG) signals,
which are linked to the engagement in socio-cognitive tasks [12]. Behavioral
data are acquired in the form of video recordings of the activities and synchrony
labels based on observational coding of behavior performed by experts.

As a first AI application on this dataset, we selected an unsupervised deep
learning method based on an auto-encoder architecture. This category of AI
methods already proved to be a viable approach to automatically extract from
physiological data a representation which is useful to detect the occurrence of
events of interest [13]. For our purposes, this translates into the first step in
exploring synchrony during social interaction in ASD using an automatically
learned representation of physiological data.

2 Material and Methods

The study was based on actual therapeutic activities carried out between the
years 2017 and 2018 in Rovereto and Coredo (Trento, Italy). During all the
activities, we simultaneously acquired the ECG signals both from the child and
the therapist. The video recording of the therapy sessions became feasible for
the activities carried out during the year 2018 thanks to technical improvements
in the temporal alignment of the multi-modal data streams.
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2.1 Participants

The study involved 19 male and 2 female children meeting the criteria for ASD
diagnosis according to the diagnostic and statistical manual of mental disorders
(DSM-5)[1] and aged 2-12 years old (average: 5.5 y, SD: 2.5 y). Although debated
[14], the imbalance in the sample is in line with the long-standing different
prevalence of ASD according to sex [15]. Each child interacted with the same
male therapist, which had extensive experience in ASD treatment. The parents
- or legal guardians - participated in a briefing about the experimental protocol
and provided their informed consent to allow the participation of their child in
the study.

2.2 Experimental Setting

We selected activities of music therapy due to its ability to effectively target
synchrony aspects [16] regardless potential language impairments often present
in children with ASD [1]. We gave priority to the clinical validity of the dataset
aiming at the observation of actual therapy dynamics, thus we chose to not adopt
a structured protocol. Therefore, the activities were performed without directives
to the therapist in order to preserve the natural course and the therapeutic value
of the intervention. In the future, this unrestricted approach allows its seamless
extension to different therapeutic scenarios and to more ecological settings such
as the child’s home.

The child and the therapist interacted in a dedicated room containing music
instruments and no common toys. Upon entering the room, the therapist allowed
the child to get comfortable and acclimated to the setting. If the therapist con-
sidered the situation at risk of stressing the child, then no data were acquired.
Otherwise, he proceeded to the placement of the sensors and carried out the
activities while an operator managed the data acquisition platform.

2.3 Data Acquisition

During the activities, ECG signals were acquired both from the therapist and
the child therefore providing 2 alignable time series. A critical factor in our ex-
perimental design was the adoption of sensorized garments specifically designed
to reduce the risk of sensory overload which is a critical factor in ASD [17]. The
prototypes were created in collaboration with a specialized company (ComfTech,
Monza, Italy). The sensorized garments (see Figure 1) consisted of a vest inte-
grated with 2 textile electrodes with a conductive surface area in direct contact
with the skin and a textile connector transmitting the signal to an acquisition
device operating at 128 Hz.

During the activities carried out in 2018, the video stream of the therapy
was acquired using a camera operating at 25 frame per second with a resolution
of 1440x1080 pixels. The alignment of the ECG signals to the video stream was
manually achieved by creating a marker event on the acquisition device an a
corresponding visual marker on the video stream.
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Fig. 1. Example of a prototype sensorized garment designed for children with ASD.
The two metal buttons present on the white jersey allow the connection of the textile
electrodes with the sensing unit (not shown).

The videos were manually annotated by 2 trained experts applying a be-
havioural observation code appositely created to detect events relevant to syn-
chrony. The range of annotated events spans from the presence of intentionality
in the child’s actions up to the full engagement in the interaction, allowing the
quantification of the synchrony from the behavioural perspective.

In addition to behavioral and physiological data, we recorded the information
about sex, age, DSM-5 diagnosis and severity of each participant. The data have
been anonymized by substituting the names of the participants with alphanu-
meric codes and removing all the references to absolute timestamps.

2.4 Data Processing

To prepare the dataset for use with AI approaches we segmented the data into
portions by windowing (length: 10 s; overlap: 9 s) and associated a label of
synchrony derived from the behavioural coding of video recordings whenever
available. The ECG signals of each portion were processed in order to automati-
cally identify and remove portions presenting either movement artifacts or noise.
The data processing procedure is presented in Figure 2.

The ECG signal processing pipeline was implemented in Python and based
on the pyphysio library [18].

The pipeline is composed of the following steps:

1. Pre-processing: the ECG signals were resampled by interpolation at 2048 Hz,
then filtered with a low-pass infinite impulse response filter (pass-band: <50
Hz, stop-band: >55 Hz) to remove high-frequency noise and with a high-pass
filter (pass-band: >0.5 Hz, stop-band: <0.05 Hz) to remove low-frequency
drifts
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2. Beat detection: the R peaks in the ECG signals were detected to compute
the Inter Beat Intervals (IBI); detection errors were automatically corrected
and the IBI series were resampled by interpolation at 4 Hz

3. Segmentation: ECG and IBI signals were segmented into overlapping con-
secutive portions (length: 10 s, overlap: 9 s)

Fig. 2. Overview of the experimental setup (top) and data processing pipeline (bot-
tom). Each sample of the M-MS dataset is composed of: the ECG and IBI segments
from both the therapist and the child, the annotation of the observed synchrony and
the session metadata.

