
The marriage between safety and cybersecurity:
still practicing F

Marielle Stoelinga1,2 , Christina Kolb1, Stefano M. Nicoletti1 ,
Carlos E. Budde1 , and Ernst Moritz Hahn1

1 Formal Methods and Tools, University of Twente, Enschede, the Netherlands
{m.i.a.stoelinga,c.kolb,s.m.nicoletti,c.e.budde,e.m.hahn}@utwente.nl

2 Department of Software Science, Radboud University, Nijmegen, the Netherlands

Abstract Emerging technologies, like self-driving cars, drones, and the
Internet-of-Things must not impose threats to people, neither due to
accidental failures (safety), nor due to malicious attacks (security). As
historically separated fields, safety and security are often analyzed in
isolation. They are, however, heavily intertwined: measures that increase
safety often decrease security and vice versa. Also, security vulnerab-
ilities often cause safety hazards, e.g. in autonomous cars. Therefore,
for effective decision-making, safety and security must be considered in
combination.
This paper discusses three major challenges that a successful integration
of safety and security faces: (1) The complex interaction between safety
and security (2) The lack of efficient algorithms to compute system-
level risk metrics (3) The lack of proper risk quantification methods.
We will point out several research directions to tackle these challenges,
exploiting novel combinations of mathematical game theory, stochastic
model checking, as well as the Bayesian, fuzzy, and Dempster-Schafer
frameworks for uncertainty reasoning. Finally, we report on early results
in these directions.

Keywords: safety, security, model-based, interaction, Fault Trees, At-
tack Trees, Fault Tree-Attack Tree Integration

1 Introduction

New technology comes with new risks: drones may drop on to people, self-driving
cars may get hacked, medical implants may leak in people’s body. Such risks
concern both accidental failures (safety) and malicious attacks (security). Here,
security refers to the property that allows the system to perform its mission
or critical functions despite risks posed by threats [74]. Safety, in contrast, is
the absence of risk of harm due to malfunctioning behavior of technological
systems [82].

Safety and security are heavily intertwined. Measures that increase safety
may decrease security and vice versa: the Internet-of-Things offers ample oppor-
tunities to monitor the safety of a power plant, but their many access points are
FThis work was partially funded by ERC Consolidator Grant 864075 (CAESAR).

http://orcid.org/0000-0001-6793-8165
http://orcid.org/0000-0001-5522-4798
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-9348-7684


2 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

notorious for enabling hackers to enter the system. Passwords secure patients’
medical data, but are a hindrance during emergencies. It is therefore widely ac-
knowledged, also by international risk standards [64, 103], that safety and secur-
ity must be analyzed in combination [9, 97]. The overarching challenge in safety
and security risk management is decision making: which risks are most threat-
ening, and which countermeasures are most (cost-)effective? Such decisions are
notoriously hard to take: it is well-known (e.g. from Nobel prize winner Daniel
Kahneman [71]) that people, have very poor intuitions for risks and probability.

Vision. To make effective decisions, risk management should be accountable.
1. systematic, so that no risks are overlooked;
2. transparent, so that experts can share and discuss their viewpoints;
3. objective, i.e. based on recorded facts and figures, rather than on (fallible)

intuitions.

Hurdles. Tough hurdles that have hindered the effective integration of safety
and security [3, 82] are their opposite perspectives on:

H1. User intention: safety concerns unintended mishaps, while security is about
malicious attacks.

H2. Dynamics: Whereas safety analysis is often static, developing design-time
solutions; security demands constant defence against new vulnerabilities.

H3. Risk quantification: Whereas safety analysis can fruitfully exploit historic
failure data, risk quantification for security is a major open problem. With
hackers continuously changing their targets and strategies, historic data is
of little value. Therefore, security decisions are often based on subjective
estimates.

The demanding challenge in safety-security co-analysis is to overarch these dia-
metrical viewpoints.

Challenges. To overcome these hurdles above and make decision making about
safety and security less ad hoc, and more systematic, transparent, and quantit-
ative, three challenges have to be solved.

– A systematic way to map safety and security risks, identifying how failures
and vulnerabilities propagate through the system and lead to system level
disruptions.

– Effective algorithms to compute system level risk safety and security metrics,
together with diagnostic algorithms that explain how such metrics arise, and
how one could improve these.

– Novel risk quantification methods. Reliable numbers are indispensable in de-
cision making. Since objective data is often not available, we need algorithms
that reason under uncertainty.



The marriage between safety and cybersecurity: still practicing 3

The ERC project CAESAR. The ERC-funded project CAESAR picks up
the challenges above, exploring three novel directions:

1. Game-theoretic methods uniting the cooperative versus malicious user inten-
tion in safety versus security (H1). Our aim is to model the attacker versus
defender as two players in a stochastic game. We will focus on a time de-
pendent game (H2) that faithfully models the complex interaction between
safety and security aspects.

2. Stochastic model checking techniques to compute safety-security risk metrics.
Metrics are pivotal to prioritize risks and select effective countermeasures, as
they clarify how failures and attacks affect system-level performance. Since
risk is defined as a combination of likelihood and severity, metrics are sto-
chastic by nature. Apart from computing numbers, we will also elucidate
how these numbers arise.

3. Risk quantification methods that handle data uncertainty. Effective decision
making requires insight in the most frequent failures and attacks. Since ob-
jective data is scarce, security decisions are often based on subjective estim-
ates. We will combine objective and subjective probabilities, exploiting three
prominent frameworks for data uncertainty: Bayesian reasoning, fuzzy logic
and Dempster-Schafer theory. These explicate the underlying assumptions
and (dis)agreements about risks.

Contributions. This paper outlines the first results and the approach taken in
CAESAR: we present findings of a literature survey, where we compare existing
formalisms for safety-security co-analysis and identify several gaps. An important
outcome of our survey is that most of these formalisms are based on various
combinations of the popular formalisms of attack trees for security analysis and
fault trees for safety analysis. One important instance of a research gap is that in
fault trees and attack trees OR-gates are interpreted in a different manner. This
difference in interpretation is not considered in current analysis algorithms. To
obtain a unified framework for safety and security building on these mechanisms,
we thus have to unify the interpretation of such gates. Afterwards, we outline how
CAESAR aims to solve such gaps. We discuss how recent results in attack tree
analysis provides results for tree-shaped attack trees and fault trees as well as a
formal semantics of DAG-shaped attack trees and fault trees. In these results,
we exploit methods based on binary decision diagrams. Throughout the paper,
we indicate current results as well a research gaps.

Organization of the paper. Section 1 has provided an introduction to this
paper. Section 2 provides some background on the interaction between safety and
security and on the two formalisms attack trees and fault trees. Section 3 pre-
sents an overview of formalisms of safety-security co-analysis. Section 4 provides
a comparison between attack trees and fault trees, highlighting similarities and
differences and defining metrics. Section 5 discusses analysis algorithms for at-
tack and fault trees. Section 6 concludes the paper.



4 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

2 Background

Attack trees and fault trees. Attack trees and fault trees are popular models
in dependability analysis, representing respectively how low-level attacks and
failures propagate through the system and lead to system-level disruptions. As
shown in Fig. 1, these are tree-like structures that culminate in a top level event
(TLE), which models a system-level failure or attack. The TLE is thus refined
via intermediate events, equipped with gates: the AND-gate indicates that all
children must fail (be attacked) in order for the gate to fail (be attacked). For
the OR-gate to fail (be attacked), at least one of its children need to fail (be
attacked). The leaves in a FT are called basic events (BEs) and model atomic
failures; the leaves in ATs model atomic attack steps, called basic attack steps
(BASs). Despite their names, FTs and ATs are directed acyclic graphs, since
intermediate events can share children.

