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Abstract

This work proposes a strategy for visual perception in the context of autonomous driving.
Despite the growing research aiming to implement self-driving cars, no artificial system
can claim to have reached the driving performance of a human, yet. Humans—when not
distracted or drunk—are still the best drivers you can currently find. Hence, the theories
about the human mind and its neural organization could reveal precious insights on how
to design a better autonomous driving agent.

This dissertation focuses specifically on the perceptual aspect of driving, and it takes
inspiration from four key theories on how the human brain achieves the cognitive capabil-
ities required by the activity of driving. The first idea lies at the foundation of current
cognitive science, and it argues that thinking nearly always involves some sort of mental
simulation, which takes the form of imagery when dealing with visual perception. The
second theory explains how the perceptual simulation takes place in neural circuits called
convergence-divergence zones, which expand and compress information to extract abstract
concepts from visual experience and code them into compact representations. The third
theory highlights that perception—when specialized for a complex task as driving—is re-
fined by experience in a process called perceptual learning. The fourth theory, namely the
free-energy principle of predictive brains, corroborates the role of visual imagination as a
fundamental mechanism of inference.

In order to implement these theoretical principles, it is necessary to identify the most
appropriate computational tools currently available. Within the consolidated and success-
ful field of deep learning, I select the artificial architectures and strategies that manifest
a sounding resemblance with their cognitive counterparts. Specifically, convolutional au-
toencoders have a strong correspondence with the architecture of convergence-divergence
zones and the process of perceptual abstraction. The free-energy principle of predictive
brains is related to variational Bayesian inference and the use of recurrent neural networks.
In fact, this principle can be translated into a training procedure that learns abstract rep-
resentations predisposed to predicting how the current road scenario will change in the
future.

The main contribution of this dissertation is a method to learn conceptual represen-
tations of the driving scenario from visual information. This approach forces a semantic
internal organization, in the sense that distinct parts of the representation are explicitly
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associated to specific concepts useful in the context of driving. Specifically, the model uses
as few as 16 neurons for each of the two basic concepts here considered: vehicles and lanes.
At the same time, the approach biases the internal representations towards the ability to
predict the dynamics of objects in the scene. This property of temporal coherence allows
the representations to be exploited to predict plausible future scenarios and to perform a
simplified form of mental imagery.

In addition, this work includes a proposal to tackle the problem of opaqueness affecting
deep neural networks. I present a method that aims to mitigate this issue, in the context
of longitudinal control for automated vehicles. A further contribution of this dissertation
experiments with higher-level spaces of prediction, such as occupancy grids, which could
conciliate between the direct application to motor controls and the biological plausibility.
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Chapter 1

Introduction

1.1 Research Problem and Motivation

Modern society has always considered the development of fully autonomous vehicles a
coveted achievement. The primary purpose of this research field is safety for all road users,
as recommended by several governmental transportation institutions worldwide [63]. Road
safety is anything but a minor problem: in 2018, the World Health Organization reported
that road traffic injuries are the leading cause of death for people between 5 and 29 years
old [165]. This suggests that the mitigation of traffic accidents could be one of the most
beneficial outcomes expected from artificial intelligence and automation. A key aspect is
that, in the United States, only 2% of vehicle crashes are due to technical failures; the rest
is attributable to human drivers. Among the major causes of accidents are inattention,
reckless driving, illegal maneuvers, the influence of alcohol or drugs, and tiredness [217].
Self-driving cars would be clearly immune to all the risky factors depending on human
drivers.

The research on autonomous driving has a long history that dates back to the early
1950s [167], but it has become a reality—at a surprising fast pace—mno longer than a
decade ago [103]. While most of the components of a self-driving system (such as sensors)
have improved at the typical rate of technological progress without any specific crucial
innovations, the impressive advances have been mainly fueled by the emerging deep artificial
neural networks [91], 207, [132].

Despite the remarkable technological progress, one of the main challenges the research
has to face is how to demonstrate that self-driving vehicles are safer than human drivers.
This is a non-trivial problem, for several reasons. Firstly, a prominent study [114] proved
that a statistically significant evidence of the reliability of an autonomous driving agent
would require billions of miles of test driving, which is not feasible in practice. As of
February 2020, Tesla has collected a total of 3 billion milesE] driven in autopilot, since the

'Video presentation by Andrej Karpathy, director of Al at Tesla (https://youtu.be/hx7BXih7zx8)
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12 CHAPTER 1. INTRODUCTION

release of the first autopilot version in 2015. This mileage is clearly not enough, especially
if each new software release requires to be tested from scratch. In addition, a proof of
reliability is more challenging when key components of the system are implemented with
artificial neural networks. It is well known neural networks suffer from “the black box
problem”, i.e., it is extremely difficult to explain how they work or why a particular input
produces that specific output.

Above all, a crucial source of uncertainty and malfunctioning comes from the perception
and understanding of the road environment [32]. In fact, this is one of the successful fields
of application of deep neural models, which have quickly become the method of choice
for perception of driving scenarios [I8, [129]. Nonetheless, perception remains a major
obstacle towards fully autonomous vehicles. The core of this issue could be identified in
the narrow conception of “perception” usually assumed in autonomous driving, which lacks
a fundamental aspect: gathering knowledge about objects and events in the environment
oriented to the planning of future actions [145, [I07]. Hence, perception is not a mere
elucidation of objects in the world but the detection of action possibilities. My research
deals precisely with the perception aspect of autonomous driving.

1.2 Cognitive Underpinning of the Research

My research relies, first and foremost, on one of the classical cornerstones of artificial intel-
ligence: drawing inspiration from human cognition to design similar intelligent behaviors in
artificial systems. This strategy fits well in the case of autonomous vehicles because, even
considering the death toll from traffic accidents, humans are still the best drivers you can
currently find. To date, no autonomous driving system can claim to reach the performance
of an experienced—and sober—human driver. The human ability of driving is especially
remarkable, given that vehicles are technological artifacts controlled by interfaces that are
totally extraneous to the natural human motion control. Nonetheless, humans learn to
drive quickly and excellently.

The idea of drawing inspiration from human cognition has been long ignored in the
development of autonomous driving. In fact, the research has gradually consolidated a fixed
approach over the years: a general structural and functional architecture closely derived
from engineering practices. The typical architecture is made of many separate and basically
independent modules organized in a hierarchical fashion. The modular decomposition
is often applied recursively, so that perception—besides being independent from higher
modules—is split into a hierarchy of modules, e.g. lower level preprocessing, segmentation,
and object description. This approach has become so well established that the architectures
of most autonomous systems have hardly changed through the years. Suffice it to say that
the Ohio State University successfully competed in the 2007 DARPA Urban Challenge with
an autonomous vehicle having almost the same overall architecture of a demo developed
in 1996 [167]. Human cognition does not work this way, both in general and in the specific
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context of driving.

My research aims to develop intelligent behaviors for an artificial driving agent by
taking inspiration from the neurocognition of human driving. My work originates from the
European H2020 project Dreams/ C’amﬂ [183, 143, [44],[42]. The philosophy of Dreams4Cars is
to take advantage of the computational solutions that the human brain has implemented for
the complex task of driving. While Dreams4Cars applies this philosophy to the autonomous
driving system as a whole, my research applies the idea specifically to visual perception.
One of the main paradigm shift of Dreams4Cars is to conceive the artificial driving agent
as a “co-driver”, able to cooperate with the human driver. The interweaving between
human and artificial in Dreams4Cars is pushed even further: the artificial agent should
inherits the broad structure of the human motor control strategy, as known by the state-
of-the-art in cognitive science. This means to move away from the classic sense-think-act
paradigm adopted by most autonomous driving approaches. This paradigm implies a sharp
separation among the perception system, the software that determines the agent’s behavior,
and the software that executes the selected action.

It is important to note, however, that vehicles are not biological bodies, and the hard-
ware is not the brain. In fact, the engineering practice of modular decomposition can
provide highly desirable features, like the reduction of complexity of every single module,
or the decoupling of possible sources of failure. Similarly, there are algorithms that may be
far different from brain computations but are very effective on silicon processors. There-
fore, my research aims to find a compromise between the adoption of technologies that are
well consolidated and the inspiration from human neurocognition.

1.3 Organization of the Dissertation

The presented dissertation is organized into nine chapters. It starts by illustrating what
current cognitive science and neuroscience can reveal about how the human brain realizes
the ability of driving. Chapter [2] addresses in detail the theories related to the processes
involved in visual perception, and it focuses on a number of key points that seem well
suited to be translated into a computational implementation.

The following chapter analyzes the role of deep learning in the development of artificial
systems. Deep learning has turned computer vision from an insurmountable obstacle for
autonomous driving to a challenging but feasible task. Therefore, it is almost mandatory to
look at deep neural models when implementing solutions for artificial perception. Chapter
briefly reviews deep learning in general, then it points to some models that seem the
best counterparts of the neurocognitive processes identified in Chapter [2| as fundamental
for perception in the driving task.

Chapter [ surveys the applications of deep learning for autonomous driving, especially
in the context of visual perception. It also addresses the crucial aspect of the availability

2www.dreamsé4cars. eu
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14 CHAPTER 1. INTRODUCTION

of appropriate datasets to train deep neural models for autonomous driving.

Chapters from [5|to |8 present the core of my work. Firstly, Chapter |5| presents an initial
contribution in the direction of tackling the black box problem affecting any complex deep
neural network. Chapter [6] describes the first group of models for visual perception, which
work in a static context of single frames. Then, Chapter [7] presents the second group of
perceptive models, this time taking into account the temporal dimension and processing
temporal sequences of driving scenes. Furthermore, Chapter [8] presents a work in progress
started during my research collaboration with the Intelligent Vehicles group from TU Delft:
the work aims to extend perception to higher-level forms of representation oriented to
motor actions. Lastly, Chapter [0 draws the conclusions of my research activity, analyzing
the limitations and the potential future developments.



Chapter 2

Perception in Human Drivers

The presented work is motivated by the fact that humans are still the best driver one can
currently find. Therefore, it is reasonable to expect that the functioning of the human
brain could provide important cues on how to design autonomous driving systems. To
fully commit to this idea, it is necessary to understand what kind of processes the brain
executes when driving.

Driving is no different from any other high-level cognitive behavior. Unfortunately, the
current understanding of how the brain enacts these behaviors is vague, often controver-
sial, and short of detail. Nonetheless, there are countless theories trying to progress the
understanding of the mind and the brain, and it is easy to lose track in this vast body of
research. By taking advantage of the cooperation with the Dreams4Cars project, I have
collected some suggestions to investigate and, then, I have identified the most promising
cognitive principles and ideas that could help the design of an autonomous driving agent.

This chapter collects four key theories on how the human brain achieves the cognitive
capabilities related to the activity of driving. Each section of the chapter analyzes one of
the four proposals. The first idea lies at the foundation of modern cognitive science, and
it argues that thinking nearly always involves some sort of mental simulation, which takes
the form of imagery when dealing with visual perception. Then, moving from cognition to
neuroscience, a second proposal could explain how the perceptual simulation takes place
in neural circuits called convergence-divergence zones, which project external stimuli into
high-level representations—but also the other way round, from top activations down to
reconstructions of stimuli. In between cognition and neuroscience, the third idea highlights
that perception, when specialized for a complex task as driving, is refined by experience
with a process called perceptual learning. Lastly, I include a theory that in the last decade
has received vast popularity in cognitive science: the free-energy principle of predictive
brains. In the context of perception in the driving activity, this theory corroborates the
role of visual imagination as a fundamental mechanism of inference.
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16 CHAPTER 2. PERCEPTION IN HUMAN DRIVERS

2.1 Simulation Theory of Cognition

The ability to drive is one of the many specialized sensorimotor behaviors of humans, along
with a variety of activities such as walking, playing the piano, handwriting, or snowboard-
ing. Cognitive science has proposed several theories about how these complex behaviors
are realized and which role has perception in them. Among these proposals, the simulation
theory of cognition constitutes a major turning point of cognitive science of the last twenty
years, and it is currently considered the most prominent position regarding the role of
perception.

In a nutshell, the simulation theory argues that the process of thinking—most of the
time, if not always—involves some sort of internal reconstruction of the external environ-
ment. The thinking process simulates how the environment would activate the perceptual
system and how it would be affected by a potential action. Actually, the term “simulation
theory” encompasses a number of different accounts of mental simulation [89, 90]. For this
reason, it is useful to try to be more precise about what simulation means in the context
of cognition. According to Fisher [69], a cognitive simulation is a kind of mental process,
in the sense of a sequence of successive mental states each depending on the previous one.
A mental process becomes a simulation when it meets the following conditions:

1. the process facilitates knowledge about the subject of simulation;
2. the process reflects significant aspects of what is simulated.

Hence, simulation can be considered an “epistemic device” aiming to produced knowledge
about the process that is being simulated.

The definition of simulation holds for all the different facets of mental simulation pro-
posed over the years. The first and still prevailing account of mental simulation is related
to the so-called theory of mind [80]. This theory regards the ability of a person to guess the
mental states of another interacting person. The observer constructs a sort of “theory” of
how the mind works in general, and they use it to simulate what is going on in the mind of
the target person. This account of simulation pertains to social cognition and is certainly
relevant in the context of driving [209], but it is scarcely related with perception, so I am
not discussing it any further. In the following sections, I will present in detail other forms
of mental simulation more closely related to the topic of my work.

2.1.1 Simulation as Emulation

In the previous section, I have mentioned that mental simulation is a sequential process.
More precisely, steps of the simulation should mimic the corresponding steps of the repre-
sented situation. Most of the time, the simulation is a rough and short imagination of the
reality; every step of the original event does not usually have to correspond to a distinct
step of the simulation. Conversely, every state of the simulation must correspond to an
intermediate state of the real event. For example, when I imagine to drive from home to
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work, I do not actually simulate every single turn of the steering wheel but just a sequence
of key turns on the overall route.

A crucial question regards how the brain is able to transit to successive states in the
simulation. In general, this process seems to bear little resemblance to the way the states
of the real event succeed each other. For example, I can imagine a car swerving on an icy
road, but the mechanism my brain uses to imagine the swerving car has little or nothing
to do with the the physical loss of grip of the tires on ice. However, there are cases where
the brain seems to reproduce the states of the event by mimicking the real process that
transform the successive states. This peculiar type of simulation is called emulation.

The emulation theory of representation is strongly linked to the field of control the-
ory and signal processing. Not surprisingly, the developer of this theory is an American
philosopher with a engineering background, Rick Grush [83]. The main influence comes
from the pseudo-closed-loop control schematics: a controller receives the desired action and
sends the corresponding control signal to the plant, which performs the action. In order
to work correctly, the control needs feedback information about the effect of the signal on
the plant. Since this feedback is difficult to obtain or may arrive too late to the control,
the alternative in the pseudo-closed-loop system is to send a copy of the control signal
to an emulator, a device that imitates the plant offline and produces information similar
to the real feedback. Emulators exploit the classic technique of Kalman filters [I13] to
progressively estimate the behavior of any dynamic plant from a series of measurements.

The emulation theory finds the most appropriate cognitive counterpart in the domain
of motor control. In this case, emulators have the role of emulating parts of the muscu-
loskeletal system. This theory successfully solves the conundrum of how, during motor
imagery, proprioception and kinesthesis—necessary for sustaining a dynamic plan—can
exist in absence of limbs modifications. Today, there is evidence supporting the necessity
for cognitive emulators in skeletal and eye movements [37]; a model based on Kalman filter
is able to explain experimental data of hand movements [239]. Note that Kalman filters are
just a mathematical framework suitable for modeling this kind of emulators. How the brain
actually achieves this task is still uncertain. However, the emulation account of cognitive
simulation for motor control—Kalman filters included—is certainly useful in the domain
of autonomous vehicles [4I], but it is less relevant for the perceptual aspects. The next
section focuses on the account of mental simulation most close to visual perception.

2.1.2 Simulation as Imagery

The form of mental simulation most relevant for perception is imagery: the phenomenon
when the brain reconstructs a percept in absence of external stimuli. Although this ability
exists for all the human senses [I], visual mental imagery plays a dominant role in humans,
also because of the large portion of cortical tissue assigned to the processing of visual
information. One of the leading researchers on visual imagery is Stephen Kosslyn [121],
who first proposed that visual perception and imagination share much of their neural



18 CHAPTER 2. PERCEPTION IN HUMAN DRIVERS

processing. In fact, neural representations of imagined and perceived stimuli appear similar
in the visual, parietal, and frontal cortex.

Visual imagery has been the center of a long-running controversy in cognitive science,
known as the “imagery debate”. Supporters of the earlier cognitive science, which was
strongly founded on language and symbols, have claimed that imagination—unlike direct
vision—should have a propositional format in the mind. To consciously retrieve images
from memory, the images have to be structured in a semantic form [I85]. The opposite
view, lead by Kosslyn [122], argued that the content of imagery is mostly depictive, exactly
like visual perception, even though the subject is well aware of the semantic content of their
imagination. Today, there is overwhelming evidence that imagery is essentially depictive—
while still involving semantic information [173].

Just like generic imagination, visual imagery plays a variety of functions. With visual
imagery, human can replay events from the past, conceive alternative and fictional realities,
or picture a potential future. But one of the most fascinating functions of imagery—crucial
in the context of driving—is the improvement of perception. There is ample evidence of this
role: several experiments have demonstrated that when a person imagines a stimulus before
the actual percept, imagery can facilitate the perception of the real stimulus [65, 105, 172].
Another function of visual imagery highly relevant to driving is to generate specific short-
term predictions based upon past experience; this function links imagery with emulation.
In fact, most bodily controls uses vision as a primary form of guidance: imagery mimics
the perception of movements, both of the body and the surrounding objects, and generates
predictions similar to Grush’s emulators [I52]. Having clarified the importance of visual
simulation in human cognition, the next section deals with the question of how the brain
realizes simulation through the neural circuits.

2.2 Convergence-Divergence Zones in the Brain

A critical point for the theories on imagination is to explain how neural circuits can com-
bine perception with imagery. What is the mechanism that allows neural circuits to recall
entities from the memory and also recognize the content of a scene from perceptual stimuli?
One of the more compelling answers to this question is due to the Portuguese-American
neuroscientist Antonio Damasio [45], 46]. He introduced the concept of convergence zones:
neural ensembles that link the representations of a same entity coming from different sen-
sory and motor cortices. To better explain this, an external entity can be perceived under
many aspects: visual, auditory, spatial, to mention a few. These fragments of representa-
tions are distributed across separate sensory and motor cortices. The convergence zones
bind the distributed neural activity patterns that correspond to the same perceived stim-
ulus. The binding is learned through experience on the basis of similarities, and spatial or
temporal relations.

The convergence zones can account for the amodal representations of entities and events



2.2. CONVERGENCE-DIVERGENCE ZONES IN THE BRAIN 19

CDZn

AUDITORY CORTEX VISUAL CORTEX

Figure 2.1: Schematic depiction of the convergence-divergence zones linking the representations
of the entity “dog” in the auditory and visual modalities. When hearing the woof of a dog, I can
recall from memory the visual appearance of my beautiful dog.

of the external world, i.e., conceptual representations that are abstract and have lost their
perceptual properties. In fact, the convergence zones have the function of projecting in a
many-to-one way from multimodal cortical regions into amodal regions. It is also possible
to find convergence zones that bind features collected by different cortical areas of the same
modality. This is the case of vision, in which there are tens of segregated cortical areas
processing different visual features with different temporal and spatial scales.

