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Dynamic processes

by Marco D’ALESSANDRO

Modeling complex cognitive phenomena is a challenging task, especially
when it is required to account for the functioning of a cognitive system inter-
acting with an uncertain and changing environment. Psychometrics offers
an heterogeneous corpus of computational tools to infer latent cognitive con-
structs from the observation of behavioural outcomes. However, there is
not an explicit consensus regarding the optimal way to properly take into
account the intrinsic dynamic properties of the environment, as well as the
dynamic nature of cognitive states. In the present dissertation, we explore the
potentials of relying on discrete state dynamic models to formally account for
the unfolding of cognitive sub-processes in changing task environments. In
particular, we propose Probabilistic Graphical Models (PGMs) as an ideal and
unifying mathematical language to represent cognitive dynamics as structured
graphs codifying (causal) relationships between cognitive sub-components
which unfolds in discrete time. We propose several works demonstrating the
advantage and the representational power of such a modeling framework, by
providing dynamic models of cognition specified according ti different levels
of abstraction.
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Chapter 1

Introduction

Computational cognitive modeling allows to test and design detailed, process-
based mathematical models of how cognitive agents (e.g. human beings)
internally represent and manipulate information, and produce behaviour (Sun,
2008; Farrell and Lewandowsky, 2018). The main advantage of such a formal
approach to the study of cognition is that hypothesis about the interactions
between cognitive processes and environmental contingencies can be precisely
instantiated as computational models, which serve as a basis for simulating
behaviour and investigating how meaningful cognitive parameters might
affect response patterns. In general, computational modeling comes into play
whenever a researcher is interested in capturing regularities in the data using
parameters that represent separate statistical or psychological processes. This
can be thought of as a method which overcomes the limitations of relying
on summary statistics of individual behavioural outcomes to make inference
about cognitive functioning.

However, as more complex cognitive phenomena are taken into account,
more elaborate mathematical models, as well as general mathematical frame-
works, are needed. This is often the case of high-level cognitive functions,
such as those entailing learning, executive processes and decision-making,
which are required in changing (or dynamic) and uncertain environments.
In these contexts, cognitive agents are demanded to continuously adapt as
new information are gathered from the (internal or external) environment,
and distinct psychological components might contribute to reach an optimal
behaviour.

Many experimental, or clinical, (neuro)psychological settings widely em-
ployed in cognitive research entail such a dynamic component. In particular,
dynamic tasks aimed to investigate high-level cognition, such as the Wiscon-
sin Card Sorting Test (Heaton, 1981; Berg, 1948), the Iowa Gambling Task
(Bechara et al., 2001; Bechara and Damasio, 2002), the Balloon Analogue Risk
Task (Lejuez et al., 2002; Lejuez et al., 2003), mouse-tracking tasks (Freeman
and Ambady, 2010), or multi-alternative forced choice tasks (Krajbich and
Rangel, 2011) among others, can be thought of as tools which capture dynam-
ics in behavioural outcomes based on both (internal or external) feedback
received and the configuration of environmental states which changes at each
trial.

In this work, we explore the potentials of relying on discrete state dynamic
modeling to formally account for the unfolding of psychological sub-processes
in changing task environments, by assuming that evolving response patterns
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which can be observed result from an underlying cognitive (or brain) state
process which unfolds in time trialwise. We can formalize this concept by
endorsing the view of cognitive agents as dynamical systems (Van Gelder,
1998), where such systems are governed by rules specifying the relationship
between the current (cognitive) state, the trial-by-trial unfolding of the task,
and the transitions between current states and new states. Furthermore,
since we want to deal with uncertain environments, and more generally with
cognitive agents processing partial and uncertain information, we assume
that such a relationship is expressed in probabilistic terms.

The idea of modeling cognition by relying on probability models is cer-
tainly not new. Several pioneering works stressed the need to switch from
symbolic rule-based and non-monotonic logical approaches to the study of
cognition to structured probabilistic representations of cognitive processes
(Chater et al., 2006; Griffiths et al., 2010; Tenenbaum et al., 2006; Ma, 2012).
In recent years, such a paradigm shift has been motivated by two main sci-
entific results: (1) the finding that most of the cognitive and motor processes
cognitive scientists are interested in, implement probabilistic computations
(Buckley et al., 2017; Yuille and Kersten, 2006; Pouget et al., 2013; Friston and
Kiebel, 2009; Glaser et al., 2018); (2) the recent advances in mathematical and
computer science techniques in information theory, stochastic processes and
machine learning, which provided a basis for more exhaustive and realistic
formal representations of complex cognitive systems (Yuille and Kersten, 2006;
Friston, 2010; Friston et al., 2017a; Stoianov et al., 2016; Stoianov and Zorzi,
2012).

However, the probabilistic modeling approach proposed in this disserta-
tion aims to embody the Cognitive Psychometrics (or model-based Psycho-
metrics) perspective (Erdfelder et al., 2020; Batchelder, 2010), by allowing
mathematical cognitive modeling and psychometric assessment to co-exist
in a unified framework. In principle, this means balancing complexity and
assessment capability of the computational cognitive model. In other words,
we intend to find a reasonable compromise between models’ neural (or phys-
ical) plausibility and models’ parsimony and interpretability, while being
consistent with a sophisticated probabilistic representation of cognition.

To do so, we rely on the mathematical framework of Probabilistic Graphical
Models (PGM, (Koller and Friedman, 2009)), which are (possibly) hierarchically-
organized probabilistic graphs expressing conditional dependencies between
variables (e.g. psychological variables). Such a framework offers a perfect
mathematical language to model cognition, since it allows to flexibly represent
the causal (phenomenological) relationship between psychological variables
and behaviour, as well as the relationship between psychological variables
themselves at different time periods. The potentials of such a framework
emerge, in particular, when a structured probabilistic graph is coupled with a
set of interpretable cognitive parameters which directly shape the relationship
between the variables in the system, allowing to adopt parameters as a proxy
to assess cognitive performance, at an individual or a group-level of analysis.

In the following dissertation, we will often refer to the convenient concept
of hidden (or latent) state process. In our context, an hidden state process can
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be intended either as a set of variables indicating the true (possibly psychologi-
cal) constructs underlying observations which are just a noisy measure of such
constructs in precise statistical terms (e.g. (Zucchini et al., 2008; Bartolucci
et al., 2012; Yousefi et al., 2019)), or as a (neuro)biologically plausible process
assumed to play a role at higher levels of the hierarchy of a generative model
which accounts for how a cognitive system behaves in a certain environment
(e.g. (Friston et al., 2017a; Friston et al., 2017b; Mathys et al., 2014; Stoianov
et al., 2016)).

Furthermore, a hidden state might be also conceived as a particular char-
acteristic of the environment that a cognitive agent needs to infer to fulfill a
task requirement. However, it is worth noticing that such a differentiation
between environmental and cognitive hidden states strictly depends on the
purpose of the modeling and the structure of the task being modeled, as will
become clearer during the exposure of the works in the dissertation.

In the remainder of the introduction, we will give a brief overview of the
computational modeling problems to be addressed in the coming chapters.
The present dissertation encompasses a collection of diverse but related works;
what makes such works blended together is the commitment to mathematical
modeling of complex behaviour within a PGM framework, with a particular
focus on discrete-time dynamic modeling.

1.1 Chapter Outline

In Chapter 2, a brief introduction to PGMs is provided, as well as a treatment
of the main model’s architectures which are used throughout the work. Al-
though PGMs offer a consistent discrete state representation which is shared
among the computational modeling studies, the proposed dynamic models of
cognition are specified according to different levels of abstraction.

In Chapter 3 we will show the potentials of relying on dynamic latent
class models designed for longitudinal-like data structure to improve the
assessment of executive functions of individuals performing a set-shifting
task. More precisely, scoring measures obtained from the analysis of the
WCST responses are further processed in a dynamic computational frame-
work. An intriguing feature of the WCST experimental protocols is that it
allows the performance of an individual to change as the task unfolds. In
this work, a Latent Markov Model is proposed to capture some dynamic as-
pects of observed response patterns in both healthy and substance dependent
individuals. The main goal is to parameterize performance trends in terms
of transition dynamics of latent (cognitive) states. The results highlighted
how a dynamic modelling approach can considerably improve the amount
of information a researcher, or a clinician, can obtain from the analysis of a
set-shifting task. Here, cognitive functions are not modelled explicitly via
structured graphs. Instead, latent states are thought to provide information
on cognitive dynamics on a more abstract level, by entailing psychologically
interpretable latent classes related to constructs such as the response strategy.

Differently, the PGM adopted in Chapter 4 directly deals with the problem
of explicitly modeling the relationship between cognitive sub-components
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which yield behavioural dynamics in a set-shifting framework. In particular,
the work proposed here inherits the leading idea from the previous study,
that is, the representation of the performance trend as a parameterized latent
(cognitive) state dynamic process. Here, the main interest is exploring how
cognitive (sub)processes taking place in a set-shifting context produce mean-
ingful human response patterns. In this contribution, we propose a Dynamic
Bayesian Network-inspired cognitive model to provide a formal account of
the problem. We adopt a simulation approach to study how the behaviour
of our cognitive model evolves during the dynamic unfolding of the task.
Preliminary results show how the proposed model can nicely account for
complex behavioural patterns as assessed by standard WCST scoring mea-
sures and can provide a way to explore how selective cognitive impairments
affect observed response patterns. Practical and theoretical implications of
our computational modelling approach for clinical and psychological sciences
are finally discussed, as well as its possible future improvements.

In Chapter 5 we show how it is possible to instantiate a particular theory
of brain functioning within a discrete state dynamic framework. In particular,
the main purpose of the third work is to model adaptive behavior as an emerg-
ing factor derived from the interaction between cognitive agents and changing
environmental demands. To do so, we use the WCST task environment, and
we propose to model cognitive dynamics within the mathematical framework
of Bayesian Brain Theory, according to which beliefs about the hidden environ-
mental states (e.g. some rule of the game an agent has to infer) are dynamically
updated following the logic of Bayesian inference. Our computational model
maps distinct cognitive processes into separable, neurobiologically plausible,
information-theoretic constructs underlying observed response patterns. We
assess model identification and expressiveness in accounting for meaningful
human performance through extensive simulation studies. We further apply
the model to real behavioral data in order to highlight the utility of the pro-
posed model in recovering cognitive dynamics at an individual level. Practical
and theoretical implications of our computational modelling approach for
clinical and cognitive neuroscience research are finally discussed.

Finally, the fourth work presented in Chapter 6 will show a PGM approach
to the modeling of decision-making under risk, together with a method to
analyze both neural and behavioural data. Understanding dependencies
between brain functioning and cognition can be, indeed, a challenging task
which might require more than applying standard statistical models to neural
and behavioural measures. Recent developments in computational modelling
have demonstrated the advantage to formally account for reciprocal relations
between mathematical models of cognition and brain functional, or structural,
characteristics to relate neural and cognitive parameters on a model-based
perspective. This would allow to account for both neural and behavioural
data simultaneously by providing a joint probabilistic model for the two
sources of information. In the present work we proposed a PGM architecture
for jointly modelling the reciprocal relation between behavioural and neural
information. More precisely, we offered a way to relate Diffusion Tensor
Imaging data to cognitive parameters of a computational dynamic model
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accounting for behavioural outcomes in the popular Balloon Analogue Risk
Task (BART). Results show that the proposed architecture has the potential to
account for individual differences in task performances and brain structural
features by letting individual-level parameters to be modelled by a joint
distribution connecting both sources of information.

The final chapters will be dedicated to the discussion of the implication of
discrete state dynamic modeling in cognitive research (Chapter 7)..
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Chapter 2

Theoretical background

In this section, we provide an essential description of the main features of
a PGM, and the intuitions behind its potential to represent (psychological)
events which unfolds in a discrete state space and in discrete time.

Probabilistic graphical models consist in a powerful formalism which
allows to encode relationships between multiple variables. In particular, they
combine the mathematical rigor of probability theory with the flexibility of
graph theory. Here, we focus on one of the most common type of PGM, that
is, the one consisting in a probabilistic causal model represented by a directed
acyclic graph (DAG, (Thulasiraman and Swamy, 2011; Koller and Friedman,
2009)). A DAG is specified by a graph G(V, E), where V and E are the set of
nodes (vertices) and edges, where each edge is directed from one vertex to
another, and it is assumed that starting from a given node, there is no path
crossing other nodes which eventually loops back to the starting node again
(Murphy and Russell, 2002). Such a structure is also commonly referred to as
a Bayesian Network. In this framework, nodes represent random variables
which can be either hidden or observed. Edges encode the direct dependencies
between the random variables. The whole structure represents the conditional
independence assumptions which determine a given factorization of the joint
probability distribution of the system. The joint distribution defined by a
graph is given by the product, over all the nodes in the graph, of a conditional
distribution for each node conditioned on the variables corresponding to the
parents of that node (Bishop, 2006). Thus, for a graph with K nodes, the joint
distribution is given by:

P(x1, . . . , xK) =
K

∏
k=1

P
(
xk|pa(xk)

)
where pa(xk) denotes the set of parents of xk. In the simplest case, one might
think of the structuring of nodes and related parents on a graph both as an
assumption of how observed variables influence each other, and as a way
to organize knowledge about a phenomenon to state whether information
on a given variable can, or can not, be obtained conditioned on the knowl-
edge about other variables in the system. The way in which we factorize
the joint probability distribution allows to obtain several configuration of
knowledge and causal principles. As an example, consider a trivial case in
which we want to structure knowledge about the relationship between the
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psychometric variables intelligence (x1) and extraversion (x2), the graduation
grade (x3), and the job salary (x4). Given a finite set of variables, or nodes,
V ∈ {x1, x2, x3, x4}, and connections, or edges E, between them, several ways
of structuring knowledge can be conceived. A realistic scenario consists in
modeling relationships between variables by assuming that both intelligence
and extraversion contribute to graduation grade, which, in turn, exerts an
effect on the job salary. The structure of the model is depicted in Figure 2.1a,
and can be simply factorized as follows:

P(x1, x2, x3, x4) = P(x1)P(x2)P(x3|x1, x2)P(x4|x3)

and reflects our assumptions about how the information propagates from the
nodes at the top of the graph to some target node at lower levels. Specifying a
factorization of the joint distribution is also a fundamental step to assess which
information might be gathered by knowing the status of another variable in the
system. For instance, given that the graduation grade is observed, it is possible
to take advantage of the (in)dependence assumption to gain information about
intelligence by having knowledge about extraversion (Figure 2.1b). Thus,
independent causes (e.g. intelligence and extraversion) are made dependent
by conditioning on a common effect (Pearl, 2014).

(A) (B) (C) (D)

FIGURE 2.1: Examples of Bayesian Networks with different
conditional (in)dependence assumptions.

However, this property does not hold if we take into account a different
factorization of the joint probability, that is, different assumptions in struc-
turing knowledge and relationships between variables. The graph in Figure
2.1c does not assume a common effect of intelligence and extraversion on
graduation grade. Instead, it depicts a forward information propagation from
intelligence to extraversion, through graduation grade:

P(x1, x2, x3, x4) = P(x1)P(x2|x3)P(x3|x1)P(x4|x3).
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In this scenario, observing graduation grade, makes intelligence and extraver-
sion independent. That is, the path from intelligence to extraversion is blocked
by conditioning on the grade graduation, a phenomenon known as d-separation
(Koller and Friedman, 2009). It is worth noticing that, although probabilis-
tic relationships are specified over the same set of random variables, the
implications of conditional dependence assumptions may lead to different
interpretation and results. Therefore, more complex configurations can be
considered, by, for instance, relaxing the independence assumption between
intelligence and extraversion, as shown in Figure 2.1d, as follows:

P(x1, x2, x3, x4) = P(x1)P(x2|x1)P(x3|x1, x2)P(x4|x3).

In general, there is no limitations in the complexity of relationships which
can be defined, neither in the type of object which can be codified as a ran-
dom variable in the DAG. Therefore, relationships between nodes can be
flexibly modeled by parameterized mathematical expressions, as well as com-
mon probability density functions. Understanding the advantage of such
a modeling framework to simulate cognitive phenomena and behaviour is
straightforward, since the information propagation assumptions in the graph
can be mapped to hierarchically organized information propagation in a
cognitive system (Alexander and Brown, 2018; Badcock et al., 2019).

In the present dissertation, we will put the emphasis on the usage of
dynamic models (e.g. dynamic version of DAGs) to represent cognitive func-
tioning. In particular, we refer to Bayesian Networks replicated through time
(Barber, 2012), yielding what is commonly referred to as Dynamic Bayesian
Networks (Murphy and Russell, 2002; Ghahramani, 1997). In this case, nodes
in the DAG still codify random variables, whilst edges represent probabilis-
tic dependencies between variables across time. A key assumption is that
the probability distributions, or mathematical laws, describing the temporal
dependencies between the nodes are time invariant.

Given a set of K nodes at each time-slice t, namely, xt, we can define the
joint probability model of x1:t as follows:

P(x1, . . . , xT) =
T

∏
t=1

K

∏
k=1

P
(
xk,t|pa(xk,t)

)
where pa(xk,t) denotes the set of parents of xk at time t. In a first-order DBN,
the set of parental variables of xk,t is taken from the previous time-slice or
from the current time-slice (Barber, 2012). Due to their properties, DBNs are
useful to formalize an evolving system that changes in time, by describing
how variables influence each other within and across time periods. In general,
a DBN can be seen as an umbrella term which encompasses a variety of
stochastic models for time series, and longitudinal data, such as those related
to the analysis of fully observed sequential data (e.g. autoregressive models)
and those involving an hidden state space (e.g. Hidden Markov Models
and State-Space Models) (Dagum et al., 1991). However, irrespective of the
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particular instance considered, a DBN modeling procedure must fulfill a
requirement to allow mathematical tractability. The temporal structure of
the event needs to be simplified in order to discretize the timeline into a
set of time slices by ensuring that relevant attributes of the system state
can be captured by the snapshot of a given time slice. This requires both
evaluating whether the evolving nature of the phenomenon can be thought
of as partitioned in meaningful time slices, and determining the equally
spaced intervals to define time granularity. The latter requirement depends on
both the phenomenon under investigation and the specific modeling choice
(e.g. how finely the state of the system has to be monitored in time). When
dealing with these models, we will also rely on further simplification, that
is, the Markov assumption (Dobrow, 2016). It states that variables in xt+1
cannot depend directly on variables in xt∗ , where t∗ < t. From a strict DBN
perspective, the Markov assumption corresponds to a graph structure in
which there are no edges into xt+1 coming from variables in time slices t− 1
or earlier. Such an assumption can be considered as a sufficiently reasonable
approximation to the dependencies in our joint probability model (Koller and
Friedman, 2009).

A dynamic model can now be represented by an initial state distribution,
describing the (possible) state of the system at the beginning of the process,
a transition probability model between the (hidden) states, and an eventual
observation model describing how the time series of observations emerges
from an underlying (possibly latent) state process. A variety of dynamic
model’s architectures can be conceived based on such ingredients (Figure 2.2).
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(A)

(B)

(C)

FIGURE 2.2: Examples of dynamic model’s architectures with
different conditional (in)dependence assumptions.

During the dissertation, we will treat several PGM architectures, each
endowed with different dynamical properties, and built upon different knowl-
edge representation strategies. The discrete time approximation which yields
the temporal evolution of the system’s state will consist in treating single
trials as the basic building blocks of a time slice. Variables in the system
are rephrased in order to account for psychological constructs, or interacting
cognitive sub-components. Thus, we recommend the reading of the following
chapters to get an exhaustive overview of the different architectures, as well
as the problem-specific joint probability factorizations, employed.





13

Chapter 3

A Dynamic latent state approach to
model set-shifting performances

The content of the chapter has been in part published as: D’Alessandro, M.,
& Lombardi, L. (2019). A dynamic framework for modelling set-shifting
performances. Behavioral Sciences, 9, 79.

3.1 Introduction

In recent years there has been an increasing interest in modelling behavioural
data from experimental tasks aimed at investigating higher-level cognitive
functioning (Dehaene and Changeux, 1991; Busemeyer and Stout, 2002; Yechiam
et al., 2006; Hull et al., 2008; Bartolucci and Solis-Trapala, 2010; Bishara et al.,
2010). Generally, higher-order cognitive functions can be seen as a class of
cognitive processes which are crucial in situations requiring to flexibly ad-
just behaviour in order to correspond to changing environmental demands
(Zelazo et al., 2003), and to integrate previous experience and feedback in
order to maximize optimal choices (Busemeyer et al., 2003). Deficits at this
level of cognitive functioning can be observed in rather heterogeneous clinical
populations (Bechara and Damasio, 2002; Braff et al., 1991), each characterized,
ideally, by a different pattern of impaired psychological sub-processes (see for
example (Yechiam et al., 2006)). Cognitive evaluation of these functions mostly
relies on neuropsychological tasks that endorse a dynamic, or longitudinal,
aspect requiring a person to change hisher actions over the course of the task.
Consider, for example, a general context in which participants may learn to
pay attention to the correct stimulus while ignoring irrelevant stimuli as a
function of experimental feedback. Here, negative feedback should allow par-
ticipants to conceive a given stimulus as irrelevant, modifying their responses
accordingly. In this context, observed response patterns could consist of the
occurrences of casual errors, feedback-related errors, and perseverations on
shifting tasks, to name a few (e.g., (Heaton, 1981)). The basic idea is that
these response patterns reflect the presence (or the absence) of a cognitive
impairment, either at a functional or neural level (Buchsbaum et al., 2005).

In this work we suggest a latent variable approach to model cognitive
performances on a standard set-shifting task from a group level perspective.
The method is applied to data from the Wisconsin Card Sorting Test (WCST;



14 Chapter 3. A Dynamic latent state approach to model set-shifting
performances

(Heaton, 1981; Berg, 1948)), which offers a renowned tool to measure set-
shifting, defective inhibitory processes on the basis of environmental feedback
in cognitive settings (Demakis, 2003). In general, the test consists of a target
and a series of stimulus cards with geometric figures that differ according
to three perceptual characteristics. The task demands that participants rec-
ognize the correct classification principle by means of trials and error, and
the feedback of the examiner. An intriguing, and underestimated, aspect of
such experimental protocol regards how individual performances change as
the task unfolds, plausibly due to ”learning to learn” capacity (Tarter, 1973)
or shifting cognitive strategies (Berg, 1948). According to our view, a for-
mal analysis of this performance trend (see, for example, (Tarter, 1973)) can
provide a novel interesting metric for the cognitive assessment of test out-
comes. Therefore, several dynamic models regarding decision-making (Dai
et al., 2018), learning (Gershman, 2015), risky behaviour (Wallsten et al., 2005)
and categorization (Kruschke, 2008), have proven to be able in uncovering
characteristics of cognitive functioning which could not be detected with a
standard (static) analytic approach based on collecting summary measures of
individuals’ responses.

In order to formally account for task dynamics, we adopted a Latent
Markov Model (LMM; (Wiggins, 1973; Bartolucci et al., 2012)) perspective
to assess the evolution of a latent states process underlying the observed
behaviour. The basic assumption is that participants may evolve in their
latent characteristic/states during the unfolding of the task. Thus, rather than
simply analysing how the observed responses configuration evolves during
the unfolding of the task, our target becomes to model the entire evolution of
the latent states underlying these responses. The idea that observed behaviour
is the final result arising from two or more latent data-generating states is
clearly not new (e.g., (Smallwood and Schooler, 2015; Hawkins et al., 2017)).
Here, the basic intuition consists in the fact that human cognition can be
influenced not only by external task demands, which are usually known and
observable, but also by unknown latent mental processes and brain states
that dynamically change with time (Taghia et al., 2018). In our context, the
observation of a changing pattern in the response of the participants (e.g. an
increase in the frequency of persevering errors at a given stage of the task) will
indicate the fact that there has been a change in the latent process. The Latent
Markov Model captures this insight beautifully by considering the observed
responses as a measure of the underlying latent states, and subsequently by
providing a coherent account of the dynamics of the latent states process. The
reader is referred to (Bishara et al., 2010) and (Speekenbrink et al., 2010) for
different model-based approaches to model cognitive phenomena related to
that analysed in the present work.

The chapter is organized as follows. The next section provides the basic
features of the LMM framework. In the third section, a model application
is presented on a real data set collected using the WCST in the context of
substance addiction. Finally, the fourth section presents a brief discussion and
some conclusions.
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3.2 Materials and Methods

3.2.1 The formal framework

Latent Markov models (LMM) can be seen as a generalization of latent class
models, which were developed for the analysis of longitudinal data, in partic-
ular categorical response variables (Wiggins, 1973; Pennoni, 2014). To do so,
these models make use of time-specific latent variables which are assumed to
be discrete. Below, we briefly outline the main properties of this modelling
approach.

To begin with, consider the directed graph depicted in Figure 3.1 illustrat-
ing the logic behind a basic LMM which evolves across T discrete time steps
(e.g., (Wiggins, 1973; Bartolucci et al., 2012)).

𝑆𝑇−1

𝑌𝑇−1

𝑆𝑇

𝑌𝑇

𝑆1

𝑌1

𝑆2

𝑌2

. . .

. . .

FIGURE 3.1: Conditional (in)dependencies structure of a basic
LMM. Shaded nodes represent observed variables. White nodes

represent unobserved (latent) variables.

In a LMM, it is assumed that a sequence of observed response variables,
Y1, Y2, . . . , YT, are conditionally independent given a corresponding pairwise
sequence of latent variables, S1, S2, . . . , ST, called states. More formally:

P(Y1, Y2, . . . , YT|S1, S2, . . . , ST) = P(Y1|S1)P(Y2|S2) · · · P(YT|ST). (3.1)

The lack of directional connections (directed arrows) between observed vari-
able nodes reflects the idea that only the latent states dynamics are responsible
for the response pattern observed across the entire task. In other words, the
evolution of the observed responses in time can be (phenomenologically)
considered as the result of transition dynamics between latent states. In par-
ticular, the latent process follows a first-order Markov chain in that the latent
variable St at step t only depends on the outcome of the former step, St−1,
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(with t = 2, . . . , T), thus yielding a memoryless process:

P(S1, S2, . . . , ST) = P(S1)
T

∏
t=2

P(St|St−1). (3.2)

There are at least three key explanations why we find this modeling technique
to be effective in the representation of cognitive behaviors observed in set-
shifting tasks: (1) the latent states formally described by an LMM can be
placed in relation with a certain observed behavioural outcome (Visser, 2011)
(2) it is a method to shape and analyse the unfolding of behaviour in time
and its relation with the evolving dynamic of some aspects of cognition (3)
it has a clear probabilistic framework to examine how different intervening
factors (e.g., observed covariates) might affect evolving behavioural outcomes.
Understanding the advantages of such a general framework for modeling
complex cognitive processes may be of great importance, as discrete latent
states may well be correlated with other brain, cognitive, or abstract states
that we believe may affect observed response patterns.