Figure 1: Fault tree (left), attack tree (center) and their combination (right).
These represent respectively safety, security, and combined risks. In the FT, for
the intermediate event "locked in during fire" to happen, both a fire and the
door being locked have to occur, modelled through an AND-gate. In the AT,
for an attacker to breach the front door he/she needs to either walk through
an unlocked door or to force a locked door, modeled as an OR. On the right, a
possible combination of ATs and FTs in the attack fault trees formalism [126].

FTs and ATs enable numerous analysis methods [77]: Cut set analysis indic-
ates which combinations of BEs or BASs lead to the TLE. The set {Fire, Locked}
is a cut set in Figure 1. Quantitative analyses compute dependability metrics,
such as the system reliability, attack probabilities and costs. For example, by
equipping the BEs and BASs with probabilities, one can compute the likelihood
of a system level failure or attack to occur.

Both FTs and ATs are part of international standards [37] and have been used
to analyse numerous case studies [135, 50, 30]. FTs and ATs also feature some
differences: FTs often focus on probabilities, whereas ATs consider several other
attributes, like cost, effort and required skills. Further, FTs have been extended



The marriage between safety and cybersecurity: still practicing 5

with repairs [113], and dynamic gates [66, 43]; ATs with defenses, and sequential
AND (SAND) gates [76, 50].

Section 4 presents a more formal treatment of fault trees and attack trees,
and in particular their different quantitative interpretation of the OR-gate. Their
comparison is summarized in Table 3.
Safety-security dependencies. One of the key challenges in safety-security
co-analysis is to model their interaction. The paper [82] has identified four safety-
security dependencies:

– Conditional dependency means that fulfillment of safety requirements con-
ditions security or vice-versa.

– Mutual reinforcement means that fulfillment of safety requirements or safety
measures contributes to security, or vice-versa, thereby enabling resource
optimization and cost reduction.

– Antagonism arises when safety and security requirements or measures, con-
sidered jointly, lead to conflicting situations.

– Independency means that there is no interaction between safety and security
properties.

Figure 1 shows a classical example of antagonism: the door needs to be locked
in order to prevent an attacker from entering the house (security requirement),
but it has to be unlocked to allow the owner to escape during a fire (safety re-
quirement). In this scenario, mutual reinforcement can be achieved by introdu-
cing a fire door: this contributes to safety by limiting the spread of an eventual
fire and to security by increasing the robustness of the door, thus making it
harder to breach. Conditional dependency is, in our view, always present: for
the lock to ensure security, it must function properly. E.g., it must not break
when locking door. Similarly, safety solutions must be secure and not be hacked:
it must not be possible to easily force the door open.

3 Formalisms for safety-security co-analysis: an overview

3.1 The formalisms

As a first step in the CAESAR project, we carried out a literature survey [?],
comparing the most prominent formalisms for safety-security co-analysis. Via a
systematic literature search [25], which also considered earlier surveys on this
topic [82, 100, 33], we have identified 10 important formalisms for model-based
safety-security co-analysis. These are summarized in Table 1.

A first remarkable result of our survey is that the majority of safety-security
formalisms combines attack trees (ATs) and fault trees (FTs). ATs and FTs are
well established formalisms, extensively used in industry and academia. As pre-
viously mentioned, they are similar nature, and model respectively how failures
and attacks propagate through a system. In that sense, combining attack trees
and fault trees is a natural step. We further divided these approaches into two
categories (plain combinations and extended combinations). A third category
comprises architectural formalisms.



6 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

Formalism Ref. Year #Citations
Fault Tree/Attack Tree Integration (FT/AT) [49] 2009 170
Component Fault Trees (CFTs) [126] 2013 52
Attack-Fault Trees (AFTs) [83] 2017 56

State/Event Fault Trees (SEFTs) [110] 2013 25
Boolean Driven Markov Processes (BDMPs) [81] 2014 36
Attack Tree Bow-ties (ATBTs) [15] 2017 9

STAMP [52] 2017 120
SysML [104] 2011 72
Architectural Analysis and Design Language (AADL) [41] 2020 0
Bayesian Networks (BNs) [80] 2015 46

Table 1: Overview of safety-security formalisms. Citations from Google Scholar,
April 2021.

1. Plain combinations of attack trees and fault trees. These formalisms combine
attack trees and fault trees without adding additional constructs: fault tree/at-
tack trees (FT/AT) [49], which investigate how the a basic event of a FT can
be triggered by an attacker, refining these with ATs with the event in question
as goal, component fault trees (CFTs) [126] merge attack trees and fault trees
without any restrictions, Attack-Fault Trees (AFTs) [83] merge dynamic attack
trees and dynamic fault trees.

2. Extensions of attack trees-fault tree combinations. These merge attack trees,
fault trees with additional constructs: State/Event Fault Trees (SEFTs) [110]
exploit Petri nets to refine the basic attack steps in an attack tree and the basic
component failures in a fault tree. The Petri nets can for instance model that
the attack and failure behavior is different depending whether a door is open
or closed. Boolean Driven Markov Processes (BDMPs) [81] extend attack trees
and fault trees with both Petri nets and triggers. The latter model sequential
behaviour, where one fault or attack triggers another one. Finally, Attack Tree
Bow-ties (ATBTs) [15], extend bowties [99] with attack trees, where bowties
themselves combine fault trees with event trees.

3. Architectural formalisms and bayesian networks. Apart from combinations of
attack trees and fault trees, we identified a third category, containing formalisms
that take as a starting point the system architecture: The Systems-Theoretic
Accident Model and Processes (STAMP) [52], is an accident causality model,
rooted in the observation that system risks do not come from component fail-
ures, but rather from inadequate control or enforcement of safety and security
constraints. Systems-Theoretic Process Analysis then systematically identifies
the consequences of incorrect control and feedback actions, e.g., when these
happen too early, in the wrong order, or were maliciously inserted.

SysML-sec [111] extend the SysML modeling framework with safety and se-
curity requirements, which can be checked using model checkers. In particular,
SysML-sec supports the modelling of communication channels between processes
with the encryption methods and their complexity overhead.



The marriage between safety and cybersecurity: still practicing 7

The Architectural Analysis and Design Language (AADL) [41] enables safety
analysis, via the AADL error model, and security analysis via the AADL LAMP
extension. In this way the same AADL model can be separately analyzed to
investigate safety and security properties.

Finally, albeit somewhat artificially, we also put Bayesian Networks (BNs)
for safety-security analysis in this category [80]. This model allows to represent
probabilistic dependencies between several variables via a directed acyclic graph.
BNs are used to model safety and security dependencies. The two root nodes
represent system safety and security. BNs can analyze which nodes influence
other nodes and how (conditional independence analysis) calculate reliability
metrics.

3.2 Findings

The analysis we performed highlighted some notable findings, summarized in
Table 2. For each analyzed formalism we highlight the dependencies it captures,
its modeling constructs, the analysis types it enables, case studies that were
performed deploying this formalism and possible tools.

