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Abstract—A macro-level overview of the System-by-Design
(SbD) paradigm is illustrated and then applied to the design of a
representative complex system. By introducing a set of archetypes
of the SbD Paradigm (i.e., Architecture-by-Design, Material-
by-Design, Algorithm-by-Design, and Component-by-Design), the
synthesis of large complex-shaped radomes is addressed by
combining the Material-by-Design and the Architecture-by-Design
concepts. The results of a numerical assessment are discussed to
give the interested readers some insights on the SbD effectiveness
and potentialities also in comparison with traditional design
approaches.

Index Terms—System-by-Design (SbD), Complex Systems,
Radomes, Radar Antennas, Metamaterials, Task-oriented Ma-
terials, Wide-Angle Impedance Matching (WAIM) layers.

I. INTRODUCTION AND MOTIVATION

T
HE EFFICIENT and effective design of complex systems

comprising several interconnected sub-parts is a challeng-

ing task that arises in several applicative domains belonging

to the Antennas and Propagation field (e.g., radars, medical

and industrial imaging, wireless communications, microwave

devices, remote sensing) and, more in general, to the Engineer-

ing framework [1]-[2]. With reference to the Electromagnetics

literature, several approaches have been proposed to handle the

synthesis of complex systems. “Trial-and-error” or “parametric

analysis” procedures were the firstly and widely adopted

strategies thanks to their algorithmic simplicity and computa-

tional efficiency [3][4]. In these approaches, each component

of the overall system undergoes an independent design process

where the geometrical/electromagnetic descriptors or design
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Figure 1. SbD Paradigm - Archetypes of the SbD paradigm with functional
and input/output interconnections.

variables (i.e., the size, the shape, and the electromagnetic

properties of the materials) are varied within a predefined

range [3][4] and a set of parametric curves are (numerically

and/or experimentally) derived [3][4]. The designer is then

asked to set the optimal values of the descriptors to fit the

user-defined figures of merit on each sub-part of the system

at hand. Unfortunately, such an approach cannot be employed

when there are several and inter-dependent parameters to be

modified because of the very large (and practically unfeasible)

number of parametric evaluations to be carried out.

To partially overcome such an issue, local/global optimiza-

tion methodologies [5]-[7] have been exploited for the in-

dependent design of each system component [8]. More in

detail, the matching of the design requirements is yielded by

an efficient iterative optimization (analytic [9], deterministic,

or stochastic [8]) of the geometrical and/or electromagnetic

(EM) descriptive parameters [namely, the degrees-of-freedom

(DoFs)] of each sub-system [8], which are are combined

in the overall architecture. A typical implementation of this

guideline is the synthesis of large phased arrays based on

the independent design of the radiating element [10], of

the array architecture [9], of the feed network, and of the

radome [8][11]. Such a methodology has several pros in

terms of numerical efficiency (e.g., a parametric study for

each design variable is not required) and modularity, but it

neglects the physical relationships between the components of

a complex system as profitably done by cross-layer or holistic

approaches. These latter have recently emerged to deal with

the design and the control of complex systems operating in

highly dynamic scenarios [12]. In such a case, the design
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Figure 2. SbD Paradigm - Generic synthesis loop adopted in an SbD layer.

of the different “layers” of the system (from low-level HW

to high-level communication and data fusion algorithms) is

performed simultaneously [12] with an adaptive balance of

the top-down demands and the bottom-up resource availability

by creating bidirectional information flows across multiple

layers of the system [12]. Unfortunately, holistic approaches

are highly customized to address specific applicative scenarios

(e.g., the design of body sensor networks [12] through layers

exploiting high-level information on the “context” and low-

level communication data), hence their generalization to a

wider set of problems is generally prevented.

A different perspective for the synthesis of complex EM

systems can be conceived starting from the observation that

the design process is often representable as the interconnection

of one or more designs of “blocks/functionalities” (Fig. 1).

In complex EM problems [13]-[16], they include the full-

wave forward solver block, the homogenization block, the

optimization / solution space exploration block, the tolerance

error evaluation block, the material transformation block, and

the real-time control block. Such a perspective suggests to

take into account, in the synthesis procedure, the relationships

among the functional blocks so that each of them turns out

to be an enabling tool for the methodology selection (i.e.,

to allow the choice of different “blocks” to meet the overall

requirements, rather than focusing only on each specific task).

For instance, the use of a fast “full-wave-solver” block for the

element characterization is mandatory whether the associated

“optimization” block requires several evaluations of the cost

or objective function, while a slower solver is enough if the

optimizer converges quickly. This concept is the core of the

System-by-Design (SbD) paradigm, which can be defined as

[13]-[16] “a functional ecosystem to handle complexity in the

design of large complex systems.”

