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Abstract—Multi agent systems are becoming pervasive in
modern industrial and service applications. Either being
autonomous robotic agents or human beings performing a
collaborative task, relative and/or absolute localisation of the
team agents is a mandatory task to be efficiently solved for
any meaningful application. In this paper, we will analyse the
cooperative localisation problem from the perspective of the
number and quality of the available measurements, rooting this
analysis to a practical example of ranging measurements for
robot localisation. We will make use of a known distributed
Kalman filtering technique to highlight a trade off between
number and quality of measurements, which is a known effect in
estimation theory but never analysed for distributed estimation
problems. What is surprising is that the net effect is quite similar
to what happens in opinion formation for social groups, which
is sometimes referred to as majority effect.

Index Terms—Kalman Filter, Cooperative Localisation
Algorithm, Majority Effect, Distributed Estimation

I. INTRODUCTION

Precise localisation is one of the main requirements for
mobile robot autonomy. Indoors and outdoors, mobile robots
need to know their exact position and orientation in order
to perform their required tasks. There have been numerous
approaches to the localisation problem utilising different
types of sensors and a variety of techniques. The key
idea behind most of the current localisation schemes is to
optimally combine measurements from proprioceptive sensors
that monitor the motion of the vehicle with information
collected by exteroceptive sensors, that allow to detect and
identify other robots moving in the vicinity and measure
relative displacements [1].

There area a plethora of different exteroceptive sensing
system that can be adopted for localisation of agents (i.e.
either robots or human beings) even when Global Navigation
Satellite Systems (GNSS) is not allowed, as typically happens
in indoor environments. To mention a few, there are solutions
based on laser beams [2], ultrasonic stimuli [3], cameras [4]
or even radars [5]. One of the most effective and low
cost solutions relies on ranging sensors, which comes using
different approaches, such as Received Signal Strength (RSS)
measurements and fingerprinting of standard wireless signals
(e.g. WiFi) [6], Radio Frequency Identification Systems
(RFID) [7] to time-of-flight (ToF) values of Ultra-Wide Band
(UWB) pulses [8], [9]. When applied to wheeled mobile
robots, the localisation problem can be solved by fusing the

exteroceptive information with proprioceptive data, such as
dead reckoning techniques (e.g. based on odometry or inertial
measurement units) [10].

When the localisation problem is extended to multiple
agents, distributed solutions, such as [11], can be efficiently
used to design collaborative or cooperative localisation
algorithms that prove to be effective in different contexts [12].
In those cases, the use of ranging sensing systems is
heavily adopted, due to their flexibility and efficiency in
measuring relative displacements among the agents. For
example, in [13] a fully wireless localisation system based
on time of arrival/angle of arrival (TOA/AOA) is adopted.
In those cases, the Extended Kalman Filter (EKF) remains
a valid algorithm [14], either as a distributed sensing fusion
solution [11] or as a collaborative localisation approach by
means of an Interlaced Extended Kalman Filter (IEKF) [15].

Apart from the several available solutions, there are
still some issues that should be addressed for cooperative
localisation. In particular, this paper analyses this problem
and 1) propose a statistical proof of the relevance of the
distributed EKF against individual localisation; 2) present the
trade-off between the number of information available and
their uncertainties, making an interesting parallel between the
problem at hand and social opinion formation, with special
reference to the majority effect [16].

The paper is organised as follows: Section II describes
the distributed localisation problem in a general way, clearly
stating the problem at hand and introducing the distributed
algorithm adopted, while Section III presents the models
adopted for the sensing system and the agents. We then present
the statistical analysis of the obtained results and the main
message of the paper in Section IV where we also made
explicit the connection with social behaviours. Finally, we
draw our conclusions and present future research directions
in Section V.

