
University of Trento

Doctoral Thesis

Alone with Company: Studying
Individual and Social Players’ In-game
Behaviors in Adaptive Gamification

Author:
Enrica Loria

Supervisor:
Dr. Annapaola Marconi

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Information and Communication Technology

Information Engineering and Computer Science Department
Head: Prof. Paolo Giorgini

April 2021



ii

“You gain strength and courage, and confidence by each experience in which you really
stop to look fear in the face. You must do that which you think you cannot.”

Eleanor Roosevelt



iii

To Michel, who always believed in me,
even more so when I did not. . .





v

UNIVERSITY OF TRENTO

Abstract
Information Engineering and Computer Science Department

Doctor of Philosophy

Alone with Company: Studying Individual and Social Players’ In-game
Behaviors in Adaptive Gamification

by Enrica Loria

Humans procrastinate and avoid performing activities that they deem dull, repeti-
tive, and out of their comfort zone. Gamification was conceived to reverse the situ-
ation by turning those activities into fun and entertaining actions exploiting game-
like elements. In practice, however, many challenges arise. Gameful environments
cannot satisfy every player’s preference and motivational need with a one-fits-all
strategy. However, meeting players’ motivational affordances can provide intrinsic
rewards rather than extrinsic (e.g., points and badges). Producing intrinsic rewards
is desirable as they are more likely to foster long-term retention than the extrinsic
counterpart. Therefore, gamified systems should be designed to learn and under-
stand players’ preferences and motivational drivers to generate specific adaptation
strategies for each player. Those adaptation strategies govern the procedural gener-
ation of personalized game elements - examples are task difficulty, social-play versus
solo-play, or aesthetic tools. However, an appropriate personalization requires in-
telligent and effective player profiling mechanisms. Player profiles can be retrieved
through the analysis of telemetry data, and thus in-game behaviors. In this project,
we studied players’ individual and social behaviors to understand their personalities
and identities within the game. Specifically, we analyzed data from an open-world,
persuasive, gamified system: Play&Go. Play&Go implements game-like mechanics
to instill more ecological transportation habits among its users. The gamified app
offers various ways for players to interact with the game and among one another.
Despite Play&Go being one of the few examples of gamification implementing more
diverse game mechanics than solely points and leaderboards, it still does not reach
the complexity of AAA entertainment games. Thus, it limits the applicability of an
in-depth analysis of players’ behaviors, constrained by the type of available features.
Yet, we argue that gameful systems still provide enough information to allow content
adaptation. In this work, we study players’ in-game activity from different perspec-
tives to explore gamification’s potential. Towards this, we analyzed telemetry data
to (1) learn from players’ activity, (2) extract their profiles, and (3) understand so-
cial dynamics in force within the game. Our results show how players’ experience in
gamified systems is closer to games than expected, especially in social environments.
Hence, telemetry data is a precious source of knowledge also in gamification and can
help retain information on players’ churn, preferences, and social influence. Finally,
we propose a modular theoretical framework for adaptive gamification to generate
personalized content designed to learn players’ preferences iteratively.
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Chapter 1

Introduction

Adaptive Gamification embraces the need for tailored content in gameful environ-
ments [26, 119]. While gamification is the usage of game-like elements in contexts
other than games [53], the term Adaptive introduces an additional layer in which
players’ personalities are studied and accommodated. The goal is to engage and
retain users for longer to increase the likelihood of achieving the gamification goal,
which is challenging to pursue [84]. In other words, Adaptive Gamification reverses
the trend of a “one-fits-all” gameful design [84, 198] and moves towards personalized
game content [173, 79]. However, producing adaptive content requires player mod-
eling methods, describing users’ intent, and providing actionable information on the
content to produce.

Player modeling or profiling can be achieved either through theoretical [18, 66, 36] or
data-driven approaches [92, 202]. The former exploits psychological theories and em-
pirical findings usually operationalized in self-reports to extract user types [219], per-
sonality traits [103], or motivational affordances [237]. The latter relies on gameplay
telemetry data and numerical features to model player behaviors. Both approaches
come with benefits and weaknesses. Self-reports may suffer from perception biases
from players, regardless of them being malicious or unintentional [224, 194]. Teleme-
try data can also be biased, especially when many redundant features exist [92]. As a
result, analysts should interrogate a domain expert and model the system with care.
Yet, data-driven approaches hold a significant advantage: they are versatile and eas-
ily adaptable [62, 92]. This ductility suits the mutable nature of players’ behaviors
within the game. Humans are complex and (seemingly) unpredictable beings. Thus,
before defining a method for adaptive gamification design and maintenance, a deeper
understanding of players should be achieved.

Games User Research (GUR) is rich of studies investigating telemetry data and be-
haviors within entertainment games (e.g., [202, 181, 55]). Those studies show how to
analyze gameplay datalog to convey information on players and their gaming experi-
ences [158]. Games, however, hold the advantage of massive multi-dimensional data,
lacking in common gamified systems. Despite gamification data usually being more
modest, meaningful insights can also be produced from the interaction with gameful
apps. Game research can be used as a guideline and source of inspiration, providing
methods and approaches adapted in gamification research. This observation is very
broad per se, hence leaves much room for investigation. For instance, it is still un-
known how much knowledge the analysis of players’ behaviors within the gamified
environment convey in terms of their overall experiences and preferences. Hence, the
need for more research on the potential of gamification telemetry data and the extent
to which techniques used in games can be employed.
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Players’ behaviors not only reflect their personalities and activities but also show how
the community of players connects. Besides the environment, also, and especially,
other individuals have a high effect on people’s actions. Even in the real-world, peer
pressure and social relationships influence our thoughts and actions [5]. Consequently,
a person’s life and essence are the results of cultural, environmental, and social factors.
This also occurs in virtual worlds. Recent findings show how players build their own
social network [226], interact with one another, and form active communities and
groups [195]. In those communities, players can be influenced by other individuals [37,
195], favoring their permanence in the virtual world. These pieces of evidence lay
the premise for the existence of social contagion also in gamification. Sociality has
a huge psychological impact on players. Besides fostering retention and increasing
engagement [181], interacting with others has positive effects also on well-being and
mental health [105]. Despite few studies proving the benefits of social gamification [96,
231], the dynamics and implications of social interactions are widely under-exploited
in gamification. Hence, the need for more in-depth research on this topic.

In summary, tailored content is needed as gamification can benefit from the deploy-
ment of ad-hoc game elements instead of treating players as a uniform unit [172, 103,
79]. However, to generate personalized content self–adapting to players’ experience, a
deeper understanding of users’ interaction patterns should be achieved. Those inter-
action patterns become even more complex and meaningful when multiplayer game
elements are offered, and thus, social play exists [121]. Data-driven approaches are
widely used on games’ data for many analyses, spanning from prediction to proce-
dural content generation [55, 158]. Yet, little is known of how telemetry data can
be exploited in gamification and how descriptive it is on players’ experience and
personality.

In this thesis, we dissected gameplay and analyzed it from two perspectives: indi-
vidual preferences and social interactions. First, we researched whether the in-game
activity can be used to predict churn and players’ preferences. Then, we investigated
social phenomena occurring within games and gamified systems aimed at finding in-
fluencers. Specifically, we studied whether influence can be used to assist the pursuit
of the gamification goal. Our case study is a persuasive gamified system (Play&Go),
active in the Italian region of Trentino to pursue greener transportation habits among
its citizens. Play&Go implements a variety of game elements and allows several in-
teraction patterns among its players, including the possibility of playing with others.
Part of our analysis on in-game social dynamic is preliminarily conducted on games’
data and then replicated and extended in the analyzed gamified system. The moti-
vation to include these analyses is twofold. First, the preliminary evaluation of new
algorithmic methods requires a social network of a larger scale of dimension than the
network existent in Play&Go. Games offer such a vast population of players. Second,
this dual analysis allowed us to compare social phenomena emergent in games and
gamification. Although researchers argue that the social, motivational drivers leading
users to play are in force in both games and gameful environments [96], systematic
comparisons are still lacking. Therefore, our work also contributes to the field by
building up a new piece in the bridge between games and gamification.

1.1 Research Questions
Existent research claims for more adaptive content in gamification [121, 26, 80]. To-
wards this, a better understanding on players’ experience and in-game behaviors is



1.1. Research Questions 3

needed to (a) assess players’ experiences, (b) learn their preferences, and (c)
study social influence. Having a complete overview of players’ gameplay can in-
form an iterative adaptive gamification framework that continuously generate
tailored content and, potentially, can deduce preferences’ shifts.

Assessing Player Experience

Player experience can be (partially) evaluated by analyzing interaction patterns in
the game. Game research includes a plethora of studies on entertainment games that
exploit player behaviors to predict future actions [131, 116], profile players [181, 181],
or inform marketing strategies [233]. These analyses are enabled by the multifaceted
nature of game data and the substantial number of users involved. Gamification, on
the other hand, often offers a restricted number of game elements and mechanics.
Many gamified systems rely on basic elements, like points and badges [52, 121]. Such
a simplicity discourages complex analyses, requiring many diverse features and a
consistent population of users. Although researchers call for more variegated and
diverse gamified applications [184], the complexity of games is unlikely to be achieved.
Gamified systems and games have different scopes and belong to different domains,
despite sharing similar motivational affordances [96]. In the spirit of those common
points, however, gamification research can be inspired by game research and adjust
methods and analysis already popular in Games Analytics.

Players rarely play as originally intended by the designers. While unexpected behav-
iors may be a marginal issue in games, as long as users keep playing, the problem
can be more pressing in gamification. Unforeseen behavioral patterns may hinder
the achievement of the gamification goal. In-game behaviors can be used towards
this. Specifically, we researched how to treat telemetry data to extract players’ win-
ning strategies and anomalous patterns [145]. Therefore, we asked (RQ_I_Monitor):
“How can we process telemetry data to understand players’ behaviors and
strategies in a gamified system?”

Nevertheless, providing a global overview of how the gameplay is progressing is not
sufficient to grasp the multiple shades of players’ experiences. For instance, this
kind of analysis cannot provide information on a very relevant class of users: un-
interested players at risk of abandoning the game—i.e., churn. Games researchers
showed a great interest in churn prediction analysis [179, 131, 132]. Predicting play-
ers’ abandonment is essential in entertainment games, as churners’ timely detection
may inform contingency strategies to avoid such a churn. In games, churn prediction
has economic value, as retaining customers is more remunerative than attracting new
ones. Although marketing reasons are generally not the primary focus in gamified en-
vironments, churn prediction is also important in gamification. Long-term retention
is beneficial in the pursuit of the gamification goal. Considering limited gamifica-
tion data, we researched whether information on players’ activity and participation
in the game is sufficient to predict their abandonment [143, 139]. In the form of a
research question, we investigated (RQ_I_Churn): “How can we exploit players’
in-game participation behaviors to predict churn in a gamified system?”

Learning Player Preference

Assessing and monitoring players’ experience allows designers and developers to iden-
tify unengaged players and behaviors misaligned with the gamification goals. The
information retrieved should be matched with appropriate changes in the gameplay.
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However, to tailor the gameplay, high-level knowledge of players’ experiences is not
enough. Methods are needed to model or profile players’ preferences. Player models
can then be used to personalize the game content.

Player modeling or profiling associates to players, or a subset of players, the specific
game elements or mechanics that they prefer, and thus, that motivate and engage
them. In the gamification literature, much research has been conducted on theo-
retical taxonomies to build player types or traits [219, 216]. Those taxonomies are
often grounded in psychological studies and are concretized in questionnaires and
self-reports. Despite theoretically grounded approaches hold the advantage of being
justifiable and explainable, self-reports are liable to memory loss and biases [224].
Data-driven approaches, on the other hand, rely on objective telemetry data describ-
ing players’ actions and behaviors in the game [92].

Having investigated how players’ idealized version of their preferences and their tastes
contextualize in the specific gamified application, we studied whether telemetry data
can also be used to learn player preferences. First, we analyzed preferences explicitly
expressed by users through choices performed in the game. Hence, we proposed a
method to translate their interactions into numerical values, easier to process and
elaborate [138]. Then, connecting to the discourse on limited gamification data and
the possibility of exploiting it to predict player churn, we researched if participa-
tion data can also be used to learn implicit preferences. Specifically, we exploited
players’ participation and activity data as feedback for a Reinforcement Learning-
like algorithm. Then, we used users’ implicit preferences to evaluate the preferences
learned [141]. This study answers the question (RQ_I_Learn): “Can we learn
players’ preferences from their implicit in-game participation behaviors
following the Reinforcement Learning paradigm?”

Given the existence of two different modeling approaches, data-driven and theoretical,
we investigated the relationship between players’ self-report and in-game behaviors.
Among several theory-driven taxonomies designed for games, the Head User Type
is the first model expressly conceived for gamification [140]. Hence, we investigated
whether theory-driven and data-driven approaches lead to different adaptation strate-
gies for the same user, where the term adaptation strategy refers to the type of content
to generate for the user [136]. In this analysis, we defined the concepts of idealized
and contextualized preferences. Idealized preferences are obtained from theoretical
models and describe players’ perceptions of the self. Contextualized preferences are
extracted from telemetry data and reflect players’ behaviors within the game. Hence,
we asked (RQ_I_Pref ): “How do players’ idealized preferences, expressed
through the Hexad User Types Questionnaire, reflect their contextualized
preferences, extracted from in-game interactions?”

Studying Social Influence

Players’ behaviors in gameful systems are also affected by their direct or indirect
interactions with others [82], besides being conditioned by users’ individual tastes.
While player modeling can hint at users’ preferences towards multiplayer game con-
tent, it is agnostic to social dynamics and influence. Yet, the social environment
and the role the users assume within it provide important information on players’
personalities. Even though players’ may appear disinterested in social game elements
in favor of solo play, they may still be affected by social comparison and influence.
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Social influence describes the phenomenon by which some individuals (influencers)
affect others’ behaviors and choices [3]. Originally found in social media, influencers
have also been detected in games [37]. Early works studying social networks in games
analyzed communities built around game titles but existent on third-party platforms
- e.g., Twitter [225], Twitch [230], or matchmaking websites [195]. Those studies
already identified more cohesive and small communities, often representing guilds
and groups, where the whole group activity is influenced by the presence of specific
individuals, such as moderators and leaders. Like social media, Twitter and Twitch
feature very visible users that exert influence over the gamer network, for instance, by
conditioning the popularity of specific games. However, social influence was never an-
alyzed within the gameplay, using telemetry data, and extracting in-game behaviors.
A notable exception is Cannossa et al.’s work [37], where influencers are described as
well-connected and well-positioned users in the player social networks. Hence, those
influencers were characterized by having many connections and by assuming strate-
gical roles within the network. Although influencers were, then, found to impact
players’ long-term retention in the game analyzed (Tom Clancy’s The Division), they
did not possess particular properties—i.e., they were discerned from power users or
elite players.

Recalling the definition of social influence as individuals conditioning others’ behav-
iors, we further investigated games retention influencers. Guided by the Social Net-
work Analysis (SNA) literature, we adopted a different approach to identify them.
Instead of researching central and popular users, as in the previously mentioned
study [37], we detected influential users impacting others’ behaviors. Therefore, hav-
ing defined the behavior of interest (in the form of a series of game features), given
two players X and Y connected at a time t, X influences Y if Y ’s behavior becomes
more similar to X’s after time t. We defined a semantic algorithm to detect influ-
encers and researched them in the online multiplayer game Destiny [144]. Specifically,
we asked (RQ_S_Inf ): “How does social influence manifest in online multi-
player games, and how retention influencers differ from central players in
the network?”

Having found that semantic influencers had a higher impact on long-term retention
than central users, in Destiny, we studied whether the phenomenon also occurs at
a higher level. In other words, we investigated whether the status of influencers
persists across game titles. To this end, we collected data from a popular game
provider, Steam, and computed the semantic influence algorithms [137]. By answering
the question (RQ_S_Steam) “How does social influence in the Steam players’
community differ from social influence within games, and which properties
do influencers possess?” we increased the current knowledge on influencers. For
instance, we learned whether a retention influencer in a specific game is more likely
to also be an influencer in a different title or if they encourage others to play new
games.

Following the works on social influence in Destiny [144] and Steam [137], we ana-
lyzed social relationships in our gameful application (Play&Go). As we discussed,
retention is also vital in gamification. Hence, successful gameful systems can highly
benefit from the presence of individuals who can help pursue a longer permanence
in the game. Towards this, we analyzed the two-player challenges in our persuasive
gamified system (Play&Go) and derived a players’ social network. Besides seeking
players’ retention, gamification designers have to ensure the gamification goal’s pur-
suit (e.g., crowdsourcing, education, behavioral change). Considering the strength of
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Figure 1.1: Thesis roadmap, representing the flow used in the manuscript con-
necting our analyses and finding. The specific investigations on players’ experience
and preferences (players as individuals), connected to the study on social influencers
(players as part of the community), contribute to the definition of a conceptual
adaptive gamification framework. Those three topics (players as individuals, players
as part of the community, and the adaptive frameworks) are each presented in a

dedicated chapter (Ch. 4–6).

the semantic influence algorithm that allows specifying the behaviors we are interested
in influencing, we also investigated the presence of other types of influence aligned
with the gamified app’s underlying purpose. In Play&Go, the gamification goal is to
promote green mobility habits. Hence, we researched the presence of influencers im-
pacting others’ transportation behaviors [142]. Therefore, we asked (RQ_S_Gamif ):
“What are the different types of influence(rs) existing in gameful sys-
tems?”, aimed at researching the equivalent of games’ retention influencers but also
the existence of gamification influencers helping to achieve the gamification goal.

Adaptive Gamification Framework

Understanding and modeling players’ preferences and social interactions are only the
prefaces of the adaptation process. The information obtained needs to be opera-
tionalized into concrete tailoring strategies ad-hoc designed for each player. The
mainstream approach for adaptation is relying on player profiling [160] or motiva-
tional [160] theoretical models. However, the results can be conflicting [78], especially
when players are reduced to a single dominant type [78]. Sometimes those theoretical
models are combined with recommender systems [218], which work well when small,
focused tailoring is required [112], but cannot scale with the complexity of the task
of producing a complete model.

Besides the task being challenging, gamification design adds a layer of complexity, as
players’ enjoyment and needs to connect with the underlying goal [26]. Consequently,
the success of the gamification application is highly dependent on players’—hopefully
long-term—engagement and the pursuit of the goal [89]. Moreover, people’s behaviors
are mutable, and preferences may shift over time [62]. Adaptation strategies should
also account for this mutability, hence the need for automatic, dynamic, adaptive
methods for tailoring gameful systems [119]. Those automatic systems should consider
players’ specific preferences and in-game social rules while keeping users’ behaviors
aligned with the gameful app’s purpose.

Following our analyses on players’ behaviors [145, 139], preferences [141, 136], and so-
cial connections [142], we combined our findings to study the feasibility of an adaptive
gamification framework. In the form of a research question, we asked (RQ_Fram):
“How can we model player in-game behaviors and social interactions to
inform the generation of adaptive, dynamic game content?”



1.1. Research Questions 7

Table 1.1: Mapping of the research questions to the hypotheses, chapters and
publications.

ID RQ H Chapter Publication(s)
RQ_I_Monitor How can we process telemetry data

to understand players’ behaviors
and strategies in a gamified system?

H1a&b Ch. 4.1 [67, 151, 145]

RQ_I_Churn How can we exploit players’ in-game
participation behaviors to predict churn
in a gamified system?

H1c Ch. 4.1 [143, 139]

RQ_I_Learn Can we learn players’ preferences from their
implicit in-game participation behaviors
following the Reinforcement Learning
paradigm?

H2a Ch. 4.2 [138, 141]

RQ_I_Pref How do players’ idealized preferences,
expressed thought the Hexad User
Types Questionnaire, reflect their
contextualized preferences, extracted
from in-game interactions?

H2b Ch. 4.2 [140, 136]

RQ_S_Inf How does social influence manifest
in online multiplayer games,
and how retention influencers differ from
central players in the network?

H3a Ch. 5.2 [144]

RQ_S_Steam How does social influence in the Steam
players’ community differ from social
influence within games, and which
properties do influencers possess?

H3b Ch. 5.2 [137]

RQ_S_Gamif What are the different types of
influence(rs) existing in gameful systems?

H3c Ch. 5.3 [142]

RQ_Fram How can we model player in-game behaviors
and social interactions to inform the
generation of adaptive, dynamic game content?

H4a&b Ch. 6 [135, 34]
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1.2 Hypothesis and Contributions
In summary, in this thesis, we present a multi-perspective analysis of players’ in-
game behaviors to inform a theoretical adaptation framework (Figure 1.1). Given
prior findings in Gamification and Games User Research (GUR), we hypothesized
that:

(1) In-game behaviors describe players’ experience in gamification. Gamification
telemetry data can be used to (H1a) identify players’ strategies, (H1b) monitor
behavioral evolution, and (H1c) predict churn.

(2) Player preferences can be extracted from their in-game behaviors. Players’ level
of activity varies with the type of game element they interact with. Hence
players’ activity can be used to learn their preferences (H2a). Besides, in-game
behaviors describe players’ preferences contextualized in the specific virtual en-
vironment and do not necessarily match general theoretical preferences (H2b).

(3) Online gameful environment can foster social influence. Influential individuals
affecting others’ retention do exist in games (H3a), across different games (H3b),
and in gamification (H3c).

(4) Telemetry data can be used to inform an adaptive gamification framework. Play-
ers’ datalogs can be processed and organized to produce automatic content gen-
eration (H4a), dynamically adjusted at runtime as the game progresses (H4b).

Testing these hypotheses results in the following contributions to the GUR and gami-
fication research. First, we connect gamification research to game research by showing
how telemetry data can also be used in gameful systems to extract important informa-
tion on players’ experience. Second, we show how in-game behaviors can be used to
predict players’ churn and thus estimate the goodness of their experience. Third, we
provide a data-driven approach to learn players’ preferences in gameful environments.
Forth, we provide a systematic and visual comparison of players’ self-reported prefer-
ences and preferences extracted from their behaviors. Fifth, we suggest a method for
identifying influencers in games and gameful systems and show how those influencers
impact others’ retention and can help to achieve the gamification goal. Finally, we
present a modular, theoretical adaptation framework embedding all our findings.

Table 1.1 provides an overview of the research questions and how they relate to the
hypotheses, the chapters, and the publications.

1.3 Thesis Structure
The manuscript is organized as follows. Chapter 2 introduces the necessary back-
ground on game research, player modeling, and social network, as well as the related
works on adaptive gamification and social play. Chapter 3 describes the data and the
case studies analyzed: the persuasive gamified system (Play&Go), the game Destiny,
and the game provider Steam. Chapter 4 focuses on the individual play experience of
users and presents the analyses on churn prediction and player preferences. Chapter 5
describes the study of social play and influence in games and gamification. Chap-
ter 6 presents the adaptive gamification framework, built upon the studies discussed
in Chapter 4 and Chapter 5. Chapter 7 presents a general discussion on the thesis
and the limitations of this research. Finally, Chapter 8 concludes this thesis with a
summary and suggestions for future work.
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Chapter 2

Related Works

In the following chapter, we will review relevant works from the literature. First, we
will introduce gameful systems and research the motivations for adaptive gameplay
in gamification. We will then show how players’ telemetry data is a precious source
of information to assess players’ experience and preferences. Having discussed works
analyzing players’ individual gameplay, we tackle games’ social aspect. We provide
evidence on games’ being a way to connect individuals and form communities and
incubators of peer pressure and social contagion.

2.1 Gameful Environments
In its simplest, most common definition, gamification is described as the the use of
game design elements in non-game contexts [53]. It has been used for about ten
years in educational settings to increase learner performance, motivation, or engage-
ment [11, 48], and to make users intrinsically motivated in performing a certain
task [163]. In the last decade, gamification became a widely employed term, with its
own field in Computer Human Interaction (CHI) [198, 166]. Previous studies have
shown that gamification can turn unpleasant tasks into fun ones and enhance the user
experience in numerous contexts and domains [84, 198]. In addition to academia,
gamification has leaped the industry and has become an established practice in user
experience design [166, 198], while also gaining popularity in different domains [121].
However, gamification is not always successful, as its effects highly depend on its
context and implementation [84]. Hence, research has focused on improving the de-
sign of such systems to maximize their success rate [152], dictated by the pursuit of
the gamification goal while minimizing negative effects, such as churn [121]. Towards
this, gamification analytics describes the toolset employed to measure the impact and
improve gameful apps [89]. Although researchers found that gamification generally
produces positive effects [231], implementing gameful mechanics does not implicate
automatic increases in users’ activity [81]. The difficulty of gamification lies in the
meaningful connection of players’ needs to the gamification layer [26]. Conversely to
the action, generally, gameful apps promote, the choice of playing should be a volun-
tary behavior [191], intrinsically motivated. A behavior is intrinsically motivated if it
fulfills the needs for competence, autonomy, and relatedness [49, 190, 191]. All of these
motivational needs are commonly satisfied by playing games [191]. Nevertheless, the
satisfaction of such motivational affordances is highly personal [49, 190]. It derives
that treating players as a homogeneous unit is an unsuccessful strategy [172]. Thus,
the gameful affordances implemented in gamification research should be diversified
to allow the creation of more inclusive gameful experiences [121].
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2.2 Adaptive Gamification
Gamification is mostly used in a “one-size-fits-all” manner, built of a static set of gam-
ification elements (such as points, badges, or larboards) [84, 198]. At first, gamifica-
tion research primarily focused on investigating its applicability in different domains.
Whereas more recent research aimed at understanding why gamification works and
which factors play a role in the success of gamified interventions [166]. Studying the
effects of gamification showed that gamification should be tailored to the users to be
effective, with pieces of evidence coming from the domain of health [173], sport [134]
and learning [113, 48, 128]. The results revealed that interpersonal differences affect
the perception of gamification elements (i.e., not all users are motivated by the same
elements). When preferences are not met, researchers obtained inconclusive or even
negative outcomes deriving from a static gamification approach [6, 198, 84]. Thus,
the question of how to tailor gamified systems towards the user arose and became an
important research direction.

Previous research has revealed that demographic factors such as age [23], gender [171],
or personality traits [103] explain user preferences for gamification elements to a cer-
tain extent. The need for diversified content led to the development of many theoret-
ical models aimed at classifying players according to their personality [18], motiva-
tions [237], and play styles [36]. Additionally, self-assessments are also employed to
measure the level of enjoyment and the level of flow of players [98]. However, there was
no model or framework, which specifically targets personalization in gamified systems
until Marczewski [153] proposed the Hexad User Types model. The model consists
of six player types, which differ in the degree to which they are driven by autonomy,
relatedness, competence, and purpose (which are core pillars of Self-Determination
Theory [190]). Tondello et al. [219] developed and validated a questionnaire to extract
the Hexad User Types [216]. Based on this, the Hexad user types model could be used
to investigate user preferences in gamified systems across various domains, reaching
from physical activity [7], health [174] or energy conservation [122] to the education
domain [162]. These studies supported the Hexad model’s usefulness to explain user
preferences in gamified systems by consistently connecting the perception of gamifica-
tion elements and Hexad user types across domains. This is additionally supported by
research conducted by Hallifax et al. [79]. They compared the Hexad model against
other factors and player typologies and concluded that the Hexad model is advanta-
geous in explaining user preferences for gamification elements. Hence, the young field
of tailored, or adaptive, gamification is mostly focused on user modeling for a future
personalization, adaptation, or recommendation of game elements.

Despite those promising outcomes, adaptive gamification is still an under-investigated
topic, and further research is needed to understand better how fully improve player
experience. Such emergent field benefits of a theoretical base build upon several
studies conducted in real-world learning settings. In static adaptation approaches,
profiles are identified, often relying on theoretical models (e.g., the Bartle Player
types [18], the Brainhex player satisfaction model [165], the Hexad player types [219],
or the categories of players described by Ferro et al. [66]). Users are sorted into
different categories based on these profiles; different game elements are given to each
of the different categories of players [80]. In dynamic adaptation, the game elements’
deployment is informed by players’ activity in the game. A user profile is built by
monitoring her in-game behaviors. In the work of Paiva et al. [175], users’ actions
are divided into either collaborative, gamification, individual, or social interactions.
The adapted element is the player’s goal, which is assigned according to the type
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of actions performed. Another example is Jagust et al.’s [100] study, in which two
dynamic adaptation scenarios are presented. In the first situation, the players’ task
is timed. When the task is completed, players are given less time for the following
one. In the second situation, the difficulty is defined by the completion time instead
of the target score. The score increases as they carry out the task correctly. In
another work, the customization is in the types of badges presented to and in the
feedback given [113]. Other studies use a hybrid approach in which they define static
adaptation rules for given player profiles. When the profile of a user changes, different
game elements are given to her [160]. The Brainhex model inspires the profiles. In
the systems suggested by Knutas et al. [120], an algorithm uses players’ profiles and
interactions. In this case, the authors use the Hexad player profile and users’ skills.
They recorded students during their project meetings to classify their interactions.
Then, they proposed the game elements according to those profiles and interactions.
However, in this work, a method to detect these actions in real-time lacks [120].

Researchers claim the need for more dynamic tailoring, also relying on other features
than static player profiles [119]. Therefore, the usage of implicit data, as telemetry
logs, is encouraged. Within games research, player profiling and content generation
already heavily rely upon data-driven approaches (e.g., [202, 148]), confirming how
content adaptation can lead to higher motivation and longer-term engagement [180].
This trend is also picking up in gamification research. For instance, a recent study
on gamified educational systems promotes an automatic identification of student flow
experience to measure the systems’ influence on the learning outcome. Their findings
show how adding dynamic difficulty adjustment and other flow dimensions can im-
prove the gamification experience [177]. Other works also show the benefits of using
data-driven approaches in the education domain [214].

All in all, the field of adaptive gamification is still young and growing, especially for
what concerns dynamic adaptation [80]. As such, gamification research still misses
coherence in research models, as well as theoretical foundations [121]. Moreover, the
motivational affordances implemented in the majority of the studies remain ’goals and
objectives’, ’multimedia feedback’, and ’metaphorical/fictional representations’ [228],
neglecting others such as the expression of self-identity [240]. Since different things
motivate different people, it can be expected that personalizing the incentives and
the way the rewards are presented to the individual would be beneficial [222]. In
particular, tailoring at the level of social influence strategies may increase the effects
of the persuasive technologies [107]. Yet, the conversation is still focused on what can
and needs to be personalized, rather than on how to tailor experiences [119]. Thus,
researchers call for more studies on automatic adaptation and dynamic modeling [119,
121], with associated impact evaluation [119]. Scholars and practitioners should ex-
ploit implicit behavioral data [51, 89] to update and improve the gamification model
in a cyclic manner [121, 119], benefiting by periodically producing novel content [121].
Gamification studies would benefit from broader use of theories to account for the
complexity of human behavior and a more thorough exploration of the many opportu-
nities coming from the world of games [184]. Hence, game and gamification analytics
theories and empirical findings must be studied to derive truthful and reliable models
of players’ experiences and personalities.
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2.3 Modeling Player Experience
Through game [62] and gamification [89], a better understanding of players can be
achieved, which can be beneficial for both customers and suppliers.

Game metrics can measure quantitative and qualitative attributes [62]. It is a com-
mon practice to employ self-assessments to model player experience (e.g., PENS [191],
GEQ [98] and IEQ [102]). This type of data source is known as subjective Player
Experience Modeling (PEM) [150]. Despite the many techniques that exist to ad-
dress the tool’s subjectivity, especially on large-scale quantitative studies, some flaws
persist. Answers might be biased either because players have a wrong perception of
themselves, want to please their interlocutor, or have a different scale of measure than
the other participants [62]. An additional issue may also be memory faults caused by
answering questions after long gameplays.

The usage of psycho-physiological measurement during gameplay [149], called objec-
tive PEM [236], is another option. For instance, physiological signals are an alter-
native form of input, proved to be an effective way to evaluate the experience [149,
150]. Nevertheless, such external tools cannot always be easily integrated into the
system, either for economic or logistic reasons. Obtaining direct feedback from play-
ers to assess a gameful system’s success is not always possible. However, modeling
their behavior using data collected from their interaction with the system is a way for
designers to infer whether players are pursuing the intended goal [91]. Each player
modeling approach involves different challenges to obtain meaningful information
about player behavior [92, 202].

Data mining on user behaviors is a practice aimed at supporting the design and
development of systems. When the data analyzed comes from games and gameful
environments, the term used is Game Analytics. Researchers and practitioners are
interested in detecting meaningful information from players’ interactions [133]. This
information can also inform the customization of users’ experiences. On the one hand,
the designers’ and developers’ interests lie in retaining and attracting many users. On
the other hand, users seek engaging experiences. To this end, a plethora of sources
can be used to gain knowledge about players [99]. Gameplay data is also a valuable
source of information. Gameplay-based PEM [236] is driven by the assumption that
the quality of player experience is deductable from in-game interactions. Not only this
approach allows having immediate feedback on the way users interact with the game,
but it also eliminates the biases likely to occur in more subjective methods [194]. The
objective nature of data-driven gameplay-based PEM led to the extensive use of those
metrics to assist the design and development of games [115]. Gameplay data is very
insightful when measuring the player experience is the purpose [62], while being easy
to retrieve through an automatic logging system [115]. From the raw gameplay data,
we can extract several metrics. Examples are metrics to measure basic learning indi-
cators to adapt to the difficulty level and the evaluation of players’ performance [114].
Nonetheless, such methods are not unflawed. Some issues are generalizability prob-
lems, algorithmic efficiency, and the ability to consider player variation - e.g., skills
development - in time [92]. Thus, to avoid misleading interpretation, data should be
meticulously analyzed [92].