3.2.2 Model application

In this section, we present the proposed modelling approach to analyse partic-
ipants’ performances in the WCST and show how the LMM framework can
account for differences between dynamic patterns in different experimental
groups. To this purpose, we apply the model to the analysis of an already
published dataset (see (Bishara et al., 2010) and (Bechara and Damasio, 2002))
which represents an ideal case study to investigate set-shifting performances.

Participants

In our study, we analysed responses of 38 substance dependent individuals
(SDI) and 44 healthy individuals in the Wisconsin Card Sorting Test (ibidem).
Control participants had no history of mental retardation, substance abuse,
or any systemic central nervous system disease. Regarding the SDI, the
Structured Clinical Interview for DSM-IV (First, 1997) was used to determine
a diagnosis of substance dependence. All participants in the study were
adults (¿18 years old) and gave their informed consent for inclusion which
was approved by the appropriate human subject committee at the University
of Iowa (see (Bechara and Damasio, 2002) for details).

Task procedure

In the common variant of the WCST, participants are presented a target card
and a set of four stimulus cards. All the cards consist of geometric figures
which differ in terms of three characteristics, namely, color (red, green, blue,
yellow), shape (triangle, star, cross, circle) and number of objects (1, 2, 3 and
4). Figure 3.2 depicts an example of a standard WCST trial. For each trial,
a participant is asked to sort the target card with one of the four stimulus
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cards according to one of the three sorting rules. Each participant’s response
is followed by a feedback (either positive or negative) telling the individual
whether the sorting is correct or incorrect. After a certain number of consec-
utive correct responses, the experimenter updates the sorting rule without
any warning to the participant. Thus, for each trial, a correct response, a
perseverative error, or a non-perseverative error can be observed (see (Heaton,
1981) for details). Undoubtedly, one of the most representative information
attainable from the analysis of behavioural outcomes is that related to the
occurrence of errors. Indeed, the error-related information has proven to be a
reliable predictor of executive function deficits and frontal lobe dysfunctions
in clinical population (e.g., (Nagahama et al., 2005; Miller et al., 2015)).

STIMULUS CARDS

(A) (B) (C) (D)

(RED) (GREEN) (BLUE) (YELLOW)

TARGET CARD

(BLUE)

FIGURE 3.2: Example of a typical trial in the Wisconsin card
sorting test. Arrows represent possible choices. In this example,
the current sorting principle is color. Solid arrows, which sort
the target card with stimulus cards (A) and (B), represent wrong
matches. The dotted arrow, which sortes the target card with

stimulus card (C), represents a right match.
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Data modelling

In order to model the performance trends, we relied on the following data
transformation procedure. First, we codified the observed sequence of par-
ticipants’ responses according to a popular neuropsychological (Flashman
et al., 1991). In particular, we focused on three categories of responses: correct
responses (C), non-perseverative errors (E), and perseverative errors (PE). As a
further step, for each participant, we considered the entire response pattern
as partitioned into a limited number of blocks, also defined as windows of
trials. Our main purpose was to model the dynamics of participants’ response
patterns across these trial windows, rather than single trials. To this aim,
in our application we considered for each participant five distinct windows
which are thought to partition the entire task into (virtual) phases.

More precisely, let Z(j) be the vector of responses for the individual j, such
that, Z(j) ∈ {C, E, PE}. The response vector is partitioned as follows:

Z(j) =
(
(z(j)

1 , . . . , z(j)
nj ), (z

(j)
nj+1, . . . , z(j)

2nj
), . . . , (z(j)

4nj+1, . . . , z(j)
5nj

)
)

where the element z(j)
t reflects the individuals’ codified response at trial t.

The subscript nj indicates the length of the task phase for individual j, and is
calculated in order to obtain equally-sized trial windows. It is important to
notice that subjects can vary in the number of observations within windows.
The fact that subjects are not homogeneous in the number of trials which
constitute each phase is not a matter of concern for our modelling aim, since
the task phases are considered to reflect the percentage of progress in the
task. At this point, the resulting data structure was organized according to a
longitudinal design where a specific block, Yt, consisted of all the observed
responses aggregated across all participants for a specific task phase. As an
example, consider the data vector for the time occasion t = 1, that is, for the
first block of the longitudinal design. It consists of the aggregated responses
of all participant’s first task phases, and can be formally represented as:

Y1 =
(
(z(1)1 , . . . , z(1)n1 ), (z

(2)
1 , . . . , z(2)n2 ), . . . , (z(J)

1 , . . . , z(J)
nJ )
)

.

However, one might wonder whether the more natural way to capture changes
in set-shifting performances could consist in organizing the longitudinal data
structure by partitioning the vector Z(j) in order to take a specific number of
trials after a change of the sorting rule occurs. However, individuals in our
study differed in the number of trials achieved to complete a category, that is,
before a change of the sorting rule occurs. A trial windows clustering based
on selecting a specific number of trials after a change of the sorting rule does
not ensure the regularity of the longitudinal structure, due to the individual
variability in completing a category.

In our model, the windows were equally sized, and the choice of the
number of windows, T, directly affected the number of trials within them. For
this reason, some trials had to be excluded when the total number of trials
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achieved by a given participant was not a multiple of T. There are two main
reasons why we fixed T=5:

1. First, we selected the value of T which ensured the least data points
loss for the aggregated dataset of healthy and substance dependent
individuals (data points removed: 1.9% for T=5, 2.9% for T=6, 2.5% for
T=7).

2. The computational machinery of LMM needs longitudinal structures
with a great number of observations within a specific longitudinal block
(Bartolucci et al., 2012). The model with T=5 maximizes the number of
data points within the longitudinal blocks, by ensuring a more reliable
parameters estimates.

About the latent process characterization, we adopted a model selection
criterion to choose the number of latent states S. Since our dependent variable
is a categorical response variable with three levels, the possible choices reduce
to a 2-state model and a 3-state model. In order to select the best model we
relied on both BIC (Bayesian Information Criterion; (Schwarz et al., 1978))
and AIC (Akaike Information Criterion; (Akaike, 1974)) criteria. Note that, for
both criteria smaller values indicate a better model performance. Both 2-state
and 3-state models are preferable to a baseline 1-state model which does not
account for latent process dynamics (Table 3.1).

TABLE 3.1: Latent States selection

Model BIC AIC

1-state 8792 8781

2-states 8561 8490

3-states 8608 8493

However, since results are very similar for the two candidate models, we
adopted a further qualitative model selection criteria. In particular, we com-
pared the estimates for the two models to determine which one provided the
most useful and realistic substantive description of the data. We concluded
that the 3-state model accounted for a more sensible and complete description
of set-shifting performances (see (de Haan-Rietdijk et al., 2017) for a similar
approach). The reader is referred to Appendix A for a comparison of mod-
els’ estimates. Thus, we required the model to be based on three distinct
latent components, which were expected to have a direct psychological inter-
pretation (see the results section). Moreover, in order to account for group
differences in the latent process we also used a binary time-fixed covariate X,
codifying the membership of each participant to either Control group (X = 0)
or Substance Dependent group (X = 1). In such a way, we could control for
eventual differences between the two sub-populations. Therefore, eventual
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differences in set-shifting performance trends between the two groups were
completely captured by differences in the latent states dynamics.

In what follows, we describe the model parameters and the main proba-
bilistic relations in the system:

(i) the conditional response probabilities

φy|s = P(Yt = y|St = s),

where y ∈ {C, E, PE} and s = 1, 2, 3. This parameters set characterizes
the measurement model which concerns the conditional distribution of
the possible responses given the latent process. It is assumed that the
measurement model is conditionally independent of the covariate. Here
we are not interested in explaining heterogeneity in the response model
between the two groups, since in our view only dynamics in the latent
process are responsible for differences in performance trend between
groups;

(ii) the initial probabilities

πs|0 = P(S1 = s|X = 0),

πs|1 = P(S1 = s|X = 1),

where s = 1, 2, 3. This parameter characterizes a distribution for the
initial state across the (latent) states. In particular, πs|0 and πs|1 refer to
the initial probabilities vectors of the states for the control group and for
the substance dependent group, respectively;

(iii) the transition probabilities

π
(0)
st|st−1

= P(St = st|St−1 = st−1, X = 0),

π
(1)
st|st−1

= P(St = st|St−1 = st−1, X = 1),

where t = 2, . . . , 5 and st, st−1 = 1, 2, 3. This parameter characterizes
the conditional probabilities of transitions between latent states across
the task phases. In particular, π

(0)
st|st−1

and π
(1)
st|st−1

refer to the transi-
tion probabilities for the control group and the substance dependent
group, respectively. Here we assume that a specific covariate entails the
characterization of a sub-population with its own initial and transition
probabilities of the latent process. In this way, accounting for differences
in performance trend relies on explaining heterogeneity in the latent
states process between the two groups. In order to allow the covariate
to condition the characterization of the latent process we adopt a logit
parameterization as follows:

log
P(S1 = s|Xt = x)
P(S1 = 1|Xt = x)

= log
πs|x
π1|x

= x>Θ
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where s = 2, . . . , k, for the initial probabilities, and

log
P(St = s|St−1 = s∗, Xt = x)
P(St = s∗|St−1 = s∗, Xt = x)

= log
πs|s∗,x
πs∗|s∗,x

= x>Γ

where t = 2, . . . , T = 5, s, s∗ = 1, 2, 3 and s 6= s∗, for the transition
probabilities. In both parameterization, x> is a proper design matrix,
whilst Θ and Γ are regression coefficients vectors.

In this way the covariate entails the characterization of a sub-population
with its own initial and transition probabilities of the latent process,
whereas the conditional distribution of the response variable given the
latent process does not depend on the specific sub-population.

According to this framework, the identification of the probabilistic relation-
ships between latent states and observed responses, as well as those between
latent states themselves, conveys all the information needed to characterize
the observed response patterns dynamics.

3.3 Results

The proposed model was fitted using the LMest package (Bartolucci et al., 2012)
developed within the R framework (Team et al., 2013). LMest relies on an effi-
cient log-likelihood maximization procedure (e.g., Expectation-Maximization
Algorithm) for parameters estimation. Moreover, a model selection criterion
was used to evaluate if the model with the group covariate X was preferable
to the simpler model without the grouping variable. In particular, we adopted
both the BIC (Bayesian Information Criterion; (Schwarz et al., 1978)) and AIC
(Akaike Information Criterion; (Akaike, 1974)) to measure the overall model
performance. As expected, the model with the group covariate turned out
to be the most appropriate model (see Table 3.2) thus confirming that the
performance patterns were clearly different between the two groups.

TABLE 3.2: Model Selection criteria

Model BIC AIC

Basic 8858 8691

Covariate 8608 8493

3.3.1 Conditional Response Probabilities

The estimated conditional response probabilities φ̂y|s are presented in Table 3.3.
These probabilities allowed us to characterize the latent states. The first state
(s = 1) showed the highest probability to respond correctly, indicating that
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participants minimized errors within a task phase. By contrast, the second
state (s = 2) showed an increased probability of the error component, in
particular the probabilities that a non-perseverative error or a perseverative
error occur were approximately the same. This indicated the adoption of a
non-efficient strategy, although the probability to respond correctly was still
relatively high. Finally, the third state (s = 3) showed a different pattern
in which the probability to produce a correct response resulted lower than
the probability to produce an error. The errors pattern also entailed a higher
perseverative component compared to the second state.

TABLE 3.3: Estimated conditional probabilities of responses
given the latent state.

φ̂y|s

y s = 1 s = 2 s = 3

C 0.93 0.80 0.44

E 0.02 0.10 0.38

PE 0.05 0.10 0.18

These probability distributions represent cognitive response strategies
as a function of the latent component or state. In particular, in our context,
State 1 may be easily understood as an Optimal Strategy whereas State 2
seems to characterize a type of Sub-Optimal Strategy. Finally, State 3 indicates a
Perseverative Non-Optimal Strategy. Therefore, this latent states characterization
may be adopted to describe the average ability to operate shifting cognitive
strategies.

3.3.2 Initial Probabilities

Table 3.4 reports the model initial probability configurations. These initial
probabilities indicated that the two groups performed the early phase of the
test very differently. In particular, the control group showed a higher overall
probability of starting the initial test phase in State 1. By contrast, the SDI
group showed a higher probability to adopt a strategy admitting an error
component at the initial phase of the task. This interesting result could reflect
the finding that substance dependent individuals usually show an inefficient
initial conceptualization of the task (Heaton, 1981).
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TABLE 3.4: Estimated initial probabilities for each group

s = 1 s = 2 s = 3

π̂s|0 0.57 0.14 0.29

π̂s|1 0.38 0.21 0.41

3.3.3 Transitions Probabilities

All the available information on the dynamics of the latent process can be
conveyed by the transition probabilities matrices (see Figure 3.3). These
matrices represent, at a given task phase t, the probability to transit from a
current state s to a different state s∗ or to remain in the same state s.

π̂
(0)
s|s∗

s∗ s = 1 s = 2 s = 3

1 0.83 0.09 0.08

2 0.89 0.11 0.00

3 0.99 0.01 0.00

Sub-optimal

Strategy

0.83

0.09

0.08

0.89
0.11

0.00 0.99

0.01

0.00

Perseverative

Non-optimal 

Strategy

Optimal

Strategy

π̂
(1)
s|s∗

s∗ s = 1 s = 2 s = 3

1 0.01 0.99 0.00

2 0.01 0.99 0.00

3 0.02 0.33 0.65

Sub-optimal

Strategy

0.01

0.99

0.00

0.01
0.99

0.00 0.02

0.33

0.65

Perseverative

Non-optimal 

Strategy

Optimal

Strategy

FIGURE 3.3: Transition probability matrices (left) and relative
graphical model representations (right) for the control group

(top) and the SDI group (bottom).

The transition matrix for the control group showed a clear pattern. First,
the diagonal values revealed that the probability to reiterate a certain strategy
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decreased as it became less optimal, up to a zero probability to reiterate transi-
tions to State 3, which clearly represents the non-optimal response strategy.
Moreover, the very low probability values in the second and third columns
indicate that it was nearly impossible to adopt a response strategy affected by
the error component, since the overall probabilities to transit to State 2 or State
3 approached zero. It is also worth noting that, the probabilities approaching 1
in the first column indicate a general tendency of the system to transit to State
1, suggesting that these participants tended to switch to the optimal strategy
in case they were not in that status, and to maintain that strategy for the rest
of the task. Clearly, this pattern reflected the tendency to quickly minimize
both the perseverative and the non-perseverative components of the error, as
the task unfolded across time.

The transition matrix for the SDI group showed rather different dynamics.
Importantly, the system exhibited a general tendency to transit to State 2, the
sub-optimal strategy. In particular, it is worth emphasizing that a probability
approaching 1 on the main diagonal could be understood as the presence of an
absorbing state. This means that once in State 2, the system tended to reiterate
the same latent state and that SDI participants systematically reiterated the
sub-optimal strategy and never transited to the optimal strategy during the
task. Further, once in State 3, there was a relatively high probability that an
individual remained stacked in that state, indicating the tendency to reiterate
the non-optimal strategy and to show a perseverative component of the error.
On one hand, this pattern could also reflect the presence of mental rigidity as
for substance dependent individuals was nearly impossible to switch to the
optimal strategy. On the other hand, the tendency to reiterate a sub-optimal
strategy by keeping fixed the error component across the task could also be
seen as a probabilistic account for the failure to maintain set phenomenon
(Figueroa and Youmans, 2013). This is in accordance with some findings
reporting this peculiar behaviour in substance dependent individuals (Tarter,
1973).

3.3.4 Marginal latent states distributions

In order to better understand our model results, we analysed the marginal
distribution of the latent states. For each task phase, we derived a probability
distribution over the three states for each group. To do so, we relied on basic
rules for markov chains. Let πt be the distribution of the latent states at a cer-
tain time step t, or task phase, and let the transition matrix πst|st−1

be codified
as P, for notational convenience. For each time step t + 1, t + 2, . . . , T = 5 we
want to compute the quantities πt+1, πt+2, . . . , πT. The purpose is to move
the distribution πt forward one unit of time, by starting from π1, which is
the initial probability vector. It can be shown that πt+n = πt+(n−1)P (Dobrow,
2016). Regarding the control group, Figure 3.4 shows that the optimal strat-
egy was maintained for the entire duration of the test, and the probability to
adopt a strategy admitting errors component decreased quickly. This indi-
cates that participants in the control group tended to learn immediately how
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to minimize the error component. Figure 3.5 shows the marginal distribu-
tions of the states for the SDI group. The plot shows that the probability to
adopt an optimal strategy decreased faster than the probability to adopt a
non-optimal perseverative strategy. The sub-optimal strategy with both error
components showed the higher probability to be maintained for the rest of
the task, suggesting that substance dependent individuals never minimized
the error component during the test.
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FIGURE 3.4: Marginal distribution of the latent states for each
task phase, for the Control group.
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FIGURE 3.5: Marginal distribution of the latent states for each
task phase, for the SDI group.

3.4 Discussion of results

Results clearly show that our model is able to capture differences in perfor-
mance trend between Control and SDI groups in terms of differences in their
latent process transition dynamics. The characterization of the conditional re-
sponse probabilities allows to rephrase the latent states as cognitive strategies
adopted in a given phase of the task. Results also show that a 3-state model is
a reasonable choice if we want to differentiate dynamics in strategy shifting
between groups. In fact, it is unrealistic to think that individuals can rely
only on two (latent) cognitive strategies to accomplish the task, as it would
be in case of a 2-state model. The three states could be clearly interpreted as
error-related strategies with gradually increasing error components. However,
one might argue that our state process characterization does not account for
three distinct latent components, due to similarities in probability patterns of
responses for some of the states (such as State 1 and 2). According to our view,
an inspection of the marginal distributions of the latent states in Figure 3.4
and 3.5 can clarify that our model actually accounts for three non-overlapping
latent components, as reflected by the differential marginal states probabilities
pathways for the two groups.

It is also worth emphasizing that these results can increase the amount
of information a researcher can obtain from the assessment of set-shifting
performances. Generally, the analysis of data from the WCST reduces to
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the computation of summary statistics of the scoring measures, which in
turn may provide the input for standard statistical analysis, as well as for
classification procedures based on cut-off thresholds (Demakis, 2003). Mean
scoring measures across individuals provide a simple way to account for
group-level differences in performances (Table 3.5).

TABLE 3.5: Mean scoring measures (SE in parenthesis)

C E PE

Control 66.34 (0.64) 5.25 (0.29) 4.65 (0.42)

SDI 72.34 (2.17) 10.57 (0.96) 14.28 (1.52)

In our case study the groups differ in the number of perseverative (t(80) =
5.62, p < 0.001) and non-perseverative (t(80) = 6.48, p < 0.001) errors. How-
ever, mean differences cannot account for hypothesis about the underlying
causes. From our modelling perspective, differences in mean scoring mea-
sures can be explained by the heterogeneity in the latent process affecting the
way in which individuals within each group respond at a given phase of the
task. Thus, a fundamental additional information provided by our model
consists in the data generating process.

3.5 General discussion

The modelling approach proposed in this work was able to map the evolution
of response patterns in a set-shifting task with the evolution of a latent states
process underlying the observed behaviour. The model provided a parsimo-
nious description of the dynamic processes underlying the data, since we were
able to represent the performance trend by using a latent variable with just
three categories, representing different cognitive strategies evolving in time.
Moreover, the estimated parameters capturing these dynamic aspects could be
readily put in relation with some psychological constructs of potential clinical
relevance.

However, a crucial issue is that related to the interpretation of these pa-
rameters. Although accounting for a data generating process could convey
interesting and additional information for the analysis of behaviour outcomes,
parameters interpretation is not trivial. Marginal latent states distributions
offered a straightforward way to examine dynamic aspects of error-related
behaviour. For instance, marginal distributions showed that control group
(resp. SDI group) settles to State 1 (resp. State 2) across task phases, which is
approximately the same information conveyed by the summary measures of
the number of errors for each group. From this perspective, marginal distri-
butions provided no additional information for the analysis of participants’
performances. Conversely, transition probabilities matrices provided a more
exhaustive source of information at the cost of an increasing difficulty in
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results interpretation (e.g. differences in performance trends between groups
must rely on row-wise, column-wise, main diagonal values comparison).
Therefore, transition probabilities offer the advantage to rely on parameters
estimates for simulation and forecasting purposes.

In particular, the transition matrices can be seen as cognitive system pro-
files and one might be interested in generating data in order to test sensible
hypothesis. For example, given the two estimated profiles, one for each group,
a sensible question could be: Which system does reach the optimal strategy
first, on average, given the assumption that both systems start the task at State
3, the perseverative non-optimal strategy? This kind of investigation could be
hard, or even impossible, for standard analytical frameworks based on simple
summary statistics of the scoring measures.

In conclusion, our LMM model provides, at least in this first preliminary
work, an interesting tool to analyse data presenting a dynamic component.
It also illustrates an efficient way to manage differences between groups by
accounting for the heterogeneity in the latent process characteristics between
them. However, further works are needed in order to solidly establish connec-
tions between parameters estimates and more subtle cognitive constructs.
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Chapter 4

A Dynamic Bayesian Network
account of complex behavioural
patterns in set-shifting tasks

4.1 Introduction

Executive functions (EFs) refer to a particular class of higher-order cognitive
processes which enable humans to attain a certain goal (Dempster, 1992) by
executing appropriate actions, while inhibiting inappropriate ones. They are
thought to play an important role in everyday life achievements by affecting
not only cognitive, but also social, emotional, and organizational aspects of
human behaviour. For example, cognitive measures of executive functions
can predict attributes such as occupational status, communicative behaviour,
moral behaviour and social cognition across normal and clinical populations
(Kibby et al., 1998; Moriguchi et al., 2008; Carlson and Moses, 2001). Several
psychological models have been proposed to provide a clear definition of
EFs, at both structural and functional level (Miyake et al., 2000; Miller and
Cohen, 2001). In general there is a certain agreement in considering these
functions as a set of higher-order skills, which serve as a way to monitor,
control, and organize complex thoughts and behaviour (Anderson, 2008).
More specifically, several evidences suggest that they can be factorized into
hierarchically organized separable sub-components (Alvarez and Emory, 2006;
Moriguchi et al., 2008). From a functional and neurobiological perspective,
experimental cognitive settings requiring the involvement of EFs are known
to elicit the activation of a network of cortical and subcortical brain structures
which could be conceived as one aspect of a diffuse executive system (Duffy
and Campbell III, 2001). This kind of distributed network of neural circuits is
activated when task demands involve integrated functioning (Alvarez and
Emory, 2006), and are known to be particularly relevant when participants
must accomplish cognitive shifting, inhibitory control, working memory and
self-regulation tasks (Miyake et al., 2000; Malloy and Richardson, 1994; Stuss
et al., 2000), to name a few.

In this work we focus on set-shifting, a fundamental executive function
which consists in the ability to alter a behavioural response mode in the face
of changing contingencies (Berg, 1948). The choice of relying on set-shifting
as a way to formally account for executive functioning is particularly suitable
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for our modelling purpose since its psychological assessment involves well-
established experimental settings which can be easily taken into account in
a computational fashion. The Wisconsin Card Sorting Test (WCST; (Heaton,
1981; Berg, 1948)) is perhaps considered the most renowned neuropsychologi-
cal setting to measure set-shifting as well as executive functions (Alvarez and
Emory, 2006), and we retain it as an ideal framework to develop our cognitive
model. In a WCST, participants learn to pay attention and respond to relevant
stimuli features, while ignoring irrelevant ones, as a function of experimental
feedback. Individuals are asked to sort a target card with one of four stimulus
cards, consisting in geometric figures that vary in terms of several features,
namely, color (red, green, blue, yellow), shape (triangle, star, cross, circle) and
number of objects (1, 2, 3 and 4), according to the proper sorting rule on any
given trial (Figure 4.1).

FIGURE 4.1: Suppose that in a certain trial, the target card con-
sists in two blue triangles, whilst the correct sorting rule is the
feature color. A correct response requires that the target card is
sorted with a stimulus card presenting the color blue, regardless
of the other features the stimulus card presents. Sorting by shape
results in a wrong response (left). Sorting by color results in a

right response (right).

Each response is followed by a feedback telling the individual if the sorting
is right or wrong. After a fixed number of consecutive correct responses, the
sorting rule is changed by the experimenter without warning, and participants
are required to infer the new sorting rule. Sometimes individuals still persist
with the old rule and may produce what is called a perseverative response. It
is worthwhile noticing that in such cognitively highly demanding task several
aspects of executive functions are involved, such as: inhibition and switching
(Burgess et al., 1998), working memory (Barceló and Rubia, 1998; Zelazo et al.,
1997), attentional processes (Barceló, 2001) and error detection (Lie et al., 2006),
among others.

From a neurocognitive perspective, the matching of a card in a given trial
allows individuals to receive a feedback which is supposed to directly con-
dition future choices. Here, the hypothesis is that the received feedback is
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integrated with information in the working memory about earlier task phases
in order to decide whether to maintain or shift the current attentional set
(Monchi et al., 2001). Thus, the ability to process feedback related information
seems to be crucial in order to correctly perform the task. The relation be-
tween feedback and behaviour updating is mediated by lateralized prefrontal
brain activities (Lie et al., 2006). Interestingly, there seems to be a functional
dissociation in processing negative and positive feedback (Jimura et al., 2004).
First of all, when a negative feedback occurs, increasing activity is observed
in the anterior cingulate cortex, which is part of an error detection network
which in turn alerts the attentional capacities to prevent further errors (Lie
et al., 2006). Therefore, when receiving negative feedback, individuals tend to
show an increased neural activity in dorsolateral and ventrolateral prefrontal
areas, bilaterally, as well as in other subcortical structures such as caudate
nucleus and dorsal thalamus. Differently, when a positive feedback occurs,
increasing activities are observed in right dorsolateral and posterior prefrontal
regions (Monchi et al., 2001). Further dissociations can be found even when
individuals have to modulate behaviour after receiving a given experimental
feedback. Thus, sorting a target card after receiving a negative or a positive
feedback elicit posterior prefrontal and premotor cortex neural activities, re-
spectively, and a shared parietal activation (ibidem). Lateralized prefrontal
brain regions have also been related to the process of updating behaviour. It
was suggested that this activation may be related to updating temporarily
maintained internal states, such as cognitive sets (Lie et al., 2006). Importantly,
a functional and anatomical dissociation in prefrontal regions in accounting
for set-shifting and set-maintenance has been observed (Monchi et al., 2001).

