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Abstract—We present an algorithm for collision free and
socially-aware navigation of multiple robots in an environment
shared with human beings, other robots and with the presence
of static obstacles. We formulate the problem as a constrained
optimization problem, where the cost function is chosen in order
for the robotic agents to exhibit bio-inspired behaviors, such as
cooperation inside the group and cohesive motion. Some of the
constraints are required to avoid collision between the agents and
with other obstacles and emanate from the application of Velocity
Obstacle approach. The nonholonomic dynamics of the vehicles,
is managed through the application of the feedback linearization
technique to map the velocities in the control values. In this
paper we propose both centralized solution and a completely
decentralized solution. The overall strategies are extensively
tested in simulations.

Index Terms—Human behavior, velocity obstacle, distributed
control and optimization, multi-agent systems.

I. INTRODUCTION

Service robots moving in environments shared with humans
are nowadays increasingly popular [1]. Examples range from
the classic robot cleaners [2] to tour guiding systems [3] or
personal robots [4, 5]. One of the main problems a robot
moving in a space shared with human beings has to face
is to exhibit a socially acceptable behavior by taking motion
decision that do not intimidate the human bystanders [6]. In
this paper, we raise the level of complexity requiring that the
robots moving in the environment are themselves a group and
need to behave as such. In this case, avoiding collisions with
humans moving in a predictable way is not sufficient. The
motion has to follow the patterns of a socially inspired group
formation. In contrast to other existing solutions [7], this paper
addresses the problem using an optimal reactive control law
instead of motion planning approaches.

In the literature there are many algorithms for collision
free navigation control of multiple agents. In [8] the authors
classify the most important papers on the navigation of multi-
agent systems in cluttered environments along the following
lines: i) reactive methods, i.e., basically potential field based
methods and reciprocal collision avoidance methods; ii)
decentralized MPC based methods.

The algorithms based on these control approaches are quite
often bio-inspired. In particular, animal aggregation examples
such as flocking of birds, school of fish, ant colony or swarm

of bacteria are based on local coordination rules. In nature,
this kind of simple interactions lead to more complex and
intelligent emergent behaviors, e.g., aggregation of the group
and cooperation at the group level [9].

The Artificial Potential Function (APF) approaches are
based on gradient descent methods built on a combination of
attractive and repulsive potential fields. The main drawback of
these methods is the presence of local minima, where the robot
could be trapped. Potential fields are applied, to cite a few,
in [10], where a theoretical approach to synthesize distributed
flocking algorithms is presented, and in [11], where a geodesic
control law is conceived to minimize a notion of misalignment
energy related to the flocking problem for a group of
nonholonomic agents. Furthermore, [12] adopts potential
functions to preserve the connectivity of a multi-agent system
network. In [13] the authors present a combination of
potential like-functions to model the human motion in complex
environments, while in [14] superimposition of potential fields
and limit cycles are used to avoid human beings in a socially
acceptable manner.

Distributed Model Predictive Control (DMPC) approaches
are also widely adopted to deal with the problem of multi-
agent coordination. The coupled constrained systems there
defined lead to the adoption of basically two strategies:
the sequential DMPC, where we have one-directional
communication [15]; the iterative DMPC where the controllers
negotiate the optimal solution and the communication is bi-
directional [16].

The approaches that are closer to the one presented in this
paper are the reciprocal collision avoidance (RCA) methods.
The RCA methods manage collision avoidance between agents
by assuming that each agent takes its share of responsibility in
the avoiding maneuver. This model is inspired by ecological
observations and was applied to human motion models [17].
In [18] the Velocity Obstacle concept introduced by [19] is
extended to manage multi-agent interactions. This approach
called Reciprocal Velocity Obstacles (RVO), partitions the
responsibility for the avoidance maneuver equally between
the agents. However, RVO exhibits an undesired oscillatory
behavior in crowded environment conditions. Thus, in [20],
the RVO is reformulated as Optimal Reciprocal Collision
Avoidance (ORCA). These algorithms, first conceived to work



only for simple integrator models, have been recently extended
to nonholonomic systems [21], e.g., car-like and unicycle-like
models, by letting the robot to stay close to a holonomic
trajectory with predefined bounded tracking errors. Finally,
[22] generalizes the reciprocal collision avoidance to generic
non-linear dynamics.