2.3.1 Churn Prediction

Measuring and estimating players’ experience is only the first stage. Knowledge of
users’ level of satisfaction can be exploited as feedback to improve the overall system.
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Delivering a high-quality experience is the key to maintain the system alive. An
example of the opportunities deriving from gameplay analysis is churn prediction
studies [56, 210, 22].

The likelihood of a player abandoning the game can be measured by analyzing game-
play data and identifying the behaviors that can be symptoms of an abandonment [62].
Many studies addressed the problem of assessing whether churn is indeed predictable
and which features should be studied to help prevent it (e.g., [179, 76, 158, 108,
147]), often using context-specific game metrics [147] or metrics solely applicable to
full-featured games [76]. The vast majority of studies use aggregate data to predict
churn [147, 76], instead of analyzing temporal data. Data dynamicity should also be
considered since it is proved that players, rather than having a static in-game be-
havior, tend to change it throughout their gameplay [62]. An exception is the study
of Hadijii et al. [76], in which they defined a generic model that considers temporal
features.

Nevertheless, some researchers also investigated the power of more generalizable mea-
sures, such as users’ activity, to predict churn and in-game purchases. Xie et al. [233]
propose a prediction model using frequency-based data to classify disengagement and
first purchase. Liu et al. [131, 132] adopted a different approach by analyzing churn
at both a macro and a micro level using graph mining. They collected and explored
a considerable amount of data from a Chinese game provider, showing that play-
ers’ activity across different applications is a predictor of churn likelihood. Also, they
present a model to rank applications according to the users’ abandonment rate. While
they provide findings that monitoring players’ interaction with the application is a
predictor of abandonment, they exploit cross-game information to make predictions
available in a game provider but lack specific applications. Moreover, the focus is on
free-to-plat games. Churn prediction in those games is very specific due to the nature
of those games, in which players tend to churn very quickly [116]. Therefore, there
is no evidence that their models, methodologies, and findings hold in such a different
context as gamification.

Churn prediction is undoubtedly essential to timely identify players at risk of aban-
donment. However, identifying those players is truly meaningful if associated with
strategies to avoid such a churn. A viable strategy might be to introduce or improve
the generation of personalized content for those users at risk, as players are notably
more likely to be retained when the system accommodates their tastes.

2.3.2 Assessing Player Preferences

The self-report method (i.e., asking users to self-report on their perceptions and pref-
erences) is the most common mode of assessment [224]. In gamification, this research
method is the most frequently used to assess preferences for gamification elements
and tailoring gamified systems [119]. Results related to personalized gamification
were established mainly through surveys, storyboards, and questionnaires [119].

For instance, Orji et al. [173] used storyboards to explain persuasive strategies and
investigate how far personality traits moderate the self-reported preferences. Simi-
larly, storyboards have been used to assess self-reported perceptions of gamification
elements and whether they are correlated to Hexad user types by Altmeyer et al. [7,
8] and by Hallifax et al. [79]. Another way to illustrate gamification elements is
using textual descriptions. Tondello et al. [219] studied correlations among Hexad
user types and game elements in a general context. They textually described the
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gamification elements and asked participants to self-report whether and how they felt
motivated. Kotsopoulos et al. [122] followed a similar method and used self-reported
preferences to inform personalized gamification to reduce energy consumption. The
self-reported perception was also used by Jia et al. [103] to assess the motivational
impact of gamification elements, illustrated through videos.

Self-reports offer many advantages, such as easy interpretability, the richness of in-
formation, and sheer practicality. However, there is also substantial criticism of
this method [224]. A major issue with self-reports is the credibility of answers (i.e.,
whether the respondents’ answers are accurate). Past research has also demonstrated
problems such as social desirability bias (participants answering in a socially desirable
manner), acquiescent responding (participants tending to agree with statements), or
constraints on self-knowledge. Especially the latter (i.e., the fact that participants
might not be able to report their perceptions or preferences due to a lack of recall, ex-
perience, or knowledge), provides a threat to personalization research in gamification,
mostly relying on self-reports.

Alongside self-reports, grounded in psychological theories, researchers also investi-
gated the possibility of directly understanding players’ experience by analyzing their
interactions with the game. Those methods exploit telemetry data build from players’
in-game interactions. While much research has been done on games, for conciseness’s
sake, we primarily reviewed gamification studies, as this is our main focus. Gamifica-
tion research, inspired by current trends in games, is approaching the usage of machine
learning to predict and model players’ behaviors. Churn prediction, for instance, can
be used to identify non-engaged users [17]. Recent studies also show how the relation-
ship between video gaming preferences and gamification feature categories can differ
from what theoretical frameworks state, especially regarding social-orientation [88].
Nevertheless, it is unknown whether such a dichotomy can be attributed to surveys’
flaws, previously described, or other phenomena.

Users’ actions are driven by motives, which can be implicit and explicit [154] and
rarely correlate among one another [90]. Implicit motives describe impulsive be-
haviors [154], whereas explicit motives drive responses in structured environments
resulting from elaborated choices [154, 155]. Therefore, explicit motives can be ac-
counted for people’s actions only in certain situations [33] and they do not necessarily
correspond to what they actually enjoy [156]. Users’ preferences can vary with the
environment they are placed into [221]. Besides, they are also affected by the physical
medium they are using [209]. On the other hand, implicit motives can explain long-
term behaviors applicable in many more various domains, rather than in concrete
goals within specific environments [156].

Those findings raise the question of whether static player types derived from self-
reports are robust enough to embed and model what players actually enjoy, instead
of only the superficial conscientious choices. This issue is extremely complex due to
the many confounding factors. Hence, we believe that the first problem to tackle is
complementing this research by analyzing the users’ player types (self-report) and
in-game behaviors (spontaneous actions) when interacting with a gameful system.
Towards this, our scope is to trace a thread tying theoretical models and data-driven
analysis to research whether those approaches are effectively pointing in different
directions, or rather they converge into similar results.
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2.3.3 Data-Driven Player Profiling

The most popular technique used to profile players is clustering, which consists of
finding groups of samples with similar characteristics in a dataset [20, 203, 50]. Since
clusters can be inspected and interpreted to produce a human-readable description,
the information retrieved can be exploited to optimize the game’s design [57]. In
recent Games User Research works [203, 195, 185], researchers have extensively used
Archetypal Analysis, a soft-clustering method that, instead of assigning each data
point to a specific cluster, calculates a likelihood or belongingness score of that element
to be in each cluster. While several studies have been conducted on aggregated
telemetry data (e.g., averaging data for the whole duration of an experiment), a
temporal view is crucial to understand dynamic interactions better [13]. Previous
work has found that players can belong to different clusters in different stages of
a game [181, 106], adding further support to the belief that player profiles need to
iteratively be updated for them to remain useful [202]. Understanding the temporal
aspects of gameplay is also essential in analyzing how engagement and frustration may
vary over time through player behavior. However, in most cases, temporal data is
used to enhance the accuracy of prediction of specific events or churn prediction [192,
94]. Despite those models often being very accurate compared to aggregated models,
they are not human readable. Thus, designers cannot be meaningfully informed by
their outcomes.

When adaptation and personalization are introduced, most of the time, researchers
and practitioners focus on how to profile players’ individual preferences and adjust the
game accordingly. Consequently, social game mechanics are usually reduced to one
of the elements that players may or may not like. However, many studies provided
evidence on how sociality is essential in games, which connect individuals through
play. Sociality is multifaceted, and thus in-game relationships need to be closely
studied, as well.

2.4 Social Play
The belongingness hypothesis states: "human beings have a pervasive drive to form
and maintain at least a minimum quantity of lasting, positive, and significant per-
sonal relationships" [21]. Humans’ need to feel close and connected to others is also
considered a fundamental construct in self-determination theory [49], as part of the
concept of relatedness, and further accepted in other psychological theories [63]. The
individual’s need to belong is, often, what influences their choices and decisions to
begin an activity or behave a certain way [21]. People seek relatedness in any kind
of activity [21], often in games [191, 187]. By their nature, games embed some de-
gree of social connection, either directly or indirectly, differently from non-gameful
actions [189]. Players are more likely to keep being engaged and keep playing when
their need to belong is fulfilled [183], as the nature of in-game relationships can im-
pact their behaviors and participation [99, 223]. Social play can produce a feeling of
well-being and an increase in players’ performance [182].

Researchers found how commitment to the game benefits from peer-to-peer com-
munications [46], because feelings of relatedness increase enjoyment [46]. Not only
explicit but also non-verbal communication can foster closeness and social play [127].
However, not every multiplayer game successfully produces belongingness and relat-
ednesss [60, 86]. People feel connected when a sense of presence [47] and virtual
community [24] is created, in which virtual social agents are perceived as real-world
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social individuals [127]. Well-designed social game mechanics can result in players’
will to complete their tasks and be retained for longer: they are more motivated to
have success [167]. Within virtual environments, players can form long-lasting friend-
ships within games, which can continue not only in the real world but also in other
games [44].

2.4.1 Social Play in Gamification

Gamification is strongly related to motivational design, specifically prevalent when
trying to involve users in tedious or repetitive tasks and to trigger new behaviors.
According to one of the most used definitions, gamification is the use of game-like el-
ements in non-game contexts [53]. In many studies, this definition has been translated
into the implementation of the “blueprint triad” [52, 121], meaning points, badges,
and leaderboards (often called PBL). Gamification research still heavily relies on
achievement-oriented affordances. [121], despite social-oriented affordances showing
promising new perspectives [83, 48, 231].

Popular approaches toward gamification—to effectively achieve long-term players’
retention—must move towards intrinsic rather than extrinsic motivation. Intrinsic
motivation can be driven by the primal need for a feeling of belongingness. In a
recent study on gamification, social game elements positively satisfied the autonomy,
competence, and relatedness needs [231]. Hence, gameful systems can benefit from
the inclusion of game mechanics related to cognitive and social motivations [1]. Social
gamification helps achieve more successful gamification examples, as players’ are more
motivated and engaged than in reward-based gamification [213]. Besides, users are
driven towards technology, in the long-term, when social influence is in place, espe-
cially when they can be positively recognized by peers and are offered the possibility
to network [83]. A sense of social interaction conditions the motivation of using the
system, increasing users’ engagement [186].

Social influence benefits are found in different application domains. For instance, in
gamification for health, players were found keener to engage in physical exercises when
playing with friends [83]. Players’ engagement and participation were proportional
to the number of friends they had in the service. Moreover, having a partner to
play with eases the process of weight loss [126]. Learning can also be improved
when social gamification is used [123, 48]. Learners not only were retained for longer
in the system, but they also showed better performance in the tests [123]. Social
play not only can be exploited to positively instill individual behavioral change but
also impacts community activities. For example, crowdsourcing can be made more
engaging by using competition [2].

However, divergent opinions exist on how social dynamics should be implemented and
whether they may negatively affect users. [2] argue about the benefits of competitive
game elements. When they compared the competition to cooperation, they obtained
detrimental results for the competition. Other studies found that competition nega-
tively affects social behaviors [88], too. In detail, the authors hypothesized how those
adverse effects may be explained by an overachiever’s presence impacting players less
skilled in the activity [88]. Researchers claim that a competitive environment in-
evitably fosters negative social interactions [16, 97], whereas cooperative gamification
is likely to positively connect users [164]. In turn, users experiencing positive social
feedback may be more prone to continue using the systems [212] and benefit from
it [83].
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Thus, more research should be conducted to identify the variables that affect social
play, engagement, and participation within gamified systems.

2.4.2 Social Network Analysis in Games

Researchers and designers can rely on Social Network Analysis (SNA) to monitor
the status of in-game social interactions. Player social relationships can be modeled
through graphs, which successfully represent interaction patterns among a group of
people [193]. Social networks manifest when direct or indirect social interactions are
allowed. Social media and standard Online Social Networks (OSNs) explicitly define
connections among the users, linked because they are related or share interests. On
the other hand, despite being originated from indirect connections, implicit social
networks are as rich as information. Hence, they may enforce similar social rules.
For instance, online multiplayer games, being a social phenomenon, encourage social
interactions. These interactions, or relationships, can also be interpreted as social
networks, thus being modeled using traditional SNA techniques.

Online multiplayer games convey information on the social aspect of gaming [69]
and help understanding social relationships in a highly digitalized world [59]. The
study of how players socialize through games can lead to better social environments
in games [59, 58]. For instance, studying the players’ network in the form of a graph
can highlight how players’ activity is reflected in others’ experiences [235] and when
the permanence of certain players can condition others’ behaviors [235]. Inspecting
the player network hinted that pending more time in teams is not a synonym of
being more social, as players’ interests in social interactions can be merely functional
to the game [95, 58]. Similarly, toxic interaction patterns may emerge from the
analysis [104].

Although the usage of SNA in games is still young, researchers have already analyzed
the social roles of players. Not only group formation represents a pillar of the player
community [59] but, sometimes, loyalty to the guild led players to prioritize its growth
rather than their own [9]. The team organization and connectedness also benefit the
individual performance [117] and retention [182].

2.4.3 Social Influence (in Games)

Social networks are an essential tool to identify and understand influencers in online
networks. In a social network, nodes often tend to resemble their neighbors. This
similarity happens either because similar individuals tend to connect or because they
mimic the behavior of some other individuals [43]. The first phenomenon is called
homophily [157], or selection, while the second is named social influence [3].

Influence is a widely studied topic in social network analysis, and yet there is no agree-
ment on the definition of an influential person [146]. From state of the art, two types of
influencers can be distinguished: (1) individuals affecting the spread of information or
behavior [200]; and (2) individuals manifesting a particular combination of desirable
properties, which span between expertise and position in the network [70]. Many
terms have been used to address those influential users. When they impact other
behaviors, those individuals are referred to as opinion leaders [61], innovators [35],
key-players [27] and spreaders [75]. When they are well position and connected in the
whole network, they are usually called celebrities [168], evangelists [12] or experts [75].
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Using centrality measures to identify influencers has been proven to be a relevant
approach [74, 14]. More specifically, in- and out-degree, betweenness, eigenvector,
and closeness are the more widely used metrics [197]. Although these measures are
distinct, they are conceptually related [188]. While, due to their definition, those
metrics seem to be very aligned to the influencers of the second type, there is no
trivial evidence that they are sufficient to identity influencers of the first type - i.e.,
influencing people’s behavior. Instead of being fundamental to keep the community
connected, these specific kinds of influencers foster similarity among the nodes in that
others tend to emulate them.

Many researchers have studied and modeled the concept of influence and its spreading
throughout the network. Generally, in those works, influence is said to occur when
B performs an action after A performed it. The probability of influence degree can
be learned from a log of users’ actions [73]. A similar interpretation of influence,
which is more tied to the individual’s identity than their actions, is the study of
the conditional probability that similarity increases from t-1 to t between two nodes
that become linked at time t [197]. Also, a combination of the two approaches is
used, modeling both user attributes and actions over time. Tan et al. have used
the latter methodology. [211] to compute the likelihood that the user also performs
the action, which is increases when one’s friends are performing said action. Various
ways of measuring the influence of users have been analyzed [15, 32, 38]. Studying
the increase of similarity among users over time also allows modeling the idea of
reinforcing influence when the interaction perpetuates. It is shown that similarity
steadily increases even after the first interaction, although at a decreasing rate [43].
Influence has also been used to differentiate between strong ties to weak ones [232].
But most of this work has focused on online social networks, while work on influencers
in games is still rare.

Multiplayer, or social, games foster social relationships by nature, and thus, can also
be modeled through a graph. Researchers studied groups and community [60], inves-
tigating the impact of social structures in gameplay [176, 182]. Properties of groups
and guilds, for example, are indicators of players’ in-game activity and retention [185,
195]. Although the player communities formed around games hold important infor-
mation about the social dynamics occurring [226], the psychological drivers moving
players’ behaviors are still underexplored [62].

The possibility that any behavior can be influenced has also been explored in games.
Alongside general studies on social structures and communities [195, 226], recent
works investigated the existence of influencers in popular games. Structural influ-
encers, or central users, have been analyzed in the game Tom Clancy’s The Divi-
sion [37]. The authors found how central players were different from both power
users and traditional players and fostered long-term retention in others. While these
studies highlight the importance of influencers in the players’ community, they are
still limited to similar domains. Researchers claim that the same motivational affor-
dances move players in both games and gamified environments [96]. However, the
findings on social influence cannot be assumed to generalize also in gamification.
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Chapter 3

Case Studies

In the current chapter, we will present the use cases analyzed in the manuscript and
an overview of the features and some statistics of the collected data.

First, we will introduce the core application domain: Play&Go, a persuasive gamified
system fostering ecological transportation habits. Play&Go is active in a whole Italian
region. Players participate in the gamification campaign on a voluntary basis, rather
than being invited to a lab experiment. Since 2015, yearly gamification campaigns
have occurred. Users also can provide feedback to the designers, either by directly
approaching them via email and during the yearly events organized or by completing
in-app surveys. Players’ feedback is then analyzed and exploited to improve the next
edition of the application in a cyclic co-design process. The most notable product of
co-design has been the introduction of multiplayer mechanics in 2018. In this thesis,
we analyzed three editions of the game, starting from 2018.

Play&Go implements a variety of game elements, both single and multiplayer. Such
a variety is suited to enable our research on adaptive gamification, as it gives the
freedom and space to analyze different behaviors and offer personalized content. Nev-
ertheless, the size of the players’ population is still massively reduced compared to
traditional games, whereas the study of novel algorithmic approaches required a more
consistent player base. To fulfill this need, we also analyzed game data from a Free-
to-Play online game (TagPro), an online multiplayer FPS (Destiny), and a game
provider (Steam). Including game data has an additional benefit other than testing
new approaches: bridging gamification and game research, highlighting the differ-
ences but, especially, the similarities among these seemingly disjoint worlds. Games
and gamification players are moved by similar motivational drivers, yet game research
is and cannot be immediately generalized to gameful systems. Despite bridging gam-
ification and games is not the main scope of this thesis, we still partially address this
issue in the process of designing new analyses to study individual and social behaviors
in gameful environments.

3.1 Gamification Data: Play&Go
Play&Go [67, 151, 109], as illustrated in Figure 3.1), is a gamified system, in the
form of a mobile application, with the goal of producing a positive mobility behav-
ioral change in its users towards sustainable transportation means. The app is spon-
sored by Trento and Rovereto’s municipality, the two cities of the Italian province of
Trentino. The sponsorship allows organizing yearly 6-month gamification campaigns
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Figure 3.1: Screenshots of the Play&Go application representing: (a) home page;
(b) the realtime tracking view; (c) the selection of personalized weekly challenge,
where players can accept a received invite (if any), send a new invite (if unlocked)
or choose a single-player challenge, (d) the unlockable multiplayer challenge modes;
and (e) the creation of a new invite. Please note that the figures refer to the last

edition of the game analyzed (2019).

in which citizens can compete for physical prizes offered by local partners (e.g., mu-
seum tickets). Prizes are awarded weekly to best-performing players within the game
week and at the conclusion of the gamification campaign to the top players.

Players can earn Green Leaves points by tracking their trips around Trentino through
the app, by specifying whether they are walking, riding a bike, or using a public
transportation mean (bus or train). They can visualize their trip in real-time (Figure
3.1b) and switch transportation modality as needed. Once the journey ends, players
can stop the tracking, and an automatic validation algorithm analyzes the trip. A trip
is deemed valid if the declared means is reasonable, considering its time, location, and
speed. For instance, bus trips are cross-validated with bus timetables, and acceptable
walk trips are under an estimated velocity. Valid trips are translated into Green
Leaves points, whose number is determined by the length and the eco-sustainability
of the trip - i.e., bike trips are more ecological than bus trips.

Figure 3.1a shows the Play&Go home page where users can visualize their current
status, start a new tracking, and access their profile. A sense of mastery is conferred
to players by associating them with a level that describes their experience in being a
green citizen (e.g., Green Soldier, Green Warrior, Green Guru). Green Leaves points
also have the meaning of experience points and are used to reach a new level. Hence,
on the home page, users can visualize their progress. Players can compare their level of
expertise - i.e., points - with others through weekly and global leaderboards. Weekly
leaderboards consider players’ activities within the specific weeks, whereas global
leaderboards report point gathered throughout the gameplay. The purpose of weekly
rankings is to include fairness towards late-comers in the gamification campaign,
which may be penalized in the global ranking. The leaderboards also have a strong
extrinsic value as they are used to select the winners of the sponsored physical prizes.

From the leaderboard (or through the search features), players can access other users’
profiles and visualize a high-level overview of their status - e.g., level, profile picture,
and a cumulative value of trips and kilometers recorded by transportation means.

Play&Go also features weekly challenges, to maintain users in a state of flow. Thus,
challenges are specifically deployed for each user using a Recommendation System



3.1. Gamification Data: Play&Go 21

(RS), taking into account players’ mobility habits and performance [112]. An example
of a challenge is the following: "This week, do at least 5 km by bike to win a bonus of
120 Green Leaves points". Challenges have a weekly validity and, upon completion,
award players additional points, defined in accordance with the challenge’s difficulty
for the specific player. Through the challenges, players are further motivated to
improve or maintain their performance, if already optimal. Yet, only goals possible for
the user to achieve are suggested to keep them interested without risking frustrating
them.

Weekly challenges are not necessarily automatically assigned by the system. Players
can perform a choice among 2 or 3 options generated by the RS. The options can
vary in the target and difficulty requested, where the difficulty is a value computed
upon the estimated effort the specific player is expected to do. The reward associated
with the challenge is proportional to its difficulty. As the game is organized in weeks
- i.e., weekly validity of the challenges and weekly leaderboard - there is a specific
timeframe within which the choice must be performed. Challenges are activated each
Saturday. This selection period of 3 days is called programming phase. If users lack
in making a selection, the system enables the challenge best ranked by the RS.

Other than consulting the leaderboards, players can more actively engage with other
users through two-players challenges. Generally, multiplayer challenges are initiated
by one of the two players involved through the in-game invitation system (Figure
3.1d). The invite’s sender chooses their opponent among a subset of the players’ list,
comprising users having at most two levels of distance from the player. This constraint
avoids producing highly unbalanced challenges, trivial for one end and frustrating for
the other. When creating an invite, players can also specify the parameter upon
which the challenge will be evaluated, between walk, bike, or Green Leaves points
in general. Having specified the opponent and the parameter (or challenge type),
the RS will calculate the best target and reward according to both players’ previous
performance, with the primary goal of generating a fair and appealing challenge for
both parties. Therefore, it may happen that the reward, in case of a win, is higher
for one party than the other because the challenge is slightly more difficult for that
user. The target, on the other hand, is always the same for the two players. Users
are made aware of this possibility to allow them to make an informed choice. Finally,
the sender needs to specify the multiplayer mode. Play&Go offers three types of
social game elements (Figure 3.1c): cooperative challenges, time-based competitive
challenges, and performance-based competitive challenges.

In the cooperative challenges, players have a common goal and, no matter the
individual contribution, if they reach the goal before the challenge expires, they both
win. Since the purpose is to make players work together, the target is common, and
the prize is the same for each party - e.g., "Join forces: bike at least 10 km between
you and Player2. If you win, you’ll both get 120 green leaves.". In the time-based
competitive challenges, the first player who reaches the goal wins. The target is
calculated so as that it is challenging enough for both players but still achievable.
However, since it is likely to happen that the challenge is easier for one of the players,
the reward is proportional to the level of difficulty calculated for each party: - i.e.,
the strongest players would get a lower reward than the weakest. An example of a
time-based challenge is the following: "Bike 4 km before your opponent Player2. If
you win, you’ll get 100 green leaves. If Player2 wins, she-he will get 150 green leaves".
In the performance-based competitive challenges, the player with the highest
performance in the week the challenge is active wins. Due to the definition of the
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challenge itself, there is no predefined target. The reward is a booster calculated on
the weekly points obtained to foster the best performance possible - e.g., "Walk more
km than your opponent Player2. The winner will get a 40% bonus of all the points
got during the week.".

Once the player is satisfied with the setting, they can send the invite (Figure 3.1d).
During the invitation phase, players can actuate a strategy. For instance, they may
challenge a less experienced player in a competitive match to increase their chances
of winning the reward. The invite is then sent to the other player, who can accept
or reject it (Figure 3.1c). The sender can also decide to cancel the request and make
another one. Players can make only one request at a time and, once a challenge has
been accepted, the players involved cannot make other invitations or accept other
challenges until the following week.

As players progress in the game and increase levels, they unlock new game features.
Using unlockable elements has a dual purpose. First, players may be overwhelmed
if presented with a series of unknown features. The confusion might be frustrating
and lead them to disconnect. Second, some players are additionally motivated by the
presence of unlockable content. Reaching a new level, up to Level 6, is a milestone
for players and results in new mechanics or elements.

• Level 1 - players receive their first customized individual challenge.

• Level 2 - players can choose one among two customized individual challenges.

• Level 3 - players can choose one among three customized individual challenges.

• Level 4 - players can unlock one among the three modes of multiplayer chal-
lenges available - cooperative, time-based competitive, and performance-based
competitive challenges. From this point onward, they can invite other players
to a multiplayer challenge (Figure3.1d).

• Level 5 and 6 - players can unlock another multiplayer challenge mode.

Finally, players possess a personal blacklist, in which blocked users are stored. If
a player blocks another user, then they will not receive invitations from them. We
included this possibility to allow players to protect themselves from unwanted repet-
itive invites to multiplayer challenges, as this is the only in-game social interaction
possible. Players can also decide to unblock a user at a later stage.

In this project, we analyzed data from three gamification campaigns:

a. The 3rd edition, from September 2017 to March 2018.

b. The 4th edition, from October 2018 to April 2019.

c. The 5th edition, from September 2019 to February 2020.

The core mechanics remain the same across all editions. However, we introduced
multiplayer challenges, the possibility to send invites, and the leveling system in the
4th edition. Although players asked for competitive and cooperative game elements,
during Edition 4, very few of them engaged in them, whereas the others manifested
an issue of trust and confusing interactions. Up to this edition, players could have
one active challenge each week, regardless of the type. A major criticality was making
mutually exclusive single-player and multiplayer challenges. Therefore, in Edition 5,
we allowed two active challenges per week, at most one of them being multiplayer.
Besides, to overcome trust issues, we included an injection mechanism: players not
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having active multiplayer challenges were matched through a simple matchmaking
algorithm. Hence, a system-generated multiplayer challenge was assigned to them
whenever possible. The matchmaking algorithm is naive, as it matches players with
similar expertise and performance. For the remaining players, for which the matching
was not possible, the RS generated a second single-player challenge.

Dataset Description

Play&Go embeds a logging system. Thus, information on players’ game actions is
stored, as well as the time when the action occurred. Therefore, the raw logs contain
detailed data on users’ activities, except for the in-app interactions (e.g., visit a
specific app page or time spent on a page). Logged actions may be categorized as:

- Information on trips tracked (e.g., transportation means, number of kilometers,
and points awarded);

- Information of single-player challenges (e.g., target, reward, and whether it was
completed);

- Information on multiplayer challenges (e.g., multiplayer mode, winner, and
type);

- Information on invites (e.g., sender, receiver, and whether accepted);

- Information on levels - i.e., the time when a new level is reached;

- Information on unlocked items - i.e., time and type of item unlocked; and

- Information on the blacklist (e.g., blocked users and unblocked users).

We can process and analyze a series of low-level game actions and features through
the game’s logs. In the following, we will describe some general features used (or
combined with others) in the studies conducted. Please note that later chapters may
introduce new features specific to the analysis presented. The features can be or-
ganized in macro-categories. Players’ activity is described through the number of
trips and kilometers tracked (divided by each transportation means), the number of
game actions performed, and the number of Green Leaves points collected. Players’
activity is also evaluated using the number of active days, where a day is considered
active if at least one game action is performed, and the frequency of usage value.
The frequency of usage value is computed as the percentage of active days over the
players’ gameplay length, computed as the number of days elapsed between the reg-
istration day and the last game action. Players’ performance is represented by the
final game level reached; their win ratio in general and divided by challenge’s mode
(i.e., single-player, cooperative, and competitive); the average difficulty for single-
player challenges; and the positions in the weekly and global leaderboards. Players’
social interactions are modeled through the number of recommendations sent to
friends and family; the number and type of invitations sent; the number and type
of invitations accepted; and their activity on the blacklist. Players’ agency is de-
scribed by the percentage of single-player challenges programmed; and the percentage
of multiplayer challenges for which they are initiators.

In the remainder of the manuscript, we will analyze both the feature values aggregated
over the whole gameplay and aggregated over each game week. In the first case,
referred to as aggregated data, for each player, a single data point exists, whose
dimension N is the number of features used in the study. In the latter case, referred
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(a) Permanence (b) Activity

Figure 3.2: Distribution of players’ permanence in the gamification campaign
(number of weeks spent playing) and their activity (counted in number of game
actions performed). It should be noted that the last edition was shorter than the

previous two due to the covid19 emergency.

to as temporal data, for each player i there are ti data points of dimension N , where
ti is the number of weeks the player was in the game.

For conciseness’s sake, we hereby report basic statistics on the players’ population
across the three editions of Play&Go analyzed. In the following chapter, relevant fea-
tures will be described in more detail. Exception made for the 5th edition, interrupted
due to the Covid19 emergency, each gamification campaign lasted 25/26 weeks. The
players’ population size slightly decreased over the years, from 642 registered users
in the 3rd edition, to 587 and 425 in the 4th and 5th respectively. Despite this de-
crease, players’ activity and permanence increased (Figure 3.2). With the passing
years, users were more likely to perform more game actions and remain in the game
for longer. Hence, the game found consensus in the majority of its users.

At the beginning and conclusion of each gamification campaign, a survey is submitted
to users in the form of a special challenge. The registration survey is built of two
parts: general information on users and the Hexad User Types Questionnaire [215].
General information comprehends basic demographics (age and gender) and estimates
of the own mobility habits (e.g., preferred transportation means and average weekly
kilometers traveled). The Hexad User Types Questionnaire is used to model each
user according to the player types defined in [153] - i.e., Philanthropist, Socializer,
Achiever, Player, Free Spirit, and Disruptor. The final survey collects impressions
and feedback from users. For instance, players can evaluate game elements, declare
whether the game impacted their transportation behaviors, and manifest their will
to participate in the following campaigns. The survey also foresees a free-text box
for unstructured comments.

In every edition, we found the players very well-distributed among males and females,
both representing half of the population, with a variation of few percentile points.
Players’ age distribution was also consistent throughout the years. Two-thirds of the
players were in the age range 20-35 and 35-50 years old, one-third for each category.
Younger (16-20 years old) and older (50-70 years old) users were less present, amount-
ing to one-fifth of the population each, on average. A very small minority of the users
were older than 70 years.

The distribution of the player types scores also remained very consistent across the
editions, as Figure 3.3 shows.
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(a) Socializer (b) Philanthropist

(c) Achiever (d) Player

(e) Free Spirit (f) Disruptor

Figure 3.3: Distribution of the Hexad User Types scores across the three editions
of Play&Go analyzed: 2017-2018 (blue), 2018-2019 (orange), and 2019-2020 (green).
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Figure 3.4: Gameplay screenshot of the game TagPro.

3.2 Games-related Data
Gamification is indeed the primary application domain for this project. However,
during our analyzes, we also exploited data coming from games. This section describes
the scope and dynamics of the system analyzed: two online games belonging to
different genres and a game provider.

3.2.1 TagPro

TagPro1 (see Figure 3.4) is an online, multiplayer, casual Free-to-Play (F2P) created
by Nick Riggs. The game is a classic desktop game, available online, and was first
released in February 2013.

Players are organized into two teams (red and blue) and, to win, have to capture the
opponents’ flag. Each team can include up to four players, and the game characters
can either be controlled through the WASD or the arrow keys.

The game offers two modes, distinguished by the flag type. In the traditional mode,
the two teams are spawned to the opposite sides of the map, and each has its own
flag. Their goal is to steal the opponents’ flag and bring it to their team general
quarters (the spawn point). In the alternative mode, instead of the two flags, there is
only one neutral flag. The teams compete to be the first that bring the flag to their
home–base.

The simple core mechanic of “capture the flag” games is complicated by power-ups
and other map elements. Game elements exist to either bring benefit to the own
teams or hinder the progress of the enemy team.

For instance, the player carrying the flag can be “popped” by the enemies, which
results in an invisible explosion. Following the explosion, the flag is brought back
to its original location - e.g., the team home–base, in the traditional mode, or the
neutral point, in the alternative mode. In the traditional mode, players also “pop” if
they are both flag carriers and touch each other, unless they gas a power-up. Whereas
in the alternative mode, when a player touches a carrier, the carrier pops, and the
flag is transferred to the opponent.