II. BACKGROUND MATERIAL AND PROBLEM
FORMULATION

To introduce the problem at hand, we will first start with the
description of a positioning problem, that is when the agent
state qk ∈ Rn at time kTs (where Ts is the sampling time
induced by the sensors and k ∈ Z) can be entirely estimated
using only the measurements zk ∈ Rm at time kTs, i.e. the
state qk is statically observable from the measurements. To this



end, let us define the generic nonlinear measurement function
at time kTs as

zk = h(qk, ηk),

where ηk is the sequence of random effects acting on the
measurement process and generating uncertainties, which is
customarily assumed as a zero mean white sequence with
covariance matrix Rk. In the general case, a solution to
this problem can be given by the nonlinear Gauss solution
to the Weighted Least Squares (WLS). Intuitively, the more
measurements are available, the less would be the uncertainty
on the estimates q̂k. The proof comes from the linear
description of the measurement process, that is when the
measurement forward map is given by

zk = Hkqk +Gkηk,

the solution is given by the WLS solution q̂k = PkH
T
k R

−1
k zk,

where Pk = (HkR
−1
k HT

k )
−1 is the covariance matrix of

the estimation error q̃k = qk − q̂k and Rk = GRkG
T is

the covariance matrix of the noises ηk = Gηk affecting
the measurements. Notice that the WLS is the Best Linear
Unbiased Estimator (BLUE), which turns to a Minimum
Variance Unbiased Estimator (MVUE) when the noises ηk
are Gaussian. Furthermore, when the measurements zk are
given by m independent sensors, the noise sequences ηk can
be considered as independent and, further assuming all the
sensors of the same type, we have Rk = σ2

ηk
Im, where Im

is the identity matrix of order m. In such a case, the WLS
solution q̂k turns out to be proportional to the arithmetic mean
that implies an inverse proportionality between m and Pk.

Similar arguments still hold for a Bayesian filter, such as
the Kalman Filter (KF) or its nonlinear extension Extended
Kalman Filter (EKF), where the model now comprises the
system state dynamic as well, i.e.

qk+1 = f(qk, uk, εk),

zk = h(qk, ηk),
(1)

where uk ∈ Rp are the model inputs and εk are the model
and/or actuation uncertainties, usually generated by a zero
mean white stochastic process. For the localisation problem,
the filter acts as a sensor fusion algorithm fusing (in general)
proprioceptive sensor readings (usually adopted in the model
of the system and, hence, affected by εk) during the prediction
step and then using exteroceptive measurements in the update
step involving the measurements zk and its uncertainties ηk. In
the case of linear dynamics and linear measurements, the KF
turns to be BLUE, while if the noises are Gaussian, it is also
the MVUE. Notice that for a correct solution of the localisation
problem, the exteroceptive measurements usually involve
absolute measures, that is measurement results expressed with
respect to a known fixed reference frame (e.g., GPS readings).
Nevertheless, when a team of agents is considered, relative
measurements, i.e. measurements involving relative values and
expressed in relative coordinates (e.g. the distance between
two cars taken from a radar), can be adopted to reduce the
estimation uncertainty.

As shown in the next sections, relative measurements highly
correlates the agents state estimates, which may be detrimental
for the estimation process and may generate a trade-off.
Indeed, either for the static or dynamic filters, “the more
measurements zk are available, the less is the uncertainty
affecting the estimates q̂k” is a rule of thumb that not always
hold. For example, if m = 3 measurements are collected, but
one is linearly dependent from the other two (i.e. one has
correlation coefficient equals to one with the other two), the
estimation uncertainty remains the same for m = 2 or m = 3.
In other words, the higher is the correlation coefficient, the
less is the information that the measurement carries to the
estimation process.

A. Distributed EKF

The EKF implemented in this paper is conceived for being
distributed among the team of N agents, but it is presented
with a centralised manner for ease of analysis. Once the
centralised version is available, the distributed version can be
immediately obtained following [11]. In order to identify the
collaborative nature of the solution, please refer to [1].

a) Propagation step: For the model equations of the EKF
we use those reported in (1), one for each agent, i.e.

q̂−
k+1 =


q̂
(1)−
k+1

q̂
(2)−
k+1

...
q̂
(N)−
k+1

 =


f (1)(q̂

(1)
k , u

(1)
k , ε

(1)
k )

f (2)(q̂
(2)
k , u

(2)
k , ε

(2)
k )

...
f (N)(q̂

(N)
k , u

(N)
k , ε

(N)
k )

 = f(q̂k,uk, εk)

(2)
where the superscript ·− stands for “the predicted value”
(i.e. using the model information only), the bolded symbols
represents the collection of the quantities for all the N
agents and where we use the superscript ·(i) to identify the
quantities of the i–th agent. It is worthwhile to note that
each agent dynamic is independent from the other, hence the
Jacobian matrices Ak = ∂f(qk,uk,εk)

∂qk
, Bk = ∂f(qk,uk,εk)

∂uk
, and

Ck = ∂f(qk,uk,εk)
∂εk

will be all diagonal. As a consequence,
the model noise covariance will be a block diagonal matrix
Qk = CkQkC

T
k , where Qk is the covariance matrix of εk.