These evidences seem to endorse the speculation that component processes
involved in our cognitive setting are functionally separable. In addition, they
allow us to outline some functional principles characterizing the interaction
between a cognitive agent’s system and the set-shifting experimental frame-
work. In general, the sub-processes involved in the task appear to rely on
accumulating information over time and operating on them in an efficient way.
Both differential feedback information processing and internal attentional
processes take place in order to allow the system to update behaviour during
the unfolding of the task. A computational model that aims to reproduce
a suitable agent behaviour should allow these functional principles to be
embedded in a proper cognitive representation in which different executive
system’s component processes are integrated to produce behaviour. This work
introduces a cognitive model based on a probabilistic framework which is
particularly suitable to formally account for such sub-processes functional
integration, consistently with neuroscientific evidences. It is shown how this
computational model simulates behaviour of a cognitive agent facing a WCST
and reproduces human performances as measured by clinical neuropsycho-
logical assessment criteria. The rest of the chapter is organized as follows.
First, a brief description of the mathematical framework adopted is provided.
Then, our computational model is shown and motivated. Two simulation
experiments are proposed in order to assess the ability of the model to re-
produce complex behavioural patterns in different scenarios. Finally, further
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remarks on the usefulness of the model for clinical and psychological sciences
are discussed.

4.2 The Cognitive Agent Model

In this section, the cognitive model is described in detail. We outline the main
features of the model by first providing an overview of the general proba-
bilistic structure. The different components of the model are then described
separately.

4.2.1 Probabilistic Structure of the Executive System

In this work, we propose a DBN architecture to account for the relation-
ships between component processes in the cognitive system. The conditional
(in)dependence structure characterizing the network reflects our assumptions
about how component processes phenomenologically influence each other,
based on anatomical and functional evidences. Each node can be seen as a
component of the executive system which allows a cognitive agent to evolve
and adapt its behaviour based on internal or external information. The DBN
is designed to reflect a hierarchical organization of the cognitive system in
which the environmental information is processed by high-level functional
nodes which coordinate, in a top-down manner, the activities of low-level
nodes. The main advantage of our network approach to model cognition is
that all the components contribute to achieve the task in an integrative manner.
If one of them exhibits a non-efficient behaviour, this may lead to specific
deficits in executive functioning, and thus to a particular deficient behavioural
pattern. To better reflect this idea, the design of the model is specified by
means of specific parameters settings. A given parameters setting could reflect
functional deficiencies at different levels of the cognitive hierarchy.

In general, the computational model is thought to integrate components
such as: feedback processing, feedback information integration to update
behaviour, set-maintaining and set-shifting, stimuli information processing,
and internal representation of the response. To clarify these concepts, we intro-
duce the stochastic and deterministic nodes involved in the model. Consider
a WCST setting with T trials. An agent delivers a response Yt ∈ {1, 2, 3, 4} at
a given trial t of the task, where t = 1, 2, . . . , T. Yt indicates the stimulus card
which is thought to correctly match the current target card. On each trial, the
agent receives an experimental feedback Xt ∈ {0, 1}, codifying the response
as right (Xt = 1) or wrong (Xt = 0). Feedback affect the behaviour of the
agent by allowing the system to land to a given cognitive state St ∈ {1, 2} (1:
set-maintenance, 2: set-shifting). However, before transitioning to a certain
state, the cognitive system processes the experimental feedback by means of
two parallel mechanisms, ωt and δt, which compute an internal value of the
positive and negative feedback, respectively. Clearly, the cognitive state plays
a relevant role in the internal representation of the response. In particular, we
assume that the system internally operates upon a finite set of abstract rules
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Ω ∈ {1, 2, 3} (1: color, 2: shape, 3: number). The card sorting procedure relies
on sampling a rule, Rt ∈ Ω, which allows the system to select the sorting
principle to adopt for each trial t. Moreover, the cognitive state affects the way
the system samples the rules. Conditioned on the rule the system adopted,
a response is delivered. At this point, a new feedback is received and the
process repeats. The structure of the probabilistic relationships between the
variables is represented in the graphical model in Figure 4.2.

FIGURE 4.2: Graphical model representation.

Here, Level I and Level II codify the hierarchical organization of the com-
putational cognitive system. One might think of Level I as the level in which
the most general purpose-oriented processes take place. This means that such
level structure holds regardless of the environmental (or experimental) setting.
Differently, Level II can be seen as the task-oriented level in which we model
the abstract and the experimental factors upon which the system operates
(sorting rules and cards to sort within the WCST setting). More specifically,
our assumptions about the conditional (in)dependencies between variables
result in the following factorization of the join probability distribution:

P(S1:T, R1:T, Y1:T, X1:T|Θ) = P(S1|ω0, δ0)P(R1|S1)P(Y1|R1)P(X1|Y1)
T

∏
t=2

P(St|St−1, ωt−1, δt−1)P(Rt|St, Yt−1)P(Yt|Rt)P(Xt|Yt)

where Θ is the set of parameters characterizing the computational formali-
sation for the nodes. It is worthwhile noticing that our modelling approach
does not take into account anatomical and neurobiological elements in rep-
resenting causal relations between executive components. Here, we rely on
a more abstract representation of cognitive, or mental, states. In this way,
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neurological knowledge underlying cognitive functioning serves as a basis
for the mental (cognitive) modelling level.

4.2.2 Attention to feedback

As outlined earlier, positive (reward) and negative (punishment) feedback
seem to be processed separately at a neural and functional level. Therefore,
the characterization of two distinct mechanisms which process feedback may
nicely reflect this assumption. In particular, we assume the existence of two
parallel processes which, given a certain feedback as input, determine an
internal value of that feedback. Let us introduce the following equations,
called feedback equations:

ωt = λXt + [Xt(1− λ) + (1− Xt)(1− k)]ωt−1 (4.1)
δt = ξ(1− Xt) + [(1− Xt)(1− ξ) + Xt(1− k)]δt−1 (4.2)

These equations represent the ability of the system to integrate feedback re-
lated information by allocating an internal attentional value to it. Eq. (4.1)
modulates the attention to reward (ωt) at trial t. Parameter λ codifies the
reward updating weight, and as it approaches 1, ωt increases faster. Eq. (4.2)
modulates the attention to punishment (δt) at trial t. Parameter ξ codifies
the punishment updating weight, and as it approaches 1, δt increases faster.
Parameter k modulates the promptness of the system to disengage attention
from the current attended feedback when environmental contingencies sug-
gest it. We call k flexibility. In this case, the flexibility is considered as a general
characteristic of the system, and modulates both attentional mechanisms. Sev-
eral combinations of parameters lead to particular functional patterns in the
processing of the feedback related information (Figure 4.3).



4.2. The Cognitive Agent Model 35

R
e
w
a
rd

R
e
w
a
rd

R
e
w
a
rd

R
e
w
a
rd

R
e
w
a
rd

P
u
n
is
h
m

e
n
t

P
u
n
is
h
m

e
n
t

P
u
n
is
h
m

e
n
t

P
u
n
is
h
m

e
n
t

R
e
w
a
rd

0

1

(A) λ = 0.8, ξ = 0.8, k = 0.8
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(B) λ = 0.4, ξ = 0.4, k = 0.9

FIGURE 4.3: Behaviour of the attention to reward (red) and
the attention to punishment (blue) functions under different
parameterizations. On the left, the attention to reward (resp.
punishment) rapidly increases as a positive (resp. negative)
feedback occurs. Similarly, the attention to reward (resp. pun-
ishment) rapidly drops down when a negative (resp. positive)
feedback is received. On the right figure, the functional dy-
namics show a different pattern. The attention to reward (resp.
punishment) slowly increases when a positive (resp. negative)

feedback occurs.

The aforementioned feedback equations are extensions of the basic expo-
nential smoothing function (Zucchini et al., 2008; Hyndman et al., 2002), and
show some interesting properties. For a given feedback processing mech-
anism, we have two sub-components characterizing the behaviour of the
functions. To clarify this concept, we focus on the analysis of eq. (4.1), codify-
ing the attention to reward ωt. However, the same applies to the attention to
punishment δt. Based on the feedback the system receives, the behaviour of
the function can be decompose as follows:

ωt =

{
λ + (1− λ)ωt−1, forXt = 1
(1− k)ωt−1, forXt = 0

The increasing step of the value of reward attention depends on parameter
λ, which is assumed to be bounded in [0, 1]. Differently, the decreasing step
of the value of reward attention is only affects by parameter k, which is also
bounded in [0, 1]. This means that we are assuming a cognitive system which
shows a dissociation in sub-components of a given feedback processing. Some
limiting behaviour can be observed. Suppose the case in which k > 0, then:

lim
λ→0

ωt =

{
ωt−1, forXt = 1
(1− k)ωt−1, forXt = 0

and
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lim
λ→1

ωt =

{
1, forXt = 1
(1− k)ωt−1, forXt = 0

The scenario where λ = 0 reflects the case in which our system is totally
unable to increase the internal attentional value of the reward when receiving
a positive feedback. The main limitation of such a deficient cognitive system is
that it never re-allocates attention to reward once a negative feedback occurs.
On the other hand, when λ = 1, we have a perfect system which maximizes
the attention to reward immediately as a positive feedback occurs.

Consider now the case in which λ > 0, then:

lim
k→0

ωt =

{
λ + (1− λ)ωt−1, forXt = 1
ωt−1, forXt = 0

and

lim
k→1

ωt =

{
λ + (1− λ)ωt−1, forXt = 1
0, forXt = 0

In case flexibility k equals zero, the system is unable to decrease the internal
attentional value of the reward when receiving a negative feedback. This
means that once the system allocates a certain attentional value to reward,
it never disengages attention from the positive feedback when receiving a
negative one. A direct consequence of this deficient functioning is that the
system continues to maximize the probability to reiterate the set-maintenance
cognitive state (see section below), even when experimental cues suggest that
it is no longer advantageous. On the other hand, when k = 1 we have a
perfect system which minimizes the attention to reward immediately as a
negative feedback occurs.

4.2.3 Shifting between Cognitive States

The internal value of the feedback is further processed in order to characterize
the transition dynamics between the two cognitive states responsible for
shifting between cognitive sets. More precisely, it is assumed that the system
can switch between two states, namely, the set-maintenance state (St = 1),
and the set-shifting state (St = 2), at each trial. In particular, processing the
feedback received at trial t affects the transition to a given cognitive state at
trial t + 1. The following equations, called transition equations, compute the
transition probabilities to move from a state to another. Eq. (4.3) and (4.4)
show the probabilities to reiterate a transition to the same state, that is, to
settle on a given cognitive state.
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P(St+1 = 1|St = 1) = γ11(t) = (1 + exp(−α0 − α1ωt))
−1 (4.3)

P(St+1 = 2|St = 1) = γ12(t) = 1− γ11(t)

P(St+1 = 2|St = 2) = γ22(t) = (1 + exp(−β0 − β1δt))
−1 (4.4)

P(St+1 = 1|St = 2) = γ21(t) = 1− γ22(t)

These equations characterize the bias of the system to rely on the internal
attentional feedback value in order to update behaviour. As can be noticed, the
attention to reward only affects the probability to reiterate a set-maintenance
cognitive state across trials. Differently, the attention to punishment only
affects the probability to reiterate a set-shifting cognitive state. Parameters
α0 and β0 are measures of the conservativeness of the system. Lower values
of α0 (resp. β0) mean that, in order to increase the probability to maintain
(resp. shift) the set, the system needs to allocate more attentional resources to
reward (resp. punishment). Parameters α1 and β1 represent the slopes of the
logistic functions. The system can be defined unbiased, or balanced, in case
α0/α1 = −1/2 and β0/β1 = −1/2. This condition ensures that the system
has the same probability to maintain or shift the set, when the attentional
value to feedback is totally uninformative (ωt = 0.5, or δt = 0.5). Differently,
the bias of the system is expressed by the extent the intercept-to-slope ratio
moves away from the balanced condition. For example, when α0/α1 < −1/2,
the system shows a conservative bias in processing the positive feedback.

4.2.4 Stimuli Information Processing

Once the general purpose-oriented cognitive processes have taken place, the
system needs to internally represent the external stimuli in order to operate
on them. In our context, these stimuli consist in the target card and the
four stimulus card presented in each given trial. The computational model
internally represents the target card as a features matching vector mt =
(m1, m2, m3), where mr ∈ {1, 2, 3, 4} and the subscript r codifies a given feature
(1: color, 2: shape, 3: number). By relying on the vector mt, the system
acquires all the information available in the stimuli. In particular, mr indicates
which stimulus card matches with the current target card for the feature r.
For example, in a given trial t the system could codify the target card as
mt = (2, 1, 1), meaning that the card matches with the stimulus card Yt = 2,
for the feature 1 (color), and with the stimulus card Yt = 1, for both features
2 (shape) and 3 (number). In this way we are assuming that the system
represents the relations between the cards in terms of what features they
share.

4.2.5 Rule Sampling Process

In order to produce a response, that is, to sort the target card with a proper
stimulus card, the system has to rely on the feature matching representation
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of the stimuli, mt. The system has to select which feature (and thus, which
sorting rule) is the most appropriate for the current trial. In particular, the
model is thought to allow the cognitive system to change its belief about the
correct rules based on the integration of information from both trial t and
trial t− 1. Conditioned on the previous response the system delivered and on
the current cognitive state, a likelihood function over the rules (features) is
computed according to:

P(Rt = r|St, Yt−1) =


P(Yt−1|Rt=r)

∑j P(Yt−1|Rt=j) , if St = 1

1−P(Yt−1|Rt=r)
∑j[1−P(Yt−1|Rt=j)] , if St = 2

(4.5)

Eq. (4.5) codifies an exact likelihood, defined as fR(t), computed on each trial t.
It reflects the way the system internally represents responses by allocating a
probability distribution over the features. When the feature r is sampled, then
the element mr in the current matching vector mt carries information about
which stimulus card has to be selected. However, it is assumed that the system
can fail to achieve a correct representation of the exact likelihood, which can be
degraded to some degree. We refer to this contaminated likelihood as system’s
likelihood, hR(t), which is computed according to the following equation:

Ph(Rt = r|St, Yt−1) =


π
|Ω| + (1− π) P(Yt−1|Rt=r)

∑j P(Yt−1|Rt=j) , if St = 1

π
|Ω| + (1− π) 1−P(Yt−1|Rt=r)

∑j[1−P(Yt−1|Rt=j)] , if St = 2
(4.6)

where |Ω| is the total number of internally represented features, that is, the
number of rules upon which the lower level computational mechanisms
operate. The systems’ likelihood reduces to a mixture distribution of the form:

hR(t) = πgR + (1− π) fR(t)

where gR is a discrete uniform distribution allocating equal probability mass
to each feature (or rule). Actually, the system relies on this distribution to
sample the feature to adopt as the sorting rule. As the mixture weight π ∈
[0, 1] increases, the most unlikely rules, as computed by the exact likelihood,
become more and more intrusive. In other words, the entropy of the system’s
likelihood increases as π increases thus degrading the amount of information
available from the exact likelihood. Intuitively, parameter π codifies the level
of distractibility of the agent. Figure 4.4 clarifies this concept.
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FIGURE 4.4: Probability distribution over the rules: color (C),
shape (S), number (N).

Figure 4.4 represents an example scenario of probabilities the system as-
signs to each rule across five consecutive trials (columns). The first row
represents the case in which π = 0, and the systems’ likelihood equals the ex-
act likelihood. The system reaches the solution after few trials by maximizing
the probability to select the most appropriate feature for the current trial (for
this example, the feature shape). The second row represents the case in which
π = 0.5. The system shows a fair level of distractibility due to the fact that
invalid rules have a certain probability to be sampled even after several trials.
This immediately reflects an increased probability to wrongly sort the target
card. The third row represents the case in which π = 0.8, and the probability
to sample inappropriate features increases.

4.2.6 Generate Agent Behaviour

In our computational model, deterministic and probabilistic laws regulating
the relation between the nodes characterize the behaviour of the agent on each
trial of the cognitive task. The relational structure of the executive components
is the same for the entire duration of the task, which in turn depends on the
performance of the agent (as it is shown in the next section). In our context,
we are interested in observing how the system evolves during the unfolding
of the WCST based on the feedback received, by considering the fact that
feedback directly depend on the response the system delivers on each trial.
Rather than focusing on raw responses Yt, indicating the position of the chosen
stimulus card, we are more interested in observing the pattern of correct and
error responses across the entire trials span. The cognitive agent responses are
generated at each time step (trial), by letting the system to adapt automatically
based on the experimental feedback, and the parameters setting describing its
cognitive characteristics. The generative algorithm is shown in Table 4.1.
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TABLE 4.1: Generative Algorithm

Algorithm Computational Agent Model

Θ = {λ, ξ, k, α0, α1, β0, β1, π} SET PARAMETERS

t = 0 : Set ω0 and δ0 INITIALIZATION

t = 1 : Set default S1 and Y1 FIRST TRIAL

Generate feedback X1

Compute ω1 and δ1 (eq. (1) and (2))

t ≥ 2 : Compute transition probabilities (eq. (3) and (4)) UPDATING

Transit to a cognitive state St

Compute the exact likelihood (eq. (5))

Compute the system’s likelihood (eq. (6))

Sample a rule (feature) Rt = r

Produce a response Yt

Generate feedback Xt

Compute ωt and δt (eq. (1) and (2))

Loop

4.3 Simulation Study

In this section we test our computational model in order to assess its ability to
reproduce the expected behaviour as a function of parameters modulation.
In particular, we are interested in selectively damaging the system in order
to produce a given cognitive functioning impairment. To do so, we study
how the generative model behaves when facing the WCST in two distinct
experiments. In a first experiment we impair two main executive compo-
nents, namely, flexibility and distractibility, and see how the model is able to
reproduce response patterns which are consistent with findings in the clinical
literature. In the second experiment we investigate the expressiveness of the
computational model in reproducing behaviour when several combinations
of parameters are taken into account. Simulations were conducted within the
Matlab programming environment.

4.3.1 Computational Model Assessment

For both experiments, the computational agent performances are analysed by
relying on two sources of information: (1) the observed sequence of feedback,
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x1:T, indicating the configuration of correct and incorrect responses across the
trials span; (2) the observed sequence of the stimulus cards selected for the
sorting procedure, y1:T. At this point, the array w1:T =

(
(x1, y1), . . . , (xT, yT)

)
provides all the information we need to cognitively assess the agent behaviour.

Experimental Setting In both the experiments, the Heaton version of the
WCST (Heaton, 1981) is administered to the cognitive agent. In this particular
version, the sorting principle changes after a fixed number of consecutive
correct responses. In particular, when the system correctly sorts the target
card for a series of 10 consecutive trials, the sorting rule is automatically
changed by the simulative apparatus. The duration of the task depends on the
performance of the agent. When the agent completes six stages (categories) of
10 consecutive responses, the task ends. In case this condition is not met, the
task ends after completing a maximum of 128 trials.

Scoring Measures Here, we want to make computational agent and hu-
mans performances comparable, at least qualitatively. To this aim we adopt a
metric which is usually employed for the clinical assessment of test outcomes
in neurological and psychiatric patients (Bechara and Damasio, 2002; Braff
et al., 1991; Zakzanis, 1998; Tarter, 1973; Landry and Al-Taie, 2016). Thus, the
agent performances as represented by w1:T are codified according to a neu-
ropsychological criterion (Heaton, 1981; Flashman et al., 1991) which allows
to classify responses into several components. These components provide the
scoring measures for the test. In particular, we are interested in: total number
of trials achieved (NT), number of completed categories (NCC), perseverative errors
(PE), non-perseverative errors (NPE), correct responses (C), trials to complete the
first category (TFC), and Failures to Maintain Set (FMS). The scoring measure
NT tells us how many trials the agent needs in order to complete the task.
Perseverative errors (PE) occur when the agent applies a sorting rule which
was valid for the previous category. Usually, detecting a perseveration is far
from trivial, since several responses configurations could be observed when
individuals are required to shift sorting rule after completing a category (see
(Flashman et al., 1991) for details). Non-perseverative errors are all the errors
which are not perseverative, such as casual errors. The scoring measure NCC
tells us how many times the agent collects a series of 10 consecutive correct
responses. The fact that NCC = 6 means that the agent has accomplished the
task. However, agents can differ in the number of trials needed to complete
six categories. The scoring TFC tells us how many trials the agent needs in
order to achieve the first sorting principle, and can be seen as an index of
conceptual ability (Anderson, 2008; Singh et al., 2017). A greater attention
must be paid to the scoring measure FMS. Failing to maintain a set can be
considered a complex behaviour, and which executive component it would
actually measure is still debated. For instance, some argue that FMS reflects
distractibility characteristics (Barceló and Knight, 2002; Crone et al., 2004)
whilst others suggest that it is associated to cognitive flexibility (Zabelina
and Robinson, 2010; Greve et al., 2005). In general, a FMS consists in the
number of times an individual fails to sort cards by the sorting rule after it
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can be determined that he/she has acquired the rule. A given sorting rule
is assumed to be acquired when the individual correctly sorts at least five
cards in a row (Heaton, 1981; Figueroa and Youmans, 2013). Thus, a failure to
maintain a set arises whenever a sorting strategy is changed before this change
is appropriate. In our application the FMS scoring measure is computed by
collecting the occurrences of first errors after the acquisition of a rule.

4.3.2 Experiment 1

In this experiment, we investigate how the computational agent’s response
patterns are affected by modulating the levels of flexibility and distractibility
of the cognitive system. From a psychological perspective, we are referring to
two cognitive constructs: (1) the cognitive flexibility construct, which relates
to the ability of an individual to assign new attributes to stimuli (Scott, 1962),
and (2) the distractibility construct, which reflects the person’s (in)ability to
maintain focus on a task (Barceló and Knight, 2002; Crone et al., 2004). In the
context of the WCST, this means that the flexibility of the system fosters the
agent to change the sorting rule after completing a category (Coulacoglou and
Saklofske, 2017). When impaired, it is expected to promote a perseverative
behaviour in terms of increase in the number of perseverative responses on the
test. This is in line with the main theoretical proposal that cognitive flexibility
is related to the degree of perseverative processing of previously relevant
representations (Maes et al., 2004; Chevalier and Blaye, 2008). On the other
hand, distractibility is supposed to affect the general behaviour of the agent
by affecting its ability to provide consistent responses across the entire trials
span. We expect distractibility to increase the probability of the system to
lose focus on maintaining current task relevant goals (Figueroa and Youmans,
2013), such as a given sorting principle.

To test these predictions, we rely on two simplified factorial designs in
which flexibility and distractibility parameters, k and π, are modulated in-
dependently in order to reproduce several degrees of cognitive function im-
pairments. More precisely, in the first simulation design, k can take values on
three levels representing no flexibility impairment (k = 0.9), mild flexibility
impairment (k = 0.6), and severe flexibility impairment (k = 0.3). The second
simulation design consists in letting π to take values on three levels repre-
senting low distractibility (π = 0.3), mild distractibility (π = 0.5), and high
distractibility (k = 0.7). Our aim is to explore the main effect of each executive
component modulation on agent’s performances to assess the model’s ability
to account for the distractibility/flexibility dissociation. Hence, for each simu-
lation design, the non-varying parameters are fixed in order to produce an
optimal behaviour. In this way, only changes in the flexibility, or distractibility,
are responsible for eventual differences in response patterns. For each level of
the factorial designs, performances of N = 100 cognitive agents are simulated.
For each factorial level, mean scoring measures across the N agents’ responses
are considered. Results are shown in Table 4.2 and 4.3 (Figure 4.5).
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TABLE 4.2: Simulations results for the flexibility simulation
design.

Mean Scoring Measures

Flexibility (k) NT NCC C NPE PE FMS

0.9 74.9 6 63.25 8.92 4.33 0.33

0.6 85.23 6 64.56 12.64 6.92 0.23

0.3 125.82 4.52 63.89 35.92 28.01 0.25

TABLE 4.3: Simulations results for the distractibility simulation
design.

Mean Scoring Measures

Distractibility (π) NT NCC C NPE PE FMS

0.3 77.2 6 64.33 8.55 4.43 0.54

0.5 94.71 5.99 75.79 11.59 7.33 2.03

0.7 127.03 4.23 88.03 21.01 18.01 5.13
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(B) Distractibility simulation design

FIGURE 4.5: Simulations results.

As can be noticed, the number of perseverations increases especially as
system’s flexibility decreases. This means that the cognitive agent shows a
deficient behaviour when switching the sorting rule is needed. Persevera-
tive errors usually occur after the agent completes a given category. In the
flexibility simulation study, the fact that the averaged number of completed
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categories approaches the task completion criterion, suggests that the com-
putational agent is able to settle to a set-maintenance cognitive state, but
fails when transitioning to the other state is required. For these reasons, the
impaired agent needs more trials in order to complete the task, and this seems
to be only due to a selective impairment of cognitive flexibility. This is also
consistent with the fact that the number of failures to maintain the set ap-
proaches zero across all the level of the factorial design. Thus, at least in our
computational cognitive representation, the scoring measure FMS does not
seem to be related to cognitive flexibility. In the second simulation study,
although system’s flexibility is not impaired, a positive relation between dis-
tractibility level and number of perseverative errors is observed. Given the
model architecture, this can be explained by the increase in the number of
failures to maintain sets which leads the agent to randomly switch attention
to a sorting rule which is no longer valid for the current trial. Accordingly,
the higher the occurrences of failures to maintain a set during the trials span,
the higher the chance to randomly sort a card according to a previous rule. In
this case, the averaged FMS scoring measure seems to be selectively affected
across all the levels of the factorial design. This suggests that this scoring
measure is related to system’s distractibility.

4.3.3 Experiment 2

In this experiment, we investigate the expressiveness of the computational
model in reproducing behaviour when several combinations of parameters
are taken into account. However, due to the high number of parameters
involved, we adopt a theoretical psychological criterion in order to select
which are the best parameters to include in the factorial design. More pre-
cisely, we focus on a particular aspect of cognitive functioning which is of
interest for computational research, namely, the reward system (Dehaene and
Changeux, 1991; Cella et al., 2014). In our model representation, such system
involves both the dynamics of the reward processing, ωt, and the bias to
evaluate the internal feedback value to update the cognitive state γ11(t). Here,
we consider observed response patterns as a function of the interaction be-
tween distractibility, flexibility and reward system modulations. In particular,
we consider five cognitive profiles characterized by modulating parameters
λ, α0, α1, π and k. We let the parameters to take values on two levels, represent-
ing low and high reward updating weight (λ = 0.3 and λ = 0.9, respectively),
severe and no flexibility impairments (k = 0.3 and k = 0.9, respectively), low
and high distractibility (π = 0.3 and π = 0.9). Regarding the parameters of
the transition equations, α0 and α1, we let the system to be either balanced or
conservative (α0/α1 = −1/2 and α0/α1 = −2/3). Therefore, we consider five
generative models: (1) Optimal Behaviour; (2) low reward updating weight
and no flexibility impairment; (3) high reward updating weight and severe
flexibility impairment; (4) low reward updating weight and high distractibil-
ity; (5) high reward updating weight and high distractibility. For each model,
we consider both balanced and conservative cognitive profiles. As for the
previous experiment, the non-varying parameters across all the models are
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fixed to an optimal status. For each model, performances of N = 100 cognitive
agents are simulated, and mean scoring measure are computed. Results are
shown in Table 4.4.

TABLE 4.4: Simulations results for the Experiment 1.