1https://tagpro.koalabeast.com/

https://tagpro.koalabeast.com/
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Table 3.1: Temporal statistics of the Destiny dataset

Property Value
Observation Period 09 Sep 2014 – 11 Aug 2015
Players 10 037
Matches 26 120
#Snapshots (days) 336
#Snapshots (weeks) 48
#Snapshots (months) ∼ 12 (4 weeks each)

The winner team is the one that first reaches a score of 3 points differential. A point
is obtained when a team brings the opponents’ flag to their general quarter. For the
point to be awarded, the flag carrier of the enemy team should be popped before. In
other terms, when the flag is brought to the home–base, the opponent team should not
be in possession of their flag. This rule favors strategies and teammates’ organization
in specific roles. For example, teams often feature offenders that tackle the opponent
flag carrier intending to pop them once their team stole the other flag.

Dataset Description

TagPro gameplay data–logs2 store basic information on game matches, such as the
composition of the teams, the final score, and the timestamp of the match. As users
can also build a profile, in the log, there is also explicated whether the players were
authenticated or not. In case of authentication, the player logged in to their profile
before joining the match. Only logged players were included in the dataset, as we
needed to retrace their activity throughout the observation period.

We retrieved data from September 2015 to April 2016 for a total of 6 months (25
weeks). Our population size was 75k players, participating in 3 game actions, on
average (std 3.78).

3.2.2 Destiny

Developed by Bungie, Destiny is a popular online multiplayer first-person shooter
(MMOFPS) video game. Although Destiny is frequently described as an FPS, it
includes many role-playing elements (RPG) and massively multiplayer online (MMO)
games. The game is located in a multiplayer “shared-world” environment, as in
MMOs, and allows the development of a character throughout the gameplay, as in
RPGs.

Players take the role of a Guardian and must protect the last safe city remained on
Earth from dangerous alien species. Guardians travel across different planets to fulfill
their mission, find and exterminate alien enemies for humanity’s salvation. Guardians
are also tasked with the research of a celestial white body, called the Traveler. The
ultimate goal is to relive the Traveler, who allowed humans to navigate in the universe.

The gameplay is divided into player versus environment (PvE) and player versus
player (PvP) activities. Regardless, competition is a core aspect of Destiny. PvP
matches exist in The Crucible, a hub separated from the principal game world, where
players fight in restricted areas. The Crucible features a playlist of PvP modes and

2Data is publicly available at https://tagpro.eu/

https://tagpro.eu/
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Table 3.2: Basic aggregated statistics for the 10k Destiny players across the 48-
week observation period.

Variable Min 25% 50% 75% Max Mean Std
#matches 17 22 35 78 3.8k 83 146.5
score 2 44.45k 75.2k 164.4k 7.3kk 176.7k 326.3k
time played (s) 2.97k 12.54k 20.2k 4.44k 2.1kk 4.74k 82.44k
kill 2 245 398 877 33k 951 1.75k
death 27 245 393 889 46k 934 1.6k
assists 4 84 136 300 16.9k 316 559
average lifespan (s) 540.78 1.24k 2k 4.4k 185k 4.6k 8.2k
character level 10 29 33 34 40 31 3.8

allows a maximum of twelve players per match, depending on the specific mode, such
as Control, Clash, and Skirmish. Players are organized into two teams where the goal
is to either conquer a map area or kill all the opponents.

Dataset Description

We analyzed data from the PvP Crucible matches in Destiny, between September
2014 and August 2015. In our time window of 48 weeks, we retrieved a population
of 3M of players. We reduced the population to a sample size of 10k players for
computational constraints. The subset of players is constituted of users that were
retained for at least five weeks in the game. This temporal constraint derives from
the requirements of the study, whose details are outlined in Chapter 5.

The final dataset contained 26k matches PvP Crucible matches. For each match,
the following information is available: the teams’ composition, the timestamp of the
start of the match, how long each player stayed in the match, and basic stats (e.g.,
kills, assists, and deaths). Table 3.2 shows basic statistics for the players’ population,
describing their activity within the observation period.

3.2.3 Steam

Steam3 is an online game provider - i.e., an online library of games, which are usually
uploaded by game studios, publishers, or indie developers. The games are show-
cased in store pages, presenting information on the game, such as plot, description,
screenshots, reviews, ratings, tags, and genre.

Users need to register to the platform to access its services. They have their own
profile page, public by default, where information on their activity is shown. For
instance, games can be played through the platform, and players’ activity is visible
in their profiles, such as their time playing and unlocked achievements. Players can
also review games. A game’s rating is described on a scale from overwhelmingly neg-
ative (0%-19% of positive reviews) to overwhelmingly positive (95%-100% of positive
reviews).

Besides building their game library, users can also connect to other players through
friendship requests and join or create groups. Steam groups connect people with
shared interests, enabling them, for instance, to discuss specific games or share in-
formation. Although the social component is not essential for the core purpose of

3https://steampowered.com

https://steampowered.com
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Steam - e.g., collect and play games - the community is very active, and thus, it is
interesting to research to gain insight on players.

Dataset Description

We collected daily updated information about players’ activity in the form of time
spent playing on each game they owned. The observation period covered five weeks,
from April 13th, 2020, to May 17th, 2020.

Given that we consider a user active if it has played at least one game during the
observation period, we found that only 51k out of 191k players were active during
the five weeks we crawled their activity. We removed these users from the friendship
graph, along with the nodes that became disconnected. This resulted in a final
sample of 39,354 users and 218,432 edges. Although we acknowledge that our
dataset partially represents the Steam network, the size of the crawled data was
limited by the APIs constraints and for computability reasons, especially related to
the semantic influence algorithm (see Chapter 5). Furthermore, it is worth noting that
we conducted our analyses with careful consideration of players’ privacy. In Steam,
user ids are public and can be used to retrieve user’s profiles online by including the
id to the website URL. Therefore, to protect users’ privacy and eliminate potential
risks, we mapped each user to a new unrelated number. Additionally, Steam protects
players’ activities and guarantees no disruption of the user experience caused by
logging or crawling processes.

Regarding the players’ activity, we obtained a final sample of 28 days after removing
the outliers caused by an API server failure. Table 3.3 describes the users’ level of
activity during the observation period. Generally, the players tended to be very active;
on average, they played for about 17 days during the observed 28 days (std = 8.42).
The majority of the players were engaged in few games, and only a few outliers played
more than ten games. Users have a mean of about 4 playing hours on each active
day, and only a small part of the population played less than ~2h. From this, it can
be deduced that our population is represented by predominantly regular players who
play almost every day.

Games Metadata

During the 5-weeks observation period, our user population played about 17k different
games. For each game, we scraped its metadata, including the game genre, steam-
defined tags, user-defined tags, and reviews trend.

For the majority of the games, very few players in the sample played them. Specif-
ically, the distribution of players per game has a long right tail, with a mean of
25.8 players and a very high standard deviation of 232.8 players (min = 1, 25% =
1, 50% = 1, 50% = 3, 75% = 10,max = 26, 590). We observed that only a sixth of
the games (~3k) had at least 10 players, about 500 games had more than 100 players,
35 games had more than 1, 000 players. Only one game had more than 10k players
(17, 273 players in the sample). The game is Counter-Strike: Global Offensive, a
Free-To-Play Action Game, released on August 21st, 2012, with more than 4 million
reviews and a general rating of Very Positive. Generally, the types of reviews they
have received for the game tend to from Mixed to Very Positive review results, as
defined by Steam. Thus, the games played by our population meet the consensus of
the entire community. Less and almost irrelevant are the unpopular games.
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Table 3.3: Statistics of players’ activity.

Min 25% 50% 75% Max Mean Std
Minutes spent playing 0.67 111.29 185.71 282.43 997.50 209.65 132.01
#Games played 1 3 6 11 387 8.87 9.8
Active days 2 10 19 25 28 23 6.5
Active period 1 22 26 27 27 23 6.5

The types of games contained in the dataset are quite heterogeneous. While we can
observe how both user-defined tags and Steam-defined tags show a predominance of
indie games and single-player games over multiplayer titles, these are not necessarily
the games with a higher number of players. On the contrary, we observed that players
tend to play different single-players games while they were more homogeneous in the
choice of collaborative and multiplayer games. This behavior can be explained by
the social component being a core aspect of the multiplayer game at a micro-level
and also reflected in the more general players’ network at a macro level. In other
words, in contrast to individual games, multiplayer games require a community to be
fun. Hence, a type of consensus among users is needed for a multiplayer game to be
played.
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Chapter 4

Understanding Players as
Individuals

When they conceive a game, designers have a precise idea of how such a game will be
played and how the gameplay would look like. This idea is even more delineated in
gameful applications and games with a purpose. Designers have a precise ulterior goal
they aim at achieving by exploiting game elements and mechanics. However, humans
are complex and unpredictable. Consequently, the expectations rarely match reality.

Games analytics can help unravel players’ behaviors and interaction patterns to in-
form and adapt the game’s design. Analyses on a global level, observing the pop-
ulation as a whole, can convey knowledge on design faults and unordinary usage.
For instance, players’ winning strategies may emerge, or cheating behaviors can be
detected. Player-centric analyses, on the other hand, can produce a finer-grained
understanding of users towards their profiling. Player profiles can be used for the
generation of tailored game content aimed at matching players’ skills and tastes.
Producing content under players’ specific preferences has the goal to deliver more en-
joyable gaming experiences and retain them for longer, avoiding a premature churn.

Players cannot be treated as a uniform unit. The literature informs us on how humans
express their individuality in every action they undertake. Games, which were born to
allow people to experiment and learn, are the ultimate self-expression tools. Players
choose games that accommodate their motivational drivers and needs and indulge
their personality and preferences. As a result, to intrinsically motivate users to play,
games need to implement methods aimed at understanding players’ personalities,
preferences, and behaviors. Recent studies confirm that also gamification benefits
from tailored content, hence the popularity increase for Adaptive Gamification. In
this chapter, we understand what information can be extracted by analyzing their
in-game activity and their in-game behaviors to model players’ experience.

4.1 Assessing Players’ Experience
The analysis of players’ in-game behaviors can produce valuable feedback on their
gameful experiences. In this section, we first exploit telemetry data to describe and
model the players’ population from their behaviors. Those high-level player models
allow the identification of game strategies and monitor the oscillation between active
and inactive periods throughout the gameplay. After this global investigation on the
behavioral trends among Play&Go users, we studied more in-depth players’ experience
to identify users at risk of churn. This second analysis shows how players’ activity
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within the app can still provide meaningful insights, despite gamified applications
being limited in the diversity of analyzable features.

4.1.1 Observing Gameplay

The initial game design and the actual gameplay can diverge, especially in game-
ful systems, where a precise underlying goal is pursued. For instance, our gameful
application (Play&Go) is conceived to promote a behavioral shift towards ecological
mobility habits (See Chapter 4 for more details on the app). Players are awarded
points for their daily journeys once they track them using the app. Those points
have both an extrinsic and intrinsic meaning. Higher scores increase the chances of
obtaining real-world prizes but also allow them to gain experience in the game and
achieve a sense of mastery. Hence, users are motivated to gain points and win. The
game designers and promoters, however, want to prize sustainable transportation be-
haviors. The analysis of in-game behaviors to extract players’ winning strategies can
verify whether those strategies align with the gamification goal. In this study [145],
we process Play&Go telemetry data to characterize the population of players, un-
derstand who the winners are, and model changes in their in-game interactions and
behaviors.

Datalogs, however, may be unreliable in inferring players’ behaviors due to noise [91],
which can be contained if the appropriate methods are used [54]. The main issue
is whether to process aggregated game data, as frequently done in behavioral anal-
ysis [54, 202], in contrast to temporal data, acknowledging the dynamicity of game-
play [57]. Aggregated data describe players using a single data point, averaging their
activity within the observation period. Conversely, temporal data represents users
through many data points, collected at regular intervals.

Figure 4.1: Boxplot of players’ level distribution.

Dataset

For this study, we analyzed data from the last Play&Go gamification campaign, held
between November the 2nd, 2019, and February the 28th, 2020.

In our 17-week-long observation period, 425 players registered to the game and tracked
at least one trip. Among those players, 248 remained in the campaign for more than
one week, but only 194 reached Level 2. We analyzed a subset of those, with a
maximum level between 3 and 8, amounting to 145 users. The lower bound of 3 was
set to exclude players not having access to multiplayer challenges, while the upper
bound of 8 was included to remove outliers (show in Figure 4.1).

Our sample of players was fairly active (Figure 4.2). On average, they played 11
weeks (std = 5.2) over the 17 analyzed. Players performed 166.5 actions (std = 159),
on average, with a medium global score of 561 points (std = 271).
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To characterize and model the recurrent behaviors in the population of players, we
used the following features: points obtained, number of trips and kilometers per
transportation modality, the total number of game actions performed, number of
blacklist actions, the average difficulty of the individual challenges, number of single-
player and multiplayer challenges, information on the types and amount of invites
sent and received, percentage of accepted invites sent and received, percentage of
individual and multiplayer challenges won, and percentage of challenges programmed
(in contrast to being automatically assigned).

Data is organized into two datasets, both with the same features. The aggregated
dataset contains one entry for each player that averages their activities throughout
their gameplay. The temporal dataset, on the other hand, is built of multiple entries
for each player, representing a snapshot of their activity within a specific interval.
Specifically, we consider weekly snapshots, as the gamification campaign is organized
in weeks (see Chapter 3).

Figure 4.2: Activity distribution in the selected sample of users .

Modeling In-game Behaviors

Players’ in-game actions (or behaviors) were modeled using a soft-clustering tech-
nique: Archetypal Analysis (AA). AA is a matrix factorization method that produces
a description of each data point as a combination of archetypes, where the archetypes
represent extreme points in the dataset. For a more detailed description of AA, please
refer to Chapter 2.

Semantically, archetypes can be interpreted as traits or behaviors, and the data points
are represented through a combination of those traits or behaviors. In the analysis of
the aggregated dataset, a data point corresponds to a player, while in the analysis of
the temporal dataset, a data point represents how a player behaved during a specific
game week. Hence, a player is described by many data points.

In the following, we present the algorithm’s archetypes, as classically done in related
research [203, 195, 185]. The archetypes have also been inspected and validated by
the game designers, exploiting their domain knowledge.
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Figure 4.3: RSS using a different number of archetypes for the aggregated analysis.

Aggregated Analysis. We obtained the first set of archetypes by running AA on our
aggregated dataset. AA, like many other clustering techniques, requires the number
k of clusters - in this case, archetypes - to be set a priori. The approach typically
used is the ‘elbow’ method, consisting of running the algorithm with different values
for k. The results are then plotted against a performance metric, and the k value
is selected in correspondence with an ‘elbow’, which can be visually identified in the
plot. Figure 4.3 displays two elbows: for 2 and 6 archetypes. Using two archetypes
produced a division into active and non-active players. Therefore, we retained six
archetypes, later referred to as the set A.

A1: Ghost are characterized by very few game actions. Their in-game activity
is almost none.

A2: Hostile are characterized by an elevated number of actions on their black-
list. Their travels are multimodal, and their activity is below average. They
also tried customizing single-player challenges, with a low winning rate despite
the medium difficulty, and few multiplayer challenges, which were never won.

A3: Loser are characterized by their very low winning rate in single-player
challenges, despite being easy. Yet, they are fairly active in terms of the number
of game actions performed. They show a preference for the bus and walking
transportation means but have also tracked trips with public transportation
means. Those players have tried the challenge programming mechanism and
the invitation systems on a small scale.

A4: Average Full-feature are characterized by being active in every available
game element and mechanics. They intensively use all the available transport
modes. They sometimes program their challenges, either of medium or hard
difficulty. They are also active in the invitation systems, despite being receivers
rather than senders of challenge invites. They prefer cooperation to competi-
tion, but the percentage of won challenges is low.

A5: Sporadic User are characterized by a tendentially low level of activity.
They almost never interact with other users but programmed a few single-
player challenges with medium difficulty and won them almost half of the time.
They mostly walk or use the bus.

A6: Green Socializer are characterized by a strong preference and high activity
in green transportation means (walking and biking). They have a good winning
rate of single-player challenges, often programmed to be of either medium or
hard difficulty. They tend to send invites rather than receiving them, with a
preference for cooperation rather than competition.
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Figure 4.4: Scatter plot of the belongingness scores of the aggregated and temporal
archetypes. The vertices represent the archetypes, while the dots represent the
players. The closer the dot is to a vertex, the higher the value for that archetype.

The color of the dot is determined by the dominant archetype value.

Figure 4.5: RSS using a different number of archetypes for the temporal analysis.

The leftmost plot in Figure 4.4 shows the belongingness scores distribution for each
aggregated archetype (in A) over the 145 players. The Ghost (A1) archetype charac-
terized a big portion of the users, followed by the Sporadic User (A5) archetype. On
the other hand, the Hostile (A2) archetype, in comparison to the others, is scarcely
populated. The remaining more active archetypes - i.e., A3, A4, and A6 - show
similar distributions.

Temporal Analysis. Aggregated analysis extracted and characterized players’ be-
haviors throughout their gameplay. With temporal analysis, on the other hand, we
characterize in-game activity on a weekly basis. Towards this, we used the temporal
dataset, in which the entries represent players’ weekly actions. This dataset contains
several weeks for each user. To eliminate data dependency, we run AA on a subset
of the dataset, considering activity in game-week 5. We choose this week because it
featured the highest number of players (104). Then, we computed the belongingness
scores for every excluded entry according to the definition of the archetypes found.
Similarly to the aggregated analysis, we selected the number of temporal archetypes
using the ‘elbow‘ rule on the archetypes screeplot. We found two elbows, correspond-
ing to 2 and 7 archetypes. We choose seven archetypes for the same reason. We refer
to this set as T . A description of the archetypes follows.

T1: Wannabe Competitive Achiever are characterized by programming hard
single-player challenges, won half of the time, and by sending many competitive
invites. Although their competitive invites are almost never accepted, they
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receive many cooperative invites, which they accept. Those players are active
and multimodal, with a preference for green transportation means (bike and
walk).

T2: Sporadic Social User are characterized by a shallow activity level. They re-
ceive few invites (both cooperative and competitive), which are rarely accepted,
and show a low win rate. They sometimes program challenges, but they usually
lose them.

T3: Ghost are characterized by very few game actions. They in-game activity
is almost none.

T4: Average User are characterized by a moderate level of activity. Their
trips are multimodal, with a preference for walking and bus. They program a
few easy single-player challenges, seldom won. They receive, but rarely accept,
few invites (both cooperative and competitive). Their win rate of multiplayer
challenges is also low.

T5: Social Initiator are characterized by their strong involvement in multi-
player challenges, where they are the initiators. Their invites acceptance rate
is high, although the win ratio is medium to low. They are moderately active,
and their trips are usually multimodal, despite a preference for walking. They
often program their individual challenges with medium-to-hard difficulty and
maintain a good win ratio.

T6: Green Loner are characterized by having no interaction with other players.
They are moderately active and have a strong tendency towards green trans-
portation means. They tend to program medium to hard challenges, which are
always won.

T7: Just Enough are characterized by a low activity level, sufficient to win
their challenges (easy and seldom programmed). Their trips are mostly walked
or tracked by bus. They have no interaction with the invitation system.

Having defined the temporal archetypes T , we computed the belongingness score for
the excluded entries - i.e., the remaining weeks for all 145 players.

The rightmost plot in Figure 4.4 shows the distribution of the belongingness for each
temporal archetype over the 145 players and the 1590 entries. The Ghost archetype is
also one of the predominant archetypes, as in the A set. Differently to the aggregated
set, however, the more active archetypes are visibly more populated. The least dense
archetype is the Wannabe Competitive Achiever, representing a small portion of the
population. Finally, Figure 4.4b shows how the majority of the data points are
positioned at the center of the figure. Hence, a single archetype hardly characterizes
most of the users.

Players’ Winning Strategies

In the description of the archetypes, we provided a preliminary visual comparison
of the two sets A = {A1,A2,A3,A5,A6}, obtained with the aggregated analysis,
and T = {T1,T2,T3,T5,T6,T7} with temporal analysis. In the following, we expand
those comparisons by researching correlations among the belongingness scores players
obtained in the two groups of archetypes. We used Kendall’s τ , as the scores were
not normally distributed [93], and the Gilpin’s correspondence table [72] to interpret
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Figure 4.6: Heatmap of the correlation among the two sets of archetypes. The im-
age overlays all the images of the 17 analyses. White cells represent values non statis-
tically significant (p-value>.05). The p-values are corrected through the Benjamini-

Hochberg method.

Figure 4.7: Heatmap of the correlation among the set of archetypes and the posi-
tion in the weekly and global rankings. White cells represent values non statistically

significant (p-value > .05).
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the effect. A value of τ = 0.20 is considered a small effect, τ = 0.34 is considered a
medium effect, while τ = 0.50 is considered a large effect.

To avoid data dependency, we analyzed one week of the temporal dataset at a time.
We repeated the correlation analysis iterating on each week to rule out the possi-
bility of the results being due to casualty. Then, we compared the outcome of the
17 (i.e., the number of gameplay weeks) analyses and treated multiple correlations
through Benjamini-Hochberg correction [40]. Figure 4.61 shows the resulting corre-
lation heatmap.

We found a strong correlation among the low-performing archetypes (Ghost (A1,
T3) and Sporadic User (A5, T2)). While, some aggregated archetypes correlated
with a couple of temporal archetypes, as they were a combination of those. For in-
stance, Green Socializer (A6) positively correlates to Wannabe Competitive Achiever
(T1) and Social Initiator (T5), and Average Full-feature (A4) positively correlates to
Wannabe Competitive Achiever (T1) and Sporadic Social User (T2). We also found
how some specific archetypes existed in one representation and were completely ab-
sent in the other. The Hostile (A2) aggregated archetype was uncorrelated to the
temporal archetypes, and the Green Loner (T6) and Just Enough (T7) temporal
archetypes showed no positive correlations to the aggregated archetypes. Therefore,
the two sets of archetypes are related, although providing additional details on some
aspects of the gameplay.

We further investigated how different is the information conveyed by aggregated and
temporal archetypes in the analysis of players’ winning strategies. Towards this, we
correlated the players’ belongingness scores in each archetype to their position in the
weekly and global rankings (Figure 4.7).

In the A set, we found that the Average full-feature (A4) and the Green Socializer
(A6) archetypes assumed high positions in the weekly rankings (with a correlation
of -0.3 and -0.38, respectively). In contrast, high positions in the global leaderboard
were occupied by users with higher belongingness scores in the Green Socializer (A6)
archetype (-0.52). When investigating the T set, the Social Initiator (T5) and the
Green Loner (T1) archetypes were dominated the weekly ranking (both with a cor-
relation of -0.29). The correlations remain similar when analyzing the position in
the global ranking. In summary, aggregated archetypes gave a clearer view of the
successful behaviors in the long term, which brought players to the top of the global
leaderboard.

Behaviors’ Evolution

The archetypes featured different levels of activities and interaction patterns, both
in the A and T sets. In this paragraph, we researched frequent behavioral changes
by analyzing temporal data. To reduce complexity, we characterized players’ weekly
activity using their dominant archetype in that week. Then, we studied recurrent
transitions among archetypes (or behaviors). In other terms, we collected more in-
formation on how players interact with the game by modeling the frequency of those
behavioral transitions.

The transitions were modeled using a directed weighted graph (Figure 4.8), where the
nodes are the temporal archetypes, and the edges e = (u, v) represent a shift from

1The colors of the heatmap scale have been chosen to be color-blind friendly for accessibility
reasons.
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Figure 4.8: Graph of transitions among archetypes.

an archetype u to an archetype v. The weight of the edge shows how frequent the
transition was among players. The size of the nodes in Figure 4.8 is proportional to
their weighted in-degree value and the thickness of the edges to their weights. The
graph representation shows how many connections are directed towards the Ghost
(T3) archetypes. The active archetype more frequent, on the other hand, was Social
Initiator (T5).

Then, we partitioned the graph using the modularity score, computed upon the
strength of the ties. As a result, we obtained two communities identified in the graph
with two different colors. The first community includes the most active archetypes:
T1 (Wannabe Competitive Achiever), T6 (Green Loner), and T5 (Social Initiator).
The other community is mostly composed by low-activity archetypes: T3 (Ghost),
T7 (Just Enough), T4 (Average User), and T2 (Sporadic Social User). This suggests
that, in most cases, players tend to maintain their level of engagement throughout
the game. Therefore, the game succeeds in keeping engaged the portion of interested
users, while it lacks mechanisms to increase the participation of users not particularly
invested in it.

Figure 4.9: Visual representation of the analysis workflow for the churn prediction
study.
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4.1.2 Churn Prediction

In the previous study, we characterized the population of players by analyzing their
interaction patterns conveyed information on their behaviors, winning strategies, and
how they shifted among the behavioral archetypes during the gameplay. Those anal-
yses highlighted the presence of unengaged users, oscillating among low-level activity
archetypes. This finding raised a warning for designers and developers. Yet, no
additional information is provided on how to anticipate players’ disengagement and
prevent them from abandoning the game. Timely identifying players at risk of churn -
i.e., abandonment - allows introducing ad-hoc intervention strategies to foster players’
retention.

Churn prediction has widely been investigated in entertainment games, where a rich
set of features can be exploited to inform the prediction. Gameful systems, on the
other hand, often rely on simple interactions, hence lack complex attributes or proper-
ties. In this study, we tackle the problem of predicting players’ churn in our gamified
app, Play&Go, using only participation data. We show how information on players’
in-game activity is sufficient to predict their churn [143, 139], and investigate different
methods for data preprocessing and the analysis setting [139]. Finally, we research
the generalizability of the findings and the models by using as validation set data
from a F2P game (TagPro) [139]. Figure 4.9 shows the analysis workflow.

Constructs and Metrics

In this study, we collected and analyzed telemetry data from the 3rd and the 4th
editions of Play&Go to model players’ level of participation. In practice, we measured
the intensity and the frequency of players’ activity in the game. The intensity of
usage is evaluated using the number of Actions performed and the Green Leaves
points obtained by the player. The Active Behavior evaluates the intensity of their
participation. To this extent, we separately calculated the number of points gathered
and the number of actions performed during each week. The Frequency of Usage
indicator evaluates players’ commitment (Committed Behavior ) to the game, as the
number of active days over the gameplay length.

Similar to our previous studies, we modeled the temporal aspect of the gameplay by
fragmenting it in daily and weekly time windows to "acknowledge the dynamic, cycli-
cal nature of gamification" [121]. Those time windows, referred to as timeframes in
the remainder of the manuscript, allows us to evaluate players’ progress punctually.
We also measured players’ time investment in the game as the total amount of time
they spent in the game (Gameplay time). Finally, we computed our dependent vari-
able in the churn prediction analysis (Churn Time) - i.e., when and if a player would
abandon the game. The Churn Time value lies in the [0; 1] interval and is calculated
as the number of timeframes the player remained in the game over the total number
of timeframes left before the game ended. If the player never abandoned the game,
Churn Time was 1; in contrast, if the player left in the following timeframe, the churn
time was 0.

The Play&Go dataset counted 13k players, for whom we had data for up to 25 weeks -
i.e., the length of the campaigns. Table 4.1 shows the distribution of the values of the
features, as an aggregate value across players’ gameplay, and the dependent variable,
Churn time. Besides gamification data, we also collected telemetry data from a F2P
online game (TagPro), used as the validation set. TagPro players were 75k, analyzed
in an observation period of five months. Table 4.2 shows the features distribution.
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Table 4.1: Distribution of the values of the features in the Play&Go dataset as
aggregated throughout their game experience.

Features min 25% 50% 75% max mean std
Frequency of Usage 0.04 0.04 0.06 0.1 0.34 0.07 0.04
Number of Points 3 64 100 117 522 96 50
Number of Actions 1 1.3 2 4 18 3 1.6
Frequency of Usage (Impact) -0.9 -0.08 0.16 0.49 1 0.2 0.38
Number of Points (Impact) -0.5 -0.43 -0.4 -0.36 -0.03 -0.39 0.06
Number of Actions (Impact) 0.01 0.3 0.2 0.86 0.99 0.38 0.39
Gameplay Time 0.01 0.02 0.1 0.73 0.99 0.33 0.38

Table 4.2: Distribution of the values of the features in the casual game TagPro
dataset as aggregated throughout their game experience.

Features min 25% 50% 75% max mean std
Frequency of Usage 0.04 0.04 0.04 0.08 0.97 0.06 0.03
Number of Points -306 28 58 117 8916 99.34 150
Number of Actions 1 1 2 4 291 3.1 3.78
Frequency of Usage (Impact) -0.64 -0.04 -0.04 -0.38 0.95 -0.4 0.1
Number of Points (Impact) -0.79 0.48 0.7 0.86 1 0.65 0.27
Number of Actions (Impact) -0.59 -0.3 -0.25 0 0.95 -0.2 0.3
Gameplay Time 0.01 0.01 0.1 0.3 0.9 0.2 0.18

Measuring the evolution of players’ behaviors

Besides researching whether raw participation data is sufficient to predict players’
churn, we also investigated the elaboration of those values embedding information
on players’ improvement (or worsening). Towards this, we define a generalizable
function, called impact function, as it measures the impact the game has on players
concerning a specific behavior or feature. The values produced by the impact function
are called impact values.

Each participation feature, as previously described, is separately processed by the
function as a separated indicator of participation. The outcome is negative when the
participation is reduced, positive otherwise. Specifically, the FoU indicator describes
the Committed Behaviors, while the GA and the GP indicators describe the Active
Behavior.

We define the impact function as:

f : [0, 1]× [0, 1]→ [−1, 1]

The function takes as input the couple (baseline, current). The baseline is the value
of the indicator in the previous time window, whereas the current is its present value.
The domain of the function lies in the interval [0, 1]× [0, 1], as the input values can
be normalized without loss of generality. The goal is for players to have impact values
close to 1.

Our function is initially defined by five tuning points. As commonly done in works
presenting a utility function (e.g., [220]), we assume this function is specified by the
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Figure 4.10: Our instance of the impact function.

user using their domain knowledge. Those points can be used to guide the behavior
of the function by specifying the desired values for key situations: Highest improve-
ment, Highest worsening, Maintaining best, Maintaining average, and Maintaining
worse. As a result, the designer or analyst can manage the importance of key events.
For example, higher importance could be assigned to maintaining the improvement
instead of showing sudden peaks in performance. The function was then obtained by
interpolating the tuning points.

The five points are defined by the pairs (baseline, current):

- Highest improvement when the player, from doing nothing (baseline = 0),
reaches the highest possible value (current = 1).

- Highest worsening when the player, from achieving the best performance
(baseline = 1), does nothing (current = 0).

- Maintaining best when the player keeps the best performance (baseline =
current = 1).

- Maintaining average when the player performance are average (baseline =
current = 1/2), but neither an improvement or a worsening occurs.

- Maintaining worse when the player does nothing and keeps in doing so
(baseline = current = 0).

In the current study, the values were defined as follows. Highest worsening, the
lowest value, was set to −1, while maintaining best was set to 1. Players were
penalized for being inactive by setting the maintaining worse value to −1/2. We
also slightly penalized players active every other timeframe by setting the highest
improvement value to 1/6. Finally, the maintaining average value was set to
1/4 as a mild reward for players maintaining an average performance but lacking in
ambition. A visual representation is shown in Figure 4.10.
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Figure 4.11: Macro-phases of the function employment.

Figure 4.12: Usage of the function over time, organized in timeframes t.

The definition of the function tuning points and deployment is the first step of the
function employment (Phase 0 in Figure 4.11). The second phase concerns its usage
at runtime. The impact values are iteratively measured every timeframe (Phase 1
in Figure4.11). The behavior of the function in this phase over time is described in
Figure 4.12. The function values obtained at timeframe 0 are used as a baseline. In the
subsequent timeframes, the indicator values are retrieved and the impact calculated.
The impact values are then stored and used in the new iteration.

The impact function comes with the following benefits. First, the values are adjusted
to players’ specific performance and behaviors, as each provides their personal baseline
for the computation. As a result, the problem of contaminating the outcomes with
outlier values is reduced. Second, the metric is dynamic metric and continuously
measures players’ behaviors. Hence, it is sensitive to changes. Finally, the function
can be adapted to the domain and the system’s goal by modifying (a) the indicator
used and the tuning points defined.

