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Abstract

A robust optimization model to �nd an investment portfolio is analyzed accord-
ing to twofold risk sources: the random nature of the returns given an economic
scenario which is itself unknown. Our model combines measures of deviation, risk
and regret to �nd a solution ensuring aceptable expected returns while we are
hedged against the market volatility. Several mathematical formulations are stated
and numerically tested. Using duality relations we obtain bounds on the optimal
objective value of the problem. Furthermore, these bounds are integrated into an
iterative numerical procedure, developed as an alternative to exact formulations.
We check, by means of experimental �nancial data, that our solution deals with
volatility and economic uncertainty by seeking more diversi�cation while expected
returns are preserved.

1 Introduction

The choice of an appropriate investment portfolio is a challenge involving multiple
uncontrollable elements. Financial markets are inherently uncertain environments
where prices, interest rates or availability of resources de�ne economic factors that
are usually modeled through random variables. Here, we can distinguish, among
others, two main sources of uncertainty. One is linked to the lack of information
about the own nature of the buying/selling operations of securities in �nancial
systems. The other one is related to the economic scenario (economic growth,
recession, military con�icts, trade war, . . . ) under which these operations take
place.

The research activities have been supported by projects FQM-331 (Junta de Andalucía) and
MTM2016-74983-C2-1-R (MICINN, Spain)

∗Department of Statistic and Operations Research
Faculty of Mathematics. Campus Reina Mercedes, 41011.
University of Seville. Seville. Spain.
E-mail: educon@us.es



2 S. Benati and E. Conde∗

In the literature, the problem of �nding good portfolio policies has been deeply
analyzed in terms of a corpus of properties characterizing risk measures (see e.g.
[?]), properties of coherence and compatibility with stochastic dominance princi-
ples (see e.g. [?,?,?]) or theory of choice principles (see e.g. [?]).

Most of the existing approaches (see, e.g. [?,?,?,?,?,?,?]) need the explicit
knowledge of probability distributions of the involved economic factors, which is,
by itself, a challenging task. Furthermore, �xing a speci�c probability distribution
for the involved economic factors means that the conditions de�ning the economic
scenario have also been �xed, discarding the above mentioned second source of
uncertainty. An optimal investment under these conditions may not be appropriate
since the decision maker remains exposed to any change in the economic behavior
of the �nancial system.

Some existing optimization models address this situation by de�ning a family of
possible probability distributions and seeking a compromise solution with a good
performance whatever the distribution is chosen. These are the so-called robust
portfolios [?,?,?]. In this case, di�erent probability distributions model di�erent
economic scenarios and a solution is found in order to maximize its performance
under each considered scenario, sometimes measuring the discrepancy between its
performance and the optimal one under each scenario, what is called regret.

In this paper, we propose a robust optimization model in order to �nd an in-
vestment portfolio by analyzing its twofold risk: the random nature of the returns
given an economic scenario and the fact that this economic scenario is itself un-
known. For the �rst task the average return and the conditional Value-at-Risk,
[?], are used, while for the second one the minimization of the maximum regret
respect to the optimal performance under each scenario is considered. In this way,
our model combines several measures of deviation, risk and regret to �nd a feasi-
ble portfolio ensuring certain level of expected returns while decision makers are
hedged against the market volatility represented by a set of possible economic
scenarios.

In our approach, we avoid using theoretical probability distributions by just
working with the empirical distributions obtained from data. Hence, we will assume
that a set of historical data of economic indicators is available. For instance, a
vector of intra-day price variations for a given set of assets. Usually, this data will
not represent a numerical sample of our vector of indicators, in the sense of being
independent and identically distributed realizations of that vector. Although the
independence could be assumed since this data represents intra-day variations,
the economic conditions, that is, the underlying probability distributions, usually
change over time, re�ecting di�erent market behaviors such as expansion, peak
or contraction periods. We will assume that our data-set is the union of subsets
of observations -identi�ed with scenarios- obtained during speci�c time periods
(typically time windows). If these time windows can be associated to di�erent
market conditions, with possibly the same underlying probability distribution, our
empirical measures (sample mean, variance,. . . ) will approach the corresponding
theoretical measures (under known distributions). On the other hand, if there is not
a direct relation amongst scenarios and di�erent economic behaviours, these time
windows may still capture di�erent economic patterns or changes in the economic
cycle of the market against whose adverse e�ects, the decision maker may want
be hedged.



A new model for robust portfolio optimization 3

The idea of considering a family of subsets of the historical data set accord-
ing to scenarios to model the behavior of a system has been used recently, [?],
in the context of a dynamic pricing problem. In this case, a �rm wants to de-
termine a dynamic pricing strategy under uncertainty about the demand for the
product. In that paper, the authors shown by means of a numerical experiment
that regret-based optimization models deliver a more robust revenue performance
as compared to the sample-average approximation and also in comparison with a
Bayesian approach. In fact, the sample-average approximation only had a better
average revenue performance when a large sample of data was provided from just
one underlying distribution which will not be the case in our model where the
underlying economic conditions of the market are assumed to change over time
according to di�erent scenarios.

The paper is structured as follows. In Section ??, we discuss the properties of
the conditional value at risk when estimated from historical data. As will be seen,
our de�nition di�ers slightly from the established literature and therefore some of
its properties must be reassessed. In Section ??, we show that the Mean-CVaR
linear model can be solved by its dual reformulation, or even by constraint genera-
tion. Those two methods have been largely overlooked when one deals with a single
period problem, but are useful when the model contains scenarios, as can be seen in
Section ??. There, we formulate three alternative linear programming approaches
to the min-max regret portfolio. The �rst one requires knowledge about the op-
timal portfolio under each considered scenario whilst the second approach avoid
the need for that by using valid dual relations of the nominal optimization prob-
lem. Finally, the third model formulates the restriction linked to the conditional
value at risk through an exponential number of constraints. They are the basis of
an iterative procedure in which only a few of these constraints are generated and
used through a separation subroutine.

Some numerical properties and bounds on the optimal minmax regret objective
value are presented in Section ??. The bounding procedure will be a part of the
numerical procedure proposed in this section to solve our problem. This procedure
solves a sequence of relaxed formulations of moderate size in order to approach
the optimal solution. In Section ?? a numerical experiment is conducted in order
to compare the iterative procedure with the resolution of di�erent formulations of
the problem. Financial features of our robust portfolio are also analyzed revealing
the strength of potential applications. In particular, we �nd that our solution
represents investments, more conservative than the ones obtained by considering
single-scenario models, but also more diversi�ed. This may set out the rules for
less risky investments, with less turnover than the standard ones, while the ex-post
returns is still maintained to the same level, or even higher than those obtained
from single-scenario models. Finally, in Section ??, we suggest some guidelines to
improve the performance of our solution in practical applications and give possible
ideas for future contributions.

2 Sample conditional value at risk

The conditional value at risk (also known in �nance as expected shortfall [?,?]),
CVaRs(x) for a given portfolio x ∈ X (and scenario s ∈ S) is de�ned by Rockafellar
and Uryasev, [?], as the conditional expectation of losses above the β-quantile
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αβ(x) of the losses. In order to de�ne properly this value for a sample of returns
we will introduce some notation:

� A set of time periods T and a set of assets A.
� A data set R = [ rta; t ∈ T ; a ∈ A ], in which rta is the return of the asset a at
the time period t.

� A set of possible scenarios S, where each scenario s ∈ S is de�ned as a subset
of time periods Ts ⊆ T .

� The portfolio vector x = [xa; a ∈ A], where xa is the proportion of wealth
invested in the asset a.

� A feasible set of portfolios X which is supposed to be independent of the
considered scenario.

Our optimization model is built on the basis of the following two measures:

� Es(x), the average reward of the portfolio x under the scenario s ∈ S. This
measure is computed using the vectors of returns rta, a ∈ A corresponding to
every time period t ∈ Ts and represents an estimator of the expected reward
of the portfolio under the considered scenario.

� CVaRs(x), the conditional value-at-risk of the portfolio x, a risk measure com-
puted as the average of a given proportion of the largest losses borne by the
investor.