Mean Scoring Measures

Cognitive Profile Bias NT NCC TFC NPE PE FMS

Model 1
Balanced 72.39 6 12.15 7.74 3.65 0.07

Conservative 80.06 6 14.29 9.43 4.48 0.78

Model 2
Balanced 92.98 5.99 14.71 12.94 8.72 0.09

Conservative 128 2.22 67.33 29.56 27.51 0.19

Model 3
Balanced 126.7 3.07 38.68 33.93 33.93 0.02

Conservative 128 2.53 57.36 37.97 35.31 0.44

Model 4
Balanced 127.88 3.6 42.64 24.25 23.43 3.99

Conservative 128 1.31 90.5 34.42 32.77 1.3

Model 5
Balanced 125.93 4.37 33.98 20.09 17.09 4.98

Conservative 127.84 3.99 38.01 20.24 18.48 5.08

On the one hand, the selectivity of the effect of distractibility and flexibility
impairments on agent’s performances is consistent with the first experiment’s
results. Modulating the functionality of the reward system does not affect this
functional dissociation, as can be noticed by the fact that the mean number of
FMS only increases when distractibility is impaired (Model 4 and Model 5).
On the other hand, the reward system seems to play a role in modulating the
overall quality of agent’s performance. In particular, a system’s bias toward
conservativeness entails an increase in the number of perseverations and,
more importantly, an increase in the number of trials needed to complete the
first category. Such dysfunctional behaviour is emphasized when the system
is particularly slow to update the internal attention to reward due to a low
reward updating weight (Model 2 and Model 4).

4.3.4 Discussion of results

The simulation studies show that our computational model is able to account
for differential behavioural patterns when parameters are modulated. In
particular, we focused on three cognitive aspects of the agent’s executive
system, namely, cognitive flexibility, distractibility and reward system. In
general, agents’ performances worsen as one of the executive component is
selectively impaired. However, a common performance trend can be observed
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in any case: number of perseverations and trials needed to accomplish the
task increase as a general indicator of cognitive impairment. In the first
experiment, although the general performance indicators (i.e. NT, PE, NPE)
suggest a shared behavioural pattern when either distractibility or flexibility
are degraded, results tell us that the underlying reasons could be different.
This is due to the fact that the variable FMS seems to be selectively affected
by distractibility modulations, whilst it does not show association with the
level of flexibility of the system. In general, we can assume that flexibility
impairments allow the agent to incur in errors at a particular phase of the task
(i.e. the trials window after a category completion). In this case, an increase
in the number of trials needed to complete the task can be due to inefficient
cognitive dynamics within that specific task phase. To clarify this concept,
consider Figure 4.6. It shows some of the executive component processes
dynamics during the unfolding of the first 50 trials of a WCST. Here, we focus
on the occurrences of the total error component (NPE + PE) as a function of
feedback processing and cognitive states transitions. The depicted system
presents a severe cognitive flexibility impairment (k = 0.3). Other parameters
are fixed in order to attain an optimal behaviour, as in experiment 1. The
error pattern (white/black dots) is clear. The system is able to settle to a
set-maintenance cognitive state (green squares), and to complete a category
(sequence of black dots). The dysfunctional behaviour occurs within the trials
window after completing a category.
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FIGURE 4.6: The figure shows the evolution of feedback pro-
cessing in time, and the configuration of both cognitive states
and responses sequences. Attention to reward, ωt, is repre-
sented by the red function, whilst the attention to punishment,
δt, is represented by the blue function. Dots represent correct
responses (black dots) and general errors (white dots). The se-
quence of states is represented by green (set-maintenance state)
and yellow (set-shifting) squares. The impaired system’s flexi-
bility affects the dynamics of the feedback processing as the task
unfolds. For instance, after completing a category (sequence of
10 black dots), the agent receives a punishment. At this point,
the internal attentional value of the reward slowly drops down,
increasing the chance to incur in a series of perseverative and

non-perseverative errors.

Differently, we can assume that distractibility impairments allow the agent
to incur in errors at any time during the unfolding of the task. In this case,
an increase in the number of trials needed to complete the task can be due to
dysfunctional behavioural dynamics which are randomly distributed along
the trials span. A graphical inspection of the computational behaviour of
the system can help clarifying these aspects (Figure 4.7). Here, the system
is characterized by an high distractibility (π = 0.7). Even in this case, other
parameters are fixed in order to attain an optimal behaviour. Differently from
the previously depicted cognitive agent behaviour, the feedback processing
is more efficient, allowing the system to suddenly switch between cognitive
states (colored squares) in a consistent way. However, the system seems to be
unable to complete a category. Errors occur randomly along the trials span,
despite the efficiency of the feedback processing components.
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FIGURE 4.7: The figure shows the evolution of feedback process-
ing in time, and the configuration of both cognitive states and
responses sequences. Attention to reward, ωt is represented by
the red function, whilst the attention to punishment, δt, is rep-
resented by the blue function. Dots represent correct responses
(black dots) and general errors (white dots). The sequence of
states is represented by green (set-maintenance state) and yel-
low (set-shifting) squares. The impaired system’s distractibility
affects the responses consistency across the trials. Although the
updating of the internal attentional value to feedback shows an
efficient behaviour, the system commits errors before completing

a category.

Therefore, as outlined in experiment 2, a further source of performance
variability consists in the efficiency of the reward system. We can assume
that when information processing at such basic functional level is compro-
mised, a global performances deterioration is observed. This seems to be
independent of the status of the other main executive components. For in-
stance, consider the aforementioned response styles characterization: the task
phase-dependent and the task phase-independent response profiles entailed
by flexibility and distractibility components, respectively. A compromised
reward system does not directly affect the structural properties of the response
patterns characterizing the two profiles (selective effect of distractibility on
FMS scoring, Table 4.4). However, an additional error component is thought
to further penalize the system in achieving the best possible performance at-
tainable for a given cognitive profile. This is due to the fact that a conservative
(and thus, impaired) reward system selectively affects the responsiveness of
the system to increase the internal value of a received positive feedback. Thus,
errors occur meanwhile the system accumulates reward related information
when a positive feedback is processed. We can assume that performances glob-
ally deteriorate, as reflected by the overall increase of the error component,
due the fact that the system is too slow in updating evidences for the positive
feedback (as reflected by increased TFC). At this point, the identification of
the real cognitive source of the errors, at a functional level, turns out to be
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problematic from a neuropsychological assessment perspective (as we will
discuss in the next section).

4.4 General discussion

Set-shifting tasks are highly demanding cognitive settings which require in-
tegrated and distributed neural functioning to be accomplished. Cognitive
neuropsychology rephrases the problem of investigating the property of such
distributed neural architecture into that of accounting for separable cogni-
tive constructs with the aid of tests (such as the WCST) measuring multiple
cognitive processes. The presented computational cognitive model relies on
evidences from cognitive neuroscience as a starting point to build a model
of integrated cognitive functioning which has the potential to account for
complex behavioural patterns observed in normal and clinical populations.
Several computational models have been proposed to analyse performances
in the WCST (Dehaene and Changeux, 1991; Amos, 2000; Monchi et al., 2000;
Levine et al., 1993). These models of cognitive functioning differ from our
proposed model, since the focus in these models lies in structuring a plau-
sible, biologically inspired, neural network capable of reproducing general
qualitative patterns of observed data, such as, simulating different number of
errors in different conditions. Our DBN representation is not a neural level
model. However, according to our view, it provides a suitable and flexible
cognitive description, at a representational and algorithmic level (Marr, 1982),
of neural states involved in set-shifting tasks. Therefore, the probabilistic
representation of the cognitive system is thought to directly reflect the stochas-
tic nature and the trial-to-trial variability characteristic of neural systems in
the brain (Harrison et al., 2005; Buesing et al., 2011; Rolls and Deco, 2010).
In this way, such modelling approach retains some of the main features of
brain functioning by letting a substrate-independent functional architecture to
provide a biologically plausible, but abstract, model of cognitive functioning.

There are two main advantages in adopting our modelling approach to
represent executive functions characteristics and, more generally, higher-level
cognitive processes. First, a discrete states representation of the cognitive
system’s functional sub-components provides a flexible way to account for
psychological hypothesis about the hierarchical and functional organization
of mental processes (Kopp, 2012). On the other hand, our basic probabilistic
structure can be easily upgraded by adding more hierarchical cognitive levels
and functional nodes in a consistent way. By extension, these two observations
make our computational approach also valuable from a theoretical perspec-
tive, since, given a set of assumptions, it enables the exploration of a cognitive
phenomenon at a given desired level of detail. From this perspective, the
model provides a mechanistic, process-based theory of cognitive functioning
(Sun, 2009) whose formal instantiation can be useful for empirical research.
For instance, in the computational model, we avoided ambiguity in describing
what the executive component distractibility is. In our context we assume that
the system allocates attention to internally represented concepts (features),
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as accounted by the entropy of the probability distributions over the abstract
rules. The adopted computational formalisations allow us to explicitly refer
to distractibility impairments as the inefficiency to allocate neural resources
towards internally directed attention states, a process which involves the
recruitment of lateral prefrontal regions and is essential for optimal cognitive
performances (Kam et al., 2018; Buckner et al., 2008). This theoretically-driven
choice formalizes the kind of process we are aiming to explore. However,
different distractibility representations, as well as related theoretical assump-
tions, can be taken into account. Another way to take advantage of our simple
model representation is that of relying on the flexible probabilistic structure
to make predictions on cognitive performances in different experimental or
environmental settings. For instance, one might be interested in how the
system could behave when facing a set-shifting task with an arbitrary number
of abstract concepts (features and rules) to functionally operate on. As an-
other example, one might investigate how executive components modulations
affect performances when an agent is required to deal with a complex multidi-
mensional features space (e.g. when stimuli have to be sorted by taking into
account multiple rules simultaneously). In order to explore these possibilities,
the computational formalisations characterizing Level II have to be suitably
rewritten in order to adapt to the cognitive setting of interest and to provide
a mathematical description of the new environment. At this point, a monte
carlo simulation approach could help exploring the role of several executive
components on performances in such hypothesised environmental context.

As can be noticed from the simulation results, shared qualitative response
patterns can be observed when several executive components are degraded.
However, from a generative perspective, it could be easier to provide suitable
explanations on the role of examined cognitive components in producing
behaviour. Problems might occur when the observed behaviour serves as a
basis to infer the characteristics of the underlying cognitive generative process.
In this case, neuropsychological criteria based on computation of scoring mea-
sures of test outcomes are employed. A great emphasis is placed on the error
component since accounting for sub-types of error may help to discriminate
cognitive processes that disrupt set-shifting performances in clinical popula-
tion (Miller et al., 2015). However, our results outlined the fact that general
performance indicators, such as errors and number of trials needed to achieve
the task, show a similar pattern when either cognitive flexibility, distractibility,
and reward system are impaired. In such case, different scoring measures
have to be employed in order to investigate more in depth the underlying
reasons (e.g. trials to complete the first category (TFC) and failures to maintain
set (FMS) scoring measures to account for reward system and distractibility
impairments, respectively). Nonetheless, this approach could be too simplistic
for the complexity of the phenomenon under investigation. Several profiles of
executive component impairments might give rise to response patterns whose
properties can only emerge at a micro detailed level of analysis. Thus, given
the set of assumptions characterizing the computational cognitive system, the
joint analysis of both generated response patterns and simulated executive
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components processing dynamics can yield new insights for the development
of more sophisticated scoring measures.

As a final consideration, we highlight the potential of our modelling ap-
proach in providing an interesting psychometric tool for the formal assessment
of the cognitive characteristics of both healthy and non healthy individuals.
For instance, parameter estimation procedures on real human data could pro-
vide a way to directly measure and quantify cognitive processes at individual
or group levels. At this point, parameter estimates could be employed in
further statistical analysis of clinical and psychological relevance. However,
a detailed analytic study of the model to make it suitable for parameters
estimation is left for future work.
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Chapter 5

A Bayesian brain model of adaptive
functioning under uncertainty

The content of the chapter has been accepted for publication as: D’Alessandro,
M., Radev, S., Voss, A., & Lombardi, L. (2020). A Bayesian brain model of
adaptive behavior: An application to the Wisconsin Card Sorting Task. PeerJ.

5.1 Introduction

Computational models of cognition provide a way to formally describe and
empirically account for mechanistic, process-based theories of adaptive cogni-
tive functioning (Sun, 2009; Cooper et al., 1996; Lee and Wagenmakers, 2014).
A foundational theoretical framework for describing functional characteristics
of neurocognitive systems has recently emerged under the hood of Bayesian
brain theories (Knill and Pouget, 2004; Friston, 2010). Bayesian brain theories
owe their name to their core assumption that neural computations resemble
the principles of Bayesian statistical inference.

In a Bayesian theoretical framework, cognitive agents interact with an un-
certain and changeable sensory environment. This requires a cognitive system
to infer sensory contingencies based on an internal generative model of the
environment. Such a generative model represents subjective hypotheses, or
beliefs, about the causal structure of events in the environment (Friston, 2005;
Knill and Pouget, 2004) and forms a basis for adaptive behavior. It is assumed
that internal beliefs are constantly updated and refined to match the current
state of the world as new observations become available. The core idea behind
the Bayesian brain hypothesis is that computational mechanisms underly-
ing such an internal belief updating follow the logic of Bayesian probability
theory. In this respect, information about the external world provided by
sensory inputs is represented as a conditional probability distribution over a
set of environmental states. Consequently, the brain relies on this probabilistic
representation of the world to infer the most likely environmental causes
(states) which generate those inputs, and such a process follows the computa-
tional principles of Bayesian inference (Friston and Kiebel, 2009; Friston, 2010;
Buckley et al., 2017).

To clarify this concept, consider a simple example of a perceptual task
in which a cognitive agent is required to judge whether an item depicted
on a flat plane is concave or convex. Its judgment is based solely on the
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basis of a set of observed perceptual features, such as, shape, orientation,
texture and brightness. Here, the concave-to-convex gradient entails the set of
environmental states which must be inferred. The internal generative model
of the agent codifies beliefs about how different degrees of convexity might
give rise to certain configurations of perceptual inputs. From a Bayesian
perspective, the problem is solved by inverting the generative model of the
environment in order to turn assumptions about how environmental states
generate sensory inputs into beliefs about the most likely states (e.g., degree
of convexity) given the available sensory information.

Potentially, there are no limitations regarding the complexity of environ-
mental settings (e.g., items and rules in experimental tasks) and cognitive
processes to be described in light of the Bayesian brain framework. Indeed,
the latter has proven to be a consistent computational modeling paradigm for
the investigation of a variety of neurocognitive mechanisms, such as motor
control (Friston et al., 2010), oculomotor dynamics (Friston et al., 2012), ob-
ject recognition (Kersten et al., 2004), attention (Feldman and Friston, 2010),
perceptual inference (Petzschner et al., 2015; Knill and Pouget, 2004), multisen-
sory integration (Körding et al., 2007), as well as for providing a foundational
theoretical account of general neural systems’ functioning (Lee and Mum-
ford, 2003; Friston, 2005; Friston, 2003) and complex clinical scenarios such as
Schizophrenia (Stephan et al., 2006), and Autistic Spectrum Disorder (Haker
et al., 2016; Lawson et al., 2014). For this reason, such a modeling approach
might provide a comprehensive and unified framework under which several
cognitive impairments can be measured and understood in the light of a
general process-based theory of neural functioning.

In this work, we address the challenging problem of modeling adaptive
behavior in a dynamic environment. The empirical assessment of adaptive
functioning often relies on dynamic reinforcement learning scenarios which
require participants to adapt their behavior during the unfolding of a (pos-
sibly) demanding task. Typically, these tasks are designed with the aim to
figure out how adaptive behavior unfolds through multiple trials as partici-
pants observe certain environmental contingencies, take actions, and receive
feedback based on their actions. From a Bayesian theoretical perspective,
optimal performance in such adaptive experimental paradigms require that
agents infer the probabilistic model underlying the hidden environmental
states. Since these models usually change as the task progresses, agents, in
turn, need to adapt their inferred model, in order to take optimal actions.

Here, we propose and validate a computational Bayesian model which
accounts for the dynamic behavior of cognitive agents in the Wisconsin Card
Sorting Test (WCST; (Berg, 1948; Heaton, 1981)), which is perhaps the most
widely adopted neuropsychological setting employed to investigate adaptive
functioning, due to its specificity in accounting for executive components
underlying observed behavior, such as set-shifting, cognitive flexibility and
impulsive response modulation (Bishara et al., 2010; Alvarez and Emory,
2006). For this reason, we consider the WCST as a fundamental paradigm for
investigating adaptive behavior from a Bayesian perspective.

The environment of the WCST consists of a target and a set of stimulus
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cards with geometric figures which vary according to three perceptual features.
The WCST requires participants to infer the correct classification principle
by trial and error using the examiner’s feedback. The feedback is thought
to carry a positive or negative information signaling the agent whether the
immediate action was appropriate or not. Modeling adaptive behavior in
the WCST from a Bayesian perspective is straightforward, since observable
actions emerge from the interaction between the internal probabilistic model
of the agent and a set of discrete environmental states.

Performance in WCST is usually measured via a rough summary metric
such as the number of correct/incorrect responses or pre-defined psycho-
logical scoring criteria (see for instance (Heaton, 1981)). These metrics are
then used to infer the underlying cognitive processes involved in the task. A
major shortcoming of this approach is that it simply assumes the cognitive
processes to be inferred without specifying an explicit process model. Moreover,
summary measures do not utilize the full information present in the data,
such as trial-by-trial fluctuations or various interesting agent-environment
interactions. For this reason, crude scoring measures are often insufficient to
disentangle the dynamics of the relevant cognitive (sub)processes involved.
Consequently, an entanglement between processes at the metric level can
prevent us from answering interesting research questions about aspects of
adaptive behavior.

In our view, a sound computational account for adaptive behavior in the
WCST needs to provide at least a quantitative measure of effective belief
updating about the environmental states at each trial. This measure should be
complemented by a measure of how feedback-related information influences
behavior. The first measure should account for the integration of meaningful
information. In other words, it should describe how prior beliefs about the
current environmental state change after an observation has been made. The
second measure should account for signaling the (im)probability of observing
a certain environmental configuration (e.g., an (un)expected feedback given a
response) (Schwartenbeck et al., 2016).

Indeed, recent studies suggest that the meaningful information content
and the pure unexpectedness of an observation are processed differently at
the neural level. Moreover, such disentanglement appears to be of crucial
importance to the understanding of how new information influences adaptive
behavior (Nour et al., 2018; Schwartenbeck et al., 2016; O’Reilly et al., 2013).
Inspired by these results and previous computational proposals (Koechlin
and Summerfield, 2007), we integrate these different information processing
aspects into the current model from an information-theoretic perspective.

Our computational cognitive model draws heavily on the mathematical
frameworks of Bayesian probability theory and information theory (Sayood,
2018). First, it provides a parsimonious description of observed data in the
WCST via two neurocognitively meaningful parameters, namely, flexibility
and information loss (to be motivated and explained in the model section).
Moreover, it captures the main response patterns obtainable in the WCST
via different parameter configurations. Second, we formulate a functional
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connection between cognitive parameters and underlying information pro-
cessing mechanisms related to belief updating and prediction formation. We
formalize and distinguish between Bayesian surprise and Shannon surprise as
the main mechanisms for adaptive belief updating. Moreover, we introduce a
third quantity, which we named predictive Entropy and which quantifies an
agent’s subjective uncertainty about the current internal model. Finally, we
propose to measure these quantities on a trial-by-trial basis and use them as a
proxy for formally representing the dynamic interplay between agents and
environments.

The rest of the work is organized as follows. First, the WCST is described
in more detail and a mathematical representation of the new Bayesian compu-
tational model is provided. Afterwards, we explore the model’s characteristics
through simulations and perform parameter recovery on simulated data us-
ing a powerful Bayesian deep neural network method (Radev et al., 2020).
We then apply the model to real behavioral data from an already published
dataset. Finally, we discuss the results as well as the main strengths and
limitations of the proposed model.

5.2 The Wisconsin Card Sorting Test

In a typical WCST (Heaton, 1981; Berg, 1948), participants learn to pay atten-
tion and respond to relevant stimulus features, while ignoring irrelevant ones,
as a function of experimental feedback. In particular, Individuals are asked
to match a target card with one of four stimulus cards according to a proper
sorting principle, or sorting rule. Each card depicts geometric figures that
vary in terms of three features, namely, color (red, green, blue, yellow), shape
(triangle, star, cross, circle) and number of objects (1, 2, 3 and 4). For each trial,
the participant is required to identify the sorting rule which is valid for that
trial, that is, which of the three feature has to be considered as a criterion to
matching the target card with the right stimulus card (see Figure 5.1). Notice
that both features and sorting rules refer to the same concept. However, the
feature still codifies a property of the card, whilst the sorting rule refers to the
particular feature which is valid for the current trial.
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FIGURE 5.1: Suppose that the current sorting rule is the feature
shape. The target card in the first trial (left box) contains two blue
triangles. A correct response requires that the agent matches the
target card with the stimulus card containing the single triangle
(arrow represents the correct choice), regardless of the features
color and number. The same applies for the second trial (right
box) in which matching the target card with the stimulus card

containing three yellow crosses is the correct response.

Each response in the WCST is followed by a feedback informing the partici-
pant if his/her response is correct or incorrect. After some fixed number of con-
secutive responses, the sorting rule is changed by the experimenter without
warning, and participants are required to infer the new sorting rule. Clearly,
the most adaptive response would be to explore the remaining possible rules.
However, participants sometimes would persist responding according to the
old rule and produce what is called a perseverative response.

5.3 Methods

5.3.1 The Model

The core idea behind our computational framework is to encode the concept of
belief into a generative probabilistic model of the environment. Belief updating
then corresponds to recursive Bayesian updating of the internal model based
on current and past interactions between the agent and its environment.
Optimal or sub-optimal actions are selected according to a well specified or
a misspecified internal model and, in turn, cause perceptible changes in the
environment.

We assume that the cognitive agent aims to infer the true hidden state of
the environment by processing and integrating sensory information from
the environment. Within the context of the WCST, the hidden environmental
states might change as a function of both the structure of the task and the (often
sub-optimal) behavioral dynamics, so the agent constantly needs to rely on
environmental feedback and own actions to infer the current state. We assume
that the agent maintains an internal probability distribution over the states at
each individual trial of the WCST. The agent then updates this distribution
upon making new observations. In particular, the hidden environmental
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states to be inferred are the three features, st ∈ {1, 2, 3}, which refer the three
possible sorting rules in the task environment such that 1: color, 2: shape and
3: number of objects. The posterior probability of the states depends on an
observation vector xt = (at, ft), which consists of the pair of agent’s response
at ∈ {1, 2, 3, 4}, codifying the action of choosing deck 1, 2, 3 or 4, and received
feedback ft ∈ {0, 1}, referring to the fact that a given response results in a
failure (0) or in a success (1), in a given trial t = 0, ..., T. The discrete response
at represents the stimulus card indicator being matched with a target card
at trial t. We denote a sequence of observations as x0:t = (x0, x1, ..., xt) =
((a0, f0), (a1, f1), (a2, f2), ..., (at, ft)) and set x0 = ∅ in order to indicate that
there are no observations at the onset of the task. Thus, trial-by-trial belief
updating is recursively computed according to Bayes’ rule:

p(st|x0:t) =
p(xt|st, x0:t−1)p(st|x0:t−1)

p(xt|x0:t−1)
(5.1)

Accordingly, the agent’s posterior belief about the task-relevant features st
after observing a sequence of response-feedback pairs x0:t is proportional to
the product of the likelihood of observing a particular response-feedback pair
and the agent’s prior belief about the task-relevant feature in the current trial.
The likelihood of an observation is computed as follows:

p(xt|st, x0:t−1) =
ft p(at|st = i) + (1− ft)(1− p(at|st = i))

ft ∑j p(at|st = j) + (1− ft)∑j(1− p(at|st = j))
(5.2)

where j = 1, 2, 3 and p(at|st = i) indicates the probability of a matching
between the target and the stimulus card assumed that the current feature is i.
Here, we assume the likelihood of a current observation to be independent
from previous observations without loss of generality, that is:

p(xt|st, x0:t−1) = p(xt|st)

The prior belief for a given trial t is computed based on the posterior belief
generated in the previous trial, p(st−1|x0:t−1), and the agent’s belief about
the probability of transitions between the hidden states, p(st|st−1). The prior
belief can also be considered as a predictive probability over the hidden states.
The predictive distribution for an upcoming trial t is computed according to
the Chapman-Kolmogorov equation:

p(st+1 = k|x0:t) =
3

∑
i=1

p(st+1 = k|st = i, Γ(t))p(st = i|x0:t) (5.3)

where Γ(t) represents a stability matrix describing transitions between the
states (to be explained shortly). Thus, the agent combines information from
the updated belief (posterior distribution) and the belief about the transition
properties of the environmental states to predict the most probable future
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state. The predictive distribution represents the internal model of the cognitive
agent according to which actions are generated.

The stability matrix Γ(t) encodes the agent’s belief about the probability
of states being stable or likely to change in the next trial. In other words, the
stability matrix reflects the cognitive agent’s internal representation of the
dynamic probabilistic model of the task environment. It is computed on each
trial based on the response-feedback pair, xt, and a matching signal, mt, which
are observed.

The matching signal mt is a vector informing the cognitive agent which fea-
tures are currently relevant (meaningful), such that m(i)

t = 1 when a positive
feedback is associated with a response implying feature st = i, and m(i)

t = 0
otherwise. Note, that the matching signal is not a free parameter of the model,
but is completely determined by the task contingencies. The matching signal
vector allows the agent to compute the state activation level ω

(i)
t ∈ [0, 1] for the

hidden state st = i, which provides an internal measure of the (accumulated)
evidence for each hidden state at trial t. Thus, the activation levels of the
hidden states are represented by a vector ωt. The stability matrix is a square
and asymmetric matrix related to hidden state activation levels such that:

Γ(t) =
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ω
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t
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where the entries Γii(t) in the main diagonal represent the elements of the
activation vector ωt, and the non-diagonal elements are computed so as to
ensure that rows sum to 1. The state activation vector is computed in each
trial as follows:
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 . (5.5)

This equation reflects the idea that state activations are simultaneously affected
by the observed feedback, ft, and the matching signal vector, mt. However,
the matching signal vector conveys different information based on the current
feedback. Matching a target card with a stimulus card makes a feature (or a
subset of features) informative for a specific state. The vector mt contributes
to increase the activation level of a state if the feature is informative for that
state when a positive feedback is received, as well as to decrease the activation
level when a negative feedback is received.

The parameter λ ∈ [0, 1] modulates the efficiency to disengage attention to
a given state-activation configuration when a negative feedback is processed.
We therefore term this parameter flexibility. We also assume that information
from the matching signal vector can degrade by slowing down the rate of
evidence accumulation for the hidden states. This means that the matching
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signal vector can be re-scaled based on the current state activation level. The
parameter δ ∈ [0, 1] is introduced to achieve this re-scaling. When δ = 0, there
is no re-scaling and updating of the state activation levels relies on the entire
information conveyed by mt. On the other extreme, when δ = 1, several trials
have to be accomplished before converging to a given configuration of the
state activation levels. Equivalently, higher values of δ affect the entropy of
the distribution over hidden states by decreasing the probability of sampling
of the correct feature. We therefore refer to δ as information loss.