In a recent refinement of his work, Damasio highlighted a reciprocal function of these
neuron ensembles, introducing the more sophisticated convergence-divergence zones (CDZs)
[147]. Besides projecting in a convergent way, the CDZs can produce divergent projections
in a one-to-many way. The fascinating aspect is that, while feedforward projections charac-
terize the mechanisms of recognition, the feedback projections are activated during memory
recall. Moreover, CDZs can offer a powerful explanation of the more specific processes of
visual perception and imagery. Fig. gives a visual description of this mechanism.

Several neurophysiological and neuroimaging studies [141] now support this proposal,
with evidence of hierarchies of CDZs at all levels in the brain. In a study from 2006 [223],
subjects had to imagine one of the six possible domino-like patterns in either the left or
right visual hemifield. By processing the fMRI data of the visual cortex of the subjects,
it was possible to infer both the imagined pattern and its position in retinal space. A
more recent study [40] analyzed the brain activity of the subjects when imagining a fruit,
successfully decode the identity of the fruit, the shape, and the color. In conclusion, the
CDZs represent the fundamental tool to support the formation of mental concepts and to
reenact previous visual experiences with a simulation-like process [163].
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2.3 Perceptual Learning

The next cognitive principle that could improve the design of an autonomous vehicle con-
cerns the role of learning within the perceptual abilities. Nowadays, humans need to learn
most of their skills through experience. In fact, humans lack the genetic instructions for
modern-day tasks—such as driving a car—because the pace of technology development is
orders of magnitude greater than the timescale of natural evolution. Among the learned
skills, there are skills that are purely mental, like translating from a language to another
or solving a mathematical problem. There are other skills, instead, that involve motor
aspects and require sensorimotor learning [238], like playing tennis or (of course) driving
a car. Sensorimotor learning involves the acquisition of a number of interacting compe-
tences, including the implementation of reactive control mechanisms, decision making, the
selection of strategies, and the efficient gathering of task-relevant perceptual information.
This last competence is acquired by perceptual learning.

Perceptual learning concerns non-declarative knowledge, i.e., knowledge that is ex-
pressed through performance rather than through recollection, like riding a bicycle—in
contrast to declarative knowledge that refers to the capacity of recollecting facts and events,
like the names of the planets of the solar system. Unlike the declarative forms of learn-
ing, perceptual learning does not require an intermediate consolidation storage such as
the hippocampus, and it seems to affect directly the neural perceptual mechanisms. In
fact, perceptual learning improves the actual perceptual performance: after training in a
perceptual task, one is able to perceive something new that could not do before [64].

The study of perceptual learning is relatively recent with respect to other forms of tradi-
tional learning investigated in psychology and cognitive science. All perceptual modalities
benefit from perceptual learning, but the most investigated is visual perceptual learning
[206, 54]. Over the past two decades, the field of visual perceptual learning has evolved
significantly, and there is abundant evidence of how experience is crucial in shaping human
visual perception. In addition, there is now a better understanding of which visual areas are
involved during perceptual learning. A recent work [211] have presented the paradigmatic
case of visual perceptual learning performed by radiologists. After years of experience and
training, radiologists learn to interpret X-ray images and discriminate between subtle dif-
ferences of light and dark. This is a typical case of a professional perceptual skill, where
there is a sharp difference in performance between experts and non-experts. The form of
visual perceptual learning that involves driving is less evident, yet people learn to drive
effortlessly after few years of experience. During the training period, the overall sensori-
motor learning takes place, including the motor abilities of steering the wheel and using
the pedals as well as the visual abilities concerning the main objects on the road: vehicles,
traffic signs, lanes, pedestrians, obstacles. One of the skills derived by perceptual learning
especially relevant when driving is the ability to detect impending collisions [134]. Hence,
it is clear how learning by experience has a key role in visual perception in the context of
driving.
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2.4 Predictive Brains and Free Energy

The last cognitive theory I have investigated in relation to the activity of driving has gained
large attention in the cognitive sciences during the last decade. This theory, proposed by
Karl Friston [72,[73],[74], has become popular under the terms “Bayesian brain”, “predictive
brain”, or “free-energy principle for the brain”, and it is rapidly gaining consensus in various
research fields such as cognitive science, psychology, neuroscience, and philosophy [36], O8].

According to Friston, the behavior of the brain—and of an organism as a whole—can
be conceived as minimization of the free emergy. The free energy has its origin in the field
of thermodynamics, where it measures the portion of energy available in a system to per-
form thermodynamic work at constant temperature. The concept of free energy is mainly
abstract and has only few precise forms, like the Helmholtz free energy or the Gibbs free
energy. However, Friston does not exploit the thermodynamic meaning of the free energy,
but its “free” usage in some statistical frameworks, especially variational Bayes methods
[230]. In particular, he bases its theory on the relation between the thermodynamic entropy
and the information entropy. The abstract formulation of free energy proposed by Friston
is the following:

Fp (X|a) = E¢ gy (c) [~ logp (X, cla) +log g (c)] (2.1)

where X is the sensorial input of the organism, c is the collection of the environmental causes
producing X, a are the actions that may modify the environment and (as a consequence)
the sensorial input in the future. The tilde in X stands for an arbitrary number of time
derivatives of the instantaneous vector x of sensorial input. The distribution ¢¢(c) is an
internal model of the organism, and it refers to the probability density that the causes c
would take place in the environment. The subscript @ indicates the status of the brain,
which is defined by a set of brain variables, for example, the strength of synaptic connections
or the neuromodulator densities.

The free-energy principle for the brain implies that, by minimizing the free energy, the
brain minimizes the exchanges with the environment that are considered unlikely or unex-
pected (often called surprise or surprisal), which are represented by the term — log p (X, c|a)
of equation . Although this equation may appear too abstract, it is possible to derive
more precise formulations by specifying the brain function of interest. For example, the
free energy corresponding to perception does not care about the potential actions a, and
it can be expressed as follows [70, p.427]:

Fy = Akt (a0(0)p (el ) ) ~ log p (X]a). (2:2)

where first term is the Kullback-Leibler divergence, which measures the distance between
two distributions. In this case, minimizing Fg means to find a brain status ® such that
the internal expectation of the environmental causes g (c) matches the actual density
distribution p (c|x). On the other hand, the definition of the free energy corresponding to
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actions [70, p.428] is the following:

Fy = Ak (40(©)[p(€) ) = Ecnoe)| logp (Rle, ). (2.3)

In this case, the brain tries to choose the action that could expose the organism to causes
in the environment that are likely expected. Note that the formalization of equations
and still do not explain how to make the variables explicit or how to find the
solutions to the equations. However, Friston [73, p.130] speculated on putative roles of
neurons in the free energy minimization. Moreover, in support to the theory, he developed
a computational model for the categorization of birdsong based on free energy minimization
[75].

2.4.1 Imagination and Prediction

The free-energy principle is considered the new frontier of cognitive science because it
attempts to unify all the aspects of cognition. However, it is wrong to consider this theory
as opposed to the simulative account of cognition described in In fact, Friston’s theory
can explain why the human visual system incorporates a generative capacity. The reason for
this is to perform perceptual inference, i.e., to always be prepared to perceive what is mostly
expected from the environment. When engaged in a demanding perceptual task like the
analysis of the road scenario during driving, there is a deeply unified cooperation between
perception and imagination. In turn, this perception/imagination alliance cooperates with
the driving action selection to minimize “surprises” [120]. In this context, imagination
does not correspond to an offline recollection of visual memories. It is, instead, a way to
focus, refine, clarify, or concentrate on the current experience based on the previous events.
Quoting the words of the philosopher Wiltsher [235], imagination can be interpreted “as a
set of lenses rather than an imitating mirror”.

In this chapter, I have illustrated four well-established theories related to how the
human brain achieves the cognitive capabilities required to drive. In the next chapter I
will try to identify some possible counterparts to these theories within the field of deep
neual networks.



Chapter 3

Deep Learning Methods

In the Introduction, I have pointed out the predominant role the methods based on deep
learning have in the context of artificial perception. During the last decade, deep neural
networks have become so successful to make most of the existing methods in computer
vision obsolete, including the applications to autonomous driving. Nowadays, deep learning
represents the most prominent choice to build competitive solutions for artificial perception.

In addition to this, deep neural networks conform—to some extent—to the mecha-
nisms humans adopt to perceive the external environment during complex sensorimotor
tasks (like driving), which I have analyzed in Chapter [2| It is possible to identify some
artificial architectures and strategies that could be compatible with related features and
processes of human perception. In this chapter, I will briefly introduce the history of arti-
ficial neural networks and the recent transformation into deep architectures. Then, I will
describe the specific artificial models I adopt in my work and the resemblance with their
cognitive counterparts. Specifically, I will analyze the properties of convolutional networks,
autoencoders, and variational Bayesian inference.

3.1 Evolution of Artificial Neural Networks

When first introduced back in the middle of the last century, the artificial neural networks
(ANNs)—as can be deduced from the name—aimed to mimic the functioning of neurons
in the brain. The key inspiration is the concept of synaptic plasticity, i.e., the fact that
neural circuits are initially amorphous and gradually learn purposeful functions through
experience. During the evolution towards deep learning, however, artificial neural networks
have gradually lost their original strong neurocognitive commitment.

3.1.1 Perceptron and Backpropagation

One of the earliest implementations of artificial neural network is the perceptron, designed
by Frank Rosenblatt [196, [197]. In the original proposal, the perceptron is an electronic
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device composed of three parts: an input matrix of sensorial units called “S-points”, a
vector of associative units called “A-units” that receive connections from the S-points, and
an output vector of “R-units” one for each class of objects to be recognized in the input.
Each A-unit receives excitatory connections from several S-units, and it is triggered when
the sum of the signals from the input connections reaches a fixed threshold. The R-units are
connected with the A-units in a similar way, with an important difference: the connections
can change dynamically, using motor-driven potentiometers that enact the mechanism of
learning. The learning of the perceptron observes the following rule:

=] (41 o

where a; is an A-unit connected with a R-unit r; through a synapse with efficiency w; j,
which is a real number in the range [0..1]. For an input sample ¢, the known correct level

of activation of the unit r; is fj(.t). By virtue of this learning rule, if a R-unit is wrongly
triggered, the weights of the connections between this unit and all the currently active
A-units are reduced with a factor n. Conversely, if the R-unit is not active when it should
be, the connection weights are increased. The A-units that are inactive for the sample ¢
do not change.

When first proposed, the perceptron was met with harsh criticism [149] and considered
disruptive for the progress of artificial intelligence of that time. The main criticism was
that the learning rule works for one plastic layer only. In fact, Rosenblatt himself
acknowledged this issue before [197, p.579]. Ultimately, the problem concerning the number
of learnable layers has affected artificial neural networks since their creation. The solution
to this issue came twenty years later, from the research group lead by Geoffrey Hinton,
under the name of backpropagation [199].

Backpropagation is a learning algorithm for neural networks that calculates the gradient
of the error function with respect to the neural network’s weights. Backpropagation applies
specifically to feedforward neural networks, i.e., organized into layers with unidirectional
connections. Being w the vector of all learnable parameters in the network, and £(x,w) a
measure of the error of the network with parameters w(®) when applied to the sample x®,
the backpropagation updates the parameters iteratively according to the following formula:

W) = w® _ g, e (x(t),w(t)> 7 (3.2)

where 7 is the learning rate, and V,, is the gradient of the weights. Note that, in order to
compute the error £(x,w), it is necessary to known a priori the correct responses to all
samples x used during learning; this learning process is known as supervised learning. The
invention of backpropagation has paved the road for a highly successful period for artificial
neural networks [200].
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3.1.2 Vanishing Gradient Problem

In the 1990s, it seemed obvious that the most effective feedforward models should have
no more than a single hidden layer. This was, in fact, a limitation due to the intrinsic
formulation of backpropagation: networks with multiple hidden layers suffer from the local
minima problem during learning. The main difficulty lies in the chain rule necessary to
compute the gradient of weights with respect to the errors in equation (3.2). If many
weights across multiple layers are less than 1, when they are multiplied many times, the
gradient could start to vanish into the smallest machine number—this is the well-known
problem of the vanishing gradient. Also because of this limitation, at the beginning of
this century, artificial neural networks seemed to have exhausted their potential, and the
research field was stagnating.

The resurgence of artificial neural networks is due—again—to Hinton [92], who pro-
posed a method to train models with four and five hidden layers, usign a solution based on
one of his earlier ideas: the restricted Boltzmann machines (RBMs) [94], which can learn
in an unsupervised mode. The idea is simple: take two adjacent layers in a feedforward
network and train them as a RBM. The procedure starts creating the first RBM with the
input layer and the first hidden layer; this first machine generates a new set of data by
processing the original inputs. Then, the new set of data is used to train the next couple
of layers, and so on for all the layers in the network. This procedure is a sort of pretraining
that gives a first shape to all the connections in the network, which will be further refined
by the ordinary supervised learning with backpropagation. The research community soon
recognized the layer-wised pretraining with RBMs to be an elegant solution to the problems
afflicting backpropagation for all sort of neural networks with multiple layers [91], 12}, 203].

The layer-wise pretraining with restricted Boltzmann machines has the great merit of
having acted as a catalyst for the revival of ANNs. However, from a technical point of
view, it is not essential for dealing with more than three layers. In fact, it turns out that
backpropagation can easily train deep feedforward networks with just few improvements;
this new algorithm takes the name of stochastic gradient descent (SGD) [20]:

M
Wt = w7, S (x0, w0 (3.3)

It is immediate to see the similarity with the standard backpropagation equation .
In this case, instead of computing the gradients over a single sample ¢, the algorithm
makes a stochastic estimation over a random subset of size M of the entire dataset and,
at each iteration step t, it samples a different subset of the same size. The growth of the
research on deep learning has progressively improved and refined the SGD algorithm. A
first crucial innovation is the dropout [95], a technique that randomly switches off a fraction
of the neurons during training. This expedient prevents unwanted co-adaptations of feature
detectors on a limited set of samples. Other improvements include various techniques such



26 CHAPTER 3. DEEP LEARNING METHODS

as adapting the learning rate 1 dynamically during training [56], or mixing the update
given by equation (3.3)) at step ¢ + 1 with the update at step ¢ [11§].

3.1.3 Similarities with Biological Neural Networks

Given that my project aims to draw inspiration from brain mechanisms, it is important to
discuss the relation between artificial neurons and biological neurons. In fact, the structure
of an artificial neuron bears little resemblance with the highly complex cell of a biological
neuron. Moreover, “learning” in artificial neural network is realized with algorithms that
share nothing with the biological mechanisms of learning at neural level [16, (66, 27]. There
are some computational models that simulate the actual behavior of biological neurons
[184, 143], but they are very distant from deep learning and are hardly applicable to
engineering problems. Even Hinton tried to develop a learning mechanism closer to that
of biological neurons, with poor results [9].

It is possible, however, to identify some preliminary points in common between artificial
neural networks and neurons in the brain:

e high-level functions of neural circuits derive from the interaction of a large number
of units (neurons) that are very similar to each other;

e neural circuits are essentially learning devices that start from an amorphous state,
and their mature function depends on experience;

e the activation of a neuron depends on the cumulative sum of the weighted activations
of all neurons that are connected to it.

These are the first similarities that is possible to observe in general. When digging more
deeply, there are additional—and more interesting—similitudes with specific kind of neural
models. This is the topic of the rest of the chapter.

3.2 Convolutional Neural Networks

The operation of convolution is one of the oldest and well established technique adopted in
image processing [198]. The first combination of convolutions with artificial neural networks
is due to Kunihiko Fukushima, who proposed the architecture called neocognitron [77]. The
neocognitron consists mainly of two types of cells called S-cells and C-cells—in accordance
to the classification of “simple” and “complex” cells in the primary visual cortex [100].
The S-units act as convolution kernels, while the C-units downsample the resulting images
by applying a spatial average.

After the introduction of backpropagation as the most effective learning method, Yann
LeCun proposed to combine layers of neocognitrons with feedforward layers and train them
with backpropagation [133]; this is the very first example of convolutional neural networks
(CNNs). At the time, however, this solution could not compete with the established
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non-neural techniques in computer vision [4]. The great breakthrough arrived with the
invention of deep convolutional neural networks (DCNNs), the first of which was an eight-
layer network [125] proposed by the research group lead by Hinton. This network triumphed
in the famous ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), dropping the
error rate from the previous 26.0% down to 16.4%. After this event, DCNNs have been at
the core of the computer vision research, with a succession of successful developments that
still lasts nowadays.

3.2.1 Convolutional Networks and Human Vision

The discussion on the relation between ANNs and biological neurons, started in Section
deserves further attention in the case of DCNNs. As mentioned above, Fukushima
introduced the S-cells and C-cells to emulate the behavior of simple and complex cells
in the primary visual cortex. Again, the biological inspiration implies nothing about the
actual similarity in terms of behaviors or architectures. In fact, the contributions of simple
and complex cells in the primary visual cortex are much more complex than the operations
of convolutions and downsampling in the neocognitron [I14]. Moreover, there are striking
differences between the computations performed by DCNNs and the processes known so
far in the visual cortical areas [193].

Despite these significant differences, recent studies show surprising patterns of similar-
ities. Given an image, it is possible to note a resemblance between the layer activations
of a DCNN and the response stages of the cortical visual system of a person looking at
the image. This phenomenon was observed in several experiments comparing human fMRI
data and DCNN models [84) 117}, 241]. These studies confirm that, although there are still
discrepancies, the patterns of activities in DCNN layers and in the human visual system are
consistent and surprisingly similar; this suggests the existence of a common set of processes
or features. Even if, at the moment, it is not possible to identify precisely which kind of
process or feature is shared by the two systems, this analogy represents a strong ground
for the adoption of DCNNs in my project.

3.3 Representation Learning

The scope of application of deep neural networks (DNNs) is not limited to achieving the
desired mapping from input to output. On the contrary, DNNs are often used to learn
effective “representations” of the input [11], especially when the input data are sensorial
information in a perceptual context. This account of internal representations could be akin
to the mental representations used by humans to conceptualize the world around them.
Truth to be told, there exists a long and debated controversy in cognitive science around
the idea of mental representations. The so-called embodied and enactive cognitive science
holds that there is no need to make use of representations altogether, as that cognition
can be explained by directly relating perception with the acting in the environment [23]
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201, 102]. However, unlike in current cognitive science, neuroscience commonly considers
neurons as a representing device and employs a representational vocabulary to characterize
various neural processes [35], [124].

In several engineering applications, the concept of representation learning is considered
a key process. The efficiency of complex algorithms is often strongly dependent on the
design of the representation used for the data. Instead of manually defining the repre-
sentation from a prior analysis of the relevant features of the data, DNNs can be used to
learn the best representation from the data themselves. This approach represents a radical
improvement in the design of data representations.

3.3.1 Autoencoders

One of the first and most successful neural network developed for representation learning
is the autoencoder [92]. It is a network trained to produce a reconstruction of the input;
in doing so, the model develops in the inner layer a compact representation of the input
data. The theoretical advantage of this architecture is that it learns the representation
without any prior information on the data—this learning scheme is called self-supervision.
The model can be described by two functions:

go X = Z, (34)
fo @ ZX. (3.5)

The first is called encoder (or generator), defined by a set of parameters ®, and it computes
the compact representation z € Z of a high-dimensional input x € X. The second function
is the decoder, defined by the parameters O, and it aims to reconstruct the high-dimensional
data x from the low-dimensional representation z. The autoencoder is trained to minimize

the loss Lo o <Xi, fo (gq>(xi))> for each sample x; of the dataset X.