The estimation error q̃k+1 = qk+1 − q̂k+1 covariance
propagation equation then becomes

P−
k+1 = AkPkA

T
k +Qk,

with initial values

P0 = diag(P (11)
0 , P

(22)
0 , . . . , P

(NN)
0 ), (3)

since each agent may only know its own position and
covariance in the reference coordinates frame. Of course, the
block diagonal entry P (ii)

k refers to the error covariance matrix
of the i-th agent.

b) Update step with absolute measurements: Using
again (1) with additive noises (a customary assumption) and



when only absolute measurements are considered, the vector
of observations taken by the different agents can be written as

zk =


z
(1)
k
...

z
(N)
k

 =


h(1)(q

(1)
k )

...
h(N)(q

(N)
k )

+

η
(1)
k
...

η
(N)
k

 = h(qk)+ηk, (4)

whose Jacobian is given by Hk = ∂h(qk)
∂qk

, which is a block
diagonal matrix as the covariance in (3) and with diagonal
block H(ii)

k following the same naming convention as in P0.
Similarly, the covariance matrix Rk of the noises ηk will
be block diagonal with entries R(ii)

k . It then follows that by
applying the standard equations of the EKF, i.e.

Sk+1 = Hk+1P
−
k+1H

T
k+1 +Rk+1,

Kk+1 = P−
k+1H

T
k+1S

−1
k+1,

q̂k+1 = q̂−
k+1 +Kk+1(zk+1 − h(q̂−

k+1)),

Pk+1 = (I −Kk+1Hk+1)P
−
k+1,

(5)

an updated of the estimates can be given. Straightforwardly,
the covariance matrix of the estimation error Pk remains block
diagonal ∀k.

c) Update step with relative measurements: When two
agents fall within the relative sensing range, a relative
measurements can be collected. Let us assume that, at time
kTs, the i-th agent measure the j-th agent, in such a case (4)
turns to

z
(ij)
k = h(ij)(q

(i)
k , q

(j)
k ) + η

(ij)
k , (6)

that yields a linearised relative measurements matrix as

H
(ij)
k =

∂h(ij)(q
(i)
k ,q

(j)
k )

∂q
(i)
k

+
∂h(ij)(q

(i)
k ,q

(j)
k )

∂q
(j)
k

. Similarly, the

covariance matrix of the noise η(ij)k is generically represented
as R(ij)

k .
The net effect of the use of the matrix H

(ij)
k in the

innovation covariance Sk+1 computation, i.e. the covariance
of the uncertainties related to the innovation brought by the
relative measurements, is the generation of correlations in the
covariance matrix of the estimates, i.e. Pk is no more block
diagonal as in (3) but becomes

Pk =



P
(11)
k . . . 0 . . . 0 . . . 0
...

. . .
...

...
0 . . . P

(ii)
k . . . P

(ij)
k . . . 0

...
...

. . .
...

...
0 . . . P

(ji)
k . . . P

(jj)
k . . . 0

...
...

...
. . .

...
0 . . . 0 . . . 0 . . . P

(NN)
k


,

where correlations among the agent estimates is generated.
These new mixing elements represent the shared knowledge
in the agents team that should be included in the computations
of the next propagation and update steps. Although evident
from this analysis, these terms are sometimes neglected
in the literature, as for example in the interlaced filter

defined in [15] and analysed in [17], and may lead to filter
inconsistency depending on the ratio of absolute measurements
in comparison with relative ones.

Remark 1: With only relative measurements, the system is
not observable, that is it cannot be localised in the selected
reference frame. Indeed, only the relative positions between
agents can be recovered, while their absolute positions remains
unknown. As a consequence, there is at least one eigenvalue
of Pk that grows unbounded. This fact makes even more
grounded the proposed analysis, as expressed in the next
section.

d) General updates with mixed measurements: In
general, the overall set of measurements is given by

zk =



z
(1)
k
...

z
(N)
k

z
(ij)
k

...z(pl)k


=



h(1)(q
(1)
k )

...
h(N)(q

(N)
k )

h(ij)(q
(i)
k , q

(j)
k )

...
h(pl)(q

(p)
k , q

(l)
k )


+



η
(1)
k
...

