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Abstract

Radar Sounders (RSs) are active sensors that transmit in the nadir electromagnetic (EM)

waves with a low frequency in the range of High-Frequency and Very-High-Frequency and

relatively wide bandwidth. Such a signal penetrates the surface and propagates in the

subsurface, interacting with dielectric interfaces. This interaction yields to backscattered

echoes detectable by the antenna that are coherently summed and stored in radargrams.

RSs are used for planetary exploration and Earth observation for their value in investigat-

ing subsurface geological structures and processes, which reveal the past geomorphological

history and possible future evolution. RS instruments have several parameter configura-

tions that have to be designed to achieve the mission science goals. On Mars, radargram

visual analyses revealed the icy layered deposits and liquid water evidence in the poles.

On the Earth, RSs showed relevant structures and processes in the cryosphere and the

arid areas that help to monitor the subsurface geological evolution, which is critical for

climate change. Despite the valuable results, visual analysis is subjective and not feasible

for processing a large amount of data. Therefore, a need emerges for automatic methods

extracting fast and reliable information from radargrams. The thesis addresses two main

open issues of the radar-sounding literature: i) assessing target detectability in simulated

orbiting radargrams to guide the design of RS instruments, and ii) designing automatic

methods for information extraction from RS data. The RS design is based on assessing

the performance of a given instrument parameter configuration in achieving the mission

science goals and detecting critical targets. The assessment guides the parameter selection

by determining the appropriate trade-off between the achievable performance and technical

limitations. We propose assessing the detectability of subsurface targets (e.g., englacial

layering and basal interface) from satellite radar sounders with novel performance met-

rics. This performance assessment strategy can be applied to guide the design of the SNR

budget at the surface, which can further support the selection of the main EORS instru-

ment parameters. The second contribution is designing automatic methods for analyzing

radargrams based on fuzzy logic and deep learning. The first method aims at identifying

buried cavities, such as lava tubes, exploiting their geometric and EM models. A fuzzy

system is built on the model that detects candidate reflections from the surface and the

lava tube boundary. The second and third proposed methods are based on deep learning,

as they showed groundbreaking results in several applications. We contributed with an

automatic technique for analyzing radargram acquired in icy areas to investigate the basal

layer. To this end, radargrams are segmented with a deep learning network into litera-

ture classes, including englacial layers, bedrock, echo-free zone (EFZ) and thermal noise,

iii



as well as new classes of basal ice and signal perturbation. The third method proposes

an unsupervised segmentation of radargrams with deep learning for detecting subsurface

features. Qualitative and quantitative experimental results obtained on planetary and ter-

restrial radargrams confirm the effectiveness of the proposed methods, which investigate

new subsurface targets and allow an improvement in terms of accuracy when compared to

other state-of-the-art methods.

Keywords [Radar sounder, Cryosphere, Arid Areas, Planetary Exploration, Earth Obser-

vation, Performance Assessment, Automatic Data Analysis, Deep Learning, Fuzzy Logic]
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Chapter 1

Introduction

This chapter elaborates on the background of radar sounding, defines the problems ad-

dressed in the thesis and the motivations. Then, we summarize the novel contributions

proposed in this thesis. Finally, the structure of the thesis is provided.

1.1 Background

Radar sounders (RSs) are active sensors cable of probing the subsurface in a non-

intrusive way, and thus, without digging nor coming in contact with the observed body.

RSs transmit electromagnetic (EM) waves in the nadir direction that can penetrate the

surface and propagate in the subsurface. This is because the signal has a low frequency

in the range of High-Frequency (3-30 MHz) or Very-High-Frequency (30-300 MHz) and a

wide bandwidth that reaches up to 100 MHz. The subsurface is the outcome of geological

processes that slowly generate irregular structures with different chemical compositions,

creating dielectric discontinuities. The discontinuities are visible to the radar waves be-

cause of the high contrast of the material dielectric properties. Interacting with the

EM signal, the discontinuities generate reflected echoes detectable by the radar antenna.

These echoes are coherently summed together and then stored in radargrams. The radar

profiles (radargrams) are the direct measurements of the subsurface geometrical and di-

electric properties. Radargrams can be exploited to derive valuable products, supporting

scientific research, with automatic and manual analyses.

In the last decades, radar sounders have been widely adopted for planetary exploration,

including Mars and the Moon, and Earth observation. Sounding the subsurface of the

Earth and other planets of the Solar System has been of great scientific interest for the

ability to acquire direct subsurface measurements of inaccessible places. Direct measure-

ments on the dielectric and geometric structure can reveal the subsurface geological and

geophysical characteristics. Radar sounding enabled the investigation of the present and

past subsurface geological processes and the accurate modeling of the surface elevation,
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SECTION 1.1 CHAPTER 1. INTRODUCTION

thereby immensely contributing to planetary science. Mars was probed by two orbiting

RSs: the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) radar

on the ESA Mars Express [1], and the SHAllow RADar sounder (SHARAD) on the NASA

Mars Reconnaissance Orbiter [2]. They jointly provided information about subsurface wa-

ter and ice, surface elevation and roughness, the interaction of the Martian atmosphere

with the solar wind, and ice layers in the shallowest subsurface. Another example is the

Lunar Radar Sounder (LRS) mounted on the Kaguya spacecraft by the Japan Aerospace

Exploration Agency (JAXA) [3]. Its objectives were to acquire lunar plasma waves and

to study the geological evolution of the Moon. Currently, two sounders are under devel-

opment for the exploration of the Jovian Moons, i.e., the RIME (Radar for Icy Moon

Exploration) on-board of the ESA JUpiter Icy Moons Explorer (JUICE) spacecraft [4],

and REASON (Europa Clipper mission) by NASA. RIME will probe Ganymede for i)

characterizing the subsurface and identifying possible habitats, ii) exploring Europa re-

cent active zones, and ii) studying Callisto as an early Jovian system remnant. REASON

will acquire data of Europa to define the ice crust in the near-surface up to the ocean,

looking for water pockets.

In Earth observation, radar sounders are mostly mounted on airborne platforms and

have been widely employed to probe the cryosphere. The cryosphere represents all the

regions containing a certain percentage of water in the frozen state (e.g., snow cover,

ice sheets, glaciers, permafrost, and floating ice), including Antarctica and Greenland.

The objectives of airborne mounted RSs are to map the structure and processes of ice-

sheets and ice-shelves up to the basal interface for extracting information to monitor the

terrestrial climate. The cryosphere represents about 20% of the terrestrial continental

surface and exhibits different responses to climatic stresses that remain largely unquan-

tified [5]. Ice sheets evolve in response to climate change [6], and thus, it is a significant

component affecting the climate system (e.g., the melting of Antarctica and Greenland

ice shelves can raise the sea level to 62 m and 7.2 m, respectively [7]). The decisive

role of the cryosphere dynamics in the context of global climate evolution has been often

highlighted by the World Climate Research Programme (WCRP)1, the Scientific Research

Programmes (SRPs) of the Scientific Committee on Antarctic Research (SCAR) 2, and

the ESA’s Living Planet Programme 3 [5, 8]. Locally, information about ice and climate

history over long timescales can be derived with relatively good precision from ice core

data [9]. However, ice coring implies extremely high logistic costs and is unfeasible for

the large-scale analysis of the ice sheet dynamics. A more spatially detailed view can be

1World Climate Research Programme (WCRP) website: https://www.wcrp-climate.org/
2Committee on Antarctic Research (SCAR) Scientific Research Programmes (SRPs) website: https://www.scar.org/

science/ srp/
3ESA’s Living Planet Programme website: https://www.esa.int/Applications/Observing the Earth/The Living

Planet Programme/ESA s Living Planet Programme

2

https://www.wcrp-climate.org/
https://www.scar.org/science/srp/
https://www.scar.org/science/srp/
https://www.esa.int/Applications/Observing_the_Earth/The_Living_Planet_Programme/ESA_s_Living_Planet_Programme
https://www.esa.int/Applications/Observing_the_Earth/The_Living_Planet_Programme/ESA_s_Living_Planet_Programme
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obtained using radar sounding, which provides observations of the surface and subsurface.

RSs support the investigations of the subglacial environment, providing insights into the

interaction between the polar ice and the climate system [10, 11]. Modeling the behavior

of grounded ice sheets and the coastal floating ice remains a technical and scientific chal-

lenge [12, 13, 8, 14], given the size of the domains (Antarctica and Greenland) and the

numerous physical processes that can be addressed with radar sounding.

The rest of this chapter is structured as follows: Section 1.2 defines the main open

issues of radar sounding related to the work proposed and describes the thesis motivations.

Section 1.3 describes the novel contributions proposed by this thesis. Finally, Section 1.4

describes structure of the thesis.

1.2 Problem definition and motivations

The design of RS instruments is based on assessing the performance of a given con-

figuration in achieving the mission science goals and detecting critical targets. These

assessments are used to guide the selection of the instrument parameters by determin-

ing the appropriate trade-off between the achievable performance and the technical and

physical limitations [4]. In the literature, there are several analysis on the impact of the

Earth’s ionosphere [15, 16, 17], the surface clutter [18, 19], and the penetration capability

(assuming homogeneous dielectric properties) [20]. However, most of these studies lack

a performance assessment that considers the target properties, which are a performance-

limiting factor (e.g., in terms of subsurface scattering and attenuation losses) and a detec-

tion objective of the instrument. Hence, target detectability can be assessed by modeling

the radar response (i.e., simulating) of the expected acquisition scenario and the target

properties. Simulations can be done with traditional 3D approaches that coarsely model

the subsurface dielectric and geometric properties [21, 22, 23], or with the analog-based

strategy that extracts the target geometry and dielectric properties from existing radar-

grams [24]. The simulation approach choice depends on several mission-specific factors,

e.g., the uncertainty degree of the dielectric profile, the acquisition challenges, and the

mission requirements during the instrument development. The main difference between

the two types of simulators is in the modeling of the subsurface. In traditional 3D ap-

proaches, the subsurface is modeled according to prior knowledge of the investigated tar-

gets, which is hard to achieve, and thus, the simulations are based on coarse models. The

analog-based method considers the target-specific properties extracted from radargrams,

and it realistically simulates the response of a given RS parameter configuration. For a

more detailed description of the literature and the simulation approaches, we refer to the

introduction of Chapter 3. The target detectability is assessed in simulations generated

by varying the RS parameters with data processing techniques. Therefore, analyzing the

3
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simulations provides information on the target detectability, which gives insights into a

given RS configuration performance and can guide the RS design.

Currently, the most common approach for extracting information from radargrams is

visual interpretation. This approach enabled the understanding and characterization of

the subsurface geology of other planets of the Solar System, terrestrial cryosphere, and

arid areas. SHARAD and MARSIS sounders lead to the analysis of the global martian

subsurface geology. One of the ground-breaking scientific discoveries from RS data is the

identification and characterization of the icy layered deposit in the polar caps (i.e., North

and South Pole layered deposits) [25, 26]. At the base of the layered deposit of the South

Pole, some strong bright reflections have been recently interpreted as a film of water that

generates a subglacial lake [26]. On the Moon, the LRS identified volcanic features and

structures, such as the Maria stratification, that give critical insights on the volcanic

evolution [27]. Airborne-mounted RSs profile the Earth’s subsurface in the cryosphere

[28, 29] and in arid areas [30]. In the cryosphere (mainly Greenland and Antarctica),

radargrams can image the ice column down to the bedrock in the continent and down to

the ice-water interface for the floating ice. Radargrams helped in characterizing the ice

thickness overall Greenland [31, 32] and the Antarctica [33], mapping subglacial lakes at

the basal interface [34], and the characterization of the ice stratigraphy [35, 36]. Recently,

widespread deformation of the internal ice column was discovered related to super-cooling

phenomena, enhancing the understanding of the ice-sheet basal boundary conditions and

dynamics [37, 38]. Although visual interpretation provided a tremendous scientific return,

it is a heavily time-demanding approach and is not suitable for analyzing many radar-

grams. This is a limiting factor for visual analysis since the amount of available data is

significantly large and expected to grow with the planned future RS mission for plane-

tary exploration and the Earth’s airborne campaigns. Moreover, visual interpretation is

a subjective task that can lead to severe misinterpretations. Hence, a need emerges for

novel methods that can address these limitations and automatically and systematically

extract information on subsurface geological targets and processes from radargrams.

In the literature, automatic methods for analyzing radargrams focus on extracting

information at different levels of the data processing chain (see Fig. 1.2). The data

processing chain considers three levels of extracting information and generating products

at a different level of complexity and abstraction. Raw data are normally ground processed

with methods, such as the range compression and Doppler focusing, to obtain Level 1

products. Level 1 products are further processed with data analysis techniques to retrieve

Level 2 products (e.g., detecting linear reflections and clutter). Finally, Level 2 products

are further analyzed to obtain Level 3 products (e.g., the map of basal units and buried

cavities). Rradargram automatic analysis methods in the literature are mainly dedicated

4
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(a)

(b)

(c)

Figure 1.1: Examples of radargrams: (a) radargram imagining floating ice in Antarctica by MCoRDS

[29], (b) radargram imaging the Layered South Pole Deposit (SPLD) of Mars by MARSIS [1], and (c)

radargram imaging lake Vostok in East Antarctica acquired by HiCARS radar sounder [39].

5
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Figure 1.2: Schematic representation of the data processing chain.

to level 2 product generation, while few generate level 3 products. These methods can

be divided into supervised and unsupervised depending on whether they require reference

data. Supervised algorithms learn from available pairs of input and the output labeled

data. In the unsupervised training, the algorithms infer the mapping function from the

data without having any reference. This is relevant since reference data are hard to

retrieve, especially on the subsurface images.

Literature methods focus on a limited number of targets in the subsurface, such as

the detection of linear reflections (e.g., ice layering) [42, 43, 40], detection of subsurface

features (e.g., ice layering and the last return) [44], segmentation for detecting important

subsurface targets (e.g., layer pack, basal interface, echo-free zone and noise) [41, 45],

the identification of subglacial lakes at the basal interface [46]. Linear reflection detector

contributed to the detection and characterization of the ice stratigraphy, i.e., layers of

ice characterized by variation in the dielectric properties of the polar caps of the Earth

[43], and Mars [42, 40]. Algorithm in [43] detects with high accuracy horizontal layers.

The method flattens the layers referring to the surface slope to decrease the effect of the
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(a)

(b)

Figure 1.3: Examples of algorithms for automatic target detection in RS data. (a) Linear dielectric

interface detection [40]. (b) Segmentation of ARS data into layers, bedrock, echo-free zone, thermal noise

and refreezing ice [41].
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local inclination. Then, filtering, thresholding, and morphological processing are applied

to extract linear reflectors [43]. Ferro et al. extracted the horizontal reflection and their

attributes (position, width, and radar contrast) with a Steger filter [42]. The linear reflec-

tion detection improved also for non-horizontal lines by using local scale hidden Markov

model and the Viterbi algorithm [40] (see Fig. 1.3(a)). Subsurface feature extraction is

based on the statistical analysis and allows for the characterization of bright reflections in

the radargram [44]. The automatic segmentation permits the identification of subsurface

targets, including layers, bedrock, basal ice, thermal noise, and Echo-Free Zone (EFZ)

[45, 41]. The subglacial lake detection method provides for each sample of the bedrock

a label indicating the presence of water or rock [46]. All the methods are based on the

handcrafted design of geometric and statistical features representing the targets. Hand-

crafted features are then analyzed with a Super Vector Machine (SVM) classifier that

predicts for each sample a label in the investigated classes (see Fig. 1.3(b)). However,

SVM methods are based on the manual design of features, limiting the application of the

technique to the modeled classes only with poor generalization capabilities. Adapting the

system for new classes means designing new features based on the new target statistical

and geometric properties. Moreover, SVM works in a supervised manner and requires

a large amount of reference data labeled by experts. Reference data is seldom available

in radar sounding as the knowledge on the subsurface structure can hardly be modeled

realistically. For a more detailed description of the literature on data analysis, we refer

to the introduction of Chapters 4, 5, and 6. From the literature analysis, a need emerges

for developing automatic methods for detecting a wide variety of subsurface targets and

dealing with the large number of radargrams planned to be acquired in complex scenarios,

e.g., Venus and the Jovian Moons.

1.3 Novel contributions

The thesis novel contributions address two main open issues in the radar-sounding

literature. On the one hand, we propose a novel approach for analyzing the detectability of

subsurface targets in Earth observation simulated radargrams (EORS). On the other hand,

the thesis contributes to the design and development of automatic methods for analyzing

radar sounder data to obtain level 2 and 3 products (Fig. 1.2). For these two objectives, we

studied the geological subsurface structure in arid areas and in the cryosphere to identify

a list of possible targets detectable in airborne (ARS) and satellite radargrams. This

analysis considered both the geometrical properties of the subsurface geological structures

and the different RS sensor resolutions. The Ph.D. research is focused on a subset of those

targets, selected by considering the related literature and available data. Selected targets

are considered for the performance assessment of a given RS configuration and the design

8
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of data analysis methods. This Ph.D. research work includes four main activities:

1. Assessment of detectability of subsurface targets in polar ice from a satellite radar

sounder.

2. Development of an unsupervised fuzzy system for the automatic detection of candi-

date lava tubes in planetary radar sounder data.

3. Analysis of radargrams of icy areas with deep learning to model the boundary con-

ditions and detect the basal layer and basal units.

4. Unsupervised segmentation of radargrams with deep learning for detecting subsurface

features.

The rest of the Section briefly describes the novel contributions. Note that the proposed

approaches can be adapted with few modifications to identify other subsurface structures

and employed for processing radargrams from different missions.

1.3.1 Performance assessment of future radar sounder missions

A satellite mission with a radar sounder for Earth observation in polar regions can sig-

nificantly support the monitoring cryosphere in the framework of climate change. Several

studies are in progress to design and assess the performance of an Earth-orbiting radar

sounder (EORS). However, one critical aspect of the cryospheric targets that are often

ignored and simplified in these studies is the complex geo-electrical nature of the polar ice.

Here, we adopt the analog simulation approach [24] based on reprocessing the ARS data

to predict EORS performance. The ARS data are a rich source of information about the

targets due to (1) the availability of vast archives of data from multiple campaigns [29, 47],

(2) the widespread and full-depth coverage of the Antarctic and Arctic ice-sheets, and (3)

the similarity with the actual radar signatures of complex cryospheric targets (principles

of operation of the ARS and the EORS are similar). The input ARS data are selected to

represent different regimes on Antarctica and Greenland, i.e., grounded ice, floating ice,

and subglacial lakes. The performance assessment analyzes the achievability of the main

objectives of an EORS mission: (1) detectability of englacial layering, (2) detectability of

the basal interface, and (3) characterization of the nature of the basal interface. Assuming

the range of central frequency and bandwidth in the literature, the proposed approach

for performance assessment aims at revealing the required signal-to-noise (SNR) budget

at the surface that maximizes the detectability of subsurface targets. The required SNR

budget can guide the selection of main instrument parameters, such as the two-way an-

tenna gain and the transmitted power. These parameters can support the optimization

of the EORS sensor configuration, such as for the recently proposed distributed EORS

architecture [48].
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1.3.2 Automatic analysis of radar sounder data with fuzzy logic and deep

learning

The first contribution for the automatic analysis of radar sounder data focuses on

detecting cavities in the subsurface, including empty lava tubes. Lava tubes are buried

channels that transport thermally insulated lava [49]. Nowadays, lava tubes on the Moon

are believed to be empty and thus indicated as potential habitats for humans. In recent

years, several studies investigated possible lava tube locations, considering the gravity

anomaly distribution and surficial volcanic structures [50, 51]. Here, we propose a novel

and unsupervised method to map candidate buried empty lava tubes in radar sounder data

and extract their physical properties. The approach relies on a model that describes the

geometrical and electromagnetic (EM) properties of lava tubes in radargrams. Considering

the lava tube model, the method extracts reflections in radargrams and then analyzes

them to identify those related to buried cavities and reject the others. The analysis

consists of a fuzzy detection system based on the lava tube EM model that evaluates

the properties of the reflections and the relation among them. The fuzzy rules consider

the EM and geometrical properties of lava tubes, thus their appearance in radargrams.

The proposed method can address the complex task of identifying candidate lava tubes on

several radargrams in an automatic fast objective way. The final decision on candidate lava

tubes should be taken in a post-processing step by expert planetologists. The effectiveness

of the proposed method is demonstrated with experiments on two datasets: a dataset of

simulated radargrams and a dataset of radargrams acquired on the Moon by the LRS.

Identified candidate lava tubes are processed to extract geometrical parameters, such as

the depth and the thickness of the crust (roof).

The second contribution on automatic data analysis proposes a deep learning-based

method for the segmentation of radar sounder data. In the literature, radargram segmen-

tation is based on handcrafted features, manually designed by considering target-specific

properties [45, 41]. Note that handcrafted features strongly depend on the investigated

targets, and thus, methods are not adaptable to other scenarios and classes. Recently, deep

learning-based techniques automatically extracting features showed high performance in

several domains. Here, we aim at automatically extracting information on basal bound-

ary conditions given their substantial relevance for modeling the ice-sheet processes, such

as the ice-sheet sliding. The method can be adapted with slight modifications to ana-

lyze other scenarios, such as the floating ice having different geometrical and dielectric

properties. A novel automatic method based on deep learning is proposed to segment

icy inland radargrams and locate meaningful geological targets for better understanding

the ice-sheet and the basal boundary conditions processes. Radargrams are segmented

into classes, including englacial layers, bedrock, echo-free zone (EFZ) and thermal noise
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already considered in the literature, as well as new classes of basal ice and signal perturba-

tion. The classes have a specific spatial distribution in the range and azimuth directions.

Moreover, the proposed method can handle the large variability in the dimension and

scale of the targets. The method effectiveness was tested on two datasets of radargrams

by the MCoRDS3 radar sounder in the inland of Greenland and Antarctica with basal

units in the basal layers.

The last contribution to radargram automatic analysis is the definition of an unsu-

pervised method based on deep learning for segmenting planetary radar sounder data.

Unsupervised segmentation does not require labeled data, which is an advantage with re-

spect to supervised approaches. Supervised segmentation, especially those based on deep

learning, relies on large labeled datasets that are hard to retrieve in the radar sounder

domain. This paper proposes a novel and unsupervised method based on deep learning for

extracting information on the subsurface targets in radargrams. The proposed method

detects subsurface reflections in radargrams and analyzes the related deep features to

distinguish buried targets. The technique is fully unsupervised and does not require any

initial labeled data. We model radargrams with two main semantic classes: the back-

ground and the target. Background includes the no-signal areas and the thermal noise

above the surface and below the basal return. The targets include the reflections from

different dielectric interfaces in the subsurface, such as ice layers and basal return. Thus,

the target class can be further divided into other subclasses. This hierarchical structure

is exploited by the proposed method, which hierarchically segments the radargram. At

first, we discriminate between the background and target to extract reflections in the

radargram. The targets (i.e., radargram reflections) are segmented into subclasses by

analyzing the deep features. We tested the proposed method on a dataset of MARSIS

radargrams acquired near the South Pole of Mars to identify anomalies in the basal return

that astrophysicists identified as subglacial lakes [26].

1.4 Structure of the thesis

This chapter described the context of the thesis, the motivation, and the novel contri-

butions. The rest of the dissertation is organized into four main parts as follows.

Part I provides the theoretical background of RSs. Chapter 2 reviews the basics prin-

ciples of radar sounding, analyzing the radar equation, the wave propagation and inter-

action with the subsurface targets, and the geometric resolution of radar images. Then,

the present, past, and future radar sounder instruments are described.

Part II provides the proposed performance assessment approach for the target de-

tectability in orbiting radar sounder data. Chapter 3 analyzes the performance assessment

of target detectability in simulated EORS data.
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In part III, the proposed novel approaches to radargram data analysis based on fuzzy

logic and deep learning are presented in detail and supported by illustrative case studies.

Chapter 4 proposes an unsupervised method for detecting candidate lava tube reflections

in planetary radar sounder data. Chapter 5 presents a supervised deep learning-based

method for segmenting inland radargrams and investigating the basal boundary condi-

tions. Chapter 6 describes the proposed unsupervised deep learning-based method for the

semantic segmentation of planetary radar sounder data.

Chapter 7 discusses the overall conclusions of the thesis and addresses possible future

developments.

Finally, Appendix A lists all abbreviations used in the thesis, and Appendix B lists

the mathematical symbols.
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Chapter 2

Radar Sounders

This chapter presents the technological background of radar sounding. We first describe the

basic principles of radar sounding, analyzing the radar equation, the wave propagation and

interaction with the subsurface targets, and the geometric resolution of radar images. We

move then to the description of the past, present, and future radar sounder instruments.

2.1 Introduction

RADAR (RAdio Detection And Ranging) refers to a group of active sensors used for a

wide range of applications, from surveillance to imaging of the Earth surface and subsur-

face, in several remote sensing fields, including commercial, military, Earth observation,

and planetary exploration [52]. Pulse-radar transmits an electromagnetic (EM) wave with

high energy in the expected target direction and then collects the backscattered echoes.

Measuring the time delay and power of the backscattered echoes enables estimating the

target distance and backscattering coefficient. Imaging radars have a monostatic config-

uration and are equipped with an antenna for transmitting and receiving the signal. The

radar-target distance is estimated by the two-way traveling time and the wave velocity

in the medium. The backscattering coefficient stores the information on the target prop-

erties, including the composition and dimensions. Thus, it is of critical importance for

characterizing the investigated targets [52, 53].

Radar Sounders (RSs) are a specific type of radar that image the subsurface of the

Earth and planets of the Solar System, including Mars and the Moon. Mounted on

airborne or spacecraft platforms, RSs are monostatic and transmit an EM at the nadir

direction that probes the subsurface (see Fig. 2.1) and estimates the target depth and

dielectric properties. Radar sounding plays a vital role in enhancing our understanding of

geological targets and processes deep in the subsurface. This is while other remote sensing

sensors (e.g., optical, SAR, and altimeter) cannot penetrate deep in the subsurface and

reveal information about the surface targets only.
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Figure 2.1: Working principles of radar sounder– on the left the acquisition geometry of a radar sounder,

on the right an example of a radargram. Moving along-track, an RS transmits signal pulses at a time

interval given by the pulse repetition interval (PRI) and illuminates the target region within the antenna

footprint. The signal propagates through the subsurface, where it undergoes scattering, absorption,

and transmission in its interaction with different types of dielectric interfaces. The time-varying signal

received back at the antenna can then be interpreted to infer the target characteristics and depth.

This chapter briefly introduces the background and principles of radar sounding, citing

examples of past, present, and future RS instruments. Section 2.2 presents the introduc-

tion and the principles of radar sounding, focusing on the radar equation, the wave prop-

agation and interaction with the subsurface targets, and the geometric resolution of radar

images. Section 2.3 lists and describes past and currently operating RSs and those under

development for future satellite missions in the content Earth observation and planetary

exploration.

2.2 Principles of radar sounding

The working principle is based on the backscattering of the transmitted EM wave by

interfaces. Fig. 2.1 on the left illustrates the acquisition geometry of an RS instrument.

RSs are mounted on a moving platform, typically a satellite or plane. The moving di-

rection of the platform indicates the along-track or azimuth direction. The orthogonal

direction to the along-track that points down toward is the nadir direction. Nadir repre-

sents the range of the radar and indicates the depth. The third direction is orthogonal

to both the along-track and the nadir and is called across-track. The antenna transmits

an electromagnetic signal at nadir direction at a low frequency that can penetrate the
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surface and propagate in the subsurface. At each subsurface dielectric interface, a part is

reflected in the radar antenna. Interacting with the interfaces reduces the wave energy so

that the signal backscattered by deeper interfaces is not detectable by the radar receiver.

The received echoes transport data about the depth and the specific dielectric properties

of the target. The type of transducer for transmitting and receiving is a dipole. This is a

critical issue as RS instruments require a low frequency to penetrate the surface, and the

size of the dipole antenna is inversely proportional to the working frequency. Thereby, a

low frequency corresponds to a large antenna that might be difficult to be carried by a

moving platform (either satellite or airborne).

The signal received by the radar between the pulse transmission is called A-scan. The

concatenation of several A-scans over multiple pulses generates the radar image, called

radargram (Fig. 2.1 on the right). Radargrams are the coherent superposition of all the

received echoes along the track of the moving platform. For each track point, an A-scan

(i.e., a column of the radargram) can be estimated from the power and two-way traveling

time of backscattered echoes. In summary, the radargram y-axis indicates the depth of

the target or one-way delay, and the x-axis is the positions of the sensor along the track.

Finally, the amplitude of each pixel corresponds to the power of the reflected wave.

Some of the radargram reflections are not backscattered from the subsurface. Some

reflections are undesired and may completely mask the signal from desired subsurface

targets, i.e., clutter [54]. The main clutter component is the off-nadir surface scattering

received by the antenna concurrent with the nadir sub-surface reflections. The RS an-

tenna is typically a dipole, having an omnidirectional radiation pattern and no directivity.

The wave illuminates a large area of the surface, and echoes from the nadir subsurface

and off-nadir surface simultaneously reach the RS antenna. This leads to difficulties in

discriminating between the clutter and subsurface signals as the clutter intensity is usually

higher than that of the subsurface signals. Many methods were proposed in the literature

to mitigate clutter, mainly based on backscattering models and the statistical estimation

of backscattering parameters of the surface [55, 56].

The time interval between the transmission of two pulses is the Pulse Repetition In-

terval (PRI), as shown in Fig. 2.2. PRI is inversely proportional to the Pulse Repetition

Frequency (PRF). The fraction of time in which the radar transmits is called duty-cycle

that is a measure of the radar power-rate consumption. The duty-cycle is a critical mea-

surement for the design of a radar [53]. The pulse width depends on the modulation

of the transmitted EM wave. RS signals are usually modulated linear frequency chirps

with a narrower bandwidth (about a few MHz) than other modulations [52]. The main

advantage of frequency modulation is that the waveform has a long duration and a large

spectral width. The wide bandwidth helps to increase range resolution as the signal phase
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is frequency depended. Moreover, the signal is long enough to have sufficient energy for

detecting small and far objects. RS signals have a large fractional bandwidth (about

20-60% of the central frequency) to have the optimum trade-off between the maximum

penetration and the range resolution [53]. The penetration increases by decreasing the

central frequency, while the range resolution increases with the bandwidth decreasing.

2.2.1 Propagation of the wave

The electromagnetic wave propagation in a generic medium can be explained with

Maxwell equations [57]. Snell’s law describes the relationship between the incidence and

refraction angles of the EM wave while passing through an interface between two media.

At each interface, i.e., where there are two or more materials with different dielectric

properties, the incident wave is divided proportionally to the media dielectric difference.

The signal interacts with the interfaces so that the EM wave is backscattered, absorbed,

and propagated.

Radar equation for subsurface sounding

The echo power Pr received by the radar antenna can be defined as in [58]:

Pr =
PtG

2 λσ0Aill
(4 π)3 h4

(2.1)

where Pt is the power transmitted by the radar, and G is the radar system gain. h

considers the height of the platform (in the range of 400 m - 500 km, depending on the

platform type) from the surface and the depth of the target in the subsurface. σ0 is

the backscattered coefficient that is related to the dielectric properties of target, and Aill
indicates the geometric properties of the target. σ0 and Aill store the properties of the

investigated media, but also provide insights into the propagation losses [52, 53].

The central frequency and the bandwidth of the transmitted signal are important

parameters defining the sounder performance, including the penetration capabilities and

the geometric resolution. The penetration capabilities depend on the frequency: the

lower is the frequency, the higher the penetration, and the lower the attenuation. The

wavelength, i.e., λ = vmedium/fc, is directly proportional to the length of the antenna.

This means that a large antenna corresponds to low frequencies. The dipole length is

about 2-50 m, depending on the central frequency.

The bandwidth of the transmitted pulse influences the transmitting gain of the antenna

and the range resolution. The vertical resolution depends inversely on the bandwidth.

Increasing the bandwidth of the signal corresponds to a better range resolution. Comb-

ing frequency and bandwidth limitations, penetration capability in the subsurface is in

contrast with the range resolution. Thus, increasing the penetration performance means
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decreasing the resolution in the range direction and vice-versa. Therefore, a trade-off has

to be found according to the specific requirement of the radar application [53].

The propagation in a dissipative and dispersive medium causes losses, including ab-

sorption and attenuation. Absorption and attenuation are due to the medium dispersive

dissipative properties, respectively. Attenuation is related to the sounder penetration ca-

pabilities. Increasing the attenuation decreases the power of the backscattered echoes and

penetration capability [53].

Wave velocity

Appropriate mapping of the subsurface from a radargram requires estimating the wave

propagation velocity in the medium. The wave velocity strongly depends on the dielectric

property of the medium. In the vacuum, the propagating velocity the speed of the light

c =
1

√
ε0 µ0

≈ 3 108 [m s−1] (2.2)

where ε0 = 8.854×1012 [Fm−1] and µ0 = 4π×10−7 [NA−2]. In a medium, the propagation

velocity depends on the medium dielectric properties:

vmedium =
c

√
εr µr

=
1

√
ε0 εr µ0 µr

(2.3)

where εr and µr are the relative dielectric permittivity and permeability of the medium,

respectively. Considering that εr and µr are always equal or greater than 1, the propa-

gating velocity in a medium will be equal of smaller than c. Finally, we can estimate the

distance of the target from the antenna (i.e., the depth) by considering the Round Trip

Time (RTT). The RTT is defined as the time elapsed from the wave radiation to when the

antenna receives the echo back. RTT indicates the time for propagating in the medium,

hitting the target, and returning to the antenna. Assuming that the wave propagates in

a homogeneous medium, and knowing the RTT and propagation velocity in the medium,

it is possible to calculate the depth of the target (z) in the subsurface as:

z =
vmedium RTT

2
(2.4)

Calculating the propagating wave velocity requires some information about the dielec-

tric properties of the subsurface medium. Knowing the dielectric properties, it is not

possible to relate echo delay with the target depth. However, in general, the reliable esti-

mation of the relative dielectric properties is not possible from a single measurement. For

this reason, prior knowledge of the investigated target is needed. Moreover, to extract

information from a radargram, we should consider the whole sounding system charac-

teristics. Collected data strongly depends on the medium dielectric properties and the

expected geological dimension of the targets.
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2.2.2 Geometric resolution

Radargram geometric resolutions depend on several factors, including the antenna

radiation pattern, the surface roughness, and the altitude of the sounder [4]. For space-

borne acquisition, a resolution cell is defined by the first Fresnel zone on the surface (i.e., it

corresponds to antenna footprint). In the along-track direction, the wave beam is formed

by a single lobe. Hence, the wave footprint is limited by the antenna dimension (see Fig.

2.2 for the acquisition geometry). In the across-track direction, the footprint is larger due

to the omnidirectional radiation pattern of the dipole. Resolution can be improved only

Figure 2.2: Schematic representation of the process of subsurface mapping using radar sounding. Moving

along the track, an RS transmits pulses at a time interval PRI that illuminates the region within the

antenna footprint. The signal propagates through the target subsurface, where it undergoes scattering,

absorption, and transmission in its interaction with different types of dielectric interfaces. The time-

varying signal received back at the antenna can then be interpreted to infer the target characteristics.

The important direction vectors in the acquisition geometry are denoted by x (along-track), y (across-

track) and z (range or depth).

in an along-track with a Doppler filtering, based on the synthetic aperture of the antenna

developed by the moving platform. Doppler analysis also reduces the clutter reflections

from the off-nadir surface and increases the Signal-To-Clutter-Ratio (SCR) parameter.
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Along-track resolution

Doppler analysis consists of resolving the ground target position not only from ampli-

tude processing but from its combination with the phase shift signal measured through

coherent detectors. Hence, considering the processing of the data, two types of along-track

resolutions can be defined, i.e., the focused resolution ρfx and the unfocused resolution ρufx .

The focused along-track resolution depends on the Doppler focusing of the data and has

a higher resolution, but it implicates more onboard power consumption.

Focusing Algorithm. In the focused case, the history of the phase signal is fully exploited,

and the maximum theoretical resolution is achievable ρfx defined in (2.6). For the Doppler

analysis, it is important to correctly sample the Doppler shifts by the Pulse Repetition

Frequency (PRF) instrument. The lower limit of PRF is given by the Doppler Bandwidth

BD, which is defined as

BD = 2
V 2
x

hλ
Ti (2.5)

where Vx is the velocity of the moving platform, and Ti is the integration time defined as

the time interval that the radar illuminates a point on the ground. Hence, the along-track

resolution is defined as:

ρfx ≈
Vx
BD

=
hλ

2La
(2.6)

where Vx is the velocity of the moving platform and BD is the Doppler bandwidth defined

in 2.5.

Unfocusing Algorithm. In the unfocused case, the phase signal is not exploited, and

therefore, the along-track resolution is lower. However, the computational effort onboard

is reduced by about 30%, and consequently, the platform power consumption. The basics

assumption is that the objects produce a constant Doppler frequency over a time interval,

called integration time Ti. Thus, the resolution value depends on the along-track space

covered that is equal to the length of the synthetic aperture La, see (2.7).