The �rst measure is de�ned in terms of an average of rewards and the second
one, in terms of an average of losses. Hereafter, we will use both terms interchange-
ably, where losses are negative rewards.

In [?], Rockafellar and Uryasev assumed that a absolutely continuous proba-
bility distribution of losses is known and shown several properties of CVaR under
these conditions. In [?] the maximization of the portfolio return subject to a con-
straint on the CVaR is proposed for a known discrete distribution. Here, we follow
the same idea and state the CVaR in terms of a sample of historical data.

First, the β-quantile of the sample of losses for a given portfolio is computed,
that is, given the sample {

−
∑
a∈A

rtaxa : t ∈ Ts

}
. (1)

the corresponding β-quantile for the scenario s ∈ S is

αsβ(x) = argmin

{
α :

∣∣∣∣∣{t ∈ Ts : −
∑
a∈A

rtaxa ≤ α}

∣∣∣∣∣ ≥ dβ|Ts|e
}
, (2)

where | • | stands for the cardinality of a set. The sample β-quantile αsβ(x) is
strongly consistent respect to the β-quantile of the underlying unknown probability
distribution under mild conditions [?]. Here, we will use the value αsβ(x) as a
cutpoint dividing the sample of ordered losses (??) into two sets,

� the �rst of them corresponding to the subset T−s of the dβ|Ts|e time periods
corresponding to the smallest losses and

� its complementary, T+
s with the b(1−β)|Ts|c time periods of the highest losses.
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Note that, in the presence of repeated values of the same losses, one or several of
the repeated values could be in T−s and the others, in T+

s .

In the continuous case, this quantile is also called β −VaR, Value at Risk, [?],
where β ∈ (0, 1) is a parameter de�ned by the investor according to her attitude
to risk (risk level). The larger the β-level is, the more aversion to risk the decision
maker has.

According to this de�nition, the average loss in the latter set T+
s is what we

will call the conditional value at risk for the portfolio x under the scenario s ∈ S,

CVaRs(x) = − 1

b(1− β)|Ts|c
∑
t∈T+

s

∑
a∈A

rtaxa. (3)

The right-hand side of equation (??) represents a conditional mean for the
sample of losses under scenario s ∈ S. Taking into account that αsβ(x) is the
dβ|Ts|e order statistic of that sample of losses, its strong consistency ([?]) respect
to the β-quantile of the underlying unknown probability distribution of losses,
ensures this same convergence for CVaR respect to the true conditional mean
of losses under mild conditions on such an unknown distribution (for instance,
absolute continuity).

Following Rockafellar and Uryasev, [?] we can state some useful properties of
αsβ(x) and CVaRs(x) respect to the function

Fβ(x, α) = α+
1

b(1− β)|Ts|c
∑
t∈Ts

[−
∑
a∈A

rtaxa − α]+, (4)

where [a]+ = max{a, 0}.
Let us observe here that Fβ(x, α) is not exactly the same function de�ned in

(27) of [?]. They both di�er if b(1 − β)|Ts|c 6= (1 − β)|Ts|. This is a consequence
of the de�nition of CVaR in (??) which does not coincide with expression (25) of
[?] for the CVaR of a discrete distribution of losses. Neither does it coincide with
CVaR+ (upper CVaR ) nor with CVaR− (tail VaR or lower CVaR ) as de�ned in [?]
(De�nition 4), which are alternative de�nitions to CVaR in discrete distributions,
the so-called scenario model following [?]. Moreover we will maintain the expression
(??) since with this slight modi�cation all the losses above β-VaR are weighted
with the same value (conditional probability) which is not true using the expression
(25) of [?] according to their de�nition of the conditional distribution function (eq.
(8) of [?]). This property is needed in order to ensure that the minimum value of
Fβ(x, α) for a �xed x is reached at CVaRs(x). Moreover, the expression (??)
preserves the same property shown in Theorem 10 of [?] which is called there the
fundamental minimization formula stated as the following

Proposition 1 The function Fβ(x, α) is a convex piecewise linear function of
(x, α) verifying

CVaRs(x) = Fβ(x, αsβ(x)) = min
α
Fβ(x, α).

Proof From the expression (??), it directly follows that Fβ(x, α) is a convex piece-
wise linear function of (x, α) for all β ∈ (0, 1).
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Let α < αsβ(x), by its de�nition (??),
∣∣{t ∈ Ts : −

∑
a∈A rtaxa ≤ α}

∣∣ < dβ|Ts|e
which implies that

∣∣{t ∈ Ts : −
∑
a∈A rtaxa > α}

∣∣ > |Ts|−dβ|Ts|e = b(1−β)|Ts|c,
that is, Fβ(x, •) is strictly decreasing in the linear piece corresponding to α.

On the other hand, if α ≥ αsβ(x), one has that
∣∣{t ∈ Ts : −

∑
a∈A rtaxa > α}

∣∣ ≤∣∣{t ∈ Ts : −
∑
a∈A rtaxa > αsβ(x)}

∣∣ = |Ts| −
∣∣{t ∈ Ts : −

∑
a∈A rtaxa ≤ α

s
β(x)}

∣∣ ≤
b(1− β)|Ts|c, that is, Fβ(x, •) is non-decreasing in the linear piece corresponding
to α. Hence Fβ(x, αsβ(x)) = minα Fβ(x, α), in fact, if there is an interval where
this minimum is reached, αsβ(x) would be the lower bound of this interval.

Another consequence of the de�nition of CVaR as it is done in (??) is that it
becomes a coherent measure whereas CVaR− and CVaR+ are not, [?].

Let us denote by y the uniform discrete random variable of losses corresponding
to the choice of a given portfolio x under the scenario s ∈ S, that is, y takes
the value yt = −

∑
a∈A rtaxa : t ∈ Ts with probability 1/|Ts|. Let z be the

corresponding random variable of losses for another given portfolio x′ under the
same scenario s ∈ S. In our context, the axioms in Artzner et al. [?] for coherence
of a risk measure ρ amount to the requirement that ρ be sublinear,

ρ(y + z) ≤ ρ(y) + ρ(z) and ρ(λz) = λρ(z), for all y, z and λ ≥ 0,

and in addition satisfy

ρ(y) = c, when y = c (constant),

along with

ρ(y) ≤ ρ(z), when y ≤ z,

where the inequality y ≤ z refers to �rst-order stochastic dominance.

Proposition 2 ρ(x) = CVaRs(x) de�ned by (??) is a coherent risk measure.

Proof By de�nition, it is ease to see that CVaR can be written as the maximum
of a Binary Linear Programming problem as follows

ρ(y) =
1

b(1− β)|Ts|c
max
ω∈W

|Ts|∑
t=1

ytωt (5)

where W = {ω ∈ {0, 1}|Ts| :
∑|Ts|
t=1 ωt = b(1− β)|Ts|c}.

Taking into account that

max
ω∈W

|Ts|∑
t=1

(yt + zt)ωt ≤ max
ω∈W

|Ts|∑
t=1

ytωt + max
ω∈W

|Ts|∑
t=1

ztωt,

one has ρ(y + z) ≤ ρ(y) + ρ(z). Property ρ(λy) = λρ(y) for any λ ≥ 0 follows
directly from

max
ω∈W

|Ts|∑
t=1

λytωt = λ max
ω∈W

|Ts|∑
t=1

ytωt,
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and when y = c (constant) one has that yt = c for all t ∈ |Ts| hence, from (??),
ρ(y) = c.

Finally, the �rst-order stochastic dominance y ≤ z can be written in terms of
the order statistics y(t) ≤ z(t), where y(t) is the loss occupying the t-th position in
the sorted sample of losses in increasing order. Hence, the monotonicity of CVaR
can be veri�ed as follows

ρ(y) = max
ω∈W

|Ts|∑
t=1

λy(t)ωt ≤ λ max
ω∈W

|Ts|∑
t=1

z(t)ωt = ρ(z).

3 Optimizing the performance of the portfolio under controlled

conditional value at risk

Properties as the one stated in Proposition ??, in a more general context of prob-
ability distribution for losses, have been used in the literature (see e.g. [?,?]) to
obtain the Linear Programming formulations of portfolio problems that can be
e�ciently solved using o�-the-shelf optimization software. A generic problem in-
cluding a constraint where the incurred conditional value at risk is upper bounded
could have the following appearance

z∗s = max p(s, x)

s.t.