The aim of this work is to give a macro-level overview of

such a paradigm for the design of complex systems in which

each functional block of the overall design procedure looks

like an “enabler” for the choice of the other blocks to fit

user-defined requirements under physical-admissibility design

and consistency constraints. The relevance of this paradigm

is demonstrated by the converging interdisciplinary research

efforts on the use of numerical optimization for the design

of complex systems, including the broad field of Multidis-

ciplinary Design Optimization (MDO) [17]. To clarify the

SbD concept and its features, a set of archetypes of the SbD

Paradigm will be presented and various instances of the same

SbD paradigm in various applicative scenarios will be illus-

trated including the Architecture-by-Design, the Material-by-

Design, the Algorithm-by-Design, and Component-by-Design

(Fig. 1). To illustrate and to assess the proposed paradigm, an

applicative example concerned with the synthesis of a large

complex-shaped radome will be carried out by combining the

Material-by-Design and the Architecture-by-Design concepts.

Towards this end, the radome design problem will be formu-

lated in the SbD framework by defining a set of interconnected

functional blocks. Afterwards, the arising solution method will

be numerically validated also in comparison with recent state-

of-the-art results. The paper is organized as follows. In Sect.

II, the SbD Paradigm is firstly introduced and the fundamental

classes of functional blocks of interest for complex EM

designs are presented. Then, the SbD-based design of a radome

(Sect. III) is detailed and numerically validated (Sect. IV).

Finally, some conclusions and remarks are drawn (Sect. V).

II. SYSTEM-BY-DESIGN PARADIGM

A. SbD Paradigm - Layered Interconnected Architecture

According to the SbD paradigm [13]-[16], each “layer” of the

design procedure of a generic complex system can be logically

represented with a flowchart whose functional blocks are

univocally identified by a set of inputs (constraints, objectives,

and DoFs of all the sub-parts of the systems) and a set of

outputs (design specifications and desired EM properties) (Fig.

2). Such functional blocks can be roughly subdivided into two

categories (Fig. 2):

• Analysis blocks (blue boxes in Fig. 2) that receive the

physical features of a device/sub-system to be ana-

lyzed (input) and return its EM response (e.g., radiated

field/power pattern, S parameters, etc ...) (output);

• Synthesis/Optimization blocks (dark green boxes in Fig.

2) that generate the guess configurations for a device/sub-

system (output) from the problem constraints and the

associated cost function (input).

Since a complex design problem generally deals with multiple

logical layers (e.g., architecture, algorithms, materials), a SbD

process can be represented with a multi-layer scheme where

each sub-part of the overall synthesis procedure is addressed

in a different hierarchical level (Fig. 1), each layer being

connected to the other ones through a set of functional and

logical links and associated coupling variables (Fig. 1). Such

a representation in terms of a set of interconnected loops (Fig.

1) allows one to (i) easily identify the functional blocks in the

synthesis process so that “shared solutions” among different

synthesis sub-problems are evident, (ii) understand admissible

and different constraints/performance trade-offs among the

SbD blocks. According to this view, the following main SbD

layers can be defined (Fig. 1): (a) the “Geometry-by-Design”
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layer, which consists of functional blocks devoted to the analy-

sis/synthesis of the physical sizes/dimensions of the target sub-

systems (e.g., length of the devices, section, relevant geometri-

cal descriptors); (b) the “Material-by-Design” layer related to

the analysis/synthesis of task-oriented materials with desired

EM properties (e.g., periodic or aperiodic lattices of elemen-

tary metallic and dielectric scatterers); (c) the “Architecture-

by-Design” layer aimed at analyzing/synthesizing the layout

of the sub-system (e.g., choice between different feeding

network layouts, waveguide sections, antenna shapes, etc ...);

(d) the “Component-by-Design” layer concerned with the

optimal sub-components of the complex system (e.g., power

dividers, phase shifters, amplifiers); (e) the “Algorithm-by-

Design” dealing with the overall control strategies (e.g., the

methodologies for the real-time array control).

B. SbD Paradigm - Functional Blocks

In the following, the SbD functional blocks for a generic

layer (Fig. 1) of the design process are described. As for

the forward solver block (analysis), a very large number of

modelling techniques has been developed for the numerical

solution of Maxwell’s equations [18] to describe all the EM

interactions of the complex system at hand. However, such

methods may not be suitable for an efficient integration in

complex synthesis schemes (Fig. 2) because of their unavoid-

able computational complexity [16]. A set of alternative strate-

gies consists of “ad-hoc” numerical approaches that, instead of

directly solving Maxwell’s equations, exploit the knowledge

of some features of the solution to considerably enhance the

computational efficiency [14][15] of the arising EM analysis

tool. Unfortunately, their application is intrinsically limited to

“canonical” structures. A more recently investigated possibility

is the use of emulators aimed at building, by means of ad-hoc

learning-by-example (LBE) strategies [16][19][20], suitable

Surrogate Models that efficiently “mimic” the EM full-wave

solvers. Starting from a set of input-output examples, which

are built with full-wave simulators and/or measurements, a

prediction approach is trained to emulate the direct solver.

When an additional information on the prediction accuracy is

available [16][19][20], the surrogate model can be dynamically

updated whenever the estimated accuracy falls below a thresh-

old [19][20][16]. Despite several and considerable advantages,

it is worth pointing out that some challenges have still to be

addressed, including the curse of dimensionality, to fully and

profitably exploit LBE methods within the “forward solver

block”.