ρufx = La =

√
hλ

2
(2.7)

Across-track resolution

Across track resolution ρy depends on the antenna beam pattern only. The Doppler

analysis is not possible since in this direction there is not relative movement respect the

ground point. In this direction, the dipole radiates in an isotropic way, and consequently,

echoes are collected from the backscattering in all directions. Off-nadir surface reflection is

sufficiently weak not to mask the desired signal, but surface’s not-ideal roughness degrades
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the across-track resolution. In the case of a smooth surface, the resolution of the radar is

equal to the diameter of the first Fresnel zone DF :

ρflaty = DF = 2

√
(h+ λ/4)2 − h2 ≈

√
2hλ (2.8)

In case of rough surface, the echos come within the entire antenna aperture. The

across-track resolution is higher than in the previous case as it depends on the projection

of antenna aperture on the ground. The across-track resolution can be approximated as:

ρroughy = DF = 2

√
h c

BW
≈ 0.88

hλ

La
(2.9)

where h indicates the moving platform height, λ is the wavelength of the transmitted

signal, and La the maximum length of the antenna dipole.

Range resolution

Range resolution ρz is associated with the depth direction and is defined in (2.10). ρz
depends on the bandwidth of the transmitted signal. As the bandwidth increases, the

resolution decreases and improves. The resolution is proportional to the medium velocity,

which depends on the dielectric properties of the medium.

ρz =
vmedium
2BW

(2.10)

where vmedium is the propagation velocity in the medium defined in (2.3), and BW is the

bandwidth of the transmitted signal. In non-ideal materials, dielectric response strongly

varies with the frequency so that increasing the frequency increases the attenuation losses.

2.2.3 Interaction with subsurface targets

The nature of the interaction between the wave and the interface depends on its di-

electric and geometric nature. In radar sounding, subsurface scatterers can be broadly

represented by one or more combinations of the following types [53]:

1. Smooth and horizontal interfaces of significant dielectric contrast. They are charac-

terized by a strong, horizontal, and specular reflection, e.g., the interface between

ice and an underlying subglacial lake (see Fig. 2.3.a).

2. Compositional interfaces representing a change in the material dielectric properties.

They are characterized by a change in the signal strength, e.g., the interface between

porous regolith overlying a solid bedrock (see Fig. 2.3.e).

3. Structural interface represented by changes in the crystal properties. They are also

characterized by a change in the signal strength, e.g., the interface between brittle

and ductile ice and ice layers (see Fig. 2.3.a).
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4. Geological offset. It is characterized by a vertical offset in the received echo, i.e.,

a vertical discontinuity in otherwise horizontally continuous distinct layers (e.g., a

normal fault as shown in Fig. 2.3.d).

5. Distributed subsurface scatterers. They are small-sized reflectors of significant di-

electric contrast, which are randomly distributed within an otherwise homogeneous

background (e.g., pockets of water within ice and mines, as shown in Fig. 2.3.c).

They are characterized by a loss of coherence in the signal and appear like diffused

reflections of relatively low strength spread over many ranges and along-track samples

in the radargram.

6. Absorbing interfaces caused by a highly conductive dielectric medium. These inter-

faces result in the total loss of signal strength, and no echoes are obtained from

depths below them (e.g., air - seawater interface, see Fig 2.3.b).

Note that the transmitted signal properties are crucial for determining what is visible

in the radar image. The bandwidth and the frequency are related to the penetration

capabilities and the range resolution. The target detectability depends on the platform

altitude, two-way antenna gain, the working frequency, and transmitted signal power.

These factors are related to the signal-to-noise ratio (SNR) and thus the reflection power

in radargrams. The higher is the SNR the higher is the probability of detecting the targets

in radargrams. The design of the radar parameters should consider both the mission

requirements and the target detectability. The target detectability can be assessed using

data analysis algorithms on radargrams simulated by varying the RS design (see Chapter

3).

2.3 Radar sounder instruments

The scientific return of radar sounding in providing critical information on the sub-

surface geological processes and structure has been well-recognized by the scientific com-

munity. Ground-penetrating radars (GPRs) are commonly exploited for field surveys in

several applications for detecting buried objects, including ice-sheet imaging and urban

environment monitoring, e.g., [62]. In remote sensing, GPRs are flanked by airborne-

mounted RS instruments that provide a regional mapping of the subsurface. In the last

decades, airborne RSs have been commonly used to map Greenland and Antarctica at

a regional scale (e.g., Polaris [28], MCORDS [29], and P-Band [30] radar sounders). A

global coverage can be achieved with an RS mounted on a satellite, mainly used in the

past for planetary exploration. Several RSs have been acquiring information on the other

planets of the Solar System, and many others are under development for near-future

radar-sounding missions. Fig. 2.4 lists past satellite RS missions in black (MASRIS,
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(a) (b)

(c) (d)

(e)

Figure 2.3: Examples of radargrams explaining the different interaction between the wave an the subsur-

face targets. Figure (a) is a radargram acquired over the Lake Vostok in Antarctica showing interaction

1 (smooth and horizontal interfaces of significant dielectric contrast between the ice and the water) and

3 (structural interface represented by changes in the crystal properties, i.e., the ice strata). Figure (b)

is a radargram acquired in the coastal areas of Greenland showing interaction 6 (absorbing interfaces

caused by a highly conductive dielectric medium) at the air - seawater interface. Figure (c) is a Ground

Penetrating Radar (GPR) radargram over a mine from [59] showing interaction 5 (distributed subsurface

scatterers). Figure (d) is a GPR radargram of subsurface faults from [60] showing interaction 4 (geological

offset). Finally, Figure (e) is a lunar radargram of a GPR in CE-4 site from [61] showing interaction 2

(compositional interfaces representing a change in the material dielectric properties).
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SHARAD, CONSERT), the approved missions for which RSs are under development in

green (RIME, REASON), and those under study (not yet approved) in blue (Envision

SRS). Recently, a new idea is emerging for profiling the Earth subsurface of arid areas

and the cryosphere with radar sounding to studying the subsurface of critical regions to

monitor climate change. To this end, two new RS are under study, i.e., STRATUS and

OASIS. Particularly, STRATUS has as a primary objective the study of the cryosphere,

and as a secondary objective the study of the subsurface of arid and desert areas. The

RS design leverages the heritage of the past and currently operating RSs and already

available radargrams for designing and predicting the performance.

Figure 2.4: Past and future satellite missions carrying on-board RS instruments. Among these instru-

ments, past missions are in black, approved missions under development are in green, and SRS (high-

lighted in blue) is currently in the Phase A study.

2.3.1 Exploration of Mars subsurface

Mars was probed by two radar sounder: the Mars Advanced Radar for Subsurface and

Ionosphere Sounding (MARSIS) and The Mars SHAllow RADar sounder (SHARAD).

The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) [63] radar
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Table 2.1: Parameters of the main past and present radar sounder missions for planetary exploration and

Earth observation.

Target Instrument
Central

Bandwidth
Maximum Range Azimuth

Frequency Penetration Resolution Resolution

Planetary SHARAD [2] 20 Mhz 10 Mhz 1 km 15 m 400 m

Exploration MARSIS [63] 5.5 Mhz 1 Mhz 5 km 150 m 5.5 km

LRS [3] 5.0 Mhz 2 Mhz 5 km 100 m 60m

Earth
MCoRDS [29] 195 Mhz 30 Mhz 5 km 4.3 m 25 m

Observation

sounder is from the Italian Space Agency (ASI) and was on board the ESA’s Mars Express

orbiter launched in 2003. Starting from 2005, MARSIS probed the subsurface of Mars for

several kilometers. MARSIS was also designed for ionosphere sounding and large-scale

surface altimetry. The transmitted wave has a central frequency in the range of 1.8, 3, 4,

and 5 MHz and a bandwidth of 1 MHz. For minimizing the ionosphere distortion, two

central frequencies of 1.8 and 3 MHz are used for night-side operation and 4 and 5 MHz

for day-side operation. The Doppler filtering (SAR processing) is performed onboard

to reduce the volume of the downlinked signal. Further processing is associated with

the signal transformation in the time domain and correction of the ionosphere phase

distortions. The primary radar antenna to transmit and receive is a dipole of 40 m long

oriented orthogonal to the moving direction to illuminate the subsurface. The radar

is equipped with another monopole antenna vertically oriented that captures off-nadir

echoes.

MARSIS revealed the first-ever images of the Martian subsurface. In the literature,

several important discoveries about the martian geology and past evolution history have

been possible because of the MARSIS data, e.g., [25, 64, 26]. The study in [25] showed that

the polar caps of Mars are rich in ice, i.e., the North and South Polar Layered Deposits,

respectively NPLD and SPLD. A 250 km wide buried impact basin was discovered hidden

by a low-loss icy material in the Chryse Planitia [64]. Recently, MARSIS data provided

evidence of subglacial liquid water (20 km wide subglacial lake) near the SPLD 1.5 km in

the subsurface.

The Mars SHAllow RADar sounder (SHARAD) [2] was launched by ASI onboard the

Mars Recognisance Orbit (MRO) probe. SHARAD operated with a central frequency

of 20 Mhz and a bandwidth of 10MHz. Such wave characteristics highly increase the

sounding resolution of MARSIS to 15 m in the vacuum and the penetration to several

hundreds of kilometers. Contrary to MARSIS, SHARAD strongly reduces the onboard
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processing and analog electronics, such as the baseband conversation. This allows the

achievement of high fidelity of the signal by decreasing the distortions and side lobes.

The raw data downlink has a large volume due to the low onboard processing, and it is

possible for the MRO high data rate. On-ground processing, further analyses improve the

quality of the data [65].

SHARAD data, similarly to MARSIS, contributed to the better understanding of sci-

entific questions on the geology, such as the dielectric composition of the surface and

subsurface, formation, and evolution of Martian features. The study in [66] provided

evidence of the ice composition of the lobate debris aprons in the Martian mid-latitudes.

SHARAD resolved polar layered deposit details, giving insights into the stratigraphy and

paleoclimatic records [67]. Another example is the detection of horizontal layering, which

is the interface between the newer Vestitas Borealis and the beneath Hesperian plains

[68]. SHARAD acquisitions complemented MARSIS ones providing global mapping of

the Martian subsurface and shallow crust.

2.3.2 Exploration of the Moon subsurface

Kaguya (SELENE) spacecraft was launched in 2007 onboard the Lunar Radar Sounder

(LRS) [3]. The LRS aimed to i) detect buried regolith layers, ii) map the subsurface

structures, and iii) perform passive observation of radio and plasma waves of the lunar

orbit. Table 2.1 lists the parameter of the LRS. The LRS central frequency is at 5 MHz

with a frequency sweep from 4 to 6 MHz, at a 2π × 1010rad/s2 sweep rate of angular

frequency. Assuming a loss tangent of 0.006 for the lunar regolith, the LRS can achieve a

penetration up to 5 km. Due to the absence of the Moon ionosphere, the received signal

is not affected by phase dispersion. The radar sounder was equipped with two dipoles

working at a frequency of 5 Mhz and having a length of 30m. The characteristics allow

the penetration in the subsurface of some kilometers with a resolution of 100m.

The LRS has a global coverage of the Moon. In the nearside (Maria), sounder data

reveals several volcanic interfaces, such as layered deposits, with a depth of several meters

generating strong reflection [27]. The farside (Highlands) has a high surficial roughness

and the presence of large and thick craters. Hence, Highlands radargram is strongly

affected by clutter.

2.3.3 Exploration of comet 67P subsurface

The COmet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT)

[69] is a bi-static radar sounder onboard the ROSETTA probe. ROSETTA, an ESA

mission, after a cruise of about ten years, entered into the orbit of the 67P/Churyumov-

Gerasimenko comet. ROSETTA lander, called Philae, investigated the nucleus internal
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structure to extract information on the comet evolution and early Solar System formation.

The comet has a small body of a few km, making the CONSERT design specific for the

acquisition scenario. To this end, ROSETTA orbiter and Philae were equipped with a

bistatic configuration operating at a central frequency of 90 MHz with a bandwidth of 10

MHz. The bulk dielectric permittivity is estimated considering the time delay and the

amplitude of the signal transmitted between the orbiter and the lander that passes through

the comet. An accurate estimation strongly depends on the accuracy of the relative

position between the orbiter and lander. Analyzing prior hypotheses on the dielectric

properties supported the spatial resolution required for dealing with this problem [70].

Dielectric assumptions are based on 3D simulations, considering a wide range of values of

porosity, temperature, composition, and the comet inner structure. The parameter values

are from laboratory measurements of the comet-analog dust-ice-void composition. The

dust/ice ratio was in the range of 0.4-2.6, and porosity around 58%-75%.

2.3.4 Exploration of the Jovian Moon subsurface

RSs showed to address meaningful scientific challenges on the geologic evolution of

the Solar System planets. For this reason, there is a growing scientific interest in the

exploration of the outer Solar System, such as the Jovian system, addressed with a radar

sounder. Giant gas planets are composed of volatile that suggest the possibility of past

or present life or habitability. The largest Jovian Moons are Ganymede, Callisto, and

Europa, which are composed of water-ice. Images of these Moon surfaces show interesting

geomorphological features, such as multi-ringed basins, palimpsests, and paterae [71].

Investigating the formation and composition of these features would explain the evolution

of the Jovian and Solar Systems. Leveraging on the heritage of past radar-sounding

missions, two missions have been proposed to investigate the subsurface of the Jovian

Moons motivated by the need for direct measurements of subsurface liquid water.

The JUpiter ICy moons Explorer (JUICE) [71] has been chosen in the ESA’s Cosmic

Vision 2015-2025 program. JUICE aims at studying the Jovian system and investigating

potentially habitable zones in the Jovian Moons. The Radar for Icy Moon Exploration

(RIME) [53] is the RS onboard JUICE and will be the first instrument to probe the Jovian

moon subsurface. RIME operates at a central frequency of 9 MHz with a bandwidth of

1 MHz or 2.8 MHz, resulting in penetration in the ice up to 9 km. Radargrams will be

acquired in multiple flybys, followed by a circular orbit at an altitude of 500 km (nominal

phase) around Ganymede, providing global coverage of the Ganymede subsurface. RIME

[53] scientific objectives are i) characterizing the structure of the ice shell and the distribu-

tion of subsurface water; ii) understanding the formation of surface features; iii) searching

for past and present life-related activities; and iv) determining the global composition,
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distribution, and evolution of surface materials. RIME addresses these objectives with

subsurface that stores information on the subsurface geological targets with significant

contrast in dielectric permittivity [53]. Onboard processing is enough to guarantee a fac-

tor of 8 in the digital sampling, and robust data processing will be done in the ground

segment.

The other radar sounder under development for investigating the subsurface of the

Jovian Moon is REASON [72], onboard the Europa Clipper mission by NASA. REASON

aims to study the subsurface of Europa, the smallest and most active Jupiter icy moon.

There is evidence that, in the shallowest subsurface, there are interesting geodynamic

processes, including plumes and ice diapirs. Although the low depth favors their detection,

REASON will be strongly affected by the Jovian emission intensity. To overcome this

limitation, Europa Clipper will operate with a fly-by-centric mission. REASON aims at

investigating the habitability of Europe and the inner geological structure. REASON

works with a dual-frequency of 9MHz and 60MHz, resulting in both deep and shallow

penetration.

2.3.5 Exploration of the Venus subsurface

The exploration of the Venus subsurface is essential to understand the evolution of the

Solar system. Envision mission was shortlisted and now in phase A of study by the ESA

fifth medium-class mission (M5) in its Cosmic Vision science programme. Envision aims

to be equipped with a Subsurface Radar Sounder (SRS) for investigating the present-

day geological activity on Venus. Previous missions with SAI instruments (Magellan and

Venus Express) [73, 74] provided images of the complexity of Venus topography, possible

active volcanism, and the presence of long lava channels. Now, the SRS is designed to

operate in the frequency range of 9 - 30 MHz with about 60% of fractional bandwidth.

SRS is in the preliminary design phase (phase A), and the RS parameters (including the

frequency) are still under design, considering the mission requirements and the expected

target properties. The SRS will investigate i) layering in modified craters, ii) buried

craters, iii) the constraints in the three-dimensional structure of complex targets, such as

the tesserae, and iv) it will estimate the flow unit volume.

2.3.6 Exploration of the Earth subsurface

Radar sounders mounted on airborne platforms effectively profiled the subsurface of

ice and arid areas of the Earth. In the cryosphere, radar sounder revealed buried geologic

targets and processes that help in better understanding ice-sheets dynamics [29, 75, 28].

For example, analyzing targets like ice stratigraphy allowed the study of the terrestrial

past climate history. Radar sounding also gives insights on basal boundary conditions,
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(a) (b)

Figure 2.5: Uncertainty in the current estimates of (a) the Greenland ice-sheet thickness from BEDMA-

CHINE v3 [32] dataset, (b) the Antarctic ice-sheet thickness from BEDMACHINE v1 [33].

ice-sheets dynamics [76, 77], including the melting processing related to the ice-sheet

forward sliding toward the sea. In arid areas, several buried targets can be unveiled by

radar sounding. These include buried craters, faults that act as water conduits, and sand

stratigraphy. Another crucial target is shallow water tables that are critical in arid areas.

RSs have already proved to be able to map shallow aquifers (e.g., [78, 30]), considering

the high electric conductivity of the water.

There is no RS mounted on a satellite that probes the Earth subsurface because of: i)

the difficulties in allocating the EM spectrum needed for an Earth-observation RS, and

ii) the challenges of the signal propagation in the ionosphere. Areas of interest for Earth

radar sounding are arid and desert region and the cryosphere. These regions are charac-

terized by a low water presence in the shallow subsurface, as water has a high electrical

conductivity that prevents the EM wave penetration. Currently, the cryosphere and arid

areas are imaged with regional campaigns by RSs mounted on airborne. ARS provides

local measurements of the subsurface, and large and inaccessible areas of Antarctica and

Greenland and the arid areas are still not explored (see Fig. 2.5). Recently, a need emerged

for complete coverage of the cryosphere subsurface to map ice-sheet processes related to

climate change. Hence, this motivated the proposal for an Earth-orbiting radar sounder

(EORS) mission that provides full coverage and time-series data. Recently, two EORS
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proposals are under study: STRATUS [20] and OASIS [79]. One of the main challenges is

the propagation of the wave through the terrestrial ionosphere. The RS central frequency

should be greater than the ionospheric cut-off, varying with the geographical location and

the solar zenith angle. An RS operating at 45 MHz will propagate through the ionosphere

with minimum distortions [15]. At this frequency, the EORS wave can propagate through

the ionosphere and penetrate through 4-5 km of ice and a few hundred meters of desert

sand. The selection of the other RS parameters and the acquisition geometry parameters

are based on the target detection requirements. Nevertheless, an EORS is feasible and

can strongly support the scientific community in studying the effects of climate change

and water resources management.

2.4 Conclusion

The design of the radar parameters depends on the mission technical and scientific

requirements. RS scientific requirements are mainly based on the detectability of several

important subsurface targets. Target detectability can be assessed using data analysis

algorithms on radargrams simulated by varying the RS design (see Chapter 3). The

main parameters affecting target detectability are the frequency, bandwidth, transmitted

power, platform altitude, and two-way antenna gain. These factors are related to the

signal-to-noise ratio (SNR) and thus to the power of the target reflections with respect

to the noise in the radargram. The higher is the SNR the higher is the probability

of detecting the targets in radargrams. Past and currently operating RS are designed

with different parameters, which match the mission science and technical requirements.

This is reflected in the characteristics of radargrams, including the range resolution and

penetration capability. Finally, in the literature, few algorithms exist for automatically

analyzing radargrams. Moreover, existing techniques are designed for specific targets and

specific radargram characteristics. Hence, they can extract information on the target and

the radargrams for which they are designed. Thus, a need emerge for an approach for

designing radar sounders that consider the subsurface target detectability.
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Chapter 3

An approach to the assessment of

detectability of subsurface targets in

polar ice from satellite radar

sounders

A satellite mission with onboard a radar sounder for the observation of the Earth polar

regions can greatly support the monitoring of the cryosphere and climate change analyses.

Several studies are in progress proposing the design and demonstrating the performance

of such an Earth-orbiting radar sounder (EORS). However, one critical aspect of the

cryospheric targets that are often ignored and simplified in these studies is the complex

geo-electrical nature of the polar ice. This chapter 1 presents a performance assessment

of the polar ice target detectability by focusing on their realistic representation. This is

obtained by simulating the EORS radargrams corresponding to different regions of the

polar cryosphere, by leveraging the data available from airborne campaigns in Antarctica

and Greenland. We propose novel performance metrics to analyze the detectability of the

internal reflecting horizons (IRH), the basal interface, and to analyze the nature of the

basal interface. This performance assessment strategy can be applied to guide the design of

the SNR budget at the surface, which can further support the selection of the main EORS

instrument parameters such as the transmitted power, the two-way antenna gain, and the

processing gains.

1Part of this chapter appears in

Donini, E., Thakur, S., Bovolo, F. and Bruzzone, L., 2019, July. Assessing the Detection Performance on Icy Targets

Acquired by an Orbiting Radar Sounder. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing

Symposium (pp. 997-1000). IEEE.
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3.1 Introduction

The Earth polar ice sheets are crucial components of the cryosphere that affect global

climate change and sea-level rise. Several cryo-hydrodynamic processes occurring at the

base of the ice sheets affect the stability and seaward flow of the ice. Direct measurement

and imaging of the ice-sheet down to the base are essential for studying these processes

and modeling the stability of the ice sheets. This can be appropriately achieved by

profiling the ice using radar sounders (RS), also referred to as ice-penetrating radar.

Considering the need for RS data for imaging the polar ice caps, several airborne RS

(ARS) campaigns have been conducted in Antarctica and Greenland [29, 47]. Relevant

scientific returns have been obtained from data acquired by these campaigns, such as (1)

estimation of the thickness of the ice sheets, (2) analysis of the internal reflecting horizons

(IRH), (3) detection of subglacial lakes [80], (4) analysis of basal flow regime [81], and (5)

identification of basal refreezing [38]. However, these acquisition campaigns are expensive

and time-consuming, and despite a large number of campaigns, radar profiles are absent

over very large portions of the polar areas (e.g. 500,000 sq. km of Antarctica), resulting

in incomplete information on the polar ice characteristics [18]. Moreover, since the data

are collected in one-time campaigns with local coverage to study specific phenomena,

repeat-pass acquisitions are also not available. Furthermore, due to the use of different

instruments and airborne platforms, the data quality strongly varies between the different

campaigns.

An Earth-orbiting radar sounder (EORS) operating from a satellite platform can ad-

dress the limitations posed by the airborne campaigns by providing homogeneous data

quality with uniform and multi-temporal coverage of the Earth. However, at orbiting

altitudes, RSs are subjected to many performance limiting factors. These mainly include:

(1) the propagation losses due to the large distance to the target, (2) the distortions

caused by the ionosphere, (3) the surface clutter due to a relatively large antenna foot-

print, (4) the presence of galactic noise, and (5) frequency band allocation required for

Earth observation. Many of these factors can be mitigated at the system design level or in

post-processing to ensure the extraction of valuable scientific information, as successfully

demonstrated by the current heritage of planetary RSs (SHARAD [82] and MARSIS [63]

on Mars, LRS [83] on the Moon, RIME [84] and REASON [85] scheduled for the Jovian

icy moons).

Leveraging the heritage of terrestrial airborne and planetary RSs, currently, stud-

ies are in progress for the proposal of an orbital RS, operating in the HF-VHF bands

[20, 16, 15, 19]. These studies are based on assessing the performance of a given orbital

design in detecting the critical targets and achieving the scientific goals of the mission.

These assessments are used to guide the selection of the instrument parameters by deter-

36



CHAPTER 3. EORS PERFORMANCE ASSESSMENT SECTION 3.1

mining the appropriate trade-off between the achievable performance and the technical

and physical limitations [4]. Many of these studies focus on understanding the impact

of the Earth’s ionosphere [15, 16, 17], the surface clutter [18, 19], and the capability to

penetrate up to the base of the ice-sheet (assuming homogeneous dielectric properties of

the ice) [20].

However, only a few of these studies (e.g. [18, 19]) assess the performance considering

the structural details of the targets (such as the IRHs), which are both (1) a performance-

limiting factor (e.g., in terms of subsurface scattering and attenuation losses) and (2) a

detection objective of the instrument. Given the need to analyze the detectability of the

cryospheric targets, it is imperative to model and simulate their radar response. The

complex dielectric permittivity profile of the ice depends on several factors, such as the

presence of impurities (e.g., dust, ash, rocks, salts, acids), the crystal orientation fabric,

the thermal profile, and the distribution of melt-zones. The high variability of these factors

over unknown spatial scales and the lack of geophysical models to translate them to the

corresponding electrical properties make it difficult to subjectively define the dielectric

profile of the ice. This inhibits their assessment using conventional 3D electromagnetic RS

simulators [86, 21, 23]. Recently a novel simulation approach has been proposed, which

is based on reprocessing the radargrams acquired over geological analogs of the target

[24]. A specific case of application of this approach has been adapted for reprocessing the

airborne data to simulate the orbital radargrams over the regions acquired by previous

airborne campaigns [87].

In this work, we adopt this simulation approach based on reprocessing the airborne

data to predict orbital performance. The airborne data are a rich source of information

of the targets due to (1) the availability of large archives of data from multiple campaigns

[29, 47], (2) the widespread and full-depth coverage of the Antarctic and Arctic ice-

sheets, and (3) the similarity with the actual radar signatures of complex cryospheric

targets (principles of operation of the airborne and the orbital RS are similar). The input

airborne data are selected to represent different regimes on Antarctica and Greenland, i.e.,

grounded ice, floating ice, and subglacial lakes. The performance assessment analyzes the

achievability of the main objectives of an orbital RS mission: (1) detectability of IRHs,

(2) detectability of the basal interface, and (3) characterization of the nature of the basal

interface.

Assuming the feasible range of central frequency and bandwidth provided by the pre-

vious studies, the proposed detailed assessment of detectability of the targets is aimed

at revealing the required signal-to-noise (SNR) budget at the surface that maximizes

the detectability of these three target categories. The required SNR budget can guide

the selection of main instrument parameters, such as the two-way antenna gain and the
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transmitted power. These parameters can support the optimization of the orbital sensor

configuration, such as in the case of a recently proposed distributed orbital RS architecture

[48].

The chapter is structured as follows. Section 3.2 illustrates the previous studies on the

challenges of the EORS design, i.e., ionospheric distortion, surface and firn scattering,

volume scattering losses, and the target structure. Section 3.3 describes the proposed

approach to the design and performance analysis of EORS, focusing on (1) the limitation

of state-of-the-art studies, (2) the EORS simulation approach, (3) the extraction of the ice

targets from the simulated EORS radargrams, and (4) the evaluation of target detection

performances. Section 3.4 focuses on the description of the datasets used in the study

and the experimental results. Finally, Section 3.5 concludes the work and discusses future

works.

3.2 Challenges of orbital sounding of the Earth

Airborne RSs have successfully demonstrated that subsurface targets of scientific in-

terest in the ice (IRHs, basal interface, basal flow regimes, etc.) can be detected and

interpreted (e.g. [76, 38, 46, 41]). However, extending this capability of sounding the

Earth’s cryosphere to orbital platforms requires addressing some challenges related to the

detectability of the targets. The Earth’s ionosphere has the peak electron density at an

altitude of 200 - 400 km that can distort the received signal during propagation. Orbital

altitudes are typically larger than 500 km, which implies that the signal transmitted from

satellite platforms has to propagate through the Earth’s ionosphere twice before the re-

ception. At orbital altitudes at relatively low frequencies, the antenna footprint is larger

and incidence angles are smaller, resulting in a critical signal to clutter ratio (SCR). The

large distance between the RS and the target results in higher propagation losses and

beyond the Earth’s atmosphere, radar sounding is impacted by the high levels of galactic

noise, which is absent in airborne sounding. These factors contribute also to degrade

the range resolution and the subsurface SNR and must be considered while designing the

orbital RS. Another component that further complicates the design of the orbital RS is

the highly complex nature of the target.

The design of the existing and scheduled RSs for planetary bodies are based on a

trade-off analysis between the achievable performance given a set of design constraints

(instrument and orbit characteristics) and the limitations imposed by the physical scenario

(target and environment) [82, 63, 84, 4].

For an orbital RS, previous feasibility studies considered two end-member design con-

cepts: (a) an RS in VHF band operating at the central frequency of 45 MHz [16, 20, 17, 15]

and (b) an RS system in P-band operating at a central frequency of 435 MHz [19, 18].
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The choice of these two bands is justified by the trade-off between penetration and range

resolution, constrained by the ionospheric cut-off frequency and clutter mitigation. A

proper frequency choice can significantly improve clutter mitigation [88, 89, 18, 19, 90];

about 40 dB improvement in firn clutter suppression can be obtained with the 45 MHz

sounder compared to a P-band one [18]. As for the 45 MHz system, clutter only limits the

detection of IRHs deeper than 3000 m [18]. On the one hand, the VHF band can reason-

ably mitigate the effects of propagation through the Earth’s ionosphere while providing

high penetration capability. On the other hand, P-band is the lowest possible frequency

currently allocated by the International Telecommunication Union (ITU) for Earth obser-

vation. With this view, the allocation of the VHF band for Earth observation is included

in the preliminary agenda of the 2023 World Radio-communication Conference. In this

context, this section will analyze and discuss some of the critical design challenges for an

orbital RS, reviewing the previous studies and design concepts.

3.2.1 Propagation through Ionosphere

The ionosphere interacts with the signal by introducing distortions in the radargrams

that critically affect the phase and the range resolution. These effects are more pro-

nounced at low frequencies, and sounding is impossible at frequencies lower than the

plasma frequency of the ionosphere. For the Earth’s ionosphere, Freeman et. al. showed

that the cutoff frequency is less than 4 MHz at all latitudes at the solar minimum at 4 AM

local time [15]. Even while operating at frequencies much higher than the cut-off (e.g.,

40-50 MHz), the received signal can still be distorted in terms of loss of signal power,

Faraday rotation of linearly polarized waves, propagation delays leading to uncertainties

in the range and phase of the signal, phase dispersion, loss of coherence time, and phase

and amplitude variations caused by scintillation (changes in the electron density). Nev-

ertheless, the authors in [15] show that for a signal with a central frequency of 45 MHz

and bandwidth of 10 MHz, most of these effects can be tolerable and mitigated with an

appropriate design and with data correction. E.g., the Faraday rotation effects can be

mitigated by using a circularly polarized signal instead of linear polarization, and the

irregularities in the ionosphere occur less than 10% of the time. Moreover, statistical

analyses of observations in polar regions show that scintillations causing high power fad-

ing have a very low probability of occurrence around the solar minimum; their RMS phase

error is lower than 30◦ more than 50% of the times (depending on the solar zenith angle),

which implies a loss of less than 0.2 dB in the gain obtained by coherent integration.

These qualitative assessments of the ionospheric effects were quantitatively analyzed

considering the 45 MHz central frequency [17]. The authors demonstrated the feasibility of

mitigating these effects with a compensation technique based on Legendre polynomials.
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The study considered the range of expected ionospheric parameters, namely the total

electron count (TEC) and the magnetic field intensity. It estimated the impact of the

ionosphere on the: (1) peak to sidelobe ratio, (2) loss of peak power, and (3) loss of

range resolution by the main lobe widening. The compensation approach was based on

estimating the TEC values. The authors concluded that the distortion effects can be

effectively compensated depending on the accuracy of the parameter estimation; at less

than 5% error on the TEC values, the resolution loss factor is nearly 0, and the power

loss is less than 1 dB during most of the solar cycle.

The analysis of the ionospheric effects and the satisfactory performance obtained at 45

MHz central frequency with a bandwidth of 10 MHz, especially when operating close to

the solar minimum, are the basis of the Orbiting Arid Subsurface and Ice Sheet Sounder

(OASIS) [16] and the SaTellite Radar sounder for eArTh sUbsurface Sensing (STRATUS)

[20] mission concepts.

3.2.2 Surface and firn scattering

The reflections from off-nadir surface structures can potentially mask the nadir subsur-

face target reflections in radargrams. The impact of surface clutter in polar ice sounding

and its increase with the increase in platform elevation and the radar frequency was stud-

ied by airborne sounding over an ice-stream in Greenland at two altitudes (500 m and

4400 m), and operating at two central frequencies (150 MHz and 450 MHz) [90]. The

study found that surface clutter is the primary scattering mechanism that can obscure

the basal interface, and limits the choice of higher frequencies. To evaluate the impact of

clutter at orbital altitudes, and therefore the feasibility of a P-band orbital sounder for

Earth, Dall et. al. acquired data using the POLarimetric Airborne Radar Ice Sounder

(POLARIS) campaign in Antarctica [19, 28]. Electromagnetic models of the ice targets

were extracted from the POLARIS radargrams and integrated with ancillary information

on the attenuation properties. These models were used to evaluate the SNR and SCR

of the IRHs and the basal interface, using the radar equation. The authors concluded

that surface and within-ice volume clutter (from the firn layer) are the primary factors

limiting the detectability of the basal interface (in two-third of the considered scenarios

in Antarctica, the bed was not detectable).

In a recent study, the contribution of firn clutter has been analyzed in detail by first

determining the most appropriate physical model defining the firn layer, followed by

simulating and comparing the SCR and SNR achievable at central frequencies of 45 MHz

and 435 MHz, with variable bandwidths [18]. The performance simulations at different

frequencies show that very high fractional bandwidths are needed at UHF frequencies to

maintain the firn clutter at a 25 dB level below the surface power. They recommend
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orbital sounding at frequencies below 80 MHz to suppress the impact of near-surface firn

clutter. Moreover, it is found that the SCR of the 45 MHz radar is significantly better,

the basal interface detection is not affected by clutter, and only the IRHs deeper than

3000 m may have critically low SCR to be detected [18].

Nevertheless, several techniques can mitigate the issues with clutter at design and

processing levels. Fully focused SAR processing reduces along-track clutter. Novel RS

architectures such as the distributed RS can drastically reduce cross-track clutter [48].

There are also several clutter discrimination approaches based on co-registering the radar-

grams with the simulated cluttergrams [54, 91, 92], using single-pass interferometry [93]

or exploiting the polarization signatures [94]. Another interesting approach draws inspi-

ration from the clutter discrimination capabilities of big brown bats [55] and exploits the

split spectrum and frequency differences for distinguishing between surface and subsurface

reflections.

3.2.3 Volume scattering losses

Volume scattering was considered to be the main contributor to firn clutter in PO-

LARIS data, and therefore a critical performance-limiting factor in orbital sounding at

UHF frequencies [28]. This interpretation was based on the assumption that firn can be

modeled as composed of distributed pores, that result in incoherent backscattering of the

signal power. Culberg et. al. analyzed the validity of this assumption by comparing the

electromagnetic models of dry firn obtained from ice-core data with airborne radar pro-

files acquired by MCoRDS (central frequency of 195 MHz) [29] and Accumulation Radar

(central frequency of 725 MHz) [95]. They concluded that the firn is best modeled as

composed of quasi-specular layers with small-scale roughness (thus contributing to firn

clutter, as described in Sec. 3.2.2) rather than a contributor to volume scattering.

The study presented in [18] further evaluated the backscattered power in the 40-50 MHz

band by assuming air-filled spherical pores with radii ranging from 1 mm to 1 cm, with

realistic porosity derived from ice-cores, and found the volume scattering contribution

to be at least 40 dB below the surface power. The authors also studied the two-way

attenuation losses due to volume scattering assuming density inhomogeneities and found

the losses to be even lower (less than a few dB at HF frequencies). Therefore, these

experiments concluded that for the VHF radar, volume scattering is not a major impeding

factor in the detection performance.

3.2.4 Ability to resolve the target signal from noise

The galactic noise temperatures at the VHF band and P-band are 6320 K and 19.6

K, respectively [96]. The corresponding noise power levels are -120 dBW and -135 dBW,
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respectively, which indicates that at the VHF frequencies, the galactic noise levels are 15

dB higher than at P-band. Thus, previous studies [18, 19, 20] have identified that for

orbital ice sounding radar operating at a central frequency of 45 MHz, SNR is a more

critical factor than SCR in the detectability of the targets. Accordingly, the galactic noise

levels have been considered while projecting the penetration performance of OASIS [16]

and STRATUS [20]. At the design level, mitigating these noise levels needs increasing

the transmitted power and antenna gain, and improving the effectiveness of along-track

processing by increasing the integration length and by choosing appropriate PRF and

pulse width.

Many of these technical requirements can be fulfilled by using a distributed architecture

based on a flying formation, as elucidated in [48]. With regards to the effectiveness of

the along-track processing, the impact of RS acquisitions from orbital altitudes on the

SNR was studied in [97]. The authors modeled a point target located 2 km below the ice

surface and simulated its radar response to a P-band RS flying at two different altitudes:

(1) an airborne altitude of 1 km, and (2) an orbital altitude of 500 km. The study showed

that the SNR improvement obtained after focusing on the case of orbital sounding is

not as significant as the airborne one. Nonetheless, the improvement in the along-track

resolution is achievable with an orbital RS.