3.3.2 Autoencoders and Convergence-Divergence Zones

Autoencoders—specifically convolutional autoencoders—manifest a compelling similarity
with the biological strictures of convergence-divergence zones, introduced in Section
They both consist of a convergent path and a divergent path: the convergent component
compresses sensorial information into abstract high-level representations, in a distributed
and hierarchical way; symmetrically, the divergent component reflects the activations back
to a low-level perceptual space.

There is, however, an inevitable physical difference: the CDZs exploit the same cells
to supports both the convergent and the divergent streams. This is impossible for the
autoencoders, as they necessarily have to use two separate groups of layers with different
weights. Nonetheless, in the abstraction of the computation, it makes no difference if the
memory locations of the variables in the convergent path are different from those in the
divergent path, as long as the decoder mirrors the encoder.
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3.3.3 Variational Autoencoders

In the last few years, the probabilistic Bayesian inference has received a renewed interest in
the context of learning high-dimensional models. The Bayesian framework—in particular
variational inference—has found a fertile ground in combination with deep neural models.
Two concurrent and unrelated developments [119, [190] made this theoretical advance pos-
sible, connecting autoencoders and variational inference; this new approach quickly became
popular under the term wvariational autoencoder.

The variational inference framework takes up the issue of approximating the probability
distribution p(x) of a high-dimensional random variable x € X. The output distribution
can be computed through a neural network f of parameters © as follows:

p@(X|Z) =N (X| f@(Z),O’QI) ) (36)

where NV (x|, o) is the Gaussian function in x, with mean p and standard deviation o.
The desired approximation of p(x) is, therefore, the following:

po(x) = /p@(x,z) dz = /p@(x]z)p(z) dz. (3.7)

In equation , there is clearly no clue on what the distribution p(z) might be. The
idea behind variational autoencoder is to introduce an auxiliary distribution ¢¢(z|x) from
which to sample z. Ideally, this should provide the posterior probability pe(z|x), which
is unknown. The distribution can be derived from an additional neural network g of
parameters P:

o (2]x) = N (z|ga(x), 0'21) . (3.8)

The measure of how well pg(x) approximates p(x) for a set of x; € D sampled in a
dataset D is given by the log-likelihood:

(01D) = Y- 1og [ polxlz) p(z) dz. (39)
x; €D

This equation cannot be solved because of the unknown p(z)—here comes the help of
the auxiliary probability ¢e(z|x). Each term of the summation in equation (3.9) can be
rewritten as follows:

(Ox) = log/p@(x, z)dz

oo [ Pe(x2)a0(z]x)
= log [ POEL T

p@(X, Z)
= log EZN%(Z‘X) |:Qc1> (Z‘X) :| s (3.10)
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where the last passage uses the expectation operator E[-]. Being the log function concave,
it is possible to apply the Jensen’s inequality:

po(x,2)
(O, P[x) = 1OgEzwcp(z\x) [W]

> Eymgo (z)x) 108 P0 (X, 2)] — By gy (21x) (108 qa (2]%)] - (3.11)

Since the derivation in the last equation is smaller or at least equal to ¢(©|x), it is called
evidence lower bound (ELBO). Note that in ¢(O, ®|x) there is also the dependency from
the parameters ® of the second neural network defined in . It is possible to further
rearrange £(0, ®|x) to have pg(x|z) instead of pg(x,z) in equation (3.11)).

At this point, it is possible to introduce the loss function £(0, ®|x) as the value to be
minimized in order to maximize ELBO:

L£(©,®|x) = —£(O, D|x)

= Axr, (Q¢,(z|x)Hp@(z)) — Eprgo (zx) [l0g po (X(2)] - (3.12)

where the last step uses the Kullback-Leibler divergence Akr,. Still, this formulation seems
to be intractable because it contains the term pg(z). However, there is a simple analytical
formulation of the Kullback-Leibler divergence in the Gaussian case [119, Appendix B]:

Z
A (s (ax)Ip(=)) = 5 3 (14108 (7)) — 13— 0?) (313)

=1

where p; and o; are the i-th components of the mean and variance of z given by ¢ (z|x).
At this point, it is clear that the networks g and fg play the roles of, respectively, the
encoder and decoder components of an autoencoder.

3.3.4 Variational Autoencoders and Predictive Brains

The adoption of variational inference leads to a mathematical formulation of the variational
autoencoder impressively similar to the concept of free energy proposed by Friston. It is
easy to notice the resemblance when comparing equation with the definition of free
energy for actions in equation (2.3)).

This close analogy has gone unnoticed by the protagonists of the research on variational
autoencoders—even both Kingma & Welling and Rezende et al. seem to ignore the theories
of Friston altogether. Reciprocally, Friston makes no mention of variational autoencoders
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or any application to deep neural networks in general, although he has very recently demon-
strated interest in deep learning: he is currently collaborating with DeepMind to develop
a very general framework for intelligent agents [86].

Ultimately, this reciprocal disregard is not so surprising, given that mainstream deep
learning is mainly driven by engineering goals without any particular interest towards
cognition, and that cognition has largely ignored deep learning until recently. There are just
a couple of exceptions worth mentioning. A first work [I62] uses variational autoencoders
inspired by the Friston’s predictive theory to model human electroencephalogram and
physiological signals of subjects watching video excerpts. Another work [227] implements
an agent based on variational autoencoders that performs active inference under the free-
energy principle. The work evaluates the performance of the agent using a toy situation.
However, even these very few exceptions do not address real engineering applications.
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Chapter 4

Deep Learning for Autonomous
Driving

The previous chapter has illustrated how deep learning has played a tremendous role in
advancing a wide range of technological applications, autonomous driving included. Deep
learning methods have shown great promises in several aspects of autonomous driving.
Some of these aspects, like path planning or behavior arbitration, have limited relevance
to my work, so I do not provide further details on them—thorough surveys can be found
in [82] 129, [99]. Before deep learning, visual perception has been perhaps the most serious
hindrance to the development of autonomous vehicles. In fact, perception is the task
enjoying the greatest leap forward because of deep learning, and several surveys cover this
aspect [213], 228 [108]. This chapter provides a brief overview of the popular deep learning
approaches that aim to implement perception for automated driving, focusing also on the
fundamental role played by datasets in training a deep neural network.

4.1 Approaches to Perception for Driving

The distinctive strategy pursued in my work—borrowing concepts from the functioning
of the brain and the mind—is mostly overlooked in the field of autonomous vehicles, but
it is certainly not novel. There are works adopting neural networks for intelligent vehicle
perception that declare virtues of a neurocognitive inspiration [169 B1, 244]. However,
these ideas often do not transfer the specific brain mechanisms into algorithms. To the
best of my knowledge, the two main neurocognitive principles embraced by this work—
Damasio’s CDZs and Friston’s predictive brain—have not been proposed in any work on
perception for autonomous driving.

The majority of ongoing developments for autonomous vehicles adopts artificial neural
models without caring for the biological plausibility. The lack of cognitive foundation
is often linked to the employment of on-board sensors that collect information alien to
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the human perception system. A clear example is the common use of LIDARs to produce
bird’s-eye views of the environment—a representation format that is impossible for a human
driver. In the context of driving, the human sensory system can be roughly reduced to
a stereo camera setup, and this is more than sufficient for a person to carry out the task
of driving a vehicle in complex or unknown scenarios. Vision, however, might not be the
only human sense engaged in this context: a noteworthy work proposes to use auditory
information to detect vehicles approaching behind blind corners before they enter in line-
of-sight [208]. Since the focus of this work is visual perception, I will not further analyze
the role of hearing in driving. The following sections will identify three general approaches
to visual perception for intelligent vehicles.

4.1.1 Modular Perception

The conventional engineering approach decomposes the overall problem of perception into
a set of sub-tasks to be solved with independent modules. The modules interact with
each other only to exchange their input and output, typically in hierarchical pipelines.
According to recent studies [99, [108], the most common modules for perception are 2D ob-
ject detection, 2D object tracking, segmentation, depth estimation, ego-motion estimation,
localization, 3D object detection, and 3D scene understanding. In earlier works within
traditional computer vision, each of the listed modules comprised in turn its own mod-
ular pipeline. For example, 2D object detection used to be divided into preprocessing,
extraction of regions of interest, object classification, verification, and refinement. With
the adoption of deep learning, several modules are now replaced by standard pre-trained
neural network, such as YOLO [187] for object detection, or FCN-8 [138] for segmentation.

The modular approach to perception is favored by the transportation industry because
of the engineering advantages provided in terms of robustness, inspectability, and main-
tenance. However, this approach remains highly complex, inefficient, and—needlessly to
say—it has nothing to do with the way humans drive. Therefore, I shall not dwell on this
modular account of perception.

4.1.2 Perception without Representations

A different approach that departs radically from the conventional modular computer vision
is the end-to-end strategy. Instead of decomposing the complex task in explicit sub-tasks,
this approach learns the overall task just using examples of the input and corresponding
output. This strategy is in line with the empiricist philosophy of artificial neural networks,
and it has led to significant advances in complex structured prediction tasks also outside
the field of computer vision, like machine translation [112] or speech recognition [5]. In
the context of driving, the end-to-end approach can reunite perception with the actions of
driving. In fact, a typical end-to-end algorithm learns low-level commands (like steering
or braking) from camera images, using generally a stack of convolutions followed by feed-
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forward layers. The first end-to-end attempt dates before the rise of deep learning [154],
and it was the groundwork for the renowned NVIDIA’s PilotNet [17, 18], which generates
steering angles given input images of the road ahead.

Proposers of the end-to-end approach seem unaware of the underlying assumptions this
strategy implies. One assumption is the sensorimotor account of vision [164], [160], in which
perception is directly related with motor commands. A second assumption is the perspec-
tive that internal representations are superfluous, as famously claimed by Rodney Brooks
in his Intelligence without Representation [23]. These implicit assumptions, together with
the dismissal of the modular approach, are the appealing features of the end-to-end philos-
ophy. However, a typical drawback of end-to-end systems based on static frame processing
is the erratic variation of steering wheel angle within short time periods. A potential solu-
tion is to provide temporal context in the models, combining convolutions with recurrent
networks [60]. Another drawback is that end-to-end systems mapping images to steering
angles suffer the strict dependence on the specific calibrated actuation setup of the data
on which the model is trained. A possible way out is to train from multiple uncalibrated
sources, learning to predict future vehicle ego motion, instead of steering angles [240].

Above all, the most appealing feature of the end-to-end strategy—dispensing with
internal representations—is also the major source of troubles. Without an internal repre-
sentation, the entire range of road scenarios has to be learned from steering supervision
alone. In practical settings, it is not possible to achieve a significant coverage that takes
into account all possible appearances of objects relevant to the drive. For this reason, sev-
eral more recent proposals suggest to include some form of intermediate representations.
The DeepDriving model [28] implements a paradigm called direct perception, where the
mapping is in terms of “affordances” instead of steering angles; these affordances are just
13 discrete descriptions of possible relations between the ego car and the state of road and
traffic. In between the camera input and the affordances, DeepDriving uses as internal
representations a set of key perception indicators that directly relate to the affordances.
Another model, Waymo’s ChauffeurNet [8], proposes the so-called mid-to-mid strategy.
ChauffeurNet is essentially made of a convolutional network that consumes the input data
to generate an intermediate representation with the format of a top-down view of the
surrounding area and salient objects. In addition, ChauffeurNet has several higher-level
networks which iteratively predict information useful for driving.

There is a further serious issue affecting end-to-end neural models for driving automa-
tion: the lack of information about what exactly makes a model arrive to a specific driving
command. The refinement over the basic end-to-end approach, here reviewed, can slightly
reduce the harshness of the issue on low level commands like steering angles. Still, the
total lack of transparency of the models remains a critical problem for applications ruled
by strict safety demands such as autonomous driving.
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4.1.3 Perception with Representations

In order to overcome the object agnosticism of the end-to-end approach, several strate-
gies have proposed a more dominant use of internal representations. An example is the
object-centric strategy [231], which combines many neural networks together: a first con-
volutional network takes an image and produces an intermediate representation; then, a
group of downstream networks convert the representation into discrete driving actions. The
downstream networks are diversified according to the taxonomy of objects-related struc-
tures in the intermediate representation. Another system, by Valeo Vision [218], uses an
internal representation constructed with a standard ResNet-50 network [87]. In this case,
the representation is shared across a multitude of tasks relevant to vehicle perception, like
object detection, semantic segmentation, and depth estimation. All the downstream tasks
are realized using standard networks, such as YOLO and FCN-8.

None of the works reviewed so far builds the internal representations through the idea
of autoencoder. I have found just few notable exceptions in the field of perception for
autonomous driving. The first one is the model by the company comma.ai [205], a varia-
tional autoencoder learning a latent representation of 2048 neurons and producing images
of 160 x 80 pixels. After generating a dataset of latent representations, a recurrent neural
network uses the representations to predict successor frames in time. Another exception
is a work by Toyota in collaboration with MIT [3], a variational autoencoder with latent
space of 25 neurons. The internal representation is decoded to restore the input image
of size 200 x 66, while one neuron of the representation is interpreted as steering angle.
Therefore, this approach mixes an end-to-end supervision with the classical unsupervised
loss of the autoencoder.

A notable work that combines the idea of autoencoder within a cognitive account of
prediction is the “world model” proposed by Ha & Schmidhuber [85]. In fact, this work does
not deal specifically with perception, it is rather a complete agent including a controller
responsible for determining the course of actions. This model has the interesting feature
of resembling the imaginative processes, which have a fundamental role in my research as I
have already amply discussed in Chapter[2] The model is able to generate “by imagination”
new scenarios on which it can train itself in a sort of dreaming mechanism [236]. The model
of Ha & Schmidhuber is, however, far too distant from applications in autonomous driving,
because of the very shallow perceptual capability. Much like complex neural networks of
the past generation, this model is an interesting proof of concept that can only afford basic
toy examples. The simple videogame-like scenario used to test the model has an extremely
simplified visual appearance, no perspective and very low resolution.

4.2 Datasets for Autonomous Driving

There is a crucial aspect of deep learning—and machine learning in general—that is often
considered as one of its most severe drawbacks: the learning is intrinsically linked to the
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Dataset ‘ Type Scenarios 2D boxes 3D boxes Segmentation Lane
KITTI [78] real world  urban traffic v v v -
Cityscapes [38] real world  urban traffic - - v -
Berkeley DeepDrive [242] real world  urban traffic v - v v
Waymo Open Dataset [221] real world  urban traffic v v - -
Lyft Level 5 Perception [116] real world  urban traffic - v - -
Mapillary Vistas Dataset [157] | real world urban traffic - - v -
nuScenes [26] real world  urban traffic - v - -
Tsinghua-Daimler Cyclist [I35] | real world VRUs v - - -
EuroCity Persons [22] real world VRUs v - - -
SYNTHIA [195] simulated  urban traffic - - v v
GTA-V [197] simulated  urban traffic - - v -

Table 4.1: A selection of popular datasets for perception in autonomous driving. A dataset is
either composed of real-world recordings or generated in computer graphics, and it can either
capture generic traffic scenes or focus on vulnerable road users (VRUs). Moreover, a dataset can
provide 2D bounding boxes, 3D bounding boxes coming from LiDAR data, semantic and/or instance
segmentation, and annotation of lane markings.

data used during training. The performance of a deep learning algorithm depends as much
on the neural architecture as it does on the dataset. The quality of a dataset constitutes
a key component in the development of an algorithm, and it is mainly determined by the
size of the dataset and how well the distribution of the data represents the case at hand.

The application of deep learning to the field of intelligent vehicles has resulted in a
significant effort in producing datasets specific for the driving task. The last decade has
seen many attempts at creating high-quality datasets of realistic driving scenarios, often
curated by the most prominent research groups in the field, like Waymo [221], Toyota
[78, 5], Daimler AG [135} [38], 22], just to name a few. Table lists a selection of popular
datasets, which I am going to describe briefly.

Designing a high-quality dataset for driving automation can be a tricky challenge.
As T just mentioned, the quality of a dataset depends on the number of samples and
their distribution. In the context of vehicles, these features can be interpreted as the
amount of video sequences of driving scenarios and how well the scenarios capture the
multitude of possible situations one can encounter while driving. Collecting enough data
that meet these quality requirements is extremely time-consuming, and it can easily take
several years even with a considerable fleet of vehicles. Note that most perception tasks
for autonomous driving require the data to be manually annotated with bounding boxes or
semantic descriptions. Moreover, it is far from easy to ensure the acquired videos contain
enough different traffic situations and environmental conditions.



38 CHAPTER 4. DEEP LEARNING FOR AUTONOMOUS DRIVING

Figure 4.1: Examples of annotations of drivable areas (left) and lane markings (right) provided
by the BDD100K dataset [242].

4.2.1 Real-world Datasets

The first notable effort in creating a comprehensive driving dataset is the KITTI Vision
Benchmark Suite [78], which is the result of a collaboration between Toyota and the Karl-
sruhe Institute of Technology. This dataset has since become a pioneering benchmark for
most perception tasks, and it has been enriched during the years with more sequences
including data coming from multiple sensors. Currently, the benchmark includes different
sets of annotated data for specific tasks: optical flow evaluation, depth prediction, 2D and
3D object detection, pixel-level and instance-level semantic segmentation, and multi-object
tracking.

Another very popular benchmark, also collected in Germany like KITTTI, is the Cityscapes
dataset [38] produced by Daimler AG together with the Max Planck Institute for Infor-
matics and the Technical Universities of Darmstadt and Dresden. This dataset focuses on
semantic and instance segmentation, and it provides high-quality annotations of 30 differ-
ent classes of objects. The class definitions adopted by Cityscapes has become a common
standard for segmentation in the driving context. A further dataset developed by a re-
search institute is the Berkeley DeepDrive (BDD100K) [242], a recent collaborative effort
of UC Berkeley, UC San Diego, and Cornell University. Besides the classic annotations of
2D boxes and semantic/instance segmentation, the benchmark offers a vast set of annota-
tions of lane markings and drivable areas for 100,000 images. Fig shows an example
of annotated images. This kind of labeled data is uncommon among other popular bench-
marks and difficult to find in large amount, so in this sense the Berkeley DeepDrive is an
appealing exception.

Several tech companies have joined universities and research institutes in developing
new datasets that are increasingly large and rich in annotations. One of the most promi-
nent examples is the Waymo Open Dataset [221], consisting of a set of well synchronized
and calibrated high-quality LiDAR and camera data collected across Northern California
and Arizona. Also Lyft, the famous California-based company offering vehicles for hire,
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published a dataset for perception [I16] focusing on high-quality LiDAR data. Another
noteworthy company is Mapillary, which has developed a service for crowdsourcing street-
level images and map data. From this vast collection of images, the company released four
labeled datasets, among which the Mapillary Vistas Dataset [157] provides annotations for
semantic and instance segmentation, for a total of 25,000 high-resolution images globally
spread among 6 continents. A further example is the company Motional (formerly known
as nuTonomy), a joint venture between Hyundai and Aptiv. The company released an
extensive dataset for 3D object detection and tracking called nuScenes [26], collected using
a full sensor suite: five radars, one LiDAR, and six cameras covering a 360° field of view.

The datasets reviewed so far are designed for the task of perceiving and understand-
ing generic urban and suburban traffic scenarios. However, it is worth to mention there
are also datasets specialized in safety-critical tasks, like detecting wvulnerable road users
(VRUs). An early example is the Tsinghua-Daimler Cyclist Benchmark (TDCB) [135],
which provides stereo images annotated with 2D bounding boxes for cyclist detection. An-
other comprehensive effort of Daimler AG together with TU Delft produced the EuroCity
Persons dataset [22], a collection of accurate annotations of VRUs in urban traffic scenes
coming from 12 European countries.