CVaRs(x) ≤ cs,

x ∈ X.

(6)

Here, we will assume that the performance of the portfolio x ∈ X, under a given
scenario s ∈ S, is measured as p(s, x). This measure can be an indicator of the
e�ciency of the portfolio or a measure of the risk of the investment that, conse-
quently, should be minimized in order to hedge to the decision maker against the
uncertain e�ects of the market.

Some reasonable choices of p(s, x) in (??) could be the following ones:

� maximization of the average return [?], when

p(s, x) = Es(x) =
1

|Ts|
∑
t∈Ts

∑
a∈A

rtaxa,

� maximization of the Shannon entropy (see [?]), when

p(s, x) = − 1

|Ts|
∑
t∈Ts

ln(
∑
a∈A

rtaxa),

including the constraint Es(x) = µs in the set of feasible portfolios X,
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� minimization of the conditional value at risk (see e.g. [?] and the refer-
ences therein), known also as Mean-CVaR approach [?],

p(s, x) = −cs,

including the constraint Es(x) = µs in the set of feasible portfolios X,
� minimization of the total absolute deviation from the average return

[?,?], when

p(s, x) = −
∑
t∈Ts

|
∑
a∈A

rtaxa − Es(x)|

� minimization of the modi�ed absolute deviation from the average

return [?,?], when

p(s, x) = −
∑
t∈Ts

(
|
∑
a∈A

rtaxa − Es(x)| − 2
∑
a∈A

rtaxa

)

� minimization of the total absolute deviation from the median return

[?], when

p(s, x) = −min
θ∈<

∑
t∈Ts

|
∑
a∈A

rtaxa − θ|

When a given scenario s ∈ S is �xed, a reasonable model to con�gure the
portfolio x ∈ X studied in the literature (see [?] and the references therein) is the
maximization of the average return subject to a constraint on the CVaR,

z∗s = maxEs(x)

s.t.

CVaRs(x) ≤ cs,

x ∈ X.

(7)

In the formulation (??), the set of feasible portfolios X is able to include a rich
range of possible technical constraints as those considered in [?] related to trans-
action costs, diversi�cation, changes in individual positions (liquidity constraints)
or bounds on positions. These constraints can frequently be formulated as linear
inequalities on the decision variables of the optimization model which does not
have a signi�cant in�uence in the numerical method used to solve the problem.
Hence, in order to ease the following formulations we will assume that X is given
as

X =

{
x ≥ 0 :

∑
a∈A

xa ≤ 1

}
, (8)

and we will denote by zs the average return for the portfolio x under the scenario
s ∈ S appearing in (??), that is,

zs = Es(x) =
1

|Ts|
∑
t∈Ts

∑
a∈A

rtaxa =
∑
a∈A

rasxa, (9)
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where

r̄as =
1

|Ts|
∑
t∈Ts

rta.

The CVaR model (??) is a case of the so-called Coherent Measures of Risk
([?]), that are risk measures satisfying, among others, the principle of convexity.
In [?] it is shown how to optimize a mean-coherent risk model in the cases that
random variables, e.g. risks, have a discrete support set, including the case in
which they are described by temporal observations t ∈ Ts. In the following, let
Qs = {Q|Q ⊆ Ts, |Q| = b(1− β)|Ts|c}:

z∗s = max
∑
a∈A

r̄asxa

s.t.

rt =
∑
a∈A

ratxa, for all t ∈ Ts

1

b(1− β)|Ts|c
∑
t∈Q

(−rt) ≤ cs, for all Q ∈ Qs,∑
a∈A

xa ≤ 1,

xa ≥ 0, for all a ∈ A.

(10)

Observe that (??) contains an exponential number of constraints, one for every
Q ∈ Qs. However, as discussed in [?], it is not necessary to solve a problem with
all constraints. Rather, one can solve an incomplete formulation of (??) and then
insert constraints only if they are needed, e.g., when they are violated by the
incumbent solution. To do this, the separation subroutine, listed in Algoritm ??,
checks whether an incumbent solution x is feasible or not. If yes, the solution
is optimal, otherwise, the subroutine �nds a violated inequality to insert in the
model.

Algorithm 1 Finding a valid inequality of (??)

1: For the incumbent solution xa, a ∈ A, calculate rt =
∑
a∈A ratxa, for all t ∈ Ts.

2: Rank rt in increasing order, to obtain ri(1), . . . , ri(j), . . . , ri(|Ts|). Let C = {ti(j) ∈ Ts| j =
1, . . . , b(1− β)|Ts|c}.

3: if 1
b(1−β)|Ts|c

∑
t∈C(−rt) > cs then

4: Add valid inequality 1
b(1−β)|Ts|c

∑
t∈C(−rt) ≤ cs to (??).

5: else
6: xa is optimal.

However, Proposition ?? can be used to linearize the problem (??) under each
scenario s ∈ S, without the need of adding an exponential number of constraints
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as in (??), as follows

z∗s = max
∑
a∈A

r̄asxa

s.t.

αs +
1

b(1− β)|Ts|c
∑
t∈Ts

ξts ≤ cs,

ξts ≥ −
∑
a∈A

rtaxa − αs, for all t ∈ Ts,∑
a∈A

xa ≤ 1,

ξts ≥ 0, for all t ∈ Ts,

xa ≥ 0, for all a ∈ A.

(11)

This new formulation is a Linear Programming (LP) problem with a compact
set of feasible portfolios X, then its optimal objective value is �nite and coincides
with the one of its following dual formulation

z∗s = minb(1− β)|Ts|ccsu0s + vs

s.t.

−
∑
t∈Ts

rtauts + vs ≥ r̄as, for all a ∈ A

b(1− β)|Ts|cu0s −
∑
t∈Ts

uts = 0,

u0s − uts ≥ 0, for all t ∈ Ts,

vs, u0s, uts ≥ 0, for all t ∈ Ts.

(12)

Here, the dual variable u0s is the one associated to the �rst primal constrain of
(??), uts, t ∈ Ts the set of dual variables for the second block of constraints and
vs, the one corresponding to the last constraint of (??).

The formulation (??) ensures that, to upper bound the optimal value of the
averaged reward under each scenario s ∈ S, it is only needed a feasible dual
solution (u0s, uts: t∈Ts

, vs). This will be used in the general formulation of the
minmax regret model stated in the next section.

4 Minmax Regret Mean Return Portfolio Problem

We will propose in this section an optimization model, theMinmax Regret Portfolio
(MRP) problem, in which a compromise con�guration of the investments is sought
with an e�ciency as close as possible to the performance of an optimal portfolio
under any one of the considered scenario of S. This optimization model can be
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written as

R∗(S) = min
x
R(x, S) := max

s
{z∗s − Es(x)}

s.t.
CVaRs(x) ≤ cs, for all s ∈ S,
x ∈ X,

(MRP)

Here, we will call X (S) to the feasible set of portfolios corresponding to a given
set of scenarios S, that is,

X (S) = {x ∈ X : CVaRs(x) ≤ cs, s ∈ S}. (13)

Observe that in this minmax regret model the set of scenarios de�nes the regrets
considered in the objective function but also the set of feasible portfolios since all
the solutions must ful�ll the upper bounds on the conditional value at risk under
each scenario (cs).

The formulation (??) can be written as an LP problem as follows

R∗(S) = min ρ

s.t.

ρ ≥ z∗s −
∑
a∈A

r̄asxa, for all s ∈ S,

αs +
1

b(1− β)|Ts|c
∑
t∈Ts

ξts ≤ cs, for all s ∈ S,

ξts ≥ −
∑
a∈A

rtaxa − αs, for all s ∈ S, t ∈ Ts,∑
a∈A

xa ≤ 1,

ξts ≥ 0, for all s ∈ S, t ∈ Ts,

xa ≥ 0, for all a ∈ A.