3.2.5 Complex structure of the target

The polar ice strata have very complex structural and compositional properties, as

revealed by several ice-core data, observations of outcrops, GPR, and airborne campaigns

(e.g., [76, 38]). The ice subsurface is characterized by a finely layered structure represent-

ing paleoclimatic records of seasonal accumulation and deposition of snow, interbedded by

various impurities. The thickness, topography, and composition of these internal reflect-

ing horizons (IRHs) are highly variable, thus inhibiting the precise and uniform modeling

of the ice targets across the entire polar ice.

The target geo-electrical models (representing structure, composition, and dielectric

properties) play a crucial role in predicting radar detection performance. The previous

studies proposing the orbital mission concept were based on evaluating the radar equation,

assuming a specular ice surface and basal interface, and a homogeneous dielectric medium

[20, 16]. Dall et. al. show that this assumption is not valid for terrestrial ice, which is

certainly highly heterogeneous in the top few hundred meters [19].

Ice-core dielectric and density profiles, as well as airborne radar profiles, have been

used in some studies to derive realistic physical models of the targets [18, 98, 19], for

understanding their detectability. Other studies went a step further and used the ice-core

data to generate models for 3D electromagnetic simulations of the radar response of GPR
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instruments [99, 100]. While these studies pave the way to the accurate modeling and

simulation of RS response of the ice targets, the sparse sampling and shallow depth of ice

cores limits their use in continent-wide estimation of detection performance. To the best

of our knowledge, there is no study on the detection performance of IRHs with an orbital

RS over large areas of the polar ice caps, especially at 40-50 MHz frequencies.

Based on the studies summarized in this section, an orbital RS operating at a central

frequency of 45 MHz with a bandwidth of 10 MHz will be able to minimize the distortions

caused by the ionosphere and surface clutter, while maintaining the range resolution

required to discriminate the IRHs. The studies also indicate that the SNR degradation

caused by galactic noise levels may be a limiting factor for the 40-50 MHz orbital RS

and may affect the detectability of the IRHs and the basal interface, which has not been

studied so far.

3.3 Methodology

3.3.1 Limitations in the previous studies

Although several performances limiting factors, such as the ionosphere and firn clutter

have been deeply analyzed in the previous works, there is a lack of studies considering

the targets in detail. Regarding the targets, the existing literature on orbital RS design

has several limitations:

1. Polar ice is strongly non-homogeneous and has high spatial variability in the structure

up to the centimeter scale. The resulting variability in the subsurface scattering

losses and dielectric attenuation profiles [101, 102] translates to significant spatial

variability in the radar penetration capability. Thus, it is necessary to study the

impact of this variability on the retrieval of the ice-thickness across different regions.

2. Detectability of the IRHs is critical for the science goals of an orbital mission to model

historical records of processes occurring within the ice. While ice-core data provides

detailed information on the IRHs with a resolution of a few centimeters, achieving

such levels of detail from an orbiting platform is technically insurmountable. How-

ever, the goal of orbital RS profiling is to image the prominent IRHs detectable at the

feasible bandwidth with sufficient SNR. The existing orbital studies usually assume

a homogeneous target and ignore the IRHs.

3. To support the scientific goals of an orbital mission, it is not only required to detect

the basal interface (i.e., to penetrate the full thickness of the ice), but also to char-

acterize its geophysical properties. This includes detecting geological targets within

the ice column and extracting information on the glacier processes, which includes
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Figure 3.1: Hierarchical performance analysis of the targets based on progressively increasing measure-

ment requirements and achievability of the science goals of subsurface sounding of the polar ice.

the mapping of the water distribution at the basal interface (e.g., basal flow regime

and subglacial lakes). This is of critical importance for predicting the stability of

the ice sheets and the rate of seaward flow of the ice. Such analyses require de-

tailed geo-electrical modeling of the targets, rather than considering a homogeneous

structure.

This work aims to address these limitations by proposing an approach to the assessment

of the detection performance of an orbital RS considering a realistic representation of

the polar ice targets. The target modeling is handled in a non-subjective and automatic

way by leveraging the airborne data and using them as inputs to an airborne-to-satellite

radargram simulation technique [87]. This allows us to account for the IRHs and the

spatial variability in the dielectric properties. The simulation of the orbital radargrams

also enables an assessment of the automatic interpretability of the detected targets and

thus, demonstrates the scientific feasibility of the mission.

3.3.2 Science goals of orbital sounding: a hierarchical approach to the per-

formance analysis

From the perspective of the scientific objectives of subsurface sounding of the polar

ice and the nature of the related targets, a hierarchical relationship between the radar

performance and the target detectability can be observed (Figure 3.1). At a preliminary

level of performance, an important scientific requirement of polar ice sounding is that
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the prominent near-surface IRHs should be mapped. This requires penetration through

the top part of the ice and with sufficient power, so that signal received from the IRHs is

above the noise and the off-nadir clutter levels. The detectability of the IRHs is significant

for inferring the paleoclimatic models and the ice mass balance.

In the next higher level of performance, the orbital RS should be able to delineate

the basal interface, representing the interface between ice-bedrock (for grounded ice) or

ice-water (subglacial lakes, i.e., grounded ice having a large pool of melt-water at the

base, or floating ice). This requires a penetration capability higher than the full ice

thickness, overcoming the scattering and power attenuation losses caused by the ice. The

detected basal interface can be used to estimate the thickness of ice sheets and ice shelves,

and generate the 3D topography of the bedrock (which can also support other relevant

scientific studies such as detection of buried craters [103, 104]).

Finally, for extracting scientifically valuable information from the data acquired by the

mission, it is not only necessary to detect the prominent dielectric interfaces, but also

to accurately interpret the geophysical properties characterized by these interfaces (e.g.,

composition, structure, dielectric properties). Such studies have been widely applied to

the airborne radargrams, such as to the automatic detection of subglacial lakes [46] and

mapping of basal units [41]. In this context, if the requirement on the penetration through

the full ice thickness is satisfied, a higher level of performance requires the interpretation

of the basal conditions (e.g., presence or absence of subglacial lakes, subglacial channel-

flow, accreted ice). This is possible only if the SNR of the signal received from the base

is sufficiently high and there are adequate range and along-track resolutions. Identifying

the nature of the basal interface (such as ice-freshwater, ice-sea water, ice-bedrock) can

support the inference of the grounding line position, basal boundary conditions, and the

ice-flow regime.

3.3.3 Proposed approach

Fig. 3.2 shows the schematic representation of the proposed methodology. In the first

step, orbital radargrams are simulated for different values of a variable design parameter,

starting from a large database of airborne radargrams acquired over different geographical

zones in Antarctica and Greenland. The radargrams are two-dimensional matrices in

which the rows represent time samples of the received signal, the columns represent the

frames acquired while the RS moves in the along-track direction and the values in the

matrix represent the received signal (which is a complex number, but in this case, we

convert it into the received power expressed in Watt or dB as required). The input

airborne radargram is denoted as Pr,A(rA, aA), where the subscript A refers to airborne,

aA is the frame index, and rA is the sample index of the airborne radargram. The simulated
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Figure 3.2: Flowchart of the proposed methodology.
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orbital radargram is denoted as Pr,E(rE, aE), where the subscript E refers to EORS, aE
is the frame index, and rE is the sample index of the orbital radargram.

A useful approach to the design of RSs is based on evaluating the maximum achievable

SNR at the surface (referred here as SNR budget and represented by the notation SNR)

that depends mainly on the instrument parameters and the orbit configuration. From the

budget, the losses due to the target and the environment (subsurface reflectivity, atten-

uation rate, scattering losses, ionospheric distortions, and coherence losses) are excluded

to determine the SNR margin available at the expected depth of the subsurface interface.

This is justified on the basis of previous studies (see Section 3.2.3). The SNR margin

should be positive and higher than the sensitivity of the RS to detect the subsurface

interface. To represent the range of possible values of the budget, Nb different hypotheses

of the SNR parameter are considered, referred by the simulation index b = 1, 2, ...Nb.

The corresponding values of the budget parameter are denoted with the simulation index

as the subscript, i.e. SNRb.

Each of the Nb simulated radargrams is analyzed for evaluating the orbital performance

using metrics defined in the proposed approach. To adopt a hierarchical approach (see

Section 3.3.2), we have defined performance assessment at two levels representing the

primary and the secondary objectives of an orbital mission. The primary assessment

pertains to the detectability of the prominent dielectric interfaces, while the secondary

assessment analyzes the ability to characterize these interfaces. First, the IRHs and the

basal interface are extracted from the simulated radargrams with the help of the ground

truth available in the input airborne data. From these dielectric interfaces, we evaluate

the primary performance metrics for each frame aE of the simulated radargrams.

Since the structural and geophysical properties of the ice targets vary with their loca-

tion, we have selected the input ARS radargrams widely distributed in different geograph-

ical conditions. To separately analyze the radar performance in each of the geographical

settings, we have defined five principal geographical zones based on the known differences

in the dielectric and radar characteristics of the basal interfaces [46, 105, 102] and prop-

erties of the IRHs. These zones include grounded ice (interior of the ice-sheets having

an ice-bedrock interface), floating ice (coastal ice-shelves and floating ice-tongues having

ice-seawater interface), and subglacial lakes (ice-freshwater interface). These are further

segregated by their location in Antarctica and Greenland, due to the different thickness

and age of the ice in the two continents. The zones are designated by a geographical

label L (henceforth referred to as geolabel). The geolabels are Greenland grounded ice

(GGI), Greenland floating ice (GFI), Antarctica grounded ice (AGI), Antarctica floating

ice (AFI), and Antarctica subglacial lakes (ASG).

The geolabels L are defined at each geographical coordinate (latitude, longitude) of the
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airborne and orbital ground tracks, and then assigned to the corresponding frames. The

frame indices with the label L are denoted as cLE = 1, 2, ...NL
E (NL

E is the total number

of frames corresponding to the label L). The labeled frames are used to estimate the

cumulative performance for each simulation index b grouped by the geographical zone

L. The cumulative performance is matched with an appropriate mission requirement

(typically flowing down from the science goals of polar subsurface sounding) to identify the

feasible range of the design parameter. For visualization and comparison, the performance

is projected onto a parameter space defined by the design parameter SNRb and the

geolabel L. Based on this performance mapping, guidelines are presented for the selection

of the design parameter that represents a trade-off between the feasible design and the

achievable performance.

Finally, we define and evaluate a secondary performance metric that quantifies the in-

terpretability of the detectable basal interface. This is achieved by applying an automatic

subglacial lakes detection algorithm [46] to the simulated radargrams. The lake detec-

tion performance is assessed by comparing the accuracy of basal interface classification

using the airborne and the simulated orbital data for the frames having a detectable basal

interface.

3.3.4 Assumptions

In this work, we consider a VHF band orbital RS, with a central frequency of 45 MHz

and a bandwidth of 10 MHz. The selected airborne operates at UHF frequencies with a

central frequency of 195 MHz and bandwidth of 30 MHz (Table 3.1). Note that the use of

a UHF airborne RS (which depends on data availability) is detrimental for the estimation

of performances of the considered orbital RS, as we can simulate the degradation of

performance due to the minor bandwidth but we cannot recover the advantages in terms

of clutter and volume scattering at a lower frequency (see Appendices 3.6 and 3.4 for more

details).

The proposed simulation approach used in the first step of the methodology is based

on the following assumptions:

1. The real part of the permittivity of ice has negligible variability with frequency, as

reported in previous studies [106, 107]. For pure ice, the imaginary part is higher

by a factor of 4 at 45 MHz compared to UHF frequencies, while the conductivity

is nearly constant [108]. However, for polar ice, the imaginary permittivity and

conductivity are affected by structural imperfections, presence of impurities, and

freezing/melting processes [108]. The ice-sheet conductivity values are reported to

have a spatially variable frequency-dependence in Antarctica and Greenland [107,

101]. Given such ambiguities and the absence of empirical models for polar ice
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electromagnetic properties, we have assumed the dielectric profile (i.e. position of

the dielectric interfaces and the complex permittivity values) to be the same at the

frequency of the airborne and the orbital sounders.

2. The change in the complex permittivity with depth is not substantial over small

distances. Due to the heterogeneous nature of cryosphere targets, the dielectric

profile changes with depth in a way that cannot be estimated easily. However, we

assume that for a small thickness (the order of a few resolution cells), the dielectric

profile is locally constant along the range direction. This is generally true at RS

wavelengths since the sensitivity of the RS to small changes in the dielectric profile

depends on the bandwidth, which is relatively lower for long-wavelength RSs [106].

3. Volume scattering caused by distributed targets is considered independent of the

frequency (i.e., the volume scattering observed by the airborne is retained in the

orbital radargrams). Thus, the volume scattering losses between 40-50 MHz are

overestimated in the current approach (see Appendix 3.6), and the real orbital RS

will be subjected to much lower levels of these losses.

4. The effects of clutter at the orbital footprint and the ionospheric distortions are not

addressed by the simulations. These can be addressed in separate studies using well-

established techniques [54, 18], and their effects can be mitigated. Nonetheless, we

have considered the power loss due to the ionosphere in the definition of the SNR

margin (see Appendix 3.6) for the assessment of target detectability.

5. The radar echo processing techniques applied to the airborne and possibly applicable

to the orbital RS are likely to be different due to the differences in the acquisition

scenarios. The simulations do not account for the differences in the echo processing

techniques, except the contribution of the range and along-track processing gains to

the signal power.

6. The difference in the antenna pattern between the airborne and orbital systems is

not corrected using this approach.

7. In low altitude airborne RS operating at UHF frequencies, the geometry (high dipping

angles) of IRHs causes energy dispersion via several mechanisms such as destructive

stacking, SAR processing, and off-nadir ray path extension [109]. These losses are

ignored in the proposed approach, which is constrained by the information available

in the airborne data (i.e. the observed IRH reflectivity). This assumption can result

in an underestimation of the IRH and basal interface detection performance of the

orbital RS, which does not suffer from these losses.
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3.3.5 Orbital data simulation approach

For the simulations, we use an approach based on reprocessing available radargrams

acquired over geological analogs of the investigated target [24]. This is done by identify-

ing the differences in the analog and investigated acquisition scenarios (in terms of the

instrument parameters, acquisition geometry, and target geo-electrical properties) and

understanding the impact of these differences on the characteristics of the analog and in-

vestigated radargrams. In this work, the orbital radargrams are simulated using a special

case of the analog-based simulation approach, in which the analog and the investigated

RSs acquire the data over the same target (in this case the polar ice regions). The ad-

vantage is that it is not necessary to model the differences in the target geo-electrical

properties, and this also gives high structural fidelity between the analog and investigated

target representation. However, the target attenuation factor depends on the central fre-

quency of the RSs, which should be accounted for by processing the profile of the target

radar response. The adaptation of the analog-based simulation approach to the case of

orbital simulations by minimizing the assumptions on the target geo-electrical modeling

is described in detail in [87].

The simulation steps are briefly outlined as follows, where subscript A refers to the

ARS, subscript E refers to the EORS scenarios, r and a are row and column indices of the

radargram, respectively, z refers to the depth computed at each row index rA assuming a

constant ice permittivity of 3.15:

1. Target geo-electrical modeling : Besides the instrument parameters and the range to

the target, the received power depends on the target propagation factor γ̂A(z, aA).

It can be estimated from the airborne received power Pr,A(rA, aA), depth z, and

the known instrument parameters (platform altitude HA, two-way antenna gain G2
A,

signal wavelength λA, transmitted signal power Pt,A) and is given by:

γ̂A(z, aA) = 10 log
[
Pr,A(rA, aA)

64π2(HA(aA) + z)2

Pt,AG2
AGr,AGaz,Aλ2

A

]
(3.1)

Equation (3.1) is based on the specular version of the radar equation, which assumes

that (i) the targets are flat and specular, (ii) the properties of the target are constant

over an area larger than the first Fresnel zone [110, 58] and (iii) refraction gain is

equal to 1. The actual target propagation factor γA(z, aA) depends on the target

reflectivity profile ρ(z, aA), the attenuation profile α(z) and the central frequency of

the airborne fc,A, given by:

γA(z, aA) = 10 log{ρ(z, aA)} −
∫ z

0

fc,Aα(z, aA)dz (3.2)
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where log is the logarithm to base 10. The reflectivity depends on the presence of dis-

continuities in the ice-sheet (e.g., IRHs) at the scale of the RS wavelength. Assuming

that the medium between successive IRHs is homogeneous at the airborne frequency

(and therefore is homogeneous at the orbital frequency, which is even lower), the

attenuation factor α̂(z, aA) is estimated as the local gradient of the γ̂A(z, aA) profile.

The corresponding EORS target propagation factor γ̂E(z, aA) is given by:

γ̂E(z, aA) = γ̂A(z, aA) + (fc,E − fc,A)α̂(z, aA) (3.3)

where fc,E is the central frequency of the orbital RS.

2. Signal magnitude correction: Using the radar equation (3.1), the orbital received

power Pr,E(rA, aA) is given by:

Pr,E(rA, aA)

Pr,A(rA, aA)
=
Pt,E
Pt,A

G2
E

G2
A

Gr,E

Gr,A

Gaz,E

Gaz,A

λ2
E

λ2
A

(HA(aA) + z)2

HE(aA)2

ΓE(rA, aA)

ΓA(rA, aA)
(3.4)

where ΓA(rA, aA) and ΓE(rA, aA) represent 10γ̂A(rA,aA)/10 and 10γ̂E(rA,aA)/10, respec-

tively for each frame aA.

3. Noise correction: This step considers the differences in the noise power level of the

two scenarios due to the presence of different sources of noise. Note at airborne flying

altitudes, the data are not affected by the galactic noise. On the contrary, sounding

from a satellite platform is subjected to the isotropic cosmic microwave background

(CMB). In this step, Rayleigh distributed galactic noise power [96] corresponding to

an equivalent noise temperature at the orbital frequency, and bandwidth is stochas-

tically added to the processed airborne radargrams.

4. Bandwidth correction: The orbital bandwidth is typically lower than that of the

airborne (as considered in this study). This difference is corrected by applying a low-

pass filter to the processed airborne radargrams after the signal magnitude correction.

The bandwidth correction ensures that the target reflectivity profile corresponds to

the dielectric interfaces detectable with the bandwidth of the orbital.

5. Range and along-track sampling correction: The spacing between the samples in

the range direction depends on the sampling frequency of the RSs. Similarly, the

distance between successive pulses (frames of the radargrams) depends on the PRF of

the RSs. These differences are addressed by appropriately resampling the radargram

in range and along-track direction, using the nearest neighbor resampling technique.

The details of the filtering and resampling process can be found in [24].

Thus, we obtain the simulated radargram represented in terms of received power Pr,E(rE, aE).
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3.3.6 Primary performance assessment

Automatic extraction of the prominent dielectric interfaces from radargrams

The dielectric interfaces representing the IRHs are known to have high reflectivity and

a horizontal aspect. This information is well-known and used in the literature for au-

tomatic detection of the IRHs [40, 111, 42]. These techniques identify the IRHs based

on their connectivity in the along-track direction and high contrast with respect to their

neighboring range samples. We have adapted the state-of-the-art approaches [40] to for-

mulate a computationally simple IRH detection algorithm applied to the large database

of radargrams under consideration. The algorithm extracts horizontally connected linear

features from the denoised radargram by wavelet decomposition. The extracted edges are

refined by a morphological closing operation to eliminate isolated speckle reflections. The

result is a binary IRH position mask, which is extracted from the input airborne and the

simulated orbital radargrams for computing the IRH detection performance metric.

The basal interface is the deepest reflecting horizon in the radargram having a signif-

icantly high intensity (due to high dielectric contrast) and a horizontal continuity with

its along-track neighboring samples. This knowledge has been used for the automatic

detection of the basal interface from the radargrams following the techniques described

in [44, 45].

Definition of the primary performance metrics

In the next step, we define metrics to quantify the detection performance corresponding

to the bth simulated radargram. For verifying whether a prominent interface is detected

or not in the simulated orbital radargrams, the input airborne data is used as reference

ground truth (this is valid since the data quality, and therefore the detection performance

of the airborne, is higher than the orbital) and has been validated in the literature. Thus,

for a given interface, we check its presence in the airborne data by creating an interface

position mask and cross-checking the signal power at the corresponding positions in the

orbital radargrams. The subsurface targets, at the positions defined by the reference

interface position mask, are considered detected if their SNR is above a given SNR margin.

The evaluation of the IRH detection metrics consists of two main steps: (1) defining the

IRH position mask from the airborne data, and (2) comparing the orbital IRH detection

with the airborne mask to estimate the two-dimensional detected-IRH matrix. The IRH

position mask is derived by extracting the IRHs from the airborne (as described in Section

3.3.6) and resampling it to the resolution of the simulated orbital radargrams (in terms of

range resolution, sampling frequency, and along-track sampling to achieve a pixel-to-pixel

correspondence). The mask has a value of 1 at positions where the IRHs are present

in the airborne radargram and 0 elsewhere. Next, the IRH position mask is compared

pixel-by-pixel to the simulated radargram to create a binary detected-IRH matrix. This
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matrix has a value of 1 at positions for which the IRH position mask is 1 as well as the

IRH SNR is above the SNR margin and has 0 elsewhere. For the bth simulated radargram,

the IRH detection performance metric θb(aE) is the probability of IRH detection in the

frame aE, which is estimated as the ratio between the total number of detected IRHs and

their total number in the IRH position mask in each frame.

Similarly, the basal interface detection metric is evaluated by comparing the 2D basal

interface position mask with the simulated radargrams. The mask is created by resampling

the basal interface extracted from the airborne radargram to match the resolutions of the

orbital radargram. It has a value of 1 at positions where a detectable basal interface is

present in the airborne radargram and 0 elsewhere. The basal interface position mask

is compared pixel-by-pixel with the simulated radargram to create the basal interface

detection metric βb(aE), defined for each frame aE and the bth simulated radargram.

The metric βb(aE) = NULL for the frames for which the mask is 0 in every row of the

simulated radargram, representing the case where the basal interface is not detectable

in the airborne data, and hence definitely not present in the simulated data (due to the

simulation process adopted). The metric βb(aE) = 1 if the SNR at the pixel positions

where mask = 1 is above the SNR margin, representing the cases of the detectable basal

interface in the simulated orbital data. Finally, the metric βb(aE) = 0 if the SNR at

the pixel positions where mask = 1 is below the SNR margin, representing the cases of

non-detectability of the basal interface in the simulated orbital data.

Projection of the performance onto the parameter space

Next, the performance metrics are grouped by the geolabels. The values of the IRH

detection metric θb(aE) are grouped for the frames cLE having the same geolabel L and

defined as the cumulative fraction of frames χLb (θ) for which the per-frame probability of

IRH detection is greater than a probability threshold θ ∈ [0, 1].

χLb (θ) =
count[θb(c

L
E) ≥ θ]

NL
E

(3.5)

The plot of χLb vs θ can be understood as a cumulative distribution of IRH detection

performance for each geolabel and each simulated radargram. For interpreting the perfor-

mance and supporting the design, the information from the cumulative plots is projected

onto the parameter-space defined by the geographical zone vs the design parameter. This

can be done by knowing the requirement on the probability threshold θ and the cumu-

lative performance χLb (θ) which should be satisfied by the design. These are defined in

terms of the minimum required per-frame probability of IRH detection θLmin and the min-

imum required cumulative fraction of frames χLmin. The superscript L denotes that these

requirements may be different for different geographical zones.
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The minimum required SNR for the detectability of the IRHs in the zone L is given

by the smallest value of SNRb such that at least χLmin frames have more than θLmin IRHs

detectable per frame:

SNRmin(θLmin, χ
L
min, L) = min

∀b
{SNRb : χLb (θLmin) ≥ χLmin} (3.6)

However, the orbital instrument should be designed for a single value of SNR that should

satisfy the detection requirements across all the geographical zones. For a set of require-

ments (θLmin, χ
L
min), the best design parameter SNRdesign is given by:

SNRdesign = max
∀L
{SNRmin(θLmin, χ

L
min, L)} (3.7)

In a more straightforward approach, the values of the basal interface detection βb(aE)

are grouped for the frames cLE having the same geolabels. The grouped performance is

estimated as the fraction of frames βLb for which the basal interface detection metric is

equal to 1, and is given by:

βLb =
count[βb(c

L
E) = 1]

count[{βb(cLE) = 1} ∨ {βb(cLE) = 0}]
(3.8)

For a mission requirement of βLmin on the basal interface detectability for the geographical

zone L, the minimum required SNR is given by the smallest value of SNRb such that at

least βLmin frames have a detectable basal interface:

SNRmin(βLmin, L) = min
∀b
{SNRb : βLb ≥ βLmin} (3.9)

The design SNR is obtained similar to (3.7), as the maximum value of SNRmin that

satisfies the requirement in all the zones.

3.3.7 Secondary performance assessment

Characterization of the nature of the basal interface

For the secondary performance assessment, we focus on the ability to characterize

a crucial basal boundary condition, i.e. the presence of subglacial lakes. The secondary

performance is analyzed only for frames for which the primary performance is satisfied, i.e.

basal interface is detectable in the orbital data. To detect subglacial lakes, the automatic

algorithm proposed in [46] for analyzing airborne radargrams is considered and adapted to

the case of orbital data. The algorithm exploits the extreme differences in the properties

of the basal interface depending on its constituent materials, namely ice-bedrock or ice-

water (i.e. subglacial lake). The ice-water interfaces have much higher reflectivity since the

dielectric permittivity of water εwaterr ≈ 80 is much higher than other subglacial materials

at the interface, such as sediments and bedrock for which εr ≈ 6. Moreover, the basal
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interface appears flat and smooth when a subglacial lake is present, while it has a high

degree of roughness at the ice-bedrock interface. As a result, the leading and the trailing

edges of the basal waveforms (the frames around the basal interface peak) related to ice-

water interfaces are steeper and have a higher correlation between consecutive waveforms

than those of the ice-bedrock interface.

For each pixel of the basal interface, considering these properties, a set of features

are extracted that model the topography, the shape of the waveforms, and the power

statistical properties. Regarding the topography features, we consider the root mean

square height (the standard deviation) of the basal topography and the local waveform

correlation. For the shape of the waveform, the method estimates the leading and the

trailing edge steepness. Finally, for the statistical features, we consider the first four

statistical moments of the basal interface, namely the mean adjusted basal peak power,

the coefficient of variation, the skewness, and the kurtosis. For each frame of the interface

detected, we extract the features according to [46]. These features are then normalized

and analyzed by a Support Vector Machine (SVM) classifier with a Radial basis function

(RBF) kernel to discriminate between samples related to a subglacial lake n+ or not n−.

The subglacial lake detection algorithm [46] is applied to the airborne and the simulated

orbital radargrams acquired in the Lake District of East Antarctica and Siple Coast. As

ground truth, as in [46], we consider the radar-detected lakes [112] present along the

East Antarctica radar track. We performed the experiments using 50% randomly picked

training samples from the labeled lake n+ and not-lake n− samples, respectively, and

the remaining 50% of the samples for the test phase. The training samples are chosen

in a way that half are labeled as lake n+ and the remaining half as not-lake n−. The

classification performance is expressed in terms of overall accuracy, precision, specificity,

and recall (also called hit rate) for the orbital data and the airborne data [46]. The

specificity is computed as = 100 - false alarm rate, while the recall = 100 - miss rate. The

overall accuracy is defined as the number of correctly classified pixels over the number

of processed pixels. The specificity indicates the probability that a pixel is not labeled

as belonging to a class, given that it does not belong to that class. The precision is the

number of true positives (i.e., the number of samples correctly labeled) over the total

number of samples correctly and wrongly labeled as belonging to that class. The recall

indicates the number of samples correctly labeled for a class over the total number of

elements that belong to that class.

Subglacial lakes detection metric

Next, we define the lake detection performance metric as a vector Λb(aE) defined

for each frame of the bth simulated radargram. The metric is evaluated as follows: (i)

The trained SVM classifier is separately applied to the airborne and simulated orbital
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radargrams to obtain two vectors `ARS and `EORS of the predicted labels of the basal

interface (i.e., n+ lake and n− non-lake). (ii) The vector of the ARS predicted labels

`ARS is resampled to match the along-track resolution of the orbital, to have a one-to-one

correspondence between the two vectors. (iii) For both the ARS and the EORS predicted

labels, we compute the vectors representing correct prediction, i.e., ξARS and ξEORS as

follows:

ξi =

1, if `i = GTi;

0, otherwise
(3.10)

where GTi indicates the ground truth and the index i indicates i = EORS,ARS. Hence,

vectors ξARS and ξEORS are equal to 0 when the label is correctly predicted whereas it is

equal to 1 if the prediction is incorrect. (4) Finally, we define Λ(aE) by comparing the

vectors ξARS and ξEORS as follows:

Λ(aE) =



0, if βb(aE) = 0;

1, if ξARS = 0 ∧ ξEORS = 0

2, if ξARS = 0 ∧ ξEORS = 1

3, if ξARS = 1 ∧ ξEORS = 0

4, if ξARS = 1 ∧ ξEORS = 1

(3.11)

3.4 Experimental Results

3.4.1 Definition of the data set

Based on the significant advantages of a 45 MHz sounder (see Section 3.2) with respect

to the other cases presented in the literature, we consider an orbital RS with parameters

similar to the one proposed in [20] and [15]. The airborne radargrams are taken from

the database provided by the Centre for Remote Sensing of the Ice-Sheets (CReSIS),

acquired by the airborne multi-channel coherent radar sounder (MCoRDS) [29]. The de-

tails of the selected campaigns and flight lines are: 2017 Greenland P3 (0328 01, 0410 03,

0413 01, 0502 01, 0505 01, 0412 01, 0511 01); 2017 Antarctica P3 (1125 03, 1116 03,

1112 03, 1124 03, 1103 05); 2013 Antarctica P3 (1120 01, 1119 01, 1126 01, 1127 01);

2016 Antarctica DC8 (1115 03, 1115 04, 1103 06).

Table 3.1 lists the parameters of the airborne and the proposed orbital systems. The

input radargrams are processed with the range and azimuth compression, and minimum

variance distortionless response (MVDR) algorithm [88, 113]. The MVDR algorithm mit-

igates clutter and noise in the data with better performance than other techniques, which

helps in the primary performance assessment by reducing misclassification of clutter as
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Table 3.1: Proposed orbital [20] and airborne MCoRDS [29] parameters

Parameter MCoRDS (ARS) EORS

Central frequency (MHz) 195* 45*

Wavelength λ (m) 1.54 6.66

Galactic noise temperature Tcmb (K) [96] - 6320

Bandwidth B (MHz) 30 10

Altitude H (km) 2 - 4 500

Along-track resolution (m) 300 30

Sampling frequency (MHz) 45 12

Transmitted power Pt (W) 1050 200 - 800

Pulse length τ (µs) 10 100

Range processing gain Gr = τB (dB) 24.77 30

Pulse-repetition frequency PRF (Hz) 343 1200

Platform velocity vel (m/s) 144 7616

Along-track processing gain Gaz =
√

λH
2
PRF
vel (dB) 16 23

Two-way antenna gain G2 (dB) 6 4 - 20

Surface reflectivity ΓS (dB) -10**

SNR budget at surface SNRb (dB) 107.6 65 - 90

* These are the parameters for the MCoRDS-3 instrument in the following of the consid-

ered campaigns: 2017 Greenland P3, 2017 Antarctica P3, 2013 Antarctica P3. For

the flight lines from the 2016 Antarctica DC8 campaign, the central frequency is 190

MHz with a bandwidth of 50 MHz.
** This value of surface reflectivity is considered in the definition of the design parameter

assuming a constant surface real permittivity of 3.5 (ice). It has no bearing on the

simulation technique, which is based on the surface power derived from the input

airborne radargram.
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subsurface reflectors. Moreover, the algorithm in [46] used for the secondary performance

assessment is also based on MVDR-processed data. However, the MVDR processing suf-

fers from a self-nulling problem that is related to the suppression of very strong signals

relative to the noise [88, 113].

The SNR budget at the surface (which is considered as the main variable for the design

of the system) is given by:

SNRb =
PtG

2λ2ΓSGrGaz

64π2H2kBTcmb
(3.12)

where k is the Boltzmann constant and the other symbols are described in Table 3.1.

In this experiment, we consider six different values of the SNR budget at the surface

SNRb = {65, 70, 75, 80, 85, 90} dB. Thus, the simulation index b = 1, 2, ...6 represents

each case of the design parameter SNRb. Note that these values have been obtained by

considering a constant -10 dB surface reflectivity corresponding to ice real permittivity

of 3.5, to be consistent with the conventional definition of SNR budget. In reality, the

surface reflectivity varies with the location and is a property of the target. However, in the

simulation step, this has been taken into account as implicitly modeled from the airborne

radargram (see Section 3.3.5). For considering the subsurface reflector to be detectable,

the SNR margin at the subsurface is taken to be 5 dB, accounting for ionospheric and

coherence losses. Justification of the value of the SNR margin is provided in Appendix

3.6.

The five geolabels L are determined with the help of several ancillary datasets avail-

able for Earth’s polar regions. For Greenland, the MEaSURE’s Greenland Ice Mapping

Project (GIMP) ice, ocean, and grounded-ice masks [114] are used to obtain the geola-

bels grounded ice L = GGI and floating ice L = GFI in Greenland. For Antarctica, the

Norwegian Polar Institute’s Quantarctica package [115] is used to identify the grounded

ice L = AGI and the floating ice L = AFI from the boundaries dataset [116, 117]. The

subglacial lakes L = ASG are labeled using the radar-detected lakes [112] in the subglacial

lakes inventory [118, 119] and the demarcated boundary of the Vostok lake [120]. Fig. 3.3

shows the locations of the airborne tracks of the input radargrams used in this analysis

along with their geolabels. The selected airborne dataset covers a track of 108,000 km, of

which about 99,000 km are expected to have a detectable basal interface in the airborne

data.

In the following, we present the experimental results obtained by applying the proposed

approach to the selected set of airborne radargrams. First, we show some examples of

simulated orbital radargrams. Next, we present the results of the primary performance

assessment for the detection of the IRHs and the basal interface. Finally, we report the

secondary performance analysis related to the characterization of the basal interface, in

terms of classification accuracy of subglacial lakes.
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(a) (b)

Figure 3.3: Selected airborne radargram tracks and related geolabels: (a) in Greenland, (b) in Antarctica.

The black triangles in (b) indicate radar-detected lakes [118, 112], which were used to generate the

geolabels for the subglacial lakes. The inset map shows the location of the track corresponding to

Fig. 3.4.

3.4.2 Simulated orbital radargrams

Fig. 3.4(a) shows an example of the average received power profile of the simulated

orbital and the airborne frames for a radargram acquired over the Vostok lake in East

Antarctica. The effect of the power correction step in modifying the slope of the power

profile, as a function of the orbital frequency is visible. Furthermore, the effect of noise

correction resulting in the noise floor nearly matching the galactic noise level can also

be observed. Figures 3.4(b-d) show examples of the input airborne radargram and the

simulated radargrams for two extreme values of the SNR budget. Visually we can see that

increasing the SNR budget increases the detectability of the IRH and the basal interface.

Another observation is the reduction in the range resolution due to a lower bandwidth

of the orbital. This results in a reduced spatial sampling of the detectable IRHs in the

simulated radargrams.
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(a) (b)

(c) (d)

Figure 3.4: Examples of simulated radargrams and average received power profile corresponding to the

airborne radargram 20131127 01 045 in East Antarctica. (a) Average frame power of the airborne and

the simulated orbital radargrams for different SNRb values, (b) airborne radargram, (c) simulated orbital

radargram for SNRb = 65 dB, (d) simulated orbital radargram for SNRb = 90 dB. The location of the

track is shown in the inset map in Fig. 3.3

.

3.4.3 IRH detection performance

Figures 3.5(a-e) show the cumulative distribution of the IRH detection performance

for each geolabel L. The horizontal axis shows the probability threshold θ, while the

vertical axis shows the cumulative fraction of frames χLb (θ) having IRH detection greater

than θ. We see that the distribution shifts towards the top right corner by increasing

the SNR budget, indicating an improvement in the grouped IRH detection performance

(i.e., a higher number of frames has a higher IRH detection metric). Furthermore, the

plots reveal that the targets in Greenland have higher detection performance compared

to those in Antarctica, and the poorest performance occurs for the subglacial lakes zone
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Results of the IRH detection performance for different geolabels and SNRb. Cumulative

distribution of the IRH detection performance for: (a) Antarctica floating ice, (b) Antarctica grounded

ice, (c) Antarctica subglacial lakes, (d) Greenland floating ice, and (e) Greenland grounded ice. An

example of the SNR budget selection based on a possible set of mission requirements is presented in (f).

It shows the value of SNRb that gives the per-frame IRH detection probability θ greater than 0.65 (red

dashed vertical line), which is satisfied by at least 65% of all the frames (magenta dashed horizontal line).