Formalism Dependencies Modelling Analysis Application Tool

A CD MR I QL QT

FT/AT ∗ → x ATs refine FT leaves x x Chemical plant
CFTs ∗ x x x Merge ATs + FTs x x Cruise control
AFTs x x x x Merge dynamic ATs + FTs x x Pipeline, lock door UPPAAL

SEFTs x → x x FTs + Petri nets x x Tyre pressure, lock door ESSaRel
BDMPs x x x x Triggers, Petri nets x x Pipeline, lock door KB3, Figaro
ATBTs ∗ → x Bowties + FT/AT x x Pipeline, Stuxnet

STAMP x Process controller x Synchronous-islanding
SysML System components x Embedded systems TTool
AADL x System components + ports x Lock door Cheddar, Marzhin
BNs x x x x Conditional prob. x x Pipeline MSBNx

Table 2: Comparison of safety-security formalisms. A= Antagonism, CD= Con-
ditional Dependency, MR=Mutual reinforcement, I=Independence. ∗ = capable
when NOT-gate is supported. → = capable but only directional from security
to safety.

Finding #1: The majority of approaches combine attack trees and
fault trees. As stated, six out of the ten formalisms combine attack trees and
fault trees. This is not surprising, since FTs and ATs are well established model-
based formalisms, extensively used both in industry and academia.
Finding #2: No novel modeling constructs are introduced. Despite the
shown combinations and extensions, existing safety-security co-analysis do not
introduce novel modeling constructs to capture safety-security interactions. They
do merge existing safety and security formalisms, however they do not add new
operators. As such, they are suited to represent safety and security features in
one model, but do not seem to appropriately capture the interaction between
them.



8 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

Finding #3: Safety-security interactions are still ill-understood. In
spite of the definitions provided in [82], we are convinced that safety-security
interactions can still be defined more thoroughly by adopting more rigour and
by focusing on requirements and events. In particular, it is not so clear to which
entities the safety-security interactions refer: do these concern safety-security
requirements, measures, or something else? Clarifying their definitions is a pre-
requisite for properly modeling safety-security interactions in a mathematical
formalism.
Finding #4: No novel metrics were proposed. Analyzed formalisms adopt
classic metrics, such as mean time to failure and attacker success probabilities.
However, none of them introduce new metrics to quantify safety-security de-
pendencies or to analyze trade-offs, e.g., through Pareto analysis. New metrics
and trade offs are paramount to understand the interaction between safety and
security aspects.
Finding #5: No large case studies were carried out. To the best of
our knowledge, no large case studies were carried out. The majority of analyzed
papers present small examples used to showcase the formalism in question. Some
notable exceptions are [81] and [83]: here, the medium-sized example of a pipeline
is presented. However for safety and security, when considered separately, large
case studies do exist [22].
Finding #6: Different formalisms model different safety-security inter-
actions. As shown in Table 2, only AFTs, BDMPs and BNs can unconditionally
model all four dependencies between safety and security. CFTs and SEFTs can
model them provided with extensions/with some limitations.

Research gaps.
• Realistic large-sized case studies concerning safety-security interactions are

still missing. Performing large-sized case study analysis would contribute
to further address additional gaps:

• It would clarify the nature of safety-security interactions, that are cur-
rently still ill-understood. Furthermore, it would help improve standard
definitions for safety-security interdependencies;

• From this understanding, novel metrics and novel modeling constructs for
safety-security co-analysis - that are still missing - could be developed.

4 Attack trees versus fault trees

We saw that most safety-security formalisms combine attack trees and fault trees.
This is a natural step, since attack trees and fault trees bear many similarities.
What is less known, is that they also feature a number of remarkable differences,
elaborated in [28]. In particular, the interpretation of the OR-gate is crucially
different in attack trees than in fault trees, and therefore their analysis should
not be mindlessly combined. Below, we present the most remarkable similarities
and differences, summarized in Table 3.



The marriage between safety and cybersecurity: still practicing 9

4.1 Attack trees versus fault trees

It is no surprise that ATs and FTs are similar to each other, since ATs were
inspired by FTs. FTs were introduced in 1961 at Bell Labs to study a ballistic
missile [130, 117, 36]. Weiss introduced threat logic trees—the origin of ATs—
in 1991, and its “similarity. . . to fault trees suggests that graph-based security
modelling has its roots in safety modelling” [77].

Attack trees and fault trees come in various variants and extensions. Fol-
lowing [27], we categorize these along two axes. First, we distinguish between
static and dynamic trees. Static attack and fault trees are equipped with Boolean
gates. Dynamic trees come with additional gates to model time-dependent be-
havior. Second, we distinguish between tree-shaped and DAG-shaped trees. Trees
are relatively easy to analyse via a bottom up algorithm. This algorithms works
for all quantitative attributes (cost, time, probability) as long as they constitute
an attribute domain.

Attack trees Fault trees
Syntax
Leaves Basic attack steps (BAS) Basic events (BEs)
Non-leaves Subgoals Intermediate events (IEs)
Static gates AND, OR AND, OR, VOT
Dynamic gates SAND SPARE, FDEP, PAND
Other extensions Defenses Repairs, maintenance
Analysis
Qualitative (Minimal) attack vectors/scenarios (Minimal) cut sets
Attributes probability, cost, time, skill, impact probability
Metrics Min cost, time, skill Reliability, availablity,

Max impact, probability MTTF, MTBF
Semantics
Qualitative Structure function Structure function
Stochastic
AND(a,b) pa · pb pa · pb

OR(a,b) min(pa, pa) pa + pb − pa · pb

Table 3: Differences between attack and fault trees

4.2 The static case

Syntax. The basic variants, called static or standard fault and attack trees,
have the exact same syntax: trees or dags equipped with AND and OR gates.
Fault trees often contain a (k,m) voting gate, which fails if k out of the n inputs
fail; these can however be expressed in terms of AND and OR gates. We use the
word disruption tree (DT) for either an attack tree or a fault tree.

Formally, DTs are rooted dags with typed nodes, for which we consider
types T = {LEAF, OR, AND}. For Booleans we use B = {1, 0}. The edges of a
DT are given by a function ch that assigns to each node its (possibly empty)



10 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

sequence of children. We use set notation for sequences, e.g. e ∈ (e1, . . . , em)
means ∃i. ei = e, and we denote the empty sequence by ε.

Definition 1. A disruption tree is a tuple T = (N, t, ch) where:
– N is a finite set of nodes;
– t : N → T gives the type of each node;
– ch : N → N∗ gives the sequence of children of a node.

Moreover, T satisfies the following constraints:
– (N,E) is a connected dag, where E =

{
(v, u) ∈ N2 | u ∈ ch(v)

}
;

– T has a unique root, denoted RT : ∃!RT ∈ N. ∀v ∈ N. RT 6∈ ch(v);
– leafT nodes are the leaves of T : ∀v ∈ N. t(v) = LEAF⇔ ch(v) = ε.

4.3 Semantics

Semantics pin down the mathematical meaning for attack and fault trees. The
semantics of both fault trees and attack trees is given in terms of their structure
function, indicating which sets of leaves cause the top level events to happen.

Thus, the structure function of a disruption tree T is a function fT : Bn → B.
Technically, a status vector v = 〈v1, . . . , vn〉 indicates for each leaf i whether it
was disrupted, i.e., vi = 1 if leaf i has failed or was attacked. Then fT (v) ∈ {0, 1}
indicates whether the whole system was disrupted. This function can be defined
recursively in the nodes of T : fT (v,A) tells whether A ⊆ leaf suffices to disrupt
node v ∈ N of T , where A encodes v as usual.

Definition 2. The structure function fT : N × 2leaf → B of a disruption tree
T is given by:

fT (v, A) =


1 if t(v) = OR and ∃u ∈ ch(v). fT (u,A) = 1,
1 if t(v) = AND and ∀u ∈ ch(v). fT (u,A) = 1,
1 if t(v) = LEAF and v ∈ A,
0 otherwise.