Different procedures can be adopted for implementing the

homogenization block (analysis) depending on what features

of the inhomogeneous material must be replicated by the

equivalent model, while taking into account the expected

computational complexity and accuracy [21], as well. The

“equivalence” is usually (i) an external equivalence (i.e.,

matching the scattering and transmission matrices as a function

of the frequency and the wavenumber) or (ii) a dispersion

equivalence (i.e., same solutions for the dispersion equation for

the dominant eigenmodes) or (iii) a single-mode equivalence

(i.e., matching the field distribution supported by a single
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Figure 3. SbD at work - Geometry of the antenna-radome system.

eigenmode) or (iv) a full-modal equivalence (i.e., matching

the field distributions supported by all the eigenmodes within

the media) [21].

As far as the solution-space-exploration block (synthesis) is

concerned, the available algorithms can be classified either

as deterministic or as stochastic [5]-[7]. Both are based on

iterative search procedures devoted to generate a sequence of

guess solutions converging to the global optimum of the cost

function, which mathematically codes the user-requirements

and physical constraints, to be optimized (minimized or max-

imized). More specifically, a new solution fi+1 is generated,

starting from the current one fi, as follows

fi+1 = fi +∆fi (1)

where ∆fi is the update step at the i-th (i = 1, ..., I) iteration

that, in principle, can be computed through local/deterministic

or global/stochastic approaches [6]. In particular, (i) Local

Techniques define the update step as ∆fi = αidi, where

αi is the step length and di is the search direction, both

deterministically computed; (ii) Global Techniques feature

stochastic operators to compute ∆fi [6] by processing single

(Single-Agent Methods) or multiple (Multiple-Agents Methods)

guess solutions at each i-th (i = 1, ..., I) iteration [5]-[7].

Whenever the fabrication tolerances must be taken into ac-

count in the synthesis process [22], the tolerance error

evaluation block (analysis) is present to compute the per-

formance “bounds” of a given sub-system from its physical

features and expected fabrication errors. Towards this end, the

commonly adopted approaches are (i) the Monte Carlo-like

techniques [23] simple to implement, but not inclusive owing

to their intrinsic statistical nature [22] and (ii) Interval Analysis

methods, recently investigated within the EM framework [22],

that allow the designer to analytically compute closed-form

and inclusive performance bounds [22].

The aim of the material transformation block (synthesis),

which is a distinctive element of the Material-by-Design

layer, is the computation of the EM properties of a sub-

device when a geometrical transformation (e.g., stretching

and/or compression) is applied [24]. This functional block is

fundamental whenever the synthesis of an unknown artificial

material is formulated as the geometrical transformation of a

known one as in several “lens” design problems [24]. Different

Transformation Electromagnetic [24][25] or Field Transfor-

mation techniques [26] are usually considered to implement
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such a functional block in the SbD paradigm depending on

the applicative scenario at hand.

Finally, the real-time control block (synthesis) is present

in several EM design problems [27] when dealing with the

Algorithm-by-Design layer. In order to determine the optimal

configuration for the control parameters of a dynamic system,

given the real-time observed system performance [27], the

problem is formulated as the optimization of a suitable cost

function and a subset of the techniques used in the “solution-

space exploration block” can be adopted. On the other hand, it

is worthwhile pointing out that ad-hoc strategies based on the

physics of the problem at hand (e.g., including memory-driven

operators) turn out to be often more appropriate [27].

III. SbD CUSTOMIZATION TO 3D RADOME DESIGN

A. Problem Statement

To illustrate an application of the SbD paradigm to a practical

design example, the synthesis of a large three-dimensional

variable thickness ogive radome [28][29] covering a phased

array antenna is discussed hereinafter (Fig. 3). The choice of

such a benchmark problem has the following motivations: (i)

radome technology is of fundamental importance in several

sensing and communication scenarios; (ii) the material of a

radome and its internal structure play a key role in minimizing

the performance distortions caused by attenuation, scattering,

and de-polarization effects [30] especially when variable-

thickness designs [28][29] are of interest owing to the need

to mitigate for the possible “lensing” effects [28][29]; (iii)

despite the development of accurate radome analysis/design

methods [31], the integration of full-wave simulations within

the design process is affordable only in a “local” refinement

phase, while a global optimization is feasible only using

simplified transmission-line models that provide approximate

EM predictions [32]; (iv) SbD appears to be a natural choice

to deal with the high computational complexity associated to

the problem at hand. Such a complexity is actually caused by

the multi-scale nature of the benchmark problem (e.g., micro-

scale radome contouring variations vs. macro-scale propaga-

tion/distortion effects), by the need to accurately compute the

near-field interactions among the antennas and between the

radome and the array (requiring careful full-wave modeling of

the entire structure), and by the large computational complex-

ity of the associated EM model. More in detail, the radome

is supposed to cover a linear phased array consisting of M
dipoles of length l and inter-element spacing d located at a

distance h over the ground plane (Fig. 3). It is characterized

by an ogival shape with a circular basis on the xy-plane of

diameter D and length L along the z-axis. Moreover, it is

made of an homogeneous dielectric material with permittivity

εr and loss tangent tanδ, while its external curvature is given

by the following equation

x2 + y2 =

(
D

2L

)2 (
Lξ − zξ

)2/ξ
(2)

where z ∈ [0 : L] and ξ is a parameter associated to the

curvature of the radome [33](1). The synthesis problem at hand

can be then stated as follows

Radome Design Problem - Given εr, tanδ, D, L, and

ξ (user-defined descriptors) and the specifications of

the array antenna, synthesize the internal profile of

the radome, which is coded into the DoF vector f ,

to minimize the boresight steering error (BSE) in

the user-defined frequency, υ ∈ [υmin, υmax], and

angular, θ ∈ [−θmax, θmax] [deg], ranges.