The region of the cumulative distribution plots that satisfy these requirements is highlighted in the green

box. The corresponding minimum required SNRb values for detectability in each zone are indicated by

the yellow bars in (f). The red dashed vertical line in (f) corresponding to SNRb = 70 dB indicates the

design SNR budget necessary for satisfying the IRH detection requirements for all the five geolabels.

in Antarctica. An example of projecting the performance onto the parameter-space is

demonstrated here, considering the requirements θLmin = 0.65 and χLmin = 0.65 for all

L. These requirements are indicated by the red vertical lines and the magenta dashed

horizontal lines, respectively in Figures 3.5(a-e). For ease of understanding, the region

of the cumulative distribution satisfying these two conditions is marked by a green box.

For each geolabel, the plots occurring within the green box represent the required SNRb

values. For example, for the Antarctica subglacial lakes, the green box contains the plots

corresponding to SNRb ≥ 70 dB. Therefore, for this zone, the minimum required SNR

budget is SNRmin(0.65, 0.65, L = ASG) = 70 dB. Similarly analyzing for each of the

zones, we obtain the projection of the geolabels vs the required SNR budget shown by

the yellow bars in Fig. 3.5(f). From this graph, we can see that the design SNR budget
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Figure 3.6: The design SNR values for detectability in all the five zones for different sets of mission

requirements on the probability of IRH detection and the cumulative fraction of frames. The red box

identifies the scenario shown in Fig. 3.5. The values in the matrix indicate the minimal value of SNRb

that satisfies the requirements in the corresponding row and column headings.

that satisfies the detectability of IRHs in all the five geographical zones for the given set

of requirements is SNRdesign = 70 dB (indicated by the red dashed vertical line).

The mission requirements typically flow down from the scientific goals of the mission

and may be different for different geographical zones. However, due to the absence of a

well-defined orbital mission, and to avoid introducing any bias due to subjective assump-

tions, we evaluate the design SNR for the full range of the mission requirements and also

consider them to be independent of the geolabels. Fig. 3.6 tabulates the design SNR

budget that satisfies the detectability in all zones computed for the full range of possible

θmin and χmin.

Depending on the scientific objectives of the mission and the feasibility of obtaining

the desired SNR, a trade-off between the requirements and the instrument design should

be identified. Let us illustrate how the performance projection supports this trade-off

analysis. From the cumulative distribution plots (Figure 3.5), we see that for the floating

ice in Greenland, even with SNRb = 65 dB, very high IRH detection performance is
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obtained (more than 95% of the IRHs are detectable in more than 95% of the frames).

For the floating ice in Antarctica and the grounded ice in both regions, more than 90%

of the IRHs can be detected in more than 90% of the frames with an SNR of 70 dB, and

the performance improves further up to almost all the IRHs with SNRb ≥ 85 dB. For

the Antarctica subglacial lakes, it requires an SNRb ≥ 85 dB to achieve a detectability of

more than 90% of the IRHs in more than 90% of the frames; however, in all the frames, at

least 40% of the IRHs are detectable even with SNRb = 65 dB (likely to be the shallow

high reflectivity layers). These results reveal that the subglacial lake zone (dominated by

Lake Vostok in this study) are critical targets for the detectability of IRHs, which may

not be a challenge to an orbital RS design if the science goal of subsurface profiling over

subglacial lakes does not require the deeper IRHs to be detected.

Thus, considering the same requirements for all geolabels, the values of the design

SNR shown in Fig. 3.6 are predominantly affected by the subglacial lakes (as shown by

its resemblance to Fig. 3.5(c) and illustrated by the example in Fig. 3.5(f)). Besides

design and performance assessment, such trade-off analysis combined with the study on

the scientific interests in each zone can also be used to define the feasible IRH detection

requirements for each geographical zone.

3.4.4 Basal interface detection performance

Table 3.2 shows the performance projection of the basal interface detection for each

geographical zone and SNR budget. The reported values are the grouped performance

metric (βLb ), which denotes the percentage of frames having a detectable basal interface

in the simulated radargrams. As an example of the selection of the design SNR, let us

consider a basal interface detection requirement of βLmin = 0.95 for all zones. With a

design SNR budget of 75 dB, this requirement is satisfied in all five zones.

The table can be used for a trade-off analysis similar to that described for IRH detection

performance. Like IRH detection, even in terms of the basal interface, the Antarctica

subglacial lakes, particularly in the region around Lake Vostok, are critical targets and

result in the lowest performance for SNRb ≤ 70 dB among the five groups. The detection

performance is relatively lower for the subglacial lakes since these zones represent the

deepest basal interfaces in the polar ice radargrams (up to 4.5 km in some cases) and thus

require higher radar penetration capability. In contrast, the floating ice of Antarctica

and Greenland, being shallow targets with high interface reflectivity (ice-water dielectric

discontinuity), have a very high basal interface detection performance, even with low SNR

values.

Note that with SNRb ≥ 80 dB, nearly 100% of the basal interfaces in all five zones are

detectable indicating that, with this value of the design parameter, the thickness of the
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Table 3.2: Basal interface detection performance for different geographical zones

Design parameter SNRb [dB]

L 65 70 75 80 85 90

AFI 99.7 99.8 99.9 99.9 99.9 99.9

AGI 84.4 90.8 95.2 98.0 99.5 99.9

ASG 66.7 88.0 97.4 100 100 100

GFI 100 100 100 100 100 100

GGI 80.0 90.8 99.0 100 100 100

ice-shelves and ice-sheets in Antarctica and Greenland can be surely estimated in nearly

all the frames where they are detectable in the airborne data.

3.4.5 Subglacial lakes detection performance

We illustrate the subglacial lakes performance considering two cases: case (i) SNRb =

85 dB and case (ii) SNRb = 90 dB, where the basal interface detection metric is 100%. To

determine the kernel parameters of the SVM classifier, we apply a 10-fold cross-validation

considering the range of the parameters cRBF ∈ [10−3, 108] and γRBF ∈ [10−2, 104]. In

the cross-validation, for each value of cRBF and γRBF , the training samples are divided in

k = 10 folds, and an SVM model is trained with cRBF and k− 1 folds. Each SVM model

is then validated on the remaining sample fold, considering the accuracy as a metric. The

validation accuracy is averaged over the k experiments. Finally, the best value of cRBF
and γRBF are defined as those maximizing the average accuracy. The optimal kernel pa-

rameters are cRBF = 8 and γRBF = 16 for both SNRb = 85 and SNRb = 90 experiments.

Table 3.3 shows the classification performance for the airborne [46] data, and for the or-

bital data for SNRb = 85 and SNRb = 90 experiments. For both cases, the accuracy is

higher than 97%. Also, the other classification performances (specificity, precision, and

recall) have high values, confirming the possibility of detecting subglacial lakes from the

orbital data with high performance. The difference in the classification performance of

experiments with SNRb = 85 and SNRb = 90 is extremely small indicating that, if the

basal interface is detectable, it is possible to analyze the nature of the interface and detect

the presence of subglacial lakes.

Fig. 3.7 shows a simulated orbital radargram corresponding to SNRb = 90 dB and

the predicted labels of the basal interface. In this radargram, the Vostok lake, which

appears as a continuous flat reflector (indicated in blue), is detected by the algorithm
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Table 3.3: Classification performance of the subglacial lake detection algorithm applied to the airborne

data and the orbital data for SNRb = 85 and SNRb = 90.

ARS [46] SNRb = 85 SNRb = 90

Recall 99.08 99.81 99.8

Specificity 99.08 97.12 96.87

Precision 99.28 97.61 97.56

Overall Accuracy 98.22 97.46 97.39

and well discriminated from the surrounding bedrock samples (indicated in magenta).

Fig. 3.8 shows the lake detection metric for SNRb = 90 dB, plotted along the radar

tracks in the Lake District of Antarctica. From the map, it is evident that the algorithm

effectively classifies the basal interface into lakes and non-lakes for a major part of the

track (marked in green) for both the airborne and the orbital. The basal interface around

the margins of Vostok lake is misclassified (marked in red) in both the airborne and the

orbital radargrams. A noteworthy observation relevant for this study is that there are

very few locations where the classification is accurate for the airborne and not for the

orbital (yellow) and vice versa (blue).

3.5 Discussions and Conclusions

In this work, we have presented a methodology for a detailed and realistic assessment of

the performance of an orbital RS in detecting important scientific targets in the polar ice

subsurface. The performance assessment methodology is based on simulating the orbital

radargrams, starting from the available databases of airborne radargrams, and evaluating

a set of performance metrics defined in this work. The orbital radargrams are simulated

corresponding to different values of the SNR budget at the surface, and the performance

analysis of the simulated radargrams is used to reveal the SNR budget that maximizes

detectability of the targets across different geographical regions of the polar cryosphere.

A hierarchical approach is used to evaluate the detection performance of (1) internal

reflecting horizons, (2) basal interface, and (3) subglacial lakes.

The methodology, which in general, has been demonstrated on an orbital RS with a

carrier of 45 MHz and bandwidth 10 MHz, by simulating the radargrams starting from

data acquired by MCoRDS (operating in the UHF band). The results indicate that an

SNR budget of 80 dB is required for the detection of 90% of the IRHs (in each frame)

in more than 90% of the frames in different geographical zones. In particular, nearly all
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Figure 3.7: Results of the automatic lakes detection algorithm applied to simulated orbital radargram

corresponding to SNRb = 90 dB and for the radar track 20131127 01 045-047 in East Antarctica con-

taining the Vostok lake. The blue region of the basal interface is detected as lake while the magenta

region is detected as non-lake.

IRHs in Greenland and the floating ice regions can be detected in up to 95% of the frames

with an SNR budget of 80 dB. Moreover, in all the zones, more than 95% of the basal

interface detectable in airborne radargrams can be detected with an SNR budget of 75

dB, which approaches 100% with further increase in the SNR budget.

The detectable basal interfaces are also identified as subglacial lakes and bedrock with

very high accuracy using an automatic classification algorithm [46] applied to the orbital

simulated radargrams. The accuracy is comparable to that of the airborne data, which

has been demonstrated for the SNR budget of 85 dB and 90 dB for illustration purposes.

Of course, as in all automatic techniques, there is an intrinsic error rate of the classifier,

irrespectively of whether the airborne or orbital data are used. This also shows that

existing automatic algorithms for airborne radargrams can be successfully adapted for

the extraction of similar information also from future orbital data.

As an additional experiment, we have verified the proposed approach by comparing

the simulated orbital RS performance obtained from MCoRDS with that obtained from

another airborne system [39] having parameters close to the 45 MHz orbital RS. The

results of this experiment are presented in Appendix 3.7 and show a good agreement

between the performance obtained from different airborne radargrams.

Recently, a distributed radar sounder [48] architecture has been proposed, which is

based on the deployment of an array of small satellite sensors in a suitable orbital flying

configuration. Such an architecture allows the synthesis of very large antenna apertures,
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Figure 3.8: Lakes detection performance metric Λ(aE) plotted along the radar track in Antarctica Lake

district and Siple Coast. The metric values indicate locations for which the basal interface is: not

detectable (0); not correctly classified in both the airborne and the simulated orbital radargrams (1);

correctly classified in the airborne but not in the orbital (2); correctly classified in the orbital but not in

the airborne (3); and correctly classified in both the airborne and the simulated orbital radargrams (4).

The matrix on the right shows the percentage of frames for each of the metric values.

thereby significantly improving the along-track resolution, the clutter performance, and

the SNR. In particular, the SNR of such a system depends on the antenna gain and

transmitted power of individual sensors, and the total number of sensors. Therefore, the

performance analysis presented in this work can support and simplify the design of the

distributed architecture for an orbital RS. The results presented here can also support a

risk assessment of the distributed architecture, such as evaluation of the loss in detection

performance due to damage of some of the individual sensors (the resulting loss in SNR

budget can be computed and the corresponding detection performances can be extracted).

For simplicity, the simulation approach proposed here is not integrated with the iono-

spheric effects and the off-nadir clutter response. However, the losses due to propagation

through the ionosphere, roughness of the surface, and volume scattering have been in-

cluded in the SNR margin. Another performance-limiting factor that has not been con-

sidered in this study is the effect of seasonal changes in englacial water storage, which

can cause a seasonal increase in the attenuation factor that should be considered in the

mission design phase [121, 122]. On the contrary, certain factors degrade the quality of
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the input airborne radargrams and may lead to underestimation of the orbital RS perfor-

mance. For example, in the radar equations (3.1) and (3.4) we do not consider refraction

effects in estimating the subsurface path lengths [58]. These effects are negligible for the

orbital RS, while they increase the losses in the case of the airborne systems. Including

the refraction effects can improve the orbital RS detection performance, especially over

deeper targets such as the Vostok lake. Moreover, the ARS frames for which the roll angle

of the aircraft is significantly high may also be degraded resulting in an underestimation

of the orbital RS performance. These frames could be removed or corrected in future

simulations to further improve the accuracy of the performance assessment.

Clutter is an important factor in the selection of the orbital RS frequency as shown

in previous studies [18]. The clutter performance can be integrated into the proposed

analysis, by complementing it with the simulation of the cluttergram (using several well-

established approaches [92, 54]) over the selected airborne tracks using available digital

elevation models. The masking of the IRHs by the off-nadir clutter should be considered

for evaluating the actual IRH detection performance in terms of SCR. However, in the

context of this work, clutter does not significantly influence the SNR budget parameter.

Regarding the ionosphere performance, the loss of signal strength and coherence (due to

phase errors) may reduce the estimated detection performance in case of extreme values

of TEC. The ionospheric effects can also be easily integrated into the proposed simula-

tion approach using the phase information of the input airborne data and applying the

estimated phase distortions as a function of the Earth’s ionospheric parameters. The inte-

gration of ionospheric distortions and clutter simulations into the proposed methodology

presents scope for future research. Moreover, there are several theories for modeling the

radar attenuation at the airborne and orbital RS frequencies (such as frequency-dependent

or independent), which also depend on the fraction and type of impurities present in the

ice. The implications of these assumptions and the accurate modeling of the attenuation

factor will also be explored in future extensions of this work.

The simulated radargrams generated by the proposed method can also be used to test

the adaptability of automatic target detection algorithms developed for the airborne data

to the orbital case. This has been demonstrated in this work using a subglacial lakes

detection algorithm. In preparation for the scientific interpretation of the data in the

advanced phases of development of the mission, the proposed simulation approach can

be used to adapt the existing algorithms for applications to the orbital radargrams. As

a final remark, it is worth noting that the scientific objectives of an orbiting RS are not

restricted to the detection of bedrock, subglacial lakes, and ice shelves. In future activities,

we plan to analyze the required conditions for interpreting the basal state, such as frozen

or thawed bedrock [105], subglacial water flow channels [81], and the presence of marine
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ice and cavities at the base of ice-shelves [123].

3.6 Appendix A: SNR margin calculations

The proposed simulation approach does not include some of the losses that can be

critical for the detection of the ice targets. To include their effects in the detectability

analysis, we consider an SNR margin of 5 dB, i.e. a subsurface interface is considered to

be detected if its SNR is at least 5 dB. In this section, we justify how 5 dB is a conservative

SNR margin and is sufficiently higher than the total expected losses.

Let L(fc) denote the total loss in power in dB caused by phenomena that are not

accurately modeled in the simulation approach and depend on the central frequency fc of

the orbital RS. These include two-way volume scattering attenuation ν(fc), ionospheric

effects Ω(fc), and coherence loss due to surface roughness ψ(fc) . Out of these, the

simulations do not include ionospheric effects, while overestimating the volume scattering

and coherence losses (the simulation represents these losses around 190-195 MHz, i.e.

the central frequency of the ARS, which are expected to be much higher than the losses

at 45 MHz, i.e. the orbital RS central frequency). Let us quantitatively examine the

overestimation and the missing loss terms one by one.

At fc = 45 MHz, the volume scattering loss is nearly 0, whereas at fc = 195 MHz, it

is about 8 dB (obtained from Fig. 16 in [18], averaged over a radius of 0 to 0.5 m of the

volume scatterers). The ionospheric peak loss at 45 MHz after ionospheric compensation

is reported in Figure 4 of [17] and ranges between 0.1 dB to 2 dB during the solar minimum

and rises to 6 dB during extreme events and high errors in TEC estimations, during the

11-year solar cycle. For this calculation, we will consider the worst-case peak loss of 6 dB

to be conservative.

The coherence loss due to roughness depends on the surface elevation and slopes of

Greenland and Antarctica. We have used 90 m resolution digital elevation model (DEM)

of Greenland [114] and 400 m resolution DEM of Antarctica [124] to first evaluate the

slopes at the DEM resolution and estimate the Hurst exponent, which was then used to

scale the slopes to a horizontal lag distance of 6.6 m (wavelength at 45 MHz) and 1.5 m

(wavelength at 195 MHz) [125]. The coherence loss is related to the slope and is obtained

from back-scattering models based on Kirchhoff’s approximation [126]. Fig. 3.9 shows

the spatial distribution of the estimated coherence losses over Antarctica and Greenland

at 45 MHz. Note that the interior of the ice sheets in most of the areas is relatively

flat, and has a minor contribution to the low coherence loss. The literature values of the

slopes obtained with other datasets, including higher resolution DEMs are consistent or

even lower than what we report here [127, 128, 129, 130]. In any case, we found that the

difference between the coherence loss at 45 MHz and 195 MHz is not significant and it is
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(a) (b)

Figure 3.9: Coherence loss estimated over (a) Greenland and (b) Antarctica at 45 MHz central frequency.

not changing the SNR margin. We have estimated the average coherence loss at 45 MHz

and 195 MHz as 1.56 dB and 2.22 dB, respectively.

Thus, the total loss at 45 MHz is:

L(45) = ν(45) + Ω(45) + ψ(45) = 0 + 6 + 1.56 ≈ 8 dB (3.13)

However, the losses already included in the simulation are:

ν(195) + ψ(195) = 8 + 2.22 ≈ 10 dB (3.14)

Therefore, from (3.13) and (3.14), we see that there is a net overestimation of 2 dB of

losses in the simulated radargrams. To further allow for uncertainties in the ionospheric

and volume scattering losses, we have considered an additional SNR margin of 3 dB for

assessing the detectability, thus resulting in a total margin of 5 dB over the expected SNR

of the targets.

3.7 Appendix B: Comparison of simulated orbital RS perfor-

mance obtained from different airborne radargrams

The simulation technique based on reprocessing available RS data on a geologically

similar terrain, which is the basis for the EORS simulations in this work, has been already

validated in [24]. In this section, we present an experiment to compare the performance

assessment of an orbital RS for a specific case starting from different airborne data, to

show the reliability and robustness of the proposed approach. The experimental results
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presented in Section 3.4 have been obtained using as input the data acquired by the

airborne MCoRDS-3 instrument, which operates in the UHF band (with central frequency

around 195 MHz). However, there exist other airborne instruments, such as the high-

capability radar sounder (HiCARS) system [39] operating at a central frequency of 60

MHz with a bandwidth of 15 MHz, and thus very close to the parameters of the proposed

orbital RS (Table 3.1). While this is favorable for obtaining more reliable and realistic

simulations, the coverage of HiCARS is limited to Antarctica only (this is the reason for

which they were not used in this work).

Nevertheless, we have exploited the opportunity presented by the availability of Hi-

CARS data to further validate the proposed methodology. To this purpose, we have

selected the following pair of nearly overlapping MCoRDS and HiCARS radargrams:

(1) the HiCARS-2 Level 1B time-lagged echo strength profiles data IR2HI1B 2011349

VCD JKB2g DVD01a 000 [39, 131] (only the high gain acquisition was used) and (2) the

MCoRDS-3 MVDR processed echoes 20131127 01 032-033 from the 2013 Antarctica P3

campaign [29] provided by CReSIS (see Table 3.1). These cover a track length of about

80 km in the grounded ice of East Antarctica.

Next, starting from the MCoRDS and the HiCARS data, we simulated the radargrams

of an orbital RS having the same parameters as reported in Table 3.1 and using the

technique described in Section 3.3.5. The two sets of simulated radargrams obtained are

referred by the subscript H − E, i.e. HiCARS to EORS, and M − E, i.e. MCoRDS

to EORS. Finally, we compared the primary detection performances in terms of (i) the

received power from the basal interface and (ii) the IRH detection performance metric.

Note that the secondary performance analysis (i.e. detection of subglacial lakes) is im-

plicitly validated because (i) it depends on the detectability of the basal interface and (ii)

the underlying classification algorithm has been already validated in [46] using ground

truth data.

Fig. 3.10 shows comparison of the two performance metrics for three values of the design

parameter SNRb = 70, 75, 80 dB. The plots in the first column show the histograms of the

basal interface power for each frame of the M −E and H−E simulated radargrams. The

histograms show a close matching in both cases for all the values of the design parameter.

Recall that the basal interface power defines the SNR of the basal interface, which is

compared with the SNR margin to obtain the basal interface detection metric βb(aE).

Thus, from the histograms, we can infer that irrespective of the galactic noise level or the

SNR margin, the estimated βb(cM−E) and βb(cH−E) are matching.

The plots in the second column show the histograms of the IRH detection metrics

θb(cM−E) and θb(cH−E), which represent the probability of IRH detection in each frame

of the simulated radargrams (obtained with SNR margin of 10 dB for ease of compar-
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(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)

Figure 3.10: Comparison of performance metrics for the EORS simulations obtained from MCoRDS and

HiCARS instruments. The simulations correspond to design parameter values of (a) SNRb = 70 dB, (b)

SNRb = 75 dB, and (c) SNRb = 80 dB. The performance metrics are: (1) basal interface power in dB

and (2) IRH detection performance metric for each frame of the simulated radargrams.
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ison, otherwise with 5 dB SNR margin the IRH performance metric is saturated close

to 100% for the considered track). In this case, the H − E radargram shows slightly

higher performance in detecting the IRHs compared to the M − E radargram, which is

an obvious effect of the different original penetration capabilities of MCoRDS and Hi-

CARS. This especially impacts the detection of the weak IRHs that have low reflectivity

in general. These IRHs are strongly detectable in the HiCARS data [131], and thus also

detectable in the simulated H−E radargrams. Whereas, these IRHs have low SNR in the

MCoRDS data, and therefore are masked by the galactic noise in the simulated M − E
radargrams. Note that, the unavoidable effect of the difference in penetration capabilities

is more prominent at lower values of SNRb (e.g., see Fig 3.10(a.2)), while converging to

similar performance as the SNR budget increases, (e.g., see Fig 3.10(c.2)).

In conclusion, these experiments demonstrate the validity of the proposed performance

assessment methodology, and further show that the proposed approach is not biased by

the choice of the input airborne data (although, when possible ARS as much similar

as possible to the orbital RS should be considered). To show the effectiveness of the

methodology, we have presented the comparison for lower-level metrics, which are more

closely related to the simulated radargrams. However, the final performance assessment

of an EORS, made on a larger database covering several thousand kilometers of track

length and grouped by the geolabels, is expected to be less sensitive to relatively small

differences in the simulated radargrams.
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Chapter 4

An unsupervised fuzzy system for

the automatic detection of candidate

lava tubes in radar sounder data

Lava tubes are buried channels that transport thermally insulated lava. Nowadays, lava

tubes on the Moon are believed to be empty and thus indicated as potential habitats for hu-

mans. In recent years, several studies investigated possible lava tube locations, considering

the gravity anomaly distribution and surficial volcanic features. This Chapter proposes a

novel and unsupervised method to map candidate buried empty lava tubes in radar sounder

data and extract their physical properties.1 The approach relies on a model that describes

the geometrical and electromagnetic (EM) properties of lava tubes in radargrams. Accord-

ing to this model, reflections in radargrams are automatically detected and analyzed with

a fuzzy system to identify those associated with lava tube boundaries and reject the others.

The fuzzy rules consider the EM and geometrical properties of lava tubes, thus their ap-

pearance in radargrams. The proposed method can address the complex task of identifying

candidate lava tubes on a large number of radargrams in an automatic, fast, and objective

way. The final decision on candidate lava tubes should be taken in post-processed by expert

planetologists. The proposed method is tested on both a real and a simulated dataset of

radargrams acquired on the Moon by the Lunar Radar Sounder (LRS). Identified candi-

date lava tubes are processed to extract geometrical parameters, such as the depth and the

thickness of the crust (roof).

1Part of this chapter appears in

Donini, E., Bovolo, F., Gerekos, C., Carrer, L., and Bruzzone, L. (2018, July). An Approach to Lava Tube Detection in

Radar Sounder Data of the Moon. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium

(pp. 8424-8427). IEEE.
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4.1 Introduction

A lava tube is a natural conduit formed beneath the surface that contained thermally

insulate lava and transported it over long distances during the active volcanic period

[132]. Initially, the basaltic lava streams down from a volcanic vent and streams on

the surface similar to a river. While flowing, the lava develops a continuous thick crust

because of the extreme difference of temperature between the hot lava and the outer colder

environment [133]. While moving forward, the hard film above the lava continuously

congeals, becoming thicker. In this way, a tunnel forms in the subsurface that transports

the lava with almost no heat loss [134]. When the lava flows away, the tunnel empties,

generating an elongated cavity with a hardened and thick roof. The size and the shape of

the tubes strongly depend on the characteristics of lava streams [132]. This phenomenon

appears in many bodies of the Solar System, such as the Earth, Moon, Mars, and Venus.

On the Moon and Mars, the volcanic period finished about 50 million years ago [135]

and 100-150 million years ago [136], respectively. Hence, lunar and martian tubes are

inactive and expected to be entirely or almost empty, e.g., containing solidified lava or

regolith [137]. On the Moon and Mars, hollow and stable tube can persist for significantly

more time than on the Earth because of the colder and drier climate and weakness of the

tectonic activity and weathering rates [138]. Moreover, for the same reasons, martian and

lunar lava tubes have larger dimensions than those on the Earth, which typical width

is between 10 and 30 meters [49]. Hence, terrestrial tubes can be considered as analogs

to understanding their formation mechanism and geometrical structure. A lava tunnel

network generally consists of the main tube and several smaller ones. It is reasonable

to suppose that such networks exist on the Moon and Mars, but there is no specific

knowledge on it. It is unknown where the locations, extension of lava tube networks

[132]. Also, the characteristics of the single conduit are obscure, such as the inner aspect

(collapsed, fully or partially filled, hollow), the depth, and the rooftop thickness [139].

However, there are some studies on the possible range of the size of stable lava tubes on

the Moon. In [140, 141], the authors simulated tunnels of different dimensions and roof

thickness subjected to the lithostatic and the Poisson stress, and the tectonic strain in

the subsurface. The results show that stability is correlated with the height of the rooftop

and the initial stress state. Lava tubes with a relatively thin roof of 50m are stable with

a width of up to 3.5km. With a roof thickness up to 200m, lava tubes are stable with a

maximum width of 5.25km. Deeper tunnels with a roof thickness of 500m do not collapse

with a width up to 5km [140, 141]. Note that the roof thickness is of critical importance

for the stability of the tube.

Lava tubes, and more in general subsurface void spaces on the Moon and Mars, have

gained an increasing interest in the literature in the past years. First, from a geological
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point of view, lava tubes are of critical importance as the study of their properties (e.g., the

type of minerals and rocks and the elongation) can help in understanding the geological

evolution of a planet. Secondly, lava tubes are the perfect place where humankind can

build structures for living and storing food and electronics [142, 143, 51]. Thirdly, several

works identify subsurface cavities as the perfect place where humankind can safely settle

sheltered from the threats on the surface [144] [145]. The roof of the tube acts as a shelter

against the threats on the surface, such as the cosmic and solar radiations and Gamma

rays [133, 142, 146], the extreme temperature variation [142], the little and toxic dust of

the regolith, and the frequent meteoritic impacts. Finally, when the surface is a hostile

environment, buried cavities may store water and be a stable physic-chemical environment

that can preserve microbial biosignature, as an analogy to those on the Earth [147, 148].

Lava tubes can hardly be mapped with direct measurements, especially on the Moon,

Mars, and in isolated places on the Earth. On Earth, lava tubes are mapped and studied

on-site, which is not possible in space. There exist four main strategies for mapping

lava tubes i) scanning optical and Synthetic Aperture Radar (SAR) images identifying

surface volcanic features linked to subsurface cavities [149, 150, 151, 133, 152, 153]; ii)

studying skylights from obliques views in images acquired at different wavelengths [154,

51], iii) detecting distribution anomalies in the gravity data that may correspond to

subsurface mass deficits [155], and iv) analysing radar sounder data [139, 156, 132]. The

first approach investigates geological volcanic structures on the surface that are correlated

with buried lava tubes, i.e., rilles [149, 150, 151, 133] and huge pits [152]. These structures

can be interpreted as locally collapsed lava tubes because of preexisting fractures in the

roof, meteoric impacts, or a thin roof unable to sustain the tube weight. Note that the

subsurface void should be large enough to contain the crust material, especially for pits in

a chain formation. The second approach analyzes the differences between impact crater

holes and skylights at visible and thermal wavelengths with several angles of incidence

[154, 51]. At visible wavelength, skylights lack any impact crater properties (e.g., raised

rims and ejected patterns). At infrared wavelength, during the day inside the skylights,

the temperature fluctuates less widely than in the nearby surface and adjacent bowl-

shaped pit craters. At nighttime, the pit floor shows a higher temperature than in the

surrounding pits, which suggests the presence of an extended subsurface cavity mitigating

the fluctuation [51]. The third strategy analyzes anomalies in the gravity distribution to

identify mass deficits that can be compatible with the presence of hollow lava tubes.

[155] estimates the subsurface density and detected buried cavities by exploiting negative

anomalies, i.e., lower density values. The fourth strategy analyzes radar sounder and

ground-penetrating radar (GPR) data as they provide a direct measure of the subsurface.

Investigating GPR data, [139, 132] mapped and characterized complex networks of lava
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tubes. Authors in [139] proposed a method to detect the pattern of lava tubes that exploits

prior knowledge of the tunnel connections and geometries, e.g., the tube dimensions and

roof thickness. However, this knowledge is not always available neither for terrestrial

nor planetary cases. Authors in [132] proposed an approach to detect lava tubes by

analyzing the vertical profiles of radargrams (A-scan). A-scans were compared with a

specific pattern characterized by two high peaks, compatible with the expected lava tube

behavior. The same approach was applied to radargrams of the Moon, with the aim of

mapping the network of empty tunnels [156]. However, in both studies, each a-scan is

separately analyzed without checking the spatial correlation of the peaks or extracting

information on the tube dimension. Note that peaks do not uniquely represent lava tubes

but any strong reflections in the subsurface, such as clutter. Recently, a new strategy was

proposed to analyze possible detected lava tubes [156] for discriminating between clutter

and subsurface reflections [157]. The strategy is based on three criteria: i) analysis of

multiple orbit data (if available), ii) evaluation of the correlation between radargrams

and surface scattering simulations, and iii) analysis of the surface slope echo. However,

radar sounder data store more information that can be used to identify buried geological

structures and understand the processes in the subsurface. By analyzing radargrams, it

is possible to extract information on the subsurface structures and processes, which is not

possible with the other aforementioned approaches.

This Chapter proposes a novel automatic method to detect reflections from candidate

cavities, such as empty and buried lava tubes, in radar sounder data. The method, which

extends and develops the initial idea in [158], is unsupervised (does not require a training

phase), considers the intrinsic nature of the lava tubes in the subsurface, and is flexible.

It consists of three main concepts: i) the EM modeling of the lava tube signature in the

radargrams, ii) extracting reflections in the radargram, and iii) analyzing the reflections

to identify those related to candidate lava tubes. The EM modeling describes how lava

tubes appear in radargrams by analyzing the interaction between the propagating EM

wave and the buried cavities, seen as the transition rock-void-rock in the subsurface.

Considering the lava tube model, the method extracts reflections in radargrams and then

analyzes them to identify those related to buried cavities and reject the others. The

analysis consists of a fuzzy detection system based on the lava tube EM model that

evaluates the properties of the reflections and the relation among them. The proposed

method identifies candidate lava tubes in an automatic, fast, and objective way. Given

the complexity of the task, this is not feasible with visual analysis on a large number of

radargrams. The final decision on the identified candidate lava tubes should be taken in

the post-processing by expert planetologists. The effectiveness of the proposed method is

demonstrated with experiments on two datasets: a dataset of simulated radargrams and
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a dataset of radargrams acquired on the Moon by the LRS.

The Chapter is organized as follows. Section 4.2 presents the geological and electro-

magnetic models for lava tubes. Section 4.3 focuses on the method proposed to detect

lava tubes by describing the algorithm to extract the reflection from the radargram and

the fuzzy system that analyzes the reflections to identify lava tubes. Section 4.4 is devoted

to the description of the two datasets and the experimental results. Section 4.5 discusses

the limitations and the assumption of the proposed method. Finally, Section 4.6 presents

the conclusions and future work.

4.2 Lava Tube Model

Lava tubes are tunnel-like structures that drain over time, generating elongated buried

cavities. The void and the rock have highly different dielectric properties, which make

the interfaces between the two materials detectable by radar sounders. In radargrams,

interfaces appear as strong reflections with specific qualities in amplitude and phase. This

Section describes the electromagnetic (EM) model of lava tubes in terms of reflections

generated by the surface and the lava tube boundaries. To investigate the properties

of these reflections, we simulated the amplitude and phase radargrams with a coherent

multilayer simulator [21]. The simulator takes into input the parameters of the radar

EM wave (e.g., the central frequency, the bandwidth, and the modulation of the carrier

signal). Moreover, the simulator allows choosing the crossing angle α between the moving

direction of the radar and the lava tube longitudinal axis. Finally, the simulator requires

the geometrical and dielectric models of the surface and the subsurface. It considers the

surface topography (e.g., roughness and craters), the geometry of the buried geologic

structures, and the dielectric properties of the materials. Here, we first simulate an ideal

scenario where above the surface is void, and the rocky subsurface contains an empty lava

tube. We simulate lava tubes considering the geometric model in [140, 159] for planetary

lava tubes. The lava tube geometrical model considers stable structures with the tunnel

sizes and the roof thicknesses indicated in Table 4.1 that follow the analyses in [140, 159].

The tunnels are approximated as half-cylinders with a height-to-width ratio of 1:3, i.e.,

the tube height is one-third of the tube width, as in [140]. For the dielectric model, we

consider the ideal case with the void in the tube, which is characterized by a unitary

relative dielectric constant εvoidr = 1. Note that in real scenarios, the lava tube inside can

be partially filled by regolith or other materials having a lower dielectric constant than that

of the rock. The basaltic rock around the conduit is approximated by a relative dielectric

constant of εrockr = 4 and a loss tangent of δrock = 0.01. Considering the lunar scenario,

at the central frequency fc of the simulations, the analysis of the dielectric constant and

tangent loss values of the surface shows that εr varies from 4 up to 8 and the upper limit

81



SECTION 4.2 CHAPTER 4. LAVA TUBES DETECTION

Table 4.1: Parameters of the geometrical model of the simulated lava tube, considering the stable scenario

[140, 159]. Note that the tube height is assumed to be one third of the tube width.

Frequency Bandwidth Tube Width Roof Thickness Tube Size

10 MHz 5 MHz 250 m 5 m
small

10 MHz 5 MHz 625 m 50 m

60 MHz 30 MHz 1000 m 75 m

average
10 MHz 5 MHz 1000 m 130 m

10 MHz 5 MHz 1250 m 20 m

10 MHz 5 MHz 1500 m 20 m

10 MHz 5 MHz 2000 m 200 m

large10 MHz 5 MHz 4000 m 200 m

10 MHz 5 MHz 3000 m 200 m

of δ is in the range of (0.1-0.3) [160]. Hence, simulations refer to the worst-case scenario

in terms of surface dielectric properties. Recently, a study [161] showed that in the range

of frequency 10-100 MHz the regolith absorption and volume scattering are negligible.

Thus, the surface is affected only by losses due to the roughness, i.e., the topography.

The attenuation depends on the loss tangent and mainly affects the reflections from the

lava tube rather than from the surface. Considering a loss tangent and a dielectric constant

at the ceiling and floor of the tube equal to that of the surface, the maximum detectable

depth of lava tubes is strongly depending on fc [161]. At frequencies in the range of 60-100

MHz, it is in the range of some hundred meters and it increases as fc decreases [161]. For

the signal modulation, the EM wave has a chirp waveform that is smoothed by a Hann

window [162]. We simulated signals with different central frequencies, transmitted power,

and height of the radar from the surface, as shown in Table 4.2. For the crossing angle

α, we simulated the cases in the range of α ∈ (0, π/2). The two extreme cases are i)

α = 0, which represents the tube axis being parallel to the moving direction of the radar,

and α = π/2, which models the tube axis being perpendicular to the moving direction

of the radar. Figures 4.1a and 4.1d show the tube in yellow and the moving direction

of the radar in red for α = 0 and α = π/2, respectively. Regarding the topography of

the surface, we first considered an ideal and flat surface to focus on the reflections due to

the lava tubes. Then, we simulated a more complex and realistic topography to analyze

how the superficial clutter interacts with the pattern of lava tubes. Considering such a

scenario, here we describe the EM model of lava tubes from the amplitude and phase

point of view.

Lava tube amplitude model. The amplitude radargram shows three strong and linear
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Table 4.2: Radar parameters of the simulations and the LRS [3], and resolution parameters of the radargrams.

