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ABSTRACT. We consider a class of non-quasiconvex frame indifferent energy densities which
includes Ogden-type energy densities for nematic elastomers. For the corresponding geomet-
rically linear problem we provide an explicit minimizer of the energy functional satisfying a
nontrivial boundary condition. Other attainment results, both for the nonlinear and the lin-
earized model, are obtained by using the theory of convex integration introduced by Miiller
and Sverédk in the context of crystalline solids.
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1. INTRODUCTION

Nematic elastomers are rubber-like solids made of a polymer network incorporating nemato-
genic molecules. One of the main features of these materials is their ability to accommodate
macroscopic deformations at no energy cost. Indeed, while the nematic mesogens are randomly
oriented at high temperature, below a certain transition temperature they align to have their
long axes roughly parallel and this alignment causes a spontaneous elastic deformation of the
underlying polymer network. If n € S? represents the direction of the nematic alignment, the
gradient of the induced spontaneous deformation is given by

LY?% .= a%n®n+a7%(1—n®n), (1.1)

where a > 1 is a non-dimensional material parameter. Choosing as reference configuration 2 the
one the sample would exhibit in the high-temperature phase [9], we consider the energy density

N i
; 1 _i\ T
Wa(F) =32 [tr (Ln ZFFTLHZ) - 3] . detF =1, (1.2)
— Vi
=1
where F' represents the gradient of a deformation mapping the reference configuration into the
current configuration, and ~; and ¢;, for ¢ = 1,..., N, are material constants such that v; > 2,

¢; > 0. Note that in (L2)) the power ¥ refers to the matrix Lo *FFTL, "% This is an energy
density studied in [2] and can be considered as an “Ogden-type” generalization of the classical
“Neo-Hookean” expression originally proposed by Bladon, Terentjev and Warner [4] to model an
incompressible nematic elastomer. This is obtained from (2] by setting N = 1 and 73 = 2.

Passing to the energy stored by the system when this is free to adjust n at fixed F', we define
W(F):= mi;l WL (F), det F = 1. (1.3)
nesS?

This energy is always nonnegative and it vanishes precisely when FFT = L,,, for some n € S2.
In this paper we present some results of attainment of the minimal energy, both for the non-
linear model W and for its geometrically linear counterpart. More generally, for the nonlinear
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case we consider the energy density given by

W (F) := iﬁ KM)V + <M)7 + <M)7 3} . detF =1, (1.4)

i €1 €2 €3
where 0 < A\ (F) < Ma(F) < A\3(F) are the ordered singular values of F, and 0 < e; < ez < e3
are three fixed ordered real numbers such that ejeses = 1 and e; < e3. The case e = e3

is trivial because in this case expression (L4 corresponds to the classical Neo-Hookean model.
The Ogden-type energy density obtained by minimizing (2]) with respect to n is included in
([3) choosing e; = ez = a~ /% and e3 = a'/? (see [2, Proposition 5.1]). By using the standard
inequality between geometric and arithmetic mean, it is easy to see that the function W(F) is
minimized at the value zero if F' is in the set

K:={FeM”?®:detFF=1and \(F) =e;,i=1,2,3}. (1.5)

The energy density governing the purely mechanical response of the system in the small strain
limit is given, up to multiplicative constants, by

1
V(E) := min |E — U,|?, Un = =(3n@n — 1), (1.6)
neSs? 2

for every symmetric matrix £ € M?3*3 such that tr E = 0. We recall the derivation of this
expression in Section 2l We have that V(E) = 0 if and only if E is in the set

N 1
Ky := {E € M?*? symmetric : 1 (E) = p2(E) = Y wus(E) = 1}, (1.7)

where p1(E) < pa(E) < us(E) are the ordered eigenvalues of E.
In Theorem 2.1l we provide the explicit expression of a solution to the problem

Vie(u)) =0 a.e. in €, u=w on 0f, (1.8)
when Q = B(0,7) xR, and w(x1,z2,23) := (%, %, —5). Here, e(u) denotes the symmetric part

of Vu. Note that the affine extension of w to the interior of €2 is such that e(w) is a constant
matrix not belonging to the set of minimizers Ky. Asa consequence, the chosen boundary datum
w is nontrivial in the sense that V' (e(w)) is a strictly positive constant. The explicit solution we
find, which is of class WP for every 1 < p < oo, allows us to construct solutions to problem (L)
(endowed with the same regularity), for domains of the form w x R, w being an open subset of
R2. Theorem [ZI] shows that, thanks to the symmetries of KO, one can exhibit a simple explicit
solution. For general domains such an explicit solution is no longer available and, just as in the
case of solid crystals, many solutions of the minimization problem exist but they can only be
defined through iterative procedures.