η
(N)
k

η
(ij)
k
...

η
(pl)
k


=

[
ha(qk)
hr(qk)

]
+ηk,

(7)
whose Jacobians are given by

Ha
k =

∂ha(qk)

∂qk
and Hr

k =
∂hr(qk)

∂qk
, (8)

and where we used the superscript a or r to explicitly
distinguish between absolute and relative measurements. As
a consequence, the output matrix to be used in (5) at time

kTs will be given by Hk =

[
Ha
k

Hr
k

]
.

Remark 2: The filter thus discussed does not assume that
all the absolute and relative measurements are available at all
time kTs. Instead, the number of measurements can change in
time due to the agent trajectory, as also assumed in [17].

B. Problem statement

The problem we are facing in this paper is to statistically
evaluate the estimation error q̃k+1 = qk+1 − q̂k+1 of
the distributed EKF (recall that the presented EKF can
be distributed among agents using [11] and assuming
communication holds among the team) as a function of the
number of agents involved in the team and with the presence
of relative measurements. In particular, we want to empirically
understand if: a) the relative measurements actually plays a
role in mitigating the random effects in both the model and the
measurements, b) the rule of thumb “the more measurements
zk are available, the less is the uncertainty affecting the
estimates q̂k” is preserved at the team level, i.e. replacing zk
with zk and q̂k with q̂k, and irrespective of the presence of
correlations among the agents, c) if this effect is bounded after
a certain value.

III. MODELS AND HYPOTHESES

In order to increase the generality of the approach and
clearly state if the relative measurements plays an actual
role and to what extent, we select two different motion



models for the mobile agents, which are inspired by the
human motion models as presented in [18]. Moreover,
to identify the trade-off between the number of relative
measurements and the performances, we select two different
ranging measurement techniques: an UWB approach, which
allows lower uncertainties but a reduced sensing range [8],
[9], and an RSSI approach [6], which instead ensures a longer
sensing range with a reduced uncertainty. For the absolute
reference, we again use a ranging system to simplify the
analysis, but any possible solution actually applies.

A. Robot models

Using the motion model idea that underlies human
dynamics [5], [18], we adopt two different models for the
motion of the autonomous agents, which will be referred
henceforth as robots. In the first model, the robots are modelled
as points moving on a plane with respect to a fixed reference
frame 〈W 〉. Therefore, for the i-th robot we have q

(i)
k =

[x
(i)
k , y

(i)
k ]T with constant velocity dynamic

q
(i)
k+1 = q

(i)
k +B

[
v
(i)
xk

v
(i)
yk

]
+ εk, (9)

where v(i)xk and v(i)yk are the velocities along Xw and Yw global
axes, respectively, and B = TsI2 describes the input matrix
of the system.

The second model, instead, accounts for a smooth trajectory
and follows a unicycle like nonlinear dynamic, i.e. q(i)k =

[x
(i)
k , y

(i)
k , θ

(i)
k ]T , which can be expressed for the i-th robot

as

q
(i)
k+1 = q

(i)
k + Ts

cos(θ
(i)
k )(v

(i)
k + ε

(i)
vk )

sin(θ
(i)
k )(v

(i)
k + ε

(i)
vk )

(ω
(i)
k + ε

(i)
ωk)

 (10)

where v
(i)
k and ω

(i)
k are the forward and angular velocities,

respectively.
For the model (9), three different absolute ranging readings

are needed to compute trilateration and, hence, ensure the
positioning of the system, while for the modelin (10)
two consecutive readings are need to solve the localisation
problem [7].

B. Sensors model

a) Absolute measurement: The absolute reference system
considered in this paper is composed of m fixed UWB nodes
of known position (xsj , ysj ) used to compute the ranging. The
model for the i-th robots with respect to the j-th sensor is then
given by

z
(i)
k,j=h

(i)
j (q

(i)
k )+η

(i)
k,j=

√
(x

(i)
k − xsj )2 + (y

(i)
k − ysj )2+η

(i)
k,j .

(11)
The overall set of absolute measurements for the i-th robot is
then given by z

(i)
k = [z

(i)
k,j1

, . . . , z
(i)
k,jp

]T , where j1, . . . , jp ∈

{1, . . . ,m} and p ≤ m. It then follows that the i-th robot
component of Ha

k in (8) will be given by

H
(ii)
k =



0 . . . 0
∂z

(i)
k,j1

∂x
(i)
k

∂z
(i)
k,j1

∂y
(i)
k

0 . . . 0

0 . . . 0
∂z

(i)
k,j2

∂x
(i)
k

∂z
(i)
k,j2

∂y
(i)
k

0 . . . 0

...
...