where υ is the working frequency, [υmin, υmax] being the

operation bandwidth, and θ is the scan angle ranging within

the field-of-view [−θmax, θmax], while the phases of the array

are assumed to be set to the optimal values determined at

the central frequency υ0 without the radome. It is worth

remarking that the co-design of the phased array, although

potentially interesting, is not considered in the benchmark

scenario owing to the practical and theoretical relevance

of the problem of synthesizing an effective radome when

the antenna array cannot be adjusted/modified [8][32]. Ac-

cordingly, the design constraints for the radome synthesis

are collected in a vector G , {gc (f) ; c = 1, ..., C} com-

prising the radome material g1,2 (f) = {εr, tanδ}, its ex-

ternal shape g3,4,5 (f) = {D, L, ξ}, the antenna param-

eters g6,7,8,9 (f) = {M, l, d, h}, the working bandwidth

g10,11 (f) = {υmin, υmax}, and maximum steering angle

g12 (f) = {θmax}. To apply the SbD paradigm to such a “sce-

nario”, it is needed to specify (i) the mathematical description

of the solution and the associated DoFs, (ii) the cost function

that quantifies the mismatch of the EM performance of trial

solution with the user requirements, and (iii) the SbD layers

to be considered and the implementation of the corresponding

functional blocks (Fig. 1). To this end, it is worth mentioning

that the solution to the Radome Design Problem may not be

unique owing to the inverse nature of the adopted formulation

and the associated ill-posedness [6]. Nevertheless, and unlike

inverse scattering [6], such a feature is actually an advantage in

the addressed benchmark scenario since it potentially enables

to select the most proper among the equivalent designs in terms

of user-defined priorities (e.g., fabrication costs).

B. Solution Model Selection and DoFs Identification

To describe the radome solution model and to define the

associated DoFs, let us observe that the axial symmetry of

the structure (Fig. 3) allows one to describe the 3D dielectric

structure in terms of the associated xz-plane section Γ (x, z).
Accordingly, a 2D basis set {Bn (x, z); n = 1, ..., N} is used

to encode the radome shape. While a pixel-basis model [Fig.

4(a)] could be employed to express Γ (x, z)

Γ(pix) (x, z) =

N∑

n=1

f (pix)
n B(pix)

n (x, z) (3)

being B
(pix)
n (x, z) = 1 if (x, z) ∈ Ωn (B

(pix)
n (x, z) = 0

if (x, z) /∈ Ωn) the n-th (n = 1, ..., N ) basis function,

(1)The optimization of the external radome profile descriptors (material, D,
L, and ξ) is beyond the scope of the current work since it would require a
multi-physics modeling to account for mechanical / aerodynamic performance.
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Figure 4. Problem Formulation - Solution Model Selection - Sketch of the
(a) pixel-based and (b) spline-based representation of a radome profile, and
(c) identification of the design parameters according to spline representation
(fn, n = 1, ...,N ).

Ωn is the support of the n-th discretization cell, and the

solution descriptors are the set of binary coefficients {f
(pix)
n ;

n = 1, ..., N} [where f
(pix)
n = 1/0 indicates a cell belonging

or not to the radome - Fig. 4(a)], unfortunately such an

approach requires a large number of descriptors for an accurate

and flexible parametric model of the radome structure. To

overcome such an issue, a spline-based representation of the

radome contour is conceived [Fig. 4(b)]. As a matter of fact, by

using the Bezier quadratic spline curves [Fig. 4(b)], the DoFs

of the solution reduce to the control points of the spline curve,

{f
(spl)
n = (xn, zn); n = 1, ..., N} and the basis functions that

describe the radome profile turn out to be the following second

order polynomials

B
(spl)
n

(
x, z; f (spl), t

)
=

(
1− t2

)( f(spl)
n +f

(spl)
n+1

2

)
+

+2t (1− t) f
(spl)
n + t2

(
f
(spl)
n+1 +f

(spl)
n+2

2

) (4)

(n = 1, ..., N ), where f
(spl)
N+1 = f

(spl)
1 , f

(spl)
N+2 = f

(spl)
2 , and

t ∈ [0 : 1]. Accordingly, the radome section is modeled as

follows

Γ(spl) (x, z) =

N∑

n=1

B(spl)
n

(
x, z; f (spl), t

)
(5)

to (i) minimize the number of descriptors, while (ii) efficiently

and flexibly describing complex continuous radome contours.

Therefore, f = f
(spl) hereinafter under the condition that zn =

n
(

L−f0
N+1

)
, n = 1, ..., N [Fig. 4(c)]. Moreover, for the sake of

simplicity, the thickness of the radome at the base and at the

top of the profile is supposed to be equal to f0 [Fig. 4(c)].
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Figure 5. Customized SbD Approach - Functional scheme of the proposed
radome design methodology.