The structure function can be used to asses suites: a disruption suite S ⊆
2leaf represents all ways in which the system can be compromised. From those,
one is interested in disruptions A ∈ S that actually represent a threat. These
correspond to (minimal) cut sets in fault trees and attack scenarios in attack
trees. To find them, we let fT (A) .= fT (RT , A) and call disruption A successful if
fT (A) = 1, i.e. it makes the top-level of T succeed (resp. be attacked or failed).
If, moreover, no proper subset of A is successful then A is a minimal disruption.

It is well known that attack trees and fault trees are coherent [12], meaning
that adding attack steps/basic events preserves success: if A is causes the TLE
to happen, then so is A ∪ {a} for any a ∈ leaf. Thus, the suite of successful
disruptions of an DT is characterised by its minimal disruptions.

Definition 3. The semantics of a static DT T is its suite of minimal disrup-
tions: JT K =

{
A ⊆ 2leaf | fT (A) ∧ A is minimal

}
.



The marriage between safety and cybersecurity: still practicing 11

4.4 Metrics for attack and fault trees

Dependability metrics quantify key performance indicators (kpis), that quantify
several dependability characteristics of a system. Such metrics serve several pur-
poses, e.g. allowing to compare different design alternatives w.r.t. the desired de-
pendability features; computing the effectiveness of measures; verifying whether
a solution meets its dependability requirements; etc.

Metrics for attack trees focus on a wide variety of attributes, such as the
cost of an attack, its time and, success probability. These can be conveniently
summarized via an attribute domain [93]. Metrics for fault trees focus on prob-
abilistic aspects, such as the system reliability (ie the probability that a system
fails within its mission time T ), the availability (i.e., the average percentage of
time that the system is up), mean time to failure, etc.
Attribute metrics. We define dependability metrics for DTs in three steps:
first an attribution α enrich the leaves with attributes, assigning a value to each
a ∈ leaf, then a dependability metric α̂ assigns a value to each disruption
scenario A; and finally the metric qα assigns a value to each disruption suite.

Example 1. Consider the AT in Figure 1b. The metric we study is the time re-
quired to execute a successful attack. Thus, the attribution α equips each AT leaf
with its attack time, setting e.g. α(Attacker forces door) = 5, α(Door unlocked) =
0 and α(Attacker tries door) = 2. If all attack steps are executed sequentially,
then the the time needed to execute an attack A = {a1, . . . an} is sum of the
attack times of the BASs:

α̂(a1, . . . an) =
n∑

i=1
α(ai)

Both for attackers and defenders of the system, it is relevant to consider the
shortest attack in an attack suite S:

qα({A1, . . . An}) = min{α̂(A1), . . . α̂(An)}

Other metrics give rise to other attribute definitions. For example, the success
probability of an attack is the product of the success probabilities of the BAS.
The probability of attack suite S is is the probability of the most successful
attack in S. The cost of an attack is the sum of the cost of the BASs, and the
cost of an attack suite is the minimum cost of its attacks. A formal definition is
as follows.

Definition 4. Given a DT and a set V of values:

1. an attribution α : leaf→ V assigns an attribute value α(a), or shortly an
attribute, to each leaf a;

2. a dependability metric over disruptions is a function α̂ : AT → V that as-
signs a value c to each disruption A;

3. a dependability metric over disruption suites is a function and to a function
qα : ST → V that assigns a value qα(S) to each disruption suite S.



12 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

We write qα(T ) for qα(JT K), setting the metric of a DT to the metric of its minimal
disruption suites.

Remark 1. We choose the notation α̂ for metrics over disruptions, since ˆ re-
sembles M, and α̂(A) corresponds to the interpretation of the AND gate. Simil-
arly, qα resembles O, and corresponds to the OR gate, since qα(S) often chooses
the best disruption set among all A ∈ S.

Different metric interpretation of the OR-gate. It is important to realize
that the quantitative interpretation of the OR-gate is different in attack trees
than in fault trees. Fault trees assume that all components work in parallel.
Thus, component i fails with probability pi, the fault tree OR(C1, C2) fails with
probability p1 + p2 − p1 · p2. In attack trees, the OR-gate works in parallel. The
interpretation of the attack tree OR(C1, C2) is that the attacker executes either
C1 or C2. Since the attacker maximizes their success probability, the probability
on a successful attack in the tree OR(C1, C2) equals max(p1, p2).

This distinction is completely ignored in the analysis methods for all six
attack-fault combinations/extensions [49, 126, 83, 110, 81, 15]. In particular, the
analysis methods for computing probabilities may not account for the different
interpretation of the OR-gates related to safety or security events. This could
further lead to incorrect computations of dependability metrics e.g., probability
values.

5 Analysis algorithms for attack and fault trees

Numerous analysis methods for quantitative analysis of attack trees and fault
trees exist [5, 18, 38, 69, 78, 108, 118]. In this section, we give an overview of
two common algorithms for fault trees and attack trees.

5.1 Algorithms for tree-shaped DTs

We first provide the algorithms for tree-structured DTs, where every node in the
graph has a single parent. These can be analyzed via a bottom-up algorithm,
propagating the values from the bottom to the root of the tree. In order for this
procedure to work for all metrics, we combine the inputs of the AND-gate using
an operator M, and the inputs of the or gate via O. Then this procedure works
whenever the algebraic structure (V ,M,O) constitutes a semiring [93].

Next, we treat the computationally more complex DAG-structured DTs.
These can be analyzed by converting the DT to a binary decision diagram
(BDD). Again, this works if (V ,M,O) is a semiring [29].



The marriage between safety and cybersecurity: still practicing 13

Input: Tree-structured DT T ,
node v from T ,
attribution α : BAST → V ,
semiring attribute domain
D = (V,O,M).

Output: Metric value α̌(T ) ∈ V
from node v downwards.

1 if t(v) = OR then
2 return

`
u∈ch(v) BU(T, u, α,D)

3 else if t(v) = AND then
4 return

a
u∈ch(v) BU(T, u, α,D)

5 else // t(v) = BAS
6 return α(v)

Algorithm 1: BU for tree DTs

Input: BDD BT from static DT T ,
node w from BT ,
attribution α : BAST → V ,
semiring attribute domain
D∗ = (V,O,M, 1O, 1M).

Output: Metric value α̌(T ) ∈ V from
node w downwards.

1 if Lab(w) = 0 then
2 return 1O
3 else if Lab(w) = 1 then
4 return 1M
5 else // non-terminal Lab(w) = v ∈ BAST

6 return BDD(BT ,Low(w), α,D∗) O(
BDD(BT ,High(w), α,D∗) M α(v)

)
Algorithm 2: BDD for static DAG DTs

Figure 2: Algo. 1 for
min. attack time.

Example 2. We illustrate the (straightforward) bot-
tom up algorithm via the attack tree in Figure 2. We
compute the time required to reach the top event,
with the same attribute values as before: Abbreviat-
ing f = Attacker forces door, u = Door unlocked and
t = Attacker tries door, we have α(f) = 5, α(u) = 0
and α(t) = 2. The bottom up computation first com-
putes the time required to achieve the subgoal "At-
tacker walks through door", abbreviated as w. Since
the attack time metric interprets the AND-gate as the
sum, we take M = + and obtain the value for w as
the sum of the metric values of its children "Attacker
forces door" and "Door unlocked", abbreviated u and
f respectively.

qα(w) = qα(f) M qα(u) = α(f) M α(u) = 0 + 2 = 2.