In this paper we propose an algorithm based on Velocity
Obstacles for the navigation of a group of unicycles that can
be generalized for the class of feedback-linearizable vehicles.
The approach has been designed for nonholonomic vehicles
since many observations reveal that nonholonomic motion is a
typical human behavior in natural environments [23]. The core
of the paper is the formulation of an optimization problem that
captures both collision avoidance issues and the compatibility
of the generated motion with the social rules. We discuss and
compare both a centralized and a distributed solution for the
problem. The approach is remarkably different from the MPC
approaches since the high variability imposed by the presence
of human beings in the area suggest a “pragmatic” local
solution (whereas MPC seeks a globally optimal solution). The
optimal local control problem is solved taking into account
constraints conceived to mimic the human social behavior,
such as a flexible group formation along the path to the desired
group goal [24].

The paper is organized as follows. In Section II, background
materials and the problem at hand are presented in details. The
main results of the paper, including the optimal centralized
and decentralized problems, are discussed in Section III, and
in Section IV extensive simulation results are deeply analyzed
in different scenarios. Section V presents the conclusions of
the paper and discusses future research directions.

II. PROBLEM DESCRIPTION AND BACKGROUND MATERIAL

In this paper we are dealing with the synthesis of a social-
group steering control that allows a team of n robotic agents
to move across a cluttered environment (e.g. shared with
human beings, other robots and static obstacles) from an initial
set of known positions S = {s1, s2, . . . , sn} to a final set
E = {e1, e2, . . . , en} in a socially-aware manner, i.e. the robot
motion has to be compatible with the presence of human
beings and also has to be intuitive for them. The solution
takes into account the limited maneuverability of the robotic
platform. We rely on the availability of a path planner to plan
offline opportunistic paths for each agent and then, to react to
dynamic interactions, we use the quite known idea of velocity
obstacles [19].

The dynamics of each agent is modeled asẋẏ
θ̇

 =

v cos θ
v sin θ
ω

 , (1)

where (x, y) is the position of the mid point of the rear axle
in the plane of motion, θ is the vehicle yaw, v is the forward
velocity, and ω is the angular velocity. The linear velocity v,
and the angular velocity ω are the control inputs of the system.

pi

pjrj
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Figure 1. Construction of the set of forbidden velocities V OJ|I for agent J .
If vj ∈ V OJ|I a collision between the agents I and J will occur in a finite
time.

In order to generate a path for the i–th agent connecting
the starting position si to the final position ei, any planning
algorithm can be adopted. In this work, we have used the
Rapidly-Exploring Random Tree star (RRT?), which is widely
used for in both convex and non-convex environments [25].
The main advantages of this planner are its computation time
efficiency and the capability of finding the optimal obstacle-
free path. Moreover it is simple, easy to implement and
converges asymptotically to the shortest path. The typical
path generated by RRT? get close to obstacles obstructing the
shortest path. As a consequence, during the path planning, the
static obstacles are inflated to consider the agents footprint. In
this work the RRT? is used as global path planning, i.e. it finds
a path in the environment considering only static obstacles,
while the presence of the other agents or of dynamic obstacles
is dealt with the Velocity Obstacle.

A. Local path planning: Velocity Obstacle

The Velocity Obstacle [19] is a geometric algorithm used for
collision avoidance. Since this solution follows the philosophy
of local and reactive navigation, we use it for agent to agent
and agent to static or dynamic obstacle collision avoidance.