Theorem B.2 states that for every function v : Q — R3 which is piecewise affine and Lipschitz,

if
detVv=1 a.e. in Q, essinfq A1 (Vo) > ey, esssupg Az(Vv) < es, (1.9)
then there exists a dense set of Lipschitz functions y :  — R3 such that
W(Vy) =0 a.e.in Q, y=wv on J. (1.10)

The same holds if v is of class C1*(Q;R?), for some 0 < a < 1, and satisfies (IJ). This result
is an application of the theory developed by Miiller and Sverdk in [14] where the authors use
Gromov’s convex integration theory to study the existence of solutions of the first order partial
differential relation

Vye K ae. inQ, y=wv on Jf. (1.11)
Here the set K is contained in {F : M(F) = t}, M(F) being a fixed minor of F, and t # 0.
The case M(F) = det F and ¢t = 1 perfectly applies to our minimization problem (I0), which
can be rewritten as ([LII)) with K = K. A crucial step in the theory is the construction of a
suitable approximation of K by means of sets relatively open in {F : det F = 1} and satisfying
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some technical assumptions (see Definition B3). To obtain Theorem we provide such an
approximation for our set K and apply the results of [14] directly.

To give a corresponding attainment result in the geometrically linear setting, we have to
consider the case where the set K appearing in (CII) is contained in {F : tr F = 0}. This case
is not explicitly treated in [I4] and it has been considered in [I3] to study a partial differential
relation arising in the study of the Born-Infeld equations. In order to be self-contained we state
and prove Theorem (1] and Proposition [.2] which are a “linearized” version of the results of
Miiller and Sverdk. We then apply Theorem 1] and Proposition to obtain the result which
is described next (Theorem [B1).

Consider the small strain energy density V' and let us introduce the set

A+ AT
Ky := {A S M3x3 . +T S Ko} s (112)
where K is defined in (7). We have that V(#) =0 for every A € K.
We prove that for every piecewise affine Lipschitz map w : Q — R3 such that
1
divw =0 a.e. inQ, essinfo pg (e(w)) > ~3 ess supg p3(e(w)) < 1, (1.13)

there exists a dense set of Lipschitz functions u : Q — R? satisfying (L]). The same holds if w is
of class C1@(Q;R3), for some 0 < o < 1, and satisfies (LI3).

To prove this result, we apply Theorem ]| to the minimization problem (LJ]), where the
condition V(e(u)) = 0 a.e. in 2 is equivalent to Vu € Ky a.e. in Q. As for the nonlinear case,
also in the linearized context the main point consists in exhibiting a suitable approximation of
Ko by means of sets relatively open in {F € M3*3 : tr FF = 0} and satisfying some technical
assumptions. For sake of completeness, we state and prove the 2-dimensional version (Theorem
[B6) of this result, where the condition (ILI3)) is slightly simplified and the energy well structure
allows for more geometrical intuition and a more explicit proof.

The rest of the paper is organized as follows: in Section[2lwe explain how to construct an explicit
solution to problem (L8], and in Section [B] we state and prove the attainment results obtained
by using the theory of convex integration, for the nonlinear as well as for the geometrically linear
case. Section Hlis devoted to the proof of the results used in Section [Bl which are an adaptation
of the approach of [I4] to divergence free vector fields.

2. AN EXPLICIT SOLUTION

In this section, we focus on the geometrically linear model. The set of NxN (real) matrices
is denoted by MV *¥ while Sym(N) is the subset of symmetric matrices. MéVXN and Symo(N)
denote the subsets of matrices in MY *Y and Sym(N), respectively, which have null trace. The
symbols symA and skwA stand for the symmetric and the skew symmetric part of a matrix A,
respectively. Given a displacement field u :  — R3, where Q0 C R? is the reference configuration,
we use the notation e(u) := sym(Vu).

To derive the linearized version (@) of the energy density (L4]), consider the nematic tensor
L,, defined in (IJJ), choose a = (1 + ¢€)3, and relabel L,, by L, .. By expanding in € we have

1 1
Lic.=1+¢U, +o(e), U, = 5(3n®n —1I).

For sake of completeness, let us derive the geometrically linear model in the compressible case.
We then obtain expression (L) by restricting to null trace matrices. The following is a natural
compressible generalization of expression (L2):

N i
WE(F) := Zs— [(det F)"%tr (L;%FFTL;%) - 3} + Wi (det F), (2.1)
i=1 "
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where F is any matrix in M3*3 such that det F > 0, and W, is defined as
Waoot(t) = c(t* — 1 — 2logt), t >0,

¢ being a given positive constant. As its incompressible version, the energy density [21]) is always
nonnegative and it is equal to 0 if and only if FFT = L,, (see [1], [2], and [11] for more details).
We denote by W _ the expression obtained from (1)) replacing L,, by Ly, .. The linearization of
the model is then given by

C 3 1 c
VE) := 6113% anys(I +eE), E € Sym(3).

