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Abstract—Apple is one of the most produced fruit crops in the
world. Recent advances in Artificial Intelligence and the Internet
of Things can reduce production costs and improve crop quality
by providing prompt detection of dangerous parasites. This paper
presents an effective solution to automate the detection of the
Codling Moths. The system takes pictures of trapped insects in
the orchard, analyzes them through a DNN algorithm, and sends
alarms to the farmer in case of a positive detection. The system is
fully autonomous and can operate unattended for the entire crop
season. Detection reports are used for optimizing the treatment
with chemicals only when threats are identified. The prototype is
designed with an embedded platform powered by a small solar
panel to achieve an energy-neutral balance.

I. INTRODUCTION

With recent advances in Artificial Intelligence and the Inter-

net of Things (IoT), the number of energy autonomous sensors

and devices that can be implemented in agricultural solutions

has grown enormously [1]. This growth and accessibility have

favored the emergence of IoT and Cloud solutions, giving rise

to a phenomenon known as Smart Farming [2].

Deep Neural Networks (DNNs) have become predominant

for vision recognition and other patterns detection in re-

cent years, even in ultra-low power cameras [3]. They are

more recently used to build robust analytic tools for Smart

Farming [4]–[6] because crop losses and pest control can be

extremely expensive.

Deep learning is a promising approach for extracting ac-

curate information from raw sensor data from IoT devices

deployed in complex environments. In conventional cloud

computing, all data must be uploaded to centralized servers,

and, after computation, the results need to be sent back to

sensors, devices, or actuator. This process creates high pressure

on the network, specifically in the data transmission costs of

bandwidth and energy resources [7].

Deep learning can enable IoT devices to interpret unstruc-

tured multimedia data, and intelligently react to user and

environmental events. Adding intelligence to the nodes and

shifting the decision of anomalies near the sensor allows fast

decisions and actions and permit high scalability. Moreover,

local data processing is the key to reduce communication costs

and latencies as an alternative to data compression [8].

Monitoring the number of insect pests is crucial in

pheromone-based pest management systems as pest infestation

is one of the main factors that affect harvest losses [9]–

[11]. The most common method of measuring insect infes-

tations is to identify and count the insects manually; captured

digital images are analyzed by human experts, or farmers,

to recognize and count pests. However, visual inspection is

labor-intensive and inefficient; therefore, subjective factors can

affect the accuracy of population counts. With the development

of information technology, the researchers have proposed to

use computer vision techniques for automatically identifying

and counting agricultural pests. The same digital images

used for manually identifying pest infestation are being used

to train machine learning algorithms for automatic disease

detection [5], [12]–[16]. Once trained, intelligent visual IoT

devices can be deployed directly in orchards for autonomously

monitoring dangerous parasites.

This paper presents the study of an AI-IoT smart device for

pest detection in Smart Farming. The device is based on a low-

power platform and integrating energy harvesting capabilities,

and can be left operating inside common pheromone-based

traps for the entire crop season. A report is remotely sent

thanks to a long-range low-power LoRa radio in case of a

pest infestation.

The paper is organized as follows: Section II briefly presents

the hardware overview of the system and the software state

machine, while the machine learning task is discussed in sec-

tion III. The overall evaluation of the system is presented and

discussed in section IV. Here we characterize the networks’

accuracy and the energy requirements of the different IoT

device tasks. Closing this work, Section V discusses future

improvements and draws conclusions.

II. SYSTEM OVERVIEW

Figure 1 presents the system architecture. The prototype is

based on a Raspberry-Pi platform and integrates a camera for

acquiring trap images and an Intel Neural Compute Stick for

evaluating the DNN. Long-range connectivity is guaranteed

by a LoRa modem perfectly suitable for low bitrate com-

munications. To extend the battery life of the system, the

prototype also integrates a complete solar energy harvester,

as other solar-harvesting wireless smart cameras [17]. In

this early stage it is implemented using a Pi-Juice-Hat [18]

that provides all the components for managing a low-power

platform. More specifically, a low-power RTC clock is used to

wake up the system and a voltage monitor to ensure enough

energy is stored in the battery. The prototype developed is

compact (101×67×55 mm), portable, and easy to install. The

device can be installed inside common pheromone-based traps.