C. Cost Function Definition

The cost function Φ (f) is the unique link between the design

process and the physics of the problem at hand [6]. To

mathematically encode the target of the “Radome Design

Problem” (i.e., the BSE minimization), Φ (f) is defined as

Φ (f) =

∑Qλ

p=1

∑Qθ

q=1

[
θ̂NO−RAD (θq, λp)− θ̂RAD (θq, λp; f)

]2

Qλ ×Qθ
(6)

where Qλ is the number of radome working frequencies, λp

being the corresponding p-th (p = 1, ..., Qλ) wavelength,

and Qθ is the number of beam pointing directions, {θq;

q = 1, ..., Qθ}. In (6), the term θ̂NO−RAD (θq, λp) is the actual

beam pointing direction of the antenna without the radome

when setting the excitations of the array elements to steer the

mainlobe peak of the power pattern, PNO−RAD
qp (θ), along the

q-th pointing direction at the p-th operation frequency

θ̂NO−RAD (θq, λp) = arg

{
max

θ∈[0:90] [deg]

[
PNO−RAD
qp (θ)

]}
.

(7)

Moreover, θ̂RAD (θq, λp; f) is the actual pointing direction of

the antenna with the radome, which is described by the set f

of descriptors, while setting the element excitations as in (7)

θ̂RAD (θq, λp; f) = arg

{
max

θ∈[0:90] [deg]

[
PRAD
qp (θ; f)

]}
. (8)

D. SbD Layers and Loop Implementation

Once the problem has been formulated (Sect. III-A), the DoF

have been selected (Sect. III-B), and the cost function has

been defined (Sect. III-C), the functional scheme of the SbD

paradigm for the synthesis problem at hand is derived (Fig.

5). In this case, the radome-oriented instance of the SbD

paradigm must include the Geometry-by-Design, the Material-

by-Design, and the Algorithm-by-Design layers (Fig. 5). Such

layers need the following functional blocks (Fig. 5): (i) a cost

function evaluation meta-block (Sect. III-D1) for the efficient

evaluation of (6) yielded with a forward solver block featuring

surrogate modeling along with a full-wave 3D simulation

block, (ii) a solution-space exploration block (Sect. III-D2)

to sample the solution space of the DoFs, and (iii) a real-time

excitation design block for the control of the array boresight

direction (not discussed in the following as it is based on a

standard formulation [1]).
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1) Cost Function Evaluation Meta-Block: The cost-

function evaluation meta-block (6) for the radome design is

implemented with a LBE-based surrogate model starting from

S known input-output pairs {fs, Φ (fs)}, s = 1, ..., S (i.e.,

the training set) where the values {Φ (fs); s = 1, ..., S} are

the results of S full-wave simulations (6)(2). The choice of

the training samples is a critical step to guarantee the required

prediction accuracy without recurring to very large S. Towards

this end, the Latin Hypercube Sampling (LHS) technique

[16][20] is adopted since (i) it is possible to set the amount

of time for the definition of the training set, S being a-priori

chosen; (ii) the S training samples are uniformly distributed

within the solution space, which is preferable when no a-

priori info or test can be performed on the “relevance” of each

feature. More in detail, the LHS process can be summarized

into the following steps:

• Step 1 - Initialization. Define the admissible range[
fmin
n , fmax

n

]
, n = 1, ..., N , of each solution descriptor

(i.e., DoF);

• Step 2 - Solution Space Segmentation. Uniformly divide

the range of variation of each n-th (n = 1, ..., N ) DoF

(i.e., ∆
(s)
n = [(s− 1)× δn : s× δn], s = 1, ..., S, being

δn ,
fmax
n −fmin

n

S );

• Step 3 - Single Feature Sampling. For each n-th (n =
1, ..., N ) DoF, fn, randomly select S values, {fn,s; s =

1, ..., S}, one for each segment ∆
(s)
n (i.e., fn,s ∈ ∆

(s)
n ,

s = 1, ..., S);

• Step 4 - Training Sample Generation. Generate a

training sample fs by uniformly picking, for each n-th

(n = 1, ..., N ) solution parameter, fn, one of the S values

{fn,s; s = 1, ..., S}. The s-th training sample is thus

given by

fs = {fn,js ; n = 1, ..., N} (9)

where js ∈ [1 : S] and fn,js 6= fo,js , n 6= o, to select the

value fn,s (n = 1, ..., N ; s = 1, ..., S) only once.

Once the training set has been built, the Ordinary Kriging

(OK) is adopted as LBE strategy in the SbD loop (Fig. 5). The

main motivations of such a choice are that, unlike other LBE

methods, the OK is very effective when high-fidelity input

samples (i.e., not corrupted by noise as those coming from

full-wave simulations) have to be processed since it guarantees

that Φ̂ (fs) ≡ Φ (fs), s = 1, ..., S. Moreover, it also provides

an estimation of the prediction uncertainty, χ̂ (fn).