Writing WS (F) = WﬁﬁE(F FT) due to frame indifference, and using the fact that V'[v/,fys is mini-
mized at L, ., it is easy to see that

i=1

N N
c 1c 1 1
VE(E) =2D*W o(I)[E — U,)? = 3 ;:1 civilE — Ul + <_6 Y civi + 2c> tr?E,

for every E € Sym(3), where D2W¢ o(I)[E — U,]? is the second differential of W¢ ; at I applied
to (E — Uy,) twice. The purely mechanical response of the system in the small strain limit is
defined by min, g2 V,¢(E). Up to a multiplicative constant, this last expression gives precisely
the function V' defined in (@), for every E € Symg(3).

Since

V(E) = min (|E|* + |Un|* = 2E - Uy,)
ne
= |EP+ §trE —3max(En) - n,
2 nesS?

if u1(E) < p2(E) < ps(E) are the ordered eigenvalues of E, then V(E) can be rewritten as

V(E) = (,Ul(E) - %)2 + (uz(E) + %)2 + (n3(E) = 1)%,

and the minimum is attained for n parallel to the eigenvector of E corresponding to its maximum
eigenvalue. The set of wells of V is the set Ko defined in (7).

In order to conform our language to the one used in the engineering literature, we remark that
an equivalent way to present the small strain theory is to say that in the small strain regime
|[Vu| = ¢ we have that, modulo terms of order higher than two in ¢,

W(I + Vu) = pmin |e(u) — Uy,
nes?

where W is given by (L2)-(L3) and p is a function of the constants appearing in (L2). We have
in this case that W (I + Vu) = 0 (modulo terms of order higher than two in ¢) if and only if the
eigenvalues of e(u) are —5, —5, and .

We consider the problem of finding a minimizer of the functional [, V(e(u))dz, under a pre-
scribed boundary condition. We find solutions by solving the following problem: given a Dirichlet
datum w, find w such that V(e(u)) = 0 a.e. in Q satisfying u = w on 9. Considering the set
K defined in ([LI2), note that if A € Ky and w(x) = Az, then the affine function = — Ax is
trivially a solution.

Denoting by (1, z2,23) the coordinates of a point = € R?, we restrict attention to domains of
the type Q = w x (0,1), w being an open subset of R?, and look for solutions u of the form

u(z) = (u(z1, 22),0) + w(x), (2.2)
where @ : w — R? is such that % = 0 on 95, and
Xr1 T2 I3
= (2L, 22 28 2.
w(@) = (.2 -%) (2.3)
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This choice ensures that esz(u) is constantly equal to —1/2 and that the minima of the two-
dimensional theory represent minima of the three-dimensional theory as well (see [6], where a
similar point of view is adopted). In particular, we have that
azlal +% 6m1ﬁ2;6m2ﬁ1 0
/ Vie(u))dx = / Vv W Doy lin + % 0 dxidxs. (2.4)
@ “ 0 0 —3
This preliminary remark leads to the following theorem.

Theorem 2.1. Given r > 0, the function

ute) = £ fiog (L2 )] (a2,01,0)+ o)

satisfies
V(e(u)) =0 in B(0,r) x R, (2.5)
u=w on 9(B(0,7) x R), '
and belongs to WEP(B(0,7) x R), for every 1 < p < oco.
Proof. The proof is a direct computation. O

It is worth commenting on the steps that led us to the construction of the function u given
in Theorem 211 To do this, let us proceed as anticipated before and look for solutions of type
Z2)-23) on R x w. We denote by @1 and s the components of 4. Note that if E € Symg(3) is
of the form

a+ i b 0
E= b —a+i 0 |, (2.6)
0 0 -3
then, considering the set Ky of the minimizers of V (see (7)), it is easy to see that
9
V(E)=0 ifandonlyif a*+0b*= 6 (2.7)

In view of this and of ([24]), we look for solutions of the following nonlinear system of partial
differential equations in w:

(2.8)

Sle

amlﬁl + 81217’2 = 07
R G I

In order to solve this system, a possible strategy is to choose @ as a F-(counterclockwise) rotation
of the gradient of a function ¢ : R? — R, that is

This gives automatically diva = 0 and the second equation in ([2.8]) becomes

622(,0 - 622(,0 2 9
(02,,.0)% + <%> =_. (2.10)

This a fully nonlinear second order partial differential equation for which, to the best of our
knowledge, a general theory is not available. To find a solution to this equation, we look for

solutions of the form (x1,x2) = ¥(p?), where p := /2?7 + x3. In this case, equation (ZI0)
becomes an ordinary differential equation in p2:

A2 — A2 2
1= (do1720")? + (—xlw 5 il ) = 4p"(¥")?,
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which gives (1, 22) = ¥(p?) = £2 (p?log p? — 1) + C1p? + Co. Plugging this expression in (ZJ)
and imposing @ = 0 on 0B(0, ), we obtain

3 2 2
(z1,z2) = +-log Tt Ty (—x9,21). (2.11)
4 r?
The function
u(z) = (a(z1,22),0) + w(x), (2.12)

where w is defined as in (23)), is then a solution of problem (2.3]).