Codling moth detection is executed twice a day. A picture of



the trapped insects is collected and evaluated. Figure 2 presents

the trap where the prototype was tested and evaluated.
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Fig. 1: System architecture

The software state machine is simple and encompasses just

a few steps. The traps’ images are acquired using the Camera,

adapted using the OpenCV library, and used as an input

to the neural network for recognition. Network evaluation

speed is improved using the Intel Movidius Neural Compute

Stick (NCS) [19], a tiny fanless deep-learning device used

to evaluate DNNs at the edge. After the DNN assessment,

a report is generated and sent using the LoRa modem to

the farmer. Two different neural networks are evaluated to

compare this kind of application’s performance.

Fig. 2: Smart Trap installed in an apple orchard

III. NEURAL NETWORK

DNNs, or deep learning, refer to a specific class of neural

networks algorithms. Learning tasks are broken down and

distributed onto machine learning algorithms organized in

consecutive layers. Together the layers constitute an artifi-

cial neural network that mimics the distributed approach to

problem-solving carried out by neurons in a human brain.

Two CNNs were chosen for this application and then eval-

uated their performance. The first is LeNet [20], a multilayer

neural network trained with back-propagation. It is designed to

recognize visual patterns directly from pixel images with mini-

mal preprocessing. By modern standards, LeNet is straightfor-

ward. It is made up of 7 layers. The layer composition consists

of 3 convolutional (C1, C3 and C5) layers, 2 subsampling

layers (S2 and S4) and 1 fully connected layer (F6), that

are followed by the output layer. To reduce the computing

demanding of the network and to permit convolutional kernels

to learn different patterns, individual convolutional kernels,

in the layer C3, do not use all of the features generated

by the layer S2. This allows the network to learn the best

internal representation from raw images automatically. These

key features perfectly fit the requirements for evaluating insect

pictures because the network can automatically learn different

insect patterns.

The second trained network is based on VGG16 [21], a

very deep Convolutional Neural Network developed mainly

for face recognition. Instead of having many hyper-parameters,

VGG16 focused on having convolution layers of 3x3 filter with

a stride 1 and always used the same padding and maxpool

layer of 2x2 filter of stride 2. The network is arranged

in convolution and max pool layers consistently throughout

the whole architecture. It concludes with 2 fully connected

layers followed by a softmax for output. Convolutional layers

do “feature extraction,” acting as perception fields, finding

patterns and geometrical shapes of progressing complexity,

while fully connected layers act as a classical perceptron,

classifying objects based on what shapes were present in

the image. This network is pretty large, and it has millions

of parameters. However, it was selected both to understand

how accuracy can vary with more complex models, due to

the intrinsic characteristic of self-tuning for different complex

shapes, like the case of insects.

A. Related work

Effective crop protection requires early and accurate de-

tection of biotic stress. The identification and monitoring of

insect pests using automatic traps bring a novel approach to

the integrated pest management [11], [22].

Plenty of previous work has considered autonomous insect

detection and classification using machine learning. In a recent

approach [23], deep learning object detectors were applied to

create detection models for three species of moths collected

from pheromone traps. The best model showed an average

accuracy of over 90% in detecting 4 different insect classes.

Even if the approach provides good accuracy, it cannot be

deployed inside a low-power embedded platform due to the

network’s complexity.

Another research [24] investigated the potential of using

hyperspectral imaging in the spectral region between the VS

and NIR regions (400–1000 nm) for assessing codling moth
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Fig. 3: Training and validation accuracy for LeNet (3a) and

VGG16 (3b)

infestation inside apples. Several classification and data types

were conducted, and the best-achieved classification rate is

about 82%. Furthermore, this approach targets the detection

after the apples have been harvested, and cannot be deployed

in orchards.

An approach similar to the one discussed in this paper

is investigated in [25] and [26]. There, convolutional neural

networks are used to classify and detect insects. Both im-

plementations show how a CNN can be a good choice for

automating pest detection with an average accuracy of near

90%, also in the case of multiple insect classes.

Even if the approach presented in this paper is not a novelty,

the proposed solution can provide state-of-the-art detection

results directly from apple orchards. Our system provides high

accuracy for the implemented task, without the need to first

upload acquired data to the cloud. All the computation is

carried out on the edge, with the capability to exploit energy

harvesting.

B. Training

To train the two proposed models for codling moth detec-

tion, two different approaches were used. The LeNet model

was trained using a mobile workstation, while for the VGG16

model an HPC was used. This is due to the fact that the

VGG16 model is more complex and requires higher computing

power to complete the training phase. For reference, in both

cases, the training phase was completed in less than 10

minutes.