4.2.2 Artificial Datasets

Collecting and annotating such enormous amount of data typically requires years of work.
This is one of the reasons why only tech companies or renowned research centers can afford
the fleet of vehicles and the workforce needed to create a new dataset. An alternative that
has been recently explored is to artificially generate the driving sequences in computer
graphics. The advantage of this approach is clear: the number of possible variations
in the driving scenarios that one can generate are ideally endless, and the annotation
process in this case is totally automatic. Moreover, the recent developments in the field
of 3D computer graphics make it possible to generate highly photorealistic images, which
facilitates the later deployment of the autonomous system in a real driving context. The
main drawback of generating an artificial dataset is that, beside the graphic appearance
of the simulation, also the driving behaviors should be realistic. If the ego vehicle and the
surrounding vehicles behave in an inconsistent or unnatural way, the quality of the dataset
is undermined and the learning of the autonomous agent would be biased.

A prominent example of a dataset created artificially for driving automation is the
SYNTHIA dataset [195] for semantic segmentation, proposed by a research group at the
Autonomous University of Barcelona. In the case of real-world data for semantic segmen-
tation, the annotation process is particularly cumbersome since pixel-level annotations are
required. Therefore, using a virtual world to automatically generate realistic images with
pixel-level annotations can really make a difference. However, there remains the problem
of designing a full virtual environment and simulating realistic traffic. On this note, a
research group from TU Darmstadt and Intel [I91] proposed the inventive idea of using a
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video game as a ready-made generator of labeled data. The researchers adopted the game
Grand Theft Auto V (GTA-V), which features an extensive and highly realistic world map,
and they exploit the communication between the game and the graphics hardware to ex-
tract the semantic labels. Note that the realism of the game is not only in the high fidelity
of material appearance and textures, it is also in the content of the game world: the layout
of objects and environments, the motion of vehicles and autonomous characters, and the
interaction between the player and the environment.

An even more sophisticated alternative to recording real driving scenarios is to develop
a complete driving simulator. A noteworthy project is the one carried out by the same de-
velopers of SYNTHIA together with Toyota and Intel: a highly photorealistic open-source
simulator for autonomous driving research called CARLA [55]. The simulator provides
open-source code and protocols, and it supports flexible specification of sensor suites, en-
vironmental conditions, full control of static and dynamic actors, and maps generation.

4.2.3 Choice of Dataset

In the previous section, I have reviewed a selection of the most popular datasets for per-
ception in driving automation, although recent years have seen lot more research efforts
towards creating larger and richer datasets. In the development of my work, I have adopted
two of the aforementioned datasets: SYNTHIA and nuScenes. The perception models I
will present in Chapters|[6and [7juse SYNTHIA and take advantage of specific annotation of
lane markings provided by the dataset, while the models working with higher-lever spaces
of Chapter [§| use the nuScenes benchmark. I will further describe the datasets in Sections
§6.1.2] and §8.2.1], respectively.

The choice of SYNTHIA as main dataset since the early stages of development of this
work was motivated by the availability of lane marking annotations, which, as I have men-
tioned before, are very rare among the classical datasets for autonomous driving. However,
the recent introduction of the BDD100K brings the possibility of choosing this new set of
data that has the advantage of featuring real-world recordings. I consider the adoption of
the Berkeley dataset a promising addition to my future work. In addition, during the very
initial phase of my research, I have created from scratch an essential dataset in computer
graphics to test the “primordial” version of my perception model. I will present this dataset

in Section §6.1.1]




Chapter 5

Strategies for Observable Models

In the Introduction of this dissertation, I have mentioned the challenges in the research
field of autonomous driving. A crucial issue is to demonstrate the reliability of autonomous
vehicles when the key components of the system are implemented with artificial neural
networks, which suffer from the black box problem: it is extremely difficult to explain how
a neural network works or why a particular input produces that specific output. In this
chapter, I propose a starting point for tackling the black box problem in the application
of neural networks for the longitudinal control of an automated vehicle. Although the
presented work does not solve the overall problem of intelligibility of deep neural networks,
it could be considered a valid contribution in this direction. The next section analyzes the
black box problem and the existing literature on the subject. In the remaining sections, I
present two different approaches that aim to mitigate this issue.

5.1 Black Box Problem

The cause for the black box problem is the inherent opaque structure of ANNs. The
massively distributed and entangled architecture of neural networks is, at the same time,
the reason for their striking success and what makes it hardly possible to locate the source
of malfunctioning. The literature offers many examples of neural networks of impressive
performance behaving in unpredictable or inconsistent ways. A most popular case is the
victory of the DeepMind’s model AlphaGo over the world champion of the Go game [215];
during the match, AlphaGo played a totally unexpected move, which ultimately proved
decisive for the victory. A Go expert attending the match made the following comment:

“It’s not a human move, I've never seen a human play this move” [146].

In that context, the opaqueness of the AlphaGo model turned out to be an advantage
over the human opponent. However, the situation was extremely peculiar; in the case of
autonomous vehicles, the impossibility of understanding and validating the computations
of critical components becomes a crucial issue.

41
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“school bus” image difference “ostrich”

“school bus” “car wheel” “traffic light”

.

Figure 5.1: Different cases of adversarial examples: (a) an image of a school bus with an impercep-
tible perturbation makes the AlexNet model classify it as an ostrich [222]; (b) nonsensical images
are classified as familiar objects with confidence greater than 99.6% [159]; (c) minimal physical
perturbations of stop signs achieve a targeted-attack success rate of 84.8% [62].

In the context of computer vision, there are several notable examples of high-performing
networks making glaring mistakes. The work of Szegedy et al. [222] was the first to dis-
cover that convolutional neural networks obtaining impressive performance on challenging
datasets, such as the model AlexNet trained on ImageNet, can be completely confused
in specific situations. By applying an imperceptible non-random perturbation to a test
image, it is possible to arbitrarily change the prediction of the network. Similarly, Nguyen
et al. [I59] generated artificial images that are blatantly meaningless but get classified
by the network as familiar objects with very high confidence. In addition, Eykholt et al.
[62] experimented with the effect of physical perturbation on real objects; using just black
and white stickers, they altered real stop signs causing targeted misclassification in 84.8%
of the video frames captured from a moving vehicle. Fig. displays some examples of
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these phenomena. The patterns that trigger this intriguing effect are called adversarial
examples, and they are currently the object of intense studies. While significant research
effort focuses on understanding and overcoming the problem of adversarial examples, there
are also works aiming to take advantage of this phenomenon. The most prominent case
is the invention of generative adversarial networks (GANs) [81], which exploit adversarial
examples to carry out a more sophisticated training procedure.

Understanding why a neural network is sensitive to adversarial attacks falls within the
larger research field on the explainability of deep neural networks [I51], 243]. According
to Ras et al. [I86], explanation methods can be distinguished in three main classes: rule-
extraction approaches, attribution approaches, and intrinsic approaches. The first two
groups attempt to solve the black box problem by analyzing the neural network so as to
render it transparent after it has been deployed. In particular, the rule-extraction methods
aim to identify a set of rules that approximate the decisions of the network, while the
attribution methods assess how specific components of the network affect the performance.
In contrast, the intrinsic approaches attempt to avoid the black box problem altogether,
by disentangling the internal representations so that the network does not become opaque
in the first place. The most common strategy is the attribution methods, specifically the
algorithms that automatically identify which cues in the input data lead the network to
the corresponding output. In the context of visual perception, Samek et al. [204] proposed
an attribution method that generates a heatmap visualizing the importance of each pixel
for the classification of the input image.

The rule-extraction and attribution approaches present, however, a major drawback:
even if the methods provide interesting insights on the network’s behaviour, they are ex-
posed to the very same problem—how to prove the faithfulness of the automatic generated
explanations on neural networks [1306], 233]. For this reason, the intrinsic methods are con-
sidered the most valuable approach, as they tries to make the neural networks inherently
more interpretable. The strategies I propose in the following sections belong to the intrinsic
class of approaches.

5.2 Towards Gray Boxes

The first strategy for explainable neural networks I propose falls within the context of motor
control; in particular, I use a neural network to approximate the longitudinal control of a
vehicle. In a nutshell, the idea is to gain intelligibility inside the network by substituting
specific scalar values with groups of neurons coding the value of the scalars, restricted
within their activation ranges. These groups of neurons work as “channels” encoding
scalar values, and they follow a methodology developed outside of the domain of neural
networks.
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5.2.1 Channel Coding

The idea of “channel coding” was first proposed in 2002 [70} [68] and applied in the field
of image enhancement [67]. The general method encodes a scalar = into a N-dimensional
vector c:

c(x) = [Fi(z) - Fn(2)]", (5.1)

where F; represent a family of encoding functions, each indicating how close x is to the
value represented by the ¢-th channel of the vector c. In fact, each F; reaches the maximum
atr = ﬁ (xp,—x;), where x; and xj, are the lowest and highest possible values of x. Felsberg
et al. [67] demonstrated that it is possible to perform operations of image enhancement,
such as smoothing and filtering, by encoding the pixels of an image using equation ,
manipulating the channels, and then decoding the vector back into pixel values. They
formulated the encoding functions F; as B-spline functions.

I adapt the concept of channel coding to the implementation of a neural network; in
this case, the channels aim to expose the values of groups of neurons that represent scalar
numbers. For this purpose, I define the encoding functions F; as follows:

1
Fi(z) = —— owlah) (5.2)
where the multiplier w and the offsets b; are the following:
N-1
_ Wb (5.3)
(zn — 1)
(i — 1)xh + (N — i)xl
T 4
Z N-1 ’ (5.4)

where w is a fixed parameter indicating the amount of overlap between the channels. In
the final presented work, I have adopted w = 2.7 and N = 11. This definition of encoding
function means that for every = € [z;, z5] it holds the following condition:

Fi(x) > Fi(x)  i€[l,N—1]. (5.5)

The different formulation of channel coding produces a cumulative activation of the chan-
nels, rather than a local activation as in the original implementation. Fig. illustrates the
difference between the two formulations: in the classic channel coding, the scalars activate
only few channels around the corresponding value; in my implementation, the activation is
cumulative and the channels are progressively saturated towards the corresponding value
of the scalar.

An important property of the new formulation is that F; is expressed in terms compat-
ible with the computation of a neural network. In fact, equation applies the sigmoid
function to the scalar number, which is modified with an offset and a weight. In this way,
it is possible to apply channel coding to the inputs and outputs of a generic neural net-
work, simply using an additional neural layer. A neural layer for channel coding has two
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Figure 5.2: Difference between the original idea of channel coding (a) and my implementation (b).
Both cases encode a scalar in the range [0---10] using 10 channels. The examples show a visual
representation of the encoding of the numbers 3.4 and 7.8.

differences with respect to an ordinary layer: it is not fully connected, and its weights and
biases remain fixed during learning. The interesting effect of channel coding on the neural
network is that the channel layers are no longer opaque. The neurons now have a precise
meaning: they directly encode the value of scalar numbers. Of course, this holds only for
the neurons belonging to the channel layers, as the rest of the network remains not fully
explainable. Therefore, I do not claim that channel coding solves the black box problem in
its entirety, but at least it renders the black “less black” and produces partially intelligible
networks, which I like to call gray bozes [178].

Beside the aspect of explainability, channel layers provide additional advantages de-
pending on whether they are applied to the input or the output of the network. Applying
channel coding to the input layer has attractive implications when the network takes mul-
tiple inputs. If there is prior knowledge on the role of each input in the objective of the
neural model, it is possible to assign different relevance to the inputs by varying the number
of channels in each case. It is possible to allocate a larger number of channels to the inputs
that have more importance in the network computation, and a smaller number of channels
to the less important inputs. This facilitates the training process because the network does
not have to learn by itself which input to put more emphasis on. Hence, input channel
layers prove to be a practical method for providing prior knowledge to the model.

On the other hand, using channel coding in the output layer offers an advantage from
the point of view of reliability. Whether the network works as a function approximator or
as a discrete classifier, there is always the possibility that it might commit a prediction error
causing a spurious activation of output neurons. Even the failure of a single neuron can
affect the entire output of the network, with potentially dangerous consequences. Note that
a neural network typically applies an activation function to the last layer so as to constrain
the output range. However, it can still happens that a network failure causes abrupt
jumps between the boundaries of the accepted output range. Applying channel coding to
the output layer can further mitigate the risk; in this case, the spurious activation of a
single neuron is not possible because the channels are activated in a cumulative way, as in
Fig. (b) Therefore, output channel layers ensure that prediction errors are less likely
to have dangerous consequences.
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OBSTACLE

Figure 5.3: Schematic representation of the computation of collision trajectories from the predic-
tion of the obstacle’s path.

5.2.2 Application to Longitudinal Control

To illustrate an example of application to a safety-critical task, I present a neural network
using channel coding for computing collision trajectories in the longitudinal dimension.

Computing Collision Trajectories

The computation of collision trajectories can be formulated as an inverse dynamics problem.
In this way, the problem can be solved by finding the longitudinal controls that generate
the trajectories leading to the collision. Let st be the longitudinal position of the ego
vehicle at time T, displayed as the green car in Fig. [5.3] Similarly, $7 represents the
position the obstacle vehicle at time T, corresponding to the red car in the figure. The
trajectory leading to a collision at time T is determined by the longitudinal control that
produces the condition s = 37. The optimal way to express the longitudinal control is the
jerk j, i.e., the time derivative of acceleration. As I will better discuss in Section the
minimum square jerk criterion is known to be a valid approximation of optimal control in
human sensorimotor strategies [137]. Therefore, it is possible to compute the longitudinal
collision trajectory by minimizing the following equation:

T
J=wad+ / (02 dt, (5.6)
0

where T is the time necessary for the obstacle to reach the position S, and ap is the
acceleration of the ego vehicle at time T'. The parameter w characterizes the driving style,
by weighting the final acceleration. Assuming the initial condition sp = 0 and imposing the
final condition sp = S, the analytical solution to the minimization of J is the following:

. 90s7 + (60wsy — 90vg) T — (45ag + 60wvy) T? — 24wag T
1= (9 + 4wT) T3 ’

(5.7)
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where vy and ag are the initial speed and acceleration of the ego car.

Note that the solution supposes that the prediction of the obstacle’s trajectory is given.
For the purpose of this work, it does not matter how the trajectory prediction is obtained.
This approach has the advantage that separating the trajectory prediction from the collision
computation facilitates a potential troubleshooting. In fact, in case of failure, it is possible
to assess more easily which of the two processes is responsible. Conversely, if both processes
are performed in a single step, the system would inevitably be less inspectable and likely
prone to error. Moreover, in this work I am considering only the longitudinal dynamics, but
the same approach can potentially be applied to the lateral dimension as well. By combining
the two computations it is possible to determine the complete collision trajectory.

Neural Network Implementation

Having defined the problem, now I present a solution using neural networks. I compare
three network implementations: an ordinary fully-connected network, a network using
channel coding in input, and a network using channel coding in both input and output. In
all the cases, the neural network aims to approximate the function , and its computa-
tion can be described as follows:

N(GO,UO,ST,T7'IU) :j7 (58)

N:QCR® - R, (5.9)

where 7 is the predicted optimal jerk returned by the neural network A/. The inputs of
the network are the current longitudinal speed vy and acceleration ag of the ego vehicle,
the position s where the ego vehicle will collide with the obstacle at time 7', and the
parameter w setting the driving style. The domain €2 of the network function is a well-
defined hypercube, because the ranges of input values can be determined precisely based
on the vehicle specifications. In the current case, I have considered the following ranges:

ap € [-10,10],
vo € [0,50],
sp € [0,200],
T € [0,20],
w € [0,10].

Conversely, the co-domain of the function poses some challenges in relation to the wide
range of values it can assume. In fact, there could be combinations of inputs in 2 that
produce extreme values of jerk. Since the output might vary by several orders of magnitude,
the co-domain must be considered within the range [—o0, +00]. However, I am interested
in designing a network that provides fine control in real-world conditions, i.e., when 7 is
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Figure 5.4: Distribution of jerk values generated for the training set.

relatively small. For this purpose, let Q be a subset of the domain considering only the
input combinations corresponding to ordinary jerk values:

Q= {[ag,vg,sT,T, w]T . 7 €]-10, 10]}.

To train and test the neural networks, I have created two artificial datasets. For the
training set, I have generated 750,000 input points uniformly distributed in Q, and I have
computed the corresponding outputs using the analytical solution (5.7). Fig. shows
the distribution of the jerk values in the training set. Similarly, I have generated a test set
of another 1 million points, but considering the entire €2 this time. By including the entire
domain in the test set, it is possible to assess how the network operates also in the extreme
conditions represented by Q — .

The first neural network I present does not employ channel coding, as it serves as
comparison for the next implementations. The network is composed of an input vector
of 5 neurons representing {ag, vo, s, T, w}, two fully-connected layers of 55 neurons each
followed by ReLU activations, an output layer of 1 neuron representing j. Fig. [5.5(a) shows
the network prediction versus the target value in the test set. The blue interval refers to Q,
while the orange part refers to €2 — (), in which there are no training examples. In € — Q,
the network tends to correctly extrapolate but with increasing errors.

The second neural network adopts channel coding in input. The overall number of
layers and neurons in the network is the same as the previous implementation. However,
the first fully-connected layer is transformed into a channel layer and uses a logistic sigmoid
as activation function. In this case, the 55 neurons of the layer are divided into groups of
11 neurons, and each group encodes one of the 5 input scalar separately. The weights and
biases of the channel layer are not learned during the training, but are derived using the
encoding functions in equation . As example, Fig. displays the encoding of the
acceleration input into the 11 channels. Compared to the previous implementations, this
network has less parameters to learn. Reducing the number of trainable parameters may
seem counterintuitive; however, channel coding proves to be an effective way to regularize
the network structure. The structured pattern imposed to the first layer makes the weights
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Figure 5.5: Test results of the three implementations of neural network for longitudinal control:
(a) simple fully-connected, (b) channel coding in input, (c) channel coding in input and output.

The blue points belong to ©, and the orange points refer to Q — Q.
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Figure 5.6: Example of channel coding for the acceleration input ag. The scalar is encoded with
11 channels (neurons), each responding to a different interval of the input range.

‘ RMSE ‘ % severe errors
Standard 0.088 0.036

Input channels 0.095 0.039
Input/output channels 0.071 0.018

Table 5.1: Prediction errors of the three network implementations. The metrics are the root mean

square error and the percentage of test samples in Q for which |7— 7] > 1 ms™3.

of the second layer more interpretable, as they are directly associated to particular sub-
intervals of the input vector. Fig. [5.5(b) shows the performance of the network. It is evident
how in the domain  — Q, where there are no training examples, the predictions improve
significantly with respect to the standard network. This confirms that using channel coding
even just in the input is beneficial to the network.

The third and final network for longitudinal control adopts channel coding in both input
and output. Starting from the same architecture of the previous network, the learnable
fully-connected layer is followed by a new channel layer of 11 neurons, which are decoded
into the scalar value of jerk. Once again, the weights and the biases of this layer are designed
ad-hoc and fixed during the training. Fig. [5.5(c) shows the prediction of the network. This
time, the network responses in the domain Q—¢ are clipped at the maximum and minimum
saturation values of jerk. To give a more precise evaluation of the performance inside the
domain  representing the most probable conditions, Table reports the prediction
errors of the three networks, in terms of root mean square error and percentage of test
samples for which the prediction error is greater than 1 ms™3. It is immediate to notice
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Figure 5.7: Distribution of the prediction errors larger than 1 ms~3 for the three networks: the
standard network in blue, the network with input channels in orange, and the network with in-
put/output channels in green. The histogram bins are 1 ms™2 wide.

that the scores improve significantly with the third implementation. In addition, Fig. [5.7]
plots the distribution of the “severe errors” in ) for the three implementations. Again,
the network with channel layers in input and output shows the most compact histogram,
which is limited in height and also less expanded towards the largest error values.