We emphasize that the case of @ = w x R with w = B(0,r) is very special, leading to the
explicit solution u defined in (ZI0)-(ZI2). To find a solution when w is not a disk, the strategy
is to express w as a disjoint union of a sequence of disks and a null set (see Remark [Z2). This
method does not provide solutions as explicit as those on B(0,r) x R.

Observe that the function % defined in (IT)) is of class C(B(0,7); R?) and that

_Z1T2 -1 LY é
Vi(zy,z2) = i§ o " og (£) e
2 | log (8) + 3 2182

so that Va € C(B(0,7) \ {0};M2%2). Moreover, e(it) € L>(B(0,7); Sym(2)), whereas Vi is
unbounded about the origin. Nevertheless, & € W?(B(0,7); R?), for every 1 < p < oo.

Remark 2.2. If w is an arbitrary open subset of R?, by Theorem below there exists a
countable collection {B;} of disjoint closed disks in w such that |w\ J; B;| = 0. Let & € R?
and 7; > 0 be the centre and the radius of the ball B;, respectively. Considering the function @
defined in (ZTIT]), the function given by

u(i)(f) =7l <
satisfies Z8) in B; and u(Y) = 0 on dB;. Now, define
0 on w\ U B,

uY  on By, for every i.

§—&

> , for every ¢ € By,
T

This function is a solution to problem (Z)) in w. To see this, let us introduce the functions

k
{)(k) — 0 Onw\gBi’
uD  on B;, for every i =1,..., k.

Extending each u(? at zero outside B;, we can also write & = Y, u(® and v®) = ¥ 4 5o

that
¥ (z) = o(x), as k — oo, for every = € w. (2.13)
Since |e(5)| < 3/(2v/2) a.e. in w, we have that the sequence {#®)} is bounded in W, " (w; R?),
for every 1 < p < oo, by Korn’s inequality. This fact, together with the pointwise convergence
@I3) gives that v € Wol’p(w; R?), for every 1 < p < oo. Finally, since ¥ satisfies (28] a.e. in each
B, and |w\ |J; Bi| = 0, we conclude that © satisfies ([2.8)) a.e. in w. Therefore, we have obtained
that the function
v(z) := (0(z1,22),0) + w(zx)
isa VVlif(w x R; R?) solution, for every 1 < p < oo, of the problem
Vie(vw)) =0 inw xR,
{vw on J(w x R).

We recall the following fundamental corollary of Vitali’s Covering Theorem, which is also useful
in Section @l We refer the reader to [§] for its proof.
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Theorem 2.3 (Corollary of Vitali’s Covering Theorem). Let Q C RY be an open set and G C RY
a compact set with |G| > 0. Let & be a family of translated and dilated sets of G such that for
almost every x € Q and € > 0 there exists G € 4 with dlam G < ¢ and x € G. Then, there exists
a countable subset {Gr} C Y such that

UGkQQ, G, NGrL =0 for every k # h, =0.
k

o\ JGx
k

3. CONVEX INTEGRATION APPLIED TO NEMATIC ELASTOMERS

In this section €2 is a bounded and Lipschitz domain of R3. The following notion is crucial in
the sequel.

Definition 3.1. A map y : Q@ — R™ is piecewise affine if it is continuous and there exist countably
many mutually disjoint Lipschitz domains ; C € such that

a\Jo

Note that for every piecewise affine function y, the pointwise gradient Vy(z) is defined for
a.e. T, but it may happen that y ¢ Wbl even when Vy is bounded. For instance, in dimension
one, the Cantor-Vitali function is piecewise affine according to the previous definition.

Yo, 18 affine and =0.