Let I and J be two agents moving in the plane. With
reference to (1), let pi = [xi, yi]

T and pj = [xj , yj ]
T denote

the positions of the agents I and J respectively and let
vi = [ẋi, ẏi]

T and vj = [ẋj , ẏj ]
T be the current velocities of

the agents I and J respectively, as reported in [18] and shown
in Figure 1. Considering the agents as disks of rays ri and rj ,
it follows that the cone V OJ|I is the set of the velocities that
lead to a collision, i.e., if the difference between vj and vi
belongs to V OJ|I , then a collision will occur. More formally,
let I ⊕ J = {i + j | i ∈ I, j ∈ J} be the Minkowski sum of
the agents. Furthermore, let λ(p, v) = {p+ tv | t > 0}, then

V OJ|I = {v | λ(pj , v − vi) ∩ I ⊕−J 6= 0}. (2)

Note that if the agent are disk-shaped, (2) simplifies to

V OJ|I = {v | ∃ t > 0 : t(v−vi) ∈ D(pi−pj , ri+rj)}, (3)

where D(p, r) is an open disk centered in p with radius r.
Finally, by construction, the Velocity Obstacle is the same for



the two agents (i.e. symmetry property: vj − vi ∈ V OJ|I ⇔
vi − vj ∈ V OI|J ) and it is invariant to a common velocity
change (i.e. translation invariance: vj − vi ∈ V OJ|I ⇔ (vj +
ν)− (vi + ν) ∈ V OJ|I ).

B. Feedback linearization description

The solution we are presenting in this paper relies on the
assumption that the derivatives of the Cartesian coordinates
(x, y) in (1) can be used as independent control inputs. Due
to the nonholonomic constraint of the unicycle-like kinematic
model (1), this is clearly not the case. A shortcut is to impose
such velocities to another reference point of the vehicle that
does not lay on the unicycle rear axle. Therefore, let[

xb
yb

]
=

[
x+ b cos θ
y + b sin θ

]
, b 6= 0. (4)

be such a reference point, whose time derivative is[
ẋb
ẏb

]
=

[
ẋ− bθ̇ sin θ

ẏ + bθ̇ cos θ

]
. (5)

By substituting the model (1) in (5), one gets[
ẋb
ẏb

]
=

[
cos θ −b sin θ
sin θ b cos θ

] [
v
ω

]
= T (b, θ)

[
v
ω

]
. (6)

Since b 6= 0, the matrix T (b, θ) is invertible and the vehicle
control inputs can be uniquely derived as[

v
ω

]
= T (b, θ)−1

[
ẋb
ẏb

]
=

[
cos θ sin θ
− 1

b sin θ 1
b cos θ

] [
ẋb
ẏb

]
.

III. OPTIMIZATION PROBLEM

The problem of the navigation without collision of multiple
agents in a dynamic environment can be seen as an
optimization problem. In particular we want to minimize a
cost function defined as

H =

n∑
i=1

‖vDi − vi‖, (7)

where n ∈ R is the number of agents, vDi ∈ R2 is the
vector of the planar desired velocity, i.e. the one constrained
by the RRT?, and vi ∈ R2 is the actual velocity decision
variable minimizing (7). Let us denote with hDi the heading
of the desired velocity of the i–th agent along its reference
path. Each RRT? defined path is discretized in waypoints. The
closest waypoint to the i–th agent is named wpki , while the
active waypoint wpk+l

i = [wpk+l
i,x , wp

k+l
i,y ]T is a point ahead

of a preview length l. It follows that the desired velocity
vDi = ‖vDi ‖hDi , where the module ‖vDi ‖ is arbitrarily defined
and hDi = [wpk+l

i,x −xi, wp
k+l
i,y − yi]T . Ideally, if we minimize

the cost function (7) the agents will reach the goal position
following a path of minimum length. However, there are
constraints that have to be satisfied in order to avoid collisions.
These constraints are defined by the Velocity Obstacle cones
in (3). More precisely, the cones define the regions in the

velocity space that lead to a collision in finite time, hence the
constraints for the i–th agent can be formulated as⋃

j∈Vi

〈
vi − vj
‖vi − vj‖

, hcone,ij

〉
< cosαij , (8)