The data set used during the training consists of 1200

images, divided into two classes. 800 containing the codling

moth (C1) and 400 not containing the codling moth (C2).

The data set was further divided into 900 images used for the

training (645 C1 - 255 C2, images) and 300 for the validation

(200 C1 - 100 C2, images)

Regarding image dimension, LeNet model is trained using

28x28 pixels tiles while VGG16 uses 56x56 tiles.

Training and validation accuracy are presented in Figure 3.

Analyzing the results, we can see in the first one an irregular

increment of precision during the validation. This sudden loss

of precision is due to the less robustness of LeNet with respect

to VGG16. However, at the end of the validation process, both

networks achieve an acceptable level of precision: LeNet about

94% and VGG16 about 99%. Future works should extend the

data set with more pictures, encompassing different insects

than the Codling moth. Figure 4 presents an example of a

ROI extracted by the learning algorithm.

Fig. 4: Example of a ROI extracted by the learning algorithm

from a picture captured inside a pheromone-based common

trap

IV. EVALUATION AND DISCUSSION

Table I present the performance of the two CNN imple-

mented. Using these results, it is possible to compute the

TABLE I: CNNs prediction results using a batch of 119

images.

Ture

Positive

True

Negative

False

Positive

False

Negative

LeNet 83 34 2 0

VGG16 71 34 2 12



performance of the neural networks in terms of accuracy,

recall, precision and f-measure.

Accuracy Recall Precision F-Score

LeNetVGG16

98.3 100 97.6 98.8

88.2 85.5

97.3
91

Fig. 5: Figures of merit for both LeNet and VGG16 CNNs

The histograms presented in Figure 5 show the results

obtained and allow us to compare the two CNNs rapidly. In

VGG16, we can see a high precision and a low recall, meaning

that it misses some moths while the predicted ones are correct.

Consequently, the F-Measure is lower. LeNet presents good

results in all the four parameters shown above. For this reason,

it is possible to conclude that LeNet outperforms VGG16 in

this application scenario.

VGG16 lower performance is probably associated with the

reduced dataset used during the training phase. Due to the

network architecture and the number of parameters to adjust,

the training phase needs more data to produce reliable results.

Future works should use a larger dataset with many different

insects to obtain more reliable and more truthful results for a

real application.

A. Tasks characterization

The system is kept in sleep mode most of the time to lower

the energy requirement of the IoT node, The low-power RTC,

integrated into the PiJuiceHAT, wakes the system up only

when needed to execute the tasks whenever planned.

To characterize the system’s energy budget, we divided the

software pipeline into four different tasks and then evaluated

both time duration and energy demand. The four tasks are:

1) Image acquisition; 2) pre-processing; 3) Inference; 4)

Data Transmission. During these tests, all the unnecessary

functionalities have been disabled (i.e., like Wi-Fi, Bluetooth,

graphic interface of Raspbian OS).

Three different prototypes have been tested

• Raspberry Pi3 evaluating a LeNet model;

• Raspberry Pi3 evaluating a VGG16 model using an Intel

NCS;

• Raspberry Pi4 evaluating a LeNet model.
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Fig. 6: Average current consumption of each task. The models

using Raspberry Pi4 consume more current in each task with

respect to the other models, except for the third and fourth

tasks (Neural network inference and message transmission) of

the Raspberry Pi3 with VGG16 and Movidius.

Results are presented in table II. As expected, experiments

using the Movidius are accelerated than the ones without it.

Indeed, the most significant difference is observable in task 3,

which requires the highest time because it involves the neural

network evaluation. This task is the most critical also from the

power consumption. In particular, the models with VGG16 and

Movidius are more expensive in terms of energy requirements.

Task 1 and Task 4 consist of shorter computation and need

similar time and consumption in all the different prototypes.

After the complete evaluation of the Pi3 running both

models, LeNet has been loaded on the Raspberry Pi4 to study

the difference, in terms of performance, between Pi3 and

Pi4. It has been observed that the configuration of Raspberry

Pi4 with LeNet consumes more than the Raspberry Pi3 with

LeNet. For this reason, the setup with Raspberry Pi4 with

VGG16 on Movidius was not analyzed. As can be noted in

Figure 6 results using a Pi4 are in general worse than models

developed on Pi3.