3.1. The nonlinear case. We consider the following problem: find a minimizer of fQ W(Vy)dx,
where W is defined in (I4]), under a prescribed boundary condition. We obtain a solution of this
problem if we solve the following: given a Dirichlet datum v, find y such that W (Vy) =0 a.e. in
Q and satisfying y = v on 9Q2. To state and then prove the following theorem, let us introduce
the set
Y= {F € M* . det F =1},

and recall that we denote by 0 < A1 (F) < Aa(F) < A3(F) the ordered singular values of F' € X.
We also use the notation A(F) := {\(F), \a(F), A\3(F)}.
Theorem 3.2. Consider a piecewise affine Lipschitz map v : Q0 — R3 such that

VveX ae inf, essinfq A1 (Vo) > ey, esssupg A3(Vv) < es. (3.1)
Then, for every e > 0 there exists y. : 0 — R3 Lipschitz such that

W(Vy:) =0 a.e. in ), Ye =v on O,

and ||y — v||oo < e. The same result holds if v € CH*(Q;R?), for some 0 < a < 1, and satisfies

(21).

Theorem [B.2]says that there exists a dense set of minimizers of the energy (at the level zero). In
these circumstances, the study of an appropriate dynamic model as a method to select minimizers,
in the spirit, e.g., of [3] and [I2], would be of great interest, and we hope to address it in future
work.

We recall that a set U C M™*™ is lamination convex if

(1-MNA+ABeU

for every A € (0,1) and every A, B € U such that rank(A — B) = 1. The lamination convex hull
U'c is defined as the smallest lamination convex set which contains U. We also recall that the
lamination convex hull of U can be obtained by successively adding rank-one segments, that is

U= Ju™, (3.2)
k=0

where U := U and
U = {1 - NA+AB : A, BcU®, 0<\<1, rank(A — B) =1}. (3.3)



8 V. AGOSTINIANI, G. DAL MASO, AND A. DESIMONE

We remark that the constraint ¥ is stable under lamination, that is if U C %, then U’ C 3.
Indeed, if A, B € ¥ are such that rank (A — B) = 1, we can write A = B + a®b for some vectors
a, b. Thus

1 =det(B™A) = det[I + (B 'a)®b] =1 + (B 'a) - b,
in view of the fact that det[(B~'a)®b] = 0 and Cof [(B~!a)®b] = 0. Therefore, we have that
(B~'a)-b=0 and in turn that

det[]A\A + (1 — \)B] = det Bdet[I + A\(B™'a)®b] = 1,

for every A € (0,1).
To prove Theorem B2, we use the following definition.

Definition 3.3. Consider K C 3. A sequence of sets {U;} C %, where U; is open in ¥ for every
i, is an in-approximation of K if the following three conditions are satisfied.

(1) U; C Uil—ci-l;
(2) {U;} is bounded,

(3) for every subsequence {U;, } of {Ui}, if Fi, € Uy, and Fy;,, — F as k — oo, then F € K.

We remark that in the literature the third condition in the above definition is stated in the
slightly different way:

if F;eU; and F,—F as i-— oo, then F¢€K. (3.4)

Note that this condition is not inherited by subsequences, therefore it does not imply condition
(3) of Definition To see this fact, we can consider an example of in-approximation according
to Definition (3) with the additional property that

K is disjoint from U := | | U}°, (3.5)
i=1
as in the proof of Theorem B2 below. We then define V; := U; if ¢ is even, and V; := Uz-lC if 7 is
odd. It is easy to see that {V;} satisfies properties (1) and (2) of Definition It satisfies also
B4) since, if F; € V;, then Fy; € U;, so that property (3) of Definition B3] for {U;} implies that
F € K. To see that property (3) does not hold for {V;}, fix G € Ul¢ and define G2;11 = G for
every i. Then Gaiy1 € Ul® C UL, | and Gai11 — G, but G ¢ K, in view of (F5).
Property (3) rather than (4] is the crucial one in the proof of the following result, which is
used to prove Theorem

Theorem 3.4. Suppose that K C ¥ admits an in-approzimation {U;} in the sense of Definition
[Z3 Suppose that v : Q — R3 is piecewise affine, Lipschitz, and such that

VveU; ae. in . (3.6)

Then, for every e > 0 there exists a Lipschitz map y. :  — R3 such that
(i) Vy. € K a.e. in Q,
(27/) Ye = v on 0D,
(iii) |Jus — v||oo < €.
The same result holds if v € C1*(Q;R3), for some 0 < a < 1, and satisfies (3.0).

For the proof we refer to [I4]. In Section ] we prove the analogue of Theorem B4 with the
linear constraint divu = 0 in place of det Vy = 1.

Proof of Theorem[Z2 Finding y : © — R3 such that W(Vy) = 0 a.e. in Q is equivalent to
finding y such that Vy € K a.e. in , where K, defined as in ([H), is the set of the wells of
W. Thus, to prove the theorem, we can directly apply Theorem B4l showing that K admits an
in-approximation in the sense of Definition By assumption (B1]), it is possible to construct
a strictly decreasing sequence {7;};>1 such that

e; < m < essinfo A1 (Vv), 7n; —> ey, asi—» oo. (3.7)
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To define a suitable in-approximation {U;} we need to distinguish the following three cases.