⋃
op∈Vi

〈
vi − vop
‖vi − vop‖

, hcone,iop

〉
< cosαiop , (9)

where Vi is the visibility set of the i–th agent, comprising
the indices of the other agents and of the no static or moving
obstacles that are closer to the i–th agent less than a threshold
value ρ. In particular, Equation (8) defines the set of feasible
velocities vi ensuring no collision between the i–th agent and
all the other agents in the group. The expressions for the
heading of the cone hcone,ij and its semi-aperture αij are

hcone,ij =
pj − pi
‖pj − pi‖

,

αij = arctan

(
Rij/

√∣∣(‖pj − pi‖)2 −R2
ij

∣∣) , (10)

where Rij = ri + rj . Similarly, Equation (9) considers the
collision with static and dynamic obstacles, whose cone and
semi-aperture are given by (10) substituting j with op.

As a consequence, the optimization problem can be written
in the compact form

arg min
W

n∑
i=1

‖vDi − vi‖

s.t. ∀i = 1, . . . , n⋃
j∈Vi

〈
vi − vj
‖vi − vj‖

, hcone,ij

〉
< cosαij ,

⋃
op∈Vi

〈
vi − vop
‖vi − vop‖

, hcone,iop

〉
< cosαiop ,

(11)

with W = {v1, . . . , vn}.
1) Competitive and cooperative behavior: A natural

behavior of human beings socially interacting while moving is
to coordinate their motion. In particular we want to regulate the
competitive/cooperative behavior of social walking. To achieve
this goal, we slightly change the cost function (7) in

H̃ =

n∑
i=1

γi(αi)‖vDi − vi‖ (12)

where γi(αi) is the sum of the angles α of all the cones
associated to the i–th agent, i.e.

γi(αi) =

n∑
j=1

αij +

no∑
p=1

αiop , ∀j, op ∈ Vi, (13)

To better clarify the role of the penalty function γi(αi), let us
consider

γ̄i(αi) =
γi(αi)∑n
i=1 γi(αi)

.

When γ̄i tends to 1 or, more generally, γ̄i > 1/n, the behavior
of the i–th agent will be competitive (or selfish) with respect to



the other agents. On the other hand, if γ̄i < 1/n, the behavior
of the i–th agent will be cooperative (or social). Notice that
when an agent has more freedom to move in the space (i.e.,
the Velocity Obstacle set associated with the agent is small),
its behavior will be cooperative by means of (13). Whilst,
when the agent moves in a cluttered space, its behavior will
be competitive (more on this in Section IV). Therefore, the
optimization problem can be rewritten as

arg min
W

n∑
i=1

γi(αi)‖vDi − vi‖

s.t. ∀i = 1, . . . , n⋃
j∈Vi

〈
vi − vj
‖vi − vj‖

, hcone,ij

〉
< cosαij ,

⋃
op∈Vi

〈
vi − vop
‖vi − vop‖

, hcone,iop

〉
< cosαiop ,

(14)

2) Cohesion of the group: Another classical bio-inspired
feature regards flock centering (i.e., each agent attempt to
stay close to nearby flock-mates). This behavior is, actually,
one of the three Reynolds’ rules, necessary to simulate flock,
herds or schools [26]. The group cohesion may be crucial
in tasks which require continuous exchange of information
between agents with limited communication capabilities. To
confer this feature to the system, we add another term to the
cost function (12):

˜̃H =

n∑
i=1

γi(αi)‖vDi − vi‖+ ki

∣∣∣∣∣∣ pc−pi

‖pc−pi‖ − vi
∣∣∣∣∣∣︸ ︷︷ ︸

cohesion term

, (15)

where pc ∈ R2 is the group centroid position, and ki is equal
to zero if the distance between the i–th agent and the centroid
pc is greater than a certain threshold, otherwise assumes a
positive value. In particular

ki =

{
1, if ‖pj − pc‖ > td,

0, otherwise,
(16)

where td is a user defined threshold. Notice that the cohesion
term tends to redirect all the velocities toward the centroid of
the group.