Parameter Simulations LRS [3]

Orbit Altitude 100 Km 100 Km

Central Frequency 10-60 MHz 5 MHz

Bandwidth 5-30 MHz 2 MHz

Sampling Time 0.17 µs 0.16 µs

Maximum Penetration Depth 7.5 Km 5 Km

Azimuth Resolution 5 m 60 m

Range Resolution in free space
15 m 75 m

(pulse compressed)

reflections that represent the surface, the ceiling, and the floor of the tube (see Figures

4.1). The surface reflection (S) ideally appears as a bright line as long as the radargram

with the greatest amplitude. This reflection is the first interface that the radar wave

encounters. The tube generates a pattern made of a couple of reflections that represent

the two interfaces between the void and the basaltic rock. The upper reflection (C) is

generated by the ceiling of the tube, while the lower one (F ) by the floor. The amplitudes

aC and aF are smaller than that of the surface but similar to each other. The distance

between the reflections in the range direction is proportional to the depth of the interfaces.

The reflection lengths (lC , lF ) along the azimuth depend on the size of the tube and the

crossing angle α. Concerning the angle α of intersection between the tube axis and the

flight track of the sounder, there are two limit cases: α = 0 and α = π/2. In the

parallel case α = 0 (see Figure 4.1d), the couple of reflections is ideally as long as the

radargram in azimuth (see Fig. 4.1b). Note that the reflection couple length depends

on the acquisition– a radargram may image part of the lava tube or cover a wider area

than that of the tube. In the perpendicular case α = π/2 (see Figure 4.1a), the reflection

lengths (lC , lF ) are similar and shorter than the radargram in azimuth (see Fig. 4.1e).

Smoothly moving from the latter to the former case, the reflections preserve the (almost)

linear shape stretching until the the parallel case.

Lava tube phase model. In the phase domain, the lava tube model has three reflections

with the same length and depth (i.e., range position) as in the amplitude domain. The

main property of the phase model is the phase inversion [161] of the reflections originating

from the lava tube ceiling when compared to the surface reflection. This effect on the

radar signal is expected from a dielectric discontinuity where the first medium has a higher

permittivity than the second one. In our case, the first medium is basalt, while the latter

is the vacuum, modeling the lava tube’s inner free space. The lava tube floor is expected
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Figure 4.1: Simulated amplitude and phase radargrams of a lava tube with deep dLT = 200 m and diameter

2r = 4 km for the cases α = π/2 and α = 0. Figures (a) and (d) show the track of the direction of the

radar and the tube axis (both in red) with an angle α = π/2 and α = 0, respectively. Figures (b) and (c) are

the simulated amplitude and phase radargrams for the perpendicular case, while Figures (e) and (f) show the

simulated amplitude and phase radargrams for the parallel case.

to have the same phase sign as the surface reflection. The property of the phase model is

the inversion of phase occurring at each interface since the wave propagates in between

materials with highly different dielectric properties, such as the void and the rock. Here,

we have three inversions generated by the three interfaces between the inner free space

and rock represented by the surface, the ceiling, and the floor of the tube.

The above-mentioned amplitude and phase models assume an ideal scenario with flat

topography, i.e., a plane and roughness-free surface. In this scenario, we identify the

reflection pattern of empty tubes without the presence of clutter. We further investigate

more realistic scenarios with complex surface topography. To this end, we introduce sharp

roughness and deep craters to verify the impact of the surface clutter on the reflection

pattern of the tubes (see Fig. 4.2). The simulations indicate that craters generate clutter

reflections with a pattern similar to that of the lava tubes in amplitude but not in phase.

The lava tube models are not affected by significant changes, i.e., the three reflections

maintain the main properties described above. The model preserves the inversion of

the phase at interfaces of materials with considerably different dielectric constants. The

surface reflection S is affected by the volume scattering due to the roughness and clutter
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(a)
(b) (c)

Figure 4.2: Simulated amplitude (b) and phase (c) radargrams of a lava tube with deep dLT = 200 m and

diameter 2r = 4 km for the case α = π/2. The surface terrain (a) is characterized by a high rough surface and

thick craters. Reflections generated by the surface, the craters, and the lava tube ceiling and floor are highlighted

in radargrams (b) and (c).

signals. The rim and the ground of the craters create several clutter signals above and

below the surface. However, the crater reflections do not have phase inversion, and thus,

are distinguishable from those of the tube boundaries (see Fig. 4.2). Regarding the

pattern of lava tubes, C and F maintain the properties of the phase model. In amplitude,

the ceiling and the floor reflections show a loss of about 5 dB, which is confirmed in

[156]. In a more realistic scenario, lava tubes are not perfect cylindrical bodies but have a

more complex geometrical shape [163]. The profile of lava tubes is typically characterized

by a flat and extended floor and shorter and sharper ceiling. Moreover, lava tubes are

not straight and parallel to the surface, but they have a sinuous track and may have an

inclination toward the surface. This geometry is reflected in the shape and position of

C and F : i) C and F are not expected to be perfectly parallel between them and with

the surface; ii) C and F may not share the same length and may not fully overlap in the

azimuth direction. However, the lava tube pattern is still distinguishable because of the

phase inversion between C and F . Finally, recent studies show that the tube may be filled

with regolith [132] or other media having dielectric properties similar to that of the void.

Thus, the EM model for the lava tube is still valid as the large difference in the dielectric

properties of the media produces a phase inversion.

4.3 Proposed Approach to Detect Candidate Lava tubes

Let us consider a radargram as a 2D matrix of NT traces and NS samples

RC = {RC(a, r)|a ∈ [1, ..., NT ], r ∈ [1, ..., NS]} (4.1)

where R is the coherent sum of the echoes stored in the radargrams, r and a indicate the

range and the azimuth coordinates, respectively. The radargrams contain the complex

signal reflected from the interfaces between different media in the subsurface, such that

RC(a, r) = R(a, r) + jRI(a, r), where R(a, r) is the real part of the signal and RI(a, r)
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Figure 4.3: Flow chart of the proposed approach to detect candidate lava tubes.

the imaginary part. The amplitude A(a, r) and phase Φ(a, r) radargrams are defined as

follows

A(a, r) =
√
R2(a, r) +R2

I(a, r)

Φ(a, r) = arctan
RI(a, r)

R(a, r)

(4.2)

Let F = {Fi, i ∈ [1, ...,NF] be the set of features extracted from the radargram, where

Fi indicates the i-th feature, i.e., the coordinates of the pixels of the reflection in the

radargram and the related properties. The proposed approach assigns to each feature a

class in Ωc = {ωg, ωcLT , ω
f
LT , ωn}. ωg indicates the best candidate to represent the surface,

ωcLT and ωfLT indicate features that can be generated by the candidate tube boundaries

(the ceiling and the floor, respectively). ωn labels features that are related neither to

buried cavities nor to the surface but probably generated by the surface topography and

other volcanic structures, e.g., impact craters, tesserae, and off-nadir clutter.

A novel automatic technique is proposed with three steps (Fig. 4.3):

1. Extraction of the coordinate of the reflections in the radargram.

2. Extraction of the properties of each reflection to define the feature set.

3. Analysis of the features to detect those generated by the surface and candidate lava

tube boundaries, exploiting the model in Section 4.2.

According to the analysis in Section 4.2, the properties of the lava tube EM model are the

following. i) There should be at least one candidate to be the surface reflection having

the shallowest depth in the range and with the stronger power. ii) There should be at

least two other deeper reflections, i.e., the candidates for the boundaries of the lava tube

C and F . iii) The reflection length depends on the tube width and the crossing angle α

between the tube axis and the moving direction of the radar. iv) Candidate features for

the same tube should have as similar as possible length, independently on the crossing

angle α. v) There should be alignment between the candidate features C and F , i.e., the

barycenters of the candidate C and F should lie on the same line. vi) Phase inversion
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should occur at each candidate feature. Note that candidate features in the radargrams

will have different characteristics, including thickness, shape, and orientation, according

to the acquisition geometry, the resolution in the range direction (which also depends

on the specific dielectric properties of the medium), and the physical properties of the

geological structures. Further, real radargrams usually present other reflections related

to undesired signals, such as clutter from off-nadir and surface topography variations.

Hence, the automatic system to detect lava tube reflections must be robust to noise and

uncertainties in radargrams, given by the impossibility of precisely modeling the structures

in the subsurface.

4.3.1 Detection of the Reflections

Considering the EM model presented in Section 4.2, the signature of both the lava

tube boundaries and the surface consists of reflections with a linear shape. Hence, the

first step of the proposed approach extracts the candidate features with a line detection

algorithm. In the literature, there exist several methods to detect lines in radargrams,

such as [40], [42]. Here, we used the unsupervised method in [40] that can extract lines

with different properties, e.g., orientation, shape, and length. Further, the method is

robust to both the thermal and background noise of radargrams. The algorithm [40]

automatically detects lines in radargrams by applying a local scale Hidden Markov Model

(HMM) and the Viterbi Algorithm (VA). The overall approach consists of the following

steps: i) layers enhancement, ii) segment detection using a combination of the VA and

HM model in small regions of the radargram, and iii) combination of adjacent segments.

The HMM detects the most probable location of the lines and transforms the pixels in

these regions into a graph. The VA analyzes the graphs to identify the pixels belonging

to the lines. The approach divides radargrams into small portions processed separately.

Then, a detection strategy links inferred local segments.

The initial step enhances the signal while reducing the noise in the radargram with an

incoherent averaging filter that magnifies locally flat lines with a size of NAV (reflections

that are flat at least at the scale of the averaging length). Then, the algorithm adaptively

estimates the conditional density function (CDF) of the noise and the signal. Knowing

these CDFs and fixing the probability of false alarm, the algorithm computes the proba-

bility of detection and the peak threshold. The peak threshold is applied to each rangeline

(a column of the radargram) to detect the local peaks, potentially associated with lines.

Since reflections are spread in range, i.e., they are some pixels thick, the algorithm con-

siders only peaks separated by at least a unit of range resolution (skeleton thickness) to

avoid multiple detections of the same reflection.

The second step applies the HHM and the VA to detect the lines. HHM transforms
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Figure 4.4: Illustration of the tracking procedure of a single layer edge. The pixels with the red circle connected

by the yellow arrow identifies a retrieved best path.

the radargram into a graph where the VA searches for the optimal state sequence, see

Fig. 4.4 for a schematic representation. For each azimuth position, the VA considers as

initial seeds the previously detected peaks. Then, it iteratively identifies the optimal state

sequence in the radargram portion surrounding the seeding points. The amplitude of the

pixels in the best path is thresholded thline to check if the path is related to a reflection.

Then, the algorithm connects the line of adjacent radargram portions in a way that the

initial seeds of the next portion are the last pixels of the best paths of the previous block.

The algorithm stops when it reaches the end of the radargram, or when the thresholding

condition is no longer verified. When a line is detected, the corresponding pixels are

removed from the radargram to avoid multiple detections.

The algorithm extracts a set of lines L = {Lk, k ∈ [1, ..., NL]} corresponding to high

reflection values in the radargram. For each line, the algorithm provides the azimuth a

and range r coordinates for each pixel. The algorithm extracts many segments for each

reflection as it is sensitive to the amplitude variations. Hence, a step of post-processing

combines segments related to the same reflection. Segments shorter than Lmin are removed

as they are expected to represent noise or unwanted reflections. Segments are grouped by

considering the relative distances in the azimuth and range. Two segments are grouped

if i) they overlap in the azimuth or the range directions of Oa and Or pixels, and ii) the

amplitude of the edge connecting the two lines is constant and higher than the threshold

thline. The first condition identifies the candidate segments to combine. The second one

combines only the segments that are likely to represent the same reflection, see Fig. 4.5 for

the schematic representation. The output of this step is a set of reflections R = {Ri, i ∈
[1, ...., NR]}, where the i-th reflection groups several segments Li

k. For each reflection, a

geometrical region is built by considering as starting and ending point the coordinates of

the most left and most right pixel of each line group.
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Figure 4.5: Examples of the refinement step: several segments Li
k are extracted for each reflection Ri.

4.3.2 Characterization of the Reflections

The second step of the proposed approach characterizes the i-th reflection by extracting

the length li, the average depth ρi, the barycenter coordinates bi, the average amplitude

ai, and the average phase φi (see Fig. 4.6). These parameters compose a feature vector

Fi = {li, ρi, bi, ai, φi} for each reflection Ri.

Length. For each reflection Ri, the length li considers the extension in the azimuth

direction of the reflection with

li = max{lka} −min{lka}, k ∈ [1 . . . N i
L] (4.3)

where lka is an array indicating the azimuth coordinates of the k-th line, and N i
L is the

number of segments of the i-th reflection. The reflection length is equal to the distance

between the point with the lowest and the highest azimuth coordinate. This considers

the distance between the two extreme points, without considering the overlapping of the

lines in the azimuth.

Depth. The average depth ρi considers the average range coordinate of each reflection

according to

ρi =
max{lkr}+ min{lkr}

2
, k ∈ [1 . . . N i

L] (4.4)

where lkr is the array of the range coordinates of the k-th line of the i-th reflection. The

average depth of the reflection is equal to the midpoint between the lowest and the highest

range coordinate. This takes into account the reflection thickness but not the overlapping

of the lines in the range direction.

Barycenter. The barycenter bi is calculated considering the centroid of the geometrical

region of each reflection. Hence, the azimuth bia coordinate of the centroid is calculated
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as follows

bia =
max{lka}+ min{lka}

2
, k ∈ [1 . . . N i

L] (4.5)

While the range coordinate is equal to the average depth of the feature bir = ρi.

Amplitude. The average amplitude ai of each reflection is considered as the average

amplitude of the pixels belonging to the N i
L lines of the i-th reflection. Hence, the average

amplitude is computed as follows

ai = mean{A(lka, l
k
r )}, k ∈ [1 . . . N i

L] (4.6)

where A(lia, l
i
r) is the amplitude radargram at the azimuth and range coordinates of the

lines in the i-th reflection.

Phase. The last parameter is the average phase φi related to the change of media in

the propagation path of the EM wave. The phase radargrams store the phase signal that

depends on i) the interactions between the EM wave and the medium where it propagates,

and ii) the length of the path traveled by the EM wave. Here, the aim is to identify the

phase shift due to the interaction between the EM wave and the subsurface structures and

media. The phase shift can be estimated as the difference in the length of the traveled

path and the total phase value. To this end, for each reflection, the phase value of each

pixel is computed by analyzing the signal properties in the frequency domain. Let us

consider the i-th reflection to define the strategy to extract the average phase value from

the phase radargram. In the amplitude domain, the range coordinate of the signal peak

rip is identified for each column of the geometric region. In the phase domain, the p-th

column of the geometrical region is convolved with a Hann window Whann(r) centered in

the peak, see (4.7).

Whann(r) =


1
2

(
1 + cos

(
2πrip
T

))
,
∣∣rip∣∣ ≤ T/2

0,
∣∣rip∣∣ > T/2.

(4.7)

where rip is the range coordinate of the peak in the p-th column of the geometrical region

of the i-th reflection, and T is the length of the considered surrounding window. In

the frequency domain, the Hann window has low aliasing, low sidelobes, and a narrow

main lobe. These properties limit the impact of the filtering on the phase signal while

having an accurate selection of the frequency and a low level of signal distortions. Then,

the output of the convolution is transformed into the frequency domain by applying the

Fourier Transformation (FT). In the frequency domain, the signal is complex and the

phase can be estimated by calculating the angle of the signal. Hence, the average phase

value θi for the i-th reflection is the average of the phase computed for each range line.

Note that θi is the phase value having the contributions from the length of the EM wave
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propagation path θpathi and the interaction of the wave with the material φi. φi can be

estimated with φi = θi − θpathi , where θpathi is defined by setting r = ρi in (4.8).

θpath(r) =
4π

λ
[ρ(r) + h]

√
εr(r) (4.8)

where λ is the wavelength of the signal, h is the elevation of the radar, and εr(r) is the

relative permittivity of the propagation medium, which depends on the range. Note that

ρi+h is the length of the propagation path of the EM wave from the radar to the interface

in the subsurface. εr(r) indicates the propagation medium: here, the dielectric profile

considers basaltic rock εrockr in the subsurface, and vacuum in the buried cavities and above

the surface. Once the phase contribution given by the propagation path is calculated, the

phase shift from the change of dielectric properties in the medium can be estimated. Note

that the lava tube model considers the phase inversion between a couple of reflections,

such as the reflection from the cavity boundaries. Once the candidate features to be the

surface and the tube boundaries are identified, the relative phase between the reflections

can be computed. The phase signal of the candidate to be the surface, and the tube

ceiling and floor are estimated in (4.9), as the difference between the phase contribution

from the propagation path of the EM wave and that of the dielectric properties.

ΦG =
4πh

λ

√
εr(ρS)

ΦC =
4πh

λ

√
εr(ρS) +

4π(ρC − ρS)

λ

√
εr(ρC) + φC

ΦF =
4πh

λ

√
εr(ρS) +

4π(ρF − ρS)

λ

√
εr(ρF ) + φF

(4.9)

where ρS, ρC , and ρF are the average depth of the ground reflection S, ceiling reflection C,

and floor reflection F , respectively. ρC −ρS is the roof thickness (the propagation path of

the EM wave from the surface to cavity ceiling), while φC is the phase contribution given

by the change of dielectric properties of the material at the tube ceiling. ρF − ρS is the

propagation path from the surface to the floor of the cavity (sum of the roof thickness and

the tube height), while φF is the phase contribution given by the change in the dielectric

properties of the material at the tube floor. Finally, the dielectric properties εr(r) depends

on the dielectric profile, and thus, the depth. Comparing the phase of two reflections, we

can check the phase inversion as the difference between the phases of the two candidate

features:

ΦC − ΦG =
4π(ρC − ρS)

λ

√
εr(ρC) + φC

ΦF − ΦC =
4π(ρF − ρC)

λ

√
εtuber + φF − φC

(4.10)
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Figure 4.6: Simulated radargram imaging the surface reflection S, the tube ceiling C and floor F with

the main geometrical parameters for each i-th reflection (length li, average depth ρi, azimuth barycenter

coordinate bia).

The first part of both equations is related to the phase signal due to the propagation path,

while the latter is from the dielectric properties of the medium. In the first Equation of

(4.10), the wave propagates into the lava tube roof, which consists of basaltic rock. In the

second Equation of (4.10), the wave propagates in the tube that generally is void and has

a relative permittivity εtuber = ε0 = 1. The phase contribution from the materials φC and

φF is the unknown of the equation that can be estimated by inverting (4.10). Note that

according to the lava tube EM model, |φC | is ideally equal to π since a phase inversion

occurs when moving from the rock to the void of the tube. Hence, the phase difference

depends on the unknowns (εtuber , φC , and φF ) and allows us to derive the phase shift.

4.3.3 Fuzzy Detection Approach

This section focuses on the proposed strategy to analyze the set of features F = {Fi, i ∈
[1 . . . NF ]} extracted from the radargram with a fuzzy logic-based system. The system

examines the properties of the features (Fi = {li, ρi, bi, ai, φi}) and assigns to each of them

a label in Ωc = {ωg, ωcLT , ω
f
LT , wn}. The fuzzy logic models the uncertainty of the lava

tube EM model in the realistic scenario and accounts for the characteristics of the data,

such as their low resolution. The fuzzy system consists of two steps: i) the best candidate

feature to be the surface reflection is identified and removed from the feature set; ii) the

remaining features are analyzed two by two to detect the couples of features that can

be candidates to be the lava tube ceiling and floor. When two features are identified as

possible reflection generated by the lava tube boundaries, these are removed from F to

avoid multiple detections of the same cavity. The analysis of the features is done with a

set of rules (see Table 4.3) based on the EM model presented in Section 4.2. Each rule

evaluates the features by providing a membership value in the range of [0, 1]. This value

indicates how much that rule is fulfilled, i.e., a high membership value indicates that the
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Table 4.3: Summary of the fuzzy rules used to classify each feature as possible surface reflection ωg, lava tube

ceiling reflection ωcLT , lava tube floor reflection ωfLT , and none of them ωn.

Rule Attribute Membership Function

1. Presence of at least 3 candidate
p µp(p) = {0, 1}

features Fc, Ff , and Fg (completeness)

2. Surface length of the candidate feature Fg rG =
lg
lR

µG(rG) = 1
1+exp(−aG (rG−cG))

3. Equivalence of length of the candidate
rL = min{ lclf ,

lf
lc
} µL(rL) = 1

1+exp(−aL (rL−cL))features Fc and Ff

4. Proportionality of the candidate
rP = min{Llc ,

L
lf
} µP (rP ) = 1

1+exp(−aP (rP−cP ))
features Fc and Ff

5. Alignment of the barycenters of the
ral = |m−mal| µal(ral) = 1

1+exp(−aal (ral−cal))candidate features Fc and Ff

6. Comparison of the amplitude values
rA = min{ acaf ,

af
ac
} µA(rA) = 1

1+exp(−aA (rA−cA))
of the candidate features Fc and Ff

7. Phase inversion between the candidate r1φ = min{
∣∣∣φcπ ∣∣∣ ; ∣∣∣ πφc ∣∣∣} µ1

φ(r1φ) = 1

1+exp(−a1φ (r1φ−c
1
φ))

features Fc and Ff r2φ = min{
∣∣∣ φcφf ∣∣∣ ; ∣∣∣φfφc ∣∣∣} µ2

φ(r2φ) = 1

1+exp(−a2φ (r2φ−c
2
φ))

rule is verified for that feature, while a low value indicates the contrary.

The first step aims at detecting the best candidate feature to represent the reflection

generated by the ground surface among the candidate features Fi, i ∈ [1 . . . NF ]. Ide-

ally, the surface reflection has a length comparable to that of the radargram in azimuth.

Furthermore, it has the smallest average range coordinate since it is the first interface

encountered by the wave. To identify the surface reflection, two fuzzy rules described

below evaluate the candidate features and associate a grade of membership to all of them.

According to the overall membership value, the best candidate to represent the surface

reflection is detected.

Completeness. Three reflections generated from the surface and the tube ceiling and

floor must be detected in the radargram to identify a possible candidate. This rule

evaluates the presence of at least three features, such that Fi, i ∈ [1 . . . NF ], NF ≥ 3.

Fixing the parameter p = NF , p is evaluated with a crisp membership function µC(p),

defined as µC(p) = [0, 1]. The function analyzes the number of features Ni and is µC(p) =

1 when three or more reflections are detected, otherwise is µC(p) = 0.

Surface Length. This rule aims at detecting the best candidate to represent the surface

reflection by evaluating the length li of each candidate feature. Ideally, the length of the

surface reflection is the same as the radargram in the azimuth direction. This can be

evaluated with a sigmoid membership function (4.11) evaluating the attribute rG. The
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attribute rG = li/lR is defined as the ratio between the length li of each candidate feature

and the radargram length lR. In general, a sigmoid function is defined as follows:

µj(rj) =
1

1 + exp (−aj (rj − cj))
(4.11)

where µj = µG and aj = aG, aG > 0 indicates the center of the function, and cj = cC , cG >

0 is a parameter modeling the slope curvature. µG(rG) returns a value in the range of

[0, 1]; the higher the value of rG, the higher the membership value and the possibility for

that feature to be the candidate for the surface reflection. A low value of rG indicates that

the feature length is small compared to that of the radargram one. The best candidate

to be the ground surface feature is identified with the aggregated membership value MG,

calculated by combining the Completeness and Surface Length rules as in (4.12):

MG = µC µG (4.12)

Among the fuzzy aggregation method, the Larsen product implication [164] is chosen since

it is conservative. A small membership value forces a small final aggregation, regardless of

the other membership values. The candidates are sorted considering their average depth.

The feature with the lowest range coordinate, having an overall membership value MG

higher than a threshold ThG, is classified as ωg. The value MG indicates the grade of

reliability for that feature to be the best candidate to represent the surface reflection.

Finally, the feature classified as ωg is removed from F to avoid the multiple labeling of

the same feature.

The second step of the proposed method analyzes the remaining features F \{Fi = ωg}
to detect possible candidates to represent the lava tube ceiling and floor. Ideally, the tube

boundaries generate two reflections having a linear shape and comparable length. These

reflections correspond to the tube ceiling and floor, where the former is expected to have

a lower range coordinate than the latter. Furthermore, the amplitude values of the two

reflections are comparable since the void in the cavity only slightly attenuates the signal.

Finally, the reflections are characterized by phase inversion due to the extreme difference

between the dielectric materials at the interface. Hence, the related features need to

match those in the EM model presented in Section 4.2. The matching is evaluated by

applying five fuzzy rules that analyze all the pairs of candidates. For each pair, the

system provides a grade of membership that can be used to detect those representing

tube boundaries. Couples of features are defined by choosing two features Fc and Ff in

F = {Fi, i ∈ [1, ..., NF − 1] to be the candidate for the ceiling and the floor reflection,

respectively. To identify the candidates, the features are sorted according the increasing

value of their average depth. Then, the candidates Fc and Ff are iteratively selected in

a way that the average depth of Fc is shallower than that of Ff . At the i-th iteration,
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the candidate are Fc = Fi and Ff = Fi+1. If the candidates are evaluated by the fuzzy

system to represent a possible lava tube, they are labeled as Fc = ωcLT and Ff = ωfLT ,

respectively, and both removed from F . If this is not valid, the candidate feature for the

floor is changed, such that Ff = Fi+t, t ∈ [1, ..., N i
F−1], where N i

F is the size of the feature

set at the i-th iteration. When t = N i
F and the candidate couple Fc and Ff are evaluated

as not related lava tube boundaries, the candidate ceiling feature is set to Fc = Fi = ωn
and removed from F . Then, at the next iteration i + 1, the candidate feature for the

ceiling is changed and the above-mentioned procedure repeated. This approach stops

when all the features in F are labeled with one of the labels in Ωc = {ωg, ωcLT , ω
f
LT , wn}.

Each couple of candidate feature Fc = {lc, ρc, bc, ac, φc} and Ff = {lf , ρf , bf , af , φf} is

examined with the following rules, that are summarized in Table 4.3.

Equivalence of Lengths. This rule checks that the lengths of the candidate ceiling lc and

floor lf features are similar. Ideally, when considering tubes with a cylindrical shape, the

reflections generated by the boundaries of the tube have similar lengths. More realistically,

reflections have a similar length rather than the same one. However, this is mitigated

by the fuzziness of the approach, and if needed, it can be considered explicitly in the

definition of the rule by adding a margin on the similarity. This rule can be implemented

with a sigmoid membership function (4.11) with ai = aL, aL > 0 and ci = cL, cL > 0

(see 4.11) that evaluates the attribute rL = min{lc/lf , lc/lf}. The function computes

the membership value µL in the range of [0, 1], which indicates the confidence to have

similar lengths. µL is maximum when the candidates have a similar length. Decreasing

the length of one feature decreases the value of µL.

Proportionality. This rule verifies that the candidate features overlap in the azimuth

direction and thus eliminates a pair of features not sharing enough azimuth coordinates.

Ideally, to represent a lava tube, the reflections should be completely overlapping in the

azimuth direction. More realistically, reflections may not fully overlap. However, this

is mitigated by the fuzziness of the approach. Also for this rule, it can be included in

the definition by including a margin. The proportionality membership µP is obtained by

evaluating the attribute rP with a sigmoid membership function (4.11) with ai = aP , aP >

0 and ci = cP , cP > 0. The attribute is rP = min{La/lc, La/lf}, where La is the number

of pixels with the same azimuth coordinate in the candidate features. The higher the

number of overlapping pixels, the higher is the membership value µP . µP goes to 0 when

there are not overlapping pixels.

Alignment of Barycenters. This rule verifies that the candidate features are parallel.

Ideally, approximating lava tubes as cylinders, the two reflections should be parallel to

the azimuth direction. More realistically, the tube has a more complex shape, which, in

radargrams, translates into reflections neither perfectly parallel to each other nor perfectly
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perpendicular to the range direction. Note that tubes can show a steepness coefficient

higher than zero, i.e., the tube is inclined. Fixing α = 0, the reflections in the radar-

gram from the tube ceiling and floor may be neither parallel to the surface. Possible

non-idealities of reflection barycenters not laying on the same line are mitigated by the

fuzziness of the approach as the membership function gives a value indicating the goodness

of the matching between the candidate features and the rule. To evaluate the alignment

of the candidate features, the barycenter coordinates of the candidate features bia and bir
in the azimuth and range directions, respectively, are considered as defined in Section

4.3.2. According to the lava tube EM model, the barycenters of the two reflections lay on

the same line, which is perpendicular to the azimuth direction. The slope mal of the line

connecting the barycenter of the two features is defined as

mal = −b
c
r − bfr
bca − b

f
a

(4.13)

Finally, the slope of the line is compared with that of the azimuth direction. The attribute

ral considers the orientation of the range direction and the line passing in the barycenters of

the tube reflections. Hence, the attribute is calculated as the angle between the two lines,

i.e., ral = |m−mal|, where m is the orientation of the range direction. The membership

function is a sigmoid membership function (4.11) with parameters ai = aal, aal < 0 and

ci = cal, cal < 0 since ral is an angle in the range of [−π/2, π/2]. The value of ral is 1 in the

ideal case when the ceiling and floor features are parallel between them but perpendicular

with the azimuth direction. ral decreases to zero when the ceiling and floor features are

not parallel between them nor perpendicular to the azimuth direction m.

Amplitude Comparison. This rule compares the amplitude signal of the candidate

features among them and with that of the surface reflections. Ideally, the surface reflection

has the highest amplitude in the radargram, thus, the tube candidate features have a

lower amplitude. The EM model indicates that the tube boundary reflections have a

comparable amplitude signal since losses inside the tube are almost null. The difference

in the amplitude signal is mitigated by the fuzziness of the approach. Attribute rA
is defined as rA = min{ac/af , ac/ac}, where ac and af are the mean amplitude of the

candidate ceiling and floor candidate features, respectively. To compute µA, the attribute

is evaluated with a sigmoid membership function (4.11) with ai = aA, aA > 0 and ci =

cA, cA > 0. The membership value µA is maximum when the amplitude of the two

reflections is similar, and it tends to zero when the difference is high.

Phase Inversion. This rule analyzes the phase of the candidate features. Ideally, a

phase inversion occurs at each interface between materials with considerably different

dielectric properties (see Section 4.3.2). Here, two interfaces, i.e., the tube ceiling and

bottom, generate the inversion of the phase signal. This rule is of critical importance to
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discriminate subsurface reflections of the tube boundaries from clutter. Clutter indicates

the undesired reflections from the topography variations and the off-nadir surface due

to the large antenna footprint. The surface clutter appears in the subsurface of the

radargram when considering the acquisition time. The power of the clutter signal is higher

than that of subsurface reflections. Since it may mask subsurface reflections, clutter can

cause serious issues. However, the phase inversion is a property of subsurface echoes and

helps in identifying clutter [161]. Here, the phase inversion is checked between i) the

surface reflection and the candidate feature for the ceiling, and between ii) the candidate

features for the tube ceiling and floor. The difference of the phase signals is calculated

for the two cases according to (4.10). The phase difference considers the path traveled

by the wave from one reflection to the other and the contribution from the dielectric

interfaces. Here, the interest is in the contribution from the dielectric interfaces. Thus,

the contribution given by the wave propagation is computed by considering the average

depth of the reflection. The contribution given by the dielectric interfaces is computed

by inverting (4.10). Ideally, the phase difference is equal to π; but more realistically,

the phase difference may be slightly higher or lower. However, this is mitigated by the

fuzziness of the proposed approach. The attributes for this rule r1
φ and r2

φ are computed

considering the phase contributions from the dielectric interfaces, as follows

r1
φ = min{|φc/π| ; |π/φc|} (4.14)

r2
φ = min{|φc/φf | ; |φf/φc|} (4.15)

where φc is the average relative phase of the candidate feature for the ceiling, and φf is the

average relative phase of the candidate feature for the floor. The attributes are evaluated

with a sigmoid membership function (4.11) with ai = aφ, aφ > 0 and ci = cφ, cφ > 0

to have the membership values µ1
φ and µ2

φ. The memberships tend to 1 when the phase

inversions occur for µ1
φ between the surface reflection and the candidate feature for the

tube ceiling, while for µ2
φ between the candidate features for the tube ceiling and floor.

For each couple of candidate features Fc and Ff the membership values are aggregated

with the Larsen product implication [164] as follows

Mcf = µCµLµPµalµAµ
1
φµ

2
φ (4.16)

The value of the overall membership Mcf indicates the reliability for the candidate features

Fc and Ff to represent the boundaries of a lava tube. The higher is Mcf , the higher is

the probability that the candidate features are associated with lava tubes. The decision

strategy consists of thresholding Mcf . When Mcf is larger than the empirically defined

threshold ttube, the candidate reflections are associated with a candidate lava tube, such

that Fc = ωcLT and Ff = ωfLT . On the contrary, when Mcf < ttube, the candidate reflection

are not associated with lava tubes reflection.
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The parameters of the fuzzy memberships ai and ci in (4.11) indicate the grade of

tolerance of the system. The sigmoid center ci represents the case when the candidate

features satisfy the rule with a membership of 0.5. The slope ai indicates the flexibility

of the system, i.e., the robustness of the rules to clutter, noise, and irregularity of the

geometrical structures. Hence, ci is fixed by considering the EM model for lava tubes. The

slope ai is empirically selected according to the data characteristics, e.g., the expected

size of the cavities and the average interface depth in that area. The choice of ci and ai is

related to the degree of fuzziness of the approach and thus, to the grade of tolerance of the

proposed method to the possible non-idealities of the candidate reflections. Considering

the experimental results (see the next Section), one can conclude that the selection and

tuning of the parameters are not critical and do not require complex prior knowledge.

4.4 Description of the Datasets and Experimental Results

To assess the effectiveness of the proposed method, we carried out several experiments

on two datasets. The first dataset consists of data simulated with the approach proposed

in [21] by (i) varying the dimensions and depth of the tube according to [140, 159], and

(ii) varying the characteristics of the terrain. The experiments on the simulated dataset

aim at proving the effectiveness and the validity of the proposed method in a controlled

scenario. The second dataset consists of radargrams acquired on the Moon by the Lunar

Radar Sounder (LRS) [3] onboard of the SELENE (SELenological and ENngineering

Explorer) spacecraft. The results are validated considering the state-of-the-art methods

for detecting lava tubes, such as the superficial volcanic structures, the gravity and the

thermal data, and eventual radar sounder measurements.

4.4.1 Simulated Dataset

The simulated dataset consists of radargrams simulated with the setup described in

Section 4.2 with the radar parameters in Table 4.2. We performed two types of analyses:

i) by varying the geometry of the tubes and a smooth surface, and ii) by varying the

surface topography and fixing the tube geometry. The first analysis aims to validate the

proposed method in detecting lava tubes having different geometries, i.e., tube width and

height, and roof thickness. The second analysis aims at understanding the impact of

the topography of the surface, which generates clutter that masks the reflections of the

subsurface on the performance of the proposed method.

Description of the Dataset

For the first analysis (geometry analysis), the geometries of the lava tube varies as in

Table 4.1, considering stable lava tube on the Moon according to [140, 141]. The height of

the tube is varied from 250 m up to 2 Km, considering small, medium, and large lava tubes.
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The roof thickness varies accordingly, increasing up to 200 m, with the dimension of the

tube. For all the geometries, we simulated different angles of intersection between the tube

longitudinal axis and the moving direction of the radar (α): α = 0 (parallel case) centered

and off-centered, α = π/2 (perpendicular case), and α ∈ (0, π/2) (diagonal cases). The

difference between centered and off-centered simulations is in the axis where the lava tube

is in the radargram, i.e., in the center of the tube or not. In the radargrams, this is

reflected in the distance between the tube ceiling and floor reflections. The difference in

the radargrams between the α = π/2 and α ∈ (0, π/2) cases is in the length of the tube

ceiling and floor (see Section 4.2).

For the analysis of the impact of the topography surface (terrain analysis), we fixed the

tube dimension to 1000 m and the roof thickness to 75 m. We simulated three different

surface topographies: smooth topography as a reference, surface with deep and large

craters, and surface with deep and large craters and large roughness. Craters generate

clutter reflections below the surface (see Fig. 4.2) that are not affected by the phase

inversion. The surface roughness generates diffuse scattering around the reflection of the

surface and the craters (see Fig. 4.2). For the terrain analysis, we performed simulation

with α = 0 (parallel case) and α = π/2 (perpendicular case).

Experimental Setup

The first step is the extraction of the lines in the radargrams with the technique in [40].

The input parameters are estimated as in [40] and are reported in Table 4.4. The value of

NAV is set to 20 to guarantee an average probability of detection larger than 0.95 and a

probability of false alarm of 10−3. The value of Thline is set to 60 by fixing the probability

of false alarm to 10−3 after computing the conditional empirical noise distribution. The

Viterbi length and excursion are experimentally set to 20 and 4, respectively. The Viterbi

length indicates the maximum allowed range of the ‘jump’ of the layer tracking from one

azimuth position to another. Finally, the skeleton thickness is set to 10 pixels.