The free parameters λ and δ are central to our computational model, since
they regulate the rate at which the internal model converges to the true task
environmental model. Eq. (5) can be expressed in compact notation as follows:

ωt = ftω
δ
t−1mt + λ

[
(1− ft)ω

δ
t−1(1−mt)

]
ωt−1 (5.6)

Note that the information loss parameter δ affects the amount of information
that a cognitive agent acquires from environmental contingencies, irrespective
of the type of feedback received. Global information loss thus affects the
rate at which the divergence between the agent’s internal model and the true
model is minimized. Figure 5.2 illustrates these ideas.

The probabilistic representation of adaptive behaviour provided by our
Bayesian agent model allows us to quantify latent cognitive dynamics by
means of meaningful information-theoretic measures. Information theory has
proven to be an effective and natural mathematical language to account for
functional integration of structured cognitive processes and to relate them
to brain activity (Koechlin and Summerfield, 2007; Friston et al., 2017a; Col-
lell and Fauquet, 2015; Strange et al., 2005; Friston, 2003). In particular, we
are interested in three key measures, namely, Bayesian surprise, Bt, Shannon
surprise, It, and entropy, Ht. The subscript t indicates that we can compute
each quantity on a trial-by-trial basis. Each quantity is amenable to a specific
interpretation in terms of separate neurocognitive processes. Bayesian sur-
prise Bt quantifies the magnitude of the update from prior belief to posterior
belief. Shannon surprise It quantifies the improbability of an observation
given an agent’s prior expectation. Finally, entropyHt measures the degree of
epistemic uncertainty regarding the true environmental states. Such measures
are thought to account for the ability of the agent to manage uncertainty as
emerging as a function of competing behavioral affordances (Hirsh et al., 2012).
We expect an adaptive system to attenuate uncertainty over environmental
states (current features) by reducing the entropy of its internal probabilistic
model.

Bayesian surprise can be computed as the Kullback–Leibler (KL) diver-
gence between prior and posterior beliefs about the environmental states.
Thus, Bayesian surprise accounts for the divergence between the predictive
model for the current trial and the updated predictive model for the upcoming
trial. It is computed as follows:
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FIGURE 5.2: Suppose the correct sorting rule is the feature shape.
The figure shows the rate of convergence of the predictive dis-
tributions to the true task environmental model. The predictive
distributions at trial t + 1 depends on the sorting action at (first
row) and the received feedback ft (second row). Two examples
of updating a predictive distribution are shown: one in which
information loss is high (δ = 0.7, third row), and one in which
information loss is low (δ = 0.3, fifth row). High information
loss slows down the convergence of the internal model to the
true environmental model. The gray bar plots represent the
predictive probability distribution over the rules from which
an action is sampled at each trial. Dotted bars represent the
updated predictive distribution after the feedback observation.
For each scenario, trial-by-trial information-theoretic measures

are shown.
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Bt = KL[p(st+1|x0:t)||p(st|x0:t−1)]

=
3

∑
i=1

[
p(st+1 = i|x0:t) log

(
p(st+1 = i|x0:t)

p(st = i|x0:t−1)

)]
(5.7)

The Shannon surprise of a current observation given a previous one is com-
puted as the conditional information content of the observation:

It = − log p(xt|x0:t−1)

= − log
3

∑
i=1

[p(xt|st = i)p(st = i|x0:t−1)]
(5.8)

Finally, the entropy is computed over the predictive distribution in order to
account for the uncertainty in the internal model of the agent in trial t as
follows:

Ht = E [− log p(st|x0:t−1)]

= −
3

∑
i=1

p(st = i|x0:t−1) log p(st = i|x0:t−1)
(5.9)

Once the flexibility (λ) and information loss (δ) parameters are estimated
from data, the information-theoretic quantities can be easily computed and
visualized for each trial of the WCST (see Figure 5.2). This allows to rephrase
standard neurocognitive constructs in terms of measurable information-theoretic
quantities. Moreover, the dynamics of these quantities, as well as their in-
teractions, can be used for formulating and testing hypotheses about the
neurocognitive underpinnings of adaptive behavior in a principled way, as
discussed later in the text. A summary of all quantities relevant for our
computational model is provided in Table 5.1.

5.3.2 Simulations

In this section we evaluate the expressiveness of the model by assessing
its ability to reproduce meaningful behavioral patterns as a function of its
two free parameters. We study how the generative model behaves when
performing the WCST in a 2-factorial simulated Monte Carlo design where
flexibility (λ) and information loss (δ) are systematically varied.

In this simulation, the Heaton version of the task (Heaton, 1981) is admin-
istered to the Bayesian cognitive agent. In this particular version, the sorting
rule (true environmental state) changes after a fixed number of consecutive
correct responses. In particular, when the agent correctly matches the target
card in 10 consecutive trials, the sorting rule is automatically changed. The
task ends after completing a maximum of 128 trials.
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Expression Name Description

st ∈ {1, 2, 3} Sorting rule Card feature relevant for the sorting crite-
rion in trial t.

at ∈ {1, 2, 3, 4} Choice action Action of choosing one of the four stimulus
cards in trial t.

ft ∈ {0, 1} Feedback Indicates whether the action of matching
a stimulus to a target card is correct or not
in trial t.

xt = (at, ft) Observation Pair of action and feedback which consti-
tutes the agent’s observation in trial t.

Γ(t) Stability matrix Matrix encoding the agent’s beliefs about
state transitions from trial t to the next trial
t + 1.

λ ∈ [0, 1] Flexibility Parameter encoding the efficiency to disen-
gage attention from a currently attended
hidden state when signaled by the environ-
ment.

δ ∈ [0, 1] Information loss Parameter encoding how efficiently the
agent’s internal model converges to the
true environmental model based on expe-
rience.

m(i)
t ∈ {0, 1} Matching signal Signal indicating whether feature i is rel-

evant in trial t based on the feedback re-
ceived.

ω
(i)
t ∈ [0, 1] State activation level Agent’s internal measure of the accrued ev-

idence for the hidden environmental state
i in trial t.

Bt ∈ R+ Bayesian surprise Kullback-Leibler divergence between prior
and posterior beliefs about hidden environ-
mental states in trial t.

It ∈ R+ Shannon surprise Information-theoretic surprise encoding
the improbability or unexpectedness of an
observation in trial t.

Ht ∈ R+ Entropy Degree of epistemic uncertainty in the in-
ternal model of the environment in trial
t.

TABLE 5.1: Descriptive summary of all quantities involved in
our model representation.
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Generative Model

The cognitive agent’s responses are generated at each time step (trial) by
processing the experimental feedback. Its performance depends on the param-
eters governing the computation of the relevant quantities. The generative
algorithm is outlined in Algorithm 1.

Algorithm 1 Bayesian cognitive agent

1: Set parameters θ = (λ, δ).
2: Set initial activation levels ω0 = (0.5, 0.5, 0.5).
3: Set initial observation x0 = ∅ and p(s1|x0) = p(s1).
4: for t = 1, ..., T do
5: Sample feature from prior/predictive internal model st ∼ p(st|x0:t−1).
6: Obtain a new observation xt = (at, ft).
7: Compute state posterior p(st|x0:t).
8: Compute new activation levels ωt.
9: Compute stability matrix Γ(t).

10: Update prior/predictive internal model to p(st+1|x0:t).
11: end for

Simulation 1: Clinical Assessment of the Bayesian Agent

Ideally, the qualitative performance of the Bayesian cognitive agent will re-
semble human performance. To this aim, we adopt a metric which is usually
employed in clinical assessment of test results in neurological and psychi-
atric patients (Braff et al., 1991; Zakzanis, 1998; Bechara and Damasio, 2002;
Landry and Al-Taie, 2016). Thus, agent performance is codified according to
a neuropsychological criterion (Heaton, 1981; Flashman et al., 1991) which
allows to classify responses into several response types. These response types
provide the scoring measures for the test.

Here, we are interested in: 1) non-perseverative errors (E); 2) perseverative
errors (PE); 3) number of trials to complete the first category (TFC); and 4)
number of failures to maintain set (FMS). Perseverative errors occur when
the agent applies a sorting rule which was valid before the rule has been
changed. Usually, detecting a perseveration error is far from trivial, since
several response configurations could be observed when individuals are
required to shift a sorting rule after completing a category (see (Flashman
et al., 1991) for details). On the other hand, non-perseverative errors refer to
all errors which do not fit the above description, or in other words, do not
occur as a function of changing the sorting rule, such as casual errors.

The number of trials to complete the first category tells us how many trials
the agent needs in order to achieve the first sorting principle, and can be
seen as an index of conceptual ability (Anderson, 2010; Singh et al., 2017).
Finally, a failure to maintain a set occurs when the agent fails to match cards
according to the sorting rule after it can be determined that the agent has
acquired the rule. A given sorting rule is assumed to be acquired when the
individual correctly sorts at least five cards in a row (Heaton, 1981; Figueroa



5.3. Methods 65

and Youmans, 2013). Thus, a failure to maintain a set arises whenever a
participant suddenly changes the sorting strategy in the absence of negative
feedback. Failures to maintain a set are mostly attributed to distractibility.
We compute this measure by counting the occurrences of first errors after the
acquisition of a rule.
We run the generative model by varying flexibility across four levels, λ ∈
{0.3, 0.5, 0.7, 0.9}, and information loss across three levels, δ ∈ {0.4, 0.7, 0.9}.
We generate data from 150 synthetic cognitive agents per parameter combina-
tion and compute standard scoring measures for each of the agents simulated
responses. Results from the simulation runs are depicted in Table 5.2 and a
graphical representation is provided in Figure 5.3.

Measure Info. Loss (δ)
Flexibility (λ)

λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

E
δ = 0.4 9.07 (2.68) 7.95 (2.07) 7.50 (2.13) 6.85 (1.75)
δ = 0.7 10.84 (2.35) 9.60 (2.2) 8.25 (2.23) 7.37 (1,74)
δ = 0.9 12.75 (2.96) 11.25 (2.43) 9.12 (2.09) 7.79 (1.73)

PE
δ = 0.4 20.81 (2.27) 18.18 (1.88) 14.99 (1.88) 12.37 (1.12)
δ = 0.7 19.77 (2.55) 17.65 (2.26) 15.42 (1.94) 12.39 (1.47)
δ = 0.9 18.56 (2.76) 16.58 (2.53) 14.49 (2.03) 12.33 (1.44)

TFC
δ = 0.4 12.20 (1.46) 11.91 (1.35) 11.83 (1.24) 11.67 (1.04)
δ = 0.7 13.82 (2.76) 13.32 (2.52) 12.97 (2.13) 12.29 (1.53)
δ = 0.9 17.27 (4.21) 16.63 (4.04) 14.39 (3.58) 12.91 (1.91)

FMS
δ = 0.4 0.11 (0.31) 0.09 (0.31) 0.05 (0.32) 0.02 (0.14)
δ = 0.7 1.65 (1.4) 1.41 (1.3) 0.84 (0.91) 0.35 (0.69)
δ = 0.9 4.44 (1.96) 3.88 (1.86) 2.79 (1.56) 1.54 (1.25)

TABLE 5.2: Mean clinical scoring measures as functions of flexi-
bility (λ) and information loss (δ). Cells show the average scores
across simulated agents (standard deviation is shown in paren-

thesis).

The simulated performance of our Bayesian cognitive agents demonstrates
that different parameter combinations capture different meaningful behavioral
patterns. In other words, flexibility and information loss seem to interact in a
theoretically meaningful way.

First, overall errors increase when flexibility (λ) decreases, which is re-
flected by the inverse relation between the number of casual, as well as
perseverative, errors and the values of parameter λ. Moreover, this pattern
is consistent across all the levels of parameter δ. More precisely, information
loss (δ) seems to contribute to the characterization of the casual and the per-
severative components of the error in a different way. Perseverative errors
are likely to occur after a sorting rule has changed and reflect the inability of
the agent to use feedback to disengage attention from the currently attended
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FIGURE 5.3: Clinical scoring measures as functions of flexibility
(λ) and information loss (δ) - simulated scenarios. The different
cells show the violin plots for the estimated distribution densities
of the scoring measures obtained from the group of synthetic
individuals, for the levels of λ across different levels of δ. In
particular, they show the distribution of non-perseverative errors
(E), perseverative errors (PE), number of trials to complete the
first category (TFC), number of failures to maintain set (FMS)
obtained from 150 synthetic agent’s response simulations for

each cell of the factorial design.
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feature. They therefore result from local cognitive dynamics conditioned on a
particular stage of the task (e.g., after completing a series of correct responses).

Second, information loss does not interact with flexibility when persevera-
tive errors are considered. This is due to the fact that high information loss
affects general performance by yielding a dysfunctional response strategy
which increases the probability of making an error at any stage of the task.
The lack of such interaction provides evidence that our computational model
can disentangle between error patterns due to perseveration and those due to
general distractibility, according to neuropsychological scoring criteria.

However, in our framework, flexibility (λ) is allowed to yield more general
and non-local cognitive dynamics as well. Indeed, λ plays a role whenever
belief updating is demanded as a function of negative feedback. An error clas-
sified as non-perseverative (e.g., casual error) by the scoring criteria might still
be processed as a feedback-related evidence for belief updating. Consistently,
the interaction between λ and δ in accounting for causal errors shows that
performance worsens when both flexibility and information loss become less
optimal, and that such pattern becomes more pronounced for lower values of
δ.

On the other hand, a specific effect of information loss (δ) can be ob-
served for the scoring measures related to slow information processing and
distractibility. The number of trials to achieve the first category reflects the
efficiency of the agent in arriving at the first true environmental model. Flexi-
bility does not contribute meaningfully to the accumulation of errors before
completing the first category for some levels of information loss. This is re-
flected by the fact that the mean number of trials increases as a function of δ,
and do not change across levels of λ for low and mid values of δ. A similar
pattern applies for failures to maintain a set. Both scoring measures index a
deceleration of the process of evidence accumulation for a specific environ-
mental configuration, although the latter is a more exhaustive measures of
dysfunctional adaptation.

Therefore, an interaction between parameters can be observed when infor-
mation loss is high. A slow internal model convergence process increases the
amount of errors due to improper rule sampling from the internal environ-
mental model. However, internal model convergence also plays a role when
a new category has to be accomplished after completing an older one. On
the one hand, compromised flexibility increases the amount of errors due to
inefficient feedback processing. This leads to longer trial windows needed to
achieve the first category. On the other hand, when information loss is high,
belief updating upon negative feedback is compromised due to high internal
model uncertainty. At this point, the probability to err due to distractibility
increases, as accounted by the failures to maintain a set measures.

Finally, the joint effect of δ and λ for high levels of information loss sug-
gests that the roles played by the two cognitive parameters in accounting
for adaptive functioning can be entangled when neuropsychological scoring
criteria are considered.
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Simulation 2: Information-Theoretic Analysis of the Bayesian Agent

In the following, we explore a different simulation scenario in which information-
theoretic measures are derived to assess performance of the Bayesian cognitive
agent. In particular, we explore the functional relationship between cognitive
parameters and the dynamics of the recovered information-theoretic measures
by simulating observed responses by varying flexibility across three levels,
λ ∈ {0.1, 0.5, 0.9}, and information loss across three levels, δ ∈ {0.1, 0.5, 0.9}.

For this simulation scenario, we make no prior assumptions about sub-
types of error classification. Instead, we investigate the dynamic interplay
between Bayesian surprise, Bt, Shannon surprise, It, and entropy,Ht over the
entire course of 128 trials in the WCST.

FIGURE 5.4: Information-theoretic measures varying as a func-
tion of flexibility λ and information loss δ across 128 trials of
the WCST. Optimal belief updating and uncertainty reduction
are achieved with low information loss and high flexibility (first

row, third column).

Figure 5.4 depicts results from the nine simulation scenarios. Although an
exhaustive discussion on cognitive dynamics should couple information-
theoretic measures with patterns of correct and error responses, we focus
solely on the information-theoretic time series for illustrative purposes. We
refer to the application section for a more detailed description of the relation
between observed responses and estimated information-theoretic measures in
the context of data from a real experiment.

Again, simulated performance of the Bayesian cognitive agent shows that
different parameter combinations yield different patterns of cognitive dy-
namics. Observed spikes and their related magnitudes signal informative
task events (e.g., unexpected negative feedback), as accounted by Shannon
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surprise, or belief updating, as accounted by Bayesian surprise. Finally, en-
tropy encodes the epistemic uncertainty about the environmental model on a
trial-by-trial basis.

In general, low information loss (δ) ensures optimal behavior by speeding
up internal model convergence by decreasing the number of trials needed
to minimize uncertainty about the environmental states. Low uncertainty
reflects two main aspects of adaptive behavior. On the one hand, the prob-
ability that a response occurs due to sampling of improper rules decreases,
allowing the agent to prevent random responses due to distractibility. On the
other hand, model convergence entails a peaked Shannon surprise when a
negative feedback occurs, due to the divergence between predicted and actual
observations.

Flexibility (λ) plays a crucial role in integrating feedback information in
order to enable belief updating. The first row depicted in Figure 5.4 shows
cognitive dynamics related to low information loss, across the levels of flexi-
bility. As can be noticed, there is a positive relation between the magnitude
of the Bayesian surprise and the level of flexibility, although unexpectedness
yields approximately the same amount of signaling, as accounted by peaked
Shannon surprise. From this perspective, surprise and belief updating can
be considered functionally separable, where the first depends on the partic-
ular internal model probability configuration related to δ, whilst the second
depends on flexibility λ.

However, more interesting patterns can be observed when information
loss increases. In particular, model convergence slows down and several
trials are needed to minimize predictive model entropy. Casual errors might
occur within trial windows characterized by high uncertainty, and interac-
tions between entropy and Shannon surprise can be observes in such cases.
In particular, Shannon surprise magnitude increases when model’s entropy
decreases, that is, during task phases in which the internal model has already
converged. As a consequence, negative feedback could be classified as in-
formative or uninformative, based on the uncertainty in the current internal
model. This is reflected by the negative relation between entropy and Shannon
surprise, as can be noticed by inspecting the graphs depicted in the third row
of Figure 5.4. Therefore, the magnitude of belief updating depends on the
interplay between entropy and Shannon surprise, and can differ based on the
values of the two measures in a particular task phase.

In sum, both simulation scenarios suggest that the simulated behavior of
our generative model is in accord with theoretical expectations. Moreover, the
flexibility and information loss parameters can account for a wide range of
observed response patterns and inferred dynamics of information processing.

5.3.3 Parameter Estimation

In this section, we discuss the computational framework for estimating the
parameters of our model from observed behavioral data. Parameter estimation
is essential to inferring the cognitive dynamics underlying observed behavior
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in real-world applications of the model. This section is slightly more technical
and can be skipped without significantly affecting the flow of the text.

Computational Framework

Rendering our cognitive model suitable for application in real-world contexts
also entails accounting for uncertainty about parameter estimates. Indeed,
uncertainty quantification turns out to be a fundamental and challenging goal
when first-level quantities, that is, cognitive parameter estimates, are used to
recover (second-level) information-theoretic measures of cognitive dynamics.
The main difficulties arise when model complexity makes estimation and
uncertainty quantification intractable at both analytical and numerical levels.
For instance, in our case, probability distributions for the hidden model are
generated at each trial, and the mapping between hidden states and responses
changes depending on the structure of the task environment.

Identifying such a dynamic mapping is relatively easy from a generative
perspective, but it becomes challenging, and almost impossible, when inverse
modeling is required. Generally, this problem arises when the likelihood
function relating model parameters to the data is not available in closed-form
or too complex to be practically evaluated (Sisson and Fan, 2011). To over-
come these limitations, we apply the first version of the recently developed
BayesFlow method (see (Radev et al., 2020) for mathematical details). At a
high-level, BayesFlow is a simulation-based method that estimates parame-
ters and quantifies estimation uncertainty in a unified Bayesian probabilistic
framework when inverting the generative model is intractable. The method is
based on recent advances in deep generative modeling and makes no assump-
tions about the shape of the true parameter posteriors. Thus, our ultimate
goal becomes to approximate and analyze the joint posterior distribution over
the model parameters. The parameter posterior is given via an application of
Bayes’ rule:

p(θ|x0:T, m0:T) =
p(x0:T, m0:T|θ)p(θ)∫
p(x0:T, m0:T|θ)p(θ)dθ

(5.10)

where we set θ = (λ, δ) and stack all observations and matching signals into
the vectors x0:T = (x0, x1, ..., xT) and m0:T = (m0, m1, ..., mT), respectively.
The BayesFlow method uses simulations from the generative model to opti-
mize a neural density estimator which learns a probabilistic mapping between
raw data and parameters. It relies on the fact that data can easily be simu-
lated by repeatedly running the generative model with different parameter
configurations θ sampled from the prior. During training, the neural network
estimator iteratively minimizes the divergence between the true posterior
and an approximate posterior. Once the network has been trained, we can
efficiently obtain samples from the approximate joint posterior distribution of
the cognitive parameters of interest, which can be further processed in order to
extract meaningful summary statistics (e.g., posterior means, medians, modes,
etc.). Importantly, we can apply the same pre-trained inference network to
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an arbitrary number of real or simulated data sets (i.e., the training effort
amortizes over multiple evaluations of the network).

For our purposes of validation and application, we train the network for
50 epochs which amount to 50000 forward simulations. As a prior, we use
a bivariate continuous uniform distribution p(θ) ∼ U ([0, 0], [1, 1]). We then
validate performance on a separate validation set of 1000 simulated data sets
with known ground-truth parameter values. Training the networks took less
than a day on a single machine with an NVIDIA R© GTX1060 graphics card
(CUDA version 10.0) using TensorFlow (version 1.13.1) ((Abadi et al., 2016)).
In contrast, obtaining full parameter posteriors from the entire validation set
took approximately 1.78 seconds. In what follows, we describe and report all
performance validation metrics.

Performance Metrics and Validation Results

To assess the accuracy of point estimates, we compute the root mean squared
error (RMSE) and the coefficient of determination (R2) between posterior
means and true parameter values. To assess the quality of the approximate
posteriors, we compute a calibration error (Radev et al., 2020) of the empirical
coverage of each marginal posterior Finally, we implement simulation-based
calibration (SBC, (Talts et al., 2018)) for visually detecting systematic biases in
the approximate posteriors.
Point Estimates. Point estimates obtained by posterior means as well as cor-
responding RMSE and R2 metrics are depicted in Figure 5.5A-B. Note, that
point estimates do not have any special status in Bayesian inference, as they
could be misleading depending on the shape of the posteriors. However,
they are simple to interpret and useful for ease-of-comparison. We observe
that pointwise recovery of λ is better than that of δ. This is mainly due to
suboptimal pointwise recovery in the lower (0, 0.1) range of δ. This pattern is
evident in Figure 5.5A-B and is due to the fact that δ values in this range pro-
duce almost indistinguishable data patterns. Bootstrap estimates yielded an
average RMSE of 0.155 (SD = 0.004) and an average R2 of 0.708 (SD = 0.015)
for the δ parameter. An average RMSE of 0.094 (SD = 0.002) and an average
R2 of 0.895 (SD = 0.007) were obtained for the λ parameter. These results
suggest good global pointwise recovery but also warrant the inspection of full
posteriors, especially in the low ranges of δ.
Full Posteriors. Average bootstrap calibration error was 0.011 (SD = 0.005) for
the marginal posterior of δ and 0.014 (SD = 0.007) for the marginal posterior
of λ. Calibration error is perhaps the most important metric here, as it mea-
sures potential under- or overconfidence across all confidence intervals of the
approximate posterior (i.e., an α-confidence interval should contain the true
posterior with a probability of α, for all α ∈ (0, 1)). Thus, low calibration error
indicates a faithful uncertainty representation of the approximate posteriors.
Additionally, SBC-histograms are depicted in Figure 5.5C-D. As shown by
(Talts et al., 2018), deviations from the uniformity of the rank statistic (also
know as a PIT histogram) indicate systematic biases in the posterior esti-
mates. A visual inspection of the histograms reveals that the posterior means
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FIGURE 5.5: Parameter recovery results on validation data; (A
and B) Posterior means vs. true parameter values; (C and D)
Histograms of the rank statistic used for simulation-based cali-
bration; (E-H) Example full posteriors for two validation data
sets; (I and J) Example information-theoretic dynamics recov-

ered from the parameter posteriors.

slightly overestimate the true values of δ. This corroborates the pattern seen
in Figure 5.5A-B for the lower range of δ.

Finally, Figure 5.5E-H depicts the full marginal posteriors on two example
validation sets. Even on these two data sets, we observe strikingly different
posterior shapes. The marginal posterior of δ obtained from the first data set is
slightly left-skewed and has its density concentrated over the (0.8, 1.0) range.
On the other hand, the marginal posterior of δ from the second data set is
noticeably right-skewed and peaked across the lower range of the parameter.
The marginal posteriors of λ appear more symmetric and warrant the use
of the posterior mean as a useful summary of the distribution. These two
examples underline the importance of investigating full posterior distributions
as a means to encode epistemic uncertainty about parameter values. Moreover,
they demonstrate the advantage of imposing no distributional assumptions
on the resulting posteriors, as their form and sharpness can vary widely
depending on the concrete data set.

5.4 Application

In this section we fit the Bayesian cognitive model to real clinical data. The aim
of this application is to evaluate the ability of our computational framework
to account for dysfunctional cognitive dynamics of information processing in
substance dependent individuals (SDI) as compared to healthy controls.
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5.4.1 Rationale

The advantage of modeling cognitive dynamics in individuals from a clinical
population is that model predictions can be examined in light of available evi-
dence about individual performance. For instance, SDIs are known to demon-
strate inefficient conceptualization of the task and dysfunctional, error-prone
response strategies. This has been attributed to defective error monitoring and
behavior modulation systems, which depend on cingulate and frontal brain
regions functionality (Kübler et al., 2005; Willuhn et al., 2003). On the other
hand, the WCST should be a rather easy and straightforward task for healthy
participants to obtain excellent performance. Therefore, we expect our model
to consistently capture such characteristics. To test these expectations, we
estimate the two relevant parameters λ and δ from both clinical patients and
healthy controls from an already published dataset (Bechara and Damasio,
2002).

5.4.2 The Data

The dataset used in this application consists of responses collected by admin-
istering the standard Heaton version of the WCST (Heaton, 1981) to healthy
participants and SDIs. In this version of the task, the sorting rule changes
when a participant collects a series of 10 consecutive correct responses, and the
task ends when this happens for 6 times. Participants in the study consisted of
39 SDIs and 49 healthy individuals. All participants were adults (> 18 years
old) and gave their informed consent for inclusion which was approved by the
appropriate human subject committee at the University of Iowa. SDIs were
diagnosed as substance dependent based on the Structured Clinical Interview
for DSM-IV criteria (First, 1997).