According to the OK strategy, the prediction for a generic

descriptor setup fi turns out to be

Φ̂ (fi) , µ̂+ r
T (fi)R

−1 (Φ− Iµ̂) (10)

where µ̂ is a constant term (µ̂ , I
T
R

−1
Φ

ITR−1I
), I is an S-

dimensional unitary vector I , [1, 1, ..., 1]
T

(T denotes the

transpose operation), Φ = [Φ (f1) , ...,Φ (fs) , ...,Φ (fS)]
T

, and

R is the S × S correlation matrix whose js-th (js = 1, ..., S)

(2)The adopted FEM-based full-wave numerical modeling approach (i.e.,
Ansys HFSS) intrinsically accounts for the currents induced into the radome
structure therefore allowing to evaluate the arising antenna pattern and
directivity modifications.
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entry is equal to

Rjs =

N∏

n=1

exp
(
−αn |fs,n − fj,n|

βn

)
, (11)

α = {αn : n = 1, ..., N} and β = {βn : n = 1, ..., N} being

two sets of control hyper-parameters. Moreover, r (fi) is a S-

dimensional vector

rs (fi) =

N∏

n=1

exp
(
−αn |fs,n − fi,n|

βn

)
(12)

(s = 1, ..., S). As it can be noticed (10), the prediction

of the cost function value Φ̂ (fi) is proportional to the cor-

relation/distance between the new trial solution fi and the

S training samples (12) and from the correlation between

the training solutions (11) as well as their fitness values Φ.

Concerning the optimal setup of the hyper-parameters in (11)

and (12), it is yielded by maximizing the following Likelihood

Function

Ξ (α, β) = −
S

2
ln

(
σ̂2

)
−

1

2
ln |R| (13)

where σ̂2 = (Φ−Iµ̂)TR
−1(Φ−Iµ̂)

S , | . | being the determinant op-

erator. Finally, the prediction uncertainty, χ̂ (fi), is computed

as

χ̂ (fi) =

√√√√σ̂2

[
1− rT (fi)R−1r (fi) +

(1− IR−1r (fi))
2

IR−1I

]
,

(14)

to give an index of the self-detected surrogate model accuracy.

2) Solution Space Exploration Block: The “No Free-Lunch

(NFL) Theorem” [13][34] states that (i) the application of an

arbitrary optimization algorithm to a problem without taking

care of the nature of the cost function and of the DoF

features is on average equivalent to use a random search and

that (ii) each optimization algorithm has its own “optimal

niche” of application in which it outperforms other approaches.

Following such guidelines and the state-of-the-art analysis [6],

a Particle Swarm Optimization (PSO)-inspired approach has

been employed in the following owing to the high non-linearity

of the problem at hand (6) and the real-valued nature of the

solution descriptors [i.e., the control points of the spline curve

used to model the radome profile - Eq. (4)].
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IV. NUMERICAL ASSESSMENT

An ogive radome with a circular base D = 30.7λ0 in diameter

and length L = 17λ0 (λ0 being the free-space wavelength at

υ0 = 9.345 [GHz]) has been chosen as benchmark for the SbD

assessment. With reference to Sect. III-A, the linear phased

array consists of M = 8 parallel dipoles of length l = λ0

2

and inter-element distance d = λ0

2 working over a 500 [MHz]

bandwidth from υmin = 9.095 [GHz] up to υmax = 9.595
[GHz](3). It has been located at the center of the radome base

at a height h = λ0

4 from the ground plane (Fig. 3). The radome

is composed of Teflon with εr = 2.1 and tan δ = 3.0 ×
10−4 [30], while its external curvature (2) has been defined

by choosing ξ = 1.6 and f0 = λ0√
εr2

= λr

2 . The maximum

scan angle has been set at θmax = 45 [deg](4). According

to the guidelines in [6], the solution space exploration block

has been used with the following calibration setup: G = 2 ×
N , inertial weight w = 0.4, cognitive and social acceleration

coefficients C1 = 2.0 and C2 = 2.0, respectively, and ISbD =
200 (G being the size of the PSO population and ISbD being

the maximum number of optimization iterations).

A. Cost Function Prediction Accuracy vs. Complexity

The first numerical experiments deals with the evaluation

of the accuracy of the Cost Function Evaluation meta-block

versus the size of the training set, S. Such an assessment is of

fundamental importance to choose a suitable trade-off between

prediction accuracy and computational saving for the problem

at hand [16]. Towards this end, a set of experiments has been

carried out by ranging S in S ∈
[
Smin, Smax

]
= [50, 2000],

Smax being the maximum number of guess solutions generated

throughout the optimization process until the convergence

(Smax , G × ISbD). Each S-sized training set has been

LHS-defined by setting fmin
n = 0.2 [λr] and fmax

n = 0.8
[λr], n = 1, ..., N [Fig. 4(c)], λr being the wavelength in

the radome, and by choosing N = 5 spline control points.

Moreover, each antenna-radome structure has been analyzed

by considering Qθ = 4 and Qλ = 11 samples uniformly

(3)Owing to the base diameter and overall size of the benchmark radome, the
derived conclusions are actually valid also for much larger array setups. Within
this framework, no change is expected from the methodological viewpoint to
the algorithm to handle arrays of different sizes.