The quality of the ECG data in each portion was assessed using 3 signal
quality indicators (SQI) [19, 20]: kurtosis (K), spectral power ratio (SPR) and the
mean squared of the absolute values of the signal derivative (DE) were computed
on the ECG signals of both child and therapist. If at least one of the signals
failed to meet the SQI cutoff criteria (3≤K≤100, 0.4≤SPR≤0.8, 3≤DE≤12)
the portion was discarded. Each accepted portion provided the ECG and IBI
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data of both the child and the therapist for a total of 4 time aligned signals of
10 seconds duration each. These 4 signals were saved in a new data point folder
with an additional reference file containing relevant information such as sampling
frequency, starting and ending time and, when available, the observational coding
of behavior. From these data we extracted a binary (good/poor) behavioral
synchrony score used as label for the data point.

Of the 21 child-therapist dyads participating in the study, 6 were discarded
due to the lack of data points meeting the SQI cutoff criteria.

2.5 Model

The implementation of an AI model with close to the expert performance on this
dataset would be a step forward in supporting the daily practice of therapists
and caregivers and improving the clinical training.

As a first study on this dataset, we developed an unsupervised AI model
based on an auto-encoder architecture, which embeds the ECG signals of the
dyad into a unique multi-variate representation. Unsupervised deep learning
methods have been successfully used to create representations of physiological
data [21]. In particular, convolutional auto-encoder based architectures showed
good performance in structuring a representation useful to detect the occurrence
of events of interest [22].

Our pilot architecture (see Figure 3) consists of a convolutional auto-encoder
taking as input the 2 IBI signals present in each data point and creating an
embedding of 5 features that is then expanded to recover the original signals
patterns. The values of the input IBI signals were normalized portionwise via
rescaling between 0 and 1 based on maximum and minimum values. The archi-
tecture structure was implemented with pyTorch[23].

With this architecture we expect the embedding to include the relevant infor-
mation about the physiological dynamics and mutual influence of the two input
signals.

2.6 Model Training

The dataset was split into train and test partitions using a procedure akin to
the leave-one-out cross-validation method. At each rotation, all data points from
1 child-therapist dyad were kept out and used as test partition to evaluate the
performance on unseen data. For this reason, we call this approach leave-one-
dyad-out cross-validation.

We performed the training of the network within 50 epochs using an optimizer
based on the Adam algorithm [24] (learning rate: 0.0005) and a batch size of 16
samples. The training of the network was performed applying the mean squared
errors (MSE) as loss function.

The performance of the network was then evaluated using the MSE on the
test partition and comparing it to the MSE on the train partition in order to
check for overfitting.
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Fig. 3. Structure of the convolutional auto-encoder used to reconstruct the IBI seg-
ments of the therapist and the child. The structure is composed of two parts: the
encoder (green convolutional blocks) and the decoder (blue de-convolutional blocks).

3 Results

Multi-modal data from a total of 41 sessions (578 minutes) were collected,
with additional 22 sessions (396 minutes) with only the ECG signals. Two
trained experts annotated the video recordings allowing the quantification of
synchrony from the behavioural perspective. In addition to the physiological and
behavioural data, we added the information about sex, age, DSM-5 diagnosis and
severity of each participant. The names of the participants were substituted with
random alphanumeric codes and all the references to absolute timestamps were
removed in order to anonymize the data.

We processed a total of 53306 portions, resulting in a dataset composed of
37127 data points of high quality physiological data, 20134 of which also provide
the video data and the behavioral synchrony label (see Figure 4).

The name of each data point incorporates the sequential numbering of the
relative portion of raw data and the identifying number of the acquisition session.
This makes the dataset modular: it is possible to use the information contained
in the data point name to concatenate adjacent portions in order to reconstruct
signals lasting more than 10 s, thus enabling the extraction of typical handcrafted
time domain Heart Rate Variability (HRV) features.

Our convolutional auto-encoder architecture showed a reconstruction error
of 5.4%. In particular, we evaluated the network performance using the leave-
one-dyad-out cross-validation, obtaining a test MSE of 0.0535 and a train MSE
of 0.0543.
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Fig. 4. Summary of the raw data acquired (left) and overview of the quality of the
portions used to create the samples in the M-MS dataset (right).

4 Discussion

In this work we proposed the M-MS dataset, a new multi-modal dataset aiming
at the exploration of physiological and behavioral synchrony during dyadic inter-
action between a child with ASD and a therapist. The information included are
the ECG and IBI data of both the child and the therapist, the video stream of
the interaction between them and a behavioral synchrony label based on expert
judgement.

Due to the ecological approach in the selection of the experimental setting,
the sample composition reflects the actual adhesions to the therapy programs
and is in line with the gender imbalance in ASD prevalence present in litera-
ture. Nevertheless, the gender imbalance in the sample composition represents a
limitation of the dataset which might be inadequate for gender-related studies.

The dataset creation was based on a sliding window procedure with 90%
overlap. This form of data augmentation - which is a common practice in the
AI field [25] - combined with the naming procedure of the data points makes
the dataset modular: the researcher can manage the amount of overlapping in-
formation and reconstruct signals of the desired length, selectively enabling the
extraction of typical handcrafted features such as HRV indices [26].

The M-MS dataset can be used to train supervised and unsupervised AI
models in order to develop an objective and streamlined evaluation of synchrony
which would enable an automated annotation of social interaction in ASD thus
paving the way to real-time feedback to the therapist. From the clinical perspec-
tive, this dataset can additionally be used to study the association between the
physiological and behavioural patterns and phenotypes in ASD.
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As a first application of AI methods to the dataset, we implemented a convo-
lutional auto-encoder representing the child-therapist IBI signals in an embed-
ding of 5 features with a reconstruction error of 5.4%. This preliminary evidence
entails further study aiming at an unsupervised model able to extract latent
variables from physiological data which would match the behavioral synchrony
evaluated by the experts.

5 Data Availability

The M-MS dataset is not publicly available due to the personal information
included, but is available from the corresponding author upon reasonable request.
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