5.4.3 Model Fitting

We fit the Bayesian cognitive agent separately to data from each participant in
order to obtain individual-level posterior distributions. We apply the same
BayesFlow network trained for the previous simulation studies, so obtaining
posterior samples for each participant is almost instant (due to amortized
inference).

5.4.4 Results

The means of the joint posterior distributions are depicted for each individual
in Figure 5.6, and provide a complete overview of the heterogeneity in cog-
nitive sub-components at both individual and group levels (individual-level
full joint posterior distributions can be found in the Appendix B).
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FIGURE 5.6: Joint posterior mean coordinates of the cognitive
parameters, flexibility (λ) and information loss (δ), estimated for
each individual. We observe a great heterogeneity in the distri-
bution of posterior means, most pronouncedly for the flexibility
parameter. However, a moderate between-subject variability in

information loss can still be observed in both groups.

The estimates reveal a rather interesting pattern across both healthy and
SDI participants. In particular, in both clinical and control groups, individ-
uals with a poor flexibility (e.g., low values of λ) can be detected. However,
the group parameter space appears to be partitioned into two main clusters
consisting of individuals with high and low flexibility, respectively. As can
be noticed, the majority of SDIs belongs to the latter cluster, which suggests
that the model is able to capture error-related defective behavior in the clin-
ical population and attribute it specifically to the flexibility parameter. On
the other hand, individual performance seems hardly separable along the
information loss parameter dimension.

As a further validation, we compare the classification performance of two
logistic regression models. The first uses the estimated parameter means as
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inputs and the participants’ binary group assignment (patient vs. control)
as an outcome. The second uses the four standard clinical measures (non-
perseverative errors (E), perseverative errors (PE), number of trials to complete
the first category (TFC), number of failures to maintain set (FMS) computed
from the sample as inputs and the same outcome. Since we are interested
solely in classification performance and want to mitigate potential overfitting
due to small sample size, we compute leave-one-out cross-validated (LOO-CV)
performance for both models. Interestingly, both logistic regression models
achieve the same accuracy of 0.70, with a sensitivity of 0.71 and specificity of
0.70. Thus, it appears that our model is able to differentiate between SDIs and
healthy individuals as good as the standard clinical measures.

However, as pointed out in the previous sections, estimated parameters
serve merely as a basis to reconstruct cognitive dynamics by means of the
trial-by-trial unfolding of information-theoretic measures. Moreover, cogni-
tive dynamics can only be analysed and interpreted by relying on the joint
contribution of both estimated parameters and individual-specific observed
response patterns.

To further clarify this concept, we investigate the reconstructed time series
of information-theoretic quantities based on the response patterns of two ex-
emplary individuals (Figure 5.7). In particular, Figure 5.7A depicts the behav-
ioral outcomes of a SDI with sub-optimal performance where the information-
theoretic trajectories are reconstructed by taking the corresponding posterior
means ([λ̄ = 0.07, δ̄ = 0.82]), thus representing compromised flexibility and
high information loss. Differently, Figure 5.7B shows the information-theoretic
path related to response dynamics of an optimal control participant, according
to the parameter set [λ̄ = 0.60, δ̄ = 0.35], representing relatively high flexi-
bility, and low information loss. Note, that in both cases, the reconstructed
information-theoretic measures are based on the estimated posterior means
for ease of comparison (see Appendix B for the full joint posterior densities of
the two exemplary individuals and the rest of the sample).
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FIGURE 5.7: Recovered cognitive dynamics of two exemplary
individuals. (A) Trial-by-trial information-theoretic measures of
a SDI characterized by very low flexibility and very high infor-
mation loss; (B) Trial-by-trial information-theoretic measures of
a healthy individual characterized by relatively high flexibility
and low information loss. Labels C and E indicate correct and

error responses.

Results in Figure 5.7A account for a typical sub-optimal behavior observed
in the SDI group, where several errors are produced in different phases of the
task. The error patterns produced by such an individual might be induced by
a non-trivial interaction between cognitive sub-components. Lower values of
flexibility imply that errors are likely to be produced by generating responses
from an internal environmental model which is no longer valid. In other
words, the agent is unable to rely on local feedback-related information in
order to update beliefs about hidden states. On the other hand, higher values
of information loss reflect a general inefficiency of belief updating processes
due to slow convergence to the optimal probabilistic environmental model.
From this perspective, Bayesian surprise Bt and Shannon surprise It might
play different roles in regulating behavior based on different internal model
probability configurations. In addition, errors might be processed differently
based on the status of the internal environmental representation, as reflected
by the entropy of the predictive model, Ht. Thus, information-theoretic
measures allow to describe cognitive dynamics on a trial-by-trial basis and,
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further, to disentangle the effect that different feedback-related information
processing dynamics exert on adaptive behavior.

Processing unexpected observations is accounted by the quantification
of surprise upon observing a response-feedback pair which is inconsistent
with the current internal model of the task environment. Negative feedback
is maximally informative when errors occur after the internal model has
converged to the true task model (grey area, Figure 5.7A), or the entropy
approaches zero (grey line, Figure 5.7A). The Shannon surprise (orange line)
is maximal when errors occur within trial windows in which the agent’s
uncertainty about environmental states is minimal (orange areas, Figure 5.7A).
However, internal model updates following an informative feedback are not
optimally performed, which is reflected by very small Bayesian surprise (blue
line, Figure 5.7A). This can be attributed to impaired flexibility and reflects
the fact that after internal model convergence, informative feedback is not
processed adequately and the internal model becomes impervious to change.

Conversely, errors occurring when the agent is uncertain about the true
environmental state carry no useful information for belief updating, since
the system fails to conceive such errors as unexpected and informative. The
information loss parameter plays a crucial role in characterizing this cognitive
behavior. The slow convergence to the true environmental model, accompa-
nied by the slow reduction of entropy in the predictive model, leads to a large
number of trials required to achieve a good representation of the current task
environment (white areas, Figure 5.7A). Errors occurring within trial windows
with large predictive model entropy (green area, Figure 5.7A) do not affect
subsequent behavior, and feedback is maximally uninformative.

Rather different cognitive dynamics can be observed in Figure 5.7B, ac-
counting for a typical optimal behavior where the errors produced fall within
the trial windows which follow a rule completion (e.g. when the individ-
ual completes a sequence of 10 consecutive correct responses), and, thus,
the environmental model becomes obsolete. However, the high flexibility,
λ, allows to rely on local feedback-related information to suddenly update
beliefs about the hidden states, that is, the most appropriate sorting rule.
In this case, negative feedback become maximally informative after model
convergence (grey area, Figure 5.7B) and the process of entropy reduction
(green line, Figure 5.7B) is faster (e.g. less trials are needed) compared to the
sub-optimal behavior scenario. Since uncertainty about the environmental
states decreases faster, the Shannon surprise is always highly peaked when
errors occur (orange line, Figure 5.7B), thus ensuring an efficient employ-
ment of the local feedback-related information. Accordingly, higher values
of Bayesian surprise are observed (blue line, Figure 5.7B), revealing optimal
internal model updating.

In general, the role that predictive (internal) model uncertainty plays in
characterizing the way the agent processes feedback allows to disentangle
sub-types of errors based on the information they convey for subsequent belief
updating. From this perspective, error classification is entirely dependent on
the status of the internal environmental model across task phases. Identifying
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such a dynamic latent process is therefore fundamental, since the error codifi-
cation criterion evolves with respect to the internal information processing
dynamics. Otherwise, the problem of inferring which errors are due to perse-
verance in maintaining an older (converged) internal model and which due to
uncertainty about the true environmental state becomes intractable, or even
impossible.

5.5 Discussion

Investigating information processing related to changing environmental con-
tingencies is fundamental to understanding adaptive behavior. For this pur-
pose, cognitive scientists mostly rely on controlled settings in which indi-
viduals are asked to accomplish (possibly) highly demanding tasks whose
demands are assumed to resemble those of natural environments. Even in the
most trivial cases, such as the WCST, optimal performance requires integrated
and distributed neurocognitive processes. Moreover, these processes are
unlikely to be isolated by simple scoring or aggregate performance measures.

In the current work, we developed and validated a new computational
Bayesian model which maps distinct cognitive processes into separable
information-theoretic constructs underlying observed adaptive behavior. We
argue that these constructs could help describe and investigate the neurocog-
nitive processes underlying adaptive behavior in a principled way.

Furthermore, we couple our computational model with a novel neural
density estimation method for simulation-based Bayesian inference (Radev
et al., 2020). Accordingly, we can quantify the entire information contained
in the data about the assumed cognitive parameters via a full joint posterior
over plausible parameter values. Based on the joint posterior, a representative
summary statistic can be computed to simulate the most plausible unfolding
of information-theoretic quantities on a trial-by-trial basis.

Several computational models have been proposed to describe and ex-
plain performance in the WCST, ranging from behavioral (Bishara et al., 2010;
Gläscher et al., 2019; Steinke et al., 2020) to neural network models (Dehaene
and Changeux, 1991; Amos, 2000; Levine et al., 1993; Monchi et al., 2000).
These models aim to provide psychologically interpretable parameters or
biologically inspired network structures, respectively, accounting for specific
qualitative patterns of observed data. Behavioral models, in particular, ab-
stract the main cognitive features underlying individual performance in the
WCST according to different theoretical frameworks (e.g., attentional updating
(Bishara et al., 2010), or reinforcement learning (Steinke et al., 2020)) and dis-
entangle psychological sub-processes explaining observed task performance.
However, the main advantage of our Bayesian model is that it provides both
a cognitive and a measurement model which coexist within the overarching
theoretical framework of Bayesian brain theories. More precisely, the pre-
sented model is specifically designed to capture trial-by-trial fluctuations in
information processing as described by second-order information-theoretic
quantities. The latter can be seen as a multivariate quantitative account of
the interaction between the agent and its environment. Moreover, it is worth
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noting that such a model representation might not be applicable outside a
Bayesian theoretical framework.

Even though our computational model is not a neural model, it might
provide a suitable description of cognitive dynamics at a representational
and/or a computational level (Marr, 1982). This description can then be re-
lated to neural functioning underlying adaptive behavioral. Indeed, there
is some evidence to suggest that neural processes related to belief mainte-
nance/updating and unexpectedness are crucial for performance in the WCST.
In particular, brain circuits associated with cognitive control and belief for-
mation, such as the parietal cortex and prefrontal regions, seem to share a
functional basis with neural substrates involved in adaptive tasks (Nour et al.,
2018). Prefrontal regions appear to mediate the relation between feedback
and belief updating (Lie et al., 2006) and efficient functioning in such brain
structures seems to be heavily dependent on dopaminergic neuromodulation
(Ott and Nieder, 2019). Moreover, the dopaminergic system plays a role in the
processing of salient and unexpected environmental stimuli, in learning based
on error-related information, and in evaluating candidate actions (Nour et al.,
2018; Daw et al., 2011; Gershman, 2018). Accordingly, dopaminergic system
functioning has been put in relation with performance in the WCST (Hsieh
et al., 2010; Rybakowski et al., 2005) and shown to be critical for the main
executive components involved in the task, that is, cognitive flexibility and
set-shifting (Bestmann et al., 2014; Stelzel et al., 2010). Further, neural activity
in the anterior cingulate cortex (ACC) is increased when a negative feedback
occurs in the context of the WCST (Lie et al., 2006). This finding corroborates
the view that the ACC is part of an error-detection network which allocates
attentional resources to prevent future errors. The ACC might play a crucial
role in adaptive functioning by encoding error-related or, more generally,
feedback-related information. Thus, it could facilitate the updating of internal
environmental models (Rushworth and Behrens, 2008).

The neurobiological evidence suggests that brain networks involved in
the WCST might endow adaptive behavior by accounting for maintain-
ing/updating of an internal model of the environment and efficient processing
of unexpected information. Is it noteworthy, that these processing aspects
are incorporated into our computational framework. At this point, we briefly
outline the empirical and theoretical potentials of the proposed computational
framework for investigating adaptive functioning and discuss future research
vistas.
Model-Based Neuroscience. Recent studies have pointed out the advantage of
simultaneously modeling and analyzing neural and behavioral data within
a joint modeling framework. In this way, the latter can be used to provide
information for the former, as well as the other way around (Turner et al., 2017;
Turner et al., 2013; Forstmann et al., 2011). This involves the development of
joint models which encode assumptions about the probabilistic relationships
between neural and cognitive parameters.

Within our framework, the reconstruction of information-theoretic discrete
time series yields a quantitative account of the agent’s internal processing
of environmental information. Event-related cognitive measures of belief
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updating, epistemic uncertainty and surprise can be put in relation with neu-
ral measurements by explicitly providing a formal account of the statistical
dependencies between neural and cognitive (information-theoretic) quanti-
ties. In this way, latent cognitive dynamics can be directly related to neural
event-related measures (e.g., fMRI, EEG). Applications in which information-
theoretic measures are treated as dependent variables in standard statistical
analysis are also possible.
Neurological Assessment. Although neuroscientists have considered perfor-
mance in the WCST as a proxy for measuring high-level cognitive processes,
the usual approach to the analysis of human adaptive behavior consists in
summarizing response patterns by simple heuristic scoring measures (e.g.,
occurrences of correct responses and sub-types of errors produced) and classi-
fication rules (Flashman et al., 1991). However, the theoretical utility of such a
summary approach remains questionable. Indeed, adaptive behavior appears
to depend on a complex and intricate interplay between multiple network
structures (Barcelo et al., 2006; Monchi et al., 2001; Lie et al., 2006; Barceló
and Rubia, 1998; Buchsbaum et al., 2005). This posits a great challenge for
disentangling high-level cognitive constructs at a model level and further
investigating their relationship with neurobiological substrates. It appears
that standard scoring measures might not be able to fulfil these tasks. More-
over, there is a pronounced lack of anatomical specificity in previous research
concerning the neural and functional substrates of the WCST (Nyhus and
Barceló, 2009).

Thus, there is a need for more sophisticated modeling approaches. For
instance, disentangling errors due to perseverative processing of previously
relevant environmental models from those due to uncertainty about task
environmental states, is important and nontrivial. Sparse and distributed
error patterns might depend on several internal model probability configu-
rations. Such internal models are latent, and can only be uncovered through
cognitive modeling. Therefore, information-based criteria to response (error)
classification can enrich clinical evaluation beyond heuristically motivated
criteria.
Generalizability. Another important advantage of the proposed computational
framework is that it is not solely confined to the WCST. In fact, one can argue
that the seventy-year old WCST does not provide the only or even the most
suitable setting for extracting information about cognitive dynamics from
general populations or maladaptive behavior in clinical populations. One
can envision tasks which embody probabilistic (uncertain) or even chaotic
environments (for instance with partially observable or unreliable feedback or
partially observable states) and demand integrating information from different
modalities (O’Reilly et al., 2013; Nour et al., 2018). These settings might prove
more suitable for investigating changes in uncertainty-related processing or
cross-modal integration than deterministic and fully observable WCST-like
settings.

Despite these advantages, our proposed computational framework has
certain limitations. A first limitation might concern the fact that the new
Bayesian cognitive model accounts for the main dynamics in adaptive tasks
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by relying on only two parameters. Although such a parsimonious proposal
suffices to disentangle latent data-generating processes, a more exhaustive for-
mal description of cognitive sub-components might be envisioned. However,
parameter estimation can become challenging in such a scenario, especially
when one-dimensional response data is used as a basis for parameter recovery.
Second, the information loss parameter appears to be more challenging to
estimate than the flexibility parameter in some datasets. There are at least two
possible remedies for this problem. On the one hand, global estimation of
information loss might be hampered due to the model’s current functional
(algorithmic) formulation and can therefore be optimized via an alternative
formulation/parameterization. On the other hand, it might be the case that
the data obtainable in the simple WCST environment is not particularly infor-
mative about this parameter and, in general, not suitable for modeling more
complex and non-linear cognitive dynamics in general. Future works should
therefore focus on designing and exploring more data-rich controlled envi-
ronments which can provide a better starting point for investigating complex
latent cognitive dynamics in a principled way. Additionally, the information
loss parameter seems to be less effective in differentiating between substance
abusers and healthy controls in the particular sample used in this work. Thus,
further model-based analyses on individuals from different clinical popula-
tions are needed to fully understand the potential of our 2-parameter model
as a clinical neuropsychological tool. Finally, in this work, we did not perform
formal model comparison, as this would require an extensive consideration
of various nested and non-nested model within the same theoretical frame-
work and between different theoretical frameworks. We therefore leave this
important endeavor for future research.

5.6 Conclusions

In conclusion, the proposed model can be considered as the basis for a
(bio)psychometric tool for measuring the dynamics of cognitive processes
under changing environmental demands. Furthermore, it can be seen as a step
towards a theory-based framework for investigating the relation between such
cognitive measures and their neural underpinnings. Further investigations
are needed to refine the proposed computational model and systematically ex-
plore the advantages of the Bayesian brain theoretical framework for empirical
research on high-level cognition.
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Chapter 6

A Probabilistic Graphical Model to
jointly analyse structural neural
and behavioural data in a risky task

The content of the chapter has been in part published as: D’Alessandro, M.,
Gallitto, G., Greco, A., & Lombardi, L. (2020). A joint modelling approach to
analyze risky decisions by means of diffusion tensor imaging and behavioural
data. Brain Sciences, 10, 138.

6.1 Introduction

In cognitive neuroscience, relations between neural and behavioural char-
acteristics of individuals are usually analyzed using a two-step approach
which first summarizes performances on a given experimental task, and then
applies standard statistical analysis on the neural and behavioural measures.
However, several studies have highlighted the limitations of this approach
in investigating and selecting theories to explain the relation between neural
functioning and cognition (Turner et al., 2013; Hawkins et al., 2017; Bridwell
et al., 2018).

Advances in the understanding of this relation are due to the develop-
ment of different computational tools, allowing for a finer analysis of several
sources of information. Some examples are: (1) cognitive modelling (Lee
and Wagenmakers, 2014; Lewandowsky and Farrell, 2010) which formally
accounts for the generative cognitive processes which are assumed to produce
the observed data; (2) Bayesian graphical models (Lee, 2011a; Barber, 2012)
which provide a powerful and flexible way to perform hierarchical Bayesian
analysis, allowing to account for group and individual differences; (3) joint
neurocognitive modelling (Forstmann et al., 2011; Nunez et al., 2017; Turner
et al., 2013; ?; Palestro et al., 2018) which provides a framework to simultane-
ously model and analyze neural and behavioural data by allowing the latter
to be informative for the former, and vice versa.

The latter modelling framework has demonstrated to be an effective way
to increase knowledge about the underlying neural substrates of cognitive
functioning by bridging the gap between neuroscience and mathematical
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psychology. Here, the main advantage consists of using formal cognitive mod-
els as tools to isolate and quantify cognitive processes in order to effectively
associate them with some brain measurements (Forstmann et al., 2011)).

In this work we aimed to put the emphasis on the mutual dependency
between measures of structural integrity of brain regions of interest and cog-
nitive functioning as assessed by the analysis of the outcomes of a given
experimental task.

Several works ranging from perception (Brouwer and Heeger, 2011), at-
tention (Lu et al., 2011), memory (Kragel et al., 2015), categorization (Mack
et al., 2013), and decision in two alternatives forced choices (Turner et al., 2013;
van Ravenzwaaij et al., 2017) have demonstrated the need to formally account
for reciprocal relations between mathematical behavioural models and brain
functional or structural data.

In this contribution we proposed an architecture for jointly modelling such
reciprocal relation in the context of risky decision-making. Although risk–
decision tasks can be considered highly popular and effective experimental
tools to investigate cognitive control and decision-making characteristics
under risk conditions, a model-based approach to the joint analysis of brain
and behavioural data in such contexts is still lacking.

Here, we proposed a novel way to relate structural information from
Diffusion Tensor Imaging (DTI) to psychological parameters of a computa-
tional cognitive model accounting for the behavioural outcomes in the Bal-
loon Analogue Risk Task (BART; (Lejuez et al., 2002)), from a confirmatory
perspective.

The BART represents an ideal scenario to model decision-making since
it has been correlated to “real-world“ risk taking (Aklin et al., 2005; Lejuez
et al., 2002). The task has proven to reliably account for risk-taking propensity,
response strategy and risk-related behaviour modulation in a broad range
of normal and clinical populations (Goldenberg et al., 2017; Cazzell et al.,
2012; Bornovalova et al., 2005; Lejuez et al., 2003). In a typical BART setting,
participants are required to decide whether to risk by inflating a balloon to
earn a cumulative small monetary reward, being informed that the balloon
might explode with a certain probability, thus causing the loss of accrued
earnings. If participants decide to stop inflating they can cash out the current
winnings. Optimizing total earnings in such a scenario is not trivial. In gen-
eral, it requires a balanced risky-oriented strategy, learning from experience
and modulating choices consistently (van Ravenzwaaij et al., 2011).

In the present work we adopted a hierarchical Bayesian framework to
relate neural and cognitive parameters inferred from performances of healthy
participants on the BART. Analysis of posterior distributions was then used
to assess relationships between the neural and cognitive variables. The model
was applied to data from an already published dataset. Finally, the potentials
in applying the method to the analysis of neural substrates underlying risk-
taking behaviour and decision making were outlined and discussed.
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6.2 Materials and Methods

6.2.1 The BART Data

The dataset used in this work was selected from the OpenfMRI database
repository (http://www.openfmri.org; (Poldrack et al., 2013)) and refers to
the experimental data reported in (Cohen and Poldrack, 2014). The dataset
contains both behavioural performances and MRI scans from 24 healthy
participants on a slightly modified version of the BART. Participants were
adults recruited from UCLA’s campus with ages in the range 18–33, with no
history of neurological illness and no use of psychoactive medication or illegal
substances.

In the adopted version of the task, individuals saw a balloon on the moni-
tor and were asked to select one of two possible options at each choice occasion
for a given trial. The first option consisted in inflating the balloon, and is
referred to as pump . The second option ended up the current trial by deciding
to stop inflating the balloon, and is referred to as cash. Pumping the balloon
increased the amount of possible monetary reward by 25 cents for each pump.
If the participant decided to stop inflating the balloon, the accrued money was
moved to a permanent store of winnings and a new balloon was presented.
After a variable number of pumps the balloon exploded, in which case the par-
ticipant lost all the money in the temporary pool. Participants did not receive
any cue about the bursting probability. However, probabilities of explosions
were not fixed and the actual number of pumps before an explosion followed
a uniform distribution across trials, with an average of 6 pumps (SD = 2
pumps). Each balloon was presented on each trial for a total of 36 trials.

6.2.2 The Cognitive Model

As previously outlined, performances of the BART are employed as a measure
of risk-related behavioural tendencies and are usually analyzed by means of
standard summary measures on test outcomes (e.g., total number of pumps,
frequency of pumps across trials, number of cashes, number of explosions).
However, such measures do not provide a suitable account for the data-
generating process, that is, for the cognitive sub-processes involved in the task.

In this work we proposed a parsimonious computational account of
the cognitive mechanisms underlying the observed response pattern of pumps
and cashes (Wallsten et al., 2005; van Ravenzwaaij et al., 2011). In particular,
we relied on a modified version of a robust model representation which has
shown to be particularly stable to parameter recovery and estimation (van
Ravenzwaaij et al., 2011).

The model assumes a subjective probability estimate that a pump will
make the balloon bursts in a given trial k. It also assumes that individuals
determine the number of pumps for that trial prior to the first actions, and do
not make adjustments during pumping. The number of pumps that individu-
als consider optimal on trial k is defined as ωk, and depends on the propensity

http://www.openfmri.org
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of risk taking, γ, and on the current subjective bursting probability p∗k , as
follows:

ωk = − γ

log(1− p∗k)
(6.1)

where γ ≥ 0. Equation (6.1) provides a parsimonious and effective representa-
tion of an individual decision strategy. Intuitively, ωk places an upper bound
on the pump attainable at a given trial, which is proportional to risk propen-
sity, γ. The term p∗k in the denominator has the role of shrinking the number
of pumps an individual considers as optimal. Moreover, the probability of
pumping in trial k, at a given occasion j, is defined as θkj and depends on
ωk and on behavioural consistency, β, which can be though to account for
response variability:

θkj = [1 + exp(β(j−ωk)]
−1 (6.2)

where β ≥ 0. High values (resp. low values) of β mean less variable respond-
ing (resp. more variable responding). Equation (6.2) represents the fact that
behaviour is generally determined by the divergence between the current
choice occasion j (e.g., pump opportunity) and the optimal number of pumps,
ωk. When the optimal number of pumps is exceeded (j > ωk for the trial
k), the probability of pumping, θkj, approaches zero. However, parameter β
reflects the degree to which a response is determined by such a divergence.
When β = 0, the individual decision to pump or cash is random. Differently,
decisions become more consistently determined by the divergence criterion
as β increases.

However, the original formulation of the model (van Ravenzwaaij et al.,
2011) assumed parameter p∗k to be fixed (which implies removing subscript
k) and known from participants at the beginning of the task. This supports
the assumption that the subjective probability of burst is constant across
the task trials. However, fitting such model to our data could be problem-
atic at least for two main reasons: (1) participants were not informed about
the true bursting probability which in the task is uniformly distributed across
trials; (2) in general, it is not possible to ensure that subjective bursting proba-
bilities are consistent among participants and constant across trials, whatever
the information they receive prior to the task.

In our model representation, subjective bursting probability and its dy-
namics were taken into account and inferred by relying on the history of
participant’s choices. Let the variable Ck indicate the cumulative success rate
up to trial k according to:

Ck =
∑k−1

t=1 st

∑k−1
t=1 nt

where st and nt are the number of successful (non-bursting) balloon pumps
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and total pumping attempts at trial t, respectively. Modelling Ck as a Beta dis-
tributed random variable yields the statistical solution to the task of inferring
the subjective bursting probability as follows:

Ck ∼ Beta(µαk σα, (1− µαk)σα)

µαk = logit−1(α0 + α1k) (6.3)
p∗k = 1− µαk (6.4)

where the cumulative success rate is regressed on trial numbers, and parame-
ters α0 and α1, denoting the intercept and slope respectively, are the regression
coefficients. For computational convenience we adopted the parameteriza-
tion proposed by Ferrari and Cribari-Neto (Ferrari and Cribari-Neto, 2004).
Such a parameterization has proven to be convenient in our computational
setting since it allowed to model the observed cumulative success rate at trial
k as sampled from a Beta distribution with expected value µαk and concentra-
tion σα. Thus, the (conditional) expected value of the Beta distribution, given
the specific trial, has been modelled as a function of cognitive parameters α0
and α1, and the specific trial k. The inverse logit function allowed to map such
parameters to the natural domain of the expected value of the Beta distribution
according to the specified parameterization. Here, α0 indicates the baseline
subjective bursting probability and α1 represents the rate of change of bursting
belief. In particular, if α1 < 0 (rep. α1 > 0), then this reflects an indicator that
perceived bursting probability increases (resp. decreases) as the participant’s
responses start accumulating balloon bursts as the trials unfold (resp., start
decreasing balloon bursts).