(4)The full-wave simulation of a single radome requires ≈ 56 hours on a
single-CPU desktop PC running at 3.6 [GHz] with 32 GB of RAM.
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(end)) - Behavior

of the BSE versus υ.

distributed in the angular range and in the frequency one,

respectively. Finally, V = 100 solutions, {fv; v = 1, ..., V },

not belonging to the training set (fs 6= fv; s = 1, ..., S;

v = 1, ..., V ) have been used for the validation set and

the prediction accuracy has been evaluated in terms of the

matching error index (ME)

ME =

∑V
v=1

∣∣∣Φ̂ (fv)− Φ (fv)
∣∣∣
2

∑V
v=1 |Φ (fv)|

2
. (15)

where Φ̂ (fv) and Φ (fv) stand for the predicted and the

actual value of the cost function, respectively. Figure 6 shows

the behaviour of ME versus S when considering either the

exponential (βn = 1) or the Gaussian (βn = 2) correlation

model along with the corresponding time saving factor τsav
(τsav , TStd−TSbD

TStd
), TStd and TSbD being the CPU-time

for predicting the V samples with the OK-based surrogate

model (SbD) and with a conventional full-wave simulator,

respectively. As it can be inferred (Fig. 6), it turns out that

(i) there are different trade-offs depending on the available

resources (S) and a desired emulation fidelity, (ii) the expo-

nential correlation model always outperforms the Gaussian

one in terms of accuracy (green vs. blue lines - Fig. 6),

(iii) owing to the very large computational costs associated

to the radome simulation, despite the relatively low value of

Qθ (i.e., Smax training samples would require > 12 years

of computation on a single processor), a careful choice of

the training set size, S, is mandatory to yield a feasible

synthesis (i.e., computationally-admissible trade-off between

accuracy and offline simulation effort). With reference to

the choice of the training set size, the S = 250 setup has

been chosen since it gives a good prediction accuracy (i.e.,

ME|S=250 = 5.85%) with a non-negligible computational

efficiency (i.e., τsav|S=250 ≈ 87.5%). Moreover, such a value

is compliant with the state-of-the-art guidelines regarding LHS

initial training samples for five-dimensional problems (i.e.,

N = 5) as discussed in [35]. For the sake of completeness,

Table I reports the statistics of the actual cost function value

for the S = 250 training samples.

B. SbD-based Synthesis Results

The next numerical experiment is aimed at assessing the

effectiveness of the SbD-based synthesis strategy from the

performance and statistical viewpoint. Therefore, A = 100
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Figure 9. Numerical Assessment (S = 250, f = f
∗) - Directivity patterns

and pointing accuracy (vertical lines) with and without radome when (a)
υmin = 9.095 [GHz], (b) υ0 = 9.345 [GHz], and (c) υmax = 9.595
[GHz].

different simulations have been run starting from the same

initial swarm, but using a different seed to generate differ-

ent sequences of trial solutions throughout the optimization

process. The statistics for the optimal prediction of the cost

function value, Φ̂
(
f
(a)

)
, f (a) being the best design obtained at

the convergence of the a-th (a = 1, ..., A) run (Tab. I) indicate

that the optimization process is very stable since different

simulations converge to very close design values.

The effectiveness of the SbD synthesis is discussed next

by analyzing the best solution among the A runs. When

analyzing the performance of the optimal SbD solution setup

f
∗ = {0.55, 0.69, 0.54, 0.73, 0.47} with a full-wave solver,

it turns out that (i) the actual value of the cost function,

Φ (f∗) = 0.55, is smaller than the minimum of the training set

[i.e., Φ(min) (fs) = 0.89 - Tab. I] and that (ii) the synthesized

radome excellently performs (i.e., ME < 1%). Moreover,

the comparison of the behaviors of the actual and predicted

optimal cost function values versus the iteration index points

out an excellent agreement (Fig. 7) as well as the fact that

the actual cost function values belong the “tube” of the

estimated uncertainty, whose bounds are (14) Φ̂ (fai )± χ̂ (fai ),
i = 1, ..., ISbD .
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Figure 10. Numerical Assessment (S = 250, f = f
∗) - Electric field

magnitude with radome when (a) θ̂NO−RAD (θ1, λ0) = 0 [deg] and (b)

θ̂NO−RAD (θ3, λ0) = 30 [deg].
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The next set of numerical results is aimed at showing the

performance of the SbD-designed radome. The frequency

behaviour of the BSE when setting θ̂NO−RAD (θq, λ0) =
{0, 15, 30, 45} [deg] (Fig. 8) and the directivity patterns

generated at the minimum frequency [υmin = 9.095 GHz -

Fig. 9(a)], central frequency [υ0 = 9.345 GHz - Fig. 9(b)], and

maximum frequency [υmax = 9.595 GHz - Fig. 9(c)] show

that (i) highly directive and well-shaped beam patterns scanned

along the desired directions are generally afforded (Fig. 8), (ii)

the performance deterioration when scanning along broadside

is caused by reflections of portion of the EM energy from the

radome to the antenna [Fig. 10(a)] with a perturbation of the

field ERAD (x, z; f∗) with respect to an off-broadside scan

[Fig. 10(b)]; (iii) accordingly, limited directivity variations

with pointing direction and frequency with/without the radome

are observed (Fig. 11).