Instance selection method

In this study, we analyzed players’ in-game activity over time. Hence, the Play&Go
and TagPro datasets comprised multiple entries for each player, describing their be-
haviors within a specific time window. A dataset record, or data point, is an instance.
The instance takes the form of an array, of size n, with n being the number of fea-
tures. In other words, players are described by multiple n-sized vectors in the dataset.
Consequently, the datasets suffer from data dependency, which can affect the accu-
racy of the predictions due to introduced bias. Instance selection, or sampling, can
help to minimize data dependency [130]. The prediction model can be more accurate
and reliable once noise and redundancy are removed [10]. In the literature, widely
used instance selection methods are simple random sampling, stratified random sam-
pling, and adaptive sampling [130]. We used and compared one stratified random
sampling and two types of adaptive samplings. In the stratified random sampling,
for each user, an entry is randomly selected among the records available. Whereas
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Figure 4.13: Representation of how the probabilistic selection of timeframes works.

the adaptive sampling we defined are: (a) the Gaussian Selection, and (b) Uniform
Selection. In the Gaussian Selection sampling method, an entry in the player his-
tory was retrieved following a probability distribution described by a Gaussian curve
(mean = 0, std = 1), shown in Figure 4.13. This sampling had the purpose of giving
a higher priority to records in the middle of players’ gameplay and limit the chances
of selecting timeframes at the extremes. Penalizing entries referring to the first and
the last weeks of gameplay are less relevant in a prediction analysis than records
regarding the middle of the experience. In addition, limiting data from early weeks
helps to ensure the heterogeneity of the sampled entries, which are more frequent in
the dataset. Finally, in the Uniform Selection approach, we retrieved the same week
for each player. This sampling is aimed at limiting biases introduced by external
co-funding factors (e.g., environmental) and ensure an analogous global game status.

Predicting Churn

Previous analysis on players’ behaviors for churn prediction [143], using an ANN
model, showed how in-game activity could be a predictor of players’ abandonment.
In this analysis [143], we accommodated the game (Play&Go) structure and defined
the timeframe length to one week. Then, we researched how the number of weeks
considered in the prediction impacted the accuracy of the results by analyzing 2, 3,
and 4 weeks memory.

In the present study, the memory used in the analysis was drastically reduced to
one-timeframe memory—meaning using data only from the immediately preceding
timeframe. We applied another change. Instead of using 1-week time windows, we
used 1-day timeframes, as weeks may be relevant in Play&Go, but have no meaning
in other domains. The final modification concerned the prediction model used. From
an ANN approached, we moved towards a tree-based approach, which is preferred in
churn prediction studies in games [179, 76]. The advantage is in the production of
smaller and more informative models [147, 76]. Among the existing tree-based models,
Random Forest (RF) proved to be particularly effective [42] and fast to train [204],
similar to ANN performance [4].

We conducted both regression and classification studies. Specifically, in the regression
analysis, we predicted Churn Time, a value in the interval [0; 1], describing when and
if a player will leave the game. We decided to perform a regression rather than a
survival analysis because there is no censored data [65]. We analyzed data from
the complete gamification campaign. Therefore there are no users “dying” after the
end of the observation period. In the classification analysis, we predicted whether
players churned in the form of a Boolean value: true or false. Churners (churn =
True) were users whose churn time value was higher than the classification threshold.



4.1. Assessing Players’ Experience 45

Although the threshold is highly context-dependent[242], we used the common value
of0.5. Studying the impact of different thresholds is out of the scope. Yet, it should
be addressed in future works. We also acknowledge that this threshold is not ideal
in an imbalanced dataset like ours. However, we resolved the issue by using an
oversampling technique, discussed in the remainder of the section.

The prediction analyses were performed using the Python sklearn implementation,
with 10-Folds cross-validation. The forest size for the RF algorithm was 100 trees, em-
pirically defined [196]. As we anticipated, the dataset presented a modest imbalance
in the values of the dependent variable. Hence, we improved the model’s perfor-
mance [101, 45], using an oversampling algorithm [39]: SMOTE. SMOTE performs
very well, also for very imbalanced datasets [19] and when outliers are present [77].
In addition, SMOTE variants for regression analysis exist [220, 30], although being a
complex and young area of research [125]. SMOTE for regression, or SMOGN [29],
allows making the classification and the regression results more comparable, which
guided our choice. In both classification and regression, we performed oversampling
only on the training set, with a sampling rate of 0.1.

Finally, the models were evaluated according to the following metrics: accuracy;
recall, precision and F1 score; and ROC AUC value. The ROC curve (receiver
operating characteristic curve) plots the true-positive rate and false-positive rate to
determine whether the model can distinguish among the classes. Higher values of the
AUC (area under the curve) describe higher degrees of separability.

Visualization and interpretation of the models

Interpreting the behavior of a prediction model can help understand the motivations
behind its decisions, and thus detect eventual biases [159]. To achieve interpretabil-
ity, we can either use interpretable models, such as decision trees, decision rules, and
linear regression) or define an additional layer for the model explanation [159]. This
explanation is meant to be human-readable and can be obtained either by using sur-
rogate models or visual representations. Examples of a surrogate are global surrogate
models, which threats the non-interpretable model as a black box and approximates
their behavior. However, the conclusions drawn from those surrogates refer to the
model but not to the data. Differently, local surrogate models explain each prediction
rather than the model as a whole.

Random Forest is a non-interpretable model, hence the need for an additional layer
to understand its behavior. We decided to use partial dependence plots (PDP or PD
plot) [159], which are model-agnostic. PDP plots show the marginal effect of one
or two features on the predicted variable [71]. Their relationship is visually shown.
Specifically, the plot displays how the average prediction in the dataset changes with
the value of the feature analyzed [159].

Results

In the following section, we report the outcomes of both the regression and classifi-
cation analyses. To reduce the bias introduced by the record selection, in particular
random sampling, we conducted repeated experiments (100). Hereby, we present the
outcomes and the value of the evaluation metrics as an average of the results obtained.

First, we replicated our previous study on ANN over 1-week timeframes and 1-day
timeframes, whose performance was used as a baseline. The results are shown in
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Table 4.3: Churn time (regression) and churn (classification) prediction using the
ANN defined in [143] with the original settings, but one one timeframe of history,

and with shorter timeframes.

Regression Classification
MSE RMSE MAE R2 ACC PREC REC F-SCORE ROC-AUC

Weekly tf 0.08 0.27 0.18 0.37 0.79 0.79 0.78 0.78 0.72
Daily tf 0.08 0.3 0.19 0.28 0.78 0.78 0.76 0.77 0.62

Table 4.4: Churn time (regression) and churn (classification) prediction using Ran-
dom Forest using the same setting of the ANN.

Regression Classification
MSE RMSE MAE R2 ACC PREC REC F-SCORE ROC-AUC

Weekly tf 0.08 0.28 0.2 0.43 0.77 0.77 0.78 0.78 0.77
Daily tf 0.07 0.27 0.19 0.44 0.76 0.76 0.76 0.77 0.77

Table 4.3 and Table 4.4. Although the classification performs better in the ANN
with weekly timeframes, the RF models hold better results for what concerns the
regression analysis. RF is also better performing than ANN when the length of the
timeframes is reduced to one day.

Instance Selection. After having compared ANN and RF, we analyzed the differ-
ent approaches for instance selection, previously described (Random, Gaussian, and
Uniform selection). Figure 4.14 shows the distribution of the churn-time values when
using the three instance selection methods in RF prediction analysis on the Play&Go
data.

Both in the regression and classification analysis, the models trained using the data
sampled using the Gaussian Selection method achieved the best performance(Table 4.5).
Yet, in the validation analysis, the models trained on the data sampled through Uni-
form Selection performed better than the other sampling methods (Table 4.6). Hence,
in the following analyses, we opted for the Uniform sampling approach to produce
more generalizable models.

Raw behaviors or impact values. Once we decided on the sampling method,
we analyzed different ways to process data. Specifically, we compared the usage of
raw participation behaviors and the impact values, derived from the impact function
previously define. Our hypothesis was that the inclusion of additional information
on performance improvement or worsening could enhance the prediction power of
the model. Table 4.7 presents the results for both the classification and the regres-
sion model. The accuracy of the outcomes trained on the Play&Go data slightly
decreases when using the impact values (Table 4.7), rather than the raw behavioral
data (Table 4.5). However, in the validation analysis on the TagPro dataset, the

Table 4.5: Results of the churn prediction using the Play&Go data.

Regression Classification
MSE RMSE MAE R2 ACC PREC REC F-SCORE ROC-AUC

Random Selection 0.07 0.27 0.19 0.44 0.76 0.76 0.77 0.77 0.77
Gaussian Selection 0.05 0.22 0.14 0.64 0.85 0.85 0.85 0.85 0.83
Uniform Selection 0.1 0.32 0.26 0.4 0.74 0.74 0.74 0.74 0.74
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Table 4.6: Results of the churn prediction using the TagPro data as validation set.

Regression Classification
MSE RMSE MAE R2 ACC PREC REC F-SCORE ROC-AUC

Random Selection 0.12 0.38 0.29 0.13 0.73 0.73 0.74 0.73 0.7
Gaussian Selection 0.13 0.37 0.25 0.16 0.73 0.73 0.73 0.73 0.72
Uniform Selection 0.11 0.34 0.27 0.29 0.73 0.73 0.73 0.73 0.71

Figure 4.14: Distribution of the churn-time values using the different instance
selection methods.

Table 4.7: Results of the churn prediction using the Play&Go impact values and
TagPro as validation set.

Regression Classification
MSE RMSE MAE R2 ACC PREC REC F-SCORE ROC-AUC

Play&Go 0.13 0.36 0.31 0.24 0.69 0.69 0.69 0.69 0.68
TagPro 0.17 0.35 0.3 0.19 0.71 0.71 0.71 0.71 0.7
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Table 4.8: Results of the churn prediction training the models on TagPro data

Regression Classification
MSE RMSE MAE R2 ACC PREC REC F-SCORE ROC-AUC

Raw Behaviors 0.04 0.2 0.12 0.19 0.75 0.73 0.73 0.73 0.73
Impact values 0.08 0.27 0.2 0.31 0.79 0.79 0.79 0.79 0.75

Table 4.9: Summarizing table, comparing the performance of the regression and
classification models trained on Play&Go (first two columns) and TagPro (last col-
umn). The models were all built using RF, and the Uniform Selection sampling

method.

Test set
(Play&Go)

Validation set
(TagPro)

Ad-hoc trained
on TagPro

Raw Impact Raw Impact Raw Impact
Regression MSE 0.1 0.13 0.11 0.17 0.04 0.08

RMSE 0.32 0.36 0.34 0.35 0.02 0.27
MAE 0.26 0.31 0.27 0.3 0.12 0.2
R2 0.4 0.24 0.29 0.19 0.19 0.31

Classification ACC 0.74 0.69 0.73 0.71 0.75 0.79
PREC 0.74 0.69 0.73 0.71 0.73 0.79
REC 0.74 0.69 0.73 0.71 0.73 0.79
F-SCORE 0.74 0.69 0.73 0.71 0.73 0.79
AUC 0.74 0.68 0.71 0.70 0.73 0.75

model trained on the impact values behaved better (Table 4.7) than in the raw be-
havior model (Table 4.5). Therefore, impact values appear to better accommodate
generalizability.

Training on TagPro. We also analyzed the models’ behaviors when directly trained
on the TagPro data, using the Uniform Selection method for instance sampling. Ta-
ble 4.8 show the performance of the models trained on both raw behaviors and impact
values.

In contrast to our expectations, the regression model from the raw behavioral data
trained ad-hoc on TagPro data was less accurate than the model trained using
Play&Go data and TagPro as validation set (Table 4.9). On the other hand, the
classification model obtained similar results in both the validation set and in the ad-
hoc TagPro model. Models trained on the impact values, on the other hand, behaved
better in the ad-hoc TagPro model than in the validation analysis. The improvement
is more visible in the regression than in the classification analysis.

Visualization and interpretation of the models. In the last phase of our pre-
diction study, we visualized the behaviors of the models in partial dependence plots
(PDPs). We built a plot for each feature used—i.e., frequency of usage, number
of points obtained, gameplay length, and number of game actions performed—-and
discerning among raw behaviors and impact values. Figure 4.15, Figure 4.16, Fig-
ure 4.17, and Figure 4.18 show the PDPs for Play&Go and TagPro models.

Each plot highlights how frequency of usage (FoU) and gameplay length strongly
affect churn predictions. In other terms, a longer permanence in the game increases
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Figure 4.15: Visualization of the models built on Play&Go raw behavioral data.

Figure 4.16: Visualization of the models built on TagPro raw behavioral data.

Figure 4.17: Visualization of the models built on Play&Go impact behaviors.
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Figure 4.18: Visualization of the models built on TagPro impact behaviors.

the likelihood of remaining in the game for longer and being constant in the game
activity.

The number of points obtained and the number of game actions performed had a
different effect on each model, with the nature of the data (raw or treated with the
impact function) leading to different interpretations.

For what concerns raw behaviors, the number of actions performed has a shallow
impact on the prediction in both Play&Go (Figure 4.15) and TagPro (Figure 4.16)
models. Conversely to the number of game actions, the number of points is indeed
meaningful in the churn prediction. For example, in the Play&Go model trained on
raw behaviors (Figure 4.15), the quantity of awarded points is related to players’
retention until a specific threshold. Once the threshold is reached, the higher the
number of points, the earlier the player will abandon the game. Thus, high activity
peaks are important warnings.

The models trained on impact values, on the other hand, were very sensitive to the
number of game actions performed. Higher impact values for the number of actions
performed were an indicator of longer retention. Therefore, progressive increase (im-
provement) in the actions performed signaled players’ long-term commitment. In
contrast to the positive signal conveyed by the increasing number of actions, in both
TagPro and Play&Go, a high impact in the number of points is indicative of players’
abandonment.

4.2 Assessing Players’ Preferences
In the previous section, we analyzed telemetry data to obtain information on players’
population at a high level. Those coarse-grained analyses allowed, for instance, to
identify whether the winning strategies actuated were in line with the gamification
goal as an evaluation metric on the gameful design. The findings also highlighted the
existence of a consistent subset of players lacking in (long-term) engagement. Despite
using only participation data, we succeeded in predicting players’ churn. However,
identifying players’ at risk of abandonment is not itself a solution to the problem.
The likelihood of churn can be reduced by providing users stronger motivations to
play, in line with their motivational affordances. In the following, we exploit players’
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interaction patterns and behaviors to learn their preferred configuration for a specific
game element. Then, we broaden our scope to player profiling as a method to deploy
ad-hoc adaptation strategies. Specifically, we investigate how the strategies differ
when theory and data-driven approaches are used.

4.2.1 Learning Players’ Preferences

In our first study, we researched the possibility of using players’ in-game behaviors
to learn their preferred variant of a specific game element. In practice, we analyzed
Play&Go challenge types. We defined a Reinforcement-Learning-like algorithm to
model their effect on players’ in-game participation and evaluate whether preferences
can be learned from the analysis of in-game activity level. The algorithm’s output
is a sorting of the challenge types, in decreasing preference order for each user. The
algorithm’s performance and accuracy are computed against ground truth, derived
from players’ implicit preferences. Those preferences are indirectly declared when
players select one option rather than another when presented a choice.

The learned preferences are obtained from an RL algorithm. Hence the temporal in-
formation on players’ behaviors is retained. Similar to previous works, we divided the
gameplay into 1-week timeframes. Nevertheless, the algorithm can also be adapted
to different (and even variable) gameplay structures.

Constructs

In the following, we define customization as intended in our analysis. At the lowest
level of implementation, we find game elements [80], which can be seen as the game’s
atoms. Examples of game elements are quests, challenges, or trivial game actions. We
are interested in customizable game elements, for which one or more properties can
be tuned. The properties can assume a value in a finite and reasonably small set a
priori defined(PARAM). In Play&Go, the customizable game elements we analyzed
are single-player challenges, and the modifiable property is the counter the challenge
is evaluated upon—i.e., walk kilometers, bike kilometers, bus trips, train trips, and
green leaves points. We will refer to this property as counter, property, and challenge
type.

The impact of the specific challenge type on players was computed by measuring their
in-game participation. Players’ participation was described by modeling the intensity
and the constancy of players’ in-game actions [140]. The intensity of usage is calcu-
lated from the number of points and game actions performed, while the constancy
of usage is translated into the frequency of usage metric, i.e., the percentage of the
player’s active days. Both values are normalized in the [0, 1] interval and averaged to
obtain a single value describing players’ activity within the timeframe.

Players eligible for our study had a final level greater than two and played for at
least five weeks (timeframes). This filtering was needed to retain enough information
to build the ground truth, as we will later describe. As a result, our population
comprised 94 players.

Implicit Preferences

As a reminder of Play&Go mechanics (Chapter 3), players can engage in weekly
single-player challenges. Challenges can vary in a parameter, specifying the counter
upon which the challenge is evaluated, among walk kilometers, bike kilometers, green
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leaves points, train trips, and bus trips. After players reached Level 2 in the game,
each week, they are offered a selection of two or three different challenges. They
can choose one option, which will be the challenge active in the following week. If a
choice is not made, a default challenge is automatically assigned. The ground truth
was built from players’ in-game choices, using a paired comparison protocol [178].
For each player, we modeled the choices a squared matrix of dimension n, with n the
number of parameters available. In the matrix, the value x of the cell cij describes
how many times the counter i was chosen over the counter j. Even though the
challenge types were 5, some players may have been presented with fewer counters
in the selection phase. This imbalanced design derives from the functioning of the
Recommender System (RS) for Play&Go single-player challenges. The RS suggests
the player challenges on the counter they have already used in the past. For example,
if they never tracked a bus trip, it is highly unlikely that a challenge with the bus
counter will be proposed. As a consequence, users can have a different experimental
design rather than the complete set of comparisons. Yet, we can still reach competitive
performance, despite the imbalanced designed [28].

The preference score for each counter is computed as the number of votes received
for that counter, normalized by dividing for the number of comparisons [178]. As
a result, every player has a vector w of dimension n, with the preference scores for
every counter. The reliability is then evaluated using the consistency factor. An
inconsistency (or cyclic triad) occurs, for instance, when x is preferred to y, y is
preferred to z, but z is preferred to x. The consistency coefficient [111] is computed
with the formula: ζ = 1− 24∗c

z3−z
where z is the number of choices made and c is the

number of cyclic triads. Perfect consistency is described by ζ = 1, which is inversely
proportional to the number of circular triads. To account for human error, generally,
a value of 0.75 is considered good [129].

We analyzed data from 115 players. Only 1 had a ζ = 0.35, while the others had
ζ ≥ 0.79. When we included information on challenges’ difficulty, the values of ζ was
higher than 0.92

To further evaluate the ground truth, we performed a prediction analysis on the last
player choices, using the preference scores in the N − 1 weeks in which they made a
choice. The selection for the N th week predicted and compared with the true choice.
For 70% of the 115 players, the forecast was correct. The percentage increased to 71%
when players performing less than ten choices were excluded (21 players). Finally, the
prediction accuracy further increases to 82% when also the difficulty is included in the
parameter selection. This improvement is counterintuitive as embedding information
also on challenges’ complexity increases the number of counters available, despite
using the same amount of data. Consequently, we had less information on players.

Learning Preferences with RL

In Play&Go, challenges are the main driver of engagement [151]. Therefore, we hy-
pothesized a relationship between in-game activity and the type of challenge assigned
to the players. In other words, our intuition was that a higher in-game activity was
an indicator of the player’s appreciation for the challenge type. We saw a similar-
ity with the Reinforcement Learning (RL) paradigm, in which the agent learns from
experience from the reactions (feedback or reward) obtained after their action. In
this trial-and-error cycle, the agent’s goal is to maximize a long-term reward [208].
Analogously, we thought of learning players’ preferences from their in-game behaviors
in reaction to different challenge types over the gameplay. The algorithm follows an
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Algorithm 2 The Offline Gradient Bandit Algorithm
1: procedure OfflineGB(B,R, k,n,α)
2: H(a)← 0,∀1 ≤ a ≤ k ∈N

3: H(a)← 1/k,∀1 ≤ a ≤ k ∈N

4: avg_reward← 0
5: i← 1
6: while i ≤ n do
7: At = Bi

8: r = Ri

9: avg_reward = avg_reward+ (1/i)(r− avg_reward)
10: H(At) = H(At) + α(r− avg_reward)(1− Pr(At))
11: for all a 6= At, 1 ≤ a ≤ k ∈N do
12: H(a) = H(a) + α(r− avg_reward)Pr(a)
13: end for
14: for all 1 ≤ a ≤ k ∈N do
15: Pr(a) = exp(Ht(a))/sum(exp(H))
16: end for
17: end while
18: return H
19: end procedure

RL-paradigm, in which information obtained until time t is used to make a decision
on the action to perform at time t+ 1. Conversely to other ML paradigms, we are
unaware of the correct action to take. Rather, we can exploit the data obtained to
evaluate which our best option is. The algorithm was designed to produce play-
ers’ preference scores for each challenge type, and thus a sorting from the preferred
to the least appreciated type. Towards this, the gameplay was divided into weekly
timeframes, where a week is the lifetime of a challenge.

In the following, we review the RL paradigm and the class of problems that can
be resolved through it. In its simplest form, RL algorithms can tackle problems
known as the bandit problems. In those problems, we have one or more “bandit”,
usually visually displayed as a slot machine. Every machine has its—unknown—
distribution, from which it picks its reward. Pulling an arm results in a different
outcome, depending on the chosen machine. The final goal is to maximize the reward
in the long run by assessing the best action at each step. Therefore, the faster the
optimal selection strategy is found, the higher the final gain. As the agent interacts
with the bandit, they learn the Q-value, the expected reward for each action. The
Q-values are updated at every interaction as the agent’s experience increases.

In our problem, the goal is to estimate a preference score for every action (bandit)
instead of finding a single optimal choice. Therefore, we used a variant of the multi-
armed bandit problem: the gradient bandit. Gradient algorithms compute the value of
an action in relation to the other possible actions. The outcome is a preference score
Ht(a), which guides the action selection. Initially, H0(a) = 0,∀a, with a uniform
probability of choice for every action. As the iteration progress, the Ht(a) value is
updated, for each action, using a stochastic gradient ascent (SGD). When an action
is taken, the new value for Ht(At) is computed by weighting the reward returned by
the probability of the action and the learning rate coefficient.
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Ht+1(At) = Ht(At) + α(Rt −Rt)(1− πt(At)), and
Ht+1(a) = Ht(a) + α(Rt −Rt)πt(a),∀a 6= At

α > 0 is the learning step-size parameter, and Rt ∈ R is the baseline averaging the
rewards obtained until time t. If the actual reward is lower than the baseline, in
the following iteration, the probability of choosing that action decreases; it increases
otherwise. Higher preferences result in a higher chance to select that action. The
probability of taking the action a at time t follows the soft-max distribution.

πt(a) = Pr{At = a} = eHt(a)∑n
b=1 e

Ht(b)
(4.1)

In those problems, the actions are not associated with the state of the environment—
i.e., different situations. The learner research the single optimal strategy (if station-
ary) or the optimal strategy as it changes over time (otherwise). This condition
well connects to our original problem. First, we use only data on players’ activity
without embedding data on the game’s state. The reward is based on the player’s
level of activity in the week that the challenge was active. Second, the changeable
nature of players’ preferences is accounted for, thanks to the iterative nature of the
RL paradigm.

In this study, we operated with offline gameplay data: we knew which challenge was
active (the bandit) instead of having to choose it. RL-algorithm, on the other hand,
resolves online problems. Hence, our offline algorithm (Algorithm 2) is inspired by the
RL paradigm, aimed at assessing the feasibility of using in-game behaviors to learn
players’ preferences. The algorithm silently observes players’ activity and learns the
preference scores for each challenge type without actively taking part in the decision
process. The algorithm computes the preference scores knowing, at each iteration, the
current bandit (Line 7 in Algorithm 2) and the value of the activity behavior (Line 8
in Algorithm 2). Such values are used to adjust the preferences for each bandit (Lines
10-13 in Algorithm 2). In a future step, the algorithm can easily be translated into a
real RL algorithm by changing Line 7 (Algorithm 2) to select the option depending
on the preferences scores computed (Equation 4.1).

For each player, Algorithm 2 takes as input the challenges list active during the
player’s n weeks of gameplay (B), the values of the activity behaviors for those weeks
(R), the number of types of challenges they have engaged with (k), and the learning
coefficient (α). The output is a vector of dimension k with the preference scores for
each challenge type ki.

Results

In the following, we present the results of our study. First, we investigated the
relationship between the challenge type and players’ in-game activity and built the
ground truth using players’ in-game choices. Then, we computed the preferences
scores using our Algorithm 2 and evaluated its outcomes against the ground truth.
Finally, we characterized players for whom the algorithm performed particularly well.
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Figure 4.19: Linear Regression The test-set values of the test plotted against the
predicted values in (a) and the residuals plotted against the predicted values in (b).

Preliminary Analysis. Before using players’ in-game activity as feedback for
learning their tastes, we analyzed whether their activity was indeed a predictor of
their preferences.

We conducted a regression analysis in which the features, or independent variables,
were the player identity (the username, as a categorical variable) and the challenge
type, and the dependent variable was players’ in-game activity level. We built a Mul-
tiple Linear Regression model to verify whether how predictable the level of activity
in the game was given the player identity and the type of challenge they had assigned.
The dependent variables—i.e., the behaviors’ values— represent the repercussion the
challenge had on the player’s participation level.

In the model, the features were 159: 155 dummy variables representing players’ nick-
names and four dummy variables representing the challenges types. Our dataset was
built of about 2k entries and 156 players who played between 5 and 23 challenges.
The outcomes (Figure 4.19) were positive in showing that the activation of a spe-
cific challenge type for a specific player could be predictor of their in-game activity
[(F(155,1943) = 161, p < 0), with an R2 of 0.93]. Hence, we proceeded with our
experimentation.

Ground Truth. In the challenge customization phase, Level 2 Play&Go players
can choose among two options, while higher levels can make their selection among
three options. Accepting a challenge implies refusing the other options presented.
Therefore, each selection produces one or two comparisons: the chose option over the
other(s) challenge(s) proposed. The ground truth was built using this information.
Specifically, we used the number of accepted and refused challenges for each player
and challenge type [138]. Those selections players made during the gameplay were
used to infer their preferences. From our population, as we anticipated, we retained
players playing for at least five weeks and that reached level 2. Those 94 users
were the players involved in at least ten in-game comparisons. The conversion from
in-game selection to preference score was performed through the paired comparison
protocol. As typically done in paired comparison studies [178], we build a squared
matrix of dimension k for every player, with k the number of properties available.
In such a matrix, a value of x for the cell cij means that the counter i was chosen x
times over the counter j. The preference score was computed by counting the votes
received by each counter, normalized by dividing by the number of comparisons per
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counter [178]. This process produced, for each player, a vector wc of dimension k,
with their preference scores.

Figure 4.20: Example of properties sorting for a player, resulting from their in-
game choices (ground truth) and the algorithm’s outcomes.

Evaluation. Having assessed a dependence (and predictability) among players’ ac-
tivity and the challenge they have activated, we run Algorithm 2 to learn players’
preference scores. We obtained 94 vectors wp of dimension ki, one per player. The
elements of the vector correspond to the counters available for the specific user.

The two vectors wc and wp, of the ground truth and player preferences, are not directly
comparable. First, they are obtained through different processes, and then they also
belong to different value ranges: wc is in the range [0; 1] and wp in [−∞,+∞].
Nevertheless, our goal was to retrieve a preference ordering of the challenge types,
from the most to the least liked. Hence, we compared the indexing of both vectors wc

and ws, which were initialized to the same mapping (e.g., 1 = Bike Km and 2 = Bus
Trips, as shown in Figure 4.20). The array of the challenge types is independently
set and is not modified. Then, the updated indexing for both the ground truth and
the algorithm is produced (Figure 4.20), using players’ in-game choices and in-game
behaviors, respectively. The output sortings sc and sp describe where the counters
are positioned in the player’s personal rankings.

Figure 4.20 shows the following example. Given wc = [0.47, 0.6, 0.01, 0.12, 0.3] and
wp = [−2, 0.7, 1,−0.1, 0.2], being the vector of the scores in the ground truth and
the scores computed by the algorithm respectively, their decreasing sortings are the
following: sc = [2, 1, 5, 4, 3] and sp = [5, 2, 1, 4, 3]. Thus, the actual ranking is:

- BikeKm in position 2 for the ground-truth with value 0.47 and position 5 for
the algorithm with value -2;

- BusTrips in position 1 for the ground-truth with value 0.6 and position 2 for
the algorithm with value 0.7;

- GreenLeaves in position 5 for the ground-truth with value 0.01 and in position
1 for the algorithm with value 1;

- TrainTrips in position 4 for the ground-truth with value 0.12 and position 4
for the algorithm with value -0.1;

- WalkKm in position 3 for the ground-truth with value 0.3 and position 3 for
the algorithm with value 0.2.

We compared the sortings, and thus the algorithm’s performance, using the following
measures. The selected error metric was NRMSE (Equation4.2), representing the



4.2. Assessing Players’ Preferences 57

Table 4.10: Evaluation of the Algorithm. Distribution of the error and similarity
measures over the 94 eligible players.

min mean median max

NRMSE 0 0.27 0.24 0.8
R2 -3 0.014 0.6 1
Similarity 0.2 0.83 0.93 1

percentage of the error obtained, easier to interpret respecting to RMSE. NRMSE
penalizes divergent sortings, in which the actual position - ground truth - of a counter
in the ranking is far from the position computed from the learned preference scores.
Following our example (Figure 4.20), NRMSE = 0.57. Such a high error value
well describes the situation. The counters TrainTrips and WalkKm have been
successfully positioned in the ranking (in both orderings, they have positions 4 and 3,
respectively). However, BikeKm and BusTrips and GreenLeaves have been ranked
poorly. BikeKm should be in position 2, but in the algorithm’s sorting ss is in
position 5; BusTrips in the algorithm’s outcome is in position 2, but should be in
position 1, and GreenLeaves should be in the last (position 5), but in ss assumes the
first position.

NRMSE =

√
1
k

∑k
i (xi − xi)2)

xmax− xmin
(4.2)

Then, we used the cosine similarity metric to assess the similarity between the two
(non-zero) arrays. The cosine similarity measures the cosine of the angle between
two vectors projected in a multi-dimensional space. Smaller angles translate into
higher similarity values. We computed the R2, as an additional similarity metric. R2

describes the proportion of variation in the dependent variable that can be attributed
to the independent variable.

Players Characterization. The performance of the algorithm were very variable
(Table4.10). The predictions were very accurate (on average NRMSE = 0.13, R2 =
0.81, and sim = 0.97) for 51% of the players the prediction, but its accuracy was low
for the rest.

To research the causes of this variability, we analyzed some players’ properties that
might explain the divergent performance. We divided our population of eligible play-
ers into two groups: players for which the algorithm achieved good and bad perfor-
mance. The groups were formed considering the NRMSE and R2 values, but not
the cosine similarity, which was overly optimistic (see Table4.10). Being one an error
metric and the other a similarity metric, we set two thresholds. In the good group,
players had NRMSE ≤ 0.2 (an error of 20% is admitted), and R2 = 0.5. Since data
were not normally distributed, according to the D’Agostino-Pearson K2 test, the two
groups were compared using the Mann-Whitney W test.

H1.The number of options (bandits) influenced the accuracy of the learning.
Players may have interacted with a smaller set of challenge types for how the chal-
lenge system is designed. Our hypothesis was that the fewer the challenge types for
which the preferences had to be learned, the more accurate the algorithm. Hence,
we compared how the number bandits (smaller k) differed among the good and bad
performance groups. Since both groups (players for which the algorithm had good
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Figure 4.21: Distribution of the number of bandits over the two group of players.

performance and players for which the algorithm had bad performance) were not nor-
mally distributed (for the 1st group K2 = 3.9, p-value > .05; and for the 2nd group
K2 = 8.9, p-value < .05), we computed the Mann-Whitney W test. We found a
statistically significant difference (U = 840.5, p-value < .05) between players in the
first group (M = 4.32, SD = 0.70) and players in the second group (M = 4.60, SD =
0.56). Despite the number of bandits affecting the algorithm’s accuracy, the number
of challenge types per player in the groups is still well-distributed (Figure 4.21).

H2. The number of challenges - i.e., iterations - influenced the quality of the out-
comes.
The algorithm, although offline, follows the RL paradigm. Hence, the learning is ad-
justed as more iterations are performed. In our case, each iteration corresponds to a
game week—i.e., a new challenge and relative in-game behavior as feedback. Hence,
the number of iterations per player depends on their gameplay length. We hypothe-
sized that the number of challenges impacted the accuracy of the learned preferences.
Since both of our group were not normally distributed (for the 1st group K2 = 2.7,
p-value > .05; and for the 2nd group K2 = 3.2, p-value > .05), we computed the
Mann-Whitney W test. We found a non-significant difference (U = 975, p-value =
.27) between players in the good performing group (M = 14.78, SD = 4.40) and play-
ers in the bad performing group (M = 15.26, SD = 04.79). Therefore, in our dataset,
the number of iterations did not impact the algorithm’s performance.

H3. Players that manifested a much stronger preference were easier to model.
We hypothesized that the algorithm was inaccurate when players’ preferences were
already shallow: players explored among different challenge options. Thus, it was
impossible for the algorithm to learn preference scores, when they were negligible. To
test the hypothesis, we measured the strength of players’ preferences using the relative
standard deviation (RSD) of the ground truth preference scores. We computed the
relative version of the SD for comparability reasons. Since both for our group were not
normally distributed (for the 1st group K2 = 4.1, p-value > .05; and for the 2nd group
K2 = 0.9, p-value > .05), we computed the Mann-Whitney W test. Players in the
good performance group (M = 104, SD = 34.49) showed a higher relative variance in
the preference scores (U = 1339, p-value < .01) than players in the bad performance
group (M = 88.5, SD = 22.6). Therefore, we concluded that, for the algorithm, it was
easier to learn preferences for players with higher RSD—i.e., stronger preferences.