(MRP-F1)

Now, taking zs, the average reward for the portfolio x de�ned in (??), one can
write the �rst block of constraints of (??) as z∗s ≤ ρ + zs for all s ∈ S which is
ful�lled if and only if there exists at least a feasible solution (u0s, uts: t∈Ts

, vs) for
the dual LP problem (??) verifying

b(1− β)|Ts|ccsu0s + vs ≤ ρ+ zs for all s ∈ S.

Hence, (??) can be reformulated as the following LP problem
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R∗(S) = min ρ

s.t.

b(1− β)|Ts|ccsu0s + vs −
∑
a∈A

r̄asxa ≤ ρ for all s ∈ S,

−
∑
t∈Ts

rtauts + vs ≥ r̄as, for all s ∈ S, a ∈ A

b(1− β)|Ts|cu0s −
∑
t∈Ts

uts = 0, for all s ∈ S,

u0s − uts ≥ 0, for all s ∈ S, t ∈ Ts,

αs +
1

b(1− β)|Ts|c
∑
t∈Ts

ξts ≤ cs, for all s ∈ S,

ξts ≥ −
∑
a∈A

rtaxa − αs, for all s ∈ S, t ∈ Ts,∑
a∈A

xa ≤ 1,

ξts ≥ 0, for all s ∈ S, t ∈ Ts,

xa ≥ 0, for all a ∈ A,

vs, u0s, uts ≥ 0, for all s ∈ S, t ∈ Ts.

(MRP-F2)

Formulation (??) has O(
∑
s∈S |Ts|) variables and O(

∑
s∈S |Ts|) constraints

which could be di�cult to be managed if the number of scenarios and the number
of periods contained in each one of them are large enough. In order to avoid
this drawback we will examine an iterative procedure in which the feasible set of
(??) is initially relaxed, a tentative portfolio is obtained by solving the relaxation
and after checking a stopping rule, a cut for the relaxation is derived in order to
continue the iterative process.

The iterative procedure relies to the following formulation, that is the straight-
forward extension of Model (??) to the case in which the CVaR constraints must
be satis�ed in multiple scenarios.
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R∗(S) = min ρ

s.t.

ρ ≥ z∗s −
∑
a∈A

r̄asxa, for all s ∈ S,

rt =
∑
a∈A

ratxa, for all t ∈
⋃

s∈S Ts

1

b(1− β)|Ts|c
∑
t∈Q

(−rt) ≤ cs, for all Q ∈ Qs, s ∈ S∑
a∈A

xa ≤ 1,

xa ≥ 0, for all a ∈ A.

(MRP-F3)

5 Numerical procedures

Here, we will use the dual problem (??) together with the formulations proposed
in the above section in order to bound the optimal objective value of the minmax
regret model (??). These bounds are used in the development of numerical proce-
dures to solve our problem which will be computationally tested in the following
section.

5.1 Deriving lower bounds on the optimal average rewards under each scenario

Let x0 ∈ X, the set of feasible portfolios de�ned in (??), and suppose that
CVaRs(x

0) ≤ cs for a given scenario s ∈ S, then one has trivially∑
a∈A

r̄asx
0
a ≤ z∗s

since z∗s is the optimal value of Problem (??).
Suppose now that x0 ∈ X veri�es CVaRs(x

0) > cs then, by de�nition of CVaR
one has

CVaRs

(
cs

CVaRs(x0)
x0

)
= cs,

and, taking into account the de�nition (??) of the set of feasible portfolios X, one
also have

cs
CVaRs(x0)

x0 ∈ X.

Therefore, for any given x0 ∈ X we can de�ne a lower bound on the optimal
reward under the scenario s by

cs
max{cs,CVaRs(x0)}

∑
a∈A

r̄asx
0
a ≤ z∗s . (14)
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5.2 Deriving upper bounds on the optimal average rewards under each scenario

In order to have upper bounds on z∗s , the optimal value of (??), we can construct
feasible solutions of the dual formulation (??). Here, we propose such a feasible
dual solution on the basis of some properties that can be expected to be veri�ed
by a primal optimal solution.

Using the formulation (??) and Proposition ?? there exists at least an optimal
solution of Problem (??) for which at most b(1− β)|Ts|c indices t ∈ Ts verify

−
∑
a∈A

rtaxa − αs > 0. (15)

Let us assume that there exists an optimal portfolio x ∈ X for the problem
(??) in which

1. for every t ∈ T+
s one has −

∑
a∈A rtaxa − αs > 0 and

2. for every t ∈ T−s one has −
∑
a∈A rtaxa − αs < 0.

Under this assumption, we can construct an optimal solution for the dual problem
(??) from the sets of time periods T+

s and T−s .
By complementary slackness conditions, we know the following relations are

ful�lled,

u0s = uts, for all t ∈ T+
s ,

uts = 0, for all t ∈ T−s .

Then, given a nonnegative value for u0s, a feasible solution of the dual problem
(??) can be obtained by taking

vs = max

0, r̄as + u0s

∑
t∈T+

s

rta, ∀a ∈ A

 ,

that is, the objective value of the dual problem (??) at this solution can be written
as

ϕT+
s

(u0s) := max

b(1− β)|Ts|ccsu0s, r̄as + u0s

∑
t∈T+

s

(cs + rta),∀a ∈ A

 . (16)

Hence, the optimal objective value of the dual problem (??), z∗s , should coincide
with the minimum of ϕT+

s
(u0s) in u0s ≥ 0. When our choice of the sets T−s and T+

s

does not correspond to any optimal solution of (??) or does not ful�ll assumptions
(??) and (??), this minimum will achieve just an upper bound on the optimal value
z∗s since the dual solution we have constructed is always feasible for the problem
(??), that is,

z∗s ≤ min
u0s≥0

ϕT+
s

(u0s). (17)

Remark 1 All the slopes of the linear functions de�ning ϕT+
s

in (??) can be
considered di�erent. Otherwise, one of the two linear functions sharing a common
slope can be deleted since it does not a�ect to the maximum de�ning ϕT+

s
.
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Algorithm 2 Finding an optimum of (??)

1: procedure Initialization
2: Let r̄a0s = 0, δ0 = b(1 − β)|Ts|ccs and δi =

∑
t∈T+

s
(cs + rtai ) where ai is the i-th

element of A.
3: Arrange the components of δ in increasing order. Let δ(i) : i = 0, 1, . . . , |A| be the

ordered components (all of them di�erent according to the remark ??) where (i) is the
index occupying the position i+ 1 in the ordered sequence.

4: Let k := arg max{r̄ais : i = 0, 1, . . . , |A|} and u∗s := 0 and t ∈ {0, 1, . . . , |A|} the index
for which (t) = k, that is, δk occupies the position t+1 in the sequence of ordered δ-values.

5: while δk < 0 do

u∗s := min

{
r̄aks − r̄a(j)s
δ(j) − δk

: j = t+ 1, . . . , |A|
}

k := arg min

{
r̄aks − r̄a(j)s
δ(j) − δk

: j = t+ 1, . . . , |A|
}
,

and t ∈ {0, 1, . . . , |A|} the index for which (t) = k.

Now we will consider a simple numerical example in order to clarify the way in
which Algorithm ?? works and to show the number of operations needed to bound
its worst-case running time.

Example 1 Let us take β = 2
3 , |Ts| = 10, b(1−β)|Ts|c = 3, cs = 0.1 and the assets

A = {a1, a2, a3, a4}. We �x a given portfolio x = (xa)a∈A = (0.10, 0.25, 0.25, 0.4).
Consider the table ?? of individual returns under the scenario s corresponding to
ten given time periods.

rt,a 1 2 3 4 5 6 7 8 9 10
a1 -0.83 -0.22 -0.28 -0.83 -0.60 0.02 -0.60 -0.28 -0.22 -0.69
a2 -0.60 -0.68 0.00 -0.53 -0.32 0.30 -0.43 0.13 0.09 -0.01
a3 -0.22 0.38 0.48 0.65 -0.30 0.55 -0.27 0.67 0.69 0.36
a4 0.28 0.09 0.55 0.55 0.30 0.04 -0.08 -0.02 0.46 0.33
−

∑
a∈A rtaxa 0.18 0.06 -0.31 -0.17 0.09 -0.23 0.27 -0.16 -0.36 -0.15

Table 1: Values of rta for t ∈ Ts and a ∈ A.