(1) If e; = es < e3, we note that, up to a smaller 7,

1 1 .
esssupg Az(Vv) < p < es, — — — =e€3, asi— oo
1 i 1

Hence, defining

Uy = {FEE : A(F) C <m,%>},

we have that Vv € Uy a.e. in Q, also in view of [87). We then define for i > 2
1 1
U, = {F eX: )\1(F),)\2(F) S (77ia77i—1); )\3(F) S (7}2—, ?) }
i1 i
(2) If e1 < es < e3, we consider a strictly increasing sequence {¥;} C (e1,e3) such that
esssupg A3(Vo) < 97 < es, ¥; — e3, asi— oo, (3.8)

and we define
U, = {F IS A(F) C (771,191)}.
By this definition, from @B.7) and B.8) we get that Vv € Uy a.e. in Q. Note that if
F € %, then )\Q(F) = (Al(F))\g(F))_l, so that 1/(771'—1791') < )\Q(F) < 1/(771'191'—1); if
7 < M (F) <mi—1 and ¥;,-1 < A\3(F') < ;. Therefore, we define for i > 2
U, := {FEZ : )\1(F)€(77i,77i_1), )\Q(F)G ( ! ,;),)\3(F)e('l9i_1,19i)}.
i1V mivi1

(3) If e; < ey = eg, since in this case 1//n; — 1/,/e1 = e, we define

1
U =<FeX: ANF)C , ,
! { () <771 \/771>}
and for 7 > 2

U, = {F €S M(F) € (s mi1)s Na(F), Aa(F) € (\/771_1 ;ﬁ_)}

Also in this case, we have that, up to a smaller 7;, Vv € Uy a.e. in Q.

It is clear that in each of these cases U; is open in ¥ for every ¢ > 1, that {U;};>1 is bounded,
and that if F; € U; and F; — F, then A(F) = {ej,eq,e3}. Now, let us check that U; C Uffrl for
every ¢ > 1. We note that

{F €Y :AF)C (m+1, %)} cuk,. (3.9)

Mi+1
To see this, let us focus on case (1) (in the other cases, inclusion (3.9) can be proved similarly). For
. ; . , , 2 2 2
every a > 1);41 sufficiently close to 7,41, we have that 7,11 < o <n; (and 1/97 < 1/a® <1/n7,,),
so that
1
{F €X: )\1(F) == AQ(F) = «, Ag(F) == ?} C UiJrl-

Thus,

{F eEX:AF) C [a, %” = {F €Y :MN(F) =X(F)=a, \3(F) = %}l cuUl,, (3.10)

where the first equality is guaranteed by Theorem below. Therefore, since (BI0) is true for
every a > n;41 sufficiently close to 7,41, inclusion ([B9]) follows. The fact that trivially U; C
{FeX: AF)C (ni+1,1/n?.1)} and BT) conclude the proof that condition (1) of Definition
holds and conclude the proof of the theorem. O

We refer the reader to [10] for the proof of the following result, which has been used in the
proof of Theorem
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Theorem 3.5. Let K be given by (7). We have that
Kle=K® ={Fex: AF)C[e,e3]},
where K3 is the set of second order laminates of K.

3.2. The 2-dimensional geometrically linear case. As done in Section] we restrict attention
to displacement vector fields u : @ — R? of the form

u(xy, o, x3) = (U(x1,x2),0) + w(w1, T2, T3),

with Q@ = w X R, @ = (@1, u2), and w given by ([Z3). As we have already seen, displacements of
this form are solution to the problem

V(e(u)) =0 ae.in Q, 4=7 on Ow,
where V is defined in (LH), if and only if @ : w — R? satisfies
6351111 + 612’112 =0 in w,

. ~ 2
(azlﬂ,l)Q + (6%1“2;6172“1) = % in w, (311)
u =

U on Ow.

In Section Pl we have provided an explicit solution to problem (3IT)) in the case where ¢ = 0. Aur
aim is now to allow for more general boundary conditions relying on the same techniques used
for the nonlinear setting in the previous subsection. Let us do a preliminary observation which
is true also in the 3-dimensional case. Referring to ([2.6)-(27), note first that for any matrix
a b
b —a

E € Symg(2) represented as E = [
p1(E) = —3/4, where 1 (E) is the smallest eigenvalue of E. Defining

], the condition a? + b? = 9/16 is equivalent to

U, = %(Qn@)n -I1), U:={U,:neSs}= {E € Symo(2) : |E| = 21\/5} : (3.12)
and
V i Symo(2) — R, V(E) := min |E — U?,
Uelu

we have that V(E) = 0 if and only if E € U. The results of [5] show that the relaxation of the func-
tional | V(e(@))dz in the weak sequential topology of W1?(w, R?) is given by I Vaee (e(a))dx
(for every @ such that diva = 0), where Ve is the quasiconver envelope on linear strains of V
(see [I0] for a definition). This is given by