With a simple implementation example, this work demonstrates that it is possible to
deploy a reliable neural network for a safety-critical application as the computation of col-
lision trajectories. By applying the concept of channel coding to the output of the network,
no spurious activations of neurons can possibly produce dangerous values of jerk. At the
same time, using channel coding in the input layer has the double effect of regularizing the
network—thus improving the overall performance—and exposing the internal layer, which
becomes more interpretable.

5.3 Semantic Spaces

In the preceding section, I have illustrated an approach aiming to mitigate the black box
problem exploiting the idea of channel coding. The approach successfully manages to
render the external layers of the network intelligible, producing “gray boxes”. However,
this is clearly just a partial solution. A more sophisticated approach should focus on the
explainability of the innermost layer of a network, the one capturing the most abstract
representations of the data.

Considering in particular the architecture of autoencoders, I propose a second method
aiming to learn intelligible representations of the driving scenario. I want the represen-
tations to bear a semantic explanation, in the sense that parts of the latent vector are
associated with specific concepts related to the driving context. Albeit partitioning the
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representations may look as an expedient, this idea is related to the notion of topographic
organization largely present in the brain, where similar concepts are encoded in close groups
of neurons [219] 224] 170]. In contexts different from autonomous driving, the idea of as-
signing conceptual meaning to separate groups of neurons in the latent representation is not
new. For example, a work [128] from the computer vision community proposed a method
to generate head poses using a latent space with separate representations for viewpoints,
lighting conditions, and shape variations. Similarly, another work [245] partitioned the
latent vector into semantic content and geometric coding.

My second approach to mitigate the black box problem aims to partition the inter-
nal representations into distinct concepts related to driving. The network achieves the
conceptual organization by adopting a multi-decoder structure learned using semantic seg-
mentation as a supporting task. To demonstrate the effectiveness of this approach, in
the next Chapters [6] and [7} I will present four different neural networks with increasingly
sophisticated implementations oriented to improve the intelligibility of the internal repre-
sentations for the driving context.



Chapter 6

Static Models

Strictly speaking, there is no static perceptual processing in the brain [71, 160]. In the
case of the visual stimulus, however, the ratio of the spatial resolution with respect to the
temporal dimension is much higher than other stimuli, like the auditory one. In image
processing, visual tasks are ordinarily approximated as series of static processing of still
images. This approximation has been extremely fruitful in image processing, and it finds
some support in natural vision, too [I44]. There is also ample evidence that deep neural
models for static image processing are particularly well suited to be extended for dynamic
processing [15], [202]. Therefore, I find it convenient to decompose the development of my
models into a first static phase and a second dynamic phase, aware that this is just a
convenient approximation with respect to the brain neural process.

This chapter describes the first group of models developed for static image processing
of driving scenes. The first section portrays the datasets of driving scenarios used by the
static models. The second section presents the implementations of the two static models.
Then, the third section clarifies the role of segmentation in my overall approach. The final
section summarizes the obtained results.

6.1 Datasets

I have presented in Section §4.2| an overview of some of the most popular and recent
datasets for perception in autonomous driving. Since I want my models to focus on learning
simple and essential concepts of the driving context, namely vehicles and lanes, I choose
the SYNTHIA dataset as the most suitable for this task. As I have mentioned in
SYNTHIA is one of the few large-scale datasets providing lane marking annotations, which
are required for the task of learning the lanes concept. Besides this, at the beginning of
my doctoral research, I have created a minimal dataset of video sequences to train an
essential neural model and become familiar with the architecture of the autoencoder. In
the following, I will give a detailed description of both datasets.
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(b)

Figure 6.1: Driving environment of the Blender dataset: (a) orthographic view of the road track;
(b) three samples from the video sequences in the dataset.

6.1.1 Blender Dataset

During the first stage of my work on autoencoders and neural networks in general, I
have been interested in investigating how much the quality of a dataset can affect the
performance of a neural network. I have found that the most effective way to study this
aspect is to create a custom dataset from scratch using a computer graphics software. To
date, BlenderEl is the most popular and comprehensive open-source 3D suite available. It
features an extensive Python API and a strongly structured user interface [I81], which
makes it an excellent tool for scientific research involving 3D simulations. In the past,
I have adopted Blender more than once for my research, for example, to simulate fire
outbreaks in industrial plant using particle physics [I80], and to optimize the design of
interior lighting using genetic algorithms [182, [174].

Using Blender, I have created a virtual road track and generated video sequences of

'www.blender. org
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Figure 6.2: Samples from one of the tracks in the SYNTHIA dataset. The images show the results
of rendering the same view using different environmental and lighting conditions.

driving scenarios. Fig. [6.1{a) shows an orthographic view of the road track, which is
composed of three lanes where cars can drive in both directions with variable speed. To
ensure enough variety, the track features a succession of curves of different radius alternated
with straight segments, and it also includes slopes and intersections. The road track is
placed in a minimal urban environment, with simple buildings surrounding the track. The
virtual camera is placed on the windshield of the ego car, which drives along the track in a
loop and performs random changes of lane. Fig. [6.1(b) gives an example of the recordings
collected by the ego camera.

I have adopted this dataset in the development of the deterministic versions of the
static models presented in Sections §6.2.1] and §6.2.21 I have incrementally added the
aforementioned features of the track in parallel with the development of the first prototype
of autoencoder. In this way, I have been able to determine how the variety of the dataset
was impacting on the learning process of the network. I will detail the development steps

in Section §6.2.1]

6.1.2 SYNTHIA Dataset

The SYNTHIA dataset [195] consists of a large collection of photo-realistic video sequences
rendered using the game engine Unity. It comprises about 100, 000 images of urban scenar-
ios recorded from a simulated camera placed on the windshield of the ego car. Each video
sequence is acquired at 5 FPS and comes with semantic annotations or several classes—
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including lane markings, which are not commonly found in other datasets.

Despite being artificially generated, this dataset offers a wide variety of reasonably
realistic illumination and weather conditions, occasionally even resulting in very adverse
driving conditions. The dataset features 5 sets of driving sequences; each set contains about
10 recordings of the same track rendered under different environmental conditions: traffic,
weather, season, and time of the day. Fig. [6.2] gives an example of the variety of data
coming from the same driving sequence with different conditions. Moreover, the tracks are
very diverse as well, including freeways, tunnels, congestion, “New York-like cities”, and
“European towns” (as the creators of the dataset describe it).

I have adopted SYNTHIA in the development of the non-deterministic versions of the
static models presented in Sections §6.2.1] and §6.2.2] and the dynamic models in Sections
and I randomly allocate 70% of the video sequences to the training set,
25% to the validation, and 5% to the test set, ensuring no overlap among the three sets.
For a more interesting visualization of the results, I further organize the test set into four
(overlapping) categories based on the driving scenarios: urban environments, freeways,
sunny conditions, and conditions with darkness or adverse weather.

6.2 Models

This section presents the implementations of the static perceptual neural networks. The
networks aim to generate compact representations of visual scenarios without taking into
account the temporal dimension. I have experimented with two different architectures,
both sharing the common feature of a hierarchical arrangement similar to the brain CDZs
and in line with the strategies illustrated in Sections §3.3.2| and §3.3.4]

6.2.1 Net1: Simple Autoencoder

The first model I present here is the most essential. It is composed of two sub-networks:
an encoder g and a decoder fg, as in equations (3.4) and . The first version of the
network was a deterministic autoencoder, trained without supervision using as loss func-
tion the mean squared error (MSE). Later, I have transformed the model into a variational
autoencoder, adopting the loss function of equation . Fig. a) depicts the architec-
ture of the model, and Table[6.1]|shows the numbers of layers and the parameters adopted in
the final version of the model. The input of the network is a single RGB image of 256 x 128
pixels. The encoder is composed of a stack of 4 convolutions and 2 fully-connected layers,
converging to a latent space of 128 neurons. The decoder has a structure symmetric to the
encoder, mapping the 128 neurons back to an image of 256 x 128.

During an initial “prototyping stage”, I have trained the network on the Blender
dataset, introduced in I have improved the dataset in parallel with the devel-
opment of the network. In this way, I have realized how the quality of the dataset affects
the performance of the model as much as the definition of the hyperparameters of the
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Encoder convolution 7Tx7x16
convolution TXTx32
convolution 5 x5 x 32
convolution 5 x5 x 32
dense 2048
dense 512
Latent space 128
Decoder dense 2048
dense 4096
deconvolution 5 x5 x32
deconvolution 5 x5 x 32
deconvolution 7TxTx16
deconvolution TXTx3
Total parameters 18 million

Table 6.1: Parameters describing the architecture of Netl.

network (e.g., number of layers, size of kernels, or learning rate). At first, the virtual
road track had only two lanes and the vehicles were driving in a single direction. For this
reason, the initial network was not able to capture the silhouette of a car driving in the
opposite direction. Therefore, I have added a third lane and randomly assigned the driving
direction of each vehicle. Another issue was that the network got used to the fixed point
of view of the camera with respect to the road and the horizon. Hence, I have adopted two
expedients: random changes of lane to ensure the camera observes the road from all the
three lanes; slopes in the road, so that the horizon is not fixed at the same height of the
camera frame during all the video sequences.

After I got acquainted with the functioning of the deterministic autoencoder and
switched to the variational autoencoder, I have replaced the Blender dataset with SYN-
THIA, described in This dataset is undoubtedly more complex and accurate, so I
have been able to fully test the capabilities of the neural network.

6.2.2 Net2: Conceptual Autoencoder

The following model shares most of its architecture with the previous model. The crucial
improvement is the introduction of a semantic organization in the latent spaces. As dis-
cussed in Section the human brain projects sensory information—especially visual—
into compact representations through the CDZ structures. Some of these representations
constitute the conceptual space, where neural activations encode the entities in the envi-
ronment that produced the perceptual stimuli. It is possible to take inspiration from this
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Figure 6.3: Comparison between the architectures of Net! (a) and Net2 (b), where the green color
denotes the cars concept, and violet the lanes concept.

theory and use the hierarchical architecture of the CDZs as a “blueprint” to design a more
sophisticated neural network, which can learn representations that are not only in terms
of visual features but also in terms of useful concepts [179} 175, [176].

Note that, in the driving context, the entire road scenario is informative. However,
from a conceptual point of view, it is not immediately necessary to infer categories for
every entity present in a scene. Within the aims and limits of this work, it is more effective
to project in conceptual space the entities mostly relevant to the driving task. In this work,
for the sake of simplicity, I have considered the two main concepts of cars and lanes.

Fig. b) presents the architecture of this “conceptual” autoencoder, composed of
one shared encoder and three independent decoders. The choice of parameters is similar
to Netl, as Table shows. The encoder and each of the three decoders maintain the
same structure as in Netl, and the size of the latent space remains unchanged. Still, the
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Encoder convolution 7TxT7Tx16
convolution 7T X 7x32
convolution 5 x5 x 32
convolution 5 X 5Hx 32
dense 2048
dense 512
Latent space [96, 16, 16]
Each decoder dense 2048
(conceptual | visual) dense 4096
deconvolution 5 X 5Hx 32
deconvolution 5 x5 x 32
deconvolution TX7x16
deconvolution 7Tx 7% (13)
Total parameters 35 million

Table 6.2: Parameters describing the architecture of Net2.

internal organization of the latent space is forcefully partitioned. The gray decoder of
Fig. [6.3(b) works in the visual space—just like the decoder of Net!—mapping all the 128
neurons of the latent vector z altogether back into an RGB image. This decoder learns to
reconstruct the input image and is trained in an unsupervised way. On the other hand,
the decoder colored in green takes only a sub-vector zc of 16 neurons from the latent
space and produces a matrix xc of 256 x 128 probability values. The sub-vector of 16
neurons is trained to represent the cars concept, and the output matrix can be interpreted
as a semantic segmentation of the input image, where values indicate the probability of
the presence of cars entities. Similarly, the violet decoder maps only a sub-vector zy,
of 16 neurons representing the lanes concepts into a probability matrix xj, for lanes
entities. These two decoders require supervised learning; their output is converted into
binary images by applying a threshold, and they are trained to minimize the reconstruction
error with semantic segmentation of the input images. Note that segmentation here can
be considered a mere byproduct of the network, as the goal remains the meaningful latent
representations—I will further discuss this aspect in Section To give a mathematical
description of the model, it is composed of four sub-networks:

g : X = Z,
f9v 2= X,
foc @ 2c — A,
for, + ZL— AL,

with Z = RM, Zo = RY¢ and Z;, = RN, The subscript V' denotes the visual space, and
the subscripts C' and L refer to the cars and lanes conceptual spaces respectively. For

A~~~ I~ I/~
S O O O
=W NN =

)
)
)
)
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each latent vector z we have:
z € Z=|z,2c,21], (6.5)

where zc and zp, are the two sub-vectors representing the cars and lanes concepts. The
remaining segment z encodes the rest of the generic visual features, while the entire latent
vector z is a representation in the visual space. The final version of the model has Ny = 128
and N¢ = N, = 16; I will discuss this choice in Section

The loss function of this model can be derived from the basic formulation of equa-
tion . As in the case of Net!, I have initially implemented Net2 in the deterministic
form, using the Blender dataset for training, However, the final version of the model adopts
the variational architecture and is trained on SYNTHIA. By calling © = [Ovy, ©O¢, O] the
vector of parameters of all decoders, at each batch iteration b a random batch B C D is
presented, and the following loss is computed:

L(©,9|B) = Ex + A\vEv + AcEc + ALEL, (6.6)
where
B

By = (1 (1= ko)"‘b) > Ak (ga(zx)|Ipey (2)), (6.7)

B
By ==Y Eygy(ax) log o, (x|2)] (6.8)

B
Ec == Esontic(ao(ebo) 108 Poc (xclzc)] (6.9)

B
EL == Eg iy (ga(e) [log Poy (xelzL)] (6.10)

Few observations are due for the differences between this loss function and the basic
formulation . First of all, here I apply a delay in the contribution of the Kullback-
Leibler divergence in the term Fk. This strategy is called KL annealing and was first
introduced in the context of variational autoencoders for language modeling [2I]. The
motivation for this technique is that the encoder at the beginning of training is unlikely to
provide any meaningful probability distribution ¢ (z|x). Hence, there is a cost factor for
the KL component, which is set initially at a small value kg and gradually increased up to
1.0 with a time constant k. A second difference is the terms FEv, Fg, Er: they represent
the reconstruction errors of the visual scenario and the conceptual entities. The term FEv
computes the error in the visual space using the entire latent vector z, and it corresponds
precisely to the second component in the basic loss . The other two terms E¢ and
E, compute the error in the conceptual space and are slightly different; only the relevant
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portion of the latent vector is considered, as symbolized by the projection operators Il¢
and IIg,.

Another difference of the loss function is the use of a variant of the cross entropy in
equations and , indicated with the symbols pg, and pe,. This variant takes
into account the large unbalance between the number of pixels belonging to one of the
concepts and all the other pixels—a typical situation in ordinary driving scenes. Following
a method first introduced in the context of medical image processing [220], I compensate
this asymmetry by weighing the contribution of true and false pixels with the ratio P of
true pixels over all the pixels in the dataset, computed as follows:

1 M N
P = 37 22 2 Vi (6.11)
i i

where M is the number of images in the dataset, and N is the number of pixels in an
image. The parameter s is used to smooth the effect of weighting by the probability of
ground truth; a value evaluated empirically as valid is 4. The term y; ; is the value of the
i-th pixel (in a flatten order) of the j-th target image of the dataset. I use a different set
of target images for each semantic concept. Hence, I have a set of car labels composed of
binary images where white pixels indicate the presence of cars in the scene, and a set of
lane labels where white pixels correspond to lane markings. Lastly, in the loss equation
the contributions of the terms FEv, Ec, Ey, are weighted by the parameters Ay, Ac, AL.
The purpose of these parameters is mainly to normalize the range of the errors, which
varies widely from visual space to conceptual spaces. Hence, I set Ay # Ag = AL.

I have mentioned in Section that the idea of partitioning the latent vector into
semantic components is not new. However, my approach is different: while I keep the
two segments zc and zp, disjointed, the entire z learns representations in the visual space.
That is why the gray decoder of Fig. b) takes as input the entire latent space. Another
advantage of my approach concerns the well-known crucial issue of lack of transparency in
deep neural networks, amply discussed in Chapter ol This method mitigates the issue by
explicitly assigning semantic meaning to the components of the inner representation.

6.2.3 Role of Segmentation

When looking at the results of the next section, for example Fig. [6.5] it may seem that the
outcome of the proposed models is essentially image segmentation. Image segmentation is
the process of partitioning an image into meaningful subsets. It has been one of the popular
tasks in classical image processing [155, 212, [I150] and continues to be a major topic in the
era of deep learning for computer vision [6, 29 148]. However, image segmentation has
limited relevance to my research; even if the outputs of the networks here presented indeed
include the segmentation of cars and lanes, this is not the objective of my work.
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Input Frame Output of Net! Output of Net2

Figure 6.4: Comparison between the deterministic implementations of Net! and Net2, on the
Blender dataset.

The models presented here and in the next chapter aim to learn representations of
the driving scenario that can be exploited for imagination in the driving context. I want
these representations to be, first of all, meaningful. The representations must bear a
semantic explanation, i.e., parts of the latent space are associated with concepts useful in
the context of driving—cars and lanes in this case. The models learn these meaningful
representations by exploiting semantic segmentation as a supporting task, using the multi-
decoder architecture described in Section which forces the partitioning of the internal
representations into distinct concepts. In this context, segmentation can be considered
just a practical way to achieve the separation of the semantic concepts in the latent space.
Hence, semantic segmentation is simply a byproduct of my overall approach and not its
primary focus.

6.3 Results

Here I illustrate the results obtained by the two perceptual models Net! and Net2, which
are both trained for 200 epochs. First, I present some qualitative comparisons between the
networks. Fig. [6.4] compares the outputs of the networks produced from two input samples
of the Blender dataset. For this comparison, I have used the deterministic implementations
of both models. Note that the output of Net2 is actually a vector of three images: one
reconstructing the visual scene, and the other two segmenting the cars and lanes elements
in the scene. For an easy visualization, I display the three outputs as a single image,
where the background is the reconstruction in the visual space and the colored overlays are
segmented entities—cars in green/cyan and lanes in yellow. The results of Net! (central
column) decently reconstruct most of the scene, including the landscape in the background.
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Input Frame Output of Net! Output of Net2

Figure 6.5: Comparison between the variational implementations of Net! and Net2, on the SYN-
THIA dataset.

However, the network fails to capture the features that change faster than the surroundings
and appear more rarely—the cars. This is what happens in the samples of Fig. where
the blue and green cars disappear almost completely. On the other hand, the results
of Net2 (right column) demonstrate the advantage of having a latent space semantically
organized. Although the visual reconstruction of the scenario is still not sensible to some
rapidly changing features, the specialized decoders do not fail to capture the conceptual
entities. The segmented output correctly detect the lane markings and the cars, even if
the segmented silhouettes are not very precise.