It is worth noting that a relevant number of lines are extracted. Some are irrelevant

from the application viewpoint as they are generated by the topography of the surface

(clutter) or other subsurface structures. The topography increases the complexity of the

problem of automatically detecting lava tube reflections. The second step of the proposed

approach includes line refinement. The overlapping in azimuth and range are empirically

set to Oa = 7 pixels and Or = 5 pixels, respectively. Considering the azimuth resolution,

the minimum feature length Lmin is fixed to 50 pixels. The algorithm groups together

segments that represent the same reflection as for the surface. Fig. 4.7 shows the outcome

of the line detection algorithm for the simulations of a lava tube having an height of 1000

m and 75 m roof thickness with a surface characterized by a large roughness and thick

craters with crossing angles α = 0 (see Fig. 4.7.a) and α = π/2 (see Fig. 4.7.b). Fig.
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Table 4.4: Values of the parameters of the proposed method.

Parameter Simulated Dataset LRS Dataset

NAV 20 16

Viterbi Length 20 20

Viterbi Excursion 4 4

Thline 40 40

Skeleton Thickness 10 pixels 3 pixels

Lmin 50 pixels 10 pixels

Oa 7 pixels 2 pixel

Or 5 pixels 2 pixel

aP , cP 10, 0.3 10, 0.3

aL, cL 10, 0.5 10, 0.5

aal, cal -10, π
3 -10, π

3

aA, cA 10, 0.5 10, 0.5

a1φ, c
1
φ -10, 0.5 -10, 0.5

a2φ, c
2
φ 10, 0.5 10, 0.5

ThG 0.50 0.50

Thtube 0.1160 0.1160

4.8.a and 4.9.a show the outcome of the line refinement step with the extracted features

in different colors. All the reflections are characterized by computing the length in pixels,

the average depth and the barycenter coordinates in range and azimuth, and the average

amplitude and phase values. For the phase evaluation, the Hanning window length T

is estimated by considering the thickness of each reflection in the range direction. The

relative dielectric properties of the rock is set to εrockr = 4 [165], while that of the air

to εairr = 1. The height of the radar above the surface is set to h = 100 Km (Table

4.2). The third step analyzes the features with the fuzzy detection system to identify the

best candidates to be the surface reflection and the lava tube ceiling and floor. For the

detection of the surface reflection, the rule in (4.12) is evaluated with the parameters in

Table 4.4. It is worth noting that the threshold ThG was selected to minimize the missed

alarms, considering the definition of the membership functions and the algebraic product

as aggregation strategy (Larsen implication [164]). In this experiment, µG = 0.5 and

µp = 1 were selected as a limit case, which results in an aggregate membership function for

the surface of MG = µGµp = 0.5, considering (4.12). Hence, ThG = 0.5, as it is the value

of MG at the limit case. The aggregate membership value for the surface reflection was

MG ≥ 0.95. The last step labels the reflection with ωcLT and ωfLT , and ωn. The parameters
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for the fuzzy rules memberships are in Table 4.4. µP = µL = µal,= µφ = µA = 0.7 were

selected as a limit cases, which result in an aggregate membership function for the tube

detection of Mcf = 0.1160, considering (4.16). Hence, the lava tube threshold is set to

Thtube = 0.1160.

(a) (b)

Figure 4.7: Line detected (in black) with the technique in [40] for crossing angle values (a) α = 0 and (b)

α = π/2. The case of a simulated radargram with a tube height of 1000 m and a roof thickness of 75 m

and surface topography with a large roughness and thick craters is considered.

(a) (b)

Figure 4.8: Processing of the simulated radargram for α = 0 (parallel case). (a) Extracted features in

different colors, (b)reflections recognized by the proposed approach as the surface in blue and the lava

tube boundaries in magenta. The case of a tube having a height of 1000 m and a roof thickness of 75 m

and surface topography with a large roughness and thick craters is considered.

Experimental Results

The proposed method detected in all the radargrams the lava tubes with a high value

of overall membership, i.e., higher than 0.98 in all the cases. It showed to detect lava
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(a) (b)

Figure 4.9: Processing of the simulated radargram for α = π/2. (a) Extracted features in different colors,

(b) reflections recognized by the proposed approach as the surface in blue and the lava tube boundaries

in magenta. The case of a tube having a height of 1000 m and a roof thickness of 75 m and a surface

topography with large roughness and thick craters is considered.

tubes with different sizes, roof thickness, and crossing angle α, showing high robustness

to the surface topography and the clutter in the simulated radargrams. For the sake of

space, we report here only the analysis for two radargrams simulated with tube height of

1000 m and roof thickness of 75 m, and surface topography characterized by large and

deep craters and high roughness. Fig. 4.8 shows the processing for α = 0 (parallel case):

Fig. 4.8.a depicts the features extracted, while 4.8.a presents the outcome of the detection

algorithm (in blue the surface reflection and magenta the detected lava tube ceiling and

floor). Fig. 4.9 shows the processing for α = π (perpendicular case). Note that the rule

of the phase inversion is of major importance to discriminate between the clutter in the

subsurface (generated by craters in the simulations), and the reflections from subsurface

targets.

4.4.2 LRS Dataset

The second dataset consists of radargrams acquired by the LRS onboard the SELENE

spacecraft [3]. LRS had two dipoles of 30 m working at a frequency of 5 MHz. The

characteristics allow penetration into the subsurface for some kilometers with a range

resolution of 100 m in the vacuum. Table 4.2 summarizes the parameters of the LRS and

the characteristics of the related radargrams. The Section is structured as follows– first,

we describe the dataset in Section 4.4.2, then, we analyze the radargram preprocessing

and the experimental setup, and finally, we describe the experimental results in Section

4.4.2.
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Description of the LRS Dataset

The LRS dataset considers radargrams acquired in i) the Marius Hills region (MH),

where lava tubes are expected in the subsurface due to the strong presence of superficial

volcanic features and gravity evidence, and ii) in the highlands, where buried lava tubes

are not expected, and the surface topography is affected by a large roughness and many

impact craters [166, 167, 49]. In the MH region, the proposed method detects in an

automatic and fast way candidate lava tubes in locations that are in line with the literature

[156, 168, 166, 169, 49]. The reflections should be then further analyzed with a clutter

simulator, but we believe this is out of the scope of the work. In the highlands, where

lava tubes are not expected, we analyzed the rate of the false alarms, considering any

reflection identified by the proposed method as a candidate lava tube as a false alarm.

Hence, the number of false alarms NFA is equal to the number of couples of reflections

classified as candidate lava tubes.

Marius Hills. MH (14°N, 56°W) is in the western equatorial region of Oceanus Pro-

cellarum. The region is a young pyroclastic deposit with a high concentration of volcanic

features related to buried lava tubes, such as volcanic domes around 200-500 m high, rilles,

pits, and depression lacking ejected rima. The characteristics of these geological forma-

tions are strongly different from others on the Moon [166, 167, 49, 170]. Hence, MH was

an active volcanic region in recent years and with a high probability of having buried lava

tubes. This is confirmed by the presence of C-shaped domes having a lower height and

smaller diameter than others on the Moon. Another confirmation comes from the block

abundance on the surface that makes the surface rougher than in the surrounding. The

blocks have uniform size and are smaller than others in the surrounding, and thus they are

strongly different from the others on the Moon (such as those related to impact craters)

[166]. The analysis of the pits in the MH region showed the presence of possible skylights,

locally collapsed lava tube roof [169, 49]. Authors in [169] focused on the MH hole (see the

green placemark in Fig. 4.10) that was imaged with obliques views by the LROC camera

under different illumination. The analysis of the images showed an extended subsurface

void that can extend laterally in cavernous spaces. Hence, this hole is a candidate to be a

skylight of a buried lava tube [169]. Further, GRAIL data of the region show mass anoma-

lies that can be explained with void volumes [171]. The size of the voids is comparable

to that of empty and stable lava tubes, as defined in [140]. Finally, [172, 156] identified

a possible location of lava tubes by analyzing rangelines of radargrams. Hence, the LRS

dataset for the MH region consists of six radargrams: LRS SAR05KM C xxN yyE with

xxN yyE in { 10N 303594E, 10N 303632E, 10N 303067E, 10N 303734E, 10N 303249E,

10N 303801E }. Fig. 4.10 shows the radargram tracks in magenta superimposed on

an optical image of the surface acquired by the Lunar Reconnaissance Orbiter Camera
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(LROC). The tracks are parallel to each other. Thus, it is reasonable to assume that

a candidate lava tube in a radargram also appears in the other radargrams at a similar

latitude.

Highlands. Highlands cover around 83% of the lunar surface and are characterized by

impact craters. The surface topography is not flat, and thus radargrams show a large

number of clutter reflections in the subsurface. Lava tubes are not expected in these re-

gions [166, 167, 49]. Hence, the LRS dataset for the highlands region consists of hundred

radargrams acquired in the rectangular area with latitude in the range of [45°N, 45°S] and

longitude in the range of [90°E, 90 °W].

Experimental Setup

Radargrams have NT 1000 samples (rows), of which 500 are removed– 200 from the

radargram top as they represent the free space above the surface, and 300 from the bottom

as the signal-to-clutter ratio is low below ~3 Km of penetration [156]. All radargrams have

8011 traces (columns). Radargrams of the MH are cut 807 traces to image the latitude

coordinates in the range of 13°N to 15°N, like in [156] to focus on the MH region. All the

radargrams are pre-processed with range compression to enhance the range resolution and

SAR focusing [173] to enhance the azimuth resolution with a synthetic antenna length of

5 Km.

As described in the methodological Section, the first step of the proposed approach

is the extraction of the lines in the radargrams with [40]. The input parameters are

estimated as in [40] and are reported in Table 4.4. For the LRS dataset, the value of

NAV is set to 16 to guarantee an average probability of detection larger than 0.95 and a

probability of false alarm of 10−3 for all the radargrams. The value of Thline is set to 60

by fixing the probability of false alarm to 10−3 after computing the conditional empirical

noise distribution. The Viterbi length and excursion are set to 20 and 4, respectively, for

both the radargrams of the LRS Dataset. Finally, the skeleton thickness is set to 3 pixels.

The second step of the proposed approach includes line refinement. The overlapping in

azimuth and range are empirically set to Oa = 2 pixels and Or = 2 pixels, respectively.

Considering the LRS azimuth resolution, the minimum feature length Lmin is fixed to 10

pixels. Hence, the smallest width of a possible lava tube is about 600 m, which should have

a roof thickness of 50 m to be stable [140, 141]. In free space, the LRS range resolution is

about 75 meters, which is in the range of 100 - 150 m in the basaltic rock, which roughly

corresponds to 1 pixel. The algorithm groups together segments that represent the same

reflection, as for the surface. All the reflections are characterized by computing the length

in pixels, the average depth and the barycenter coordinates in range and azimuth, and

the average amplitude and phase values. For the phase evaluation, the length of the
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Hanning window T is estimated by considering the thickness of each reflection in the

range direction. The relative dielectric properties of the rock is set to εrockr = 4 [165],

while that of the air to εairr = 1. The height of the radar above the surface is set to

h = 100 Km (Table 4.2). The third step analyzes the features with the fuzzy detection

system to identify the best candidate to be the surface reflection and the best candidates

to be reflections generated by the lava tube ceiling and floor. For the detection of the

surface reflection, rule in (4.12) is evaluated with the parameters in Table 4.4. It is worth

noting that the threshold TG was selected to minimize the missed alarms, considering the

definition of the membership functions and the algebraic product as aggregation strategy

(Larsen implication [164]). In this experiment, µG = 0.5 and µp = 1 were selected

as a limit case, which results in an aggregate membership function for the surface of

MG = µGµp = 0.5, considering (4.12). Hence, ThG = 0.5, as the value of MG at the limit

case. The aggregate membership value for the surface reflection was MG ≥ 0.71. The

last step labels the reflection with ωcLT and ωfLT , and wn. The parameters for the fuzzy

rules memberships are in Table 4.4. µP = µL = µal,= µφ = µA = 0.7 were selected as a

limit cases, which result in an aggregate membership function for the tube detection of

Mcf = 0.1160, considering (4.16). Hence, the lava tube threshold is set to Thtube = 0.1160.

Experimental Results

This Section describes the experimental results for radargrams acquired in the MH and

Highlands.

Marius Hills. The method identified 20 candidate lava tubes in the LRS dataset– in

Fig. 4.10 the detected tubes are in red. Table 4.5 lists the fuzzy rule membership values

and the tunnels estimated parameters. Note that the aggregate membership values are

all above 0.65. MG and Mcf can be considered as a grade of reliability that the couples

of reflections are related to a buried candidate lava tube. For the sake of space, Fig. 4.11

shows the steps of the proposed method for the candidate tube C. Identified candidate lava

tubes correspond with those in [156]. Reflections of the identified candidate lava tubes

should be further analyzed with a clutter simulator to discriminate subsurface reflections

from clutter (this is outside this research scope).

Assuming that the reflections are generated by lava tubes, we can estimate the roof

thickness and the tube dimension. The roof thickness is estimated by considering the

depth of the ceiling reflection to the surface and εrockr = 4 as the rock relative dielectric

constant [165]. The tube height is estimated by considering i) the difference between the

depth of the tube ceiling and the floor, and ii) a void tube εvoidr = 1. The tube width

cannot be correctly estimated as it depends on the length of the reflection and the crossing

angle between the moving direction of the radar and the longitudinal axis of the tube,

which is unknown. The estimations in Table 4.5 are computed by considering that i) the
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Figure 4.10: MH region: lines are the tracks of the radargrams (see the legend for their ID). Candidate

lava tube locations identified with the proposed method are indicated with the red pointers. (Optical

image credits: NASA/GSFC/Arizona State University and NASA/USGS/JAXA/SELENE).

(a) (b)

Figure 4.11: Analysis of the part of the radargram LRS SAR05KM C 10N 303801E between 13.75°N and

13.85°N: (a) the extracted features, (b) the reflections indicated by the proposed approach as the surface

in blue and the candidate lava tube boundaries in magenta. The placemark of this tube is B in Fig. 4.10.
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Table 4.5: Output values of the proposed method for the LRS dataset in the MH region: membership

values for pairs of reflections identified candidate lava tubes, central latitude and longitude coordinates

of the locations (lat and long), and tube height (hlt) and roof thickness (hroof ) estimated in the mid of

the reflections. The width (wlt) of the lava tubes is estimated . IDs correspond to the labels in Fig. 4.10.

ID µL µs µα µP µφ M
lat long

hroof hlt wlt
(°N) (°E)

A 0.908 0.973 0.973 0.943 0.899 0.730 14.84 303.79 900 m 900 m 2.7 Km

B 0.986 0.927 0.996 0.998 0.897 0.816 14.44 303.79 600 m 525 m 1575 m

C 0.944 0.848 0.971 0.962 0.963 0.721 13.72 303.79 700 m 600 m 1800 m

D 0.976 0.957 0.953 0.975 0.943 0.820 14.74 303.73 500 m 600 m 1.8 Km

E 0.928 0.934 0.998 0.905 0.916 0.719 14.08 303.73 700 m 900 m 2.7 Km

F 0.977 0.916 0.896 0.937 0.950 0.715 13.74 303.73 1 Km 750 m 2250 m

G 0.999 0.964 0.979 0.917 0.903 0.782 13.25 303.73 800 m 675 2025 m

H 0.982 0.973 0.990 0.926 0.899 0.790 14.69 303.63 900 m 825 m 2475 m

I 0.928 0.934 0.998 0.905 0.836 0.656 14.25 303.63 800 m 1125 m 3375 m

J 0.983 0.975 0.980 0.953 0.941 0.844 13.82 303.63 700 m 525 m 1575 m

K 0.970 0.933 0.908 0.927 0.895 0.683 14.01 303.59 1.3 Km 1050 m 3150 m

L 0.992 0.935 0.954 0.970 0.936 0.805 13.17 303.59 1.2 km 975 m 2925 m

M 0.995 0.988 0.936 0.934 0.880 0.758 14.67 303.59 1.1 Km 600 m 1.8 Km

N 0.936 0.962 0.988 0.970 0.933 0.807 13.86 303.26 500 m 675 m 2025 m

O 0.981 0.967 0.941 0.972 0.868 0.755 13.05 303.59 1 Km 750 m 2250 m

P 0.958 0.996 0.967 0.886 0.892 0.730 14.64 303.26 1.4 Km 1050 m 3150 m

Q 0.928 0.934 0.998 0.954 0.908 0.751 13.86 303.26 1.3 Km 975 m 2925 m

R 0.995 0.892 0.952 0.937 0.879 0.697 13.05 303.26 1.1 Km 450 m 1350 m

moving direction of the radar is perpendicular to the longitudinal axis of the tube, and

ii) the ratio between the tube height and width is 1:3 as in [140]. Hence, the tube width

is calculated by multiplying the tube height by 3 to understand if it may exist such a

stable tube on the Moon according to [140]. Considering their height and roof thickness,

tunnels identified by the proposed method can exist and be stable on the Moon (i.e., not

collapsed) under the Lithostatic and the Poisson stress states.

Highlands. The method identifies NLT = 12 couple of reflections of candidate lava

tubes. The average overall membership value is equal to 0.3205, which is much lower

than the minimum overall membership value of the candidate lava tubes detected in the

MH region. Since in the highlands lava tubes are not expected, the number of false alarms
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is set equal to NFA = 12. The false alarm rate ξFA is defined as

ξFA =
Na
FA

Na
TOT

(4.17)

where Na
FA indicates the number of rangelines (traces) covered by the candidate lava

tubes (false alarms), and Na
TOT the total number of traces being processed. The total

number of traces is equal to Na
TOT = 801100 since each radargram has 8011 traces and

we analyzed 100 radargrams. The number of false alarm rangelines Na
FA is defined as

the sum of the length in the azimuth of candidate lava tubes. For each detected lava

tube candidate i, we considered the length of the longer features, i.e., li = max{lic, lif}.
Hence, the number of false alarm rangelines is defined as Na

FA =
∑
li , i = [1, . . . , NLT ].

For the LRS radargrams in the highlands, Na
FA = 127, and thus, the false alarm rate is

ξFA = 1.5853 · 10−04. Note that the false alarm rate is estimated for the LRS radargrams

considered in the Highland area, and it may vary by region and datasets.

4.5 Discussion

The core assumption of the proposed method is the detection of the reflections from

the tube ceiling and floor and the surface. This assumption is not always valid as it

depends on the acquisition system and the dimension of the target. The proposed EM

model of lava tubes assumes that the range resolution of the radargram is high enough

to image the surface and the tube ceiling and floor. Under this assumption, the proposed

method is demonstrated to be effective. However, stable and empty lava tubes exist on

the Moon and Mars with a thin roof [140] [159] smaller than the range resolution of the

radar sounder. Therefore, in radar sounder data, the lava tube ceiling may be masked

and incorporated in the surface reflection, and thus, not detectable.

Another assumption of the proposed method is that the signal-to-noise ratio (SNR)

is high enough to detect the reflections of the tube ceiling and floor. Relevant factors in

the SNR are the attenuation of the subsurface, the depth of the floor reflection, and the

two-way rough surface transmission loss (depending on the frequency). The SNR also

impacts the error of the phase signal. Considering the properties of the Maria on the

Moon, the study in [161] showed that an SNR > 10dB is enough to detect lava tubes

and to guarantee a negligible absolute phase error. Further information about the SNR

analysis can be found in [161], where the SNR estimation and impact on the absolute

error phase are described in details. Radargrams with low SNR values show dense and

fragmented reflections, i.e., subsurface targets are imaged with discontinuous reflections.

The considered line detection algorithm is suitable to process radargrams with low SNR

as the HMM and the VA are applied with a divide and conquer strategy [40]. The line

refinement step groups together lines belonging to the same reflection.

108



CHAPTER 4. LAVA TUBES DETECTION SECTION 4.6

The proposed method analyses radargrams reflections as candidates to be the lava tube

ceiling or floor. Identified candidate lava tubes should be then studied in post-processing

by expert planetologists to detect possible unidentified clutter reflections and take the

final decision. However, it is worth noting that surface clutter does not generate any

phase inversion [161], and thus, Rule 7 (phase inversion rule) is likely to assume a small

value, bringing to a small overall membership. An example of a geological structure that

generates reflections with a geometry similar to that of lava tubes are craters (see Fig.

4.2). Crater reflections do not generate phase inversion – Rule 7 has a small membership

value, which leads to an overall small membership value.

4.6 Conclusions

This Chapter proposed a novel method to detect candidate buried cavities, such as

empty lava tubes, in radar sounder data. The approach consists of three main steps: i)

EM modeling of the lava tube defined by considering the propagation of the EM wave in

the subsurface, ii) extraction and characterization of relevant reflections in a radargram,

and iii) analysis of the reflections to identify those related to the surface and lava tube

ceiling and floor and associate them with a grade of reliability.

The method takes advantage of the theoretical modeling of how cavities and lava

tubes appear in radargrams. The model describes the physical properties of the reflection

generated by the surface and subsurface cavities. From this model, the surface and lava

tube boundaries can be identified by a pattern of linear reflections with specific alignment,

geometrical, and signal properties. The candidate linear reflections are analyzed with a

fuzzy system based on the lava tube model. The fuzzy rules consider the backscattering

mechanisms of buried and empty lava tubes imaged by radar sounders and provide a

membership value that indicates the reliability of each detected tunnel. The proposed

approach requires the tuning of some parameters that depend on the approximated size

of the expected lava tubes in the investigated area and the radar range and azimuth

resolutions. This information is usually available and easy to include in the processing.

After tuning, the method is automatic and unsupervised.

The effectiveness of the proposed method has been demonstrated with experiments

on two datasets: a simulated and real LRS datasets. The accurate detection of the lava

tubes in the simulated dataset demonstrated that the method is effective and accurate

in detecting lava tubes in radargrams with i) different dimension and depth values, ii)

different crossing angles between the tube axis and moving direction of the spacecraft, and

iii) varying surface topography. The results showed the high robustness of the proposed

method to deviations from the ideal lava tube model due to the definition of adequate

fuzzy rules. For the LRS dataset, the proposed method analyzed radargrams in the Maria
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region (Marius Hills) where lava tubes are expected to be present and in the highlands

area where lava tubes are not expected. In the MH region, the proposed method identified

several candidate lava tubes that were already documented in the literature in a completely

automatic way. This resulted in a fast detection that would be not possible in a large

number of radargrams with state-of-the-art methods based on the visual inspection of

surficial volcanic features. Identified candidate lava tubes should be further analyzed with

a clutter simulator to take a reliable final decision on them. It is worth noticing that the

comparison of the identified reflections with the clutter simulations requires a dedicated

analysis that goes beyond the scope of this work. In the highlands regions, we analyzed

100 radargrams characterized by the presence of a large amount of surface clutter due

to the irregularities of the surface topography. The proposed method resulted in a false

alarm rate of ξFA = 1.5853 · 10−04. Note that the false alarm rate is an estimate for the

dataset considered in the Highlands areas, and it may vary by region and datasets. The

low false alarm rate is mainly due to the phase inversion rule, in which the membership

assumes small values with clutter (as there is no phase inversion), bringing to a small

overall membership. Hence, the phase inversion rule showed to increase the robustness of

the proposed method against the clutter.

As future development, we plan to improve the EM model of lava tube to consider

cavities totally or half-filled with other materials, such as sand and rock. We also intend

to further analyze the detected candidate lava tube reflections on the MH and the Moon

by comparing them to clutter simulations. Finally, we plan to model other targets of

planetary arid areas, such as craters and tesserae, and design rules to include them in the

system.
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Chapter 5

A method based on deep learning for

the automatic semantic

segmentation of radar sounder data

During the last decades, radar sounders provided direct measurements (radargrams) of

the Earth’s polar caps subsurface. Radargrams are of critical importance for a better

understanding of glaciological structures and processes in the ice sheet in the framework

of climate change. This Chapter aims at automatically extracting information on basal

boundary conditions given their substantial relevance for modeling the ice-sheet processes,

such as the ice-sheet sliding. This Chapter introduces 1 a novel automatic method based

on deep learning to detect the basal layer and basal units in radargrams acquired in the

inland of icy areas. Radargrams are segmented into traditional classes, including englacial

layers, bedrock, echo-free zone (EFZ) and thermal noise, as well as new classes of basal

ice and signal perturbation. The network is a U-Net with attention gates and the Atrous

Spatial Pyramid Pooling (ASPP) module that automatically extracts semantically mean-

ingful features. Experimental results on two datasets acquired in north Greenland and

west Antarctica by the Multichannel Coherent Radar Depth Sounder (MCoRDS3) indi-

cate high overall segmentation accuracy. The accuracy of basal ice and signal perturbation

detection is high, which that of the other classes is comparable with literature techniques

based on handcrafted features. The results show the effectiveness of the proposed method

in mapping the basal layer and basal units.

1Part of this chapter appears in

Donini, E., Thakur, S., Bovolo, F., and Bruzzone, L. (2019, October). An automatic approach to map refreezing ice in

radar sounder data. In Image and Signal Processing for Remote Sensing XXV (Vol. 11155, p. 111551B). International

Society for Optics and Photonics.
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5.1 Introduction

feed ice-shelves that calve and melt into the sea, representing one of the main causes

of the global sea-level rise. The ice-sheet see-ward flow depends on the basal bound-

ary conditions, related to several thermal and mechanical factors at the basal interface

[174, 175, 81]. The basal layer, i.e., the last part of the ice column, is critical for under-

standing the ice-sheet processes, including the sliding. Accurate modeling of the basal

conditions requires the direct measurements of the ice sheet up to the bedrock. Tradition-

ally, information on the ice sheet is extracted by analyzing either ice core samples obtained

by drilling or radar sounder data. Ice core samples have been providing a large amount of

information [176, 177], but extracting them is intrusive and expensive. To deal with these

issues, Radar Sounders (RSs) have been widely used during the last decades to image

the inside of the ice sheets in Greenland and Antarctica [29]. A large amount of data

is available from airborne radar sounders acquisitions, and the data volume is expected

to grow further in the future. Recently, the basal layers have been visually analyzed to

identify geological structures, such as basal units [37, 38] and Units of Disrupted Radio-

stratigraphy (UDR) [178, 179]. They elongate for several kilometers and extend up to half

of the ice sheet thickness, causing the ice layering to fold toward the surface. Although vi-

sual inspection has been supporting the characterization of several targets, it is subjected

to several limitations. Visual inspection is time-demanding and not suitable for analyzing

a large number of radargrams. Moreover, it is subjective and can lead to inconsistencies

and misinterpretations. Hence, automatic methods are now emerging to address these

limitations and automatically extract information on the subsurface [158, 41, 45, 180].

In the literature, the methods for the automatic analysis of the basal boundary con-

ditions in RS data fall into three strategies. The first one uses numerical modeling for

ice-sheet geological processes and locally infers the basal boundary condition type. Nu-

merical models [181, 105] consider data from different sensors (e.g., altimeter and optical

images) and analyses (e.g., subsurface temperature profile) as input, extracting only the

ice-sheet thickness and the topography of the basal interface from RS data. However,

other studies [38, 182, 80] indicate that RS data contain more information, including

basal units and water at the interfaces that can further enhance the modeling of the basal

conditions. The second strategy automatically analyzes the layer stratigraphy of radar-

grams to identify disruptions in the basal layer without considering the basal interface.

The englacial stratigraphy is extracted with a line detection algorithm, and the line (i.e.,

the layer) slopes are used to model the disruption [183, 178, 184]. However, these tech-

niques focus on analyzing the ice stratigraphy disruption without mapping the basal layer,

e.g., basal ice and basal units. The third strategy extracts the main geological targets by

semantically segmenting radargrams. The study in [45] segmented radargrams into three
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targets: the stratigraphy of the ice layering, the bedrock, and the echo-free zone (EFZ)

and thermal noise. The authors in [41] expanded the work in [45] by considering also

basal ice. Both methods extract hand-crafted features based on apriori information on

the target class spatial and statistical properties to perform a pixel-based classification

with Support Vector Machines (SVM). Hand-crafted features strongly depend on human

design and model-specific classes. However, increasing the number of classes, this ap-

proach is subjected to degradation of performance in tackling the problem complexity.

Thus, there is a need to develop methods capable of extracting robust features automat-

ically. Recently, deep learning has provided powerful means for image segmentation in

various applications [185, 186, 187, 188, 189, 190]. Deep learning-based methods handle

the feature extraction automatically and provided robust results in other applications.

In this study, we leverage deep learning to analyze inland radargrams acquired in the

cryosphere.

In the semantic deep learning literature, several works exist to perform a supervised

pixel-based learning task, given reliable training samples [185, 186, 187, 188, 189, 190].

The common approach is based on fully convolutional deep neural networks (FCNNs)

[185] made of fully connected layers, where each neuron in one layer is connected to

each neuron in the previous and next layers.In the last years, many variants of FCNNs

have been proposed [186, 187, 188, 189, 190] mostly to analyze passive data (e.g., optical

data). For instance, a U-Net architecture with a contracting path to capture context

and a symmetric expanding path enabling segmentation was proposed in [189]. Attention

U-Net is enriched with attention gate modules that force the network to focus on relevant

regions of the input data in[191]. The model was further improved in [192] by adding the

Atrous Spatial Pyramid Pooling (ASPP) module in the bottleneck to control the feature

resolution. The ASPP module robustly segments images at multiple scales by enlarging

the receptive field to incorporate a greater context while saving on the number of the

network parameters compared to the regular convolution [190]. Recently, deep learning

has been applied to radargrams obtaining good performance for i) detecting the ice layers

[193, 194], ii) simulating RS images with Generative Adversarial Network (GAN) [195],

and iii) segmentation [196]. The study in [196] applied a ResNet with an ASPP module to

segment radargrams in ice layers, thermal noise and Echo-Free Zone (EFZ), and bedrock

with an overall accuracy slightly lower than other literature methods based on the SVM

[45, 41]. The study did not consider the basal layer and the targets related to basal

boundary conditions.

This work proposes a novel automatic method based on deep learning to segment

icy inland radargrams and locate meaningful geological targets for better understanding

the ice-sheet and the basal boundary conditions processes. Radargrams are segmented
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into classes, including englacial layers, bedrock, echo-free zone (EFZ) and thermal noise

already considered in the literature, as well as new classes of basal ice and signal pertur-

bation. The classes are characterized by a specific spatial distribution in the range and

azimuth directions. Moreover, the dimension and scale of the targets significantly vary be-

tween them. Inland radargrams are processed with an Attention U-Net with the Atrous

Spatial Pyramid Pooling (ASPP) module that automatically extracts relevant features

for the semantic segmentation problem. The encoder blocks are connected to the decoder

block at the same level with skip connections. Attention gates filter skip connection sig-

nals to remove the irrelevant information. At the bottleneck of the network, the ASPP

module extracts features at multiscale levels to improve the identification of targets hav-

ing different sizes. An argmax operation analyzes the output features to predict labels.

The segmentation map is refined using morphological filters. The method effectiveness

was tested on two datasets of radargrams by the MCoRDS3 radar sounder in the inland

of Greenland and Antarctica with basal units in the basal layers.

The work is structured in five Sections. Section 5.2 defines the segmentation problem.

Section 5.3 proposes the deep learning method to segment radargrams and describes the

related architecture. Section 5.4 illustrates the datasets, the network setup, the evaluation

criteria, and the experimented results to prove the effectiveness of the proposed method.

Finally, Section 5.5 provides concluding remarks and insights for future works.

5.2 Formulation of the problem

Let us consider radargrams acquired in the inland of icy areas, including information

on the basal boundary conditions, specifically on the ice refreezing and melting processes.

We aim at locating meaningful geological targets for the analysis of the ice-sheet and

basal boundary conditions, such as the basal unit. Let R be the a 2D radargram of NT

traces and NS samples:

R = {P (a, r)|a ∈ [1, ..., NT ], r ∈ [1, ..., NS]} (5.1)

where P is the power of the reflections stored in the radargrams, and (a, r) the azimuth

and the range coordinates, respectively. We aim at segmenting inland icy radargrams

into NC classes representing meaningful geological targets related to the basal boundary

conditions. The classes are defined as {ωc, c ∈ [1, . . . , NC = 4]}, moving down from

the surface along the range (see Fig. 5.1), where ω1 is englacial layers, ω2 basal ice, ω3

bedrock, and ω4 thermal noise and echo-free zone and signal perturbations. The EFZ and

the thermal noise represent the regions that reflect waves having a lower power than the

antenna sensitivity.

Basal ice occurs at the base of the ice sheet in the presence of melt-water at the basal

interface, i.e., the ice-bedrock interface [182, 197] (see Fig 5.1). Close to the core of the
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Figure 5.1: Part of a radargram from MCoRDS [29] campaign 20170413 in Greenland imaging an ice-

sheet with three basal units. The labels indicate the geological targets in the basal layer and the classes

for the proposed method.

basal ice, the layers fold toward the surface, generating large structures with steep edges,

called disrupted layers that can extend up to half of the layer pack [178, 38]. The upper

parts of the layers, close to the surface, are usually not affected by the folding, and thus,

remain flat. Increasing the steepness of the disrupted layer, also the intensity of the signal

perturbation (or shadow) increases, and thus masking part of the ice strata, see Fig. 5.1.

It is worth noting that the target dimension largely varies between them. Ice layers cover

a larger area than the other classes. The bedrock is typically thinner than the ice pack,

the thermal noise, EFZ, and also shadows. The basal layer and the signal perturbation

dimensions depend on the deformation of the ice-sheet bottom. Thus classes are modeled

best at different scales.

Basal ice is characterized by a strong reflection, having four main radiometric prop-

erties. Firstly, the signal of the folded layers above the basal units shows fading due to

the redistribution of the energy in the spectrum [197]. Secondly, the basal ice is charac-

terized by diffuse scattering that can be modeled with the specularity in the along-track

direction, i.e., the amplitude of the echo strength for the surrounding. The specularity

inside the basal ice core is higher than in the upper layers and the EFZ/thermal noise

[182, 80]. Thirdly, the basal layer temperature is higher than the rest of the ice sheet, as

it is subjected to the higher pressure by the ice sheet. Studies [182, 80] have analyzed

the absolute reflection power estimated from the radar equation by considering the ice

attenuation coefficient at the radar frequency and the ice temperature. A loss in the

reflection power can be due to deformation of the layers, impurities (e.g., soil or stones),
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Figure 5.2: Flowchart of the proposed deep method for the supervised segmentation of radargrams.

and a higher ice temperature [80]. Finally, the last radiometric characteristic regards the

bedrock. With the basal unit, water is generally present at the interface between the ice

and the bedrock as a thin film or even a lake [38, 37, 182, 80]. Hence, the bedrock under

freeze-on ice should appear as an anisotropic specular reflector, i.e., a smooth and bright

reflection. The EM interacting with one target also affects the representation of the other

targets in the radargrams. This property should be considered in the data analysis.

5.3 Proposed deep learning-based method

This Section presents the proposed method for the segmentation of the inland radar-

grams. Its overall flow is based on a supervised CNN that segments the radargram into

four classes (see Fig. 5.2). Here, we consider a U-Net enriched with the Atrous Spatial

Pyramid Pooling (ASPP) module and Attention Gates (AG) as it previously showed good

performance for semantic segmentation [192, 189, 191]. The network learns the charac-

teristic of the classes and automatically extracts relevant features at different levels for

the radargram segmentation. Extracted features are semantically meaningful given the

generalization capability of the network [198]. The AG helps to focus on the relevant

regions of the radargram by filtering the features in input at the decoder from the skip

connections [191]. The AG suppresses irrelevant low-level features to better focus on the

radargram salient regions in contrast with the background, i.e., to distinguish between

the noise and EFZ (background classes) and the signal classes, including the basal ice,

the ice layers, and the bedrock [199]. The ASPP module extracts multiscale features to

better segment objects and classes at different scales [190], such as the ice layers, basal

ice, and bedrock that are characterized by a different scale in radargrams. The multi-

scale features avoid the loss of information in the network compression that generates

poor-resolution segmentation maps, i.e., fuzzy boundaries. ASPP helps the processing

of inland radargram to detect classes with different dimensions and scales, such as the

thin bedrock and thick layers. The training of the network consists of two stages. In

the first step, unsupervised training minimizes the reconstruction loss between the input

and the output to initialize the network parameters and extract multiple scales features.

In the second step, the network is tuned in a supervised fashion for the segmentation of
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Figure 5.3: Architecture of the attention U-Net embedded with the ASPP module.

radargrams into the classes of interest. Segmentation labels are obtained by the argmax

classification of the features of the last layer of the network. Then the map is refined in

the spatial domain using morphological filters.

5.3.1 Deep network architecture

The proposed network has an autoencoder shape, providing an output of the same

size as the input data. The encoder compresses the input into a lower dimension. The

decoder decompresses it to obtain an output with the same input dimension. Here, we use

a U-Net architecture [189] that showed very good performance in the segmentation task

coupled with efficient use of the GPU memory [199]. U-Net has skip connections linking

the encoder and the decoder (see Fig. 5.3). Input radargrams are split into Np patches

Pt, t ∈ [0, . . . , Np] of size (xp, yp), and each patch is separately processed. In the range

direction, the patches have the same size as the radargram depth, i.e., xp = NS. This

leads to samples that capture the global context and are fully representative of the class

characteristics (see Section 5.2) in terms of the variability, pattern, and vertical spatial

distribution. In the azimuth direction, the patch size yp is proportional to the average

dimension of basal units. After the processing, the output patches are concatenated to

have the same shape as the original radargram. In the following, the structure of the

network is described in detail.