VI(E) =min [E - Q°,  E € Symo(2),
QeQ
with
- . . 3 . . 3
Q:= {E € Symo(2) : u1(E) > _Z} = {E € Symo(2) : |E| < —}

In particular, if ¥ € W12(w;R?) is such that

3
dive =10 and )| < —= a.e. in (2, 3.13
ivo n le(0)] < e in (3.13)
then
inf V(e(@))dz = min Vel (e())dz = 0. (3.14)
aco+Wy? Ja aco+Wy? Ja

The following theorem tells us that if the second condition in (3I3) is a bit stronger, then there
exist minimizers of the unrelaxed functional too. In the remaining part of this subsection we use
the notation v and v instead of the notation u and v for 2-dimensional displacement vector fields.
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Theorem 3.6. Let v:w — R? a piecewise affine Lipschitz map such that

Vo e M3*?  ace in w, esssup,|e(v)] < i (3.15)

2v2
Then, for every e > 0 there exists u. € W1 >°(w;R?) such that
Vie(us)) =0 ae in w, U =v on Ow,
and ||uc — v||oo < e. The same result holds if v € CH%(w;R?), for some 0 < a < 1, and satisfies
(3.13).

Condition BI3]) and equality (3I4) lead to suppose that the result of Theorem can be
obtained even with |e(v)| < (3/2v/2) a.e. in w. Nevertheless, the proof of Theorem strongly
relies on the open relation appearing in I5). To prove Theorem we apply Theorem 1]
(restricted to the case N = 2). In order to do this, we have to exhibit an in-approximation in the
sense of Definition (with M) in place of 32) of the set

Ko :={A e M2*?: symA € U},
where U is defined in (3IZ). We then use Proposition to extend the result to the case
v € C1*(w; R?). Representing every A € Mp*? as

A = symA + skwA = [ @ a2 } + [ 0 6 } ; (3.16)
ag —aq —as 0

and denoting a := (a1, az2), it is easy to verify that the condition rank (A — B) = 1 is equivalent
to

(az — b3)* = |a — b|?, for every A, B € M3*?, (3.17)
and the set K has the equivalent expression
Ko = {AGM%XQ : al :g}

Since an in-approximation has to be bounded, for the following proof it is useful to introduce the
sets

Ky :={A €Ky : |ag] <m}
and

G, = {AGM%XQ : Jas) € <mg,m> and |a|<|a3|m+g},

for some constant m > %. In Figure Bl the set K" ios the region inside the big cylinder and the
set 6, is the region bounded by the two cones.

Proof of Theorem[3.0. Suppose v :  — R? to be piecewise affine and Lipschitz. Since by hy-
pothesis
le(v)]

V2
by choosing max{3/8, M} < ro < 3/4, we have that
VveUy:={AeMi*® : |a| <ro, ag| <m}\ G, ae. in, (3.18)

for some m > 3/4. In order to use Theorem [T we construct a suitable in-approximation of K"
starting from U;. We consider a strictly increasing sequence {r;};>1 C R such that r > ry and
r; — (3/4)” as i — oo, and define

Ui={AecM*? : ri_y <la| <7i, lag] <m}\Gm, i>2. (3.19)
See Figure BI for a sketch of the sets U;. Observe that {U;} is a bounded sequence of sets
open in Mg”. Also, it is clear from the geometry of these sets that whenever F; € U; and

F, - F € M**? as i — oo, then F € KJ'. It remains to check that the first condition of
Definition hold. Cousider C' € U; and suppose for simplicity that 0 < ¢3 < m (the case

3
M := esssupq < g
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—m < ¢3 < 0 can be treated in a similar way). In particular, we have that |c¢| < r; and, if
c3 >m — 1, then

3
|C| Z Cg*?’ﬂ‘l’z, (320)
by definition of %,,. We have to prove that there exist A, B € U; 41 such that
rank(A—B) =1 and C=(1-XNA+AB, forsome0<\<1, (3.21)

so that U; C Ui(j_)l (where Ui(i)l is the set of first order laminates of U;41) and therefore U; C Uilfrl,
as required. We fix 7 € (r;,7;4+1) and choose

TC TC

a:=—, bi=——, (3.22)
lc] ]
so that |a — b| = 27 and
c= (1= Na+ b, with A= =1
7
With this choice we have that the second condition in ([B21)) is realized if and only if
C3 = (1 — )\)0,3 + Abg (323)

Then, choosing as = bs + 27, the second condition in (B.21]), which is equivalent to BIT), is
satisfied, and (B:23)) is equivalent to

by =c3 —|c| — 7, as =cs — ||+ 7. (3.24)

We have now to check that A € U,y (the fact that B € U;11 can be verified equivalently).
The property r; < |a| < r;+1 comes from [B22) and from the choice of 7, and |az| < m follows
from B24). Indeed, (B24) trivially gives az > 0 (recall that we are supposing c3 € [0,m)), while
as = c3—|c|+7 < m is trivially true if ¢3 € [0, m—3/4] and follows from B20) if c3 € (m—3/4,m).
Now, suppose that as € (m — 3/4,m). We have to verify that

3
|a|2a3—m+1.