Fig. [6.9] presents a similar comparison, but it considers the variational implementa-
tions of the networks and is performed on the SYNTHIA dataset. It is evident the varia-
tional Net! performs better than the deterministic Net! in detecting the moving vehicles.
Nonetheless, Net2 prevails again in extracting with precision the conceptual entities. This
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Learning rate IoU car ‘ IoU lane
1x 1072 0.0000 0.0000
1x1073 0.7383 0.6368
5x107* 0.7391 0.6599
1x107% 0.7702 0.6277
5x107° 0.7584 0.6083
1x107° 0.7086 0.5502
1x107° 0.1187 0.1734

Table 6.3: Performance of Net2 using different values of learning rate. The final choice adopted
in the model is marked in bold.

Nc = N, ‘ IoU Cars ‘ IoU Lanes

48 0.7814 0.6460
32 0.7768 0.6334
24 0.7709 0.6440
16 0.7702 0.6277
12 0.7539 0.6139
8 0.7194 0.5965
4 0.6162 0.5123

Table 6.4: Performance of Net2 using different numbers of neurons for the cars and lanes concepts
in the latent space, while keeping the overall size Ny = 128. The final choice adopted in the model
is marked in bold.

is especially true in the scenarios with adverse lighting conditions, like the last two rows of
Fig. Netl is not sensible to the vehicles in the shadows, while the specialized decoders
of Net2 are able to segment the cars entities with considerable accuracy.

Moving to a quantitative evaluation, I now discuss the choice of two important hyper-
parameters of Net2. Table [6.3] presents how the learning rate affects the reconstruction of
the cars and lanes entities. I measure the goodness of the results using the intersection
over union (IoU) metrics separately for each concept. In the final version of the network, I
have chosen to favor the cars concept. The rationale for this decision is that an error in the
detection of a vehicle can have much more serious consequences than a similar error for the
lane markings. Moreover, in a sequence of frames, the lane markings change appearance
more slowly than moving vehicles. Therefore, detecting an anomaly in the reconstruction
of the lanes entities results easier than in the case of cars; that is why the cars concept
requires more accuracy.

Table shows the impact of the sizes Nc and Ny, on the performance of Net2. Nc
and Ny, are the number of neurons in the latent space representing the cars and lanes
concepts respectively, as defined in In the final version of the model, I have set
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N¢ = N, = 16, even if this does not correspond to the best IoU score. The reason I
prefer having a latent representation of concepts as compact as possible is twofold: first,
with a lower dimensionality, I force the model to capture the absolutely essential features
from the data, discarding the non-relevant information; second, if the representation of a
single concept occupies only a small fraction of the entire latent space, the model can learn
several different concepts at the same time. Here, I have decided to assign 16 neurons to
each concept with the idea that, in future works, I can use the same architecture to learn
more than two concepts, adding for example pedestrians and bikes. Therefore, the final
model adopts the most compact size not causing a severe drop in the performance, unlike
in the cases of No = Ny, < 12. I will present more results on Net! and Net2 in Section §7.2]
when I will compare them with Net3, a conceptual variational autoencoder that integrates
the temporal dimension in the generation of the latent representations.
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Chapter 7

Dynamic Models

After presenting the models tackling the static problem, it is now the turn of extending
to the dynamic problem, where the input are temporal sequences of driving scenes. This
chapter is organized in a first section describing the model implementations and illustrating
the use of self-supervision in my approach. The second section concludes with the results
achieved.

7.1 Models

This section presents the implementations of the two neural models taking into account
the temporal dimension: a perceptual network and a predictive network. The perceptual
network is the third step in the development of a model learning compact and informative
representations of driving scenarios. The predictive network is an example of how the
representations can be exploited for various downstream driving tasks: in this case, the
prediction of long-term future frames in a video sequence.

7.1.1 Net3: Temporal Autoencoder

The following model is the final development of an autoencoder able to learn meaningful
representations of the driving scenario. My work aims to learn representations oriented to
the driving task from a static and a dynamic perspective [177]. In Net2, I have implemented
the static perspective, i.e., a conceptual organization of the latent representations. Net3
adds the dynamic perspective by forcing a temporal consistency in the representations.
The model learns how the concepts represented in the latent space will change in future
driving scenarios. Note, however, that this model can predict only short-term windows,
whereas longer-term predictions will be the subject of Net4. The model achieves repre-
sentations consistent in the temporal dimension by including a recursive module in the
architecture of Net2 and using self-supervision—the use of self-supervision is detailed in
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Figure 7.1: Architecture of Net3. The green color denotes the cars concept and violet the lanes
concept. The decoders with dashed-line border represent the same instances of the decoders with
solid-line border.

Section Fig.[7.1]shows the architecture of Net3, and Table[7.1] describes the parame-
ters used in the final implementation. The dataset of choice is again SYNTHIA. The model
shares substantially the same architecture of Net2, except for an additional module based
on a simple recursive neural network (RNN) [59], and a training procedure significantly
different from the previous network.

To better explain how the training works, let me introduce the notation x(*) to indicate
the image frame t steps ahead of frame x. Similarly, z® refers to the latent representation
of the frame t steps ahead of the frame represented by z. At each iteration of the training,
the model receives as input two consecutive frames x and x(!). A common encoder processes
the frames and computes two latent representations z and z1). Then, a RNN takes the
latent vectors and predicts z(®, which represents the successive frame in the sequence.
Finally, a 3-decoders structure (the same of Net2) expands z, zM) and z® into conceptual



7.1. MODELS 69

and visual images. To sum up, at each iteration, the inputs of the model are x and x(),
while the outputs are the visual and segmented images for x, x(*), and x(2). The newly
introduced recursive module is implemented using a basic RNN with a time window of 2
and a set of parameters ¥, and it is described by the following function:

hy (z7 z(1)> —zr~z?. (7.1)

The formulation of the loss function is similar to equation except for two additional
terms for the recursive prediction:

£(0,0,9|B) = L(O©,d|B)+E + E", (7.2)

where the first term is the loss of eq. and the additional terms are defined as follows:

E' =Xy Ey, + A\ E¢ + Ay, Ey, (7.3)
E" =\ Ey + M EG+ M EY. (7.4)

The expressions of the remaining terms are the following:

Bl = - iEZN%(ZM logpoy (xV12)]. (7.5)
EG = - zijEzcwnm(zxm)) log o, (' 2c)] . (7.6)
Bf =~ iEML(q@(zM) log e, (x1|2)] (7.7)
B == 3By ooy (<7 1o (500 (x)) )] 79
B == 3 Bt ot (<2 1 (1o (s () )] )
B = 3 Eapa [, (7 10 (e e (<))))]. 70

The contributions of the terms EY,, E¢,, E} is similar to that of Ev/, Ec, Er,, as they represent
the errors in the reconstruction of the frame successor of x. The temporal coherence is
measured by the terms EY, E{, E', which represent the error between the images decoded
from the latent vector predicted by hg and the targets relative to the frame 2 steps ahead
of x.

Once the training is completed, the network used for inference discards the recurrent
module and reverts to the same architecture of Net2. Note that the purpose of the network
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Encoder convolution 7TXx7x16
convolution 7 X7x 32
convolution 5 X5 x 32
convolution 5% 5 x 32
dense 2048
dense 512

Latent space [96, 16, 16]

Recurrent layer 128 x 2 — 128

Each individual decoder dense 2048

(conceptual | visual) dense 4096
deconvolution 5% 5 x 32
deconvolution 5 x5 x 32
deconvolution 7Xx7x16
deconvolution 7 x7x(1]3)

Total parameters 35 million

Table 7.1: Parameters describing the architecture of Net3.

is still to learn perceptual representations of driving scenarios and not to predict in the
future, which is instead the aim of Net/. Therefore, there is no need for the recurrent
module during inference, as the parameters of the encoder have already captured the
information on the temporal aspect.

7.1.2 Netj: Recurrent Network

The last network I present is an example of how the results obtained by the previous model
can be exploited to perform long-term prediction of driving scenarios. In the previous
Sections and I have described the three steps towards a perceptual
model able to encode a visual scenario into representations that are conceptually organized
and temporally consistent. Net8 is the final result of this development.

The following network works exclusively with the latent representations. Once the final
training of Net? was completed, I have deployed its encoder to generate a dataset of latent
vectors from the frames in SYNTHIA—Net/ is trained with this new dataset. In this way,
the long-term prediction can be realized entirely within the latent space. Moreover, having
a compact representation allows the recurrent network to have a complex architecture with
a limited number of parameters.

Fig. shows the architecture of the network. It is composed of two modules: the first
module consists of multiple levels of stacked recurrent sub-networks; the second module
comprises multiple parallel recurrent sub-networks predicting successive latent vectors in
the sequence. In the first module, each stacked sub-network sends its entire output sequence
to the next sub-network input. In the second module, instead, the parallel sub-networks
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Figure 7.2: Architecture of Net/, where the green color denotes the cars concept and violet the
lanes concept.

Stacked recurrency GRU 128 x 8 — 128 x 8
GRU 128 x8 — 128 x 8
Parallel recurrency GRU 128 x 8 — 128
GRU 128 x 8 — 128
GRU 128 x 8 — 128
GRU 128 x 8 — 128
Total parameters 600,000

Table 7.2: Parameters describing the architecture of Net/.

yield only the last output in the time sequence. All the sub-networks of the model share
the same core architecture implemented with gated recurrent units (GRUs) [34]—I will
discuss this implementation choice in Section The overall model is described by the
following function:

=: 2N zNo, (7.11)

<
1

r= (Z7 Z(l)) T 7Z(N171)> — [217227 e 7ENO] ~ |:Z(NI)7 Z(NI+1)7 e 7Z(NI+NO)j| ) (712)

where Ny is the length of the input sequence, Ng is the length of the future sequence to be
predicted, and Z is the set of parameters of the model. In the final implementation, I have
set N1 = 8 and Ng = 4, and I have used 2 stacked GRUs and 4 parallel GRUs, as described
in Table Lastly, I want to highlight that this model does not use any odometry or
other kind of information for the prediction, just the rich representations learned by the
accompanying autoencoder.
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7.1.3 Role of Self-supervision

Having clarified with Section the role of segmentation in my work, now I discuss
the connection with another important machine learning domain called self-supervision.
Unlike unsupervised learning, self-supervision is not motivated by biological plausibility; it
is instead a way around the ever-present issue of manual data labeling in large datasets of
images [I11), [158]. Usually, self-supervision is realized by designing pretext tasks without
any particular relevance for the agent but useful for the automatic generation of pseudo-
labels. While learning to solve the pretext tasks, the model is forced to capture certain
visual features of images that are ideally useful for the core task of the agent.

The computer vision community has proposed several kinds of creative pretext tasks for
self-supervision. A prevalent task is colorization [I31], where a color image is first converted
to graylevel, and the model learns to reconstruct the color version. Another kind of task
is solving jigsaw puzzles made from patches of the input image [I61]. There are also self-
supervision tasks that are indeed useful to the overall objective of the model, but the
labeling is assumed by analytical methods [33]: a common example is the exploitation of
the epipolar constrains in the stereo image pair as supervision for training a monocular
image depth estimation model [30)].

On the other hand, a small number of approaches exploit prediction as a self-supervision
task. My models adopts this idea, using prediction of future frames to bias the internal
representation towards the ability to learn the dynamics of objects in the scene. In this
sense, prediction for self-supervision shows a connection with the cognitive idea of predictive
brain I have discussed before in Section Moreover, besides having a well-structured
internal organization, the representations learned by my models have a second important
feature: they can be exploited for imagery, the mental process introduced in Section
Imagery can result from a latent representation of a scenario seen before, or it can be
triggered by a prediction of a future scenario based on past ones. It can also results from
manipulating a latent space, generating scenarios the model has never seen before.

Still, not all approaches maintain a sound cognitive account of self-supervising pre-
diction in the context of vision. For example, a recent work [229] arranges images in
overlapping blocks by rows and columns, scanned in sequence with recursive networks at-
tempting to “predict” the next block. This account of prediction is clearly an artifact with
no correspondence in a cognitive agent. Instead, my work aims to include effective forms
of prediction: prediction as imagination, and prediction as the construction of a probable
future scenario.

One of the few works based on a cognitive account of prediction is the model proposed
by Ha and Schmidhuber [85], which I have already briefly discussed in Section This
model shares some fundamental components with my architectures: the use of variational
autoencoders and recursive neural networks. There is, however, a significant difference
in the objectives of the models. The work of Ha and Schmidhuber is a complete agent
and includes other components not considered in my models, like a controller responsible
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Net2 Net3 FCN-8 U-Net
IoU car ‘ IoU lane | IoU car ‘ IoU lane | IoU car ‘ IoU lane | IoU car ‘ IoU lane

City | 0.7834 0.6487 0.8305 0.7155 0.8033 0.6109 0.8552 0.7451
Freeway | 0.7755 0.5840 0.7952 0.7490 0.7587 0.6959 0.7975 0.8666
Sunshine | 0.7736 0.6283 0.8077 0.6970 0.7741 0.6652 0.8351 0.8128
Darkness | 0.7682 0.6274 0.7943 0.7116 0.7450 0.6385 0.7914 0.7927

All | 0.7702 | 0.6277 | 0.7992 | 0.7062 | 0.7558 | 0.6484 | 0.8076 | 0.8001

Table 7.3: Comparison of the advanced autoencoders Net2 and Net3 with other popular models for
semantic segmentation. The scores are divided into cars and lanes classes, and they are organized
into the four categories of driving conditions.

for determining the course of actions of the agent. Their wider architecture comes at the
expense of a very shallow perceptual capability. Much like complex neural networks of
the past generation, this model is an interesting proof of concept working in synthetic
simplified examples. The simple game-like scenario on which the model was tested has
an overly simplified visual appearance, not using perspective and with very low resolution.
Conversely, my aim is not to train an agent but to learn the perceptual capability needed for
visual imagery, including the projection of hypothetical driving scenarios in visual space.

7.2 Results

Here I illustrate the results of the two dynamic models together with some comparisons
with the static models presented in Chapter [6] In the final implementations, both dynamic
models use the SYNTHIA dataset, Net3 is trained for 200 epochs, and Net/ for 100 epochs.

First, I present the results achieved by Net3. Fig. shows the images produced from
four different frames of the test set, one for each of the driving categories I considered, as
described in Just like the results of the static models, I display the output of the
three decoders as a single image to facilitate understanding of the results. In addition, for a
practical reference, the right column of the figure displays the target images with the same
colored overlays. Although Net3 is capable of predicting a successive frame in the future,
as I have mentioned in the objective of the network is to encode visual scenarios into
compact abstract representations. Therefore, Fig. shows the result of Net3 receiving a
single input image, compressing it into a latent vector, and expanding it back into visual
and conceptual images. The results are satisfying in all four conditions, even when the
illumination is particularly adverse, like in Fig.|7.3[(b) and (d). The network is always able
to detect the vehicles with enough precision, including the very distant cars. Moreover,
the network has learned to recognize complex patterns of lane marking and pedestrian
crossing, as in Fig. [7.3|a).



74 CHAPTER 7. DYNAMIC MODELS

Input Frame Output Frame Target Frame

Figure 7.3: Results of Net3 for four samples belonging to different categories of driving conditions:
(a) city, (b) freeway, (c) sunshine, and (d) darkness. The cyan overlay indicates the cars entities,
the yellow overlay the lanes entities.

Secondly, I illustrate a quantitative comparison between Net2 and Net3. Table [7.3]
reports the scores for the cars and lanes classes grouped into the four driving conditions
mentioned before, together with the scores on the entire test set. In addition, I include
in the comparison two other well-known modelsEl for pure semantic segmentation, FCN-8
[138] and U-Net [194], both using VGG-16 [216] as base model. The scores demonstrates
that Net$ learns more consistent latent representations compared to Net2 and the FCN-8
model, in all the categories of driving sequences. For both Net2 and Net3, it is evident
how the task of recognizing the cars concept achieves better scores compared to the lanes
concept. An explanation of why the latter task is more difficult can be the very low ratio

!The Keras implementations I have used are available at the following repository:
https://github.com/divamgupta/image-segmentation-keras
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Input Sequence Output Sequence Target Sequence

Figure 7.4: Result of Net/ predicting 4 future frames from an input sequence of 8 frames, in a
driving scenario on a freeway.

of pixels belonging to the class of lanes over the entire image size. Consequently, lane
markings get easily occluded by other elements in the scene. However, the U-Net model
outperforms all other models, although the scores are still comparable. I would like to
stress again that the purpose of my networks is not mere segmentation of visual input, as
discussed in Section The segmentation operation must be considered a supporting
task, forcing the models to learn a semantic organization of the representations. This
internal organization is totally missing in the U-Net and FCN-8 models.

As regards Net4, Figs.[7.4to[7.7) present four results of visual prediction for the different
categories of driving scenarios. Each figure displays the 8-frames input sequence and the
4-frames predicted sequence in the future, together with the target sequence as a reference.
Since the SYNTHIA sequences are acquired at 5 FPS, the network is predicting 0.8 seconds
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Input Sequence Output Sequence Target Sequence

Figure 7.5: Result of Net predicting 4 future frames from an input sequence of 8 frames, with
sunny scenario.

in the future. The results are fairly accurate in all the scenarios, showing that the model can
predict a variety of changes in the cars and lanes entities through time. In particular,
the results in the “freeway” and “sunshine” scenarios (Figs. and demonstrate
that the model can predict an overtake maneuver from the left as well as from the right.
Another interesting result is the different predictions in presence of a crosswalk: in the
“city” scenario (Fig. , a car is moving perpendicularly to the lane of the ego car, so
the network correctly predicts to hold still at the crosswalk; in the “darkness” scenario
(Fig. , cars are driving in the same direction of the ego car, so the model predicts not
to stop at the crosswalk and moves forward.

Moving to quantitative results, Table reports the performance of Net/ for the
different categories of driving sequences. It is immediate to note that the cars scores are
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Input Sequence Output Sequence Target Sequence

Figure 7.6: Result of Net/ predicting 4 future frames from an input sequence of 8 frames, in a
driving scenario of a city.

always higher than the lanes scores, just like in Table However, the cars predictions
worsen more significantly for the distant frames with a decay of 16%, while the 1anes scores
lose only 9%. This can be explained by the fact that, generally, in a driving sequence the
lane markings change more smoothly and predictably compared to the cars, which can
modify their trajectory all of a sudden.

Table[7.5| presents another quantitative comparison of different implementations of Net/
based on the type of internal recursive node: basic RNNs [59], GRUs [34] and LSTMs [96].
The results indicate the GRUs are the best choice in my case. While it is not surprising that
the basic RNNs obtain the lowest score, the fact that GRUs outperform LSTMs might seem
unexpected. The reason could be twofold: first, the number of parameters in the model
increases by more than 30% when switching from GRUs to LSTMs; second, in the context
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Input Sequence Output Sequence Target Sequence

Figure 7.7: Result of Net/ predicting 4 future frames from an input sequence of 8 frames, in a
scenario with adverse illumination.

of driving, it is not so crucial to memorize scenarios occurred several seconds before. It
is well known that LSTMs are the most powerful recursive node for long-term prediction,
because of their ability to keep track of events in the remote past. However, while driving,
the environment and the surrounding vehicles change so rapidly that it is often useless
to try to draw a connection between the current scenario and, for example, the scenario
seen 10 seconds before—note that the typical timescale of vehicle dynamics is less than
one second. This situation is clearly far from Natural Language Processing, where LSTMs
give their best.
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Frame 9 Frame 10 Frame 11 Frame 12
IoU car ‘ IoU lane | IoU car ‘ IoU lane | IoU car ‘ IoU lane | IoU car ‘ IoU lane

City | 0.7543 0.5692 0.7173 0.5472 0.6799 0.5421 0.6381 0.5220
Freeway | 0.6928 0.5197 0.6336 0.4698 0.5967 0.4487 0.5589 0.4296
Sunshine | 0.7223 0.5338 0.6768 0.5001 0.6661 0.4831 0.6106 0.4693
Darkness | 0.7000 0.5226 0.6570 0.5120 0.6130 0.5014 0.5834 0.4832

All | 0.7078 | 0.5268 | 0.6639 | 0.5075 | 0.6315 | 0.4946 | 0.5931 | 0.4782

Table 7.4: Performance of Net/ predicting a 4-frames sequence from a 8-frames input sequence.
The scores are divided into cars and lanes classes, and they are organized into the four categories
of driving conditions.