Similarly, we compute the time required for the TLA "Attacker breaches
door", abbreviated as b. Since the attack time metric interprets the OR-gate as
the minimum, we take O = min and obtain the value for b as the minimum of
the metric values of its children f and w:

qα(b) = qα(f) O qα(u) = min(α(f), α(u)) = min(5, 2) = 2.

The above procedure, formalized in Algo. 1, works whenever the structure
(V ,O,M) constitute an attribute domain. Note that this algorithm is linear in
the number of DT nodes.

Definition 5. Let V be a set:



14 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

1. an attribute domain over V is a tuple D = (V ,O,M), whose disjunctive
operator O : V 2 → V , and conjunctive operator M : V 2 → V , are associative
and commutative;

2. the attribute domain is a semiring † if M distributes over O, i.e. ∀x, y, z ∈
V . x M (y O z) = (x M y) O (x M z);

3. let T be a static DT and α an attribution on V . The metric for T associated
to α and D is given by:

qα(T ) =
h

A∈JTK︸ ︷︷ ︸
qα

i

a∈A︸ ︷︷ ︸
α̂

α(a).

5.2 Algorithms for DAG-shaped DTs

Figure 3: DAG-shaped AT (left) and
its BDD (right).

DTs with shared subtrees cannot be ana-
lysed via a bottom-up procedure on their
DAG structure. This is a classical result
from fault tree analysis [?]. Intuitively, the
problem is that a visit to node v in any
bottom-up procedure that operates on the
DT structure can only aggregate inform-
ation on its descendants.

This is illustrated by the DAG-shaped
AT in Figure 3: We assign attack time to
the leaves: α(a) = 3, α(b) = 2 and α(c) =
4. Then the bottom up algorithm yields
the following results: for the OR-gates, we
take the minimum value between the chil-
dren, which both equal 2, and for the AND-gate we sum the values of the chil-
dren, resulting in 4. However, this computation does not take the sharing of b
into account. In fact, the shortest attack is to take the BAS b, which takes time
2.

As a matter of fact, computing metrics in a DAG-structured DT T is an
NP-complete problem. Various methods to analyse DAG-structured DTs have
been proposed: contributions over the last 15 years include [5, 18, 38, 69, 78].
We now detail our recent work on binary decision diagrams (BDDs) [29].
BDD algorithms. BDDs offer a very compact representation of Boolean func-
tions, and can therefore represent the structure function of a DT T : Each BDD
node v is labeled with a leaf a of T , and has two children: its left node vL (reached
via a dashed line) represents the structure function of T in case a has the value
0; its right child vR (reached via a solid line) represents the structure function
of T in case a evaluates to 1. The key insight in [29] is that the values of an
†Since we require M to be commutative, D is in fact a commutative semiring. Further,
rings often include a neutral element for disjunction and an absorbing element for
conjunction, but these are not needed in Def. 5.



The marriage between safety and cybersecurity: still practicing 15

attribute domain can be computed recursively over this BDD, thereby avoiding
duplication of values as in Figure 3. The idea is as follows. The value for the BDD
terminal node labeled with 0 is set to the constant 1O ∈ V ; the BDD terminal
node labeled with 1 is set to 1M ∈ V . For an internal node v with children vL

and vR, we proceed as follows: When choosing vR, i.e. the basic event a occurs,
we extend the value computed at vR with the attribute value of a. We do so via
the M operator, since taking the right child corresponds to executing both a and
all leaves needed in α(vR). If a is not executed, then we do not incur the value
of α(a), and only take qα(vL). Now, the best disruption (i.e. attack or cut set) is
obtained by choosing the best option, by deploying the O operator: either one
does not execute a, incurring qα(vL), or executes a and incurs α(a)M qα(vR). This
yields the value qα(v) = qα(vL) O (α(a) M qα(vR)). This is illustrated in (Fig. 3,
in blue). As we can see, the TLE can fail either by the failure of b in 2 time
units or by the failure of a and c but not of b, in 7 time units. Algo. 2 shows the
pseudocode of this algorithm. The algorithm is linear in the size of the BDD,
but that the BDD size can be exponential in the size of the DT. In particular,
the BDD size heavily depends on the order for the variables. In practice good
heuristics are available, making BDD-computations efficient in practice.

5.3 Research gaps

Research gaps.
• An overarching formalism is still missing. Since attack trees and fault

trees interpret the OR-gate in a different manner, proper combinations
must feature two variants of the OR-gate: one that coincides with the AT-
interpretation and for the FT-variant.

• Another research gap concerns proper analysis of OR-gates. Analysis al-
gorithms must handle both the aforementioned variants of OR-gates. Sec-
tion 5 partially solves this problem for the case of tree-structured attack-
fault trees. Efficient analysis of DAG-structured attack-fault tree combin-
ations remains an open problem.

6 Conclusions

Conclusion. Safety and security interactions have been identified as important
topics in complex systems, and multiple modeling methods have been developed
in an attempt to account for their interactions. Our preliminary results show that
most of these methods are based on extending and/or combining existing safety
and security modeling methods. No specific metrics or novel modeling constructs
are introduced. The majority of considered formalisms combine/extend attack
trees and fault trees. As a consequential next step, we performed a thorough
analysis of similarities and differences between ATs and FTs. Their static variants
- SATs and SFTs - share the same syntax: we group them under the label of



16 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

disruption trees (DTs), for which we provide shared semantics. Furthermore,
we show how to compute dependability metrics on DTs highlighting differences
between ATs and FTs when needed, e.g., the different interpretation of the OR-
gate. Finally, we propose analysis algorithms for ATs and FTs both for their
tree-shaped and DAG-shaped variants.

Future work. While addressing some of the research gaps, this work also high-
lights future challenges. With the growing need for safety-security co-analysis,
the urge of a better understanding of safety-security interactions arises:

Open problems.
• To foster this understanding, realistic large-sized case study analysis con-

cerning safety-security interactions should be performed.
• This would clarify the nature of safety-security interactions - that are still

ill-understood - and help improve standard definitions for safety-security
interdependencies.

• As mentioned, novel metrics and novel modeling constructs for safety-
security co-analysis - that are still missing - could then be developed,
alongisde an overarching formalism.

• This overarching formalism would need to account for two different OR-
gates: one that coincides with the AT-variant and one for the FT-variant.

• Furthermore, proper analysis of OR-gates has to be performed, as analysis
algorithms must handle both the aforementioned variants of OR-gates.

References

1. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.P., Wimmer, R.:
Counterexample generation for discrete-time markov models: An introductory
survey. In: International School on Formal Methods for the Design of Computer,
Communication and Software Systems. pp. 65–121. Springer (2014)

2. Al Amro, S., Chiclana, F., Elizondo, D.A.: Application of fuzzy logic in computer
security and forensics. In: Computational Intelligence for Privacy and Security,
pp. 35–49. Springer (2012)

3. Amorim, T., Schneider, D., Nguyen, V.Y., Schmittner, C., , Schoitsch, E.: Five
major reasons why safety and security haven’t married (yet). ERCIM News, vol.
102, pp. 16–17 (2015)

4. Apvrille, L., Roudier, Y.: Towards the model-driven engineering of secure yet safe
embedded systems. arXiv preprint arXiv:1404.1985 (2014)

5. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and Parallel Attack
Tree Modelling. In: SAFECOMP. LNCS, vol. 9338, pp. 291–299. Springer Inter-
national Publishing (2015)

6. Arroyo-Figueroa, G., Sucar, L.E.: A temporal bayesian network for diagnosis and
prediction. arXiv preprint arXiv:1301.6675 (2013)