H4. Player personality represented by their player types scores affected the modeling
power of the algorithm.
During the registration, users needed to fill survey, containing the items of the Hexad
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Table 4.11: Results of the test of hypothesis (H4.), investigating whether player
types characterize the two groups of players (good performance of the algorithm vs

bad performance of the algorithm).

User Type U p-value mean1 std1 mean2 std2

Free Spirit 889 0.4 23.12 3.15 23.3 2.87
Achiever 989 0.7 22.56 3.75 22 3.63
Player 865 0.33 17.82 5.98 18.6 5.47
Distruptor 931 0.56 14.74 5 14.26 4.7
Philanthropist 1060.5 0.89 24 2.9 23 3.67
Socializer 816.5 0.19 21.36 4.39 21.92 5.11

User Types [219]. Using the results of the survey, we modeled players’ personality
and researched whether for some types preferences were easier to learn. Thus, we
analyzed the scores of the 6 player types (Socializer, Player, Free Spirit, Disruptor,
Philanthropist and Achiever) to explain the performance variability. We computed
the Mann-Whitney W test among the good and bad group of players for each player
type in the Hexad model:

- Free Spirit. For the 1st group K2 = 0.54, p-value > .05; and for the 2nd group
K2 = 1.38, p-value > .05.

- Player. For the 1st group K2 = 1.7, p-value > .05; and for the 2nd group K2

= 1.6, p-value > .05.

- Achiever. For the 1st group K2 = 1.5, p-value > .05; and for the 2nd group
K2 = 7.5, p-value < .05.

- Distruptor. For the 1st group K2 = 3.4, p-value > .05; and for the 2nd group
K2 = 1.8, p-value > .05.

- Philanthropist. For the 1st group K2 = 3, p-value > .05; and for the 2nd

group K2 = 6.2, p-value < .05.

- Socializer. For the 1st group K2 = 3.7, p-value > .05; and for the 2nd group
K2 = 14.8, p-value < .05.

We concluded that the Hexad User Type scores are unrelated to the performance of
the algorithm (Table 4.11).

4.2.2 Modeling Players’ Tastes

Players’ telemetry data is a powerful source of information. In this chapter, we
showed how players’ in-game behaviors provide meaningful insights on the progress
of the gameplay, design choices, and game strategies [145]. Behavioral information
can also be used to predict players’ premature churn [143, 139] and learn their pref-
erences for what concerns the personalization of a specific game element [138, 141].
In this final study, we broaden our research on player modeling without limiting it
to the customization of a single element. Instead, we study how to produce ad-hoc
adaptation strategies and how self-report and telemetry data impact the creation of
player models.
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Table 4.12: Overview of the in-game behaviors computed.

ID Name Description
R Reactivity Describes players’ velocity in answering to game events.
S Sociality Describes players’ tendency to be initiators of multiplayer challenges.
IU Intensive Usage Describes players’ velocity in levelling up.
W Winning Social Describes players winning rate in multiplayer challenges in contrast

to single-player challenges.
F Full-usage Describes the percentage of features used.
Cm Competitive Describes players’ preference of competitive over cooperative

multiplayer challenges.
A Active Describe players’ tendency to choose rather than having automatically

assigned single-player and multi-player challenges.
Cs Constancy Describes the percentage of active days throughout the gameplay.
Po Purpose-oriented Describes the ratio of green (walk/bike) trips and kms over the trips

and kms tracked.
St Striving Describes the tendency to engage in difficult challenges.
Si Self-improvement Describes the tendency to increase and improve the personal

performance over the gameplay.

Constructs

In the following section, we detail how we modeled and computed players’ idealized
and contextualized preferences. Then we describe the approach used to compare
players’ models.

Idealized Preferences: User Types Theory-driven approaches often rely on sur-
veys and self-assessment to obtain players’ profiles. Hence, they produce idealized
preferences, as we named them. Idealized preferences are the results of whom players
think they are and what they usually enjoy, which can vary between real-life and
games and across different games. In this study, we used the Hexad User Types
model [153] and its validated survey [219] to obtain our participants’ idealized pref-
erences. This model, based on self-determination theory [190], describes users’ mo-
tivations and interaction styles within gamified environments. The Hexad taxonomy
proposes six user types, characterized by their intrinsic and extrinsic motivations:
Philanthropists, Socialisers, Free Spirits, Achievers, Players, and Disruptors.

(A) Achievers seek to challenge themselves in difficult task and to master skills.

(Ph) Philanthropists seek to have purpose by helping others, regardless of rewards.

(R) Players seek to collect in-game goods, rewards or incentives and are willing to
engage in any activity to obtain those.

(S) Socialisers seek social connections and interactions with other players.

(D) Disruptors seek being rebellious and testing the system’s boundaries to achieve
change.

(Fs) Free Spirits seek being free and independent. They enjoy exploring and ex-
perimenting with the system to satisfy their creativity.

Contextualized Preferences: Player behaviors Data-driven approaches, as the
name suggests, exploit telemetry data to extract in-game behaviors, and thus, to
model players. Gameplay data is generally collected in the form of datalogs, in which
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game events are stored. Hence, this data needs to be processed before proceeding to
further analysis.

For Play&Go, we obtained data of players’ game actions, such as trips tracked, levels
obtained, interactions with the invitation system, and information on single-player
and multiplayer challenges. However, in-app interactions (e.g., visit a specific app
page) were not recorded.

In collaboration with Play&Go designers, we defined a list of relevant behaviors for the
environment examined. Those behaviors (summarized in Table 4.12) describe play-
ers’ activity from different perspectives and different granularity levels. The behaviors
model presents: in-game activity (Intensive Usage, Constancy and Full-usage), im-
pact and existence of social interactions (Sociality, Competitive, and Winning Social),
tendency to customize (Reactivity and Active), will to challenge one-self (Striving and
Self-improvement), and predisposition to act in line with the gamification ulterior mo-
tive (Purpose-oriented).

(R) Reactivity measures players’ velocity in answering to game events (e.g., choice
of single-player challenges and reply to invitations). Gameplay is divided into
weeks, and each week players have four days (Tuesday to Friday) to select
single-player or multiplayer challenges. Reactivity for a week is measured as
the percentage of the four days spent before making a choice, if any. The
Reactivity value is the average of all the weekly Reactivity for active weeks. A
week (or a day) is active if the player performed at least one game action within
that week (or day).

(S) Sociality measures players’ willingness to play with others, either in competi-
tive or cooperative multiplayer challenges. This is manifested through in-game
invites to multiplayer challenges. Hence, for these behaviors, we measured the
number of invites sent by the players. Measuring the number of invites is differ-
ent from measuring the number of multiplayer challenges, as players may want
to play with somebody, hence sending the invites, but may have no invites
accepted, and therefore cannot complete the challenges.

(IU) Intensive Usage measures how important players’ in-game activity is. The
more game actions they perform, the more points they get, and thus the sooner
they level up. In practice, Intensive Usage is the average of the time spent to
reach a new level, weighted for the maximum level reached to avoid penalizing
higher levels (harder to reach).

(W) Winning Social measures whether players tend to win more in multiplayer
rather than single-player challenges. This tendency is measured as players’ win
ratio in multiplayer challenges over their win ratio in single-player challenges.

(F) Full-usage measures the percentage of game features used by the player. The
complete set of the features available is: each transportation means (walk, bike,
bus, and train), the invitation system (send/accept invites), customization of
single-player challenge, the unlocking mechanism for multiplayer challenges.
Some features are made available to players as they advance in the game. Thus,
for each player, the Full-usage behavior is evaluated upon the features available
to them.

(Cm) Competitive measures players preference towards competitive challenges. The
value is obtained as the ratio of invites to competitive challenges over the co-
operative challenges, both sent and accepted.
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(A) Active measures players’ inclination towards customization. In practice, this
value is computed as the ratio of customized challenges (e.g., chosen single-
player challenges and multiplayer challenges derived from invites) over chal-
lenges automatically assigned by the system - i.e., how active a player was in
their tailored gamification experience.

(Cs) Constancymeasures whether players were constant in their participation rather
than having peaks of activity and many non-active days. Constancy is, thus,
the percentage of active days within players’ gameplay (from their registration
day to the last active day).

(Po) Purpose-oriented measures how ecological players transportation behaviors
are, considering the trips tracked. The purpose-oriented behavior evaluates
how in-line players are with the gamification’s ulterior motive (or purpose):
sustainable mobility. It is computed as the number of green (walk and bike)
trips over the trips tracked.

(St) Striving measures players will to challenge themselves through difficult tasks.
Challenges have associated to them a difficulty value computed according to
the challenge’s target and the players’ history and skills. Striving is computed
as the ratio of difficult challenges the player choose.

(Si) Self-improvement measures whether players improved their performance over
time in terms of green kilometers tracked. The self-improvement value repre-
sents the slope of the plot of players’ activity: the higher the value, the more
drastic the improvement.

Conceptually, the behaviors present some overlap. Thus, we performed Exploratory
Factor Analysis (EFA) [238, 68], to ensure data independence and remove redundant
information. For instance, the Active behaviors models players’ tendency to actively
customize their challenges, while the Reactivity behaviors models players’ velocity
to reply to game events. Although these events are mostly customization events for
challenges, the velocity of players’ reaction to them is evaluated. On the other hand,
if we find that players either respond very quickly to those events or do not reply at
all, Reactivity and Active behaviors become very similar.

Please note that the behaviors do not evaluate behavioral change - i.e., shift from
a least to a more sustainable transportation means. Such information cannot be
inferred as players can track a subset of their actual trips and could omit some non-
green movements. On the other hand, we can measure a usage increase. Despite an
increase in green mobility not implying fewer kilometers with other means, getting
players used to move by walk or bike may result in preferring them whenever possible.

Proxy

This paper aims to compare idealized and contextualized players’ preferences by
studying a gamified system. However, this comparison cannot be performed directly.
Idealized preferences from Hexad User Types and contextualized preferences from
in-game behaviors are computed using different methodologies. Besides, there is no
known relationship or correlation between the two preference models. The ultimate
goal of player profiling (or modeling) is to understand how to adapt the gaming experi-
ence towards the players, which can be achieved by modifying specific game elements.
Therefore, comparing idealized and contextualized preferences can be translated into
the comparison of the adaptation strategies produced for each player. To perform
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Player Agents
Representation Action Space Adverserial Non-Adverserial

Characteristics Skills/Stats Individual Companion
Personality Controls Managerial Non-companion

Environment System
Physical Narratological Goals Rules

Layout Structure Explicit
Appearance Content Implicit

Table 4.13: PEAS framework hierarchical structure [206]

this comparison, we used an existing adaptation framework as a proxy: the PEAS
framework [206].

The PEAS framework [206] is a design framework informed by a literature review on
both games and gamification research. Specifically, they analyzed papers on design,
personalization, and player modeling between 2001 and 2018. The framework is
hierarchical and is divided into four macro components: player, environment, agents,
system. Player describes every facet of the player and their character, including their
appearance and the actions allowed. Environment describes both the aesthetic and
narratological aspects of the virtual world. Agent describes the game characters not
controlled by the players, e.g., enemies or companions. System describes functional
aspects of the game, as the game dynamics and rules.

The authors also provided a list of guiding questions to assist the framework’s instan-
tiation in specific applications.

The PEAS framework has been extended [207] in a generalized model for player pro-
filing to obtain a homogeneous representation of players’ preferences over different
game elements. Thus, this generalized model allows combining player and personal-
ity approaches to produce a single adaptation strategy, assuming that there are no
conflicts among the representation. The model is structured in phases, one of them
being the model translation. While blending different player profiling methods is out
of the paper’s scope, the translation function is indeed relevant. Specifically, we pro-
vided a translation for both idealized and contextualized preferences into the PEAS
representation in the form of a numerical vector.

In the PEAS framework, the model’s definition is guided by the elements that can be
personalized within the specific application domain. In Play&Go, challenges represent
the game element that can be adapted towards the users. We will analyze different
challenge adaptation strategies for players, derived from their (1) idealized preferences
(Hexad User Types) and (2) contextualized preferences (in-game behaviors).

For the definition of the PEAS representation, the authors define a list of guiding
questions [206] revolving around the game element(s) that can be modified.

GQ1. Why are you personalizing your game system?

GQ2. Why did you choose to personalize these game aspects?

GQ3. How will the chosen aspects be personalized?

GQ4. What game aspects have you chosen to personalize? How did you personalize?
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We decided to personalize players’ experiences to meet their preferences, either ideal-
ized or contextualized (GQ1). The game element chosen for the personalization is a
challenge, as it is the only game element complex enough to be modified and adapted
(GQ2). The adaptation strategy will be computed from (a) Hexad User Types and
(b) players’ in-game behaviors (GQ3). Finally, we defined the aspect that can be
personalized in the challenges by choosing among the elements available in the hi-
erarchical structure of the framework (Figure 4.13). The dimensions of the PEAS
representation are the following:

(PC) Player-Control refers to players’ action space and the control they have over
the game. In Play&Go, Player-Control can be associated with players’ control
over challenge assignment mode. Challenges can either be chosen by players
from a pool of options or can be automatically assigned in case an explicit
choice was not performed. Thus, this adaptation aspect governs the possibility
of customizing (player’s choice) or personalizing (system’s choice).

(SRD) System-Rules-Difficulty refers to specific rules of the system. The System-
Rules sub-component can be further specified in each application domain. With
System-Rules-Difficulty, we model the desired difficulty level for the challenge,
which can either be easy, medium, or hard.

(SRS) System-Rules-Social refers to the social aspect of challenges, which can either
be present or not. This sub-component governs the challenge and whether it is
single-player or multiplayer.

(SRC) System-Rules-Competition refers to the social mechanic used for multi-
player challenges: cooperative or competitive. This dimension is relevant only
if the System-Rules-Social decides for the challenge to be multiplayer.

(SRG) System-Rules-Green refers to the target of the challenge. Specifically, this
sub-component decides whether the challenge will be focused on green trans-
portation means (walk and bike).

Please note that in the original paper [207], the authors represented players on four
axes, corresponding to the model’s components. In this study, we decided to keep
the element of the System macro-component decoupled. They refer to very diverse
concepts in Play&Go and condition different aspects of the adaptation strategy.

Evaluation Metrics

For each player, we will have an adaptation strategy produced by the idealized pref-
erences (player types) and an adaptation strategy produced by the contextualized
preferences (in-game behaviors), with the PEAS framework’s support. As previously
discussed, each strategy will be represented as a numerical vector. Hence, the strate-
gies can be compared using distance and similarity metrics: euclidean distance, cosine
similarity, hamming loss, and a modification of intersection over union.

The euclidean distance is one of the most common distance metric to compute
the dissimilarity of objects described by numeric attributes [85]. Its values range
from 0 (absolute identity) to the maximum possible discrepancy value, whose upper
bound varies with the vectors domain space. As the components of our vectors will
be normalized in the range [0; 1], for each component, the maximum difference is
1. Given the euclidean distance formula (d(x, y) =

√∑d
i=1(xi, yi)2), the maximum
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Figure 4.22: Intersection over Union

value is
√
d ∗ 12, where d is the length of the vector. Hence, the value lies in the range

[0;
√
d].

The cosine similarity [85] metric measures how similar two numerical vectors are by
computing the cosine of the angle between two vectors. Hence, this value determines
if the two vectors are pointing in the same direction. When the vector elements are
binary, the function can be interpreted as the number of shared attributes. The cosine
similarity values lie in the range [0; 1].

The hamming loss [234] is a metric designed for multi-output classification tasks.
This metric computes the average difference between the predicted and the true value.
Prediction and omission errors are included. The hamming loss values lie in the range
[0; 1]. A desirable value for the hamming loss is closer to 0.

The intersection over union (IoU) [234] metric is widely used in Machine Learning
and Deep Learning to evaluate the performance of models for image recognition. In
those analyses, recognized images are generally delimited by boxes. IoU computes to
what extent the boxes overlap. As the name suggests, IoU is computed as the boxes’
intersection area over the union (Figure 4.22a). IoU of 0 means no overlap, and thus
bad performance, while IoU of 1 means perfect overlap. Hence, the values lie in the
range [0; 1].

We adjusted this metric to our needs, keeping the same idea. We will represent each
adaptation strategy as a polygon, where the sides of the polygon are the length of
the adaptation vector - i.e., the dimension of the PEAS representation. For instance,
Figure 4.22b shows visualize the concept if the dimension of the PEAS representation
is 5. Each axis, represented as a dotted line, is one of the five dimensions. Each section
of the figure, delimited by two axes, is a triangle, whose area can be computed using
the formula A = a ∗ b ∗ sinγ/2. In the formula, a and b are the values of the triangle’s
sides adjacent to γ. Each side is the value of the PEAS dimension for the adaptation
strategy (i.e., vector) and γ = 360/5. The area of the irregular polygon is the sum
of the triangles’ areas.

The IoU follows the same formula, as shown in Figure 4.22a. The area of the polygons’
union is obtained by considering for each axis the maximum value between the two
strategies. On the other hand, the intersection uses the minimum value for each axis
(or dimension). Also in this version, the IoU values lie in [0; 1].

Preliminary Analysis

In the following section, we present the results of the analyses introduced in the
previous section.
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Table 4.14: Factor analysis (structure matrix) for 11 player behaviors in Play&Go
(N = 127). The elements in bold represent the behaviors kept.

behaviors Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

R -0.83
S 0.75
IU 0.52
W 0.72
F 0.76
Cm 0.54
A 0.87
Po 0.58
St
Si 0.71
Cs

First, we investigated the existence of correlations between player types and player
behaviors through canonical correlations. Then, we instantiated the PEAS framework
and provided translations for both player types and behaviors. Finally, we compared
the PEAS representation obtained using the similarity and distance metrics previously
defined.

Before proceeding with the core study, we conducted (i) an exploratory factor analysis
(EFA) to remove redundancy in the player behaviors defined and (ii) researched
correlations among player types and the remaining behaviors.

Prior to EFA, we verified the sample size adequacy. Empirical rules suggest having
10–15 participants per variable [68]. In our case, the variables are player behaviors
(#11). Hence, we have ∼ 13 participants (N = 127) per variable. Besides, the
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was .81, meaning that the
sample was large enough to perform the analysis, and Bartlett’s Test of Sphericity
was significant (χ2

55 = 612.38, p < .001), indicating that the correlations between the
variables were large enough. In conclusion, our sample of N = 127 was adequate.

The factor analysis was computing using the R psych package. We employed an
Oblimin rotation because we expected that the components could partially overlap.
Moreover, we considered factor loadings > .512 (in absolute value) as significant, as
suggested in [68] for a sample size of ∼ 100 and α = .01. An inspection of the scree
plot showed a large drop in the eigenvalues after the fifth factor. Hence, we retained
five factors.

As Table 4.14 shows, Factor 4 and Factor 5 represent the Competitive (Cm) and
the Purpose-oriented (Po) behaviors, respectively. For factors from 1 to 3, we
consulted with the designers to choose the behaviors to retain. Factor 1 was composed
of Sociality (S), Win Social (W), and Full-feature (F). The choice fell on the
Sociality behaviors, as all three behaviors manifested a strong social component.
Win Social’s high values meant that players (1) participated in many multiplayer
challenges, and (2) they were more motivated to win them. Whereas, Full-feature
behaviors, in this specific gamified system, also measured whether players engaged
with the social mechanics of the game. Hence, sociality was the characterizing aspect
of the factor. Factor 2 was built of Reactivity (R) and Active (A) behaviors. Both
values computed players’ will and velocity in making choices within the game. The
results of the EFA can be interpreted as: either player made quick choices, or they
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made no selection at all. Hence, the two behaviors were interchangeable. We decided
to keep Reactivity to retain information of player velocity. For Factor 3, we retained
Self-improvement (Si) over Intensive Usage (IU) as the factor loading for Si was
higher. Besides, the designer hypothesized that the intensity of usage could be related
to self-improvements, as players performed more actions over time to achieve better
performance.

In conclusion, among the 11 player behaviors, we retained: Reactivity, Sociality,
Competitive, Purpose-oriented, and Self-improvement. Those behaviors were then
translated into the PEAS representation.

To analyze whether the idealized and the contextualized preferences (user behaviors)
generally align, we started by conducting a canonical correlation analysis “CC”). We
used the five in-game behaviors as predictors of the six Hexad user types measured
by the Hexad user types questionnaire. A CCA can be used to assess the association
strength between two sets of variables and allows to compute the multivariate shared
variance between them [199]. At its core, the method combines the set of predictor
variables (in-game behaviors) and the set of criterion variables (Hexad user types) into
separate synthetic variables [199]. The canonical correlation itself is the correlation
between these synthetic variables [199]. These pairs of synthetic variables represent
canonical functions (CF), which can be seen as an extension of principal components
in Principal Component Analyses (PCA), since the CFs are composed of two different
variable sets [227]. This process of deriving canonical functions is repeated until
either no residual variance is left to be explained or there are as many canonical
functions as there are variables in the smaller variable set. Although a CCA has been
shown to be able to accommodate variables without relying strictly on multivariate
normality [227], we inspected univariate Q-Q plots, skewness, and kurtosis of each
variable. The Q-Q plots mainly supported the assumptions of normality, whereas
some variables were shown to be slightly skewed. However, all skewness and kurtosis
values were within the acceptable thresholds of skewness < 3 and kurtosis < 10 [118].

The resulting model across all CF was not statistically significant using the Wilks’s
λ=.70 criterion, F (30.00, 418.00) = 1.28, p = .153. Consequently, this result does not
support the hypothesis that user types and player behaviors are associated. However,
the result should also not be seen as supporting evidence for the absence of a relation-
ship. When interpreting Wilks’sλ, it seems like the association between types and
behaviors is smaller than we were able to detect, given our sample size. Wilks’sλ is
.70, which hints at a potential shared variance between the variable sets of 30%, i.e. a
potential r2 type effect size of .30. Considering that the recommended threshold for
strong effects is r2 = .64 [64], it seems that the user types and in-game behaviors are
not strongly associated but might have a small to moderate association [64].

Results

Player Types Translation Players’ idealized preferences were modeled through the
Hexad User Types [153, 219].

To translate a person’s scores for the Hexad model into the PEAS representation, we
followed the approach defined in [207]. We defined a mapping between the Achiever
score (A), the Philanthropist score (Ph), the Player score (R), the Socialiser score
(S), the Disruptor score (D), and the Free Spirit score (Fs) to the components of the
PEAS framework, and the resulting weight vector.



68 Chapter 4. Understanding Players as Individuals

Table 4.15: Overview of the correlations found among the game elements and
strategies relevant to our context and the player types. Cells are blank when the
correlation among game element and player type was not investigated in the pa-
per. A dash represent a non-significant or nonexistent correlation. We considered

correlation scores >=.2.

(a) Socializer

[173] [217] [7] [79] [8] [161] [219]
Scl. Interac. .48 .34 .16

Compet. .25 .2 .14 .22
Cooperat. .29 .31 .27 .29

Meaning. Contrib. .23 .22
Customiz. .31 - -.3 - -
Personaliz. .17 - - -

Rewards - - - - - -
Meaning. Goals -

Challenge - - - -
Learning -

(b) Philanthropist

[173] [217] [7] [79] [8] [161] [219]
- - -

- - - -
- - .24

.34 .-22
- - - - -
- - - -
- - - - - -

.17
- - - -

-

(c) Free Spirit

[173] [217] [7] [79] [8] [161] [219]
Scl. Interac. - - -

Compet. - - - .25
Cooperat. - - - -

Meaning. Contrib. - -
Customiz. - .13 - - .2
Personaliz. .13 - - -

Rewards - - - - - .14
Meaning. Goals -

Challenge - - - .41
Learning .39

(d) Achiever

[173] [217] [7] [79] [8] [161] [219]
.28 - -

- .1 - .16
- .14 - -

.18 -
- .21 - - -
- .21 - -
- - .2 -.16 .12 .17

.19
.2 .12 - .45

.22

(e) Player

[173] [217] [7] [79] [8] [161] [219]
Scl. Interac. .26 - .17

Compet. .26 .37 .22 .24
Cooperat. .14 .22 - -

Meaning. Contrib. - -
Customiz. - - - - .16
Personaliz. - - - -

Rewards .15 .35 .17 - .15 .3
Meaning. Goals -

Challenge - - - .32
Learning

(f) Disruptor

[173] [217] [7] [79] [8] [161] [219]
- - .18

.11 - - .32
- - - -

- -
.14 - - - .14
.15 - - -
- - - - -

-
- - .34 .21

For the mapping definition, we leverage the definition of the player types and the
game elements that motivate them [153]. Player-Control (PC) is positively linked
to Free Spirit and Disruptors, the first characterized by the will to customize their
content and the latter by the desire to express their individuality and voice. Thus,
having control over the challenge assigned, rather than having them automatically
assigned, would accommodate Free Spirit and Disruptor motivational drivers to cus-
tomization and self-expression. Disruptors System-Rules-Difficulty is positively linked
to Achiever, as this player type is motivated by a sense of mastery. Achiever’s need to
feel challenged can be meet by assigning them difficult tasks. System-Rules-Social is
positively linked to Socialisers, who enjoy playing in teams and engaging with other
players. Therefore, multiplayer-challenges are preferred for Socialisers, in contrast to
single-players challenges. System-Rules-Competitive is also positively linked to So-
cialiser, who are motivated by competition. System-Rules-Green is positively linked
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to Philanthropist, who seek to make a meaningful contribution. In this context, the
meaningful contribution consists of embracing the gamification ulterior motive and
preferring green transportation means. Figure 4.23a summarized the translation of
player types into the PEAS representation, following the Hexad definition.

The Hexad User Types model has found remarkable consensus in the Games User
Research field. Thus, many researchers investigated the correlations among the player
types scores and different game elements or mechanics. Some of those correlation
analyses produced unexpected results, associating types to other game elements than
the ones specified in the definition [153]. For this reason, we produced a second
translation deriving from those correlation studies. We collected the published papers
using the Hexad User Types questionnaire [219]. As for July 2020, we found 215
papers referring to the survey in [219]. Among those papers, we selected papers
written English, investigating at least one game element or strategy useful in our
application domain through statistical correlation analyses. This filtering resulted in
7 relevant papers. Table 4.15 visualizes our findings. Each row represents a game
element or mechanic, while each column refers to a user type. Each player type
column is further divided into seven sub-columns, one for each paper analyzed. Cells
report correlation scores, if available, for the game elements and the player types in
each paper. Following from Table 4.15, we built a new translation model.

We confirmed the Socializer desire to engage in social interactions [217, 79, 161],
but they were both interested in competition [173, 7, 8, 219] and cooperation [173,
7, 8, 161]. As a consequence, Socialiser was linked to System-Rules-Social but not
to System-Rules-Competition. Socialiser both correlated to personalization and cus-
tomization, and thus Socialisers were not linked to Player-Control. Finally, despite
showing a positive correlation to Meaningful Contribution, no connection with Mean-
ingful Goals or Rewards was found. Hence, Socializer was also not linked to System-
Rules-Green. Philanthropist desire to make a contribution also appears from the
works analyzed, as it positively correlates to Meaningful Goals [217] and meaningful
contribution [217, 161]. Therefore, Philanthropist was linked to System-Rules-Green.
Moreover, this user type wants to collaborate with others [217, 7, 8, 161], result-
ing in Philanthropist also being negatively connected to System-Rules-Competition.
From the literature, Achievers’ will to socialize emerges [217], leading to them being
linked to System-Rules-Social. They do not show a preference towards personalization
over customization [7], but they are positively correlated to learning and overcom-
ing challenges [217]. Hence, Achiever was linked to System-Rules-Difficulty. Free
Spirit manifested a preference towards customization (user-defined) rather than per-
sonalization (system-tailored/automatic [7], translated into a positive link to Player-
Control. This type also correlated to competition [219], hence a positive link with
System-Rules-Competition. Free Spirit also correlate to Leaning and Challenges,
leading to a positive connection with System-Rules-Difficulty [219] Player are in-
terested in virtual rewards [173, 217, 7, 79, 8, 161], and thus are negatively linked
to System-Rules-Green. They also enjoy social mechanics [217] with a preference for
competitive environments [173, 217, 7, 79, 8, 161], translated into a positive link with
System-Rules-Competition. Besides, they correlate with challenge [217], resulting in
a connection to System-Rules-Difficulty. Disruptor not only enjoy competition [217]
but also desire to be involved in challenges, gambling, and the rewards that come
from winning [161, 217]. Hence, Disruptors link to System-Rules-Competition and
System-Rules-Difficulty. Figure 4.23b shows the second translation for player types,
using correlation studies existent in the literature.
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Figure 4.23: Translation functions

Player behaviors Translation Players’ contextualized preferences were modeled
through in-game behaviors, as previously defined. For the mapping definition, we
associated with the elements of the PEAS representation one or more behaviors,
exploiting the designers’ suggestions. Player-Control is positively related to Reac-
tivity, as we can assume that players performing (quick) choices are interested in
customizing their game element. System-Rules-Difficulty is positively correlated to
Self-improvement, as the will of improving the own performance can be translated
into increasingly difficult tasks. System-Rules-Social is positively correlated to So-
ciality and Competitive, as the first behaviors highlights players’ will to play with
others and the second, in Play&Go, relates to (competitive) multiplayer challenges.
System-Rules-Competitive is positively correlated to Competitive, for the coherence
of the definitions. System-Rules-Green is positively correlated to Purpose-oriented,
as the gamification goal of the app (purpose) is assuming green transportation be-
haviors. Figure 4.23c summarized the translation of player behaviors into the PEAS
representation.

Comparing the Adaptation Strategies The two translation functions for player
types and the translation function for players’ behaviors produced 3 PEAS repre-
sentations for each player. We compared those representations through distance and
similarity metrics: euclidean distance, cosine similarity, hamming loss, and (our mod-
ification of) intersection of union. Each metric is example-based. Hence, it computed
for each entry (player) and then averaged over the whole dataset. Alongside the
average, we also report the standard deviation.

First, we investigated to what extend the adaptation strategies for the two player
types translations differ. We found that the vectors produced by player types defini-
tion and literature correlation are fairly similar, with an euclidean distance of .38 (std
= .11), a cosine similarity of .97 (std = .07), a hamming loss of .04 (std = .10), and
an intersection of union of .69 (std = .08). Hence, both translations produced simi-
lar adaptation strategies, suggesting the model’s robustness for idealized preferences
(Hexad User Types).

Then, we compared both player types translations to the PEAS representation built
from in-game behaviors. This analysis answers the question of whether idealized and
contextualized preferences lead to similar adaptation strategies. We observed how
both player types PEAS representations differed from the player behaviors represen-
tation: euclidean distance of 1.11 (std = .24), cosine similarity of .55 (std = .18),
hamming loss of .66 (std = .15), and intersection over union of .23 (std = .09). Con-
sidering that we have d = 5 dimensions for the PEAS model and that the maximum
value for the euclidean distance is 2.24 (

√
d), the player types and behaviors adapta-

tion strategies very divergent. This outcome is also confirmed by the other evaluation
metrics, as they present a low cosine similarity and a very high error in the hamming
loss metric. Besides, the models overlap only for the 23% (intersection over union).
Finally, we compared the the PEAS representation from the player types literature to
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Figure 4.24: The spider (or radar) chart compare the three PEAS translations
against one another. For each chart, the axes represent a dimension of the PEAS
model defined. For each axis, the green dot represent how similar the scores in the
axis were for each entry, on average [mean(1 - |difference of the values|)]. The two
gray dotted perimeters delineate the mean (+/-) standard deviation of the values.
In other words, the closer the value is to 1 for an axis, the higher the similarity of the
models for that specific axis, and vice-versa. From the left, we have the comparison
of the translations of player types deriving from the definition versus the literature
findings. Then, we have the comparison of the player types translation from the
definition versus the behaviors. Finally, we have the comparison of the player types

translation from the literature versus the behaviors

the PEAS behaviors model. Despite results showed a slightly higher similarity than
in the previous test, the magnitude of the change is very small (euclidean distance =
.94 (std = .19), cosine similarity = .56 (std = .15), hamming loss = .64 (std = .17),
and intersection over union = .27 (std = .10)).

Therefore, players’ idealized preferences derived from the Hexad Player Types and
players’ contextualized preferences extracted from in-game behaviors lead to a diverse
PEAS adaptation strategy. In other words, choosing one player profiling model rather
than the other would lead to a different tailored content, despite considering the same
player. For example, in Play&Go, the user type model could suggest single-player
challenges whereas the player behaviors model could suggest multi-player challenges.