In order to apply Algorithm ?? it is �rst needed to compute the values δi and
rais of Table ?? with a O(|A|b(1− β)|Ts|c) number of elementary operations.

i 0 1 2 3 4
δi 0.30 -1.73 -1.05 -0.49 0.81
rais 0.00 -0.45 -0.21 0.30 0.25

Table 2: Values δi and rais for i = 0, 1, . . . , |A|.

Figure ?? depicts the function ϕT+
s

(u0s) for the values corresponding to Table
??.
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From Figure ?? one has that the step 5 of Algorithm ?? just will be executed
once since:

� In the step 4, k = 3, that is, ra3s = 0.30 is the maximum of the rais values,
then t = 2 because the slope δ3 = −0.49 occupies the third position in the
ordered sequence of slopes in increasing order.

� The value u∗s of step 5 is given by just computing two intersection values, the
one corresponding to the index i = (3) = 0 and the one corresponding to
i = (4) = 4. The minimum of these values are reached for the index j = 4,
hence k is actualized to the value k = 4 and t to the value t = 4.

� Taking into account that δ4 = 0.81 > 0, the stopping rule is veri�ed.

The following results states de worst-case running time of the above numerical
procedure. In order to simplify notation we will assume that |A| < |Ts|, which
seems to be natural in real applications.

Proposition 3 The worst-case complexity of Algorithm ?? is O(|A||Ts|).

Proof Step 2 requires |A|b(1−β)|Ts|c sums. Step 3 has a worst-case running time of
O(|A|log(|A|)) that can be achieved by algorithms like Merge-sort and Heapsort

(note that any ordering procedure has a lower bound of Ω(|A|log(|A|)) on its
asymptotic worst-case running time [?]). Step 4 needs O(|A|) operations while
Step 5 needs O(|A|2) in a worst-case. These upper bounds, together with the
assumption |A| < |Ts|, amount to the overall worst-case running time stated in
the proposition.

Remark 2 In [?] it is shown that the optimization problem in the right-hand-
side of (??) can be written as a linear problem with |A|+ 2 variables and 2|A|+ 1
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constraints which is solved in O(|A|) time since it is the dual of a linear multiple-
choice knapsack problem [?]. However, the computation of the coe�cients (slopes
and constant coe�cients) of the linear functions de�ning ϕT+

s
(u) in (??) requires

b(1−β)|Ts|c|A| elementary operations. Hence, the most e�cient way of computing
the upper bound given by (??) has O(b(1− β)|Ts|c|A|) running time complexity.
In particular, for a set of assets A with |A| = O(b(1 − β)|Ts|c|A|), the algorithm
?? reaches the best worst-case running time bound.

To end this section we will show how can the proposed bounds be integrated
together with the formulation (??) into an iterative procedure to solve our problem.
The main advantage of this procedure is that just a subset of values z∗s needs to
be computed and only a subset of the constraints of (??), linked to sets of time
periods Qs have to be explicitly generated.

5.3 Iterative procedure

Solving the LP problem (??) requires having the optimal values z∗s of the nominal
problem (??) for each s ∈ S and the exponential number of CVaR constraints to
de�ne the feasible solutions. Both requirements can be very expensive in terms of
computational time and space. However, it is very likely that a large amount of
these constraints were redundant since they are not really bounding the objective
function nor constraining the feasible set. So, there is no need to formulate the
problem (??) in its extensive form, that is, with all CVaR constraints and the
maximum return under each scenario. Rather, we can formulate and solve a relaxed
problem using only some scenarios and constraints. Then we can test whether the
incumbent solution is unfeasible, and, in case, adding a separating constraint to the
model. In this way, we can implement an iterative procedure in which LP problems
of much more moderate sizes are solved in each iteration, until optimality can be
certi�ed. ore formally, let S0 ⊆ S and Q0 ⊆

⋃
sQs be scenarios and CVaR subsets

of constraints of (??). Then, the relaxed formulation of the (??) model can be
stated as follows

R∗(S0, Q0) = min ρ

s.t.

ρ ≥ z∗s −
∑
a∈A

r̄asxa, for all s ∈ S0,

rt =
∑
a∈A

ratxa, for all t ∈
⋃

s∈S Ts

1

b(1− β)|Ts|c
∑
t∈Q

(−rt) ≤ cs, for all Q ∈ Q0

∑
a∈A

xa ≤ 1,

xa ≥ 0, for all a ∈ A.

(MRP-R)

At the beginning, we use only one scenario, S0 = {s}, and no CVaR constraint,
Q0 = ∅. After solving the relaxed formulation (??), we obtain the �rst unfeasible
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solution xbegin. Applying the separation subroutine of Algorithm (??) to all s ∈
S, we progressively introduce new constraints in Q0, until we �nd a solution x
satisfying the CVaR constraints for all scenario s ∈ S. Then, we calculate the
regret upper bound for all s ∈ S − S0 using Algorithm ?? and, if for some s the
upper bound is greater than the incumbent regret, we update S0 with s. Model
(??) is optimized again and the new solution x is checked for CVaR feasibility
�rst, and regret bound then, until optimality can be certi�ed.

The proposed scheme has four main advantages:

1. It is not required solving (??) for each s ∈ S.
2. It is not required to formulate all CVaR constraints, that even though are

polynomial in (??) or (??), they are of a huge size.
3. The optimality of a tentative portfolio can be certi�ed before all the scenarios

of S are included in S0.
4. In each iteration it is updated an upper bound on the gap on the maximum

regret incurred if the approximate portfolio were implemented. This allows us
ending the computations when a reasonable accuracy is reached.

5. The algorithm is a natural way of handling the continuous incoming of eco-
nomic information in the format of new scenarios of S.

Here we describe how we calculate the bounds on the regret under any scenario
s ∈ S − S0.

Proposition 4 After solving the problem (??) for a subset of scenarios S0 ⊆ S
and a family of subsets of indices Q0 one has a valid lower bound on the optimal
objective of the problem (??), that is,

R∗(S0, Q0) ≤ R∗(S), ∀S0 ⊆ S.

Proof First, if S0 ⊆ S one has R∗(S0, Q0) ≤ R∗(S0) since (??) is a relaxation of
(??). On the other hand, as

max
s∈S0
{z∗s − Es(x)} ≤ max

s∈S
{z∗s − Es(x)}, ∀x,

and X (S0) ⊇ X (S) it directly follows that R∗(S0) ≤ R∗(S).

Now we will upper bound the optimal objective of the problem (??) by using
the bounds of the subsection ??. The following expression is used later

γ0
s =

{
z∗s if s ∈ S0,

min
u0s≥0

ϕT+
s

(u0s) if s /∈ S0, (18)

where x0 is an optimal solution of Problem (??) and T+
s is the set of b(1−β)|Ts|c

time periods of the highest losses for the portfolio x0 under the scenario s ∈ S
(de�ned in Section ??).

Remark 3 Computing the value γ0
s for a scenario s /∈ S0 just requires a compu-

tational e�ort of O(|A||Ts|) by Proposition ??.

The following result states an upper bound on the optimal value of the problem
(??).
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Proposition 5 Let x0 be an optimal solution of Problem (??), the following in-
equality holds

R(S0, Q0) := max
s∈S

{
γ0
s −min

s̄∈S

{
c∗s̄

max{c∗s̄ ,CVaRs̄(x0)}

}∑
a∈A

r̄asx
0
a

}
≥ R∗(S),

where γ0
s is de�ned by (??).

Proof First note that (??) implies the feasibility of the portfolio

min
s̄∈S

{
c∗s̄

max{c∗s̄ ,CVaRs̄(x0)}

}
x0 ∈ X (S),

then, using (??) one has that γ0
s is an upper bound on the maximum return under

s ∈ S, which implies the result.

Propositions ?? and ?? give us a procedure to bound the optimal objective
value of our minmax regret problem (??) from a subset of scenarios S0. Further-
more, if the upper bound R(S0, Q0) is reached at a scenario s0 in S0 and x0 is a
feasible portfolio of X (S) we can certify the optimality of x0. This is true due to
the following chain of inequalities

R∗(S0, Q0) ≤ R∗(S) ≤ R(x0, S) = R(S0, Q0) = z∗s −
∑
a∈A

r̄asx
0
a ≤ R∗(S0, Q0).