At this point, the resulting cognitive model can be thought to account for
response configurations of pumps and cashes by means of two hierarchically
organized sub-models. In the first sub-model, a trial-specific bursting proba-
bility, p∗k , is computed based on the baseline subjective bursting probability,
α0, and the bursting belief dynamic yielded by α1. In the second sub-model,
the decision process is instantiated by allowing the system to estimate an opti-
mal number of pumps, ωk, conditioned on the computed trial-specific bursting
probability, p∗k , and a response is delivered based on θkj.

Therefore, model representation allows to test the hypothesis that partici-
pants do not modify their initial bursting belief during the task. When α1 = 0,
behaviour depends only on the baseline bursting probability and cognitive
parameters γ, and β.

From a generative perspective, an observed pumping action ykj (1 if pump,
0 if cash) can be modelled according to a Bernoulli distribution:

ykj ∼ Bernoulli(θkj)

and θkj depends on both cognitive parameters and the specific choice occasion
within a specific trial. The likelihood function is then defined as follows:
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p(Y |Ω) =
K

∏
k=1

J(k)

∏
j=1

θ
ykj
kj (1− θkj)

(1−ykj) (6.5)

where Ω = (γ, β, α0, α1) is the array of parameters of the behavioural model,
and J(k) is the total number of observed actions for trial k.

6.2.3 The Neural Model

The cognitive model decomposition allowed to isolate individual cognitive
characteristics and to rephrase them in terms of model parameters. A fur-
ther step to model neural and behavioural data simultaneously consisted in
bringing individual brain characteristics into the joint model. To this purpose,
we focused on neural structural information at individual level. More pre-
cisely, we wanted the neural model to account for properties of structural
connectivity in the brain. Consistently, we adopted Fractional Anisotropy
(FA) as the founding measure to parameterize individual brain structural
connectivity.

FA is the most commonly used index for estimation of anisotropy using
DTI, and reflects fiber tracts characteristics such as the extent of alignment of
cellular structures within the fibers and their structural integrity (Pierpaoli
and Basser, 1996; Beppu et al., 2003). Therefore, such a measure also proved to
be a promising index to study the relation between brain structural integrity
and both response variability and risky behaviour in both clinical and normal
population (Kwon et al., 2014; Lane et al., 2010; Goldenberg et al., 2017; Kohno
et al., 2017).

In this work, we were interested in relating cognitive functioning with con-
nectivity measures of networks of regions of interest (ROIs). This choice was
motivated by substantial evidences on the potential of functional-structural
properties of distributed neural networks to account for complex decision
processes (Fukunaga et al., 2012; Kohno et al., 2017; Krain et al., 2006). Thus,
the main purpose of our neurocognitive modelling approach consisted of
linking connectivity-related information of network structures with the latent
mechanisms captured by the computational cognitive model.

As a measure of connectivity we quantified the FA of white matter tracts
relating specific regions of interest in a specific neural network. The con-
firmatory aspect of our approach was reflected by the choice of relying on
a subset of the whole-brain structural connectivity matrix. To do this, a custom
connectivity matrix was obtained by focusing on the following ROIs array
and related white matter connectivity paths: left and right thalamus, striatum,
dorsolateral prefrontal cortex, anterior cingulate cortex, inferior frontal gyrus,
insular cortex. A network was then defined as the vector of elements of any
(biologically) consistent subset of the ROIs array.

More formally, consider a square and symmetric connectivity matrix F,
such that:
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F =


f11 f12 . . . f1J

f21 f22 . . .
...

...
... . . . ...

f I1 f I2 . . . f I J


where fij = 0 for i = j, and I = J. The entries fij specify the fractional
anisotropy of the custom tract connecting ROIs i and j. We refer to Network
FA (Kohno et al., 2017) to represent structural connectivity in a given network.
Thus, network FA consists of the collection of f (x)

ij such that i, j ∈ x, and x
is the indicator variable reflecting the vector of ROI labels which constitute
a defined network. Potentially, Network FA can be obtained for several
combinations of ROI labels, and thus for several subsets of F.

However, in this application we focused on two brain networks. The first
network involves white matters connections between anterior cingulate cortex
(ACC), insula, and inferior frontal gyrus (IFG), regions which are thought to
be involved in loss-aversion modulations (Fukunaga et al., 2012). In particular,
ACC is critically involved in cognitive control and decision-making processes
in signaling anticipated risk and potential loss (Krawitz et al., 2010), whilst
insula and IFG are thought to be implied in risk aversion signaling and risk
avoidance during risky decisions (Christopoulos et al., 2009; ?). The network
implies fiber connections between ACC and IFG, and those implied by insular–
cingulate and insular–frontal projections, bilaterally (Figure 6.1a). The second
network involves projections between dorsolateral prefrontal cortex (dlPFC)
and both striatum and thalamic nuclei, involved in top-down modulation
of goal-directed behaviour (Furman et al., 2011) and, in part, in response
variability in risky task (Goldenberg et al., 2017). Such a network is part of
the Cortico–Striatal–Thalamic path, and consists of fiber connections between
striatum and thalamus, and those implied by the striatal–dlPFC and thalamic–
dlPFC projections, bilaterally (Figure 6.1b).
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(A)

(B)

FIGURE 6.1: Pictures on the left show the regions of interest
(ROIs) which constitute the networks. The network contain-
ing anterior cingulate (red), insula (yellow) and inferior frontal
gyrus (blue) consists of the anterior cingulate cortex (ACC)–
Insula–inferior frontal gyrus (IFG) Network (a). The network
containing thalamus (green), striatum (yellow) and dorsolateral
prefrontal cortex (dlPFC) (blue) consists of the dlPFC–Thalamus–
Striatum Network (b). The central and rightmost pictures rep-
resent tracts of white matters connections for the first and the
second network, respectively. For simplicity, figures show net-
works tracts for the left brain hemisphere, but the same applies
to the opposite hemisphere. Network Fractional Anisotropy
(FA) is intended to account for bilateral network tracts frac-

tional anisotropy.

We refer to δx=1 and δx=2 as the neural parameters accounting for network
FA measure for ACC–Insula–IFG and dlPFC–Thalamus–Striatum networks,
respectively. Here, we followed a strategy proposed in (Turner et al., 2013)
to easily provide a probabilistic account of the neural measures. In particu-
lar, tracts fractional anisotropy was assumed to be drawn from a Gaussian
Distribution, which provided a computationally convenient and tractable
probability model of Network FA:

logit( f (x)
ij ) ∼ Normal(δx, σx). (6.6)

Here, δx is thought to be the latent neural parameter accounting for struc-
tural property of network x, and f (x)

ij is the fractional anisotropy for tract
connecting ROIs i and j in network x. Parameter σx was thought to represent
the inter-tracts variability of FA in the network x, and it was not conceived as
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accounting for Network FA since we were not interested in relating the vari-
ance in the inter-tracts FA measurements to cognitive parameters in the joint
framework. However, it is worth noticing that such assumption might be in-
feasible when high inter-tracts variation is empirically detected, as in the case
of measurements on the clinical population. In this case, more consistent
parametric models might be considered to better account for Network FA.

The likelihood function is then defined as follows:

p( f (x)|δx, σx) =
N(x)

∏
n=1

N(logit( f (x)
n )|δx, σx) (6.7)

where N(·) denotes the normal density with mean δx and standard deviation
σx, and N(x) the number of connected tracts within the network x. We referred
to f (x)

n as a simplified notation which reflects the FA value of the n-th tract
connection between ROIs i and j in the network x.

Thus, neural parameters were inferred based on processed neural data
and served to feed the system to account for the neural counterpart of the joint
neurocognitive model, as will become clearer later in the next sections.

6.2.4 DTI Data Processing

The FA value computation was based on the eigendecomposition of the diffu-
sion tensor (Basser and Pierpaoli, 1996). In order to extract tracts’ FA, DTI
diffusion images with a total of 64 volumes (diffusion sampling directions)
with a b-value of 1000s/mm2, in-plane resolution of 1.97917 mm and slice
thickness of 2 mm, were used for analysis. All images have been corrected
for eddy currents with FSL’s eddy toolbox using one b0 image as structural
reference to account for geometrical distortions. The diffusion data were
normalized in the MNI (Montreal Neurological Institute) space using affine
registration and the ICBM-152 template, and a deterministic fiber tracking
algorithm (Yeh et al., 2013) was used. The tractography and connectivity ma-
trix were calculated using DSI Studio (http://dsi-studio.labsolver.org).
A seeding region was placed at whole brain and the fiber tracking procedure
was performed with the thresholds of minimum FA value at 0.15, and maxi-
mum angle at 27◦ according to previously utilized protocols (Christidi et al.,
2016). The step size was randomly selected from 0.5 voxel to 1.5 voxels
and tracks with length shorter than 30 or longer than 300 mm were discarded.
A custom template with 12 ROIs (consisting of the brain regions whose tracts
constitute F), six left and six right, was created using AAL2 (Rolls et al.,
2015), Desikan-Killiany-Tourville (Desikan et al., 2006) and HCP842 (Yeh et al.,
2017) atlases and used as the brain parcellation. The connectivity matrix was
calculated by using the FA of the connecting tracks.

6.2.5 Joint Modelling

A fundamental characteristic of joint models relies on their particular flexibility
in allowing several assumptions about probabilistic (or deterministic) relations

http://dsi-studio.labsolver.org


92 Chapter 6. A Probabilistic Graphical Model to jointly analyse structural
neural and behavioural data in a risky task

between neural and behavioural variables to be taken into account through
model’s architecture.

In neurocognitive modelling are proposed two relevant architectures to
account to the modelling of relationships between different sources of data:
the Directed Approach and the Covariance Approach (Palestro et al., 2018; Turner
et al., 2017).

In the directed approach, a statistical model of neural data is defined
and it is assumed that behavioural model parameters are directly affected
by neural model parameters, codifying a non-reciprocal relation between
the two sources of information. By contrast, the covariance approach does not
assume such restrictions on parameters dependencies, but relies on specifying
a joint model in which cognitive and neural parameters share a multivariate
structure with covariance.

In this work, we adopted the latter as an adapted version of the joint model
proposed by (Turner et al., 2013). The primary reason for relying on the co-
variance approach was that we wanted to be agnostic in specifying the causal
role of each source of information, that is, the directional statistical influence
between neural and cognitive measures. To say it differently, the proposed
covariance model combined both behavioural and neural models’ parameters
in a unified framework, which characterizes the way behavioural and neural
parameters coexist to explain the underlying cognitive process (Turner et al.,
2017).

In our context, the covariance model has been thought to account for indi-
vidual differences in task performances and brain structural characteristics
by letting individual-level parameters to be modelled by a multivariate distri-
bution connecting the two sources of information. Such connection allowed
the information yielded by the neural data, as represented by F, to affect
the information we learned about key cognitive parameters (e.g., γ, β).

We proposed a Multivariate Student’s t-distribution (Welsh and Richard-
son, 1997; Pinheiro et al., 2001) as the multivariate probability model in order
to account for robust relations between neural and cognitive parameters.
Such relations were learned through hierarchical modelling and accounted by
the (hyper-)covariance matrix of the multivariate distribution. Both cognitive
and neural parameters were treated as latent variables.

For the behavioural model, we assumed structured individual differences
in parameters γ, β, α0, and α1. The assumed model was also the one showing
the best general fitting performances when compared to other possible models.

More precisely, we consider 4 possible behavioural models: (1) a model
assuming structured individual differences in three parameters, namely, γ,
β and p, where p∗ is a fixed bursting belief. Here, parameter p∗ assumes
a fixed and known bursting probability by removing the dependency on
the specific trial k; (2) a model assuming structured individual differences
in three parameters, namely, γ, β and α0. The latter indicates the baseline
bursting probability. Parameter α0 is inferred based on the beta regression
parameterization outlined in the main text; (3) a model assuming structured
individual differences in four parameters, namely, γ, β and α0, and a group-
level parameter α1 accounting for the dynamics of the subjective bursting
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belief; (4) the last model is the four parameter model used in the main text,
which assumes structured individual differences for all the four parameters.

We assess models’ performances by relying on both the Deviance Informa-
tion Criterion (DIC) and the (mean) R̂ statistic (Gelman et al., 1992) for each
parameter across all individual estimates. Results are shown in the 6.1.

TABLE 6.1: Behavioural model comparison

Model DIC Parameters R̂ (mean)

2071.3
γ 2.368

1 β 1.001
p∗ 2.551

-1497.6
γ 1.001

2 β 1.001
α0 1.001

3 -1531.6

γ 1.001
β 1.001
α0 1.001
α1 1.001

4 -1595.6

γ 1.001
β 1.002
α0 1.023
α1 1.005

As can be noticed, Model 4 has the lowest DIC, and R̂ approaching 1, and can
be selected as the best model.

We further put a constraint on the relation between neural and cognitive
parameters accounted by the covariance matrix of the multivariate probability
model. In particular, we assumed that individual-level baseline bursting
probability, α0 and its updating, α1, condition the behavioural model outside
the covariance structure, and that risk-taking, γ and response variability, β,
were then recovered within the multivariate probability model. To say it
differently, we let α0 and α1 play the role of providing conditions for (pos-
sible) unbiased estimates of individual-level parameters γ and β, given that
subjective probabilities have been taken into account.

The Multivariate Student’s t-distribution was then specified by the hyper-
parameters vector:

µ =
(
µγ, µβ, µδ1 , µδ2

)
containing the hyper-mean parameters for each of the individual-level param-
eters sharing a covariance matrix. The hyper-covariance matrix is thought
to reflect research question and model assumptions. In our case we aimed
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to investigate the relation between pairs of network FA and cognitive sub-
processes in a confirmatory perspective, and it was defined as follows:

Σ =



σ2
γ 0 σγσδ1ρ1 σγσδ2ρ2

0 σ2
β σβσδ1ρ3 σβσδ2ρ4

σγσδ1ρ1 σβσδ1ρ3 σ2
δ1

0

σγσδ2ρ2 σβσδ2ρ4 0 σ2
δ2



where ρ1 and ρ2 account for the relation between risk-taking, γ, and both
ACC–Insula–IFG and dlPFC–Thalamus–Striatum networks FA, δ1 and δ2, re-
spectively. Correlation parameters ρ3 and ρ4 account for the relation between
behavioural consistency, β, and both δ1 and δ2, respectively. Eventual relations
between brain structural and cognitive characteristics were, thus, estimated
on a model-based perspective. A graphical representation of the relation
between the variables in the system is shown in Figure 6.2, which depicts
the joint model’s architecture.

FIGURE 6.2: Covariance model’s architecture. Square and circu-
lar nodes indicate discrete and continous variables, respectively.
Grey nodes indicate observed variables. Blue and red nodes
represent behavioural and neural node parameters, respectively.

Double-circled nodes represent deterministic nodes.

The graphical model represents all the (in)dependencies assumptions
between the variables in the system. Given the model’s assumptions we can
compute the joint posterior distribution of the model parameters conditional
on observed data as follows:
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p(δ1, δ2, Ω, µ, Σ,σ1, σ2, µα0 , σα0 , µα1 , σα1 |Y , F) ∝

∏
s

[
p(Y s|γs, βs, α0s, α1s)p( f (1)s |δ1s, σ1)p( f (2)s |δ2s, σ2)

]
∏

s
p
(
δ1s, δ2s, γs, βs|µ, Σ

)
p
(
α0s|µα0 , σα0

)
p
(
α1s|µα1 , σα1

)
p(µ)p(Σ)p(σ1)p(σ2)p(µα0)p(σα0)p(µα1)p(σα1)

(6.8)

where s represents individuals, and f (1)s (resp. f (2)s ) reflects the FA values
for the brain tract connections in ACC–Insula–IFG network (resp. dlPFC–
Thalamus–Striatum network) for individual s.

The first row on the right side of Equation (6.8) represents the likelihood
of the joint structure which simultaneously includes behavioural and neural
model likelihoods, the second row represents the related priors according to
model factorization, that is, the multivariate probability model for the random
vector of individuals neural and cognitive parameters and the probability
models for the two regression coefficients. The third row specifies the hyper
priors. Such factorization allows computation of marginal posterior distribu-
tions via Markov Chain Monte Carlo algorithms (MCMC; (Gilks et al., 1995)).
The following probability distributions were used for the hyper priors:

µγ, µβ ∼ Normal(0, 103)I(0,∞)

µδ1 , µδ2 ∼ Normal(0, 103)

σγ, σβ ∼ Gamma(0.01, 0.01)
σδ1 , σδ2 ∼ Gamma(0.01, 0.01)

σ1, σ2 ∼ Gamma(0.01, 0.01)
ρ1, ρ2, ρ3, ρ4 ∼ Uniform(−1, 1)

µα0 ∼ Normal(0, 103)I(0,3)

σα0 ∼ Gamma(0.01, 0.01)
µα1 ∼ Normal(0, 1)I(−0.2,0.2)

σα1 ∼ Uniform(0, 1)

Parameter reflecting the degrees of freedom of the Multivariate Student’s
t-distribution has been treated as a tuning parameter in order to ensure algo-
rithm convergence and chains mixing (see Appendix C for details).

6.3 Results

For the model fitting, one participant was excluded from the analysis due to
corrupted and unreliable MRI scan. The joint model was then fitted to data
from the remaining 23 participants. The data array consisted of the collection
of pumps and cashes across trials and the custom structural connectivity
matrix for each subject (Y s, Fs).
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All calculations were performed with the aim of the efficient interaction
between R (Team et al., 2013) and JAGS (Plummer et al., 2003) using the pack-
age “R2jags“ (Su et al., 2015). A probabilistic programming implementation of
the bayesian graphical model architectures was then provided and posterior
distributions were computed using Gibbs Sampling algorithm (Casella and
George, 1992). We ran 12 chains of 15,000 iterations each, with a burn-in
period of 5000 iterations and a thinning size of 1, parallelized on an Intel
i7 6 cores CPU. Thus, we obtained 120,000 samples from the joint posterior.
The total time required to perform the computation was about 35 minutes.
Table 6.2 summarizes some of the posterior densities of interest.

TABLE 6.2: Marginal posterior distributions statistics: Posterior
mean (µpost), 95% credible intervals [q0.05, q0.975], chains conver-

gence (R̂).

Parameter µpost q0.05 q0.975 R̂

µγ 0.442 0.374 0.474 1.012

µβ 1.471 1.211 1.571 1.013

µα0 2.653 2.460 2.722 1.001

µα1 −0.004 −0.007 −0.001 1.001

ρ1 −0.341 −0.85 0.365 1.019

ρ2 −0.483 −0.86 0.072 1.010

ρ3 0.021 −0.645 0.750 1.013

ρ4 −0.250 −0.761 0.371 1.008

Posterior marginals were sampled efficiently and the 12 chains showed
an optimal convergence as measured by the R̂ statistic (Gelman et al., 1992),
and the trace plot of the log joint posterior density (Figure 6.3). Values of R̂
approaching 1 indicate better convergence.
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FIGURE 6.3: Trace plot of the (unnormalized) log posterior den-
sity computed for all the chains, for the first 6000 iterations.
The burn-in period was removed to show the whole conver-
gence dynamic. As can be noticed, the log posterior seems to

show no trends.

Therefore, the joint model seemed to fit the data adequately by allowing
a reliable recovery of cognitive parameters describing observed behaviour.
Figure 6.4 shows results from posterior predictive check, which, in bayesian
modelling, is the benchmark method to assess effective model fit (Gelman and
Shalizi, 2013). We compared observed data to synthetic model-generated data
produced by parameters drawn from the posterior distribution. Model fit ade-
quacy was evaluated based on how much synthetic data resemble empirical
data. We generated posterior predictives of 1000 datasets of pumps and cashes
patterns on 36 trials, for 1000 cognitive parameter sets (γs, βs, α0s, α1s) sam-
pled from the joint posterior distribution corresponding to each individual
s. Empirical distributions of number of pumps were then compared with
recovered distributions.
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FIGURE 6.4: Posterior predictive check. Black dots and bound-
aries represent mean pumps and standard deviations for each
individual from the empirical dataset. Red dots and lines repre-
sent mean pumps and standard deviations of predicted synthetic

individual datasets.

Population (hyper-)means allow to interpret individual differences in
performance in terms of few parameters reflecting the assumptions about
the process generating individual-level parameters (Lee, 2011b).

At the population level, individuals seemed to modify their bursting belief
only very slightly during the unfolding of the task (posterior mean µα1 =
−0.004), and in general subjective bursting probabilities can be considered
constant across the trials span. Therefore, individuals showed a relatively low
level of risk-taking (posterior mean µγ = 0.442) and a relatively high level of
behaviour consistency (posterior mean µβ = 1.471) leading to low response
variability.

In our confirmatory framework we aimed to verify whether such cogni-
tive parameters configuration was related to Network FA. The multivariate
distribution of the joint model allows to characterize such relation by treat-
ing groups of individual-level parameters as covariates. Thus, posterior
densities of correlation parameters of the covariance matrix convey infor-
mation on how individual differences in brain networks structural integrity
and cognitive characteristics account for differences in performance. Figure
6.5 shows the estimated posterior distribution for the correlations between
risk-taking, γ, and both ACC–Insula–IFG and dlPFC–Thalamus–Striatum net-
works FA, ρ1 and ρ2, respectively, and that between behavioural consistency,
β, and dlPFC–Thalamus–Striatum network FA, ρ4. The correlation between
behavioural consistency and ACC–Insula–IFG is not shown since it has not
substantial evidence.
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FIGURE 6.5: Marginal posterior distributions of the correlation
parameters of interest in the covariance matrix.

In general, the relationships between parameters are weak, except for
ρ2, but the figure indicates a moderate inverse relation in all the three cases.
Increase in risk-taking propensity was related to decreased white matter micro-
structure integrity in two networks which codify for loss and risk aversion
and for goal-directed behaviour. Such results might posit some constraints on
the quantification of the actual role of risk propensity in enacting an optimal
decision strategy. Participants were indeed required to adopt a balanced
risky-oriented strategy in order to maximise earnings, and taking more risk
at different stages of the task could be seen as an adaptive strategy which in-
creases the chance to produce more positive outcome (Dean et al., 2011; Kohno
et al., 2017). From this perspective, however, risk-taking propensity might not
be the main component to fulfil the task of optimizing earnings. The finding
of an inverse relation between behavioural consistency and dlPFC–Thalamus–
Striatum network seems to clarify the role of white matter structural properties
in predicting the adoption of a functional cognitive strategy when performing
the BART. Individuals presenting an increased fractional anisotropy in such
network showed an increased response variability (decreased behavioural
consistency). This relation might reflect, in healthy individuals, the tendency
to approach and explore the environment by choosing actions whose outcome
is uncertain but potentially advantageous (Humphries et al., 2012; Goldenberg
et al., 2017), as reflected by the functionality of the network.

6.4 General discussion

In the present work, we proposed an approach to the modelling of the neural
structural substrates underlying risky behaviour within a joint modelling
framework, inspired by previous works on joint analysis by means of hierar-
chical bayesian models (Turner et al., 2013; Turner et al., 2017). A behavioural
model allowing for estimation of meaningful cognitive parameters was devel-
oped and coupled with neural parameters in a multivariate probability model.
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This made the analysis of the relation between decision-making and brain
structural connectivity interpretable on a model-based perspective.

The presented methodology application is thought to provide an example
for cognitive scientists who are interested in investigating dependencies be-
tween behavioural and neural data via computational models. When applied
to the experimental context of the BART, our approach shows several useful
advantages.

First, the proposed computational framework is extremely flexible and has
the potential to combine neural and cognitive models with several assump-
tions and complexities. This comes in handy when different BART configu-
rations are considered (e.g., a priori knowledge of the bursting probability)
and consistent behavioural model assumptions have to be made accordingly
(e.g., removing the node related to the bursting belief dynamic, α1, from
the graphical model).

Second, our method provides a way to infer the relationships between
the biological properties of the brain and higher-level cognitive processes in-
volved in risky decision-making by overcoming some limitations of the stan-
dard approach. For instance, inferences about the role of given cognitive
mechanisms and their neural correlates in producing behavioural outcome,
such as total monetary earning and relative frequency of pumps and cashes,
implicitly assume a mapping between cognitive processes and summary mea-
sures of individuals task output. As a consequence, neurocognitive theories
are built upon resulting relations between such statistics and brain measure-
ments. Decomposing the data-generating process in several psychological
sub-processes allows, instead, to relate brain measurements directly to cogni-
tive variables of interest. In this respect, our computational model is valuable
from a theoretical perspective since it can be used to test hypothesis about
how neural variables predict cognitive functioning and behaviour in risk
conditions, in a substantial formal way.

Therefore, the proposed architecture can be modularly extended to account
for the presence of several explanatory variables. Thus, different covariates
in the joint structure can be employed based on conditional dependence as-
sumptions. As an example, one might think of explicitly modelling subjective
bursting probabilities as predicted by discrete or continuous covariates such
as sex, age, or self-report measures.

Moreover, several brain networks can be put in relation to cognitive vari-
ables of interest by extending the connectivity matrix F and the possible
network subsets, and by extending the covariance matrix, Σ, to include more
correlation parameters on a model-based perspective.

Despite these advantages, the proposed computational framework has
some limitations. A first technical limitation might concern the fact that poste-
rior probability computations become demanding and potentially unstable
when the number of free parameters in the covariance matrix of the multivari-
ate neurocognitive probability model increases. However, the Multivariate
Student’s t-distribution adopted in the proposed application has shown to
overcome some computational problems by ensuring posterior sampling
chains mixing.
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Second, our joint modelling framework assumes a previously defined
parametric representation of the multivariate model accounting for cogni-
tive and neural parameters. This might constitute a severe constraint since
a probabilistic model describing neural data may not always be consistent,
especially when complex brain structural measures, such as those provided
by DTI, are considered.

It is worth noticing that other neural measures might be adopted to pa-
rameterize individual structural brain connectivity, and that embedding such
measures in a joint structure could be far from trivial. In our model we
adopted FA as an exemplary application, due to its popularity and (relatively)
ease in being reliably computed. However, a more complex and exhaustive
neural measure accounting for white matter anisotropy might be the Gen-
eralized Fractional Anisotropy (GFA, (Cohen-Adad et al., 2008)). This is
computed by using a more complete information on diffusion sampling direc-
tions and yields anisotropy maps with a higher angular resolution that might
efficiently replace FA. Nevertheless, GFA estimates are particularly sensitive
to noise and probably unreliable unless high angular sampling is available
(Zhan et al., 2010). For this reason, a more accurate account of noise estimates
has to be considered and formally instantiated in the joint graphical model,
especially in relation to the covariance structure which directly relate neural
and behavioural parameters.

In conclusion, we think that the proposed approach offers interesting
insights in the development of computational models able to investigate
correspondence between decision-making and brain structural connectivity.
Further works are needed to investigate the potentials of the joint framework
to account for BART performances and neural characteristics of individuals in
clinical populations.
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Chapter 7

General Discussion

In the present dissertation, the application of the PGM framework to model
cognitive phenomena has been proposed at multiple levels of abstraction.