3) Nonholonomic constraints and control input saturation:
In the previous analysis the kinematic constraints of the
unicycle and the saturation of the control inputs are not
considered, which may lead to unfeasible desired velocity
directions. To solve the problem in the available velocity space
ui = [vi, ωi]

T , let us consider the map given by unicycle
feedback linearization (6), the set of the allowed controls are
defined by the following inequalities:⋃

j∈Vi

〈
T (b, θi)ui − T (b, θj)uj
‖T (b, θi)ui − T (b, θj)uj‖

, hcone,ij

〉
< cosαij , (17)

⋃
op∈Vi

〈
T (b, θi)ui − vop
‖T (b, θi)ui − vop‖

, hcone,iop

〉
< cosαiop , (18)

ub < ui < ub, u̇b < u̇i < u̇b, (19)

where ub and ub (u̇b and u̇b) are the velocity (acceleration)
constraints. Hence, the final optimization problem (11), with
the bio-inspired features, becomes:

arg min
U

n∑
i=1

γi(αi)‖vDi − T (b, θi)ui‖+

+ ki

∣∣∣∣∣∣ pc−pi

‖pc−pi‖ − T (b, θi)ui
∣∣∣∣∣∣ ,

s.t. ∀i = 1, . . . , n,⋃
j∈Vi

〈
T (b, θi)ui − T (b, θj)uj
‖T (b, θi)ui − T (b, θj)uj‖

, hcone,ij

〉
< cosαij ,

⋃
op∈Vi

〈
T (b, θi)ui − vop
‖T (b, θi)ui − vop‖

, hcone,iop

〉
< cosαiop ,

ub < ui < ub, u̇b < u̇i < u̇b.
(20)

where U = {u1, . . . , un}. In this way, once we have chosen
properly the point (xb, yb) and the safety radius ri (i.e. in
such a way that the footprint of the agent is encircled by the
circumference centered in (xb, yb) with radius ri), we ensure
that the collision will not occur as long as the optimization
problem is feasible (i.e., the constraints are not violated).

4) Decentralized Optimization: The centralized solution
proposed above suffers of two main drawbacks: first the
numeric solver receives all the information from all the agents
and, second, it computes a unique and complex optimization
problem. One way to tackle these problems is to distribute the
computation among the available agents. The path followed in
this paper is to let each agent solve the optimization problems
(one for each agent) in sequence. The order of the sequence
builds upon the cooperative concept described in Section III-1:
the optimization problems associated to the agents with higher
γi(αi) are solved at first. More in depth, the steps of the
algorithm at each iteration are:

1) Each agent computes its own γi(αi) using (13);
2) The order sequence I = {i1, . . . , in} such that

γij (αij ) ≥ γil(αil), ∀j < l ≤ n, is computed. Notice
that each agent computes just its local ordered sequence.

3) The centroid position is computed by the agents
following the distributed Weighted Least Squares [27];

4) Each agent computes its own ki using (16);
5) Hence the agent il ∈ I solves the following optimization

problem:

arg min
uil

‖vDil − T (b, θil)uil‖+

+ kil

∣∣∣∣∣∣ pc−pil

‖pc−pil
‖ − T (b, θil)uil

∣∣∣∣∣∣
s.t. (17), (18), (19),

(21)

where the constraints are the same of (20), except that
the union of the sets in (17) is computed only for the
agents whose index is ij ∈ Vil and ij < il.