Frame 9 Frame 10 Frame 11 Frame 12
IoU car ‘ IoU lane | IoU car ‘ IoU lane | IoU car ‘ IoU lane | IoU car ‘ IoU lane

RNN | 0.6836 0.4884 0.5963 0.4231 0.5100 0.3957 0.4598 0.3668
GRU | 0.7078 0.5268 0.6639 0.5075 0.6315 0.4946 0.5931 0.4782
LSTM | 0.6810 0.5196 0.6604 0.4911 0.6426 0.4696 0.6119 0.4623

Table 7.5: Comparison of different recursive nodes in the implementation of Netj.

7.2.1 Analysis of the Latent Representations

In the following sections, I discuss in more detail the properties of the latent representations
and show some interesting manipulations on the vectors. Let me start with a statistical
evaluation of the latent representations learned by the three presented models of autoen-
coder. Table reports the scores for two indicators measuring the temporal discrepancy
and the predictivity error. The first indicator £ measures the ratio between the difference
of two latent vectors that are contiguous in time and the variance over the entire dataset
Z of latent vectors. Therefore, this indicator evaluates how much subsequent vectors have
consistent neural values—the lower the score, the better. The evaluation is performed
independently for each neural unit of the latent vector and then averaged:

N Yz (2 — 24" 2
ézszlMZ ez(w ) : (7.13)

7

(1)

where z; is the i-th element of z, z; "’ is the i-th element of the successor of z, v; is the i-th
element of the variance vector of z over Z, and M is the cardinality of Z.

The second indicator p measures the “predictability” of the representations, i.e., how
well one can predict from two consecutive vectors a third vector by linear regression. The
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‘ Temporal discrepancy £z ‘ Predictivity error pz

Net1 0.299 0.186
Net?2 0.297 0.189
Net3 0.180 0.077

Table 7.6: Statistics on the latent representations learned by the presented perceptual models. For
both indicators, the lower the better.

metric is the mean square of the residual obtained when using two consecutive latent
vectors to predict one neuron of a third vector by linear regression. To have an acceptable
computation time, this index is computed on a subspace Z’ ten times smaller than Z.
By calling (A, b) the residual of the least squares approximation of the normal equation
Ax = b, p can be written as follows:

1 Nv
pz = N—V ZE z zW , Zi(2) . (7.14)
i e L) s

Table [7.6] clearly shows how Net! and Net2 have comparable scores, while Net3 performs
significantly better. In fact, only Net3 introduces the temporal consistency inside the latent
representations, and this is well reflected in the results.

Fig. [7.8] presents a visual inspection of the latent representations learned by Net2 and
Net3. For each model, the left column of the figure shows four images of the same driving
scenario under different lighting conditions. For each input image, I plot the values of the
128 neurons composing the latent representation computed by the model, separating the
16 neurons representing the cars entities (second column from the left), the 16 neurons
representing the lanes entities (right column), and the remaining 96 neurons representing
generic visual features (third column from the left). Ideally, only the generic 96 neurons
should change among the four cases, because the input images differ only in the lighting
conditions and have almost identical cars and lanes entities. Comparing the performance
of Net2 (a) and Net3 (b), it is clear how the latter learns more consistent representations.
In the case of (b), the variation in the neurons representing the cars and lanes concepts
is minimal. The variation in the general 96 neurons is also very localized, and the neurons
exhibit a similar overall distribution. This fits with the fact that the four images have the
same surrounding (the trees, the soil on the right). Conversely, the representations learned
by Net2 do not appear as consistent; the cars and lanes neurons change visibly for each
input, and even the other 96 visual features do not share any particular pattern in the
four cases. Therefore, it is safe to conclude that forcing at once semantic organization and
temporal coherence leads to more robust and disentangled representations.
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Figure 7.8: Visualization of the latent representations learned by Net2 (a) and Net3 (b), for four
images depicting the same scenario under different lighting conditions. Each row shows the values
of the 128 neurons of the latent representation of the image on the left. The neurons corresponding
to the cars and lanes concepts are plotted separately.
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Figure 7.9: Result of swapping the conceptual segments between two latent spaces learned by
Net3. Image (c) is the result of combining the cars and lanes neurons of (a) with the rest of the
vector of (b). Image (d) is the opposite, combining the cars and lanes neurons of (b) with the
rest of the vector of (a).

7.2.2 Manipulation of the Latent Representations

Here I present two interesting ways of manipulating the latent vectors to generate rep-
resentations of novel scenarios. The first manipulation comes from exchanging segments
between latent representations of different images. Fig. [7.9] shows the imaginary scenarios
created by swapping the neurons of the cars and lanes concepts between two input im-
ages. Fig. c) is decoded from a latent vector composed of z¢ and zp, taken from the
representation of (a), and z coming from the representation of (b). Similarly, Fig.[7.9{(d) is
the result of combining z¢ and zr, from the representation of (b) together with z from the
vector representing (a). This is a nice example of how the model can create artificial—yet
plausible—scenarios.

The second type of manipulation is the interpolation between latent vectors. Fig.
shows an example of interpolation using the latent representations learned by Net3. Each
column is the result of taking the latent vector of a first frame (first row in the figure)
and linearly interpolate it with the latent vector of a second frame (last row). I generate
5 intermediate latent vectors, which are passed to the decoders of Net? to produce novel
images. The images prove to be a smooth and gradual shift from the first input to the
second, and they successfully provide new plausible driving scenarios not seen before by
the network.
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Figure 7.10: Two examples of interpolation between latent representations learned by Net3, for
sunny scenarios (a) and scenarios with adverse illumination (b). The first two rows display the first
input frame, with and without the colored overlay showing the cars and lanes entities. Similarly,
the last 2 rows show the second input frame. The 5 central rows are the result of the linear
interpolation between the latent representations of the two inputs.
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Output Sequence Reference Sequence Output Sequence Reference Sequence

()

Figure 7.11: Two examples of Net4 emulating mental imagery, in a urban driving scenario (a) and
a freeway (b). Odd columns show the output of the model, while even columns are a reference of
the corresponding frames in the temporal sequence.
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7.2.3 Emulating Imagery

As final result of the dynamic models, I present the outcome of emulating the phenomenon
of mental imagery using Net/—1I have introduced the concept of mental imagery in Section
§2.1.2 To mimic this process, the network is called iteratively and each iteration receives
as input the output of the previous iteration. In the context of recurrent neural networks,
this technique is sometimes called hallucination. In the specific case, at each iteration I
take the first of the 4 output vectors and use it as the eighth input vector of the next
iteration.

Fig. [7.1]] illustrates the results of 9 iterations of imagery for two different scenarios,
along with the corresponding reference frames (the input images are omitted for practical
reasons). Note that, although the imagery process must inevitably start with all input
frames taken from the original dataset, the results provided in the figure comes from
forward iterations when all input vectors are result of previous iterations. In both driving
scenarios, it is possible to appreciate how the model can predict a quite plausible future
from just its own representations of the world.
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Chapter 8

High-level Representation Spaces

All the models presented in the previous chapters share the idea of a solution close to
the way the human brain solves the problem of visual perception. Along these lines, the
preferred reference system for representations is the visual space, organized along two
dimensions just like most cortical maps in the visual system. This is the space where the
fundamental simulative process of imagination takes place.

Most of the existing systems for automated driving do not use a reference system re-
sembling the visual space or any mental space of representation. Usually, they have a
modular structure, as described in Section and each module uses its own specific rep-
resentation space. The modules at higher levels generally adopt representations focused on
mathematical simplicity and practical implementation, rather than biological plausibility.

Since some of these representation spaces are now well established, it is important to
verify the possibility of extending my research towards higher-level spaces of representation.
This chapter describes my early explorations in this direction. This work is the result of a
collaboration with the Intelligent Vehicles group from TU Delft, where I had the pleasure
of being a visiting researcher under the supervision of Dr. Julian F.P. Kooij.

The first section summarizes the existing high-level representation spaces relevant in the
context of autonomous driving. Moreover, it presents my attempt to formulate a variant of
representation space that could conciliate between mathematical efficiency and biological
plausibility. The second section describes the architecture of the model and the different
choices of input and output formats I have experimented with. The third section presents
the preliminary results obtained so far, with a description of the custom metrics adopted
to evaluate the model performance. The last section illustrates a further possible direction
of this line of research.

87
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8.1 Abstract Representations of Driving Scenarios

A straightforward approach to represent a driving scenario is to use a vector of physical
quantities for each relevant object in the scene. For example, the vector o of an object
k can be composed of the spatial coordinates of the object center, the heading 1), and the
speed v:

T
o) — X(k),Y(k),Z(k),dzk,vk] : (8.1)

If the object is a vehicle, additional components can be the length and width of the vehicle.
Then, the overall scenario is characterized by the following set:

O = {0k} ¢ [0..N] > (8.2)

where the ego car is usually indicated with £ = 0. This example of abstract representa-
tion relies on basic mathematical entities, like vectors of continuous real values and sets.
Therefore, it is easy to employ this representation in several conventional algorithms for
vehicle control. In fact, this approach has been widely adopted in the field of autonomous
vehicles [7), 234, [171], although sometimes the values in equation are discretized to
save representation space [166] [188].

This kind of representation finds no correspondence with any brain mechanism. First
of all, the variable O in equation is identical for all the possible permutations of its
elements, while in a brain process every composite representation is linked to a specific
physical layout of components. More importantly, it is particularly difficult to implement
the case where O contains an arbitrary number of components: this issue implies a severe
incompatibility with cognitive processes. The problem derives from an algorithmic draw-
back of artificial neural networks, as that managing representations with a variable number
of dimensions is almost intractable.

8.1.1 Occupancy Grids

The need for a representation dealing with a variable number of objects has lead to the
research for an alternative feasible strategy. A valid solution has come from the field of
robotic perception and navigation, under the name of occupancy grids [58]. An occupancy
grid G is a 2D lattice of binary elements g; j, where the element with index 7, j is related
to a patch A; ; of the continuous world space defined as follows. Let the Z-axis be parallel
to the heading of the ego car pointing in the travel direction, the X-axis be on the ground
plane perpendicular to Z pointing towards the right of the ego vehicle, and the Y-axis be
perpendicular to the ground plane pointing upwards. The patch A; ; is the area on the
ground plane defined by a neighborhood of the point (X;, Z;) in the world space:

AX AX AZ AZ
XE{XZ‘—,Xi+:|,Z€|:Zj—,Zj+]}, (83)
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where the space tessellation is uniform:

AX = X;—-X; Vi (8.4)
AZ= Zin—-2%; Vi (8.5)

The occupancy grid can be also represented as a binary image of width W and height H.
In this case, the origin (0,0) of the system of coordinates in the image space be in the
top-left corner, while the bottom-right corner of the image has coordinates (W —1, H —1).
Assuming that the occupancy grid G is representing a space occupied by a set O of objects,
the pixels of the binary image are defined as follows:

1 if JopcO|[X®, ZW] € A;;
gij = . ) (8.6)
0 otherwise
where the pixel coordinates are computed as follows:
w X
= — 8.7
i 5t Ax (8.7)
Zi—7Z

1 = H — J . N
j A7 (8.8)

Therefore, the pixel g; ; indicates if the corresponding patch A; ; of world space contains
an object. The parameter Z represents the length of the “blind zone” immediately in front
of the ego vehicle which is not visible from the point of view of the camera. Note that,
since the set O of vectors identifying the objects is the result of measurement affected by
uncertainty, the values of g; ; are often probabilities in [0...1] (graylevels) rather than
simple binary values.

Probabilistic occupancy grids have become the standard representation in robotics.
There are now many established algorithms for occupancy grid mapping, i.e., the generation
of consistent maps from noisy and uncertain measurement data. Grid mapping is achieved
by sequencing the robot into many possible poses, acquiring measures, and incrementally
adapting the probability values g; ; [225]. Occupancy grids have become a popular format
of representation also for high-level modules of autonomous vehicle systems, even before
the appearance of deep learning [232] 47]. They are well suited for artificial neural networks
as well, because the format of a 2D matrix combines effectively with convolutional neural
networks [109, 139, [142]. Moreover, values in a grid cell can span multiple channels,
including additional information such as the semantic of the object or its velocity [97, 109,
61]. Currently, occupancy grids are frequently adopted in deep learning solutions for motor
control [210} [104], and a recent overview of their applications can be found in [153].

8.1.2 Biologically Plausible Occupancy Grids

The principle of imitating human cognition and brain organization needs always to be bal-
anced with the advantages of structures and processes suitable for computers. In the case of
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w=50 w=10 w=>H w=2 w=1

Figure 8.1: Same traffic scenario (leftmost image) represented by warped occupancy grids rendered
with different values of w.

high-level representations of driving scenarios, achieving this balance turns out to be more
tricky, mainly for two reasons. First, there are fewer neuroscientific explanations in higher-
level visual representations than in early visual processing stages. Second, occupancy grids
offer undeniable computational advantages because of their matricial format.

In this section, I investigate how to improve occupancy grids towards a biological plau-
sibility and, at the same time, how to preserve their computational advantages. I focus
on modifying two key aspects that go against biological plausibility: the point of view and
the uniform tessellation of the world space. Firstly, an occupancy grid—as convention-
ally used in the context of driving—corresponds to a top-down view of the world space,
the so-called bird’s-eye view (BEV). This orthographic view is not only impossible for
a human driver but also challenging to obtain with on-board sensors. Without the use
of a LIDAR, obtaining a BEV requires an inverse perspective mapping [140] of the front
camera, a transformation that is still prone to errors and distortions, even though it has
been greatly improved with the use of deep learning [24]. Secondly, at every level of the
biological visual system, the retinal space is never represented uniformly in the cortical
space. In the primary cortical visual area, the space warping with respect to the eye view
is known as cortical magnification [101), 57, [19]. This warping has the effect of enlarging,
in the visual cortex, the central space of the scene with respect to the peripheral areas, by
a factor up to 20.

I propose to apply a similar warping to the occupancy grid in order to magnify close
objects and to reduce the size of distant objects. Just like with cortical magnification, in
the “warped occupancy grid” the more an object is relevant, the more it is represented in
detail. In the case of driving, the relevance of an object depends on the time required by
the ego car to reach it: the closer objects are the most crucial and require more precision.
The cortical magnification is typically formulated with the polar-log transformation. In
my approach, I define the warping transformation as a logarithmic transformation in the
longitudinal dimension (Z-axis), and as a linear transformation in the lateral dimension
(X-axis). In this way, every element of the warped occupancy grid corresponds to a square
patch of the world space. The warping transformation is the following:

w(Z) =log(Z + w) — log(w), (8.9)

where w is the constant defining the amount of warping, with the maximum at w = 1.0
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and no effect at all for w — oo. Fig. [.1] gives an example of how w influences the
appearance of a warped occupancy grid. While the equations (8.7) and (8.8) show the
forward transformation of a world point into image coordinates for the case of the linear
occupancy grid, the forward transformation for the warped occupancy grid is the following:

W 1
! > T wHAZ) Z; AX’ (8.10)

i = H_HUJ(ZJ‘)—UJ(E)_

o(HAZ) (8.11)

In the linear occupancy grid, the size of a vehicle is constant in every point of the image
space, whereas in the warped occupancy grid closer vehicles have a larger size. Hence, errors
in the model prediction have less impact for the vehicles in the proximity of the ego car.

Weighted Occupancy Grids

Besides the linear and warped occupancy grids, I introduce a third variant of occupancy
grid I have called “weighted occupancy grid”. I exploit this type of occupancy grid to
better evaluate the error distribution in relation to the distance of the objects from the
ego point of view, and to perform a comparison with the other formulations of occupancy
grid, as I will show in the results of Section

The weighted occupancy grid is equal to the linear occupancy grid, except that during
the computation of the loss I apply a matrix of weights favoring the area closer to the ego
car. The matrix ensures that pixels corresponding to the same real-world distance from
the origin have the same weights. An element m(i, j) of the matrix is computed as follows:

di,j) = H [AXi - g 7+ AZ(H — j)} ' , (8.12)
d(i,j) —d (%5, H)
m(i,j) = e d(0,0) . (8.13)

In addition, the matrix is normalized by the mean of the weights, so that the sum of all
the weights is equal to 1: in this way, the order of magnitude of the loss is not affected by
the application of this matrix.

8.2 Models

In this section, I present the early development towards a model that uses a higher level
representation space in output. More specifically, I compare some variations of the model
using three different output spaces: the standard form of occupancy grid described in
the warped variant I have defined in and the weighted occupancy grid useful
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Encoder convolution 5 x5 x 64
convolution 5 X5 x 64
convolution 3 X 3 x 128
convolution 3 x3x128
dense 512

Latent space 256

Decoder dense 2048
deconvolution 3x3x64
deconvolution 3 x3x32
deconvolution 5x5x1

Total parameters 3 million

Table 8.1: Parameters describing the architecture of the preliminary implementation of the model.

for a more complete comparison. In addition, I consider two different possibilities for the
input format. The most straightforward choice of input is a frame from the ego camera
stream. The second type of input I consider is a preliminary form of visual attention
applied to the image frame, which I will explain in detail in Section §8.2.2]

The general model is based on an standard convolutional encoder-decoder scheme where
the input is an RGB image of 800x450 pixels representing either the original frame or an
“attention map” emphasizing the vehicles; the output is a graylevel image of 128 x 128 pixels
corresponding to one of the three formats of occupancy grid. The provisional architecture
of this model is summarized in Table The loss function used to train the model is the
binary cross-entropy function. Before describing the input format of “attention maps”, 1
illustrate in the next section the dataset adopted in the development of this model.

8.2.1 NuScenes Dataset

The model presented in this chapter defines the output in a format that can be directly
exploited in real driving contexts. Hence, the model requires a dataset of real-world record-
ings of driving scenarios. This is not the case in the models illustrated in Chapters [6] and
[7, which both predict in the camera space. I have mentioned in Section that SYN-
THIA is an artificially generated dataset, and it has annotation only in the image space.
The current model, therefore, is incompatible with this dataset. The dataset in this case
has to be composed of recordings of real scenarios, and it must provide annotations of 3D
bounding boxes of the surrounding vehicles. After reviewing the main options available,
as in Section I have opted for the nuScenes dataset [26].

The nuScene dataset is organized into 850 annotated video sequences, for a total of more
than 100,000 frames. Fig. depicts some examples of frames taken from the dataset,
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Figure 8.2: Samples from the nuScenes dataset, showing the variety of environmental conditions
and annotations of 3D bounding boxes.

showing the significant variety of environments, illumination, and weather conditions. Still,
at this early stage of development, the wide variety of scenarios might be a hindrance to
the learning of the model. In fact, there are numerous atypical video sequences where, for
example, the ego car is completely stationary or parked on the side of the road. In other
video sequences, the camera is so covered by raindrops that the scene is barely visible. The
disparate conditions provided by the many video sequences are undoubtedly a precious
asset useful for the evaluation of a mature model. However, considering that the model
is still in a prototyping phase, at this time I have chosen to remove the more disorienting
video sequences from the dataset, namely the videos recorded at nighttime, in the rain,
and where the ego car is stationary. Moreover, a smaller dataset allows the training and
testing process to be swifter, and this is ideal at this early stage of development.