� The �rst inequality is true from the fact that (??) is a relaxation of (??),
� the second one is due to the feasibility of x0 and
� the last inequality follows from the fact that s0 is supposed to belong to S0

and the structure of the �rst block of constraints of (??).

Hence, as the �rst and last values of the above chain of inequalities are the same
we have the optimality of x0 which is stated in the following

Proposition 6 Given a subset of scenarios S0 ⊆ S, a subset of CVaR constraints
Q0and x0 an optimal solution of Problem (??) if the upper bound R(S0, Q0) is
reached at a scenario s0 in S0 and x0 is a feasible portfolio of X (S) we can certify
the optimality of x0.

To end this section we will propose a numerical procedure whose main opera-
tions are stated as Algorithm ??.

This is an iterative procedure in which the problem (??) will be sequentially
solved for an increasing set of constraints, labeled by Q0 and separated in Line 7
until the portfolio is feasible. Then scenarios of S0 are increased, until the stopping
rule of Proposition ?? can be applied (line 10 of Algorithm ??).

Our procedure combines

� a partial description of the feasible set of the minmax regret portfolio problem
(??) by using the formulation (??)

� and the bounds on the optimal value of that problem (??) obtained by means
of the dual (??) of the linearization (??).
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Formulation (??) allows us to �nd good candidate portfolios by solving a for-
mulation not as heavy as the linear formulation (??). After checking optimality of
that candidate according to Proposition ??, the algorithm is stopped or it contin-
ues solving a new version of (??) in which S0 and Q0 are augmented. In both cases
we use Proposition ?? where feasibility is contrasted as in Algorithm ??. Since in
each iteration the set S0 and Q0 are strictly augmented and the cardinality of
both sets is bounded, it is obvious that this procedure ends in a �nite number of
iterations with the optimal solution.

Algorithm 3 Iterative procedure

1: Initialize the set S0 ← {s}.
2: Initialize the set Q0 ← ∅.
3: Initialize x0 as unfeasible.
4: while x0 is not optimal do
5: Solve the problem (??) and let x0 be the optimal solution.
6: if search_cvar_violation(q) = True then
7: Q0 ← Q0 ∪ q (q is a violated constraint).
8: else
9: if search_regret_violation(s) = True then
10: S0 ← S0 ∪ s (s is a violated scenario).
11: else
12: x0 is optimal.

13: procedure search_cvar_violation(q)
14: search_cvar_violation ← False.
15: for s ∈ S do
16: Apply separation subroutine with input Ts, cs:
17: if q is violated constraint: then
18: search_cvar_violation ← True.
19: return q.

20: procedure search_regret_violation(s)
21: search_regret_violation ← False.
22: for s ∈ S − S0 do
23: γs ← minu0s≥0 ϕT+

s
(u0s)

24: Rs ← γs −
∑
a∈A r̄as0x

0
a.

25: if Rs −R∗(S0) > ε then
26: search_regret_violation ← True
27: return s.

6 Computational results

Computational experiments are twofold. Firstly, we want to compare numerical
procedures to solve the models (??), (??) and (??) to establish if there exists one
of them outperforming clearly the other methods. Secondly, we want to apply an
optimal minmax-regret portfolio to real �nancial data in order to check features
as the diversi�cation of the investment expecting to hedge the decision maker's
exposure to future event risk. This should be guaranteed in those cases in which
these future events share, in some way, the economic pattern with at least one of
the scenarios considered in the model.

We compare the computational aspects of three numerical procedures to solve:

� Model (??), (labeled as LP 1 in following tables): The characteristic of this
procedure is that it works in two phases. In the �rst phase, z∗s are computed
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for all scenarios s ∈ S, using formulation (??), and then the LP formulation
(??) is solved.

� Model (??) (labeled as LP 2 in following tables): Its characteristic is that
it is a compact formulation. Here, optimal zs's are replaced by their dual
representation, so that a single LP problem is to be solved. The method avoids
to solve explicitly the LP models associated to the scenarios, but at the cost
of requiring more constraints and variables.

� Model (??) (labeled as LP 3 in following tables): Its characteristic is that
scenarios and constraints are inserted as Benders cuts only when e�ectively
needed by the formulation, as described in Algorithm ??. Since not all CVaR
constraints and all scenarios are necessary to bound the objective function, the
model can save constraints and variables.

Tests are run using Julia 1.0.3 and its package JuMP for algebraic modeling,
GuRoBi 8.0.1 as linear solver, in a PC equipped with an Intel Core i5-6200U CPU.
We considered �nancial problems with |T | = 200 past observations of some asset
set A. Scenarios Ts consist of l consecutive time periods that begin on tui and end
on tli. The size of the considered scenarios, that is, tli − tui + 1, is a random value
chosen between 50 and 100.

There are several reasons by which we have made this naive selection of the
scenarios. First, our main goal in this section is the analysis of the computational
behaviour of di�erent numerical procedures developed in previous section in order
to solve the minmax regret problem (??). In this sense, we try to design neu-
tral instances of the problem by selecting subsets of time periods with a random
mechanism instead of taking advantage of the speci�c nature of the economic data
in order to select a set of scenarios which can bene�t to the computational per-
formance of the numerical algorithms. On the other hand, this way of selecting
scenarios could be a type of blind selection which may be done by an inexpert
decision maker in order to try to capture di�erent economic patterns or changes
in the economic cycle of the market against which she want to be hedged.

The benchmark that we used to calculate the CVaR bounds cs is the 1/N port-
folio: On time t, the 1/N portfolio benchmark return is rbt = 1/N(

∑
a∈A rat), so

that cs = CV aR[rbt |t ∈ Ts] for all s ∈ S. The use of the 1/N benchmarks has been
already used in [?] and motivated by the fact that the 1/N portfolio is a �nancial
benchmark that obtain good returns even through maximum diversi�cation, see
[?].

The return data R is simulated by using one of the two following procedures.
In the �rst one, returns rta are random uniform values between -0.5 and 0.5. In
the second procedure, rta are real daily stock market returns. We motivated this
choice because past experiments showed that the two simulated sets can have
di�erent computational properties, see [?]. The tolerance threshold has been �xed
to ε = 10−4, as this value is su�cient to calculate the same optimal portfolio in
all three model versions.

In Table (??), we report some computational features corresponding to the
three models when the input are random returns, while in Table (??) and (??) we
report results obtained when the inputs are real returns. To compare the methods,
we considered the total numbers of LP iterations needed to �nd the optimum
(including the ones necessary to compute z∗s in LP1 and LP3). We also show
the overall computational times, expressed in seconds, and �nally, in the columns
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headed size, the pair (m,n) reports the number of variables m and constraints n
that have been necessary to formulate the LP models.

We will analyze how computation time and memory requirements change with
the increase of the number of scenarios, ranging from s = 20 to s = 500 and �xing
the number of assets to |A| = 5 and |A| = 30. When we look at the computational
results on random data in Table (??), Model (??) is the one requiring less iterations
to calculate the optimum, and this happens for all scenarios size. However, the
result is not con�rmed when using an input of real �nancial return, see Tables ??
and ??, in which the Model (??) is the one using less iterations instead. When
we look at the computational times, we can see that the compact formulation of
Model (??) is the fastest method even though sometimes it takes more iterations
and its corresponding formulation has the largest size. It can be the case that
this model take advantage of delegating all computational e�orts to the LP solver,
avoiding the computational overhead of communicating processes. In any case, all
the instances are solved in a reasonable time, less than 8 seconds of CPU time
even when the number of scenarios is as large as s = 500.

It is interesting to compare the number of constraints and variables that were
required by the three LP models, as this correspond to the most e�cient use of the
PC memory. As can be seen, the size of LP1 and LP2 is very large, its numerical
magnitude is 104 in the largest models, while the LP3 formulation remains very
compact, with order 102. The number of variables does not depend on the number
of scenarios, and only a very small number of Benders cuts are needed to describe
the feasible region.