7. Ashok, P., Butkova, Y., Hermanns, H., Křetínskỳ, J.: Continuous-time markov de-
cisions based on partial exploration. In: International Symposium on Automated
Technology for Verification and Analysis. pp. 317–334. Springer (2018)



The marriage between safety and cybersecurity: still practicing 17

8. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: CSF. pp. 105–119. IEEE Computer Society (2016).
https://doi.org/10.1109/CSF.2016.15

9. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans. Dependable Sec. Com-
put., vol. 1, pp. 11–33 (2004)

10. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
11. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probab-

ilities in markovian models efficiently. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 515–530. Springer
(2014)

12. Barlow, R.E., Proschan, F.: Statistical theory of reliability and life testing: prob-
ability models. Intl. series in decision processes, Holt, Rinehart and Winston
(1975)

13. Basagiannis, S., Katsaros, P., Pombortsis, A., Alexiou, N.: Probabilistic model
checking for the quantification of DoS security threats. Computers & Security
28(6), 450–465 (2009)

14. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state markov chains. The annals of mathematical statistics 37(6), 1554–1563
(1966)

15. Bernsmed, K., Frøystad, C., Meland, P.H., Nesheim, D.A., Rødseth, Ø.J.: Visu-
alizing cyber security risks with bow-tie diagrams. In: International Workshop on
Graphical Models for Security. pp. 38–56. Springer (2017)

16. Bertrand, N., Schewe, S.: Playing optimally on timed automata with random
delays. In: International Conference on Formal Modeling and Analysis of Timed
Systems. pp. 43–58. Springer (2012)

17. Bianco, A., De Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: International Conference on Foundations of Software Technology and
Theoretical Computer Science. pp. 499–513. Springer (1995)

18. Bobbio, A., Egidi, L., Terruggia, R.: A methodology for qualitative/quantitative
analysis of weighted attack trees. IFAC 46(22), 133–138 (2013)

19. Bossuat, A., Kordy, B.: Evil twins: Handling repetitions in attack–defense trees.
In: GraMSec. LNCS, vol. 10744, pp. 17–37. Springer International Publishing
(2018)

20. Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Lecture
Notes in Computer Science, pp. 1–18. Springer Berlin Heidelberg (2013)

21. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended aadl models. The Computer
Journal 54(5), 754–775 (2011)

22. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M., Wim-
mer, R.: A model checker for AADL. In: Touili, T., Cook, B., Jackson, P.B. (eds.)
CAV. vol. 6174, pp. 562–565. Springer (2010)

23. Brázdil, T., Korenčiak, L., Krčál, J., Křetínskỳ, J., Řehák, V.: On time-average
limits in deterministic and stochastic petri nets. In: Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering. pp. 421–422
(2013)

24. Brázdil, T., Krčál, J., Křetínskỳ, J., Řehák, V.: Fixed-delay events in generalized
semi-markov processes revisited. In: International Conference on Concurrency
Theory. pp. 140–155. Springer (2011)

https://doi.org/10.1109/CSF.2016.15


18 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

25. Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Re-
constructing the giant: On the importance of rigour in documenting the literature
search process. In: ECIS (2009)

26. Bryant, R.E.: Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers C-35(8), 677–691 (1986). ht-
tps://doi.org/10.1109/TC.1986.1676819

27. Budde, C., Stoelinga, M.: Efficient algorithms for quantitative attack tree analysis.
In: 42nd IEEE Computer Security Foundations Symposium CSF. IEEE (2021)

28. Budde, C.E., Kolb, C., Stoelinga, M.: Attack trees vs. fault trees: two sides of the
same coin from different currencies. In: QEST (to appear)

29. Budde, C.E., Stoelinga, M.: Efficient algorithms for attack tree analysis. In: IEEE
Computer Security Foundations Symposium CSF (2021)

30. Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabil-
ities in scada systems. In: Proceedings of the international infrastructure surviv-
ability workshop. pp. 3–10. Citeseer (2004)

31. Calinescu, R., Češka, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient
synthesis of robust models for stochastic systems. Journal of Systems and Software
143, 140–158 (2018)

32. das Chagas Moura, M., Zio, E., Lins, I.D., Droguett, E.: Failure and reliability
prediction by support vector machines regression of time series data. Reliability
Engineering & System Safety 96(11), 1527–1534 (2011)

33. Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P.:
Integrated safety and security risk assessment methods: A survey of key charac-
teristics and applications. LNCS 10242, 50–62 (2017)

34. Chockalingam, S., Pieters, W., Teixeira, A., van Gelder, P.: Bayesian network
models in cyber security: a systematic review. In: Nordic Conference on Secure
IT Systems. pp. 105–122. Springer (2017)

35. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: International Conference on Computer Aided Verific-
ation. pp. 154–169. Springer (2000)

36. Clifton, E., et al.: Fault tree analysis-a history. In: Proceedings of the 17th Inter-
national Systems Safety Conference. pp. 1–9 (1999)

37. Commission, I.E., et al.: Iec 61025: Fault tree analysis. IEC Standards (2006)
38. Dalton, Mills, Colombi, Raines: Analyzing attack trees using generalized sto-

chastic Petri nets. In: 2006 IEEE Information Assurance Workshop. pp. 116–123
(2006)

39. De Alfaro, L., Roy, P.: Magnifying-lens abstraction for markov decision pro-
cesses. In: International Conference on Computer Aided Verification. pp. 325–338.
Springer (2007)

40. Dempster, A.P.: A generalization of bayesian inference. In: Classic Works of the
Dempster-Shafer Theory of Belief Functions, pp. 73–104. Springer Berlin Heidel-
berg (2008)

41. Dissaux, P., Singhoff, F., Lemarchand, L., Tran, H., Atchadam, I.: Combined
real-time, safety and security model analysis. In: ERTSS (2020)

42. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on information theory 29(2), 198–208 (1983)

43. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Transactions on Reliability 41(3), 363–377
(1992)

https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819


The marriage between safety and cybersecurity: still practicing 19

44. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and markov models for reliab-
ility analysis of fault-tolerant digital systems. Reliability Engineering & System
Safety 39(3), 291–307 (1993)

45. Dullerud, G.E., Paganini, F.: A course in robust control theory: a convex ap-
proach, vol. 36. Springer Science & Business Media (2013)

46. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and refine-
ment strategies for probabilistic analysis. In: Joint International Workshop von
Process Algebra and Probabilistic Methods, Performance Modeling and Verifica-
tion. pp. 57–76. Springer (2002)

47. Finkelstein, M.: Failure rate modelling for reliability and risk. Springer Science &
Business Media (2008)

48. Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer
Series in Operations Research and Financial Engineering (1996)

49. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault
trees. Reliability Engineering & System Safety 94(9), 1394–1402 (2009)

50. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
A case study. In: PoEM. LNCS, vol. 267, pp. 326–334. Springer (2016)

51. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an atm: a
case study. In: IFIP Working Conference on The Practice of Enterprise Modeling.
pp. 326–334. Springer (2016)

52. Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., Sezer, S.: Stpa-safesec:
Safety and security analysis for cyber-physical systems. Journal of information
security and applications 34, 183–196 (2017)

53. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: International Con-
ference on Formal Modeling and Analysis of Timed Systems. pp. 35–50. Springer
(2016)

54. Gerhold, M., Hartmanns, A., Stoelinga, M.: Model-based testing of stochastically
timed systems. Innovations in Systems and Software Engineering 15(3), 207–
233 (Sep 2019). https://doi.org/10.1007/s11334-019-00349-z, https://doi.org/10.
1007/s11334-019-00349-z