Let us define the input of each layer as H l
i , where l indicates the block number, and

i indicates the type of layer or activation function: c stands for convolutional layer, b

for batch normalization layer, r ReLU activation function, m for max-pooling, and d for

deconvolutional layer.

Encoder. The encoder is made of NL downsampling blocks which consist of two sets

each made of a convolution layer, followed by a batch normalization layer, and a rectified
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linear unit (ReLU). Each convolutional layer l learns high-level semantic features from

the spatial and semantic information in the data [198]. The first block (l = 1) inputs

are the radargram patches Pt, t ∈ [0, . . . , Nt]. Each block l gives in output a set of Ml

features, downsampled by the max-pooling operation.

To extract the features, the convolutional layer applies a kernel of size (kx, ky), such

that the learnable weight set W l has size kx × ky ×M0 ×Ml, where M0 is the channel

size and is fixed to M0 = 1. The output of the convolutional layer H l
c is normalized with

a batch normalization layer according to the batch normalization parameters (µt, σt) to

obtain H l
b. A ReLU activation function introduces nonlinearity to obtain H l

r. Each block

is followed by a max-pooling operation of size (ml
x,m

l
y) to reduce the dimension of the

features, and thus the number of parameters to learn and the computational cost. For each

patch t, the encoder gives in output a set of Ml features H l
m of shape (M l×hl×wl×M0).

Atrous Spatial Pyramid Pooling (ASPP). In the bottleneck of the network, an ASPP

module, based on the Atrous (also called dilated) convolution [200, 190], applies parallel

Atrous convolution to increase the receptive field of the network filters (see Fig. 5.3). This

helps the network to integrate the global view and the focus on the details. Atrous con-

volution is an operation that contracts or expands the receptive field of the convolutional

filters by varying the dilation rate parameter d. Considering signal a[i], the output b[i] of

the dilated convolution (∗d) with the filter/kernel window w[k] of length K is defined as

b[i] = (a ∗d w)[j] =
∑

i+dk=j

a[i]w[k] (5.2)

The dilation rate parameter d corresponds to the input signal sampling stride, and stan-

dard convolution is a particular case with d = 1. A dilated rate d indicates that the

convolutional filter are enlarged by adding d− 1 spaces between the filter coefficients (see

Fig.5.4). The kernel dimension is enlarged from (kx × ky) to (k′x × k′y), where

k′x = kx + (kx − 1)(d− 1)

k′y = ky + (ky − 1)(d− 1)
(5.3)

The output of the ASPP module is HASPP of shape (MASPP × 1×M0), where MASPP

indicates the feature number. The ASPP module applies a set of parallel Atrous con-

volutions with varying dilation rates di, i ∈ [1, . . . , NASPP ] (see Fig.5.4) and a global

average pooling (GAP). Different dilation rates filters extract features at different scales,

concatenated with the GAP to include the global context information. The ASPP mod-

ule consists of NASPP parallel Atrous convolution blocks with different dilatation rates

di, i ∈ [1, . . . , NASPP ] and a GAP (see Fig.5.5). Each Atrous block contains a dilated

convolution layer of rate di, a batch normalization layer, and a ReLU. The outputs of
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Figure 5.4: Representation of the dilated convolution filters with different dilation rate coefficients

[d1, . . . , d4] applied to the orange pixel. Atrous Spatial Pyramid Pooling module applies parallel di-

lated convolutions to the input map to extract multi-scale features. The different reception fields of the

filters are shown in different color.

Figure 5.5: Structure of the ASPP module. The output of the encoder H l
m is processed by parallel

dilated convolutions with different dilation rate coefficients [d1, . . . , d4] and a global average pooling. All

the convolutions are followed by a batch normalization layer and a ReLU. The outputs of the branches are

concatenated and processed by a (1× 1) convolution to obtain the output of the ASPP module HASPP .
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Figure 5.6: Structure of the Attention Gate module to filter the signal from the skip connection Hl. The

gate signal gi highlights the salient spatial regions of the feature set Hl and determines the attention

coefficients αi. The attention coefficients are then element-wise multiplied with the low-level feature set

to obtain the output of the AG module HAG.

the Atrous blocks and the GAP are concatenated together and followed by a (1 × 1)

convolution operation.

Decoder and the Attention Gates (AG). The decoder consists of L upsampling blocks

having embedded the attention mechanism based on [191] to suppress the activation of

irrelevant radargram regions by filtering the features from the skip connections. The

attention gate takes in input the features Hl from the skip connections and the features

gi, i = l − 1 from the next lowest layer (l − 1). The assumption is that low-level features

from the encoder are redundant and poorly represent the data. Features gi from the

decoder better represent the data as they are at a higher level extracted in the decoder.

Hence, features gi can be used to filter the features Hl from the skip connections and

activate the most informative ones [191]. To highlight radargram salient regions, the

AG computes the attention coefficients αt ∈ [0, 1] [191]. For each pixel, the AG module

extracts a scalar attention value considering the feature vectors gi. In multi-class semantic

segmentation tasks, the AG extracts multi-dimensional attention coefficients [201].

As Fig.5.6 shows, an AG takes as input the set of lower-level feature H l
r from the

skip connections and the gating vector gi ∈ RMg , where Mg is the number of features

of each pixel i. For each level l, the gating vector is composed of the features extracted

from the next lowest layer (i.e., l − 1). High-level features better represent the input

data than features from the encoder, and thus, they contain the spatial information that

indicates focus regions. After the gating signal is upsampled at the same dimension of

the lower-level feature map, these are summed to obtain the gating coefficients (additive

attention) (see Fig.5.6). The gating coefficients are processed by a ReLU followed by a

sigmoid activation function. The sigmoid output signal is resampled using the trilinear

interpolation, generating a grid signal conditioned to the data spatial information. Each

pixel i of the grid is the attention coefficient αli of the attention gate module l. Finally,
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the output of the l-th attention gate H l
AG is the element-wise multiplication between the

features map H l
r and the attention coefficient, i.e., H l

AG = H l
r α

l
i. For the first AG, the

gating signal consists of the output features of the ASPP module HASPP (see Fig.5.3).

For the other l AGs, the gating signal is the output of the next lowest layer (i.e., l − 1).

The output of the l-th AG H l
AG is concatenated with the upsampled output version of

gi, i = l−1. For the first decoder block, the AG output is concatenated with the upsampled

output of the ASPP HASPP .

Decoder blocks l ∈ [1, . . . , L] consist of a (kx, ky) deconvolutional layer, a batch nor-

malization layer, followed by a ReLU, all applied twice (see Fig.5.3). Each block takes as

input the skip connection signal filtered by the attention gate and the output upsampled

features from the next lowest block. Each block l gives in output a set of M l features

H l
d of shape (M l × xp × yp ×M0). In the case of the last block, the output HL

d is fur-

ther processed twice with a (kx, ky) deconvolutional layer, a batch normalization layer,

followed by a ReLU. This generates the output of the network Hout that has a shape

(M out × xp × yp ×M0). The value of M out depends on the task of interest, as described

in the following paragraphs.

5.3.2 Unsupervised pre-training of the network

All the weights W of the network can be learned by training the network according

to the optimization of a loss function. Using randomized parameters is less efficient than

using an unsupervised pre-training phase [202]. Hence, this step aims at initializing the

network parameters and train the network to learn the feature response to radar data.

To this end, we aim at training the network to learn how to reconstruct a given input

radargram. This is a regression task as the network should reconstruct the values of each

pixel of the input radargram at the output. Therefore, the number of features expected

in the network output is fixed to M out = 1. For training, we use a regression loss. Here,

we used the Mean Square Error (MSE), defined in (5.4), but any regression loss from the

literature can be used.

MSE =
1

NSNT

NT∑
a=1

NS∑
r=1

[
Rpred(a, r)−R(a, r)

]2

(5.4)

The MSE estimates the average squared difference between the predicted values Rpred(a, r)

and the actual value R(a, r) of the radargram. This metric gives an estimation of the

goodness of the reconstruction.

5.3.3 Generation of the segmentation map

After initializing the network parameters, we train in a supervised manner the network

to segment the radargram into ω1 englacial layers, ω2 basal ice, ω3 bedrock, and ω4 thermal

121



SECTION 5.4 CHAPTER 5. SUPERVISED DEEP SEGMENTATION

noise, EFZ, and signal perturbations (shadows). The last deconvolutional layer of the

network extracts M out = Nc features, where Nc is equal to the number of classes of the

segmentation task. This work considers four classes as we investigate inland icy radargram

and characterize the basal layer. However, the network is flexible enough to analyze more

classes [198] after the fine-tuning.

Loss Function. For the supervised segmentation, we use the cross-entropy loss function

between the radargram and reference labels. The cross-entropy loss helps the network

during the training phase to have a features response so that the network assigns the

labels in a semantic meaningful way. For each pixel (a, r), the cross entropy loss function

is applied to predicted label ωa,rc and the reference label ωa,rrl for each pixel (a, r) as follows:

`t(a, r) = −
Nc∑
c=1

ωa,rrl log(ωa,rc ) (5.5)

where Nc is number of classes of the segmentation task. The loss term Lt for all the pixels

of the radargram is computed as follows

Lt =
1

NSNT

NT∑
a=1

NS∑
r=1

`t(a, r). (5.6)

After processing the radargram R, we obtain a matrix of M out deep features Hout(a, r, k),

where k ∈ [1, ...,Mout].

Label Assignment. Analyzing a radargram R with such a network, semantically

similar pixels produce high values in the same deep features. Hence, for each pixel (a, r),

the label ωc is defined by choosing the output feature with the maximum value [203]:

ωa,rc = argmax
k∈[1,...,Mout]

{Hout(a, r, k)} . (5.7)

The segmentation map M is defined as:

M = {m(a, r)|a ∈ [1, ..., NT ], r ∈ [1, ..., NS]}. (5.8)

where the labels are assigned according to (5.7).

Label Refinement. In semantic segmentation, pixels are expected to be spatially

correlated. Even if this property is partially ensured by the network convolutional na-

ture, we refine the segmentation map with a morphological filter [204]. We performed a

morphological opening (erosion followed by dilation) and a closing (a dilation followed by

erosion) of the segmentation map. The structuring element defines the neighborhood used

to process each pixel. Opening removes small groups of isolated pixels labeled differently

than the surrounding, while closing removes small holes. This helps in preserving spatial

consistency.
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Table 5.1: Parameter of the radar sounder instrument MCoRDS3 [29] and the geometrical resolutions of

the radargrams.

Parameters Value

Central frequency fc 195 MHz

Wavelength λ 1.54 m

Bandwidth BW 30 Mhz

Sampling Frequency 45 MHz

Transmitted Power Ptr 1050 W

Aircraft Amplitude h 2-4 km

Range Resolution in Ice 4.3 m

Azimuth Resolution 25 m

Table 5.2: List of the campaigns and the radargram IDs for each dataset, and the number of traces NT

for each campaign.

Campaign Radargram ID NT

Dataset 1 2017 0403 01 6–16 35551

North Greenland 2017 0413 01 36–56 70026

Dataset 2 2014 0403 01 12–13, 21–24 19992

West Antarctica 2018 1104 01 4–5 6668

2018 1020 01 4, 8–10, 15–18, 21–22 30009

5.4 Description of the dataset and experimental results

This Section describes the datasets used to assess the effectiveness of the proposed

method and presents the experimental results. We consider two datasets acquired on the

polar areas of the Earth by the MCoRDS3 radar sounder [29] mounted on an aircraft.

The first dataset consists of radargrams acquired in the North of Greenland. The second

dataset consists of radargrams acquired in Antarctica. Figure 5.7 shows the ground track

of the radargrams selected for each dataset. The results are compared with state-of-the-

art methods for the segmentation of inland icy radargrams, i.e., [45, 41, 196]. As reference

data, samples representing the four classes were manually picked from the radargrams.

These regions are selected in a way that there is no ambiguity regarding the target class.

To this end, we perform the selection based on examples of radargrams visually inspected

and available in the literature [37, 38].

123



SECTION 5.4 CHAPTER 5. SUPERVISED DEEP SEGMENTATION

(a) (b)

Figure 5.7: Ground tracks of the campaigns used for (a) dataset 1 and (b) dataset 2. Dataset 1 consists

of radargrams from campaign 20170403 01 (in blue in (a)) and campaign 20170413 01 (in green in (a))

in North Greenland. Dataset 2 consists of radargrams from campaign 20141114 02 (in green in (b)),

campaign 20181020 01 (in blue in (b)), and campaign 20181104 01 (in black in (b)) in West Antarctica.

The transect of the radargrams used in our experiments of each dataset is highlighted in red.

Table 5.3: Parameters of the proposed method and the neural network.

Parameter Description Value

(xp, yp) Patch size in the range and the azimuth (32, 1280)

M0 Number of channels of the input data 1

K Number of patches before the data augmentation

NL Number of downsampling and upsampling blocks 4

Ml, l = [1, . . . , 4]
Features extracted by the l-th block

[64, 128, 256, 512]
of the encoder and the decoder

(kx, ky) Convolutional kernel size in the range and azimuth (3, 3)

(ml
x,m

l
y) Maxpooling and upsampling size in range and azimuth (2, 2)

di, i = [1, . . . , 4] Dilate rate parameters of the ASPP [1, 6, 12, 18]

`r Learning rate 0.0001

E Number of epochs for the training 200
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5.4.1 Pre-processing of the datasets

The radar sounder data [29] are distributed by the Center for Remote Sensing of Ice

Sheets (CReSIS) for NASA Operation IceBridge. The radar data are already range com-

pressed, azimuth focused via synthetic aperture radar (SAR) techniques, and the clutter

is partially compensated. To prepare the radar data, we concatenated adjacent acquired

radargrams with attention to remove overlapping regions. Moreover, we corrected the

data for the fluctuations due to the movements of the platform. While acquiring the

data, an aircraft has three undesired movements, i.e., pitch, roll, and yaw, which influ-

ence and degrade the quality of the radargram signal. To mitigate the signal degradation,

we normalized the power of the radargram concerning the surface power for each column.

This helps in mitigating the fading of the power due to the rolling movement of the air-

craft on the curves. Considering the preprocessing, the vector of the range coordinate of

the surface s(a) was identified as the maximum power for each azimuth column a. Hence,

the power of the surface Ps(a) of each azimuth trace was defined as Ps(a) = R(a,s(a)).

The region above the surface is the free space and was removed from the study of the

subsurface by masking it. Radar data are affected by speckle, which can be approximated

as multiplicative noise. Hence, by applying a log-transformation to the power radargram,

the noise can be approximated as additive, reducing the complexity of handling the data

and enhancing the spatial information:

RdB(a, r) = 10 log10(R(a, r)). (5.9)

5.4.2 Setup of the neural network

Adjacent radargrams are concatenated and pre-processed with the steps described

above. Each radargram is divided into patches normalized by removing the mean of the

dataset and dividing by the standard deviation. Such a dataset J is divided into training

Jtr and test Jte patches so that 90% of the patches are used for the training and the

remaining 10% for the test phase. Table 5.3 shows the parameters of the network. We used

4 downsampling blocks in the encoder and four upsampling blocks in the decoder. The

convolutional kernels are of size (kx = 3, ky = 3) and the upsampling and downsampling

are with ml
x = 2,ml

y = 2. The ASPP consists of four dilated convolutions with the

dilated rate parameters equal to [d1 = 1, d2 = 6, d3 = 12, d4 = 18]. We set the number

of epochs equal to E = 200 and the batch size equal to 16. For the optimization, we

used Adam optimizer as it showed to have good results in the literature [205]. The

learning rate is set to `r = 0.0001 after running several experiments varying its values in

`r = [0.1, . . . , 10−6]. We train the network using standard data augmentation techniques,

i.e., affine transformations, horizontal flips, and random crops. The affine transformations,

including rotation, shear, scale, and translation, are designed to preserve the geometrical
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and structural properties of the subsurface geological structures. For example, rotation

and shear are constrained so that the steepness of the transformed englacial layer and the

basal interface are realistic.

5.4.3 Evaluation criteria

To evaluate the performance of the proposed method, we considered two sets of met-

rics: one for the unsupervised reconstruction of the radargrams and the other for the

supervised segmentation task. For the unsupervised reconstruction task, we consider the

mean square error between the input and the output radargrams, as defined in (5.4). For

the semantic segmentation task, we consider how well the pixels of each class are detected.

In the inference phase, Ntot pixels are analyzed with the proposed semantic segmentation

method. For each pixel, the technique predicts a label that can be compared with the ref-

erence data. TP c is defined as the number of true-positive pixels, i.e., the pixels correctly

classified for the c-th class, and TN c the true negative, i.e., the pixels correctly classified

for the other NC − 1 classes. FN c is defined as the false negative, i.e., the number of

pixels belonging to the class c but wrongly labeled and FP c as the false positive, i.e., the

number of pixels not belonging to the class c labeled with ωc. The sensitivity indicates

the probability that the pixels is classified as the c-th class given that it actually belongs

to that class:

Sensitivity =
TP c

TP c + FN c
, c ∈ [1, . . . , NC ]. (5.10)

The specificity indicates the probability that a pixels is not labeled as ωc, given that it

does not belong to that class:

Specificity =
TN c

TN c + FP c
, c ∈ [1, . . . , NC ]. (5.11)

Finally, the overall accuracy (OA) is defined as the number of correctly classified pixels

TP over the number of processed pixels, i.e., OA = TP/Ntot.

5.4.4 Dataset 1: North Greenland

Dataset 1 consists of 30 radargrams acquired by airborne campaigns with MCoRDS

[29] radar sounder (for the radar parameters see Table 5.1) in the north of Greenland in

2017. We consider two campaigns imaging a region with the basal ice layer and basal units

[178]. Figure 5.7.a shows the ground track of the campaigns 20170403 01 and 20170413 01

in blue and green, respectively. The radargrams selected for dataset 1 are highlighted in

red, and their IDs are listed in Table 5.2. We choose radargrams 6 to 16 from campaign

20170403 01 and radargrams 36 to 56 from campaign 20170413 01. Table 5.1 shows

the parameters of the radar MCoRDS3 [29] and also the radargram characteristics, e.g.,

resolution in the range and azimuth directions.
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(a)

(b)

Figure 5.8: Example of the method applied to part of dataset 1 (radargrams 43 to 49) of the campaign

20170413 01: (a) input radargram, (b) segmented radargram. Englacial layers are in yellow, the basal

ice is in light blue, the bedrock is in red, and the shadow, EFZ, and thermal noise in dark blue.

(a) (b) (c)

Figure 5.9: Part of radargram 45 of the campaign 20170413 01: (a) input radargram, (b) segmented

radargram with [41] considering the shadow class, and (c) segmented radargram with the proposed

method. Englacial layers are in yellow, the basal ice is in light blue, the bedrock is in red, and the

shadow, EFZ, and thermal noise in dark blue.

The radargrams are preprocessed to generate two radargrams with traces N1
T = 35551

and N2
T = 70026, respectively. The radargrams are divided into patches of size xp = 32

and yp = 1280 in the range and azimuth direction, respectively. yp is set so that the neural

network has a complete view of the vertical distribution of the classes. Dataset 1 consists of

K = 3299 patches before data augmentation. The patches are divided so that Ktr = 2969

patches for the training and Ktest = 330 for the inference. The unsupervised training

to extract relevant features is conducted with 200 epochs. At the end of unsupervised

training, the reconstruction error is equal to MSE = 0.0134. The supervised training

takes 200 epochs. The labels are assigned according to (5.7) and refined by applying a

morphological disk-shaped filer of radius 3, see Section 5.3.3.

Considering the large size of the dataset, we show radargrams 43 to 46 of campaign
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Table 5.4: Segmentation performance of the proposed method and state-of-the-art methods applied to

the dataset 1, where ω1 is englacial layers, ω2 basal ice, ω3 bedrock, ω4 thermal noise and echo-free zone

and signal perturbations, and ωR4 that is the reduced version of ω4 as it consider the thermal noise and

the EFZ as in [45, 41].

Metric Overall ω1 ω2 ω3 ω4 ωR4

Proposed Method

Accuracy 0.9824 0.9865 0.9804 0.9796 0.9832 0.9871

Sensitivity 0.9857 0.9934 0.9807 0.9801 0.9887 0.9856

Specificity 0.9852 0.9950 0.9763 0.9793 0.9902 0.9899

SoA Method
Accuracy [45] 0.9821 0.9868 – 0.9751 – 0.9845

Accuracy [41] 0.9817 0.9898 0.9723 0.9832 – 0.9815

Extended SoA Accuracy [41] 0.9524 0.9942 0.9821 0.9986 0.8347 0.9872

20170413 01 of dataset 1 in Fig. 5.8.a and the related segmentation map in Fig. 5.8.b.

Figure 5.9 shows a detail of dataset 1 (part of radargram 20170413 01-45) that contains

two basal units. From qualitative analysis, basal ice and shadow classes are finer seg-

mented with the proposed method than with that in [41], which is based on handcrafted

features processed by the SVM classifier. This result is expected as the handcrafted fea-

tures are not designed for detecting shadows. Table 5.4 shows the performance of the

proposed method for dataset 1. The accuracy for the basal ice is 98.04 %, while that for

the signal perturbation is 98.32 %. The accuracy of the other classes (i.e., bedrock and

ice layers) are comparable or slightly lower than those of the state-of-the-art methods in

[45, 41] (see Table 5.4). The proposed method achieves an average sensitivity of 0.9857

and an average specificity of 0.9852. The sensitivity of the basal ice is equal to 0.9807, and

the sensitivity of the EFZ, thermal noise, and shadow is equal to 0.9887. The specificity

of the basal ice is equal to 0.9763, and the specificity of the EFZ, thermal noise, and

shadow is equal to 0.9902. The last row of Table 5.4 reports the results of the analysis of

dataset 1 with the method in [41] based on handcrafted features and the SVM classifier

for segmenting basal ice and shadows. The accuracy is high for the classes for which the

features are designed, i.e., basal ice, ice layer, bedrock. However, as expected, it is low

for the class not considered in the design, i.e., shadow (see the accuracy for ω4).

5.4.5 Dataset 2: West Antarctica

Dataset 2 consists of 18 radargrams acquired in several campaigns by the MCoRDS

radar sounder in the west of Antarctica in 2014 and 2017. We consider three campaigns

imaging a region where the basal ice layer is visible [184, 37]. Figure 5.7.b shows the ground

track of the campaigns 20141114 02, 20181020 01, and 20181101 01 in green, blue, and
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(a)

(b)

Figure 5.10: Example of the method applied to part of dataset 2 (radargram 23) of the campaign

20141114 02: (a) input radargram, (b) segmented radargram. Englacial layers are in yellow, the basal

ice is in light blue, the bedrock is in red, and the shadow, EFZ, and thermal noise in dark blue.

black, respectively. The tracks of selected radargrams are in red, and their IDs are listed

in Table 5.2. We choose radargrams 12, 13, and 21 to 24 from campaign 20141114 02,

radargrams 4 and 5 from campaign 20181104 01, and radargrams 4, 8 to 10, 15 to 18,

and 21 to 22 from campaign 20181020 01. Table 5.1 shows the parameters of the radar

MCoRDS3 [29] and the radargram characteristics.

The radargrams are preprocessed to generate three radargrams with traces N1
T =

19992, N2
T = 30009, and N3

T = 6668, respectively. The radargrams are divided into

patches of size xp = 32 and yp = 1280 to have a dataset of K = 1770 patches. The patches

are divided into Ktr = 1593 patches for the training and Ktest = 177 for the inference.

The unsupervised training to extract relevant features is conducted with 200 epochs. At

the end of unsupervised training after 200 epochs, the reconstruction error is equal to

MSE = 0.00125. The supervised training is performed with 200 epochs. The labels

are assigned according to (5.7) and then refined by applying disk-shaped morphological

filtering of radius 3.

Considering the large size of the dataset, we show radargram 23 of campaign 20141114 02

in Fig. 5.10.a and the related segmentation map in Fig. 5.10.b. Table 5.5 report the per-

formance of the proposed method for dataset 2. The accuracy for the basal ice is 0.9832,

while that for the signal perturbation is 0.9877. The accuracy of the other classes (i.e.,

bedrock and ice layers) are comparable with the state of the art in [45, 41] (see Table 5.5).

The proposed method achieves an average sensitivity of 0.9795 and an average specificity

equal to 0.9796. The sensitivity of the basal ice is equal to 0.9797, and the sensitivity of

the EFZ, thermal noise, and shadow is equal to 0.9845. The specificity of the basal ice

is equal to 0.9754, and the specificity of the EFZ, thermal noise, and shadow is equal to
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Table 5.5: Segmentation performance of the proposed method and state-of-the-art methods applied to

the dataset 2, where ω1 is englacial layers, ω2 basal ice, ω3 bedrock, ω4 thermal noise and echo-free zone

and signal perturbations, and ωR4 that is the reduced version of ω4 as it consider the thermal noise and

the EFZ as in [45, 41].

Metric Overall ω1 ω2 ω3 ω4 ωR4

Proposed Method

Accuracy 0.9848 0.9890 0.9832 0.9791 0.9877 0.9833

Sensitivity 0.9795 0.9762 0.9797 0.9774 0.9845 0.9802

Specificity 0.9796 0.9814 0.9754 0.9793 0.9821 0.9812

SoA Methods
Accuracy [45] 0.9837 0.9966 – 0.9751 – 0.9793

Accuracy [41] 0.9846 0.9858 0.9891 0.9774 – 0.9859

Extended SoA Accuracy [41] 0.9566 0.9868 0.9771 0.9885 0.8739 0.9846

0.9821. The accuracy of the handcrafted features and the SVM classifier is comparable

with the proposed method for the classes for which the features are designed, including

the layers (ω1) and the EFZ and thermal noise (ωR4 ) (see Table 5.5). As for dataset 1, class

ω3 has a slightly lower accuracy for the proposed method than for the literature method

in [41] as it is the one with the lowest number of samples in the radargram. For the classes

not considered in the feature extraction design step (such as the shadow), the proposed

method is performing better: the accuracy of class ω4 (signal perturbation, thermal noise,

and EFZ) for the proposed method is equal to 98.77 % and that for the SVM method

in [41] is 87.39 %. Considering that the accuracy for the thermal noise and EFZ (class

ωR4 ) is 98.46 % with the SVM method in [41], the handcrafted features show their limit in

modeling target not considered in the design step. On the contrary, the neural network

can automatically extract semantically meaningful features in the learning phase.

5.5 Conclusions and future works

We proposed a fully automatic method for detecting the basal layer and the basal

units in airborne radargrams acquired inland. To this end, the technique aims at seg-

menting the radargrams into four classes: englacial layering, basal ice, bedrock and EFZ,

and thermal noise and shadows (i.e., signal perturbation). We proposed to use a U-Net

with embedded attention gates and the ASPP module to extract relevant features for seg-

menting radargrams. The attention gates filter irrelevant features to focus the network

on critical areas of the radargrams. The ASPP module extracts features with different

receptive fields, improving the identification of targets of several dimensions and scales,

such as the basal ice, the ice layers, and the bedrock. The network weights are initialized

with unsupervised training for better handling the properties of the radar signal. The
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attention U-Net is trained to extract features for labeling. Finally, morphological filters

refined the predicted labels.

The method is tested on two datasets of radargrams acquired in Greenland and Antarc-

tica, where the basal layer and basal units are visible. We applied the method to vertical

strides of the radargram (patches) to capture the global context and the vertical spatial

distribution of the classes. The results prove that the method can assign semantically

accurate labels. The proposed method showed to identify the radargram areas basal ice

and signal perturbations with high accuracy. The other classes, i.e., the englacial layers,

the bedrock, and the EFZ and the thermal noise, are segmented with high accuracy that is

comparable to the literature methods but without requiring the feature extraction design

procedure. As the technique does not use handcrafted features, it is adaptable to analyze

data acquired in different scenarios, such as coastal areas characterized by floating ice,

marine and meteoric ice, and the grounding areas.

In future works, we plan to test the proposed method on other icy areas to detect dif-

ferent targets, such as ice shelves and crevasses in coastal regions, which have completely

different geometric and radiometric properties than those in the inland regions. Moreover,

we plan to investigate other approaches for semi-supervised training to improve the net-

work performance while reducing the number of labeled samples required for supervised

fine-tuning.
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Chapter 6

An unsupervised deep learning

method for subsurface target

detection in radar sounder data

Radar sounder data are widely used for investigating geological structures and processes

in the subsurface. Automatic techniques for processing radargrams are mostly based on

handcrafted features analyzed by a supervised classifier requiring labeled data to provide

reliable results. Labeled datasets are hard to extract from radargrams, considering the

difficulties in modeling the subsurface composition. Thereby, unsupervised methods are

needed for extracting information from radargrams. The literature methods for detect-

ing subsurface targets are based on statistical analyses and handcrafted features related

to the target-specific characteristics. However, recent techniques based on deep learning

showed high generalization capability in other applications, as the feature extraction is

automatic. Hence, there is a need for developing novel methods to extract information

from radargrams in an unsupervised manner employing deep learning. Here, we propose

an automatic and unsupervised technique based on deep learning for extracting informa-

tion on the subsurface geological targets. The proposed method aims at segmenting the

radargram to detect targets of interest. The technique is built upon three steps: i) gener-

ating a coarse segmentation map based on the radargram statistical properties, ii) refining

the coarse map with deep learning to detect target reflections, and iii) analyzing the deep

features to identify buried targets. We tested the proposed method on MARSIS radar data

acquired near the South Pole of Mars. The experimental results prove the effectiveness of

the proposed unsupervised method in detecting subsurface features.
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6.1 Introduction

In the literature, few automatic methods have been proposed for the automatic extrac-

tion of information from radargrams. They are mostly based on a supervised approach,

considering handcrafted features designed for specific classes and a classifier, such as

Support Vector Machines (SVM), [41, 45, 46]. Despite the promising results on the in-

vestigated classes, these methods are hardly adaptable to analyze other targets. This

is because the features are designed by considering the geometric statistical radiometric

properties of the targets. Thereby, new classes require the design of novel features to allow

for capturing the target characteristics. Moreover, supervised approaches require reliably

labeled datasets, which can hardly be available in radar sounder. Hence, unsupervised al-

gorithms are needed, considering the difficulties in retrieving reliable RS-labeled datasets.

In the literature, few automatic methods analyze radargrams in an unsupervised way for

different applications, such as extracting linear reflections [42, 40] and subsurface target

reflections based on the analysis of the statistical properties of the radargrams [44, 206],

and detecting specific targets as lava tubes [158]. However, more automatic methods are

needed for further exploiting radar sounders. Recently, deep learning has shown to have

high performance in several applications. Also, for radar sounder data, few methods based

on deep learning have been proposed considering a supervised approach for segmenting

inland radargrams [196], detecting internal layers [207], and resolving the bed topography

of Antarctica [208]. Despite their intrinsic effectiveness, deep learning-based approaches

require a large amount of labeled data for the network training, which is hard to find

for the RS data. Therefore, novel and unsupervised methods are required for analyzing

radargrams and extracting information on the subsurface.

This Chapter proposes a novel and unsupervised method based on deep learning for

extracting information from RS data. The technique is fully unsupervised and does not

require any initial labeled data. The proposed approach aims at detecting subsurface

reflections in radargrams by analyzing the related deep features to identify buried targets.

The proposed method consists of three main steps: i) generation of a coarse segmentation

map based on the statistical properties of the targets, ii) refinement of the coarse map

with deep learning to detect target reflections, and iii) analysis of the deep features of the

target reflections to identify buried targets. We tested the proposed method on a dataset

of MARSIS radargrams acquired near the South Pole of Mars to identify anomalies in the

basal return that astrophysicists identified as subglacial lakes [26].

The Chapter is structured as follows: Section 6.2 proposes the deep learning method to

segment radargrams and describes the neural network. Section 6.3 describes the datasets,

the network setup, and the experiment to prove the proposed method’s effectiveness.

Finally, Section 6.4 provides concluding remarks and insights for future works.
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Figure 6.1: Block scheme of the proposed deep approach for the unsupervised segmentation of radargrams

6.2 Proposed deep learning method

Let us consider a radargram as a 2D matrix of NT traces and NS samples defined as

R = {R(a, r)|a ∈ [1, ..., NT ], r ∈ [1, ..., NS]}, where R is the power of the reflections in the

radargrams, and (a, r) the azimuth and the range coordinates, respectively. Each radar

acquisition corresponds to a trace of the radargram. Thus, adjacent pixels capture the

same geologic targets in a given area of the subsurface. This Chapter proposes a novel

unsupervised method for detecting subsurface targets in radargrams. The technique is

fully unsupervised and does not require any initial labeled data.

We model radargrams with two main semantic classes: the background and the target.

The background includes the no-signal areas and the thermal noise above the surface

and below the basal return. The targets include the reflections from different dielectric

interfaces in the subsurface, such as ice layers and basal return. Thus, the target class

can be further divided into other subclasses. This hierarchical division is exploited by

the proposed method to segments the radargram. At first, we discriminate between

the background and target to extract reflections in the radargrams. Then, analyzing

the deep features, the target (i.e., radargram reflections) is segmented into subclasses

ωc, c ∈ [1, . . . , NC ]. The method consists of three main steps (see the flow chart in Fig.

6.1):

1. Generation of a coarse segmentation map M(a, r) by exploiting the statistical prop-

erties of RS data;

2. Refinement of the coarse segmentation map M(a, r) to detect target reflections with

deep learning;

3. Hierarchical updating of M(a, r) by analyzing deep features of the target reflections.

The rest of the Section describes in detail the steps of the proposed method.
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Figure 6.2: Block scheme for the initial candidate label assignment.

6.2.1 Candidate label assignment

Considering the radargram statistical properties, the first step generates a candidate

label for all the pixels that will be refined using a deep network. Fig. 6.2 shows the block

diagram for this step of the proposed method. Here, we plan to use a convolutional neural

network (CNN) architecture, as this model showed good performance in several applica-

tions [189, 209]. As CNNs require patches in the input, we divide the input radargrams

into patches of dimensions (wp, hp) to compose the dataset D. The patch dimensions

(wp, hp) are defined so that the patch is large enough to be representative of the data and

small enough not to include multiple classes. D is further divided into two subsets: DB
and DT so that D = DB∨DT . DB contains the patches only imaging the background, and

thus, the candidate label of the pixels in these patches is that of the background ωB. DT
contains patches mostly capturing targets, and thus, the candidate label of the pixels in

these patches is that of the target ωT . Note that patches in DB contain only background

pixels, while patches in DT image background and target pixels generated by different

geological interfaces. The background patches are statistically more homogeneous than

the target patches as they capture just one class. The target patches are less homogeneous

as they image the background and reflections from different targets.

To separate target and background patches, we exploited the statistical properties of

the two classes. Considering the method in [44], we fitted several distributions to the

amplitude radargram of the targets to find the best fitting pdf. Considering [44, 45], here

we fitted the Rayleigh probability density function (pdf) pR(A), the Nakagami pdf pN(A),

Gamma pdf pΓ(A), K pdf pK(A), and the Weibull pdf pW (A). For a detailed analysis

of the fitting procedure, we refer to Appendix 6.5. The evaluation of the distribution

is done considering the Means Square Error (MSE) and the Kullback-Leibler divergence

(KL) between the normalized histogram of the data and that obtained by fitting the

136



CHAPTER 6. UNSUPERVISED DEEP SEGMENTATION SECTION 6.2

distribution. The KL divergence between two distributions p1 and p2 is defined as [210]

KL(p1, p2) =
∑
Ai

p1(Ai)
p1(Ai)

p2(Ai)
. (6.1)

The best-fitting distribution pbest is the one minimizing the MSE and the KL divergence

in (6.1). The parameter defining pbest depends on the best fitting distribution. Thus, if

the best distribution is the K pdf, pbest = pK and the parameters are θbest = (µz, βK). If

the best distribution is the Gamma pdf, pbest = pΓ and the best parameters are θbest =

(αΓ, βΓ), and so on for the other distributions. The patches in D are fitted with the pbest
distribution to estimate the parameter θ̃best. Hence, a vector Θ̃ is generated that contains

for each patch Pp the estimated parameters θ̃p. The parameter θ̃p is representative of

the class imaged by the p-th patch. The histogram of Θ̃ shows a bimodal distribution:

one for the target patches and the other for the background patches. The two modes

can be separated with a threshold Tθ. Here, we used Otsu’s method [211] as it has good

performance with histograms with a bimodal distribution, but any other reliable approach

in the literature can be used. For each patch Pp, θ̃p is thresholded:

Pp ∈

DB if θ̃p ≤ Tθ

DT if θ̃p > Tθ
(6.2)

Finally, we define the segmentation map M(a, r), where pixels in the patches in DB are

labeled with ωB, and pixels in the patches in DT are labeled with ωT .