IV. SIMULATION RESULTS

The proposed approach has been extensively tested in
simulations. The optimization problem in its centralized (20)
and decentralized (21) forms is numerically solved with the
Matlab function fmincon using the interior-point method. In
all the simulations, we have assumed that: all the agents have
a centered disk of radius ri = 0.26 m; the i–th agent visibility
set Vi in (8) comprises the agent j if ‖pj−pi‖ ≤ ρ = 1 m and
the static obstacle op if the relative distance is less than 0.35 m,
being 1.25 m for dynamic obstacles. Moreover, the feedback
linearization parameter of (4) is b = 0.20 m. For the controller
tuning constants, we have set the modulus of the desired
velocities as ‖vDi ‖ = 1.5 m/s and the cohesion parameter
threshold in (16) as td = 1. Finally, we have assumed
for the constraints in (19) ub = [0,−3]T , ub = [2.5, 3]T ,
u̇b = [−6,−29]T , u̇b = [6, 29]T . Notice that the bounded
values for the control derivatives are quite high, this is because
of the parameter b, by increasing its distance from the vehicle
axle the bounded values for the control derivatives can be
lower and lower by paying in increasing footprint of vehicles.

1) Social behaviors: We first start by showing the effects
of the socially compliant behaviors described in Section III-1
and Section III-2. First, to clearly assess the effect of
the cooperative/competitive parameter γi, we executed three
simulations using the centralized approach starting from the
same initial conditions of two agents 1 and 2 having different
pairs of γ1 and γ2. Notice that, to better highlight the
cooperative/competitive behavior, γ1 and γ2 are constant and
do not follow the law described in (13). In Figure 2 the red
solid arrows are the output v̄i = T (p, θi)ūi of the optimization
problem (20), while the blue dotted arrows represent the
desired velocities vDi .

In the left picture of Figure 2, agent 1 is the competitive
one, while agent 2 is the cooperative one. The velocity of
agent 1 slightly differs from the desired velocity computed by
the RRT? planner (i.e., agent 1 tends to follow the shortest
path) because of the static obstacle . On the other hand, agent
2 deviates from its desired velocity in order to avoid collision
with agent 1. In the central picture, the penalty function
γi is equal for each agent, which gives equal responsibility
for the avoiding maneuver. Strictly speaking, this situation
corresponds to solve the optimization problem (11). The
picture on the right is the opposite situation with respect to
the left picture case. In fact, agent 1 is forced to brake, letting
agent 2 go forward with its desired velocity. By applying (13)
we encourage the behavior depicted on the left. The instant of
time is the same for the three cases and can be noticed that the
left case leads to a better agents’ state to achieve earlier the
goal, also promoting cohesion: by considering the performance
index P =

∑n
i=1 ‖pi −wpei‖2, it result for the simulations in

Figure 2 that at time t = 2.7 s, P = [1.89, 2.36, 2.13] m2

(respectively for left, center, and right case). Here we show
it on a toy example but this concept applies as well to more
complex situations with more agents.

The second effect that we want to remark concerns the
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Figure 2. Snapshots at the same time instant t = 2.1 s. On the left side,
agent 1 is competitive (γ1 = 0.99), while agent 2 is cooperative (γ2 = 0.01).
In the central situation we have γ1 = γ2 = 0.5 for the two agents. On the
right side, agent 1 is cooperative (γ1 = 0.01), while agent 2 is competitive
(γ2 = 0.99). The blue dashed arrows are the desired velocities vDi and the
red solid arrows are the optimized velocities.
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Figure 3. The cohesion term effect is shown here. At the instant t1, the circled
agent is in a remote position with respect to the centroid of the group. The
cohesion term introduced in (15) forces the circled agent to join the group,
as can be seen at the final time instant t2.

cohesion term. In Figure 3 we depict two different instants of
time t1 and t2 resulting from the decentralized optimization
solution. At the beginning of the simulation (i.e., at time t1),
it is evident that the group is not cohesive. In particular the
circled agent is quite distant from the centroid of the group.
Between t1 and t2, the circled agent approaches the group
forced by the cohesion term, hence, at time t2, the group
results in a more compact configuration. Without the cohesion
term the re-entry maneuver undertaken by the circled agent
has no reason to be carried out.