From Figure 4.24a, we can see how the PEAS models for both player types trans-
lations (definition and literature) produce very similar models. The social aspect is
almost identical, while we can observe small divergences for the control, purpose-
driven aspect, and the competitive side. Nevertheless, they are unlikely to condition
the final adaptation. In the comparison of the player types translations and the be-
haviors translations (Figure 4.24b and 4.24c) something interesting emerges. First,
the translation from the literature of player types is closer to the behaviors than the
translation from the definition of player types. Second, both models are more similar
for the control and purpose-oriented axis, while they are very different. Although
the player type literature translation is closer to the behaviors for the difficulty and
competition aspect, there is still a considerable difference. On the other hand, both
player types translations differ greatly for the social axis.
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4.3 Summary
Telemetry data is a gold mine of information on players’ experience, which, to be fully
exploited, needs to be processed with care, using the correct tools. While a plethora
of research in games made this assertion obvious, the usefulness of gamification data
is yet to be investigated, which can be questioned as objectively more modest than the
game counterpart. In this chapter, we showed how versatile gamification telemetry
data can be in conveying information on how gameplay progresses, both on a global
and individual level.

On a global level, gameplay datalogs can be used to achieve a general understanding
of the behaviors of the player population and whether they play as intended by the de-
signers. In this regard, we compared two types of behavioral analysis using aggregated
and temporal data to understand how the type of analysis answers different questions.
Our outcomes showed that the aggregated analysis emphasized the winning strategies
successful in the long term, while temporal analysis identified short-term rewarding
behaviors. Therefore, if temporal analysis allowed the detection of abnormal, specific
behaviors, aggregated analysis shows whether winners behave in line with the design-
ers’ goal, essential in gamification. Hence, the aggregated analysis may be enough to
understand whether the ulterior motive is ultimately pursued. However, the tempo-
ral analysis provides low-level information and can highlight design faults that might
be overlooked otherwise. For instance, by modeling players’ behavioral evolution,
we found that a considerable portion of the users remained in a low-activity limbo,
whereas another part of the population alternated among different but high-activity
behaviors. Those players superficially involved in the game (a) can be indicators of a
design fault, suggesting that some players’ features or preferences are neglected in the
games, and (b) are likely to be at risk of churn. Players’ retention, on the other hand,
dictates the success or the failure of a software system, in that not only acquiring
users is more expensive than keeping the current users, but a satisfied player helps
in building up the reputation of the product itself. Players’ long-term retention in
gamified systems is crucial, especially when the ulterior motive is to promote a posi-
tive behavioral change. Predicting players’ churn helps in identifying users at risk of
abandoning the game to allow automatic or manual intervention to occur. Towards
this, we provided evidence that data describing players’ activity can be used to pre-
dict churn, although not as complex and multifaceted as it happens in games. Our
results show that players’ time investment in the game, like length and constancy of
previous gameplay, is a predictor of retention, not only in our gamified example but
also in a free-to-play game (TagPro), used as a validation set. This slight analogy
in the results supports the idea that the same motivational affordances move players
in both games and gamified systems. Therefore, this encourages research to inves-
tigate the re-use and adaptation of models and approaches used in games research.
Besides moving an additional step towards Gamification Analytics, we continued to
show data preprocessing and the methods used impact the results, hence the need to
gain a greater awareness also when it comes to gamification data.

Despite achieving a global understanding of players is essential to assess the progress
of the gameplay, adaptive gamification also requires more player-specific information
to deliver tailored content. Following along the lines of gamification providing lim-
ited data, and thus resources, to learn players’ preferences or profiles, we investigated
whether the available information was sufficient for the purpose. Hence, we con-
tributed with an RL-like algorithm exploiting simple metrics like the level of activity
to learn players’ preferences. The outcomes lay good premises for future works, as
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they assess the feasibility of using participation data to inform players’ preferences
in terms of weekly Play&Go challenge. The results also show that data-driven ap-
proaches are successful when players have a strong preference in the merit of the type
of game element they are interacting with. While this algorithm is relevant when
there is a single adaptable element with a finite set of types to choose among, de-
riving a complete profile or adaptation strategy is more challenging. Towards player
profiling, especially in gamification, the use of theoretical or data-driven approaches
is still debated, supported by psychology literature on perception of the self and con-
textualized preferences but yet to be verified in practice. Hence, we took a step back
and systematically researched whether they lead to divergent adaptation strategies.
Hence, theory-driven and data-driven approaches do not move on parallel lines. In-
stead, they may encounter and merge into shared results. Nevertheless, researchers
and practitioners should be aware that the choice of using player types or player be-
haviors to tailor game content will most likely impact the final results. Our results
also prove how the discussion and research on adaptive gamification are still opened.
Further studies should be aimed at producing concrete evidence or guidelines to in-
form the choice of the approach to use to model players.





75

Chapter 5

Understanding Players as Part
of the Community

In the previous chapters, we have analyzed players’ experiences from different per-
spectives. We presented methods and approaches to reach a global understanding of
the state and progress of the gamified application, as well as a closer view of each
player’s gameplay. Hence, we can now estimate their engagement by analyzing users’
in-game activity and predicting their likelihood of abandoning the game. We can
learn and extract their preferences by studying their interaction patterns. Yet, those
perspectives are still focused on the individual, considered as an isolated unit. Games
and gameful environments, on the contrary, build a virtual world where, at least, in-
direct social connections are formed. Consequently, a more accurate description of
players’ identity and personality should also include information on how they affect
and are affected by the virtual society.

The following chapter presents our study on social influence in gameful environments.
First, we illustrate the algorithm used to identify influencers. Second, we introduce
our preliminary study on the algorithm conducted on the online multiplayer game
Destiny, in which we detected retention influencers. Then, we replicated and extended
the preliminary analysis using data from a game provider (Steam). Those studies
allowed investigating a novel approach to identify in-game social influence, availing
of large and heterogeneous datasets. Finally, we researched influence in gamification,
exploiting data from multiplayer challenges in Play&Go. The study of social influence
in gamification further extends the influence(rs) analysis by researching other types
of influence, other than retention.

5.1 Measuring Social Influence
The SNA literature features two lines of thought to characterize and identify in-
fluencers, either by considering the network’s structural nature or the evolution of
users’ behaviors. We will refer to the first approach as structural, and the second as
semantic.

The structural approach consists of computing centrality metrics on the player social
network. Generally, degree centrality, closeness centrality, and betweenness centrality
are considered the most robust. Therefore, structural influencers are nodes well-
positioned in the network, with many connections and placed along many short paths.
Central nodes are supposedly visible and popular across the network. The pioneering
study on retention influencers in gameplay adopts this method [37]. Specifically, they
combine degree, closeness, betweenness, and eigenvector centrality with PageRank.
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In the semantic approach, rather than relying on the network’s topology, users’ be-
haviors are analyzed and monitored over time. Those behaviors need to be defined
in advance and describe the type of influence that will be computed. The choice of
the behavior(s) highlights the main difference and strength compared to the struc-
tural method. Structural influencers are inherently assumed to affect any choice and
habit of others. Hence, those methods consider the status of influencer as portable.
On the contrary, semantic methods enable the possibility of having different sets of
influencers, varying the behavior(s) analyzed. The behavior can describe high-level
properties, such as players’ activity to study retention or represent context-dependent
features. For instance, in gamification, designers may be interested in propagating
behaviors in line with the gamification goal. Besides being malleable, the seman-
tic approach allows more fine-grained analyses. The evolution of specific features is
exploited rather than simply the skeleton of the social network - i.e., the graph.

This thesis analyzes players’ behaviors from different sides and angles, including the
impact of social relatedness. The semantic approach better integrates with this vision.
Therefore, informed by the SNA literature, we designed an algorithm to compute
semantic influence within players’ networks. Despite semantic influence being our
main focus, we also evaluate our findings against the structural influence results to
better comprehend the differences among the two methods in our application domains:
games and gameful environments.

Following the definition of influencers as users conditioning others’ behaviors, our
algorithm [144] computes the semantic influence exerted in the network by measuring
changes in nodes’ properties successive to social interaction. The algorithm (Algo-
rithm 3) requires a dynamic graph and a temporal dataset of players’ properties.
A dynamic graph is built of a series of snapshots of the network taken at regular
intervals. Hence, dynamic graphs embed information on the network topology evo-
lution - e.g., appearance and disappearance of links and variations in links weights.
The temporal dataset holds information on players’ attributes and how they evolved
across the same snapshots. It follows that, prior to the analysis, a time window must
be defined. The analyst must decide the level of granularity desired, such as daily,
weekly or monthly. The choice is context-dependent.

Allowing the choice of the players’ properties and the time window makes the algo-
rithm easily portable and adaptable to various application domains. Even within the
same use case, several types of influence can be analyzed by tuning these parameters.

Alongside the definition of the algorithm, we provided a Python implementation,
publicly available on Github, named sinfpy1.

Semantic Influence Detection (sinfpy) computes the influence scores as values
in [−1; 1]. The lower the value, the more susceptible the node is to influence. The
higher the value, the more the node exerts influence on its neighbors. The algorithm
is built upon the concept of influence as an increase of similarity over time. In other
words, influence over an edge e(v,w) occurs if v is more similar to w on time t, and
they got connected on t− 1. The influence, in this case, is positive for w and negative
for v. The similarity increases determine the magnitude of the influence. Timed
information of players’ properties is needed to compute the influence. The properties
are user-defined, and thus, the concept of influence is tied to the properties of interest.
The network can either be dynamic or static in terms of the connection among the

1Further details and a Python implementation are available at https://github.com/enrlor/
sinfpy, as the Pypi package.

https://github.com/enrlor/sinfpy
https://github.com/enrlor/sinfpy
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Algorithm 4 Influence Algorithm
1: procedure InfluenceScore(E,X)
2: for all e(i, j) ∈ E do
3: for all t ∈ {t1, ..., tk} do
4: value = EdgeInfluence(Xt−1

i ,Xt
i ,Xt−1

j ,Xt
j)

5: infi(e) = InfluenceAdj(value,w(e))
6: infj(e) = −infi(e)
7: end for
8: end for
9: end procedure

nodes. In the case of dynamic connections, the persistence of a node’s disappearance
is taken into consideration.

The algorithm develops into two phases, which are implemented in two modules: the
EdgeInfluence and NodeInfluence.

Phase 1: Edge Influence. In the first step, the algorithm computes the influence
score for each edge (Algorithm 3) through the EdgeInfluence module. The module
computes the influence exerted on each edge of the network as a result of the nodes’
behaviors and interactions over the observation period. In the sinfpy implementa-
tion, the module foresees a number of optional parameters to meet context-specific
requirements. While the class encloses a default function to compute the edge influ-
ence, it can be customized to better adapt to the use case.

Listing 1. Default influence function.

def influence_score(xi_old, xi_new, xj_old, xj_new, prev_inf):
influence = 0
threshold = 0.8

sim_i = similarity(xi_old.values,
xi_new.values)

sim_j = similarity(xj_old.values,
xj_new.values)

sim_ij = similarity(xi_new.values,
xj_new.values)

if (prev_inf > threshold) or \
(sim_i <= threshold and sim_j > threshold) or \
(sim_i > threshold and sim_j <= threshold):

influence = sim_ij if sim_i > sim_j else -sim_ij

return influence

The default function assumes that (i) the values are already normalized, (ii) all the
properties in the dataset X are all relevant for the computation of the influence
score, and (iii) the similarity function is cosine similarity, if not specified otherwise
in the initialization phase. For each interaction, modeled through an edge e(i, j), the
function (Listing 1) analyzes the similarity of the nodes with their past behaviors
(sim_i and sim_j) and between one another (sim_ij). The last condition behaves as
follows. If only one among i and j maintains a coherent behavior with its past (e.g.,
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sim_i ≥ threshold), whereas the other changes (e.g., sim_j < threshold), influence
is exerted and the magnitude of such influence is sim_ij. Influence is also assumed to
occur when the influence has already been detected in the past (prev_inf > threshold).
In this case, we do not expect one node to consistently behave while the other emulates
them, as this already occurred in the past. Rather, we inspect the eventual persistence
(or decay) of influence by computing the current similarity among the two nodes. The
edge influence score in magnitude refers to both nodes, yet one is the additive inverse
of the other. Thus, a convention is applied. The sign of the edge influence value
for e(i, j) refers to i, where id(i) < id(j) - i.e., the id label of i is lexicographically
smaller than the id label of j. The control in the final assignment ensures that the
edge’s value refers to i, the node with the lower id label by convention.

The user-defined function must consider said convention and comply with the follow-
ing signature:

• xt−1
i properties values for node i prior the connection

• xt
i properties values for node i at the time of the connection

• xt−1
j properties values for node j prior the connection

• xt
j properties values for node j at the time of the connection

• threshold; as defined in the instantiation phase

• influencet−1 the influence score, if any influence was exerted in the past

• similarity_fun; as defined in the instantiation phase, used to compute the mag-
nitude of the influence

Listing 2. Optional adjustment function.

def balance_influence(influence, weight, penality = 0.1):
penalized_inf = influence * penality
return float(influence - (penalized_inf * (1 - math.log(weight +

1, 2)/weight)))↪→

Line 4 of Algorithm 3 allows the definition of a penalty factor, adjusting influence
scores for long-term interactions among nodes. This adjustment is optional but can be
used to space users that produced sudden changes in others’ behaviors from players
impacting others after repeated interactions. For instance, the default adjustment
function (Listing 2) is designed to expect increasingly higher influence values with
more interactions over time. In other words, it models a reinforcement in player
influence using a logarithmic function.

Phase 2: Node influence. Finally, we computed the influence score for every node.
The class NodeInfluence computes the final value of the influence score for every
node as an aggregate of the influence of the edges they were involved in. We computed
influence on the edges for all snapshots. Then, we computed the influence score of
each node as the average influence they have on or are subjected by their neighbors.

Influencei =

∑
j:e(i,j)∈E infi(e)∑

t deg(i
t)

(5.1)

Similarly to the edge influence scores, the node influence values lie in the interval
[−1; 1]. High positive values identify influencers, while low negative values depict
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susceptible users. Neutral scores represent a lack of influence, either exerted and
perceived.

5.2 Understanding Social Relationships within Games
The algorithm presented in the previous section (Algorithm 3) reflects the definition
of social influence as a force impacting users’ behaviors and choices. Yet, neither the
existence of those influencers or their impact on others’ retention can be assumed to
occur in games or gamified systems. Therefore, we conducted a preliminary investi-
gation on game telemetry data [144] to verify whether (a) a set of highly influential
users exists and (b) they have a stronger impact on others retention compared to
non-influencers. Then, we investigated if influencers impacted retention and activity
across multiple game titles and if they conditioned the choice of playing a new game
by analyzing data from the game provider Steam [137].

5.2.1 Influencers in Online Multiplayer Games: Destiny

Our first use case scenario is the online multiplayer game Destiny, from which we
analyzed PvP Crucible matches. The primary purpose of this investigation is to
compare the structural and semantic approaches to find influencers. Destiny data
suits our study as it is comparable to the game “Tom Clancy’s: The Division”, for
which the first investigation on structural influencers has been conducted [37]. In
this section, we first present the structure of the player social network (PSN). Then,
we present the features used in the semantic influence computation, as well as our
evaluation metric. Finally, we describe and compare the set of central users, retrieved
through the structural approach, and the set of influential users, identified by the
semantic algorithm.

Constructs and Measures

In this study, we were interested in retention influencers, impacting others’ in-game
activity in the game. As a result, the behavior monitored by the semantic influence
algorithm is players’ participation. In practice, we exploited the following features:
number of PvP Crucible matches, the time spent between matches (on average), the
time spent in a match (on average), and the percentage of matches completed. Those
properties describe players’ activity over time and can be used to model eventual
behavioral change. Yet, they provide no information on long-term retention. A
player may be very active in a specific moment but abandon the game soon after. As
a consequence, users with high influence values, according to our algorithm, cannot
be assumed to impact others’ permanence in the game. Rather, for those individuals,
the algorithm found that players getting in contact with them modified their activity
to resemble them at a specific point in time.

Therefore, we defined a custom metric to evaluate influencers’ impact on long-term
retention, which we named retention transfer. The word transfer has a specific
purpose, as the metric is designed to model both a positive and negative impact on
retention. Hence, good values in the retention transfer metric mean that the
influencer transfers their retention to others: players leave when the influencer aban-
dons the game. As a result, the following scenarios are modeled. When the influencer
remains in the game for long periods, the influence is positive and long-term retention
is achieved. On the other hand, when the influencer churns prematurely, other play-
ers are also drawn to abandon the game. Although the goal is to promote long-term



80 Chapter 5. Understanding Players as Part of the Community

retention, we cannot ignore that influence can also be negative. Being an influencer
does not imply that they appreciate the product or, in our case, are engaged in the
game. However, the semantic algorithm is designed to find influencers, regardless
of them exerting positive or negative influence. As this metric aims at evaluating
the algorithm performance in finding individuals conditioning others’ retention, both
negative and positive influence should be considered. Nevertheless, this does not
represent a limitation, rather a strength. Finding negative influencers is even more
important, as strategies to isolate or limit their effect may be actuated.

The retention transfer metric is computed as follows:

rti =

∑
j∈N |gameplayt

i − gameplayt
j |

|N |
(5.2)

where N is the set of i’s neighbors, gameplayt
i and gameplayt

j are the length of the
gameplay of the nodes i and j, respectively, after they first connected at time t. The
values of gameplayt

i and gameplayt
j are the relative gameplays length of i and j

expressed as the number of days they played from the moment they connect to their
last active day. Hence, the formula compares the abandonment point of player i with
each of the other users playing with i at least once, and then averages the differences.

The value of the metric lies in the interval [0,∞). Values close to zero represent a
perfect retention transfer, whereas the higher the value, the more players’ retention is
unrelated. In other terms, smaller values show that, on average, the player’s neighbors
remained in the game as long as the player kept playing.

Table 5.1: General Network Properties

Property Value
Nodes 10K
Edges 26K
Average Degree 4.60
Average Weighted Degree 68.18
Diameter 18
Modularity 0.97
Connected Components 1.5k
LCC 42% of the network
Second LCC 41% of the network
Average Clustering Coefficient 0.55
Average Path Length 6.61

Network Structure

The Destiny player social network is built from the PvP Crucible matches. The
network nodes represent players connected through an edge if they were teammates
in at least a match. Conversely to teammates, opponents cannot be chosen by players;
rather, the game automatically matches two teams. Therefore, opponents were not
connected in the network. The edges are undirected and weighted, where the weight
describes the number of matched nodes played together. Table 5.1 reports basic
statistics of the player network (See Chapter 3 for further details).
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Figure 5.4: Players’ participation stability throughout their gameplay.

For this study, we built two versions of the PSN: static and dynamic. The static
network was needed to find central users using the structural approach. The dynamic
network, on the other hand, was required for the semantic algorithm (See Section 5.1).

A dynamic network can be modeled as a sequence of snapshots, taken at a regular
time interval, without information loss [197]. Consequently, before the influence anal-
ysis, we had to identify the best time window for our dataset, as there is no universal
definition. We studied three levels of granularity: daily, weekly, and monthly snap-
shots. The time window choice was dictated by the need to have data representing
players’ behavioral change without excessive noise. In other words, snapshots should
neither be distant enough to produce a data flattening or too close to include too
many details. Our decision was guided by a preliminary analysis conducted on play-
ers’ in-game activity - i.e., the same features extracted for the semantic algorithm.
Specifically, we studied the activity behavior by analyzing sudden changes, tendency,
and variability. Sudden changes were modeled as drastic oscillations between high
and low values in the activity features, visually represented as peaks in the distribu-
tion plot. The tendency is measured as the slope of the distribution - a lack of slope
represented a lack of change, while positive and negative slopes represented a grad-
ual variation in the behavior. Finally, the variability is computed using the relative
standard deviation (RSD).
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Table 5.2: Distribution of the centrality measures values

Distribution
min 25% 50% 75% max

DC 1 2 4 7 92
CC 0.08 0.14 0.16 0.17 1
BC 0 0 523 8.9k 634k
EC 0 0.005 0.01 0.03 1
PageRank 2.4e-5 6.6e-5 9.1e-5 1.1e-4 1.2e-3

Figure 5.4 shows the results. Players’ participation level, expressed as frequency and
number of matched played, is very variable across different days and quite stationary
across months. Weeks, on the other hand, are less sensitive to change than days
but retain more information than months. Therefore, we decided to represent the
dynamic network using weekly snapshots.

Structural Approach

First, we researched structural influencers – i.e., players well-positioned in the PSN.
Those users, or nodes, are crucial to keeping the community connected and, generally,
have an important role. In the SNA literature, degree centrality (DC), closeness
centrality (CC), betweenness centrality (BC), and eigenvector centrality (EC) are
considered the most robust centrality metrics (CM) [197]. DC measures the number
of connections a node is involved in. CC assesses how accessible a node is from the
others. BC computes the number of the shortest paths passing through the node.
EC evaluates how many of the node’s connections are important, where a connection
is deemed important if the other node has a high centrality value. We also included
PageRank to ease the comparison to the first work on structural influencers in games
- i.e., [37]). PageRank is computed considering the portion of the network directly
accessible in a single step.

We computed the centrality metrics for each node of the network (Table 5.2). As
expected, a minority of the nodes had high values in the CM. As a result, the distri-
bution plots presented a long right tail, exception made of CC, which is bimodal and
peaks at 0.1 and 1 - with the second peak being much lower than the first.

The structural influencers, or central nodes, were selected as the nodes with high
values in all CM. We defined a threshold for each CM, considering the top 10%, top
1%, and top 0.1% of the distribution of the scores. Then, we retrieved the intersection
of all the sets of the most central players according to each CM. This resulted in a
set of 51 central players. When considering the intersection of the players in the top
1% and 0.1% of each centrality measure, the seats were empty.

Semantic Approach

In our second analysis, we identified semantic influencers as players affecting in-
game behaviors of the individuals they connect to - i.e., they play in a match as
teammates. We used the Semantic Influence Algorithm, as defined in Section 5.1.
The algorithm allows us to specify which kind of influence we want to investigate. In
this work, we researched retention influencers, impacting others’ permanence in the
game. The choice of computing retention influence derived from Canossa et al.’s [37]
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Figure 5.5: Population

Figure 5.6: Structural Influencers

Figure 5.7: Semantic Influencers

Figure 5.8: Distribution of the retention transfer scores for all players (a), central
players (b) and top 1% influential players.

work also studying retention. Hence, investigating the same type of influence eases
the comparison to the state-of-the-art findings.

Since we are interested in retention and participation, we computed the similarity on
participation metrics - i.e., number of matches, the time between matches, completion
rate, etc. Similarly to the structural approach, we investigated three thresholds to
select the subset of semantic influential players, considering the top 10%, 1%, and
0.1% of the influence distribution [110, 229]. This led us to a sample of 1000, 100,
and 10 influential players, respectively.

Results

From the analysis of the PSN built of the Destiny PvP Crucible matches, we retrieved
two groups of players: the structural and semantic influencer.
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To characterize the groups, we conducted some exploratory analyses using the Mann-
Whitney U test. The null hypothesis for the test is that there is a 50% probability
that a randomly drawn member of the first population will exceed a member of the
second population. The alternative null hypothesis can be double-tailed (the two
samples come from the same population - i.e., both have the same median) or single-
tailed (the values in one population are higher than the other). If the data sample is
small or if the data do not follow a normal distribution, the Mann–Whitney U-test,
rather than the t-test, provides the most accurate estimates of significance [205].

First, we found that central players showed significantly lower scores in the semantic
influence value in contrast to the semantic influencers (U = 1281, p = 2.3e− 08).
Similarly, we found that for almost all the CM computed, the influential players
manifest lower values than structural influencers (DC U = 0, p = 3.3e − 27; BC
U = 0, p = 2.5e− 32; CC U = 2450, p = 0.38; EC U = 0, p = 3.5e− 24; PageRank
U = 0, p = 1.9e − 24). An exception is closeness centrality, for which the differ-
ence was not statistically significant. We also observed that the intersection of the
structural and semantic influencers was found empty. We also found that semantic
influencers were involved in few recurrent links (many matches over time), conversely
to central users. The average weighted degree value was statistically higher for se-
mantic influencers than central nodes (U = 3k, p = 0.26). Following this result, we
also verified whether the values of the standard deviation of the edge influence dif-
fered in the two groups of players. The hypothesis was that structural influencers, by
definition, are in contact with many more other players, and only part of them might
have been susceptible to their influence. On the other hand, we expected this vari-
ability to be lower for semantic influencers, as they were in contact with fewer users.
From the test, central players showed a significantly higher variability that semantic
influencers (U = 1281, p = 1.3e− 08). This finding suggests that the strength, or
even existence, of influence also varies according to the other user, which may not be
susceptible to influence.

Finally, we computed and compared the two sets of influencers and the population
through the retention transfer values, used to assess the influencers’ impact on
long-term retention. Figure 5.8 shows the distribution of the values in the population,
among the 51 central nodes and among the 101 influential users. The distribution of
the values for the structural influencers (Figure 5.8b) skewed away from 0. Thus, the
permanence of central players in the game was unrelated to the permanence, or churn,
of their connections. For semantic influencers, on the other hand, the distribution of
the retention transfer for the influential players peaked at the value of 0, with a
long right tale (Figure 5.8c). Therefore, when an influential player left the game, on
average, their neighbors followed, and they tended to remain if the influencer kept
playing.

5.2.2 Influencers across Games: Steam

Our second use case scenario is the game provider Steam [137]. Having assessed
retention influencers’ existence within a specific game, we researched whether influ-
encers have a broader range of action. Steam fits our purposes as it allows players
to store multiple games in their private library, where information on their activity
in each game is also stored. Besides, a social network is formed as users can add
friends, of which they can visualize games and progresses, and join groups. Steam al-
lows identifying influencers at a higher granularity level - i.e., impacting activity and
retention in multiple games, rather than one specific title. Moreover, being Steam a
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game library, we can study whether those influencers, if any, also condition players’
choice to play new games.

In this section, we present the social network, the features analyzed, and our charac-
terization metrics. Similar to our previous study, we researched both central nodes
and influential nodes. Finally, we compared and characterized the two sets.

Constructs and Measures.

In this study, similarly to the study on Destiny PvP Crucible matches (See Sec-
tion 5.2.1), we also researched retention influencers. Conversely to the previous work,
instead of collecting detailed data on players’ in-game activity, each user was char-
acterized by a features vector of variable dimension. Each element of the vector
represents an owned game, and the value is the time spent playing that game within
the observed time window.

To evaluate and understand the properties of the influencers sets obtained, we studied
influentiable behaviors in Steam. As in our previous analysis on retention influencers
(e.g., [144]), we measured the impact influencers had on their neighbors using the
retention transfer metric. In other terms, this metric shows to what extent nodes
emulate the influencer they were connected to, both in case of retention and aban-
donment of the game. Besides monitoring players’ retention, Steam, which was born
as a game library, allows us to track the acquisition of new games. Therefore, we
measured whether influencers affected the choice of playing a new game by defining
the new games metric. This value is computed as the number of players who played
at least one game after the influencer played it. Long-term retention in those newly
acquired games is also desirable. Hence, we also defined and computed the retention
in new games metric to determine the average time the influencer’s neighbors spent
in the new games. For each new game, the value is calculated as the days spent play-
ing over the days that the new player could have remained in the game in the absence
of a churn. Small values indicate an early churn, whether a value of 1 indicates that
the users were retained in the game until the end of the observation period.

Finally, we computed the following characterization metrics to model influencers’
behaviors in Steam and detected any differences among the influencers set and players’
population. The metrics are summarized in Table 5.3 and can be organized in sub-
groups: players’ activity and players’ library composition.

Players’ activity was studied as the time they invested playing using the number
of hours they played, the hours spent playing multiplayer games, the hours spent
weighted for the popularity of the game, and hours spent playing popular games.
The popularity of a game is measured using the review ratings. Players’ library com-
position was modeled through the ratio of owned popular games over the unpopular,
and by computing, for each game genre, the ratio_genre as the percentage of the
games owned corresponding to that genre.

In the remainder of the section, we used the Mann–Whitney U-test hypothesis testing
methodology to compare the results of the methods for the influencers detection.

Network Structure

The Steam PSN was built from the friendship relationships existing in the platform.
The Steam friends network was modeled as an undirected graph in which the nodes
are the 39, 354 players resulting from the data cleansing, and the edges represent a
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Table 5.3: Behaviors’ description and distribution over the population of players
analyzed.

Behavior Description Mean Std

timeplayed Describes player’ level of activity as a gamer
and the time investment they make to Steam. 4269.23 3814.71

weighted_time

Describes players’ time investment in popular
games, which are games gaining a high
consensus in the Steam
gamer community.

3763.67 3674.18

ratio_time_popular Describes players tendency to invest time
in popular (or mainstream) games. 0.84 0.25

avg_game_popular

Describes players tendency to buy popular
(or mainstream) games. While the previous
behavior evaluates time investment, this
refers only to the purchases.
The player may play very little.

0.85 0.08

ratio_Action
Describes the preference for the Action genre,
as the percentage of owned games labeled as
action games.

0.69 0.34

ratio_Adventure Describes the ration of owned Adventure games. 0.24 0.30
ratio_Casual Describes the ration of owned Casual games. 0.06 0.16
ratio_FreetoPlay Describes the ration of owned F2P games. 0.30 0.37
ratio_Indie Describes the ration of owned Indie games. 0.30 0.33

ratio_MMO Describes the ration of owned
MassivelyMultiplayer games. 0.09 0.21

ratio_RPG Describes the ration of owned RPG games. 0.19 0.29
ratio_Racing Describes the ration of owned Racing games. 0.06 0.18
ratio_Simulation Describes the ration of owned Simulation games. 0.16 0.27
ratio_Sports Describes the ration of owned Sports games. 0.06 0.19
ratio_Strategy Describes the ration of owned Strategy games. 0.17 0.28
ratio_EarlyAccess Describes the ration of owned EarlyAccess games. 0.05 0.15

ratio_time_mp
Describes how social the player is, and thus,
whether they prefer multiplayer or single-player
games.

0.09 0.21

retention_transfer

Describes the whether player’s affected the
long-term retention of their neighbors. Values
closer to zero indicate that others left the game
if and when the player abandoned.

2.91 4.96

ratio_neigh_new_games

Describes the local influence of players on their
neighborhood, as it measures the percentage of
neighbors that played a game AFTER the user
played that game.

0.24 0.32

avg_retention_ngames Evaluates the time investment in those new games
the neighbors played after the player. 0.58 0.34
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friendship status among the two nodes. In the graph, we have 218, 432 edges, resulting
in a network density of 0.00028 and a clustering coefficient of 0.11.

Each player is characterized by a features vector of a variable dimension, describing
the time spent playing each game they own. Conversely to our study on Destiny [144],
the network’s dynamicity cannot be modeled into its topology but only through play-
ers’ properties or features. The network’s topology is static as friendship relation-
ships are a more permanent connection than in-game interactions - i.e., shared PvP
matches. Additionally, our observation period is relatively small, hence the lack of
major changes in the friends’ graph. Changes in nodes’ features, on the other hand,
can be tracked, as we collected daily updates of players’ activity. Hence, we could
rebuild users’ play habits throughout the 5-week time window we analyzed.

Structural Approach

We identified structural influencers in the Steam friends network using a combination
of centrality measures, similarly to previous works [37, 144]. Table 5.4 shows the
distribution of the centrality measures computed across the population of players.
While the degree and the betweenness centrality values tended to be very small in
the whole population, the closeness centrality was slightly better distributed.

The 394 players exhibiting high values (top 1%) in the CM scores were labeled as
structural influencers. They showed a significantly higher retention transfer value
than the population (U = 5885905.0, p− value = 1.15e− 16). Hence, the neighbors
of semantic influencers are indifferent to their permanence in the game, on average.
Central players also have a higher new games metric values than the remainder of
the population (U = 1407981.5, p− value = 5.30e− 196). However, the number of
connections they have is generally larger than the other users as they are central,
by definition. When the percentage of the neighborhood that played the new games
is measured, the value is lower than in the population (U = 6188878.5, p− value =
0.01). In addition, there is no statistical difference between the value retention in the
new games metric between structural influencers and the population.

Semantic Approach

We used the Semantic Influence Algorithm to find semantic retention influencers, as
defined in Section 5.1. Although the network topology of the Steam friends graph is
static, nodes’ features vector may change over time. The vectors describe the amount
of time players spent playing their games, which is updated daily. In the semantic
algorithm, the influence is computed by observing players’ behaviors – i.e., playtime –
in games both nodes owned. The final semantic influence scores showed many nodes
having a neutral influence on others, with few players having very polarized values
(mean = 4.8e-4, std = 0.09, min = -0.96, 25% = 0.00, 50% = 0.00, 75% = 0.00, max
= 0.96).

Semantic influencers, also in this work, were identified as players with high influence
scores. However, many of the top 10% users in the influence rankings were neutral
to influence (value of 0). Hence, we refined our sample by selecting as influencers
players in the top 1%. The resulting set counted 394 users, with influence scores in
the range [0.28; 0.96].

Conversely to structural influencers, semantic influencers had a significantly lower
value in the retention transfer metric than the population (U = 11939980.5, p−
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Table 5.4: Distribution of the CM used in the Steam Friends graph.