Hence, I have reduced the dataset to 100 video sequences. I have randomly allocated
70% of these sequences to the training set, 25% to the validation, and 5% to the test set,
ensuring no overlap among the three sets. In addition, to generate the ground truth data,
I have mapped the 3D bounding box annotations into binary images of occupancy grids
with size 128 x 128 pixels, using the forward transformations defined in Sections and
I have set w = 2, Z = 3.5 m, and AX = AZ = 0.5 m so that each pixel of the
occupancy grid corresponds to a square of 0.25 m? in the world space.

8.2.2 Attention Mechanism

Here I present the second format of input I have experimented with in the development
of the current model. There are unavoidable discrepancies between human perception and
artificial perception, especially in the context of driving. Normally in artificial perception,
the camera of a car acquires images covering the whole driving scene populated by numerous
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Figure 8.3: Examples of the attention mechanism applied in three different scenarios: the first
row shows the original images, and the second row displays the results of “paying attention” to the
vehicles.

objects, which may be relevant or negligible. Then, complex processes analyze the entire
images to attempt to recognize the relevant objects and locate them in the world geometry.

In human perception, there exists a set of cognitive operations that deals with cluttered
visual scenes by selecting important information and by filtering out irrelevant information.
For example, when driving through the countryside, I direct my attention towards the
road and the cyclist in front of me, and not towards the colorful fruits on the trees by the
roadside. These mechanisms take the name of wvisual attention, one of the most studied
topics in visual science [51], (189, 115, [156]. Visual attention also interacts with the process
of perceptual learning described in Section the attention mechanism reinforces the
learning rule related with the objects that are most often salient in the scene [192]. During
driving, the combination of attention and perceptual learning enhances the accurate and
fast perception of the surrounding vehicles.

I propose a strategy that attempts to imitate the role of visual attention to reduce the
computational complexity of my artificial neural model. When dealing with real traffic
scenes like those of the nuScenes dataset, it is evident how the salient parts of the scenes
are mainly the vehicles—see the examples in the top row of Fig. 8.3l The attention should
be directed mostly to the vehicles, rather than to the surrounding buildings or foliage. The
task of salience detection can be easily solved with current deep learning models; there
is no need to invent anything new for this purpose, as many effective and simple neural
networks are available to perform accurate prediction of salient locations [126], [52), 25, [110].
In my case, I simulate the effect of attention simply by detecting the 2D bounding boxes
of surrounding vehicles with the well-established YOLO-v3 model [187], and by masking
all the remaining non-significant areas. The bottom row of Fig. [8.3 shows the result of this
process. Note that there are many computational models [49] 106, 50, 123] that implement
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aspects of natural visual attention more accurately. However, the purpose of these models
is to help investigate the neurocomputational basis of visual attention, and they are not
aimed at engineering applications requiring efficiency and high performance.

8.3 Results

This section presents the results gathered from the preliminary development of the pre-
sented model. To evaluate how the choice of format in the input and output representations
affects the performance of the model, I have adopted a set of specific metrics, illustrated
in the following section.

8.3.1 Evaluation Metrics

The three evaluation metrics I have considered are intersection over union (IoU), aver-
age precision (AP), and distance between centroids. While the IoU is computed between
the overall images of target and predicted occupancy grid, the AP and the centroids are
computed on the matches between connected regions extracted from the occupancy grid
images. In addition, to better assess how the warped occupancy grid format improves the
prediction of closer vehicles, I also apply the three metrics separately in three different
classes of depth: “close”, “middle”, and “far” ranges.

Connected Regions and Classes of Depth

Fach sample x € X in the dataset X is processed in terms of connected regions, defined
as follows. Let R(xz) = {ri,r2, - ,rng} be the set of Ni connected regions of the target
occupancy grid image associated with x. Similarly, let S(z,0) = {s1, 52, -+ ,sng} be the
set of Ng connected regions in the predicted occupancy grid image computed by the model
on sample x, after applying a binarization threshold 6. For sake of simplicity, from now on
I will imply the dependency on z and write simply S(#) and R.

The matches between target and predicted connected regions are computed using a
greedy algorithm evaluating the IoU score, as in [78]—a possible future alternative is to
use the Hungarian algorithm [127]. With S*(#) representing the set of predicted connected
regions that successfully match with some target connected regions, the set of successful
matches is M () = {(i,j) : ri € R, sj € S*(0)}.

I partition the sets of connected regions into three ranges of depth—“close”, “middle”,
and “far”—defined by the limits A; and Ay in meters. With h(-) representing the depth
(in real-world coordinates) of the centroid of a connected region, the set of matched regions
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S*(0) can be divided as follows:

Se(0) = {s;€5°(0

)i (i,j5) € M(0) ANh(r;) < Ay},
Su(0) = {s5;,€50):

):

f

(i,j
<Z,]> 6M(9)/\A1 < h(?‘z) < AQ},
(i,J

Su(0) = {s; € S°(0): (i,5) € M(6) Ah(rs) > Mg}

In addition, I partition all regions of S(#)—matched and non-matched—into the three
depth classes:

Sc(0) = Sa(0)U{s; € S(0):s; ¢ 5" (0) ANh(si) <A1},
Su(0) = Sy@)U{s; € S(0):s; ¢ S*(0) NA1L < h(s;) < As},
Sp(0) = Sy (@)U{s;€S(0):s ¢ S*(0)Ah(s;) > As}.

It holds that S (0) U S%,(0) U S5(60) = S*(0) and S&(0) N St (0) N S5 (0) = 0.

Average Precision

The precision score p() of a sample is defined as follows:

0 if |S(0)] =0,
p(0) = § |5*(0)] hera (8.14)
otherwise.
1S(6)]
The average precision p summarizes the shape of the precision/recall curve, and it is defined
as the mean precision at a set of equally-spaced recall levels © = [0, Ni@’ B Niev 1]:
Z max p(f). (8.15)
o 0€0:0>0

It is straightforward to specialize the equations (8.14) and (8.15) for each of the three
classes of depth, obtaining pc, pas, and pg.

Distance between Centroids

This metric evaluates the distances between the centroids of predicted and target connected
regions. For two regions 7; and s;, the centroid distance is the following:

q (riss5) = lle(ri) = c(sy)]l - (8.16)

A new set of matching D(6) is computed similarly to M (6), but using the centroid distance
instead of the IoU score to evaluate the goodness of a match. Then, the final score § is the
mean distance between the centroids of matching regions. In addition, as in the case of
the average precision, it is possible to compute the score for each class of depth, obtaining
qc, qm, and qp.
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Intersection over Union

The third evaluation metric is simply the IoU between the predicted and the target occu-
pancy grid images, using a fixed binarization threshold ;. As for the previous metrics, 1
consider three additional IoU scores computed on different portions of the image according
to the three depth ranges.

8.3.2 Preliminary Results

This section illustrates the results obtained by the presented model in the current, yet
initial, phase of development. The model has been trained for 200 epochs on the reduced
version of the nuScenes dataset described in I have evaluated the model on all the
combinations of input and output formats presented in this chapter. The visual input types
are the original frames and the attention maps. The high-level output representations are
the linear occupancy grids, the weighted occupancy grids, and the warped occupancy grids.
The results are evaluated with the metrics IoU, average precision, and distances between
centroids; each metric is further applied separately to the three ranges of depth defined in
§8:3.1] In the final evaluation of the model, I have set the binarization threshold 6; = 0.5
and the number of recall levels Ng = 40.

Table shows the results grouped by evaluation metric, and each group includes
the six combinations of input/output and the four classes of depth range. The numbers
marked in bold represent the best scores achieved for that metric in one of the classes
of depth. An overall view of the results seems to suggest that all the model variations
perform very similarly. There is no combination that obtains significantly better scores
in any of the metrics considered. However, it is possible to identify some patterns that
seem to occur consistently. Firstly, the model variations using the original frames as input
(FRM) never achieve the best score in any of the metrics. It can be deduced that the
input format of attention maps (ATT) offers a significant advantage in the training of the
neural network. Therefore, the simple mechanism proposed here to imitate human visual
attention proves to be another effective application of a neurocognitive principle into a
computational algorithm. Secondly, the model variations that perform better in the close
range (CLO) are the models having as output format the warped occupancy grids (WRP).
This result is consistent with the idea that the grid warping should mimic the effect of
cortical magnification, as described in Section §8.1.2] Hence, the model predicts with more
accuracy the vehicles in the proximity of the ego car. Conversely, in the far range of depth
(FAR), the warped occupancy grids obtain the lowest scores, whereas the format of linear
occupancy grids (0CC) has the best performance in all the metrics. This is, again, coherent
with the fact that a standard occupancy grid represents all vehicles in the scene with the
same size in the grid space: even a car close to the camera (which occupies a large portion
of the image frame) or a very distant car (displayed in few pixels of the frame) will occupy
a similar number of grid elements.
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IoU 1
| ALL | cLo | MID FAR
ATT — 0CC 0.619 0.734 0.588 0.535
ATT — WOC 0.623 0.749 0.601 0.518
ATT — WRP 0.559 0.774 0.552 0.351
FRM — 0CC 0.602 0.708 0.573 0.526
FRM — WOC 0.616 0.731 0.595 0.522
FRM — WRP 0.561 0.756 0.550 0.378

(a)

Average Precision 1

| ALL | cLO | MID | FAR
ATT — 0CC 0.472 0.557 0.396 0.462
ATT — WOC 0.482 0.593 0.411 0.442
ATT — WRP 0.467 0.714 0.365 0.323
FRM — 0CC 0.448 0.517 0.369 0.458
FRM — WOC 0.459 0.531 0.393 0.453
FRM — WRP 0.449 0.638 0.355 0.354

(b)

Centroids |

| ALL CLO MID FAR
ATT — 0CC 0.940 0.823 1.109 0.863
ATT — WOC 0.944 0.772 1.186 0.873
ATT — WRP 0.931 0.540 1.067 1.187
FRM — 0CC 0.933 0.752 1.184 0.888
FRM — WOC 0.936 0.745 1.167 0.895
FRM — WRP 0.983 0.611 1.095 1.244

(c)

Table 8.2: Performance of the model evaluated with three metrics: intersection over union (a),
average precision (b), and distance between centroids (c). The model is tested on different types
of input and output: original frames (FRM), attention maps (ATT), linear occupancy grids (0CC),
weighted occupancy grids (WOC), and warped occupancy grids (WRP). The results are organized in
classes of depth: close range (CLO), middle range (MID), far range (FAR), and entire range (ALL).
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Input (FRM) Target (WRP) Output

Figure 8.4: Visual results on eight test samples. The model is tested with two combinations of
input and output: FRM — WRP (top) and ATT — 0CC (bottom). The predicted output is displayed
with a binarization threshold of 0.5.
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Fig. shows the visual results obtained on a selection of eight test samples by two of
the model variations evaluated here: FRM — WRP and ATT — 0OCC. For clarity, the predicted
outputs are rendered with a binarization threshold of 0.5. In both cases, it is possible to
observe a general tendency to merge several vehicles together into a single “blob”; this
could be a consequence of the current formulation of the loss function. Nonetheless, these
preliminary results—both numeric and visual—appear certainly promising and reinforce
the validity of this new direction of research.

8.4 Spaces of Motor Affordances

I conclude this chapter with a few words about a possible research direction towards a more
sophisticated space of representation. Investigating a higher-level form of representation
might clash with the overall spirit of my project—benefiting from the imitation of brain
mechanisms. First, it is easier to investigate lower-level representation spaces because they
are directly correlated with the input stimuli; it is difficult to trace back to the stimuli
from motor-oriented representations. Secondly, the space of motor commands in the brain
concerns only the activation of muscle fibers, and not the vehicle commands; there is a
complex and indirect relationship between muscle activations and the control of the vehicle.

A potential direction is to design a representation space inspired by the concept of
affordances. This term was introduced by James Gibson [79] to describe the value of a
perceived object and what it provides to the observer, either in a beneficial or harmful
way. The concept of affordance is still popular in modern cognitive science, although it
manifests a notable drawback [88]: it postulates a direct mapping from optical flow to
affordances, which is most likely implausible without several intermediate processing steps.

Another research line in neuroscience proposes that the brain motor representations
space works with quantities similar, if not identical, to the quantities physically involved
in the dynamic optimization of motor coordination problems. It is possible to find a
correspondence between the typical quantities adopted in optimal control theory and the
empirical data of coordination of limb actions [237, [226], 214]. In fact, arm movements tend
to minimize the integral of the squared jerk (the third time derivative of position) over the
time of a trajectory [130, [137].

The research group to which I belong has been extensively investigating the adoption
of jerk in motor representation spaces. A prominent example is the artificial motor cortex
[42], a representation space defined by two dimensions: the steering rate (%) and the
longitudinal jerk (smd) The magnitude of a point in the space represents the optimality
for the corresponding motor control in the current trajectory—mnegative values are equal to
inhibition. Another valid representation space takes into account also the time dependency
of the trajectory [53]. The space is defined by the lateral jerk (S%) and the control horizon,
i.e. the distance ahead of the car. The points of the space represents, again, the level of
optimality. At the moment, the output is computed analytically; in my future work, I will
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explore the possibility of generating with artificial neural networks this form of high-level
representation spaces, using as input perceptual and odometry data.
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Chapter 9

Conclusions

In this dissertation, I have presented my research on visual perception for autonomous
driving. Motivated by the superior human capability of driving, and following the key
tenet of artificial intelligence, I have drawn inspiration from human cognition to try to
design similar intelligent behaviors in an autonomous driving agent. In my research, I
have identified four main neurocognitive principles relevant for the task of driving: visual
mental imagery, perceptual learning, convergence-divergence zones, and predictive brain.
To implement these principles, I have selected the most appropriate computational tools
within the consolidated and successful field of deep learning. The solutions I have imple-
mented make use of convolutional networks, autoencoders, variational Bayesian inference,
and gated recurrent units.

The main contribution of my work is a method to learn to represent visual scenarios
into compact vectors that are at once semantically organized and temporally coherent. My
approach differs from other related works precisely in the learning of the representations:
first, there is a semantic organization, in the sense that distinct parts of the representation
are explicitly associated with specific concepts useful in the context of driving; second, the
temporal coherence that is achieved through self-supervision allows the representation to
be exploited for mental imagery and prediction of plausible future scenarios. I conclude
this dissertation summarizing the main achievements obtained by the presented models, as
well as their limitations, and illustrating future directions of my research.

9.1 Findings and Limitations

The most valuable findings of my research is probably the following: to have demonstrated
that neurocognitive principles can be an effective “blueprint” to design mechanisms of
perception for driving automation. It remains necessary, however, to seek a compromise
between the cognitive inspiration and the computational advantages of deep learning meth-
ods. I have found the best trade-off to be the adoption of convolutional variational autoen-

103
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coders to emulate the convergence-divergence zones in the brain. The result is a model able
to code perceptual concepts using low-dimension representations. These representations
are inspectable and interpretable in that they have a semantic organization, separating
explicitly the concepts of cars and lanes entities found in the scene.

I have demonstrated the effectiveness of the conceptual representations by using them
to predict the dynamics of future driving scenarios. The prediction is made possible by
the temporal coherence of the latent space. This feature results from a refined learning
procedure adopting self-supervision, which is a valid computational interpretation of the
neurocognitive principle of predictive brains. The representations obtained by my model
can be potentially applied to various downstream driving tasks; in this dissertation, I have
presented the examples of predicting long-term future frames in a video sequence, emulating
the phenomenon of mental imagery, and generating novel plausible scenarios using just
linear interpolation. However, once learned, the representations can be deployed in many
possible contexts. For example, I am currently working on using the representations to
predict future occupancy grids.

It is important to point out the limitations I have found in my models so far. A
significant limitation is that the models predict and perform imagery limitedly in the visual
perceptual space. This space is inherently egocentric and two dimensional, and as such it
cannot be directly exploited for vehicle control. A more methodological limitation is that
the aim of imitating the human cognitive capabilities is partially hampered by the use of
supervision—the model inevitably requires a supervised training to learn the conceptual
organization. Alas, supervision cannot exist in the brain. Firstly, there is no such thing
as a “ground truth” for biological neurons: there is no information that can be compared
with the actual neural activation to compute a loss and modify the synaptic connections.
Secondly, human learning comprises forms of associative rules, which share some similarity
with artificial neural learning, but it also includes other forms like learning from linguistic
descriptions. For example, a person can learn about cars and traffic rules just by reading
about them in a manual for driving school. Moreover, supervision entails another drawback:
learning requires large annotated datasets, which are not always available or of sufficient
quality.

A further limitation of my models concerns the number of object categories taken into
account in the space of conceptual representations. Humans have no limit in the number
of different types of entities they can categorize in a scenario. However, the set of concepts
actually necessary for the task of driving is more limited. For ease of being inspectable,
I have chosen to considered only the two most crucial concepts, namely cars and lanes,
although they are not sufficient when moving to more complex urban settings involving
vulnerable road users.
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9.2 Future Work

I conclude this dissertation with a list of developments I plan for the continuation of my
research. The future work mainly addresses the current limitations I have illustrated in
the previous section. There are essentially three main directions for future efforts that can
improve my current models:

1. extending the range of data on which the models can be applied;
2. improving the biological plausibility;
3. adopting a higher-level space of representations.

Concerning the data, two approaches can be pursued: experimenting with additional
datasets, and including more driving concepts into the learning process. The main models
here presented are trained on the SYNTHIA dataset, which is one of the few large-scale
datasets providing lane marking annotations. The recent release of the Berkeley DeepDrive
dataset offers now an extended set of annotations of lane markings and drivable areas for
100,000 video frames. In addition, while SYNTHIA is a synthetic dataset, Berkeley Deep-
Drive has the advantage of being composed of real-world recordings. Hence, this dataset
can be the perfect candidate for the first approach to extend the range of data. As far
as implementing the second approach, the learning strategy applied for the two concepts
cars and lanes can be reused as it is to learn additional concepts. The models can be
expanded with new decoders dedicated to relevant conceptual entities not considered so
far, e.g. vulnerable road users such as pedestrians and cyclists, or further road elements
like traffic lights.

The biological plausibility of my current models is limited by the use of supervision to
learn the separate conceptual representations. The research on how to avoid supervised
learning has a long history and does not seem to have reached a conclusion. Even Hinton—
one of the inventors of backpropagation—expressed his discontent with supervision and
investigated several unsupervised alternatives [93], 04, 2| 48]. In more recent years, he
experimented with some variations of standard supervision that are more close to the brain
mechanisms of learning; however, the learning variations achieved much lower performance
than the supervised counterpart [9]. The current research direction focuses on formulating a
learning rule with properties halfway between standard supervision and synaptic plasticity
[13], and it attempts to find learning strategies that could resemble features of human
cognition like consciousness [10], incremental learning [I68], and exemplar learning [39]. It
is clear how the research on alternatives to supervision is still an open and rapidly evolving
field, which needs to be regularly monitored.

Lastly, the future direction towards a more sophisticated space of representations is
already ongoing. In addition to the main perceptual models, I have presented a work in
progress exploiting a different representation space, namely the warped occupancy grid.
This space has the interesting feature of being, at the same time, predisposed to be used
for vehicle control and consistent with the human neurocognition. An additional future
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objective could be to obtain a full perceptual pipeline that from camera images projects
representations in the motor representational space of the kind used in Dreams4Cars [53,

19).
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