6.2.2 Label refinement for target reflection detection

This step updates the labels in M(a, r) to extract reflections generated by dielectric

interfaces in the subsurface, see Fig. 6.3 for the block scheme. To this end, we updated

M(a, r) to generate a binary map for each pixel (a, r) to distinguish background and

target pixels. We train a neural network in an unsupervised manner with the task of

reconstructing patches in DB (background patches). The training aims at minimizing

the reconstruction loss between the input P (r, a) and output Pout(r, a) patches so that

Pout(r, a) should be the most similar to P (r, a). To this end, the network architecture

should be a fully convolutional autoencoder. The network parameters, i.e., weights and

bias, are tuned during the training phase so that the network extracts relevant features

from the radargrams at multiple scales.

Here, we use a W-Net [209] as it showed good performances in many applications.

Each convolutional layer learns semantic features from the spatial and semantic view-

point related to the background and not the target [198]. The W-Net [209] has two fully

convolutional networks (FCNNs) with a modified U-Net architecture [189]. The W-Net
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Figure 6.3: Block scheme for the label refinement step to detect target reflections.

has an autoencoder architecture, where the first FCNN acts as an encoder that extracts

compact features representation map from the input patch P (r, a). The encoder converts

P (r, a) to a pixel-wise segmentation map (i.e., a soft-segmentation map) with the same

size of P (r, a). The decoder consists of the second FCN, which processes the compact

features representation map to reconstruct P (r, a). The W-Net architecture has 46 con-

volutional layers structured in 18 modules: 9 for the contraction at the encoder and 9 for

the reconstruction at the decoder). Each module consists of two 3× 3 convolutional lay-

ers, each followed by a ReLU non-linearity and a batch normalization layer. Each U-Net

consists of a contracting part (encoder) that captures the general spatial context, followed

by an expansive path (decoder) that analyzes the details. Each module in the encoders

is connected to the following module with a max-pooling operation. The modules in the

decoders are linked to a transposed 2D convolution layer. The number of features is dou-

bled at each module in the encoders, and it is halved in the decoders. As in the U-Net

[189], the decoder modules are linked with skip connections to the corresponding module

of the encoder to recover the spatial information lost in the downsampling. The final

layer of both the FCNs is a 1×1 convolution processing the nf -component feature vector.

In the first FNC, the 1 × 1 convolutional layer is followed by a softmax that maps the

features vector into a soft segmentation map of NC classes. In the second FNC, the 1× 1

convolutional layers maps the feature vector in the reconstructed patch Pout(a, r). The

more significant modification with respect to the U-Net in [189] is the use of depthwise

separable convolution layers [212] expect for the modules in the edges on the encoder and

decoder, i.e., modules 1, 9, 10, 18. The depthwise separable convolution examines the

spatial correlation and cross-channel correlation independently to achieve higher perfor-

mance with the same number of parameters. A depthwise convolution performs a spatial

convolution independently over each channel, followed by a pointwise convolution of the

features channels to generate the new feature space.

The training is done in an unsupervised fashion with the joint minimization of two

losses– i) a soft normalized cut loss function for the encoder, and ii) a reconstruction loss
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Figure 6.4: Block scheme for the extraction and the analysis of the deep features.

between the input and the output of the W-Net. The soft normalized cut loss is a modified

version of the cut loss [213] as the cut loss is non-differentiable. The soft normalized loss

is differentiable and allows calculating and updating the gradient during the backprop-

agation. Minimizing the soft normalized cut loss means reducing the total normalized

dissociation between pixels of the same class while increasing the normalized association

within the pixels of the same class. For training the W-Net, any regression loss can be

considered as a reconstruction loss. The training aims at estimating the network param-

eters so that the features extracted by the network are semantically meaningful. Here,

the reconstruction loss Lrec as defined between the input P (a, r) and output Pout(a, r)

patches as follows

Lrec =‖ P (a, r)− Pout(a, r) ‖2
2 (6.3)

The W-Net is trained to reconstruct the noisy patches DB. Hence, testing such a net-

work with D, we expect to have an excellent reconstruction of background patches and

a poor reconstruction of target patches. Similar to [62], we can exploit the normalized

reconstruction error map E(a, r) defined for all the pixels (a, r) to identify pixels repre-

senting the background and the targets. Background pixels have a small reconstruction

error, while target pixels have a larger reconstruction error. We update the pixels labeled

as ωT in M(a, r) so that pixels with small error belong to the background (ωB), and pixels

with large error belong to the target class (ωT ). Reflections can be identified as groups of

pixels similarly labeled that are not separated by background pixels.

6.2.3 Extraction and analysis of deep features

The third step aims at analyzing the pixels labeled as ωc, c ∈ [1, . . . , NC ] in M(a, r),

i.e., discriminate between different geological targets, by constructing a decision tree con-

sidering feature representative of each class. To this end, we analyze the deep features of

the pixels labeled as ωT in M(a, r) to identify subclasses by constructing a decision tree

with an approach similar to [214]. Fig. 6.4 shows the block diagram for this step of the

proposed method.
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Figure 6.5: Block scheme for the analysis of the deep features.

As the network is trained only with background patches and the aim is to analyze

subclasses of the target, we train the network with DT and the task of reconstructing the

related patches. Then, we extract deep features for the patches in DT from NFL convo-

lutional layers. The features can be extracted from any of the convolutional layers in the

network. Ancillary layers (batch normalization, activation, and pooling) are determinis-

tic functions applied to convolutional layer outputs to regularize the network, incorporate

non-linearity, and improve the generalization capability. The characteristics extracted

by the features depend on the layer from which they are extracted. Initial layers of an

autoencoder extract low-level features coding visual concepts, such as edges and curves.

Higher-level features capture more complex characteristics that combine the lower-level

features from the previous levels. Higher-level features lack spatial finesses and general-

ization capabilities. Hence, when analyzing deep features, a balance is needed between

low and high-level features. [214] proposed to concatenate features extracted from convo-

lutional layers at a different level to guarantee a multi-scale abstraction of the data. Fig.

6.5 shows the detailed block scheme for analyzing the deep features. Such a feature map

considers low-level features capturing the spatial features and higher-level features cap-

turing more complex characteristics without the spatial finesse. The number of features

extracted from the deep network is large, which increases the complexity of the problem.

In the W-Net, the maximum feature number per layer is 512 and the minimum 64. Hence,

we extracted semantically meaningful features from NFL convolutional layers of the net-

work for each patch p. The number of features extracted at each convolutional layer can

vary significantly– since we are training a W-Net but, the maximum number is 512 for

each patch. The features extracted from the NFL layers are upsampled to the original

patch size (hp, wp) with bilinear interpolation. The deep features are masked by M(a, r) to

keep only those for the target pixels labeled with ωT , obtaining F(a, r, k), k ∈ [1, ..., NG],

where NG is the total number of extracted features. F(a, r, k) is min-max normalized and

then concatenated together to obtain G = gk(a, r), k ∈ [1, ..., NG].

We discretize the features to reduce the problem complexity and the feature sparsity

while preserving the information. We binarize G so that features with gk greater than 0.5

are set to 1 and those with gk smaller than 0.5 to 0. Each class is expected to correspond to

a specific binary signature. To select the most informative feature k∗ to build the decision

tree, we followed the approach in [214]. Hence, features are analyzed by considering the
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Figure 6.6: Example of MARSIS radargram with the labels of the subsurface targets.

index Rk based on the Hamming distance (number of different pixels). k∗ is defined as

to maximize Rk and is used to divide the pixels into two subclasses to build the decision

tree and update M(a, r). Features similar to k∗, i.e., those having a small Hamming

distance from k∗, are discarded. This approach is iterated to divide target pixels and

update M(a, r).

6.3 Description of the dataset and experimental results

To prove the effectiveness of the proposed method, we analyzed a dataset of radar-

grams acquired by the MARSIS radar sounder near the South Pole of Mars. MARSIS

transmits chirp pulses with 1 MHz bandwidth and centered at 1.8, 3, 4, or 5 MHz, al-

ternating two frequencies. The dataset consists of 37 radargrams with High and Medium

SNR in [26]. Each radargram has NT = 3200 traces and NS = 980 samples and covers

a track of 100 km long. We aim at discriminating the characteristics of the basal return

between non-anomalies or anomalies (see Fig. 6.6), which can be interpreted as a rocky

interface and subglacial lakes, respectively [26]. Hence, the method has to detect reflec-

tions in the radargram (i.e., the ice layers and the basal return) and then discriminate the

basal return pixels between non-anomalies (ω1) and anomalies (ω2). The results in [26]

are considered as a reference to qualitatively and quantitatively evaluate the proposed

method. The radargrams are preprocessed with range compression and geometric cali-

bration to compensate for altitude variations (geometric power fall-off). Since the surface

of the investigated area is flat, and the roughness is low at the MARSIS wavelength, the

scattering is mostly coherent. SAR focusing is not required since it would reduce to a

moving average filtering [26].

For generating the dataset, we consider patches of dimensions wp = 48 and hp = 32

as each patch is small enough to capture one class and large enough to be processed by

the network. The number of patches is 75500. The two datasets are independent as the

patches for the training and test are extracted from different radargrams. The best-fitting
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Table 6.1: Evaluation of the goodness of the statistical distribution estimation for subsurface targets.

Pdf

Noise above Noise below
Ice Layers Bedrock

Bedrock

the surface the bedorck Anomalies

KL MSE KL MSE KL MSE KL MSE KL MSE

Rayleigh 0.0003 0.0109 0.0013 0.0172 0.0273 0.0306 0.0966 0.0171 0.1266 0.0178

Nakagami 0.0002 0.011 0.0008 0.0138 0.0134 0.0234 0.0493 0.0152 0.0583 0.0132

Gamma 0.024 0.1032 0.0178 0.0738 0.005 0.0145 0.0601 0.0142 0.0612 0.0159

K 0.0002 0.0108 0.0013 0.0172 0.0273 0.0306 0.906 0.0365 0.806 0.0165

Weibull 0.002 0.0109 0.0006 0.012 0.0089 0.0194 0.0661 0.0145 0.0688 0.0155

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200
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Figure 6.7: Histogram of Θ̃ in blue and the threshold Tθ in red.

distribution is the Nakagami pdf (see Table 6.1).

For dividing target and background patches, the threshold is Tθ = 0.6. Fig. 6.7 shows

the histogram of Θ̃ and the threshold. The W-Net is trained with a learning rate of 10−4

and 100 epochs. Fig. 6.8 shows two examples of pairs of input and reconstructed patches

of the background (Fig. 6.8.a and b) and target (Fig. 6.8.c and d). Fig.6.9 shows the

input radargram and the binary map M(a, r) at the end of the label refinement step for

the basal return for the orbit 10737 acquired at 4MHz. The performance of the label

refinement step over the dataset of 37 radargrams is good. The overall accuracy is equal

to 88.87%, and the sensitivity to 0.889, and the specificity to 0.8681 (see Table 6.2).

Table 6.2: Performance of the classes of the basal return segmentation over the whole dataset.

Class Accuracy Sensitivity Specificity

Background 88.87% 0.8890 0.8681

Non-Anomalies 80.45% 0.9025 0.8937

Anomalies 85.54% 0.8956 0.8715
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Figure 6.8: Two examples of pairs of input and reconstructed patches: (a) and (b) background, and (c)

and (d) target.

Fig.6.10 shows a zoom over the basal return of (a) the input radargram, (b) the binary

map M(a, r) at the end of the label refinement step, and (c) the segmented map. The

background is in blue, the non-anomaly of the basal return is in green, and the anomalies

are in yellow. Table 6.2 shows the proposed method performance for the segmentation

map for the basal return averaged for the 37 radargrams. The background class accuracy

is 88.87%, that of the non-anomaly is equal to 78.45%, and that of the anomalies is 76.54%.

The performance proves the effectiveness of the method in detecting the reflections and

identifying targets of interest.

6.4 Conclusions and future works

This Chapter has proposed a deep learning-based method for analyzing radargrams in

an unsupervised and automatic way. The proposed method generates a binary map of the

radargram from which it is possible to detect the reflections from subsurface interfaces.

Then it extracts and analyzes a set of deep features extracted by a W-Net to identify

subsurface targets of interest in an unsupervised way. The proposed method was vali-

dated with the tasks of detecting the layers reflections in planetary radargrams and then

detecting the basal return and its characteristics, i.e., rocky interface or anomalies. The

radargrams analyzed were acquired by the MARSIS radar sounder in the South Pole of

Mars. For the experimental analysis, we used an NVIDIATM Tesla T4 GPU with 15 GB

of RAM. Both training phases took about 7.5 hours, and the testing, feature extraction,

and analysis took about one hour. The results show the effectiveness of the proposed

method. As future work, we plan to perform an extensive analysis with data from other

radar sounders and considering other target classes.
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Figure 6.9: (a) Input radargram 10737 acquired at 4MHz, (b) M(a, r) at the end of the label refinement

step (binary map).

6.5 Appendix: Statistical analysis

The Rayleigh pdf of the amplitude A > 0 for a large number of scatters is defined as

pR(x) =
2x

µz
exp

(
−x

2

µz

)
(6.4)

where z indicates the power of the amplitude signal defined as z ∝ A2. µz is the mean of

the power signal, and the mean of the amplitude signal is µA =
√
πµz/2. The Rayleigh

distribution is the theoretical model for a radar signal of the areas of no-subsurface scat-

tering affected in amplitude and in phase by the zero-mean additive white Gaussian noise

(AWGN) [44]. The Nakagami distribution is defined as

pN(A) = 2

(
βN
µz

)βN A2βN−1

Γ(βN)
exp

(
−βNA

2

µz

)
(6.5)

where βN ≥ 0 the shape or order parameter, and Γ(.) indicates the Gamma function. the

Nakagami distribution showed good performance in modelling radar data subjected to

multilooking processing for speckle reduction [45]. The Nakagami pdf for the amplitude

correspond in the intensity domain to a Gamma pdf with parameters βγ = βN and µz.

The Gamma pdf is defined as follow

pG(A) =

(
A

αΓ

)βΓ−1
exp

− A
αΓ

αΓΓ(βΓ)
(6.6)
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Figure 6.10: Zoom of the basal return of (a) radargram 10737 acquired at 4MHz, (b) M(a, r) at the

end of the label refinement step, and (c) segmented map (blue indicate the background, green indicates

non-anomaly and yellow the anomalies).

where αΓ is the scale parameter. The Gamma distribution is used to the model data

which original distribution has been altered by the processing [45]. The K distribution is

defined by

pK(A) =
4

Γ(βK)

(
βK
µz

)βK+1

2

AβKKβK−1

[
2A

√
βK
µz

]
(6.7)

where Kβk−1 is the Bessel function of the second order of βK − 1. βK is the shape

parameter and is defined for βK ≥ 0. The K distribution is suitable to model spatially

non-homogeneous targets [44]. The Weibull distribution is defined for A ≥ 0 as

pW (A) =
βW
αW

(
A

αW

)βW−1

exp−
(
A

αW

)βW
(6.8)

where βK is the shape parameter and αK is the scale parameter, and both are non-

negative. The Weibull distribution has been used in SAR radar data to model clutter sig-

nal [215]. Other distributions can fit the data, such as Rice or exponential pdf. However,

we considered Rayleigh, Nakagami, K, and Weibull as they describe physical phenomena

and are successfully used in the radar sounder literature [44, 45].

The estimation of the parameters for the distribution is done with the Maximum

Likelihood Estimation (MLE) approach. For the Rayleigh distribution, the parameter to

estimate is µ̃z for µz, which is defined as [216]

µ̃z = E{A2} (6.9)
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where E{.} is the expectation operation. For the Nakagami distribution, the parameters

to estimate are µ̃z and β̃N , where µ̃z is given by (6.9), and the shape parameter β̃N by

[217]

β̃N =

0.5000876+0.1648852y−0.0544274y2

y
0 > y ≥ 0.5772

8.98919+9.05995y+0.9775373y2

y(17.79728+11.968477y+y2)
0.5772 > y > 17

(6.10)

where y = ln(µ̃zF
−1), and F = (

∏n
i=1A

2)
1
n where n is the number of samples considered

for the estimation. For the Gamma distribution, the parameters to estimate are the scale

α̃Γ and the shape β̃Γ parameters as solution of [218]α̂Γ = Ā

β̂Γ

log(β̂Γ)− ψ(β̂Γ) = log[ĀF−1]
(6.11)

where ψ(.) is the di-gamma function and Ā = E{A}. For the K distribution, the

µ̃z and the shape β̃K parameters are estimated by maximizing the likelihood function

fML(βK , µz; ∀Ai, i ∈ [1, . . . , n]) [210] so that

(µ̃z, β̃K) = argmax
(µz ,βK)

{ln(fML)}. (6.12)

Finally, for the Weibulll distribution, the α̃W and the shape β̃W parameters are estimated

by maximizing the likelihood function fML(βW , αW ; ∀Ai, i ∈ [1, . . . , n]) [219].
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Chapter 7

Conclusions

This Chapter concludes the thesis by presenting an overall discussion, a recap of the

novel contributions, and the related critical analysis. Moreover, we propose possible future

developments.

7.1 Summary and discussion of the novel contributions

The proposed work enriched the RS data processing chain with two main contributions:

i) the performance assessment of target detection in simulated radargrams for guiding RS

design, and ii) novel automatic data processing algorithms focusing on extracting infor-

mation on different subsurface targets. The first contribution highlights the importance of

assessing the performance of an RS design with simulated radargrams considering realistic

modeling of the subsurface profile and structure. Realistic target modeling can narrow

the error margin in the estimated performance, thus supporting a more effective design of

the instruments. The second contribution highlights the importance of data analysis al-

gorithms to automatically extract information on the subsurface structures and processes

for scientific studies and practical applications. Automatic data analysis is extremely

important for effectively exploiting the large number of available radargrams and those

planned to be acquired (e.g., RIME and REASON). The proposed automatic methods

for analyzing the subsurface are based on fuzzy logic and deep learning, having powerful

generalization capabilities. Fuzzy logic handles the discrepancy between the theoretical

EM model of targets and how they appear in radargrams. Deep networks automatically

extract meaningful features from the data, which avoids handcrafted features. This strat-

egy increases the adaptability of the proposed methods to deal with problems showing a

wider number of classes. Note that data analysis is essential for target detection to assess

simulated radargram performance with given RS parameters. Evaluation of the target

detectability provides feedback on the simulating RS parameters, which can effectively

support the radar design. Remarkably, the proposed approaches for data analysis and
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performance assessment are versatile and can be easily adapted to any RS instrument

developed for past, present, or future missions, targeting subsurface observations of any

planetary body. The approach characteristics can be adjusted to the diverse mission

scientific requirements for detecting the target subsurface interfaces.

In Chapter 3 we presented an approach for a detailed and realistic assessment of the

performance of an EORS in detecting important scientific targets in polar ice subsurface.

The performance assessment methodology evaluates simulated EORS radargrams from

the available ARS with a set of performance metrics. The EORS radargrams are simu-

lated by varying the SNR budget at the surface. Performance analysis is used to reveal

the SNR budget that maximizes the target detectability across different geographical re-

gions of the polar cryosphere. The methodology has been demonstrated by simulating an

EORS with a carrier of 45 MHz and a bandwidth of 10 MHz. The results assess the target

detectability, such as ice layers and basal interface, by varying the SNR budget. Further-

more, ARS automatic algorithms have been successfully applied to the EORS simulated

radargrams, resulting in a high accuracy comparable to that of ARS data. The results

highlight that existing methods to analyze ARS data can be successfully adapted for ex-

tracting information from satellite RS data and thus future EORS data. It is noteworthy

that simulated radargrams enable the test the adaptability of automatic target detection

algorithms developed for the ARS data to the EORS case. This has been demonstrated

using a subglacial lakes detection algorithm. In preparation for the scientific interpretation

of the acquired EORS in its advanced phases of development, the proposed simulation

approach can adapt the existing algorithms for applications to the EORS radargrams.

Note that simulated radargrams do not consider the ionospheric effects and the off-nadir

clutter response. However, losses due to propagation through the ionosphere, roughness

of the surface, and volume scattering have been included in the SNR margin. Clutter and

volume scattering can be a critical performance-limiting factor in extreme polar regions

such as high ice-flow regimes, ice-tongues, unstable ice-shelves, high surface roughness,

and the presence of wet firn in the shallow surface. Regarding the ionosphere performance,

the loss of signal strength and coherence (due to phase errors) may reduce the estimated

detection performance for extreme TEC values.

Chapter 4 presents an unsupervised method for detecting candidate lava tubes in radar

sounder data. We model the surface and lava tube boundaries as linear reflections with

specific properties. The candidate linear reflections are extracted from radargrams and

analyzed with a fuzzy system to identify the surface and candidate lava tube reflections.

The fuzzy system provides an overall membership value for each detected candidate tube,

indicating the reliability degree. The experimental results on the simulated dataset show

that the proposed method can detect lava tubes with different geometries (tube width and
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height and roof thickness) and crossing angles between the tube axis and the spacecraft

moving direction. The method is robust against clutter due to the surface topography.

For the LRS dataset, the proposed method recognized several candidate lava tubes in

the MH region documented in the literature. Planetologists should analyze identified

candidate tubes for a reliable final decision. In Highlands radargrams, characterized by

large surface clutter, the proposed method shows a low false alarm rate. This is mainly

because the phase inversion rule membership assumes small values for clutter reflections

(showing no phase inversion), bringing to a small overall membership. Hence, the phase

inversion rule showed to increase in the robustness of the proposed method against the

clutter. The proposed method has some limitations related to clutter and range resolution.

Clutter reflections with high power may mask subsurface reflections, e.g., the tube ceiling

and floor, hiding the tube. The method robustness against clutter is guaranteed by the

phase inversion rule and is tested with an ad-hoc experiment. Another limitation is

the range resolution of the sensor. If the tube depth (roof thickness) is lower than the

range resolution, the ceiling reflection is incorporated in the surface reflection, resulting

in undetectable tubes.

Chapter 5 and 6 propose two deep learning-based methods for automatically analyzing

radar sounder data. We proposed a method for detecting the basal layer and the basal

unit in continental radargram (Chapter 5) with a deep learning network. The network

is trained in a supervised manner and tested on previously unseen radargrams. The re-

sults on two datasets of radargrams acquired in Greenland and Antarctica illustrate the

proposed method ability to accurately segmenting inland radargrams and detecting basal

units. The results prove that the method can assign semantically significant labels. The

proposed method showed to identify the radargram areas imaging basal ice and signal per-

turbations with high accuracy. The other classes, i.e., the englacial layers, the bedrock,

and the EFZ and the thermal noise, are segmented with high performance, comparable

to the literature methods but without needing the feature design procedure. The results

highlight the importance of using vertical radargram strides (patches) for the network

input as it captures the global context and the vertical spatial distribution of the classes.

Furthermore, the meaningful features extracted by the network are improved by the ASPP

module features extracted at multiple scales and the AGs. As the network can automat-

ically extract semantically meaningful features, it is not required to design handcrafted

features to model the desired classes. Hence, the proposed method is adaptable to process

data acquired in multiple scenarios, such as coastal areas characterized by floating ice,

marine and meteoric ice, and the grounded ice. These targets have different geometric

and dielectric properties from those of the classes analyzed here, but the proposed method

can be easily adapted for performing the segmentation. Note that supervised training of
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a deep learning network requires several labeled data samples. Here, it means that an

expert, i.e., radio-glaciologists, should generate a reference segmentation map for each

patch in the dataset. This is a subjective and expensive task in terms of time. However,

in the literature, there are techniques to diminish the amount of labeled data required for

the supervised training, including data augmentation and unsupervised pre-training as in

Chapter 5. Data augmentation applies realistic transformations to the input patches and

the related reference map to generate realistic patches. The unsupervised pre-training

initializes the network parameters and reduces the number of labeled patches required

for the training. Chapter 6 proposed a novel method for the unsupervised and automatic

segmentation of radargrams with deep learning. The technique is unsupervised and does

not require any labeled data. The proposed method has two main outputs: the signal vs

background binary map and the segmentation map. From the binary map, it is possible

to extract the reflections of the subsurface interfaces. The results on a dataset of MAR-

SIS radargrams acquired in the Mars SPLD show that in low SNR radargrams (such as

those from an ORS) of icy areas, the proposed method can effectively identify reflections

representing the ice layers and the basal return. Compared to literature methods, the

proposed method is not affected by the reflection shape and can detect reflections regard-

less of the curvature. The segmentation map is generated by analyzing the set of deep

features extracted by the deep learning network. The proposed method was validated

with the tasks of detecting the reflections in radargrams and then identifying the layers

and the basal return characteristics, i.e., rocky interface or anomalies. The results show

the effectiveness of the proposed method in detecting with high accuracy the ice layers,

the basal return, and the type of interface of the basal return. This highlights the good-

ness of the features extracted by the deep network. Remarkably, the proposed approach

can perform the segmentation in an unsupervised manner with a limited number of input

radargrams. A critical issue of deep learning is the high computational and time cost

required for the network training, affecting both methods proposed in Chapter 5 and 6.

The computational cost depends on the size of the training dataset and the network depth

and complexity (i.e., the number of network parameters). The cost can be reduced using

pre-trained neural networks. It is noteworthy that the network trained for analyzing basal

units in Chapter 5 and that for the unsupervised segmentation of radargrams in Chapter

6 can be further re-trained to process different scenarios.

7.2 Future works

Regarding the approach for performance assessment, we plan to extend the simulation

approach, considering the ionosphere effects and clutter as they may further degrade

simulated radargrams. Clutter performance can be integrated into the proposed analysis,
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by complementing it with the simulation of the cluttergram (using several well-established

approaches [92, 54]) over the selected ARS tracks using available digital elevation models

for evaluating the actual performance in terms of SCR. Ionospheric effects can also be

easily integrated into the proposed simulation approach using the phase information of

the ARS data and applying the estimated phase distortions as a function of the Earth

ionospheric parameters. Moreover, the simulation approach can be modified by combining

the realistic target modeling from analog radargrams and the accurate representation of

the signal response from electromagnetic simulators. The proposed techniques can be

applied to the development of future RS missions (e.g., Envision SRS), to the proposal

of new RS instruments (e.g., EORS), and to the design of novel RS systems (e.g., the

distributed RS [48]). The simulated radargrams generated by the proposed method can

also be used to test the adaptability of automatic target detection algorithms developed

for the ARS data to the EORS case. The scientific goal of an orbiting RS is not restricted

to the detection of bedrock, subglacial lakes, and ice shelves. As a future extension of

the work, we plan to analyze the feasibility of interpreting the basal conditions, such as

frozen or thawed bedrock [105], subglacial water flow channels [81], and the presence of

marine ice and cavities at the base of ice-shelves [123]. In preparation for the scientific

interpretation of the acquired EORS in its advanced phases of development, the proposed

simulation approach can be used to adapt the existing algorithms for applications to the

EORS radargrams.

Automatic data processing is critical to analyze a large number of radargrams available

and planned to be acquired. For the fuzzy approach in Chapter 4, we plan to expand

the system to model and recognize other targets, including craters. This can be done by

modeling the EM and geometric behavior of different targets and then exploit this model

to define a set of novel fuzzy logic for detecting the target. For the proposed method in

Chapters 5 and 6, we plan to investigate another way for the unsupervised training of

the network. Recently, several losses have been proposed for the unsupervised training

of deep networks, such as momentum contrast [220]. Momentum contrast showed good

performance in a large variety of applications, including semantic segmentation. However,

more methods are needed for extending the processing chain and extract information on

other scenarios. For instance, no approaches exist to automatically analyze coastal areas,

despite the high importance of monitoring the evolution of floating ice and ice calving.

Detection of the floating ice, marine, meteoric ice may be done with the segmentation

of radargrams acquired in the coastal areas. To this end, coastal radargrams can be

segmented using the method proposed in Chapter 5. The neural network for inland seg-

mentation can be further trained with a dataset of labeled coastal patches. The processing

chain can also be extended with algorithms analyzing data from different sensors, such as
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altimeter, optical, and SAR data. In the literature, several works (e.g., [221]) show the

combination of RS data and those from different sensors extracts information and gener-

ates crucial products on the subsurface structure. Another interesting possible extension

of the processing data chain is the multitemporal analysis of radargrams. Although the

multitemporal analysis is hardly possible with available radargrams on the Earth, it may

become reality with the future orbiting RS missions, such as the STRATUS that, if se-

lected, will have a seasonal revisit time. This would enable the multitemporal analysis

of radargrams for extracting information for a better assessment of the impact of climate

change on the Earth.

Regarding the proposed methods, we plan to test their effectiveness on other datasets

and automatizing the parameter selection. Further tests and full automatizing can also

help to adapt the proposed techniques to process data acquired in different scenarios.

This is critical to effectively incorporate the proposed methods in the data processing

chain and make the techniques available to process a large amount of RS data.
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köppen-geiger climate classification,” Hydrology and earth system sciences, vol. 11,

no. 5, pp. 1633–1644, 2007.
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Nb total number of hypotheses of the variable design parameter

SNRb hypotheses values of the variable design parameter – SNR budget

θb(aE) IRH detection performance metric estimated as the probability of IRH

detection for the EORS frame aE corresponding to the simulation index b

θ IRH detection probability threshold

χLb (θ) cumulative fraction of frames with probability of IRH detection greater

than θ for the geolabel L and simulation index b

βb(aE) basal interface detection metric for each frame aE and simulation index b
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Λb(cE) lake detection metric comparing the accuracy of the subglacial lake detec-

tion for the EORS and ARS radargrams

βLb cumulative basal interface detection metric, i.e. fraction of frames for

which the basal interface detection metric is equal to 1 for the geolabel L

and simulation index b

θLmin minimum required per-frame probability of IRH detection for the geolabel

L

χLmin requirement on the cumulative fraction of frames satisfying the per-frame

probability of IRH detection for the geolabel L

βLmin requirement on the basal interface detectability for the geolabel L

SNRmin minimum required SNR budget for a given set of mission requirements and

estimated for each geolabel

SNRdesign best design parameter that maximizes the performance for all geolabels

for a given set of mission requirements

Symbols related to the data analysis

ΩC Set of the labels

NC Number of classes

ωc Label of the c-th class

ωg Label indicating the surface class

ωcLT Label indicating the ceiling class

ωfLT Label indicating the floor class

ωn Label indicating features that are related neither to buried cavities nor to

the surface but probably generated by the surface topography and other

volcanic structures

ω1 Label for the englacial layer class

ω2 Label for the basal ice class

ω3 Label for the bedrock class

ω4 Label for the thermal noise and echo-free zone and signal perturbation

class

ωR4 Label for the thermal noise and the EFZ class

ωB Label for the background class
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ωT Label for the target class

ωa,rc Predicted label for pixel (a, r)

ωa,rgt Reference label for pixel (a, r)

M, M(a, r) Segmentation map

Symbols related to the fuzzy-logic data analysis

dLT Lava tube depth

2r Lava tube diameter

α Crossing angle between the longitudinal axis of the lava tube and the

moving direction of the radar platform

S Index of the surface reflection

C Index of the lava tube ceiling reflection

F Index of the lava tube floor reflection

aC Average amplitude of the lava tube ceiling reflection

aF Average amplitude of the lava tube floor reflection

lC Length of the lava tube ceiling reflection

lF Length amplitude of the lava tube floor reflection

F , Fi Candidate lava tube features

NF Total number of features

i, j Index of the features and reflections

NAV Dimension of the incoherent averaging filter

thline Threshold for the amplitude of the pixels in the best path

L, Lk Lines extracted by the line detection algorithm

k Index of the segments extracted by the line detection algorithm

Lmin Minimum length of the features

Oa Overlap in the azimuth direction

Or Overlap in the range direction

Ri Reflection related to the i-th feature

li Length of the i-th feature

zi Average depth of the i-th feature
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bi Barycenter coordinates of the i-th feature

ai Average amplitude of the i-th feature

φi Average phase of the i-th feature

lka Azimuth coordinate of the k-th line

N i
L Number of segments of the i-th reflection

lkr Range coordinates of the k-th line of the i-th reflection

bia Azimuth coordinate of the barycenter

A(lia, l
i
r) Amplitude radargram at the azimuth and range coordinates of the lines in

the i-th reflection

rip Range coordinate of the signal peak

Whann(r) Function of the Hann window

T Length of the considered Hann window

θi Average phase value of the i-th reflection

θpathi Phase contribution from the length of the EM wave propagation path

ρS Average depth of the ground reflection

ρC Average depth of the ceiling reflection

ρF Average depth of the floor reflection

Fg Reflection of the surface

Fc Reflection of the lava tube ceiling

Ff Reflection of the lava tube floor

µC Crisp membership function of rule 1 (presence of at least 3 features)

rG Attribute of rule 2 (surface length of the candidate feature)

µG Membership value of rule 2

lR Length of the considered radargram

aG, cG Parameters of the sigmoid membership function for rule 2

MG Overall membership function for the surface reflection

ThG Threshold for detecting the

rL Attribute of rule 3 (equivalence of lengths)

aL, cL Parameters of the sigmoid membership function for rule 3
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µL Membership value of the rule 3

rP Attribute of rule 4 (proportionality)

aP , cP Parameters of the sigmoid membership function for rule 4

µP Membership value of rule 4

La Number of pixels with the same azimuth coordinate in the candidate fea-

tures

ral Attribute of rule 5 (alignment of barycenters)

aal, cal Parameters of the sigmoid membership function for rule 5

µal Membership value of the rule 5

m Orientation of the range direction

rA Attribute of rule 6 (amplitude comparison)

aA, cA Parameters of the sigmoid membership function for rule 6

µA Membership value of the rule 6

r1
φ Attribute of rule 7 (phase inversion)

r2
φ Attribute of rule 7 (phase inversion)

aφ, cφ Parameters of the sigmoid membership function for rule 7

µ1
φ Membership value of the rule 7

µ2
φ Membership value of the rule 7

Mcf Overall membership for a candidate lava tube

ttube Threshold for detecting lava tubes

lat Latitude coordinate

long Longitude coordinate

hroof Thickness of the roof

hlt Lava tube height

wlt Lava tube width

N˙FA Number of false alarm

N˙LT Number of detected candidate lava tubes

ξFA False alarm rate

Na
FA Number of rangelines (traces) covered by the candidate lava tubes (false

alarms)
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Na
TOT Total number of traces being processed

Symbols related to the deep-learning data analysis

Np Total number of patches

t Index of the patch

xp Range dimension of a patch

yp Azimuth dimension of a patch

H l
i output of the l-th layer of the neural netowrk

l Index of the neural network layers

i Type of layer or activation function: c stands for convolutional layer, b for

batch normalization layer, r ReLU activation function, m for max-pooling,

and d for deconvolutional layer, and g

NL Downsampling/Upsampling blocks of the neural network

Ml Number of features extracted from the l-th layer

(xk, yk) range and azimuth dimension of the kernel of the convolutional and de-

convolutional layers

W l Number of parameters of the neural network

mathdsW Set of the parameters of the neural network

M0 Number of channel of the input of the neural network (for radar sounder,

M0 = 1)

µt, σt Parameters of the batch normalization layer

xlm, ylm) Dimension of the max pooling operation for the l-th block

hl, wl Range and azimuth dimension of the output at the l-th layer

d Dilation rate parameter

y′k, xk Dimension of the kernel of the dilated convolution filters

NASPP Number of dilated convolution operations

HASPP Feature set in output at the ASPP module

MASPP Number of features of HASPP

gi Output features of the next lowest layer used as input of the Attention

Gates

αli Attention coefficients from the l-th attention AG
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H l
AG Output of the l-th AG

Hout(a, r, k) Features in output at the neural network

M out = 1 Number of features in output

`t(a, r) Loss function for pixel (a, r)

Lt Loss function term for the radargram

M, M(a, r) Segmentation map

s(a) Range coordinates of the surface

Ps(a) Power of the surface for each azimuth column a

`r Learning rate

E Numbers of epochs for the training

J Dataset of all the patches, including those from data augmentation

Jtr Dataset of the patches for the training

Ntrain Number of patches in the training set

Jte Dataset of the patches for the test

Ntest Number of patches in the test set

Ntot Total number of pixels analyzed with the proposed semantic segmentation

method in the inference phase

TP c Number of true positive pixels for the c-th class

TN c Number of true negative pixels for the c-th class

FP c Number of false-positive pixels for the c-th class

FN c Number of false-negative pixels for the c-th class

OA Overall accuracy

D Dataset of patches

DB Dataset of patches imaging only the background

DT Dataset of patches mostly imaging the target

pR(A) Rayleigh probability density function

pN(A) Nakagami probability density function

pΓ(A) Gamma probability density function

pK(A) K probability density function
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pW (A) Weibull probability density function

p1 and p2 Generic distributions

pbest Best-fitting probability density function

θbest Parameters of the best-fitting probability density function

µz, βK Parameters of the K probability density function

αΓ, βΓ Parameters of the Gamma probability density function

θ̃best Estimated parameters of the best-fitting probability density function

Θ̃ Vector of the θ̃best for all the patches

Tθ Otsu’s threshold for separating DB and DT patches

P (r, a) Inpu patch of the neural network

Pout(r, a) Output patch of the neural network

Lrec Reconstruction loss between the input and output of the W-Net

E(a, r) Normalized error radargram

NFL Number of layers from which the features are extracted

NG Total number of features extracted by the network

G Concatenated features

gk Feature extracted from the neural network

k∗ Most informative feature

Rk Index based on the Hamming distance between two discretized features
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