For the sake of completeness, the plots of the S-parameters of



IEEE ANTENNAS AND PROPAGATION MAGAZINE, VOL. 0, 2020 9

Table I
Numerical Assessment (S = 250, A = 100) - STATISTICAL FEATURES OF

TRAINING SET COST FUNCTION Φ (fs), s = 1, ..., S , AND OF PREDICTED

COST FUNCTION AT THE CONVERGENCE OF OF EACH a-TH (a = 1, ...,A)

TRIAL SIMULATION, Φ̂
(
f
(a)

)
.

Φ (fs) Φ̂
(
f (a)

)

min 0.89 0.49
max 16.25 2.70
avg 5.23 1.15

std− dev 3.26 0.60
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Figure 12. Numerical Assessment (S = 250, f = f∗) - Behaviour of (a)
m = {4, 5} array elements S-parameters and (b) cross-polar discrimination

versus frequency when θ̂NO−RAD (θ1, λ0) ∈ {0, 15, 45} [deg].

the m = {4, 5} array elements [Fig. 12(a)] and the ratio of

the co-polar vs. cross-polar components [i.e., cross-polar dis-

crimination (XPD) - Fig. 12(b)] with or without the radome

assuming θ̂NO−RAD (θ1, λ0) ∈ {0, 15, 45} show that (i) even

though such parameters are not addressed in the optimization

problem, a satisfactory return loss is obtained in all cases

[i.e., reflection below −9 dB in the entire band - Fig. 12(a)]

even in worst-case conditions (i.e., θ̂NO−RAD (θ1, λ0) = 15
[deg]) and despite the simple radiators at hand, and that

(ii) the presence of the radome has a marginal effect on

the polarization purity of the considered arrangement [i.e.,

XPDNO−RAD > 44 dB vs. XPDRAD > 35 dB - Fig.

12(b)].

The final set of experiments is devoted to the demonstration

of the search capabilities of the proposed SbD paradigm when

multiple design objectives are taken into account. Towards

this end, the same benchmark setup has been dealt with, but

attenuation and structural considerations have been included

beyond boresight steering error. More in detail, (6) has been

substituted with a extended cost function ΦMO (f) defined as

ΦMO (f) = Φ (f) + ΦATT (f) + ΦWGT (f) (16)

where ΦATT (f) =
∑Qλ

p=1

∑Qθ
q=1[G

NO−RAD
max (θq,λp)−GRAD

max (θq,λp;f)]
Qλ×Qθ

accounts for the attenuation,

GNO−RAD
max (θq, λp)/G

RAD
max (θq, λp) being the maximum

gain (expressed in dB) when steering the beam towards

the direction θq at frequency λp without/with the radome,

respectively, and ΦWGT (f) ,
Ψ(f)

Ψ(fmin) accounts for the

radome structural properties, Ψ(·) being the radome weight,

and f
min ,

{
fmin
n ; n = 1, ..., N

}
the minimum-thickness

radome setup. The evolution of Φ̂MO (f∗i ), Φ̂ (f∗i ), Φ̂
ATT (f∗i ),

and Φ̂WGT (f∗i ) versus the iteration number (Fig. 13) further

demonstrates the SbD search capabilities in terms of boresight

steering error reduction (i.e.,
Φ̂(f∗i )⌋

i=ISbD

Φ̂(f∗i )⌋i=1

≈ 1.65 × 10−7

- Fig, 13) and it highlights its effectiveness in handling

the additional objectives (i.e., Φ̂ATT (f∗i ), and Φ̂WGT (f∗i ) -

Fig. 13) although some of them naturally exhibit a limited

dynamic range (e.g., Φ̂WGT (f∗i ) marginally improves as the

radome weight is not strongly affected by small variations of

the internal radome thickness - Fig. 13).

V. CONCLUSIONS

A high-level review of the SbD paradigm concepts and features

has been discussed and its application to the design of complex

EM systems has been presented. As a representative example,

the SbD-based design of an electrically-large 3D ogive-shaped

radome has been discussed to give some insights on the

advantages and the potentialities of the proposed synthesis

framework also in comparison with conventional optimization-

driven design techniques.

The main outcomes from both the methodological derivation

and the numerical validation are (i) the SbD-based method-

ology enables the feasible design of complex EM structures

thanks to the possibility to select the best (i.e., problem-

oriented) trade-off functional scheme and the most suitable

techniques depending on the available resources and objec-

tives; (ii) an accurate selection of the solution descriptors

(DoFs) is of fundamental importance to mitigate the curse

of dimensionality affecting the design of complex systems;

(iii) the NFL theorems [34] hold true for the SbD ecosystem,

as well, since an improper choice/integration of the functional

blocks causes both inefficient design processes and inaccu-

rate designs. Future works within the SbD framework will

be devoted to further exploit the cross-relationships among

the functional blocks of the different “layers” of the design

procedure of a complex system as well as to extend the SbD

application to different scenarios in next generation sensing

and communications including the co-design of radomes and

phased arrays, as well as the multi-physics optimization of

radome material/external descriptors taking into account their

mechanical and aerodynamic performance.
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