55. German, R.: Markov regenerative stochastic petri nets with general execution
policies: supplementary variable analysis and a prototype tool. Performance Eval-
uation 39(1-4), 165–188 (2000)

56. Gupta, C., Jain, A., Joshi, N.: Fuzzy logic in natural language processing–a closer
view. Procedia computer science 132, 1375–1384 (2018)

57. Hartmanns, A., Hermanns, H.: In the quantitative automata zoo. Science of Com-
puter Programming 112, 3–23 (2015)

58. Hazewinkel, M.: Bayesian approach to statistical problems (1995)
59. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of Attack-Defence

Diagrams. In: POST. LNCS, vol. 9635, pp. 163–185. Springer Berlin Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49635-0_9

60. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: International Conference on Principles of Security and Trust. pp.
163–185. Springer (2016)

61. Herzog, M.A., Marwala, T., Heyns, P.S.: Machine and component residual life
estimation through the application of neural networks. Reliability Engineering &
System Safety 94(2), 479–489 (2009)

https://doi.org/10.1007/s11334-019-00349-z
https://doi.org/10.1007/s11334-019-00349-z
https://doi.org/10.1007/s11334-019-00349-z
https://doi.org/10.1007/978-3-662-49635-0_9


20 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

62. Hierons, R.M., Núñez, M.: Using schedulers to test probabilistic distributed sys-
tems. Formal Aspects of Computing 24(4), 679–699 (2012)

63. Huth, M.: Possibilistic and probabilistic abstraction-based model checking. In:
Joint International Workshop von Process Algebra and Probabilistic Methods,
Performance Modeling and Verification. pp. 115–134. Springer (2002)

64. ISO/IEC 25010:2011, S., software engineering: Systems and software quality re-
quirements and evaluation (square). System and software quality models (2011)

65. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack
Trees with Sequential Conjunction. In: SEC. IFIPAICT, vol. 455, pp. 339–
353. Springer International Publishing (2015). https://doi.org/10.1007/978-3-
319-18467-8_23

66. Junges, S., Guck, D., Katoen, J., Stoelinga, M.: Uncovering dynamic fault trees.
In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). pp. 299–310 (2016)

67. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.P.: Safety-constrained
reinforcement learning for mdps. In: International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. pp. 130–146. Springer
(2016)

68. Junges, S., Katoen, J.P., Stoelinga, M., Volk, M.: One net fits all. In: International
Conference on Applications and Theory of Petri Nets and Concurrency. pp. 272–
293. Springer (2018)

69. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter at-
tack trees. In: OTM. vol. 5332, pp. 1036–1051. Springer Berlin Heidelberg (2008)

70. Jürjens, J.: Umlsec: Extending uml for secure systems development. In: Inter-
national Conference on The Unified Modeling Language. pp. 412–425. Springer
(2002)

71. Kahneman, D.: A perspective on judgment and choice: mapping bounded ration-
ality. American psychologist 58(9), 697 (2003)

72. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 31–45
(2016)

73. Katz, J.: Bridging game theory and cryptography: Recent results and future dir-
ections. In: Theory of Cryptography Conference. pp. 251–272. Springer (2008)

74. Kimelman, D., Kimelman, M., Mandelin, D., Yellin, D.M.: Bayesian approaches
to matching architectural diagrams. Trans. Software Eng. 36(2), 248–274 (2010)

75. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall (1995)

76. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack–defense trees.
Journal of Logic and Computation 24(1), 55–87 (06 2012)

77. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review
13–14, 1–38 (2014)

78. Kordy, B., Wideł, W.: On quantitative analysis of attack–defense trees with re-
peated labels. In: POST. LNCS, vol. 10804, pp. 325–346. Springer (2018)

79. Korenčiak, L., Krčál, J., Řehák, V.: Dealing with zero density using piecewise
phase-type approximation. In: European Workshop on Performance Engineering.
pp. 119–134. Springer (2014)

80. Kornecki, A.J., Subramanian, N., Zalewski, J.: Studying interrelationships of
safety and security for software assurance in cyber-physical systems: Approach
based on bayesian belief networks. In: 2013 FedCSIS. pp. 1393–1399. IEEE (2013)

https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23


The marriage between safety and cybersecurity: still practicing 21

81. Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Pietre-Cambacedes, L.: Safety and
security interactions modeling using the bdmp formalism: case study of a pipeline.
In: International Conference on Computer Safety, Reliability, and Security. pp.
326–341. Springer (2014)

82. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of ap-
proaches combining safety and security for industrial control systems. Reliability
engineering & system safety 139, 156–178 (2015)

83. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE). pp. 25–32 (2017)

84. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative Attack Tree Analysis via
Priced Timed Automata. In: FORTE. LNCS, vol. 9268, pp. 156–171. Springer In-
ternational Publishing (2015). https://doi.org/10.1007%2F978-3-319-22975-1_11

85. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based
security metrics using adversary view security evaluation (ADVISE). In: 2011
Eighth International Conference on Quantitative Evaluation of SysTems. pp. 191–
200. IEEE (2011)

86. Letourneau, S., Famili, F., Matwin, S.: Data mining to predict aircraft component
replacement. IEEE Intelligent Systems and their Applications 14(6), 59–66 (1999)

87. Li, Y., Li, L.: Model checking of linear-time properties based on possibility meas-
ure. IEEE Transactions on Fuzzy systems 21(5), 842–854 (2012)

88. Li, Y., Li, Y., Ma, Z.: Computation tree logic model checking based on possibility
measures. Fuzzy Sets and Systems 262, 44–59 (2015)

89. Lindemann, C., Thümmler, A.: Transient analysis of deterministic and stochastic
petri nets with concurrent deterministic transitions. Performance Evaluation 36,
35–54 (1999)

90. Liu, Y., Man, H.: Network vulnerability assessment using bayesian networks. In:
Data mining, intrusion detection, information assurance, and data networks se-
curity 2005. vol. 5812, pp. 61–71. International Society for Optics and Photonics
(2005)

91. Lye, K.w., Wing, J.M.: Game strategies in network security. International Journal
of Information Security 4(1), 71–86 (2005)

92. Manshaei, M.H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory
meets network security and privacy. ACM Computing Surveys (CSUR) 45(3),
1–39 (2013)

93. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: ICISC. LNCS, vol. 3935,
pp. 186–198. Springer Berlin Heidelberg (2006)

94. Meedeniya, I., Moser, I., Aleti, A., Grunske, L.: Evaluating probabilistic models
with uncertain model parameters. Software & Systems Modeling 13(4), 1395–1415
(2014)

95. Modarres, M., Kaminskiy, M.P., Krivtsov, V.: Reliability engineering and risk
analysis: a practical guide. CRC press (2016)

96. Murray, J.F., Hughes, G.F., Kreutz-Delgado, K., Schuurmans, D.: Machine learn-
ing methods for predicting failures in hard drives: A multiple-instance application.
Journal of Machine Learning Research 6(5) (2005)

97. Nicol, D.M., H.Sanders, W., Trivedi, K.S.: Model-based evaluation: From depend-
ability to security. IEEE Trans. Dep. Sec. Comput., vol. 1(1), pp. 48–65 (2004)

98. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-
ability to security. Trans. on dep. and sec. comp. 1(1), 48–65 (2004)

99. Nielsen, D.S.: The cause/consequence diagram method as a basis for quantitative
accident analysis. Risø National Laboratory (1971)

https://doi.org/10.1007%2F978-3-319-22975-1_11


22 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

100. Nigam, V., Pretschner, A., Ruess, H.: Model-based safety and security engineering
(2019)

101. Novák, V., Perfilieva, I., Mockor, J.: Mathematical principles of fuzzy logic,
vol. 517. Springer Science & Business Media (2012)