6.1 Application to real �nancial data

In this section, we apply the regret model to real �nancial data and decision-
making, to see what are the main features of the minmax regret model, compared
to the standard CVaR model, in which optimization is carried out on a single
scenario. We considered the data coming from the Milan Stock market, that have
been previously used to compare di�erent models in [?]. These data are made up
of returns calculated from daily market prices of the 60 main Italian companies,
that have been traded in the period from March 2003 to March 2008, for a whole
of 1305 trading days. We simulate a decision maker that re-balances its portfolio
every 20 days (called the rolling window), with the purpose of maximizing her
future wealth, and we compare the �nancial results of the plain CVaR model with
the models in which there are multiple scenarios.

The CVaR model of this simulation is run with α = 0.10 (corresponding to
β = 0.90), and in which the CVaR has been estimated through t = 120 past
observations. Then, as scenarios, the minmax regret uses the subsets composed
of t past consecutive returns, evenly spaced by l periods. More formally, let T be
the index corresponding to the most recent observed returns, then a scenario s is
composed of returns ranging from tls = T − t+ 1− (s− 1)l to tus = T − (s− 1)l,
with s = 1, . . . , S. For s = 1, we have the plain CVaR model.

As in the previous subsection, to calculate CVaR bounds cs we use the 1/N
portfolio, for which in time t the return is rbt = 1/N(

∑
a∈A rat). Then, we calculate

cs = CV aR[rbt |t ∈ Ts] for all s ∈ S.
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Table 3: Computational results with random returns, |A| = 5.

Iterations Times Sizes
Scenarios LP1 LP2 LP3 LP1 LP2 LP3 LP1 LP2 LP3
20 438 616 272 0.108 0.044 0.181 2026, 1441 6066, 2961 206, 232
40 809 1140 462 0.200 0.099 0.320 4046, 3001 12126, 6161 206, 260
60 1199 1270 588 0.291 0.132 0.476 6066, 4421 18186, 9081 206, 257
80 1557 2093 422 0.437 0.271 0.504 8086, 6071 24246, 12461 206, 238
100 1867 2505 924 0.528 0.258 0.783 10106, 7581 30306, 15561 206, 293
120 2202 2580 846 0.605 0.285 0.869 12126, 8931 36366, 18341 206, 285
140 2325 2990 722 0.731 0.384 1.046 14146, 10331 42426, 21221 206, 285
160 3248 3698 807 0.809 0.398 1.021 16166, 12041 48486, 24721 206, 312
180 2229 3869 1537 0.902 0.449 1.500 18186, 13571 54546, 27861 206, 340
200 3312 4411 984 0.978 0.524 1.198 20206, 14651 60606, 30101 206, 291
220 2722 4326 1770 0.944 0.595 1.687 22226, 16621 66666, 34121 206, 384
240 3035 5133 1779 1.034 0.631 1.685 24246, 17621 72726, 36201 206, 368
260 4325 6284 1604 1.187 0.737 1.687 26266, 19221 78786, 39481 206, 343
280 4929 5980 1878 1.272 0.805 1.950 28286, 20941 84846, 43001 206, 368
300 4353 6991 1420 1.304 0.838 1.751 30306, 22591 90906, 46381 206, 318
320 5332 7750 1611 1.451 0.898 1.898 32326, 23791 96966, 48861 206, 333
340 5420 8358 1111 1.509 0.998 1.837 34346, 25231 103026, 51821 206, 328
360 6453 7535 1771 1.611 1.045 2.254 36366, 26761 109086, 54961 206, 388
380 6221 8093 2049 1.711 1.182 2.392 38386, 28231 115146, 57981 206, 380
400 6482 8488 1865 1.841 1.275 2.409 40406, 29721 121206, 61041 206, 377
420 5287 8393 2853 1.825 1.236 3.165 42426, 31231 127266, 64141 206, 435
440 7142 9817 1962 1.937 1.487 2.857 44446, 32671 133326, 67101 206, 377
460 6735 10154 2255 2.061 1.396 2.910 46466, 34121 139386, 70081 206, 412
480 7721 10464 1997 2.169 1.634 2.849 48486, 35821 145446, 73561 206, 377
500 7961 11028 1825 2.289 1.679 2.911 50506, 37231 151506, 76461 206, 391

In Figures (??), it can be seen the temporal behavior of the CVaR and the
minmax regret portfolios with respect to the benchmark of the 1/N portfolio. As
can be seen, and as already remarked in [?], the CVaR model (the active strategy)
obtains higher returns than the 1/N model (the passive strategy). The novelty
here is that, when we use the minmax regret, again we �nd that this model still
outperforms the 1/N portfolio for all scenarios |S|, as can be seen in Figures (??)
(b), (c), and (d). Quantitative comparison between the models are reported in
Table (??, in which results for models with |S| scenarios are labeled |S|_sc. As
can be seen, increasing the number of scenarios does not modify signi�cantly the
mean and the median of the realized pro�ts, but the variability of the realized
pro�ts decreases sharply. As can be seen, the maximum portfolio loss decreases
from -6.02% to -5.42% and the maximum portfolio gain decreases as well, from
7.15% to 4.46%. Quartile measures (the 1st and the 3rd) decreases too.

Next we analyze the e�ect of the minmax regret model on the portfolio di-
versi�cation and turnover. In our previous tests, [?], we measured the portfolio
diversi�cation through the Her�ndahl-Hirschman (HH) and the Max index, and
the smaller the values, the most the portfolio is diversi�ed. In Table ??, it can be
seen that the e�ect of the minmax regret is to increase the portfolio diversi�ca-
tion, an e�ect that is readily observable even when we are using just two scenarios.
Then, as we increase the number of scenarios, we obtain more diversi�ed portfo-
lios, but the e�ect is less signi�cative. Those numbers can be compared with the
ones obtained using the median portfolio, [?], where the diversi�cation was slightly
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Table 4: Computational results with real returns, |A| = 5

Iterations Times Sizes
Scenarios LP1 LP2 LP3 LP1 LP2 LP3 LP1 LP2 LP3
20 813 477 502 0.102 0.048 0.183 2026, 1481 6066, 3041 206, 251
40 1441 1103 932 0.215 0.162 0.364 4046, 2781 12126, 5721 206, 282
60 2197 1300 1590 0.345 0.251 0.586 6066, 4691 18186, 9621 206, 332
80 2648 1534 1912 0.408 0.314 0.698 8086, 5951 24246, 12221 206, 337
100 3170 1796 2360 0.585 0.255 0.908 10106, 7421 30306, 15241 206, 374
120 3881 1951 2976 0.737 0.403 1.189 12126, 8901 36366, 18281 206, 414
140 4373 2488 3237 0.991 0.451 1.261 14146, 10351 42426, 21261 206, 400
160 5031 3217 3662 1.010 0.494 1.391 16166, 12141 48486, 24921 206, 395
180 5919 2983 4210 1.031 0.525 1.722 18186, 13511 54546, 27741 206, 468
200 6182 3757 4615 1.489 0.744 1.939 20206, 14801 60606, 30401 206, 473
220 7426 4284 5191 1.242 0.832 2.324 22226, 16411 66666, 33701 206, 501
240 8652 4209 5603 1.245 0.677 2.302 24246, 17821 72726, 36601 206, 508
260 7972 4910 6135 1.422 1.168 2.500 26266, 19841 78786, 40721 206, 530
280 8166 4680 6353 1.645 1.080 2.836 28286, 20601 84846, 42321 206, 542
300 8955 4223 6931 1.627 1.149 2.956 30306, 22371 90906, 45941 206, 578
320 9349 6931 6984 1.693 1.244 3.136 32326, 23821 96966, 48921 206, 569
340 10623 6163 7895 1.833 1.668 3.439 34346, 25561 103026, 52481 206, 602
360 10404 5877 8072 1.955 1.586 3.716 36366, 26641 109086, 54721 206, 648
380 11637 6299 8453 1.917 1.571 4.021 38386, 28351 115146, 58221 206, 625
400 11745 7962 8957 1.955 1.803 4.171 40406, 29611 121206, 60821 206, 672
420 13208 8624 9293 2.126 1.828 4.294 42426, 31201 127266, 64081 206, 655
440 13110 7139 9850 2.251 2.286 4.595 44446, 32781 133326, 67321 206, 687
460 13750 8062 10329 2.398 2.419 4.838 46466, 34251 139386, 70341 206, 702
480 14233 6673 10955 2.544 2.250 5.263 48486, 35771 145446, 73461 206, 738
500 14771 6964 11246 2.621 2.135 5.450 50506, 37211 151506, 76421 206, 770

over. Next, we analyze the average of the portfolio turnover, that is the percentage
of the portfolio that is sold in every re-balancing period. Its value can range from
0, when there is no re-balancing, to 1, when all the portfolio is sold. For the same
level of return, usually portfolio managers prefer less turnover, as it implies less
transaction costs. In Table ??, we can see that the minmax regret portfolio is a
more conservative strategy than CVaR: The latter required that more than 50%
of the portfolio is reallocated on average and in every re-balancing period, while
the minmax regret investment decreases this quantity to 36% on average.