Min 25% 50% 75% Max Mean Std
DC 0.000025 0.000025 0.000076 0.000203 0.022260 0.000282 0.000687
CC 0.000025 0.156729 0.178468 0.207109 0.279998 0.174728 0.049302
BC 0 0 0.000004 0.000056 0.063842 0.000101 0.000557

value = 2.22e−77). In other words, they showed a significantly greater impact on the
long-term retention of their neighbors, on average. Those influencers also impacted
their connections’ choices in terms of new games. Although the absolute number
of players influenced to engage in a new game is smaller than in the population
(statistic = U .0, p− value = 0.01), the percentage of neighbors who tried the new
game was significantly larger (U = 6178900.0, p− value = 8.82e− 14). The results
are due to the neighborhood of semantic influencers being tendentially smaller than
the network. Of the 394 influencers, 237 pushed at least one neighbor to try a new
game. In addition, those influencers retained players in the new games for longer
than the average node in the population (U = 1548228.5, p− value = 3.89e− 17).

Results

In the following section, we compare the semantic and structural influencers sets,
which were completely disjointed. We observed that structural influencers exerted less
influence than semantic influencers, according to the influence scores (U=154449.0, p-
value=1.33e− 133), whose impact on their neighbors showed a higher variance than in
the central users (U=109616.0, p-value=1.19e− 27). Coherently to previous findings,
semantic influences also showed significantly lower values in the centrality measure
values (DC (U=1006.0, p-value=6.40e− 129), CC (U=5866.0, p-value=1.23e− 111),
and BC (U=0.0, p-value=6.367e− 133)).

This work researched retention influencers and used the retention transfer metric
to evaluate players’ impact on permanence in the game. Semantic influencers had
lower – i.e., better – values than the population (U=35495.0, p-value<.001) and the
set of semantic influences (U=35495.0, pvalue=.001). They also influenced more
neighbors to try new games than the population (U=9358528.0, pvalue<.001) and
the set of central users (U=86651.5, p-value<.01). In addition, users that played a
game after their semantic influencers tended to be retained in the game for longer
than users conditioned by structural influencers (U=2887234.0, pvalue<.001).

Finally, we observed users’ behaviors within Steam to detect any dissimilarities be-
tween the set of influencers and the population (summarized in Table 5.5). In terms
of activity and playtime, semantic influencers were more active than both the av-
erage user in the population (U=10317643.5, pvalue<.001) and semantic influencers
(c=90035.0, pvalue<.001). They also were keener to play games with positive reviews
for longer (U=10075956.5, pvalue<.001, and U=89812.0, pvalue<.001). Semantic
influencers, in percentage, owned more popular games than structural influencers
(U=93115.0, pvalue<.001, and U=91595.5, pvalue<.001). Yet, the values do not
significantly differ from the populations’ values.

Players’ sets also differed in their preferred game genres. Semantic influencers col-
lected more Action, F2P, Massively Multiplayer, RPG, Strategy, and Early Access
games than the players’ population (pvalue<.001). In comparison, structural influ-
encers possessed more Adventure, Casual, Indie, RPG, Racing, Simulation, Sports,
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Table 5.5: Characteristics and behaviors of Steam’s influencers. For the columns
Semantic and Structural we can have 3 answers: Yes, No, and empty cell. Yes
answers indicate that the value is significantly higher for Semantic (or Structural)
players than for the population. Conversely, No answers state that the value is
significantly lower that for the population. Empty cells indicate non-significant
differences. For the last column shows the answer to the question: "Which among
semantic and structural influencers has significantly higher values for that behavior?"

Also in this case, empty cells indicate non-significant differences.

Behaviors Semantic Structural Semantic vs Structural
timeplayed Yes No Semantic
weighted_time Yes No Semantic
ratio_time_popular - No Semantic
avg_game_popular - No Semantic
ratio_Action Yes No Semantic
ratio_Adventure No Yes Structural
ratio_Casual No Yes Structural
ratio_FreetoPlay Yes - Semantic
ratio_Indie - Yes Structural
ratio_MM Yes - -
ratio_RPG Yes Yes Structural
ratio_Racing - Yes Structural
ratio_Simulation - Yes Structural
ratio_Sports - Yes Structural
ratio_Strategy Yes Yes Structural
ratio_EarlyAccess Yes - -
ratio_time_mp Yes - -
retention_transfer No Yes Structural
ratio_neigh_new_games Yes Yes Semantic
avg_retention_ngames Yes - Semantic
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and Strategy games than the whole population (pvalue<.001). We also found how se-
mantic influencers spent more time playing multiplayer than the population (U=8106927.0,
pvalue=0.03), while there is no statistically significant difference with central players.

5.3 Understanding Social Relationships in Gamification
In the previous sections, we showed how influential individuals impacting other reten-
tion exist in specific games and various games. We also observed that semantic and
structural approaches produce different sets of users, with the semantic influencers
having a stronger impact on others’ behaviors (i.e., retention and engagement in new
games). In this section, we retraced to our core application domain: gameful systems.
Hence, we replicated and extended those influence analyses by studying data from
Play&Go [142]. This work aims to first verify the existence of retention influencers
in our gamified application, with the consequence of bridging games and gamification
research for what concerns social influence. Second, we investigated the existence of
different types of influence, other than retention, allowed by the semantic algorithm.
Specifically, we analyzed the presence of influencers promoting ecological mobility
habits in line with the gamification goal.

In the following section, we present the network structure and the dataset, which is
constrained to a subset of the whole population of Play&Go players (see Chapter 4).
Then, we used the semantic algorithm to find, first, retention influencers and, second,
mobility influencers.

Constructs and Metrics

Play&Go, as described in Chapter 3, promotes sustainable transportation habits and
allows players to track their travels and obtain points in a proportional amount to
the eco-sustainability of the journey.

For this study, we analyzed the last edition of the gamification campaign (2019-
2020). Of the registered users, 119 players participated in multiplayer challenges,
representing the only mean of in-game interaction. On average, those players were
active for 11 game weeks (SD = 5.2) over the 17 analyzed. They were fairly active,
with an average of 322 game actions (SD = 336.7) up to a maximum of 844 actions.

In-game interactions are logged and have been processed to measure the following
behaviors: (1) participation, (2) mobility habits, (3) green mobility, (4) public trans-
portation.

Participation describes how active players are in the game, using as features the
number of game actions and the number of points collected. The number of game
actions mostly consists of the number of trips tracked. However, other actions can
also be performed, such as inviting other users in a challenge, unlocking a challenge
mode, or blocking a player. While game actions convey information on how frequently
the game is used, the number of points awarded communicates how intensive and in
line with the gamification goal the usage was. Higher scores meant longer and greener
travels. Mobility habits represents players’ transportation behaviors in the form of
km and trips tracked, divided for the means available (walk, bike, train, and bus).
This view on players’ activity is more descriptive than the participation data and is
fully representative of the application domain: mobility. From this concept we refined
two finer-grained behaviors: green mobility and public transportation. Green mobility
describes players’ activity concerning green trips, tracked by bike, and walking. Public
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Table 5.6: Multiplayer challenges

#challenges #players Density
All 495 119 0.05
Cooperative 397 111 0.05
Competitive 98 96 0.02
Injected 239 111 0.04
Voluntary 256 82 0.04

transportation, on the other hand, model users’ km and trips tracked by bus and train.
Prior processing data has been normalized in the range [0; 1].

Network Structure

In Play&Go, players can connect through multiplayer challenges, which can be co-
operative or competitive. Multiplayer challenges can also be grouped by assignment
policy: voluntary and injected. Voluntary multiplayer challenges are created by play-
ers using the invitation system. Hence, a user invited another player to a challenge
they defied, and the other player accepted the invitation. Injected challenges, on the
other hand, are automatically assigned by the system that matches players using a
naive algorithm. Players not already involved in voluntary multiplayer challenges are
matched with others with a similar level of expertise. The challenge is generated
to better match both their performance and habits. Multiplayer challenges can be
translated into a graph. In each graph, the edges are undirected and weighted. The
weight is a natural number and represents the number of occurred interactions.

Among the 495 multiplayer matches, 397 were cooperative challenges and 98 compet-
itive. The 495 multiplayer challenges can also be grouped into 256 voluntary and 239
injected matches (Table 5.6). Each subset of multiplayer matches is a specific view
of players in-game interactions. As a result, we modeled and analyzed the following
five graphs.

- Complete. A link exists between two nodes if they participated in a challenge
together, regardless of the type.

- Cooperative. A link exists between two nodes if they participated in a cooper-
ative challenge together.

- Competitive. A link exists between two nodes if they participated in a compet-
itive challenge together.

- Injected. A link exists between two nodes if they participated in a challenge
together, which was automatically assigned.

- Voluntary. A link exists between two nodes if they participated in a challenge
together, initiated by one of the two players through an in-game invite.

Each graph is dynamic; and thus, consists of a sequence of snapshots taken at regular
intervals. The intervals are weeks, as challenges have a weekly validity. The graph’s
dynamicity affects both edges, for which we have temporal information and nodes’
properties. Specifically, we conducted four rounds of analyses, one for each behavior
presented. For instance, we first measured retention influencers, where nodes are
characterized by the participation behavior. Retention influencers were researched in
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each of the five graph models listed. Then, we analyzed other types of influences by
characterizing the nodes with another behavior, e.g., mobility habits.

Analyses and Results

In Play&Go, we analyzed, first, retention influencers by replicating and extending our
previous works on Destiny [144] and Steam [137]. Then, we researched other types of
influencers impacting in-game behaviors describing players’ mobility habits, which is
the gamified app’s application domain. We also compared how influencers vary with
the type of influence computed.

Figure 5.9: The violin plots represent the distribution of the participation influence
scores across the five graph models: all challenges, injected challenges, voluntary
challenges, cooperative challenges, and competitive challenges. The height of the
violin plot represents the range of the influence scores for each graph model. The
thicker part means the values in that region have a higher frequency. Vice-versa the

thinner part represents lower frequency

Influence in Retention

In our previous works, presented in Section 5.2.1 and Section ??, we argued for the ex-
istence of game influencers impacting others’ long-term retention, identified through
the Semantic Influence Algorithm defined in Section 5.1. We built upon that research
by investigating retention influencers in our gameful application Play&Go, using the
same algorithm. The Semantic Influence Algorithm, besides a (possibly dynamic)
graph representation of players’ social interactions, requires the nodes are character-
ized by a set of features describing the behavior influenced. To detect retention influ-
encers, we analyzed players’ participation behaviors. In Play&Go, we modeled par-
ticipation in terms of the number of game actions and the number of points obtained.
The algorithm was executed on the five graph models – e.g., all challenges, voluntary
challenges, injected challenges, cooperative challenges, and competitive challenges.

Figure 5.9 shows the distribution of the influence scores across the graph representa-
tions. The strength of influence varies with the network considered, despite in each
model the distribution of the values peaked at zero. The network deriving from vol-
untary challenges was the greatest incubator of influence, which may be interpreted
as challenges formed on a voluntary base were more impactful than injected ones.
The type of social mechanic, on the other hand, showed less prominent differences.
The magnitude of exerted influence lies in similar intervals. Yet, the competitive
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network hosted more nodes neutral to influence. Then, we compared players’ influ-
ence scores across the different networks to understand whether challenge types and
assignment policies affected the magnitude of social contagion. Specifically, we cor-
related their influence scores across the models using Kendall τ [72]. The correlation
among the scores in the cooperative graph and the competitive graph was very small
(.12) although statistically significant (p < 0.05). On the other hand, the scores in
the injected and voluntary graphs were unrelated.

Players’ influence scores were independent of their in-game experience, described by
level number and position in the leaderboard. Coherently to our prior findings, seman-
tic influencers showed lower values in standard centrality metrics (degree centrality,
closeness centrality, and betweenness centrality).

Semantic influencers impact on long-term retention was evaluated using the retention
transfer metric, as defined in [144] (see Section 5.2.1). The smaller the retention
transfer value, the higher the influencers’ impact on their neighbors’ retention. Se-
mantic influencers extracted from the complete graph showed values significantly
smaller than the remainder of the population (Mann Whitney U = 451, p < .05),
very close to zero. By analyzing the other graph representation, we found similarly
impactful influencers in the cooperative and voluntary networks, conversely to in-
fluencers from the injected and competitive networks. This result confirms that the
network model can affect the presence and strength of influence exerted.

Other Types of Influence

Following the study on retention influencers, we investigated the existence of individ-
uals influencing others’ mobility habits, as Play&Go has the goal of promoting sus-
tainable transportation behaviors. Specifically, we analyzed tracked kilometers and
trips for each transportation mean available. Then, we separately measured influence
on mobility behaviors using green transportation means and public transportation.
Consequently, we computed three types of influence, whose distribution is depicted
in Figure 5.13.

Voluntary matches were, again, the stronger conductor of social influence, regardless
of the influence type. On the other hand, the influence exerted in the cooperative
and competitive networks was of similar magnitude. We also observed how players’
green transportation behaviors were more influenced than general mobility habits,
including public transportation. Consistent with previous findings, we found a lack of
correlation between the influence values in the different graph representations. Hence,
the nature of the social interaction affects the existence and power of influencers across
the network.

Then, we computed the retention transfer metric to verify whether those influ-
encers also impact long-term permanence in the game as retention influencers. Mo-
bility and public transportation influencers did not differ from the remaining of the
population concerning the impact of retention. However, results show that green
mobility influencers affected others’ permanence in the game as retention influencers.
Moreover, influencers in the cooperative network obtained even better values than
the other networks (e.g., injected, voluntary, and competitive).

In all of our studies (i.e., [144, 137, 142]), in-game retention influencers were ordinary
players residing in the periphery of the PSN. Mobility influencers match the same
pattern: they are not particularly experienced users, top players, or central nodes.
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Figure 5.10: Transport Means

Figure 5.11: Active Transport Means

Figure 5.12: Passive Transport Means

Figure 5.13: Violinplots of the influence scores for each graph representation (all
challenges, injected challenges, voluntary challenges, competitive challenges, and
cooperative challenges). The different plots refer to different influence types (i.e.,
nodes’ properties/features used): influence computed on all transportation means,
green transportation means (i.e., walk and bike), and public transportation means.
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Figure 5.14: Graphs of the voluntary challenges. Each graph presents the same
topology, where the nodes are the players and the edges represent a shared match.
The bigger the node size, the higher the node’s degree centrality. The graphs differ on
the nodes’ colors, representing the influence scores in participation, transport, green
transport, and public transport influence, respectively. Please note that despite the
influence laying in the range [−1; 1], the legend ranges between -0.5 and 0.8. Those
values are the local minima and maxima across our experiments. We used this

reduced range to make the colors more evident.

Finally, we visualized and compared the influence scores players’ obtained in the
four influence types analyzed: participation, transport, green transport, and public
transport influence. Figure 5.14 shows the voluntary graph, in which the exerted
influence was the strongest. Across the graphs, the position of the nodes was kept
consistent to ease the comparison. The colors of the nodes in the picture evidently
show how to influence, and semantic influencers, chance with the type of influence
analyzed. Hence, being an influencer is not an absolute status.

5.4 Summary
People’s behaviors are affected by how the network around them acts. The literature
on players’ social networks proves as the structure of gamer communities—either built
around games [226] or inside the gameplay [37]—impacts the players’ activities in the
game. Some individuals, in particular, have a say in how their connections behave
by exerting influence on them. Those game influencers, a term borrowed from social
media, were initially identified through centrality metrics [37], as commonly done in
other platforms. Hence, they were intended as well-connected, visible players strate-
gically placed in the network. As the SNA literature shows a double interpretation of
influencers, who are either described to possess desirable structural properties (cen-
trality in the network) or semantic characteristics (measurable behavioral change),
we researched whether the latter overlapped with the former. Our preliminary study
on the Destiny Crucible matches showed how central (structural) influencers greatly
differ from semantic influencers, allowing a more in-depth understanding of the player
community. First, we found that semantic (behavioral) influence can be strengthened
over time when players engage in multiple matches together. Semantic influencers,
in fact, were involved in few but stronger connections, conversely to central players.
Second, our results highlighted how the act of exerting influence also varies with the
person receiving that influence, and thus, being an influencer is not an absolute sta-
tus. Finally, we observed that semantic influencers had a stronger impact on players’
retention than structural (central) influencers.
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To expand further our knowledge of the players’ network, we investigated how play-
ers connect on a game distribution platform, Steam, which abstracts the concept of
specific games. We found how social contagion can also occur in a cross-game envi-
ronment, supporting that social relationships can be transferred from one game to
another [44]. Steam influencers, as game influencers, impact others’ retention within
the game provider but also influenced others’ choice to play a new game. Additionally,
the analysis of the Steam network highlighted properties and behaviors of influencers
distinguishing them from the ordinary player, undetectable from telemetry data cur-
rently analyzed in prior works [37]. Therefore, influencers have proven to fully impact
the community as they condition future trends and help maintain the network active
and connected.

Finally, we studied the existence of social influence in gamification (Play&Go) and
whether influencers impacted other players’ retention and in-game activity. Our find-
ings show how influencers do indeed exist and affect players’ long-term permanence
and help achieve the gamification goal. Besides, as in games, influential users are
neither elite nor central players regardless of the type of influence analyzed. In con-
clusion, social influence can also occur in gamification with social rules similar to what
emerged in entertainment games. Moreover, influence can be computed on different
behaviors, and influencers vary with the influence type computed.



97

Chapter 6

Adaptive Gamification
Framework

Players’ individual preferences and the game’s ability to accommodate them can de-
termine the goodness of their gaming experience, as the game is perceived differently
by each user. Hence, their participation, retention, and engagement can be impacted
by whether the game elements and mechanics meet their tastes [219].

Player modeling has been tackled since Bartle’s work [18] and many theoretical frame-
works and taxonomies have been proposed (see Chapter 2. In a parallel and related
research area, in-game behaviors have been analyzed to retrieve a data-driven rep-
resentation of players instead of relying solely on self-assessments. Nevertheless, a
systematic method to translate the knowledge extracted from player in-game behav-
iors into fully tailored game experiences is still lacking. Moreover, player profiling
approaches generally focus on the individuals’ identity, neglecting the social context
in which they live. Information on their role and impact in the player network is
never included. Finally, player modeling taxonomies, regardless of whether they are
theoretical or data-driven, associate a static profile with the user. Researchers, on the
other hand, found the player gaming experience to be ever-changing. Hence, iterative
adaptation strategies should be preferred.

Although most research on personalization and customization has been conducted
on entertainment games, gamification can highly benefit from being adaptive. The
ulterior motive [96, 228] characterizing a gamified application is, by default, something
that would be hard to pursue otherwise. Game elements are exploited to transform the
activity into something fun and entertaining. However, engagement is very subjective
and depends on players’ preferences and personalities. As a result, gamification is
not granted to have successful outcomes. Instead, many gamification examples can
have a neutral (or even negative) effect on players [121]. Iterative design, informed
by games analytics, can help to reduce this variability and ensure more successful
gamified applications by allowing the system’s supervision and modification as it
progresses [202]. The same iterative approach should be exploited for player-centric
adaptation to produce ad-hoc content for each user.

In the previous chapters, we analyzed telemetry data to study players’ experiences
from various angles. First, we analyzed players as individuals. Modeling their in-
game behaviors was used to predict the likelihood of churn, understand whether the
gamification goal was pursued, and learn and model their preferences. Then, we
investigated in-game social relationships to identify drivers of positive behaviors -
i.e., influencers. Most importantly, we showed how in-game activity could be used
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Figure 6.1: Framework’s modules and flow.

as feedback to interpret players’ responses to specific customization of the game ele-
ments with which they interact. This chapter connects those findings in a conceptual
framework for adaptive gamification, described in detail in the following section.

6.1 The Conceptual Framework
We propose a data-driven conceptual framework for adaptive gamification, designed
to extract information on players from telemetry data and learn to produce tailored
content for each player. The framework (Figure6.1) is built of four modules: Impact
Function, Player Profile, Social Value, and PCG Algorithm. The first three
modules (Extraction Modules) take as input the gameplay data collected from the
Game Instances. Each game instance describes the state of the game for a user. The
gameplay data, collected from players’ interactions with their game instance, provides
each extraction module information on a specific aspect of the players’ experiences.
The last module (PCG Algorithm), or Processing Module, is fed with the outcomes
of the previous modules and generates game content for each player accordingly.

The core characteristics of the framework are modular and iterative. First, modularity
fosters generalizability. Each module is treated as a black box: assuming the inputs
and the outputs are respondent to the definition, the implementation can vary. More-
over, the three Extraction Modules are optional, as long as at least one is included.
Second, the iterative nature of the framework has the primary purpose of monitor-
ing and accommodating the dynamicity of players’ gaming experiences. Hence, the
framework can work in real-time. The designer or analyst can define the time window
length that is better suited for the use case. The framework then extracts players’
data at regular intervals, processes their behaviors, and makes decisions. A more
detailed description of the modules follows.

Impact Function is the module responsible for understanding how the game ex-
perience is perceived by the player - i.e., the impact the game has on them. The
module elaborates data describing players’ activity in the game. It produces a mea-
sure of engagement, which will be used by the PCG Algorithm to decide to maintain
or change the current adaptation strategy for that player. In other words, the metric
assesses the goodness of the decision and helps to adjust it in the following iterations.
It should also be noted that this module is also in charge of signaling behavioral
shifts. In case players modify their preferences or behaviors as the game advances,
the impact function value will reflect this change, processed in the procedural con-
tent generation phase. As we anticipated, each module is a black box. The impact
function module can also be adapted to the application domain. The default function
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would be to monitor players’ activity and participation, indicators of the likelihood of
churn [143, 139]. However, analysts may prioritize other aspects. For instance, in the
serious games and gameful systems domains, they might choose to measure whether
the "ulterior motive" in play is pursued (e.g., in a Persuasive Game for Health, the
measure of interest would be a health-based indicator).

Player Profile is the module responsible for modeling players’ behaviors from game-
play data. Hence, it takes as input players’ in-game interactions and outputs player
profiles. The profiles are constantly updated throughout the gameplay with real-time
data. Designers and analysts are in charge of the definition of the in-game actions
and the profiling model. Although the module is defined as iterative and data-driven,
practitioners can decide to use static profiles as the framework itself. If they rely
on questionnaire-based approaches, for example, they can replace the module with
the surveys’ results. The model’s output will still be a player characterization fed
to the PCG Algorithm, which remains unchanged throughout the game experience,
regardless of behavioral changes.

Social Value is the module responsible for modeling in-game social relationships.
This component is relevant only for gamified applications that include multiplayer
elements, to some extent, such as cooperative or competitive tasks. The module takes
as input players’ social interactions to build a player social network. The output
describes players’ social value, which is a numeric representation of their role in
the community. For instance, this module can be used to research influencers and
influenced players after having defined the behavior of interest ([144, 142, 137]).
Then, players’ social value is communicated to the PCG Algorithm to inform player
matching strategies.

PCG Algorithm is the module responsible for processing players’ information to
produce tailored content. The component is fed with information on players’ experi-
ences (Impact Function), on players’ preferences and characteristics (Player Profile),
and on the player social network (Social Value). In practice, the procedural content
generation algorithm deploys personalized game mechanics using the player profiles
and matches players according to their profiles and social values. Iteration after iter-
ation, the generation strategy is adjusted according to the impact function value in
a reinforcement-learning-fashion. In other terms, the effectiveness of the algorithm’s
choice is evaluated iteratively, using players’ in-game activity, and the adaptation
strategy is modified accordingly.

6.2 A Feasibility Study – The Play&Go Case
In the following section, we provide a concrete implementation of the conceptual
adaptation framework based on our persuasive gamified application Play&Go. The
purpose of this exercise is to ground our assumptions on the benefit of the framework
in previous studies. Chapter 4 and Chapter 5 presented analyses on players’ experi-
ences, both individual and social. We elaborate those findings to detail the modules
of the framework and show a possible implementation. As we will later discuss, in
future works, the framework’s implementation will be empirically validated.

Play&Go (described in Chapter 3) allows players to interact with the system in a
multitude of ways. Not only can players track their movements, which is an action
highly tied to the application domain, but also engage with ad-hoc challenges, the



100 Chapter 6. Adaptive Gamification Framework

customization mechanism, and (indirectly) interact with other users. The sponsored
gamification campaigns are organized in weeks: partial leaderboards dictate the win-
ners of weekly physical prizes. Therefore, the framework will analyze the gameplay
at intervals of one week - i.e., weekly timeframes.

In this example, we assume that the designers’ goal is to retain players in the long
term. Therefore, the Impact Function module will exploit players’ participation
data, measured by their intensity and frequency of usage. Intensity is computed as
the number of game actions performed, whereas frequency describes the number of
active days in the game week. Our previous findings informed the choice of those two
metrics or behaviors. First, participation data is a predictor of player churn [143, 139]
and a low level of activity is a warning for a possible abandonment of the game [139].
Since the purpose is to retain players for a long time, the framework will aim to
maximize the values for the impact function - i.e., players’ in-game participation.
Second, players’ level of activity can be used in reinforcement-learning-like algorithms
to learn player preferences concerning a particular game element [141]. Specifically,
participation data can be used, in Play&Go, to order the different types of challenges
according to the users’ tastes.

The Player Profile module can either be built from the results of a survey-based
investigation - e.g., the Hexad User Types [219] - or from data-driven players’ behav-
iors. Although in-game choices [138] and level of activity [141] are strong indicators
of players’ preferences, there is no evidence of the superiority of data-driven over
theoretically-informed adaptation strategies [136]. However, our findings showed that
choosing one approach rather than the other significantly affects the type of content
generated [136]. Therefore, we opted for a hybrid solution. Player profiles are de-
scribed by combining their scores in the Hexad User Types Survey [219] and their
in-game behaviors. Players’ in-game behaviors are defined by the designers or domain
experts and describe specific interactions with the gameful environment. Examples of
in-game behaviors, in Play&Go, are Reactivity measuring how fast players were in
customizing game elements, Sociality evaluating the number of social interactions
they are involved in, and Self-improvement computing whether they tended to bet-
ter their performance [136] (for more details refer to Chapter 4). Existing methods
can be used to merge multiple profiling techniques [206].

Having computed the game’s impact on players and their profile, we then define
the Social Value module. Although the conceptual framework was implemented
to maximize players’ permanence in the game, the application domain remains a
persuasive gamified system pursuing a concrete goal. Towards this, this module
is instantiated to identify influencers in the network of players propagating green
mobility behaviors among their peers [142]. Hence, players’ social value is dictated
by their nature of influencer or being susceptible (or neutral) to influence.

Finally, the PCG Algorithm module collects and elaborates the outputs from the
previous modules and procedurally generates ad-hoc content. In Play&Go, the cus-
tomizable elements are weekly challenges. Challenges vary in difficulty level, com-
puted as the player’s expected effort to win it, and in the type of target (e.g., biking,
walking, or points, in general). Challenges can also be single-player or among two
players (i.e., multiplayer).
In the first step, the module computes the type of game elements to deploy for each
user. The algorithm uses as a baseline the profiles produced by the Player Profile
module to define the initial adaptation strategy. The baseline is integrated with in-
formation on players’ experience, from the Impact Function module, and fed to the
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Figure 6.2: Conceptual Architecture of the Gamification Platform.

online version of the Reinforcement Learning Algorithm defined in [141]. The algo-
rithm takes as input players’ implicit feedback (i.e., the impact values) and learns
how to order the challenge types according to the players’ tastes. Iteration after it-
eration, the learning becomes more accurate. Moreover, the baseline, updated with
the current players’ behaviors, is used to ease the processing of eventual preferences
(or behavioral) shifts. The second step of the module is applied to players preferring
multiplayer challenges. The algorithm uses players’ social value, describing their role
in the community and the effect they have (or receive) on others. The value is ex-
ploited to formulate a strategy to match players in order to maximize the spreading
of green mobility habits.

Figure 6.3: The Gamification Development Framework.
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6.3 A Software Engineering Perspective: The Gamifica-
tion Development Framework

In the following section, we discuss how the conceptual adaptation framework can
be easily integrated into gameful systems’ development life cycle from a software
engineering perspective. Figure 6.3 shows the Gamification Development Framework
(GDF) [34], designed to assist the Gameful Application Developer throughout all the
phases of the design, development, and management of gamified applications. In the
previous sections of the chapter, we presented the high-level conceptualization of the
adaptation framework, agnostic to the concrete implementation. In this section, we
tackle the problem from an implementation perspective, and thus we analyze the
models from a different abstraction angle.

The GDF is grounded on the Gamification Platform (Figure 6.2), designed for the
definition of mobility gamification campaigns. The Gamification Platform intercon-
nects all the interested stakeholders, such as the mobility managers and decision-
makers, promoting sustainable mobility policies; the game designers, defining the
game dynamics, and the citizens, participating in the gameful experience. The plat-
form is organized in four main components: the Gamification Engine, the Game
Management, the Gamified App, and the Trip Validation. The Gamification
Engine is an open-source component that supports the basic functionalities related to
the design, deployment, and execution of gameful systems. The Game Management
component supports the definition, supervision, and monitoring of on-going gami-
fication campaigns. The information retrieved from observing the game execution
can be analyzed to provide analysts data on the game impact, both for the mobility
aspect and the players’ engagement. The Gamified App is the access point for the
end-users - i.e., citizens. Finally, the Trip Validation component allows comparing
the declared transportation mode to the user’s “actual” mode, based on traces of the
user’s position and activity sampled during their trip.

Gamification design is a complex task, especially when the goal is delivering adaptable
content at runtime. To ease the definition of the gameful experience, the Gamifica-
tion Development Framework [34] provides a modular approach for designing gameful
systems (Figure 6.3). The modularity accommodates the gamification life cycle pro-
viding the designer and domain expert with a modeling language for each component.
The framework foresees a Logging module in which the in-game actions to track
are defined and then collected during the game execution phase. This data is fed
to the Monitoring component that, together with the Adaptation and Execution
components models the Adaptive Gamification Framework [135]. The Monitoring
component is in charge of collecting and modeling players’ in-game interactions. This
analysis allows the definition of players’ profiles and their social interactions, if any.
The Adaptation component aims at tailoring the gaming experience for each user
by removing, adding, or modifying specific game elements according to their profiles
and interaction patterns. In other terms, the Adaptation component maps the PCG
Algorithm module of the conceptual framework, while the Monitoring component is
a global representation of the three Extraction Modules (i.e., Impact Function, Player
Profile, and Social Value). The adaptations are deployed on the Execution com-
ponent, which collects the Game Instances and regulates the progress of the game.
The cycle is continuously retraced as the game advances, as described in the previous
sections. In-game actions and behaviors are analyzed again, adapting the gameplay
to each player’s growth or fixing eventual miscalculation.
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6.4 Summary
Adaptive gamification is a cutting-edge research field, as current one-fits-all design
strategies have proved to be disadvantageous. The previous chapters’ results sup-
ported the thesis by which data-driven approaches can also be exploited in gam-
ification to produce tailored content. We integrated those findings in a modular
framework, exploiting existent gameplay datalogs to (i) model players’ experience
and behaviors and (ii) deliver tailored content based on the players’ profiles. The
framework’s core points are its iterative structure and its modularity. As the frame-
work follows a cyclical flow, it accommodates the ever-changing nature of players’
behaviors, whereas the division into modules is the key to its flexibility. Not only
different methods and approaches can be used to treat players’ data, but they also
enable the integration of theory-drivel tools—e.g., questionnaires—in the adaptation
process. We then showed how this conceptual framework can be contextualized in
our core use case, the gamified app Play&Go, and how each module contributed
to the profiling and understanding of players’ in-game experience towards gameplay
adaptation. Finally, we presented a more technical perspective, which supports the
feasibility and the usefulness of the framework also from a developer perspective.
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Chapter 7

Discussion

Adaptation, or tailoring, is a core component of interactive experiences [241], either
them being games or gameful systems. Players are moved by different motivational
affordances [237], are engaged by diverse game elements [103, 215], and assume var-
ious roles in the community [195, 37]. It follows that adaptive gameplay is a broad
topic, as full adaptivity calls for a complete understanding of players’ behaviors and
personalities from both an individual and social perspective. For a time, adaptive
gamification has been under-explored [84, 198], and tailored content was perceived as
a complex task more suitable for full-fledged games. Soon, however, the cruciality of
also making gamification adaptive emerged [173, 26, 119]. Even more than traditional
games, gameful systems had to accommodate players’ preferences, as, generally, the
purpose was to engage users in actions that they would unlikely perform otherwise [84,
198]. Crowdsourcing, behavioral change, and education are only a few examples of
application domains that can greatly benefit from tailored content to make the user
more willing to engage in the platform, hopefully in the longer term. The main
critique moved to the gamified application is their simplicity [52, 121], as most imple-
mentations rely on few game elements hardly covering the vast spectrum of players’
preferences. Those limited features may be the solely available resources to make the
inference on players’ profiles and their role in the community, if existent.

In this thesis, we addressed the problem of adaptive gamification, which we structured
in (a) the analysis of players’ experiences focusing on their individuality and (b) the
study of how they connect with others and may be exposed to social influence.