...
...

...
...

...
...

0 . . . 0
∂z

(i)
k,jp

∂x
(i)
k

∂z
(i)
k,jp

∂y
(i)
k

0 . . . 0


,

where

∂z
(i)
k,j

∂x
(i)
k

=
x
(i)
k − xsj√

((x
(i)
k − xsj )2 + ((y

(i)
k − ysj )2

,

∂z
(i)
k,j

∂y
(i)
k

=
y
(i)
k − ysj√

((x
(i)
k − xsj )2 + ((y

(i)
k − ysj )2

.

Since the different anchors can be seen as independent, we can
safely assume that R(ii) = σ2

aIp, where σ2
a is the uncertainty

affecting the absolute ranging measurement.
b) Relative measurements: As regards the relative

measurements, i.e when the j-th robot is in the ranging
area of robot i, we assume that the robots are also able to
communicate and thus to exchange data. This way, robot i
measure the relative position with respect to robot j and
exchange this information with it. The nonlinear sensing
function h(q

(i)
k , q

(j)
k ) generically defined in (6) can then be

specified as

h(q
(i)
k , q

(j)
k ) =

√
(x

(i)
k − x

(j)
k )2 + (y

(i)
k − y

(j)
k )2

from which we can derive the linearised measurement matrix
of Hr

k in (8) for the i-th robot as

H
(ij)
k =

[
. . .

∂z
(ij)
k

∂x
(i)
k

∂z
(ij)
k

∂y
(i)
k

. . .
∂z

(ij)
k

∂x
(j)
k

∂z
(ij)
k

∂y
(j)
k

. . .

]
,

(12)
where

∂z
(ij)
k

∂x
(i)
k

=
x
(i)
k − x

(j)
k√

(x
(i)
k − x

(j)
k )2 + (y

(i)
k − y

(i)
k )2

= −
∂z

(ij)
k

∂x
(j)
k

,

∂z
(ij)
k

∂y
(i)
k

=
y
(i)
k − y

(j)
k√

(x
(i)
k − x

(j)
k )2 + (y

(i)
k − y

(i)
k )2

= −
∂z

(ij)
k

∂y
(j)
k

,

and all the other entries are zero.

IV. SIMULATION RESULTS

In this section, we will present the simulation results of
the distributed EKF using Monte Carlo simulations over 1000
trials, each lasting 100 s. A variable number of agents, ranging
from N = 2 to N = 10, is considered. The agents are
supposed to move inside an empty 10 × 10 m2 room. Each
agent is supposed to be endowed with a system able to detect
the room borders and, in such a case, the vehicle is steered
away in border: this behaviour is inspired by off-the-shelf



(a)

(b)
Fig. 1. Example of one trial of the Monte Carlo simulation after 10 s of
simulation for N = 3 robots using (a) the constant velocity model (9) or
(b) the unicycle like vehicle model (10). Thick lines represents the actual
trajectories q

(i)
k , while thin lines in (a) represents the estimated trajectory

q̂
(i)
k by the distributed EKF.

consumer home cleaners. For the model (9), the velocity
components v

(i)
xk and v

(i)
yk are randomly generated using a

Brownian motion and assuming that the forward velocity has
always a magnitude equals to vd = 1.7 m/s, i.e.

vd =

√
v
(i)
xk

2
+ v

(i)
yk

2
.

The chosen value of the velocity is the typical pace of
normally abled human beings. For the unicycle model (10),
the idea is basically the same, with the same vd, but
the generated trajectory are smoother. An example of the
generated trajectories can be found in Figure 1. Notice that

xsj [m] 2.5 7.5 2.5 7.5 5 2.5 7.5
xsj [m] 2.5 2.5 7.5 7.5 5 5 5

TABLE I
DEPLOYMENT OF THE ABSOLUTE UWB SENSORS.

2 3 4 5 6 7 8 9 10

Fig. 2. RMSE of the distance as function of the number N of agents and for
the different sensing configurations.

the same algorithm has been applied to avoid collisions among
the agents. The sampling time for the simulations has been set
to 100 ms, which is realistic for many commercial platforms.