Concerning energy consumption, the best configuration is

the Raspberry PI3 optimized with VGG16 + Movidius. It

is due to the use of the Movidius that improves the per-

formance of the neural network inference reducing the task

execution times and the total energy, even if the average power

is higher. The current trace collected while evaluating this

implementation is presented in Figure 7. Indeed, thanks to

Movidius accelerator, the VGG16 uploading model is faster

than the LeNet, even if the latter occupies much less more

resources (1 GB for VGG16 vs. 15 MB for LeNet). Model

uploading is the most time-consuming part of task 3. In terms

of time and energy, a possible optimization can be running the

LeNet evaluation using the NCS. Unfortunately, the model

is not directly compatible with the NCS and needs further

processing.

B. Energy Harvesting and battery life

To assess the expected battery life, the first test calculated

the number of complete cycles (i.e., from capturing an image

to sending the report using the LoRa modem) achievable with



TABLE II: Average current consumption and time duration for the four tasks presented in subsection IV-A. Three different

implementations have been tested: 1) Raspberry Pi3 evaluating LeNet; 2) Raspberry Pi3 + Movidius evaluating VGG16;

3) Raspberry Pi4 evaluating LeNet

Task 1 Task 2 Task 3 Task4

Duration [s] Consumption [mA] Duration [s] Consumption [mA] Duration [s] Consumption [mA] Duration [s] Consumption [mA]

1 1.41 397.1 3.51 375.6 33.05 414.5 1.13 380.4

2 0.48 468.7 3.4 452.9 16.30 505.5 0.86 527.9

3 1.52 551.8 2.57 524.9 18.82 559.8 0.70 522.3
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Fig. 7: Current consumption trace of a complete cycle using

a RPI3 with Intel NCS evaluating a VGG16 network.

the integrated battery, a single cell LiPo battery providing

1820 mAh.

Taking into consideration the setup that exhibits the max-

imum energy demand – Raspberry Pi4 evaluating a LeNet

model – we can achieve 120 cycles. On the contrary, consid-

ering the best implementation – Raspberry Pi3 evaluating the

VGG16 model using the NCS – we can achieve a maximum

of 169 cycles. If we assume that a farmer usually checks the

traps for pest infestation twice a day, the implemented system

expected battery life goes from a minimum of 60 days to a

maximum of 84. Table III presents the result of this analysis.

However, the proposed smart device also integrates a small

(140 x 100 mm) solar panel providing a maximum of 0.8 Wp.

Using this solar panel, we can recharge the battery from zero

in around 3 hours (when working in optimal condition [27] ).

TABLE III: Average energy consumption and expected battery

life for: 1) Raspberry Pi3 evaluating LeNet; 2) Raspberry Pi3

+ Movidius evaluating VGG16; 3) Raspberry Pi4 evaluating

LeNet

RPi average current

consumption for 1

cycle [mAh]

Battery average current

consumption for 1

cycle [mAh]

Battery average

energy for 1

cycle [J]

Number of

cycles using the

integrated battery

1 6.94 12.55 166.6 146

2 5.96 10.73 143 169

3 8.35 15.04 200.4 120

Considering the amount of energy required for completing 2

cycles (i.e., one day of operations), we can safely say that the

platform is energy neutral and can self-sustain its operations.

Other energy harvesting solutions could be used, for example

the one that exploit microbial fuel cells [28], or introducing

Intermittent computing [29], [30].

C. ROIs images transmission

Eventually, tests are conducted to measure the energy re-

quired when the extracted Region of Interest (ROI) is trans-

mitted wirelessly. We considered 10 frames, 60×60, ROIs, and

compressed using JPEG. The information consisting of 26,560

bytes was transmitted using the LoRa modem, using 111

sequential packets. Considering a delay of 0.1 s between two

consecutive packets, the time of task 4 was 115.32s. Updating

this value, the average consumption of this configuration

becomes 30.47 mAh requiring 406 J. In this case, the node can

still complete 59 cycles, meaning about a month of expected

Pi-Juice-Hat battery life.

V. CONCLUSION

Deep learning is nowadays a state-of-the-art approach for

extracting accurate information from raw sensor data in many

applications. This paper presented the study of an effective

solution for pest detection in precision agriculture. A range of

implementations and two different DNN models have been

studied. Results show how it is possible to run learning

tasks directly on the sensor node, allowing the automation

of codling moth detection task. Only the analysis results are

transmitted, reducing the bandwidth and energy costs associ-

ated with wireless transmission. Moreover, we demonstrated

energy neutrality by combining a small solar panel, making

the device fully autonomous.
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