In conclusion, the experimental results on �nancial data are suggesting that
the minmax regret decreases the return variability while maintaining the realized
pro�ts approximately to the same level. Moreover, the minmax regret is character-
ized by more diversi�cation and less turnover than the CVaR. It is worth to note
that this results has been obtained using a very simple rule-of-thumb to generate
scenarios, that is, using a rolling window on the past days and without any attempt
to detect the adverse scenarios that the decision maker may wish to hedge.
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Table 5: Computational results with real returns, |A| = 30

Iterations Times Sizes
Scenarios LP1 LP2 LP3 LP1 LP2 LP3 LP1 LP2 LP3
20 754 547 564 0.148 0.101 0.289 2051, 1481 6091, 3541 231, 309
40 1066 961 765 0.269 0.270 0.453 4071, 2781 12151, 6721 231, 332
60 2125 1526 1663 0.503 0.511 0.932 6091, 4691 18211, 11121 231, 476
80 2341 1501 1758 0.575 0.606 1.045 8111, 5951 24271, 14221 231, 384
100 3123 1643 2274 0.847 0.752 1.297 10131, 7421 30331, 17741 231, 459
120 3901 1983 2876 0.989 0.769 1.623 12151, 8901 36391, 21281 231, 557
140 4383 1814 2843 1.262 0.933 1.746 14171, 10351 42451, 24761 231, 450
160 6061 2425 3345 1.500 1.074 2.105 16191, 12141 48511, 28921 231, 463
180 6411 2172 3761 1.726 1.245 2.379 18211, 13511 54571, 32241 231, 578
200 6080 3016 4152 1.755 1.431 2.696 20231, 14801 60631, 35401 231, 585
220 8471 2722 4323 1.928 1.459 2.855 22251, 16411 66691, 39201 231, 570
240 10006 3663 4715 2.156 1.963 3.140 24271, 17821 72751, 42601 231, 601
260 8229 3736 4841 2.321 1.843 3.319 26291, 19841 78811, 47221 231, 614
280 10079 3109 5175 2.390 1.992 3.615 28311, 20601 84871, 49321 231, 641
300 10051 3625 5818 2.589 2.183 4.108 30331, 22371 90931, 53441 231, 688
320 11138 4362 5633 2.935 2.318 4.514 32351, 23821 96991, 56921 231, 634
340 12741 4663 5883 2.981 2.534 4.476 34371, 25561 103051, 60981 231, 653
360 14492 4416 6193 3.376 2.996 4.906 36391, 26641 109111, 63721 231, 673
380 13344 5442 6429 3.347 3.151 5.091 38411, 28351 115171, 67721 231, 696
400 14506 4658 6755 3.544 3.019 5.389 40431, 29611 121231, 70821 231, 704
420 13403 5142 7211 3.597 3.381 5.917 42451, 31201 127291, 74581 231, 744
440 15268 5885 7739 4.088 3.728 6.315 44471, 32781 133351, 78321 231, 777
460 16594 5360 7755 4.279 3.591 6.643 46491, 34251 139411, 81841 231, 736
480 16135 5825 7318 4.612 3.808 6.667 48511, 35771 145471, 85461 231, 731
500 17138 8010 8678 4.656 4.792 7.356 50531, 37211 151531, 88921 231, 819

Table 6: Portfolio return distribution as the number of scenarios increases.

Model Min. 1st Qu. Median Mean 3rd Qu. Max.
CVaR -6.99 -0.54 0.08 0.09 0.72 7.15
2_sc -6.02 -0.48 0.10 0.09 0.71 5.00
3_sc -6.00 -0.46 0.07 0.08 0.68 4.75
4_sc -6.23 -0.45 0.09 0.08 0.69 4.96
5_sc -5.70 -0.43 0.09 0.09 0.69 4.61
6_sc -5.44 -0.42 0.09 0.09 0.70 4.47
7_sc -5.48 -0.42 0.11 0.10 0.70 4.32
8_sc -5.48 -0.40 0.10 0.09 0.68 4.46

Table 7: Portfolio indexes as the number of scenarios increases.

Model H index Max index Turn over
CVaR 0.435 0.546 0.524
2_sc 0.287 0.399 0.461
3_sc 0.279 0.381 0.413
4_sc 0.259 0.361 0.391
5_sc 0.244 0.351 0.387
6_sc 0.229 0.335 0.357
7_sc 0.221 0.325 0.367
8_sc 0.217 0.322 0.369
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Fig. 2: Comparison between the Scenarios (dotted lines) and the Equal Weight
portfolios (dark line)

7 Concluding remarks

In this paper a new portfolio optimization model is studied in which the decision
maker is hedged against market uncertainties by using two di�erent safeguards:

� The minimization of a discrepancy measure (regret) between our portfolio per-
formance and the optimal one under each possible of the considered market
scenarios.

� A set of constraints on the allowed conditional Value-at-Risk under this set of
scenarios.

In the literature we can �nd enough examples about how the CVaR measure can
be adapted to the decision maker attitude to risk. As was said in the paper, the
parameter β ∈ (0, 1) can be de�ned by the investor under the premise that the
larger the β-level is, the more aversion to risk will be transferred to the optimization
model.
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More novelty implications are carried out by including the minmax regret safe-
guard to the model in particular in what is referred to the choice of the set of
scenarios. Here, the decision maker can use her previous knowledge on the market
conditions to construct the set of scenarios in a strategic way. In our paper we just
use a plain rule-of-thumb of a constant rolling window on past data to de�ne these
scenarios. It would be interesting to explore the possibility of modeling scenarios
under di�erent technical criteria about the market conditions and compare the
�nancial properties transferred to the corresponding proposed portfolios.

Another interesting idea is the automatization of that process of selecting sce-
narios from data. A number of clustering techniques formalize the notion of clusters
through the probability distribution of the corresponding sample of economic vari-
ables. These so-called model-based tools (see [?] and the references therein) will
classify our data set of economic indicators into a �nite set of scenarios in which
the corresponding set of data values may be considered as a sample of independent
and identically distributed random vectors. In our paper, these economic indicators
have been given through variations of the asset prices during speci�c trading peri-
ods (returns). In this way, for any given portfolio, we can obtain random samples
of our speci�c e�ectiveness measure allowing us to approximate theoretical (under
known random distributions) measures as means, medians, variances or quantiles
using the corresponding sample estimators and the law of large numbers.

Regarding the computational applications of our model to real data, we have
analyzed three di�erent Linear Programming formulations by conducting several
empirical experiments. While the numerical results show that all of them can be
solved e�ciently under large sets of historical data and a considerable number of
scenarios, we have also highlighted several di�erences. The observed di�erences
mainly refer to the number of iterations needed by the solver, the amount of mem-
ory used due to the size of the di�erent formulations and the CPU times. This may
suggest that di�erent formulations should be use in di�erent situations according
to our computational resources or the speed of action needed. In any case, what
has been clearly evidenced by our study is that the proposed portfolios improve
the experimental ex-post risk, as they are more diversi�ed than the standard port-
folios. This opens new research lines in which the model can be extended to other
risk measures, such that standard deviation, maximum loss, Value-at-Risk or Gini
index, and other e�ciency measures, such as the median instead of the mean.
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