In Chapter 3 we explored the usage of a Latent Markov Model (LMM)
approach for longitudinal-like data to capture dynamics in response strategy
in the WCST from a group-level perspective. The modeling approach has
been thought of as a tool to improve the amount of information attainable
from the analysis of the scoring of response outcomes. From this perspec-
tive, the latent state process served as a proxy to synthesize distributional
properties of scoring measures into latent traits, which, in general, need an a
posteriori interpretation. The main advantage of this approach is that moving
from a summary measures-based to a latent traits-based level of analysis,
evidences for an effective dynamic in observed responses can be achieved in
a principled way. However, such an approach leaves unsolved the pervasive
question about how such behavioural dynamics might emerge from cognitive
dynamics. Indeed, the LMM did not provide a model of cognition neither at
a representational, nor at a computational, level of explanation. Therefore,
a crucial requirement for such a modeling approach to be valuable for clini-
cal and research practices is that the standard scoring measures accounting
for the observation process in our LMM framework, must capture at least
non-overlapping and separable psychological constructs.

The second project, depicted in Chapter 4, tried to investigate such a sepa-
rability issue from a computational modeling perspective. As a natural follow-
up after having highlighted the importance of accounting for behavioural
outcome dynamics in a demanding environment (e.g. the WCST), one might
be interested in investigating how such behaviour emerges by means of gen-
erative models. In this work, the flexibility of the PGM framework has been
used to simulate interactions between cognitive sub-components. In particu-
lar, we adopted a confirmatory perspective with the aim to translate accrued
knowledge from the literature in a DBN structure which resembled the main
features of the cognitive (sub)system responsible for behavioural dynamics
in the WCST. This provided the chance to test the capability of the scoring
measures to capture the heterogeneous corpus of (parameterized) cognitive
sub-component interactions. This can be conceived as an emblematic employ-
ment of PGMs in cognitive research, due to the ability of such a framework
to allow structuring an artificial cognitive system which retains some of the
main property of human cognition, such as the hierarchical organization of
processing and the stochastic aspect of information passing.
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Differently, Chapter 5 tried to embed the cognitive principles involved in
set-shifting, within a consistent and overarching theory of cognitive function-
ing. Despite the complexity of the Bayesian computational mechanisms which
are assumed to take place in a cognitive system, the Bayesian brain model pro-
posed here was built upon a discrete state architecture with given conditional
(in)dependence assumptions. In this case, the generative model was inverted
in order to estimate cognitive parameters which allowed to reconstruct the
process of belief formation during the fulfillment of the WCST. The main
novelty of the proposed model is that the PGM representation, together with
the formalization of a Bayesian cognitive computational framework, allowed
to recover trial-by-trial second-order measures accounting for the interaction
between the agent and the environment. More precisely, while cognitive
parameters, flexibility and information loss, contribute to shape the belief
updating process during the unfolding of the task, the information-theoretic
measures allow to quantify the effect that an event in the environment elic-
its on the cognitive system (e.g. Shannon surprise following an unexpected
observation).

Finally, in Chapter 6, we dedicated to a dynamic environment where
participants were required to find optimal policies to maximize earning in
risky conditions. Although the model adopted here was not a strict DBN, it
definitely took advantage of the PGM framework to represent behavioural dy-
namics in a principled way. The behavioural model, in particular, is dynamic
in the sense that the subjective bursting probability might change trial-by-trial,
conditioned on the previous experience of the individual. Both conditional
(in)dependence assumptions, and the discrete trialwise structuring of the
evolving system, allowed to explicitly account for the hidden process dy-
namics (e.g. trial dependent pumping probabilities) driving the unfolding of
behaviour in time. Therefore, the flexibility of the PGM framework allowed to
embed the behavioural model within a more complex joint neural-behavioural
model. In this way, conditional (in)dependence constraints were not limited to
the behavioural model alone, but were also extended to to the neural model by
allowing the specification of (potentially) every possible relationship between
neural information and cognitive parameters.

The main purpose of the present dissertation was to show the potentials
of adopting a PGM perspective to understand cognition by computational
modeling. As already discussed, we provided ways to (1) obtain new and
more exhaustive scoring measures from the analysis of behavioural outcomes
on a set-shifting task; (2) transfer existing knowledge about a phenomenon
to a probabilistic graph architecture of cognitive functioning to explore be-
havioural outcomes; (3) embed a complex theory of cognition within a proba-
bilistic framework to estimate cognitive parameters and develop insight about
the interaction between an agent and a demanding environment; (4) jointly
model behavioural and neural information. Consistently, we argue that PGMs
can be considered as an optimal candidate to provide a unified mathematical
language to model cognitive phenomena which unfold in time and that can
be approximated by a discrete state and time representation.

However, it is worth emphasizing that when discrete cognitive states are
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taken into account as building blocks to model cognitive dynamics, we are
restricting our attention to some particular snapshot of information processing,
by minimizing the chance of understanding the (behavioural) data-generating
process at a finer time scale (e.g. the brain dynamics time scale). To some
extent, the discretization procedure is both a necessary assumption ensuring
mathematical tractability and models’ parsimony, and the optimal solution
to the problem of mapping computational model constructs to behavioural
outcomes, when the task considered is specifically designed to require a
response elicitation in a single snapshot (e.g. a single trial). Note that this
might be a crucial requirement for our modeling framework to succeed in
building tractable and interpretable cognitive models. Future works might be
interested in assessing the suitability of the PGM framework to be integrated
with models accounting for local dynamics, such as diffusion process models
of decisions, or to be embedded in a more complex model representation
structure where both continuous and discrete time cognitive dynamics are
taken into account.
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Appendix A

Conditional Response
Probabilities comparison

The following tables show the conditional response probabilities estimates
for three models with different number of states (1-state, left; 2-state, center;
3-state, right).

φ̂y|s
y s = 1

C 0.80
E 0.11

PE 0.09

φ̂y|s
y s = 1 s = 2

C 0.92 0.67
E 0.02 0.20

PE 0.06 0.13

φ̂y|s
y s = 1 s = 2 s = 3

C 0.93 0.80 0.44
E 0.02 0.10 0.38

PE 0.05 0.10 0.18

The 1-state model can be considered as a baseline model which accounts for
the absence of dynamics in the performance trend. The 2-state and the 3-state
models are the candidate models in the main work. Our qualitative model
selection criteria relies on comparing their conditional probabilities matrices.
As can be noticed, the State 2 in the 2-state model reflects the error-related
cognitive strategy. However, in our view, the error-related strategy can be
decomposed in order to obtain two types of non-optimal strategies accounting
for different degree of non-perseverative and perseverative components of the
error. A discussion on this point can be found in the ”Discussion of Results”
section in the main manuscript.
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Appendix B

Full joint probability distribution
for all the individuals

In what follows, full joint posterior densities are provided for the two
cognitive parameters, namely, flexibility (λ) and information loss (δ), together
with the mean coordinates (dotted lines) used as point estimates to recover
information-theoretic quantities in the main text.

Figure B.1 shows posterior densities for the healthy group.
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FIGURE B.1: Posterior densities for healthy individuals. Dotted
lines show the distribution mean.
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Figure B.2 shows posterior densities for the substance dependent individuals.

FIGURE B.2: Posterior densities for substance dependent indi-
viduals. Dotted lines show the distribution mean.
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Appendix C

Multivariate Model tuning

C.1 Multivariate Student’s t-distribution specifica-
tion

Here we discuss some computational details related to the tuning of the Multi-
variate Student’s t-distribution. More precisely, we focus on the estimation of
the correlation parameters in the covariance matrix of the multivariate model.

In our model representation, we assumed a sparse covariance matrix in
which some correlation parameters were fixed to zero since our confirmatory
approach focused on testing specific meaningful relations between cognitive
and neural parameters. Thus, prior distributions should be considered for
each correlation coefficient in the decomposed covariance matrix.

The JAGS probabilistic programming framework allows to embed prior
distributions in the hierarchical model by considering the Multivariate Stu-
dent’s t-distribution as modelled according to a precision matrix instead of a
covariance matrix. Matrix inversion is then needed when correlation coeffi-
cients have to be obtained. However, matrix inversion problems may arise
when the assumption of positive-definite matrix is violated, and it is often the
case in which this happens.

Differently, prior distributions for the covariance matrix parameters can
be specified when the Multivariate Normal distribution is considered. This
allows to estimate correlation coefficients when the Multivariate Student’s
t-distribution is taken into account by overcoming the limitations related to
matrix inversion.

Consider the vector-valued random variable X∗ = [γ∗, β∗, α∗0, α∗1 ]. We
assume X∗ to have a Standard Multivariate Normal distribution:

X∗ ∼ N(0, Σ)

with 4-dimensional zero mean vector and covariance matrix Σ as structured
according to the main text. Consider now the vector-valued random variable
X = [γ, β, α0, α1] containing the individual level cognitive and neural parame-
ters. We model X as a Multivariate Student’s t distributed random variable as
follows:

X = µ + X∗
(√

ζ

V

)
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where µ = [µγ, µβ, µδ1 , µδ2 ] and V is a Chi-square distributed random variable
with parameter ρ denoting degrees of freedom. Note that parameters µ and Σ

are estimated in a hierarchical bayesian framework in the main text.
Here, ζ was fixed to a default value such that ζ = 5. In general, values

of ζ in the range [5-30] do not compromise posterior sampled chains mixing
in our application. However, when ρ is treated as a parameter to estimate
and left free to vary within a broader range, chains mixing is not ensured and
parameter estimates are unreliable.

C.2 Simulation study and tuning parameter

In this section we provide a simulation study aimed to explore model perfor-
mance in meaningful scenarios. In particular, a Monte Carlo 3-factorial design
is employed to recover Effective Sample Size of posterior MCMC samples and
Computation Time across levels of three factors, namely, Number of subjects,
Number of ROI-to-ROI connections (which we refer to as ROIs), and the tun-
ing scenarios. In particular, in each cell of the factorial design, parameters are
sampled from the prior, synthetic neural and behavioural data are simulated
based on the sampled parameters, and the simulated data pattern is used to fit
the joint model. For each cell, the process of data simulation and model fitting
is repeated for 10 times. Number of subjects are allowed to vary across three
levels, that is, [10, 30, 50], whilst the Number of ROIs across two levels, that is,
[5, 10]. Simulating neural data consists in directly sampling an FA measure
related to a specific ROI-to-ROI connection. The tuning factor consists in two
levels in which the degrees of freedom of Multivariate t-distribution is fixed
to a default value such that ζ = 5, or is treated as a free parameter with an
exponential prior such that ζ ∼ Exp(1/30). Such a factorial structure entails a
configuration of 12 cells, and a total of 120 data simulations and model fitting.
To make the computations feasible we adopt a simplified version of the joint
model in which the behavioural model consists only in parameters γ and β,
risk taking and response variability, respectively. The remaining nodes of the
graphical model remain unchanged.

As in the main work, the calculations are performed in R, and MCMC
samples are obtain via Gibbs Sampling. For computational convenience 6
chains of 5000 iterations each are used, with a burn-in period of 500 iterations
and a thinning size of 1. Computations are parallelized on an Intel i7 6 cores
CPU. The total factorial design simulation time was 14 hours.

The mean computation time to estimate parameters of the joint model
within each cell of the factorial design is reported in Figure C.1.
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FIGURE C.1: Mean computation time (in minutes) for each cell
of the factorial design. Here, scenario 1 and 2 refer to the case
in which ζ is fixed, whilst scenario 3 and 4 refer to the case in

which ζ is treated as a free parameter.

As can be noticed, computation time increases slightly linearly, based on the
number of individuals. Increasing the number of ROIs seems to contribute
to extend the computation time especially for higher sample sizes. Scenarios
in which ζ is treated as a free parameter (scenario 3 and 4) are the most
computationally expensive. It is worth noticing that, in general, computations
are rather cheap and this is due to the simplified joint model adopted. The
increase of the computation time might not be linear in case the full model is
employed.

Figure C.2 shows the distribution of the Effective Sample Size across the
MCMC joint posterior samples for each cell of the factorial design. Such a
metric helps assessing the convergence of the MCMC sampels, but it also
quantifies how much independent information there is in autocorrelated
chains. Having non-autocorrelated chains ensure to decrease the uncertainty
of the estimation of posterior quantities of interest, such as credible intervals,
which are useful for empirical research. As a substantiated heuristic, the
higher the Effective Sample size the better.
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It is computed according to:

ESS =
N

1 + 2 ∑∞
k=1 ACF(k)

(C.1)

where N is the number of samples for a given chain, and ACF(·) is the
autocorrelation function at lag k.

FIGURE C.2: Effective Sample Size distribution for each cell
of the factorial design. Scenarios 1 and 2 refer to fixed ζ and

scenarios 3 and 4 to ζ as a free parameter.

In general, scenarios in which ζ is fixed to a default value show a higher
Effective Sample Size compared to that of the scenarios in which ζ is sampled
and included in the joint posterior. Enriching information yielded by the data,
by increasing both sample size and ROIs, seems to ensure a more reliable
posterior distributions. This provides an advantage when more data are avail-
able, due the fact that computation time seems to be affected by larger data
structure to a lesser extent. In a similar way, reliability of posterior samples
when ζ is assumed as a free parameter seems to be affected by the amount
of data available. On the other hand, ζ seems to be generally unreliable even
when larger datasets are considered. In our case, mean Effective Sample Size
estimates for ζ samples were 143(SD=18) (resp. 272(SD=34)) for 50 synthetic
subjects and 5 ROIs (resp. 15 ROIs).
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Barceló, F. and Rubia, F. J. (1998). Non-frontal p3b-like activity evoked by the
wisconsin card sorting test. Neuroreport, 9(4):747–751.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2012). Latent Markov models for
longitudinal data. CRC Press.

Bartolucci, F. and Solis-Trapala, I. L. (2010). Multidimensional latent markov
models in a developmental study of inhibitory control and attentional
flexibility in early childhood. Psychometrika, 75(4):725–743.

Basser, P. J. and Pierpaoli, C. (1996). Microstructural and physiological fea-
tures of tissues elucidated by quantitative-diffusion-tensor mri. Journal of
magnetic resonance, Series B, 111(3):209–219.

Batchelder, W. H. (2010). Cognitive psychometrics: Using multinomial pro-
cessing tree models as measurement tools.

Bechara, A., Damasio, A. R., and Damasio, H. (2001). Insensitivity to future
consequences following damage to human prefrontal. The Science of
Mental Health: Personality and personality disorder, 50:287.

Bechara, A. and Damasio, H. (2002). Decision-making and addiction (part
i): impaired activation of somatic states in substance dependent indi-
viduals when pondering decisions with negative future consequences.
Neuropsychologia, 40(10):1675–1689.

Beppu, T., Inoue, T., Shibata, Y., Kurose, A., Arai, H., Ogasawara, K., Ogawa,
A., Nakamura, S., and Kabasawa, H. (2003). Measurement of fractional
anisotropy using diffusion tensor mri in supratentorial astrocytic tumors.
Journal of neuro-oncology, 63(2):109–116.

Berg, E. A. (1948). A simple objective technique for measuring flexibility in
thinking. The Journal of general psychology, 39(1):15–22.

Bestmann, S., Ruge, D., Rothwell, J., and Galea, J. M. (2014). The role of
dopamine in motor flexibility. Journal of cognitive neuroscience, 27(2):365–
376.

Bishara, A. J., Kruschke, J. K., Stout, J. C., Bechara, A., McCabe, D. P., and
Busemeyer, J. R. (2010). Sequential learning models for the wisconsin
card sort task: Assessing processes in substance dependent individuals.
Journal of mathematical psychology, 54(1):5–13.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bornovalova, M. A., Daughters, S. B., Hernandez, G. D., Richards, J. B., and
Lejuez, C. (2005). Differences in impulsivity and risk-taking propensity
between primary users of crack cocaine and primary users of heroin in a



BIBLIOGRAPHY 119

residential substance-use program. Experimental and clinical psychopharma-
cology, 13(4):311.

Braff, D. L., Heaton, R., Kuck, J., Cullum, M., Moranville, J., Grant, I., and
Zisook, S. (1991). The generalized pattern of neuropsychological deficits
in outpatients with chronic schizophrenia with heterogeneous wisconsin
card sorting test results. Archives of general psychiatry, 48(10):891–898.

Bridwell, D. A., Cavanagh, J. F., Collins, A. G., Nunez, M. D., Srinivasan, R.,
Stober, S., and Calhoun, V. D. (2018). Moving beyond erp components: a
selective review of approaches to integrate eeg and behavior. Frontiers in
human neuroscience, 12:106.

Brouwer, G. J. and Heeger, D. J. (2011). Cross-orientation suppression in
human visual cortex. Journal of neurophysiology, 106(5):2108–2119.

Buchsbaum, B. R., Greer, S., Chang, W.-L., and Berman, K. F. (2005). Meta-
analysis of neuroimaging studies of the wisconsin card-sorting task and
component processes. Human brain mapping, 25(1):35–45.

Buckley, C. L., Kim, C. S., McGregor, S., and Seth, A. K. (2017). The free energy
principle for action and perception: A mathematical review. Journal of
Mathematical Psychology, 81:55–79.

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s
default network: anatomy, function, and relevance to disease.

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as
sampling: a model for stochastic computation in recurrent networks of
spiking neurons. PLoS Comput Biol, 7(11):e1002211.

Burgess, P. W., Alderman, N., Evans, J., Emslie, H., and Wilson, B. (1998). The
ecological validity of tests of executive function. Journal of the international
neuropsychological society, 4(6):547–558.

Busemeyer, J. R. and Stout, J. C. (2002). A contribution of cognitive decision
models to clinical assessment: decomposing performance on the bechara
gambling task. Psychological assessment, 14(3):253.

Busemeyer, J. R., Stout, J. C., and Finn, P. (2003). Using computational models
to help explain decision making processes of substance abusers. Cognitive
and affective neuroscience of psychopathology, pages 1–41.

Carlson, S. M. and Moses, L. J. (2001). Individual differences in inhibitory
control and children’s theory of mind. Child development, 72(4):1032–1053.

Casella, G. and George, E. I. (1992). Explaining the gibbs sampler. The American
Statistician, 46(3):167–174.

Cazzell, M., Li, L., Lin, Z.-J., Patel, S. J., and Liu, H. (2012). Comparison of
neural correlates of risk decision making between genders: an exploratory
fnirs study of the balloon analogue risk task (bart). Neuroimage, 62(3):1896–
1911.



120 BIBLIOGRAPHY

Cella, M., Bishara, A. J., Medin, E., Swan, S., Reeder, C., and Wykes, T. (2014).
Identifying cognitive remediation change through computational mod-
elling—effects on reinforcement learning in schizophrenia. Schizophrenia
bulletin, 40(6):1422–1432.

Chater, N., Tenenbaum, J. B., and Yuille, A. (2006). Probabilistic models of
cognition: Conceptual foundations.

Chevalier, N. and Blaye, A. (2008). Cognitive flexibility in preschoolers: The
role of representation activation and maintenance. Developmental science,
11(3):339–353.

Christidi, F., Karavasilis, E., Samiotis, K., Bisdas, S., and Papanikolaou, N.
(2016). Fiber tracking: A qualitative and quantitative comparison between
four different software tools on the reconstruction of major white matter
tracts. European journal of radiology open, 3:153–161.

Christopoulos, G. I., Tobler, P. N., Bossaerts, P., Dolan, R. J., and Schultz, W.
(2009). Neural correlates of value, risk, and risk aversion contributing to
decision making under risk. Journal of Neuroscience, 29(40):12574–12583.

Cohen, J. R. and Poldrack, R. A. (2014). Materials and methods for openfmri
ds009: The generality of self control.

Cohen-Adad, J., Descoteaux, M., Rossignol, S., Hoge, R. D., Deriche, R., and
Benali, H. (2008). Detection of multiple pathways in the spinal cord using
q-ball imaging. Neuroimage, 42(2):739–749.

Collell, G. and Fauquet, J. (2015). Brain activity and cognition: a connection
from thermodynamics and information theory. Frontiers in psychology,
6:818.

Cooper, R., Fox, J., Farringdon, J., and Shallice, T. (1996). A systematic method-
ology for cognitive modelling. Artificial Intelligence, 85(1-2):3–44.

Coulacoglou, C. and Saklofske, D. H. (2017). Psychometrics and psychological
assessment: Principles and applications. Academic Press.

Crone, E. A., Richard Ridderinkhof, K., Worm, M., Somsen, R. J., and Van
Der Molen, M. W. (2004). Switching between spatial stimulus–response
mappings: a developmental study of cognitive flexibility. Developmental
science, 7(4):443–455.

Dagum, P., Galper, A., and Horvitz, E. J. (1991). Temporal probabilistic
reasoning: Dynamic network models for forecasting. knowledge systems
laboratory, medical computer science.

Dai, J., Pleskac, T. J., and Pachur, T. (2018). Dynamic cognitive models of
intertemporal choice. Cognitive psychology, 104:29–56.



BIBLIOGRAPHY 121

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011).
Model-based influences on humans’ choices and striatal prediction errors.
Neuron, 69(6):1204–1215.

de Haan-Rietdijk, S., Kuppens, P., Bergeman, C. S., Sheeber, L., Allen, N., and
Hamaker, E. (2017). On the use of mixed markov models for intensive
longitudinal data. Multivariate behavioral research, 52(6):747–767.

Dean, A. C., Sugar, C. A., Hellemann, G., and London, E. D. (2011). Is all
risk bad? young adult cigarette smokers fail to take adaptive risk in a
laboratory decision-making test. Psychopharmacology, 215(4):801–811.

Dehaene, S. and Changeux, J.-P. (1991). The wisconsin card sorting test:
Theoretical analysis and modeling in a neuronal network. Cerebral cortex,
1(1):62–79.

Demakis, G. J. (2003). A meta-analytic review of the sensitivity of the wis-
consin card sorting test to frontal and lateralized frontal brain damage.
Neuropsychology, 17(2):255.

Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a
unified theory of cognitive development and aging. Developmental review,
12(1):45–75.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,
Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., et al. (2006). An
automated labeling system for subdividing the human cerebral cortex on
mri scans into gyral based regions of interest. Neuroimage, 31(3):968–980.

Dobrow, R. P. (2016). Introduction to stochastic processes with R. John Wiley &
Sons.

Duffy, J. D. and Campbell III, J. J. (2001). Regional prefrontal syndromes: A
theoretical and clinical overview.

Erdfelder, E., Hu, X., Rouder, J. N., and Wagenmakers, E.-J. (2020). Cognitive
psychometrics: The scientific legacy of william h. batchelder (1940-2018).
Journal of Mathematical Psychology, 99(Article 102468):1–7.

Farrell, S. and Lewandowsky, S. (2018). Computational modeling of cognition and
behavior. Cambridge University Press.

Feldman, H. and Friston, K. (2010). Attention, uncertainty, and free-energy.
Frontiers in human neuroscience, 4:215.

Ferrari, S. and Cribari-Neto, F. (2004). Beta regression for modelling rates and
proportions. Journal of applied statistics, 31(7):799–815.

Figueroa, I. J. and Youmans, R. J. (2013). Failure to maintain set: A measure of
distractibility or cognitive flexibility? In Proceedings of the human factors
and ergonomics society annual meeting, volume 57, pages 828–832. Sage
Publications Sage CA: Los Angeles, CA.



122 BIBLIOGRAPHY

First, M. B. (1997). Structured clinical interview for dsm-iv axis i disorders.
Biometrics Research Department.

Flashman, L. A., Homer, M. D., and Freides, D. (1991). Note on scoring perse-
veration on the wisconsin card sorting test. The Clinical Neuropsychologist,
5(2):190–194.

Forstmann, B. U., Wagenmakers, E.-J., Eichele, T., Brown, S., and Serences,
J. T. (2011). Reciprocal relations between cognitive neuroscience and
formal cognitive models: opposites attract? Trends in cognitive sciences,
15(6):272–279.

Freeman, J. B. and Ambady, N. (2010). Mousetracker: Software for studying
real-time mental processing using a computer mouse-tracking method.
Behavior research methods, 42(1):226–241.

Friston, K. (2003). Learning and inference in the brain. Neural Networks,
16(9):1325–1352.

Friston, K. (2005). A theory of cortical responses. Philosophical transactions of
the Royal Society B: Biological sciences, 360(1456):815–836.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature
reviews neuroscience, 11(2):127–138.

Friston, K., Adams, R., Perrinet, L., and Breakspear, M. (2012). Perceptions as
hypotheses: saccades as experiments. Frontiers in psychology, 3:151.

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., and Pezzulo, G. (2017a).
Active inference: a process theory. Neural computation, 29(1):1–49.

Friston, K. and Kiebel, S. (2009). Predictive coding under the free-energy
principle. Philosophical Transactions of the Royal Society B: Biological Sciences,
364(1521):1211–1221.

Friston, K. J., Daunizeau, J., Kilner, J., and Kiebel, S. J. (2010). Action and
behavior: a free-energy formulation. Biological cybernetics, 102(3):227–260.

Friston, K. J., Lin, M., Frith, C. D., Pezzulo, G., Hobson, J. A., and Ondobaka,
S. (2017b). Active inference, curiosity and insight. Neural computation,
29(10):2633–2683.

Fukunaga, R., Brown, J. W., and Bogg, T. (2012). Decision making in the
balloon analogue risk task (bart): anterior cingulate cortex signals loss
aversion but not the infrequency of risky choices. Cognitive, Affective, &
Behavioral Neuroscience, 12(3):479–490.

Furman, D. J., Hamilton, J. P., and Gotlib, I. H. (2011). Frontostriatal functional
connectivity in major depressive disorder. Biology of mood & anxiety
disorders, 1(1):11.



BIBLIOGRAPHY 123

Gelman, A., Rubin, D. B., et al. (1992). Inference from iterative simulation
using multiple sequences. Statistical science, 7(4):457–472.

Gelman, A. and Shalizi, C. R. (2013). Philosophy and the practice of bayesian
statistics. British Journal of Mathematical and Statistical Psychology, 66(1):8–
38.

Gershman, S. J. (2015). A unifying probabilistic view of associative learning.
PLoS Comput Biol, 11(11):e1004567.

Gershman, S. J. (2018). The successor representation: its computational logic
and neural substrates. Journal of Neuroscience, 38(33):7193–7200.

Ghahramani, Z. (1997). Learning dynamic bayesian networks. In International
School on Neural Networks, Initiated by IIASS and EMFCSC, pages 168–197.
Springer.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. (1995). Markov chain Monte
Carlo in practice. Chapman and Hall/CRC.
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Nyhus, E. and Barceló, F. (2009). The wisconsin card sorting test and the
cognitive assessment of prefrontal executive functions: a critical update.
Brain and cognition, 71(3):437–451.



128 BIBLIOGRAPHY

Ott, T. and Nieder, A. (2019). Dopamine and cognitive control in prefrontal
cortex. Trends in Cognitive Sciences.
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