102. Oortwijn, W., Dijk, T.v., Pol, J.v.d.: Distributed binary decision dia-
grams for symbolic reachability. In: SPIN. pp. 21–30. ACM (2017). ht-
tps://doi.org/10.1145/3092282.3092284

103. Organization, I.S.: Iso/dis 26262: Road vehicles, functional safety. Technical re-
port (2009)

104. Pedroza, G., Apvrille, L., Knorreck, D.: Avatar: A sysml environment for the
formal verification of safety and security properties. In: 2011 NOTERE. pp. 1–10.
IEEE (2011)

105. Piètre-Cambacédès, L., Bouissou, M.: Modeling safety and security interdepend-
encies with bdmp (boolean logic driven markov processes). In: 2010 IEEE In-
ternational Conference on Systems, Man and Cybernetics. pp. 2852–2861. IEEE
(2010)

106. Pita, J., Tambe, M., Kiekintveld, C., Cullen, S., Steigerwald, E.:
Guards—innovative application of game theory for national airport secur-
ity. In: Twenty-Second International Joint Conference on Artificial Intelligence
(2011)

107. Popov, P.: Preliminary interdependency analysis (pia): method and tool support.
In: International Workshop on Software Engineering for Resilient Systems. pp. 1–
8. Springer (2011)

108. Rauzy, A.: New algorithms for fault trees analysis. Reliability Engineering &
System Safety 40(3), 203–211 (1993)

109. Rontidis, G., Panaousis, E., Laszka, A., Dagiuklas, T., Malacaria, P., Alpcan, T.:
A game-theoretic approach for minimizing security risks in the internet-of-things.
In: 2015 IEEE International Conference on Communication Workshop (ICCW).
pp. 2639–2644. IEEE (2015)

110. Roth, M., Liggesmeyer, P.: Modeling and Analysis of Safety-Critical Cyber Phys-
ical Systems using State/Event Fault Trees. In: SAFECOMP 2013 (2013)

111. Roudier, Y., Apvrille, L.: Sysml-sec: A model driven approach for designing safe
and secure systems. In: MODELSWARD

112. Rugina, A., Kanoun, K., Kaâniche, M.: An architecture-based dependability mod-
eling framework using aadl. ArXiv abs/0704.0865 (2007)

113. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: Re-
liability centered maintenance via statistical model checking. In: 2016 Annual
Reliability and Maintainability Symposium (RAMS). pp. 1–6 (2016)

114. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance ana-
lysis and optimization via statistical model checking. In: International Conference
on Quantitative Evaluation of Systems. pp. 331–347. Springer (2016)

115. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability centered maintenance via statistical model checking. In: RAMS. pp. 1–6.
IEEE (2016)

116. Ruijters, E., Guck, D., Van Noort, M., Stoelinga, M.: Reliability-centered main-
tenance of the electrically insulated railway joint via fault tree analysis: a practical
experience report. In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). pp. 662–669. IEEE (2016)

117. Ruijters, E., Stoelinga, M.: Fault Tree Analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15–16, 29–62 (2015)

https://doi.org/10.1145/3092282.3092284
https://doi.org/10.1145/3092282.3092284


The marriage between safety and cybersecurity: still practicing 23

118. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art in
modeling, analysis and tools. Computer Science Review 15-16, 29 – 62 (2015)

119. Saltelli, A., Chan, K., Scott, E.: Sensitivity Analysis. Wiley (2009), https://books.
google.nl/books?id=gOcePwAACAAJ

120. Schneier, B.: Attack trees. Dr. Dobb’s journal 24(12), 21–29 (1999)
121. Shafer, G.: A mathematical theory of evidence, vol. 42. Princeton university press

(1976)
122. Sommestad, T., Ekstedt, M., Holm, H.: The cyber security modeling language:

A tool for assessing the vulnerability of enterprise system architectures. IEEE
Systems Journal 7(3), 363–373 (2012)

123. Sommestad, T., Ekstedt, M., Johnson, P.: Combining defense graphs and enter-
prise architecture models for security analysis. In: 2008 12th International IEEE
Enterprise Distributed Object Computing Conference. pp. 349–355. IEEE (2008)

124. Song, L., Zhang, L., Godskesen, J.C.: Bisimulations and logical characterizations
on continuous-time markov decision processes. In: International Conference on
Verification, Model Checking, and Abstract Interpretation. pp. 98–117. Springer
(2014)

125. Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.:
Fault Tree Handbook with Aerospace Applications. Office of safety and mission
assurance, NASA headquarters (2002)

126. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system (2016)

127. Wakileh, B., Gill, K.: Use of fuzzy logic in robotics. Computers in industry 10(1),
35–46 (1988)

128. Wang, J.X., Roush, M.L.: What every engineer should know about risk engineer-
ing and management. CRC Press (2000)

129. Wang, Y., Wang, Y., Liu, J., Huang, Z., Xie, P.: A survey of game theoretic
methods for cyber security. In: 2016 IEEE First International Conference on Data
Science in Cyberspace (DSC). pp. 631–636. IEEE (2016)

130. Watson, H.: Launch control safety study. Tech. Rep. Sec. VII, Vol. 1, Bell Labs
(1961)

131. Weiss, J.: A system security engineering process. In: Proceedings of the 14th Na-
tional Computer Security Conference. Information System Security: Requirements
& Practices, vol. 249, pp. 572–581 (1991)

132. Wideł, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: Formal methods
for attack tree–based security modeling. ACM Comput. Surv. 52(4) (2019). ht-
tps://doi.org/10.1145/3331524

133. Wilczyński, A., Jakóbik, A., Kołodziej, J.: Stackelberg security games: Models,
applications and computational aspects. Journal of Telecommunications and In-
formation Technology (2016)

134. Young, W., Leveson, N.: Systems thinking for safety and security. In: Proceedings
of the 29th Annual Computer Security Applications Conference. pp. 1–8 (2013)

135. Zampino, E.J.: Application of fault-tree analysis to troubleshooting the NASA
GRC icing research tunnel. In: Annual Reliability and Maintainability Sym-
posium. 2001 Proceedings. pp. 16–22 (2001)

136. Zhao, X., Robu, V., Flynn, D., Dinmohammadi, F., Fisher, M., Webster, M.:
Probabilistic model checking of robots deployed in extreme environments. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8066–
8074 (2019)

https://books.google.nl/books?id=gOcePwAACAAJ
https://books.google.nl/books?id=gOcePwAACAAJ
https://doi.org/10.1145/3331524
https://doi.org/10.1145/3331524


24 M. Stoelinga, C. Kolb, S.M. Nicoletti, C.E. Budde, E.M. Hahn

137. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M.: Rre: A game-theoretic
intrusion response and recovery engine. IEEE Transactions on Parallel and Dis-
tributed Systems 25(2), 395–406 (2013)

138. Åström, K.: Optimal control of markov processes with incomplete state in-
formation. Journal of Mathematical Analysis and Applications 10(1), 174–205
(1965). https://doi.org/https://doi.org/10.1016/0022-247X(65)90154-X, https://
www.sciencedirect.com/science/article/pii/0022247X6590154X

https://doi.org/https://doi.org/10.1016/0022-247X(65)90154-X
https://www.sciencedirect.com/science/article/pii/0022247X6590154X
https://www.sciencedirect.com/science/article/pii/0022247X6590154X

	The marriage between safety and cybersecurity: still practicing 