To further prove the effectiveness of the decentralized
approach in a natural environment, we simulate the trajectories
using actual human being trajectories available from the ETH
dataset [28]. Since we are using recorded data, the human
beings in the scene turn to be highly non-cooperative. A
sample trajectory for four agents captured in three different
time instants is reported in Figure 4.
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Figure 4. Multi-agent navigation in a human shared environment in three
different instant of time using actual human trajectories (ETH dataset [28]).

2) Centralized vs Decentralized optimization: In this
subsection we discuss the comparison between the centralized
and the decentralized approaches. Table I reports the
computation times for the two approaches executing almost
50 iterations.

As it may be expected, the higher is the number of the
agents, the more convenient is the decentralized algorithm,
which is a further proof of its higher scalability. Recall that
the decentralized optimization problem is solved n times the
centralized approach but on a simpler problem, moreover
on the real testbeds the computation is naturally done in
parallel, while in Table I we do not consider a parallel
computation. For what concerns the performance in terms of
the difference with respect to the desired velocity towards the
goal, Figure 5 reports a direct comparison of the centralized
and decentralized solutions for a simulated scenario. The
squares represent the centralized solution performance while
the diamond markers the decentralized. Since the control
actions are different, the system evolves differently in the two
cases. Moreover, since the optimization problem deals with
local information, there is no clear winner between the two
solutions. Indeed, at the beginning (first 50 iterations), i.e.
when the local information gives a good representation of all
the scene, the centralized is clearly more performant. However,
due to the presence of unforeseen moving obstacles and the
group configuration (see for example the two examples in
Figure 5), it is not clear what is the best choice among the two.
Similar results can be obtained if the cohesion performance
index term in (15) is considered. Instead, if the time to reach
the goal is concerned, i.e. the time needed by the last agent
in the group to reach the final goal, the results are slightly
favorable to the centralized approach (see Table II). As a
consequence, the decentralized solution represents a viable and
effective solution for the distributed control of social robots.

V. CONCLUSIONS

We proposed a control strategy to guide a group of
autonomous robots in a complex environment shared with
human beings. We adopted the well known RRT? algorithm
to plan a global path towards the desired goal destination
and the Velocity Obstacle approach to impose constraints on

Table I
COMPUTATION TIMES COMPARISON VERSUS THE NUMBER OF AGENTS n

FOR THE CENTRALIZED AND THE DECENTRALIZED APPROACHES.

n (-) Centralized Decentralized
2 22.531 (s) 16.398 (s)
4 112.646 (s) 75.922 (s)
6 296.670 (s) 167.385 (s)
10 1135.346 (s) 528.413 (s)

Table II
MINIMUM, MAXIMUM AND MEAN VALUES REPRESENTATIVE OF THE

NUMBER OF ITERATIONS TO REACH THE GOAL FOR THE LAST AGENT IN
THE GROUP.

[-] min max mean
Centralized 249 276 262

Decentralized 246 289 268

the local interactions. We treated the local control problem
as an optimization task and we ensured collision avoidance
for nonholonomic multi-vehicle systems with saturated control
inputs. We solved the optimization problem both in centralized
and decentralized fashion, showing the pros and cons of both
approaches. The main novelty of the paper is the addition
of human-like socially consistent features to the motion
of the group, i.e. the competitive/cooperative behaviors and
group cohesion. The overall strategy is successfully tested by
simulations on actual maps and in the presence of real human
trajectories. Our future work directions will be focused on the
experimental validation of the proposed techniques on a team
of mobile robots. We are also heading toward the extension
of the group management problem for more structured group
formations, such as “V” or “U” formations [24].
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