For the relative sensors, we have considered UWB and RSSI
based ranging. The UWB noise ηk is supposed to be generated
by a stationary and normally distributed white stochastic
process, with zero mean and variance σ2

UWB = 25 cm2. The
sensing range has been set to 4 m. On the other hand, the
RSSI ranging has a sensing range of 15 m, while its noise
ηk is again supposed to be generated by a stationary and
normally distributed white stochastic process, with zero mean
and variance σ2

RSSI = 400 cm2. The absolute sensors, which
are not under investigation in this paper but are considered to
ensure localisation in the 〈W 〉 reference frame, are seven and
deployed as reported in Table I and Figure 1.

In all the simulations, the initial covariance matrices for the
distributed EKF in (3) are diagonal, i.e. P ii0 = 103In where
n is equal to 2 for the model (9) and to 3 for the model (10).
The covariance matrix of the model noise εk is again diagonal
and equals to Q = 36I2 cm2 (a realistic assumption given the
models and the sampling time Ts). An example of the result
of the estimated positions using only absolute measurements
can be found in Figure 1-a reported with thin lines. Notice that
despite the not modelled abrupt change of directions induced
by the presence of the environment borders (or of the other
agents), the tracking performance are still acceptable.

To clearly show the effect of the relative measurements in
the estimation, we report in Figure 2 the average Root Mean
Square Errors (RMSE) taken along the trajectories, across
the team and across the different 1000 trials. We report the
RMSE of the distance error between the estimated position
and the actual one considering a variable number of agents
ranging form N = 2 to N = 10. From this summarising
results, reported only for the model (9) (since similar results
are obtained for the model (10)), we first notice that using
only absolute measurements (i.e. no cooperative solution, No
Coop in the figure) the localisation results are obviously



Case P-value Null Hypothesis
No Coop 0.2574 Confirmed

UWB Coop 2e− 3 Rejected
RSSI Coop 1.97e− 5 Rejected

TABLE II
RESULT OF THE P-VALUE TEST SHOWING THE STATISTICAL EVIDENCE OF

THE RELEVANCE OF THE RELATIVE MEASUREMENTS IN THE
LOCALISATION PROBLEM.

independent from the number of robots. On the other hand,
when a cooperative localisation strategy is adopted by means
of relative measurements (UWB Coop and RSSI Coop in the
figure), the performance are clearly increased and directly
proportional with the number of agents N . To enforce this
fact, a statistical analysis has been carried out. Specifically, a
P-value test has been executed with the following assumptions:

• Null-Hypothesis H0 : there is no statistical evidence
on number of robots and pose estimation performance
improvements;

• significance level: α < 0.05.
The result of this test are reported in Table II, in which it

is evident how the null hypothesis H0 have been rejected for
both the cooperative approaches.

What is of major relevance for this paper is the comparison
between the two cooperative approaches: when the number
of robots is small, the RSSI Coop shares more information
among the team (there are on average 3 times more
measurements w.r.t. UWB Coop) and, even if quite less
accurate (σ2

RSSI = 16σ2
UWB), the performance radically

increases. When the number of robots increases, the shared
information become sufficiently large for the UWB Coop
as well, hence the performance tend to be the same. In
other words, the distributed estimator performance based
on relative information appear to be dominated by the
number of information that are exchanged rather than by
their uncertainties, irrespective of the correlation between the
agents. This fact may be surprising at a first look, but this is
what actually happens in information sharing among humans
in social groups: it is highly recognised that hearing the same
opinion from n different persons has a major impact than listen
to the same person, even with an undisputed reputation, saying
the same argument n times [16], which is what we have called
the majority effect in this paper.

V. CONCLUSIONS

Collaborative localisation refers to the ability of a group
of robots to improve their own estimated positions by
using absolute and relative measurements with respect to
neighbouring agents. Using ranging measurements, we have
shown that relative distance measurements play a fundamental
role in the localisation performance. This fact becomes
more evident when the probability of exchanging relative
information between agents grows. The main result of the
paper is on the trade-off between uncertainties and number
of measurements: we have shown that having less precise
sensors but with a higher ranging distance improves a lot

the distributed EKF performance, which resembles the opinion
formations in social groups. Further investigation are needed
to find an analytic relation among those quantities and to
implement the algorithm on an actual testbed.
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