7.1 Players as Individuals
Gameplay datalogs are the players’ biographies. They tell the story of how they in-
teracted with the system, evolved with it, and are affected by its rules. Globally, they
narrate the population history of that small virtual world, which the governor—i.e.,
designer—can examine to monitor its signs of progress and decide when an interven-
tion is needed. Individually, those biographies pose a magnifying glass on the citizens
of the world to better their lives and connections but also detect issues that might be
irrelevant to the general public. In its small, gamification telemetry data also tells a
story, and, in this study, we dissected it to understand how much information it can
convey.

Telemetry data provides a global overview on gameplay

In their raw form, usually, datalogs are a collection of activities, reflecting players’
in-game actions. Therefore, a choice is presented on whether to analyze the data in
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its aggregated versus its temporal form (RQ_I_Monitor). To elaborate on this ques-
tion, we built players’ archetypes (using Archetypal Analysis) from both aggregated
and temporal data. Our comparison highlighted similarities and differences in terms
of the information conveyed by the two data analysis approaches. Although we de-
tected an overlap in terms of the low-activity archetypes, the temporal archetypes
provided a more detailed view of the most active profiles. For example, we obtained
the Wannabe Competitive Achiever, proving the interest of few players in the compet-
itive multiplayer challenges, which were entirely ignored by most of the users. From a
designer perspective, the aggregated analysis led to the belief that competitive chal-
lenges were unappealing for the Play&Go population and supported the hypothesis
of players perceiving competition as a risk in their path to dominate the leaderboard,
and thus, preferred cooperation. Conversely, the temporal analysis sheds light on
a minority of players, willing to compete with others but unable to find a match.
Uncovering this design fault allows the designers to conceive better matching systems
for multiplayer challenges. However, the aggregated analysis was crucial to identify
the identikit of players successful in the game in the long term—i.e., dominating the
final leaderboard. Finding those winning strategies helped assess whether the gam-
ification goal was pursued, as identified the rewarded interaction patterns. Hence,
the aggregated analysis provided great design feedback, as designers’ expectations on
players’ behaviors cannot be assumed to be met.

While the gamification goal dictates the semantic success of the app, a portion of
the population may be less invested in the system. Temporal analysis on Play&Go,
for instance, emphasized a problem of engagement by modeling players’ behavioral
transitions. Specifically, we found a sharp division between low-activity and high-
activity archetypes. In other words, users would unlikely shift from low activity
to a high activity level. This finding is also a symptom of a design fault: part
of the players were never fully engage in the game, probably because their specific
preferences were not met. Having assessed an engagement problem, we investigated
whether we could timely identify those uninterested players who would eventually
abandon the game. When gamification is used as persuasive technology, long-term
engagement indulges internalization of the behavior in the own routine. Therefore,
being able to detect churners promptly could help in preventing such abandonment by
actuating contingency strategies. Churn prediction in gameful systems is challenging
due to the limited amount of available data (RQ_I_Churn). Thus, we build our study
under the constraint of using solely participation data, which is inherently produced
once the players interact with the system. Constraining the data to participation
behaviors may limit the models’ performance as a complete view of players’ experience
is lacking. For instance, in more complex systems, other behaviors can be elaborated
describing players’ flow, interactions, and preferences. The reasons leading players
to churn are multifaceted. In churn prediction analyses performed on games, we
witness a very high performance, but also many context-dependent variables modeling
players’ in-game interactions [147, 76]. On the other hand, in many gameful systems, a
reduced set of behaviors can be tracked, as the types of interactions allowed are fewer.
Thus, studying whether participation data holds enough information to predict churn
can help to monitor the progress of the gaming experience, also in those systems that
only implement the blueprint triad [121]. In practice, we studied how to process player
participation behaviors to improve the prediction accuracy, as well as compared the
interpretation and performance of the model in an unrelated F2P game (TagPro). We
found that participation data was sufficient to make a reasonable prediction of churn
in Play&Go. In addition, interpreting the prediction models provided interesting



7.1. Players as Individuals 107

insights. Players’ time investment in the game (gameplay length) and constancy
in the activity (frequency of usage) was an important predictor of churn. In other
words, the longer the players stay in the game, and the more frequently they play,
the less likely it is for them to abandon the game. Conversely, players’ activity,
computed in terms of the number of points and actions, was not always reliable, and
its importance varied across the models built (Play&Go vs. TagPro). This may be
due to the policy for point assignment being extremely context-dependent, and thus,
difficult to compare.

Despite the multiple shades of knowledge, all those analyses showed how insightful
gamification telemetry data could be. Hence, investigating players’ datalogs can
highly ease and assist the designers’ and developers’ jobs. While a large-scale, global
overview is essential to understand the general trend of the gameful system, modeling
players’ experiences on an individual level can help tackle issues at a low (player)
level. Consequently, delivering customized, tailored content contributes to raising
enjoyment for each user, leading to the sought large consensus.

Telemetry data provides player-specific information

Player profiling, informed from telemetry data, is commonly done in GUR. Prior
research on games and our findings supported the value of gamification gameplay
datalogs. Consequently, we inquired whether player participation data can also be
used to learn their preferences for a specific game element (RQ_I_Learn). We con-
ducted a feasibility study by investigating the usage of participation behaviors to
evaluate player preferences regarding the Play&Go weekly challenges. Towards this,
we developed an algorithm following the reinforcement learning paradigm and used
explicit in-game choices as ground truth. The results showed that for a portion of
the users, the inference was very accurate, whereas others were poor. When we re-
searched the motivation of this dichotomy, we found that it was more connected to
the strength of players’ preferences rather than personal properties. This finding em-
phasizes an aspect inherent in the problem tacked. The goal of the algorithm was to
learn players’ preferences. Yet, it was unsuccessful where there was a lack of thereof.
Therefore, the algorithm succeeded in detecting players’ tastes, assumed that they
actually preferred some challenge types.

While our algorithm can be used to learn how to customize a game element, a full-
fledged profile informing the tailoring mechanism is built of multiple shades, calling
for more complex methods. Entirely data-driven profiling methods are still an under-
explored topic in gamification, which has been mostly dominated by theoretical ap-
proaches [119]. Hence, the debate on whether theoretical or data-driven techniques
should be used subsists only if, in practice, they lead to diverse adaptation strategies
(RQ_I_Pref). Otherwise, we could use both methods interchangeably. Therefore, we
aimed to shed light on the complex interactions between idealized (self-reports) and
contextualized (telemetry data) preferences to outline the benefits, drawbacks, and
biases of adaptation strategies, helping researchers and practitioners make informed,
conscientious decisions. Towards this, we compared the Hexad User Types [153,
219] and in-game players’ behaviors using as a proxy a state-of-the-art model: the
PEAS framework [206]. Before analyzing and comparing idealized and contextual-
ized preferences, we conducted a more in-depth analysis of player types. The Hexad
User Type model has found remarkable consensus among researchers and practition-
ers [79]. Therefore, many empirical works analyzed correlations among the player
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types scores and several game elements and dynamics. Consequently, in our trans-
lation to the PEAS representation, we could have used (a) the model definition or
(b) the empirical results. Despite our hypothesis of the models leading to different
adaptation strategies, we observed how the Hexad model’s definition is very robust.
Hence, the discrepancies between the original definition and the literature findings
are not impactful in the personalization of challenges in Play&Go. Finally, we also
compared the two Hexad translations to the player behavior adaptation strategies.
We found that the translation informed by the literature review was slightly more
similar than the other to the behavior PEAS representation. Specifically, the models
were more similar in the difficulty and competitive axis. Although the difference was
minimal, this tendency might highlight how empirical outcomes move closer towards
data-driven findings than entirely theoretical approaches.

These results are also in line with the previously performed CCA, where no significant
association between Hexad User Types and behaviors was found. Nevertheless, the
outcomes hint at a potential small to medium-sized effect. The debate on whether
using self-reports or telemetry data was still built upon the assumption that they
led to different adaptation strategies, without a systematic comparison. Hence, we
moved a step towards “reconciling theory-driven and data-driven models” in gamifica-
tion [241]. The comparison confirmed that those two approaches differ, and provides
details on when it is more likely to happen. Specifically, we found similarities in
the control and purpose-oriented adaptation axes, whereas the data-driven and self-
report-driven models varied in the difficulty, sociality, and competitive axes. In the
case of control and purpose orientation, the two Hexad translations (definition and
empirical results) were similar, hinting that those aspects may be easier to model
than the others. Difficulty and sociality, on the other hand, are more nuanced. The
desire to challenge oneself and improve may vary with the importance that the user
gives to the task - i.e., it should be contextualized. Sociality can be perceived in very
different ways. Multiplayer challenges may be enough for somebody, while others
need a stronger social presence. Contextualization is again important as the will to
socialize may vary with the specific domain. For the competition aspect, we can make
a similar argument.

In conclusion, while our study supports the validity of the Hexad User Types taxon-
omy, it also highlights discrepancies with actual in-game behaviors. Hence, especially
for some adaptation aspects, the context may modify players’ preferences. In those
cases (i.e., when difficulty and sociality are analyzed), data-driven models are likely
to be more accurate, besides better lending themselves to dynamic tailoring.

7.2 Players’ as Part of the Community
Players’ profiles, however, should also account for the community they are part of.
Well-designed social game mechanics can foster a sense of connectedness and belong-
ing [117, 181], which often are feeling prioritized over the will to win [9]. Feeling part
of a community of players does not necessarily mean a preference for multiplayer me-
chanics, but instead being—directly or indirectly—affected by it. Sociality has also
been discussed in gamification, where cooperative and competitive dynamics have
proven to be beneficial towards pursuing the gamification goal [83, 48, 231]. Players
are positively stimulated by the presence and interactions of other individuals, with
whom they form an (implicit) social network.
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Social contagion and peer influence exist in games

From the SNA literature, we know that online social networks host key users whose
opinions have a substantial impact on the digital market [124], namely influencers.
Social media influencers are generally identified as users assuming a privileged po-
sition in the network: central nodes [74, 14], hence having a broad range of action.
Not only social media (i.e., Twitter) influencers exist in the context of games [225],
but also game guilds host figures (moderators) positively impacting the activity and
performance of the group [195]. Influencers, assuming a central position in the player
network, have also been found in the analysis of telemetry data [37]. Players who con-
nected with those central influencers were more likely to stay in the game for longer.
However, their favored position increases the likelihood of being connected to more
players, including those retained in the game. Therefore, we extended the knowledge
on game influencers by developing an algorithm grounded in previous works in social
network analysis [197], adopting the definition of influence as an increase in similarity
over time (RQ_S_Inf). Then, we studied how those semantic influencers encouraged
(or hindered) others’ retention and how they differ from central (or structural) in-
fluencers. The advantage of analyzing semantic influence over centrality metrics is
in avoiding the assumption that only one type of influencer exists. Rather, it allows
defining the behaviors (features) upon which the influence can be exerted. In this
context, we analyzed players’ participation in terms of in-game activity. To evaluate
the impact on retention, we defined a custom metric, retention transfer, which also
account for negative influence —i.e., a premature churn of an influencer may have
repercussions on the retention of users influenced by them. Our results show a di-
chotomy between structural (central) influencers and semantic influencers, suggesting
that centrality does not imply influence within games. Instead, semantic influencers
were the players impacting others’ retention. They were involved in few strong con-
nections, persistent over time, suggesting that influence can be reinforced. Central
players also exerted influence to some extend. However, they conditioned the behav-
iors of only a part of their connections, hinting at influence not being a status but
rather a condition requiring both influencers and an individual susceptible to their in-
fluence. Those findings partially agree with previous research on influencers in games
by Canossa et al. [37], in that social influence is exerted through implicit gameplay
and affects long-term retention. However, this also highlights how different types of
influencers may exist, and their properties may vary according to the context they
are placed in, hence the importance of semantic approaches.

Social contagion and peer influence exist across games

Game influencers, detected from the analysis of telemetry data, result from a context-
specific investigation, limited to the virtual world—i.e., game—under investigation.
However, the player community extends across different game titles, and different
types and genres can attract players. The Steam social network is peculiar, as it re-
traces, reinvented, and adapted characteristics of social media translated into games.
Nevertheless, Steam greatly differs from social media. As a game distributor, regis-
tered players can ignore its social features and only use the system as a personal game
library. The context is also very different from a multiplayer game, where interactions
with other players are necessary and, to some extent, controlled. Also, unlike specific
games, Steam social relationships are explicitly manifested, whereas game interac-
tions are implicit and can be casual. Hence, the semantic behind players’ connections
skews the platform slightly closer to social media. Therefore, we investigated the
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presence of influencers in Steam and compared them to gameplay and social media
influencers (RQ_S_Steam).

Structural (centrality-based) approaches work well in social media. These influencers
communicate explicitly with their followers and may condition them in real life. Game
influencers, on the other hand, impact in-game behaviors rather than daily actions.
Steam is a hybrid that combines explicit and direct social tools and includes high-level
information on implicit in-game interactions (e.g., time spent playing and achieve-
ments awarded). It also differs from other game-related platforms, such as Twitch,
which encourages direct forms of communication. This dichotomy raises the question
of whether centrality-based methods should be used to identify steam influencers, as
social networks [14, 85], or by semantic approaches, as games [144]. Our outcomes
confirm semantic influencers being more impactful on players’ retention than central
players, connecting low-level social relationships (in games) to high-level social rela-
tionships (in Steam). Such a result is not obvious since multiplayer games’ social dy-
namics are entirely different from Steam’s social interactions. Besides, they partially
collide with previous analyses on the Steam network showing how players connected
to users similar to them [170]. The semantic algorithm controlled homophily by mod-
eling influence as a behavioral change: friends’ behaviors were different before one of
the two players (influenced) emulated the other (influencers). Therefore, the similarity
observed in prior studies [170] discards specific (low-level) gaming habits. Moreover,
our findings strengthen the concept of games connecting players at a deep level [31,
58, 69], even when social interactions are offered as an optional feature instead of
being deeply embedded in the platform. While we are unaware of the importance
that players attribute to the SN-based mechanics, making influencers more SN-like
(or central), Steam’s focus on games might sensitize players to their friends’ actions
acting as social motivators to play [232]. Our findings support the latter hypothesis.
Steam influencers, coherently to games research, are (a) better identified through the
semantic approach, and (b) are far from being central (or popular) players. Therefore,
regardless of the relationships being implicit or explicit, the platform domain—i.e.,
games—plays a crucial role in the types and modalities of players’ interactions and
how they affect one another. This finding also strengthens the conception of games as
incubators of intimate, social relationships and retention being positively affected by
connectedness. While SN influencers may build a bond with a wide audience through
social media, games pose a stricter constraint. The reach is dictated by the number
of players with which influencers can physically engage (and play). This reflection
opens many further inquiries on who those influencers are, how they differ from other
social roles (e.g., team leaders), and whether some of them might contribute to the
spreading of toxic behaviors within the community [41].

Steam semantic influencers impact long-term retention, as occurs in games [144].
However, we found that they also promoted new games within their neighbors, un-
like ordinary players in the population. Central players also were copied by their
neighbors in their game choices. However, players’ retention in new games was signif-
icantly higher among influential nodes’ neighbors than the other players (i.e., central).
The ability to disseminate new games among their peers links Steam influencers to
social media influencers and their recognized power to spread products in the net-
work [239]. Although this might also support the conception of games as material
goods rather than social platforms, there is a subtle difference. Social media influ-
encers, which are central, visible individuals, are commonly identified through struc-
tural approaches [14], like our popular (central) players in the Steam network. Yet,
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while users connected to central players are keen to try new games, players in con-
tact with semantic influencers are more likely to be motivated to also stay in the
game for longer. In other words, although central players stimulate other players’
curiosity, semantic influencers’ effect is stronger and more persistent, reconnecting to
the more intimate relationships that semantic influencers can form. Such a finding
strengthens the social worth of semantic influencers. We showed how crucial their
role in the community is, determining its evolution and behavioral choices (i.e., play
a specific game). This phenomenon opens many points for further investigations and
discussion. The longer retention in new games can be explained by the presence of
the influencer in the game. Following up on the results regarding long-term retention
both in specific games and in the Steam players’ community, the influential users
may compel others to play the new game for as long as they keep playing it. In other
terms, it should be researched whether influencers at a community level (Steam) are
also influencers at a game level.

Within games, influencers are regular users and not part of an elite [144, 37]. However,
Steam influencers showed peculiar properties, which distinguish them from other
players. Semantic influencers were particularly active, as they spent many hours
playing and invested their time, especially in games with good reviews. They also
favored specific genres: they owned more MMO, F2P, and RPG games, often requiring
a higher commitment than casual games (which they tend to avoid). We can connect
this to the GUR literature, where Destiny influencers were characterized by strong
repeated connections [144]. This commitment might be interpreted as a characteristic
of influencers, whose constant presence in the community contributes to building a
bond with influenced players. This constancy is also a characteristic proper of social
media influencers, who are active posters and contributors to the social platform [239].
In contrast, central influencers, despite also being fairly active, showed a preference
for casual games, in which social connections are less likely to perpetuate over time.
We also found that semantic influencers owned more early access games. This can be
interpreted as an influencers’ interest to try new games and being updated with the
current trends. Nevertheless, their games library is not wholly composed of popular
games, rather comprises many titles. Considering that they own many but only play
the most popular games, they may be drivers of the global consensus. This suggests
that, even if they may own less acclaimed games, they abandon them pretty quickly.
Of course, the latter argument is speculative but calls for more analyses on the matter.
Hence, researchers should investigate whether (a) they acquired the game despite the
bad reviews to find it to be not of their liking, or (b) they obtained the game before
the bad reviews, and their abandonment contributed to the games’ unpopularity.
This may be a reflection for further research: How do influencers impact the future
and success of games?

Social contagion and peer influence exist in gamification

The research on game influencers conducted on games, and game-related platforms,
enabled the investigation on the method and approaches to identify influencers,
thanks to the consistent amount of data and population size. However, our core use
case remains the gameful system Play&Go, in which players can also connect socially.
Building on the belief that the motivational affordances that are drawing people to
play in multiplayer video games are also present within gamified environments [96],
we researched the presence of influencers within Play&Go (RQ_S_Gamif).
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Influencers in games attract much interest from the industry because they proved to
have power over a game’s player social network, specifically regarding the retention of
players in the game. Although the motivations are less tied to sales in gamification,
influencers still take on an important role within a gameful application’s community.
They can, for instance, help achieve the gamification goal (e.g., a positive behavioral
change) and support other users to maintain their habit changes indefinitely. For
positive behavioral change to occur, long-term retention is needed to allow the users
to internalize the new behavior. Hence, if those influential players drive long-term
retention, the gameful system is more likely to be successful. Our analysis proved
the existence of retention influencers in Play&Go, where users can indirectly interact
through two-player challenges. Therefore, we showed how influence could be exerted
in gameful environments similar to games. Besides—similar to games— influential
nodes are neither central or elite players (e.g., veterans or top-players).

Once having assessed the existence of influential users in Play&Go, we studied the
effects of the type of social interaction on social influence. Specifically, in Play&Go,
the two-player challenges can be cooperative or competitive. From the literature,
there are discordant opinions about the impact of cooperation and competition on
social play and influence [97, 2, 87]. Researchers have debated how, on the one hand,
cooperation builds a more constructive and less frustrating environment that leads
to constructive social growth, free of toxicity [87, 16, 97]. Yet, on the other hand,
researchers argue that competition results in compelling challenges, leading players to
push their limits further [2]. A third observation in the related literature is that play-
ers respond differently to cooperation and competition, because of their personality.
Hence, cooperation and competition are different social dynamics and may condition
the type and strength of the social connection formed between two individuals. In
addition to the social dynamics, challenges can vary in their assignment policy: either
they are automatically assigned by the game or can be created through a voluntary
invitation from players. Hence, we have an artificial (or injected) connection on the
one hand or the creation of a natural and consensual link on the other hand. Given
the great difference between willingly choosing the opponent and the task itself over
an automatic assignment, we can assume that the social influence emerging within the
network could have been affected. Consequently—following the analysis of the com-
plete player network—we studied influence in the (a) cooperative, (b) competitive,
(c) voluntary, and (d) injected graphs separately. Our results show that influence is
stronger (in magnitude) when the interaction is voluntary rather than injected. This
can happen either because the current matching algorithm is too simple or because
influence occurs only when an interaction is “natural.” However, the social dynamic
does not greatly impact the strength of the computed influence. We also found that
the influence scores computed in the cooperative and competitive graphs were unre-
lated. Different influencers were found in each model. A similar result was obtained
when comparing the influence scores in the injected and voluntary graph. Therefore,
a player’s social connection type leads to different influence scores.

Researchers argue how influence can potentially be exerted on any behavior [197, 14].
We studied whether, in Play&Go, other behaviors are susceptible to influence—other
than in-game participation. As we used a semantic algorithm to identify influencers,
we could specify the behaviors we wanted to study. In our analysis of influence in
Play&Go, we found that not only participation influence is exerted, but also context-
specific influence existed, tied to the system ulterior motive. From the literature, we
know how gamification is not guaranteed to produce successful behavioral change out-
comes [121]. Whereas, the existence of influencers that help to drive a gamification’s
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end goal may help in having more successful examples, assuming that multiplayer el-
ements can be included in a gameful design. In Play&Go, the gamification goal is to
promote sustainable transportation habits. Hence, we computed the influence scores
by analyzing players’ mobility behaviors: This was done using the number of trips
and kilometers tracked with the app using the transportation means available to the
user (walk, bike, train, and bus). We also distinguished among green (walk and bike),
and public transportation means for a total of new tree types of influence scores. Not
only did we find that players influencing others’ mobility behaviors existed, but also
that the type of influence computed lead to uncorrelated influence scores, and thus,
different influencers. Nevertheless, despite influencers varying when different behav-
iors are analyzed, in all models, (1) nodes with higher influence scores were among
the least central nodes, and (2) highly influential nodes were a small minority of the
network.

Our results hint that player retention and behavioral change might be fostered by
encouraging connections with influencers. So, retention influencers exist and are
characterized by intense, repeated contacts over time. This connects with the con-
cept of relatedness and how players are keener to be committed [46], retained, and
engaged [183] in the game when they perceive a sense of belonging. At the same time,
the presence of influencers promoting the gamification goal is in line with sociality
benefiting performance [123, 126, 182]. Thus, including social elements in gamifica-
tion is beneficial. The findings are also in line with previous research on influencers
in games [37, 144], far from being central and well-connected users. This similarity
connects further gamification and games, supporting the thesis. The motivational
drivers are the same both in games and gamification [96]. Like [144], our outcomes
show how variable influence scores are, hinting that influence is not a status but
rather a condition deriving from the specific connection. Therefore, the priority is to
find good influencers-influenced matching rather than attracting influencers.

7.3 Towards Automatic Adaptive Gamification
Dissecting players’ gameplay provided an understanding of the information this data
can convey and how to exploit its potential better. Telemetry data showed us how the
game was progressing, whether the gamification goal was achieved, and identify users
at risk of churn. It also helped in detecting players’ tastes and how their behaviors
connected with their idealized preference. Finally, telemetry data modeled in-game
social relationships and provided information on the social dynamics occurring within
the player network. Therefore, this project’s last step was to combine those fragments
in a unique adaptation mechanism (RQ_Fram): our conceptual adaptation framework.

In the GUR literature, the deployment of the adaptive gamification context has been
particularly prolific in the field of education. Generally, the adaptation models are
grounded on theoretical player taxonomies [160], sometimes combined with motiva-
tional analysis [78]. Adaptation based on players’ profiles can produce conflicting
results [78], especially when a dominant player type is assumed to exist [79]. Towards
the usage of more objective metrics, gamification analytics represents the set of tools
and methods to measure and evaluate gameful systems [89], as machine learning is
deemed a promising field in the path towards automatic adaptation [26]. In this re-
gard, a few recommender systems for persuasive gamified systems exist. Yet, either
those are strictly focused on a single game elements [112], inefficient in the genera-
tion of a complete adaptation strategy, or still partially rely on player profiles and
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taxonomies [218]. In this thesis, we answer researchers’ calls for automatic, dynamic,
adaptive methods for tailoring gameful systems, which do not necessarily rely only on
player types or profiles [119]. In the literature, also a design framework exist [25]. It is
built of four interconnected macro-modules, depicting the adaptation strategy—i.e.,
adaptation purpose, adaptation criteria, adaptive intervention, and adaptive game el-
ements and mechanics. From this framework, several design paths can be identified,
which represent the process practitioners and designers decide to follow to define the
adaptation strategy. Conversely to our solution, this adaptation framework includes
several design strategies aimed at producing tailored gameful applications. However,
the adaptation aspect is still treated at a higher level, whereas we focused on the
possibility of adaptation strategies guided by players’ telemetry data and behaviors.
Additionally, we pose higher importance on the social aspect, with a dedicated mod-
ule investigating the player social network, lacking in the design framework. Hence,
one of our pillars is the social value gameful environment holds, not only functional
in satisfying designers’ goals but also in building cohesive, positive communities, ben-
efiting players’ well-being [105]. Not only we supported our conceptual model by
showing how our previous findings, in terms of individual and social in-game behav-
iors, connect to the framework, but also by showing how that can be integrated and
implemented in a gameful system like Play&Go. The adaptation framework is also
connected to our study on the reinforcement learning paradigm applied to player pro-
filing in gamification [141], in which we show how players’ participation behaviors can
be used to learn their preferences. This study can be seen as a rudimentary version
of the whole framework, which extends the adaptation on multiple axes. The core
intuition, however, remains the same: using players’ in-game implicit feedback—at
runtime—to deploy and adjust tailored content.

7.4 Implications and Contributions
A better understanding of players’ individual and social interaction patterns in game-
ful environments is fundamental. Therefore, this work has implications for both re-
searchers and practitioners. We extended the research on gamification on a method-
ological and conceptual level. First, our findings support the existence of similarities
among games and gamification, leading to the possibility of using machine learning
techniques to predict and infer knowledge about players’ experiences. In other words,
we showed how gamification data, although limited, can still be of use. Hence, games
and gamification also host similar social phenomena—i.e., social influence —which
further bridges the two fields and incentives new investigations. Second, we advanced
the discussion on players’ profiles and behaviors, in gamification, by systematically
proving a difference between what players perceive or expect to like and their ac-
tual behaviors in the app. This finding strengthens and motivates further research
on players’ preferences, also showing how they can change across different contexts
and application domains. Consequently, this limits the applicability of survey-based
profiling. Finally, we proved the importance of sociality in gamification, supporting
the argument of gameful apps needing more complexity than the implementation of
the traditional blueprint triad [52, 121]. The importance of social elements in gam-
ification is also relevant for designers and practitioners, as social influence can be
exploited to ensure the pursuit of the gamification goal and retain players for longer.
This thesis also holds other concrete, actionable findings for gamification practition-
ers. First, we raised awareness in the choice of the analytics approaches (aggregated
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vs. temporal), showing how different methods can convey specific views on the game-
play. Thus, they can decide whether they are interested in finding global winning
strategies through aggregated analysis, detecting design faults using temporal anal-
ysis, or being meaningful in the decision to employ both. We also provided a model
to predict churn using limited participation data, which can easily be implemented,
as well as a function to measure the game impact at runtime. Analysts, for instance,
can instantiate the function to monitor players’ progress on a daily or weekly basis,
rather than waiting for the conclusion of the gamification campaign to evaluate the
impact of their gameful app. Finally, we designed a versatile, modular framework,
with an example of implementation. Although its complete functioning is yet to be
empirically validated, it provides a blueprint for adaptive gamification, accommodat-
ing the mutable nature of players’ behaviors and allowing diverse player modeling
points (e.g., player behaviors, profiles, and social interactions).

7.5 Limitations
This work comes with a few limitations, which are also inputs for our future works.
For what concerns the analyses on Play&Go, the main weakness is the sample size,
further reduced when specific constraints were needed (e.g., the study of player prefer-
ences or social interactions). Nevertheless, it is challenging to reach numbers compa-
rable to the games industry in most gameful applications. Most popular systems are
proprietary and not inclined to share their data. The selected gamified application
(Play&Go) stands out from other gameful environments because of users’ participa-
tion being substantial and voluntary.

Additionally, the analyses were conducted on a single gamified app, which prevents
a broad generalization beyond Play&Go. Another issue is presented by some analy-
ses still requiring the human-in-the-loop, which prevents complete automation. For
instance, the definition of the impact function tuning points or the interpretation of
the churn prediction models. Similarly, in the study of contextualized and idealized
player preferences, a domain expert was needed to provide the models’ translation.
While we suggested multiple translations to reduce the possibility of having a bias,
this factor should still be considered.

The generalization issue is less crucial in studying social influencers in games, as we
analyzed influencers in three different domains (i.e., Play&Go, Steam, and Destiny)
and obtained similar results. Although the sampling of the bigger networks (Steam
and Destiny) may have affected the analysis, investigating multiple domains atten-
uated this bias. Nevertheless, we cannot argue that social influence will manifest in
this way in every gamified system. Instead, we show that influencers can also ex-
ist in gamification, and thus, there is worth investigating their presence and effect.
This finding is also an argument against those who believe in the simplistic view of
gamification. We show how gameful environments can be incubators of complex and
diverse phenomena, also enclosing people’s social life.

Other limitations are specific to the approaches used. In the context of the visual-
ization of the churn models, it should be noted that the interpretation is of the built
model instead of the data. PDP describes the relationship that features have with
the predicted variable. Whereas in the process of learning player preferences, using
our RL-like algorithm, we should acknowledge that the ground truth relied on play-
ers’ in-game choices. Hence, the results may be influenced by the time pressure of
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making a selection. Yet, filtering out players making incoherent decisions over time
attenuates this limitation.

Another conceptual limitation is in the link between games and gameful systems.
While we run the analyses on our dataset, the similarities found are not enough to
link games and gamification. Rather, they are an incentive to research more analogies
in the two application domains.

Finally, the framework proposed is only theoretical and, as such, still requires and
empirical validation. This validation is left for future works. However, we lay good
premises by defining its modules following in-depth analyses on players’ behaviors
and interaction patterns, as well as providing an implementation as proof of concept.
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Conclusions

Static gamification tends to replace internal motivation with external motivation [169],
which is notably less persistent over time [201]. When players are well-connected to
the gamification ulterior motive through intrinsic engagement, both the organization
and players gain benefits [169]. Consequently, gamification is embracing the con-
cept of adaptation to support and increase long-term engagement. However, in the
race for tailored content, a balance must be found among player-centric adaptation,
accounting for users’ tastes and preferences, and global tailoring to pursue the gami-
fication goal [26]. The gamification application success is dependent not only on the
characteristics of the population but also on the application domain and the specific
design [89]. The difficulty in gamification design, especially when matched to adap-
tive content, lies in the meaningful connection of players’ needs to the gamification
layer [26]. The research of methods to tailor gamification is still a trend [119].

Researchers call for automatic, dynamic, adaptive methods for tailoring gameful sys-
tems, which do not necessarily rely only on player types or profiles [119]. Towards this,
we proposed a conceptual adaptation framework for gamification, with the core fea-
tures of being iterative and modular. The division in modules structure allows defining
different profiling approaches, not necessarily connected to survey-based player types.
The cyclical structure connects to the need of having a dynamic, reinforced process,
avoiding the “novelty effect”, which may accompany a static adaptation strategy [26].
Finally, the deployment module for the procedural content generation lends itself to
being fully automatic, before further investigations. Although the framework is still
conceptual, we run in-depth analyses proving the operation of each gear and show-
ing how those fragments can be integrated into the whole machine. The gameplay’s
impact on players can be measured at runtime, using churn prediction modules or
players’ participation behaviors, either in a raw or elaborated form. Players’ pro-
files can be derived from their in-game behaviors, reflecting an eventual behavioral
change, or be statically defined through state-of-the-art models. Players’ social value
can be computed by evaluating the (different types of) influence exerted or perceived.
Finally, we supported the applicability of reinforcement-learning-like algorithms to
learn and adjust players’ adaptation strategies using their implicit (participation)
behaviors.

In summary, we proved the feasibility of an automatic, dynamic, modular, cycli-
cal adaptation framework feeding on telemetry data and embedding information on
players conceived as both individuals and part of the community.
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Future Works
As we mentioned multiple times in this manuscript, there is an extensive opportunity
for future works. The obvious first step would be empirically validating a preliminary
version of the framework to assess how the pieces work and can be concretely inte-
grated. In this regard, we can choose among plenty of variations, changing the specific
implementations of the framework modules. Another high-level, natural next step is
the study of our model and findings in a completely different gameful application to
provide information on the generalizability of our outcomes. On a lower-level, each of
the studies conducted on players’ behaviors and social interactions can be extended.
For example, the RL-like algorithm to learn players’ tastes can be tested in an online
setting and adapted to learn multiple preferences, rather than being limited to a sin-
gle game element. Correlated to player behaviors, we can empirically investigate how
different adaptation strategies (e.g., survey-based or data-driven) impact retention
end enjoyment. Future studies should also deepen the understanding of gamification
influencers and contribute to players’ retention and positive behavioral change by
informing matchmaking algorithms.

All in all, this thesis is also meant as a stimulus for interesting future research in
gamification, where the main takeaway is that the only limits that we have are the
ones we build in our minds. Like every interactive experience, gameful applications are
a gold mine of information that can be used to better the humans’ virtual experiences.
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