But this is equivalent to (B20), which is true if c3 € (m — 3/4,m) and trivially true if ¢3 €
[0, m —3/4]. This concludes the verification of A € U1 and the proof of the fact that U; C Ui(Jlr)l.
Thus, we have constructed an in-approximation {U;} of KJ* C K. Moreover, from (BI8),
Vv € Uz a.e. in Q. We can now apply Theorem [£1] to obtain the first part of the theorem. It
remains to consider the case where v € C1%(Q);R?) (and satisfies (3.15])). Proposition 22 ensures
the existence of a piecewise affine Lipschitz function vs : Q — R? such that divwvs = 0 a.e. in ,
[lvs — v||wie <, and vs = v on OQ. If § is sufficiently small, we have that Vus € U; a.e. in Q,
where U is defined in (8I9), and we can proceed as in the first part of the proof. O

3.3. The 3-dimensional geometrically linear case. In this section we consider the 3-dimensional
geometrically linear model and we deal with the energy density V' given by (L@). Recall that we
denote by u1(F) < pa(E) < ps(E) the ordered eigenvalues of a matrix E € Sym(3). We have
the following theorem.

Theorem 3.7. Consider a piecewise affine Lipschitz map w : Q — R? such that

1
Vw e M*?  a.e in Q, essinfo pq (e(w)) > ~3 esssupg, ps(e(w)) < 1. (3.25)
Then, for every e > 0 there exists u. : 8 — R3 Lipschitz such that
Vie(ue)) =0 a.e. in Q, us =u on 01, (3.26)

and ||ue — w||oo < €. The same result holds if w € CH*(Q;R3), for some 0 < a < 1, and satisfies

(223).



ATTAINMENT RESULTS FOR NEMATIC ELASTOMERS 13

FicUure 3.1. Illustration of the sets K", ¢, and U; appearing in the proof of
Theorem B0 in the (a1, a2, as)-space. U; is the region between the two small
cylinders, coloured in green.

Recall that the set
1
Ky := {A € M3 2 py (symA) = pa(symA) = —3 ps(symA) = 1} (3.27)

is the set which minimizes V' at the level zero, so that problem ([B.26]) can be rewritten in the
equivalent form
Vu. € Ko a.e.in (), u: =u on 0.

Therefore, in order to prove Theorem [3717] we can use Theorem ET] restricted to N = 3 if we
exhibit an in-approximation {U;} of the set K, such that

VweU; a.e. in Q. (3.28)

For positive constants a and m, the construction of {U;} in the following proof hinges on the sets

Keam = {A € M3 ¢ iy (symA) = pa(symA) = —a, pz(symA) = 2a, |skwA| < m}.  (3.29)

Analogously to the 2-dimensional case, the restriction |skwA| < m in the above definition is
related to the fact that the sequence {U;} has to be bounded.

Proof. To define a suitable in-approximation of the set Ky defined in ([327]), let us first introduce
a strictly increasing sequence {r;};>1 of positive numbers such that r; — (1/2)7, as i — oo, and
satisfying

o0

Z \VTit1 — Ti—1 < Q. (330)

i=2
It is easy to check that such a sequence exists: it is enough to consider, e.g., 7; = Z;Zl 1/4% and
ri =17 —C+1/2 where C := 372, 1/j% We then choose {m;};>1 to be a bounded sequence of
positive numbers such that

Mir1 > My + 4y/Tip1 — 11, for every i > 1. (3.31)

Note that {m;} can be chosen to be bounded in view of (B30). We now define the sets U; of the
in-approximation for ¢ > 2 and define U; later on. Setting
Ui = {AcMZ*?: uy (symA), pa(symA) € (—r, —ri—1),

ps(symA) € (2r;—1,2r;), |skwA| < m;}, (3.32)

it is clear that the sets U; are open in ngg and equibounded. Also, if {F;} is a sequence

of matrices such that F; € U, for every ¢ and F; — F, then in particular FF € K, because
[—ri,—ri—1] — {=1/2} and [2r;—y,2r;] — {1}. To show that U; C U, we show next that
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U; C Ui(i)l, where Ui(i)l is the set of the second order laminates of U;;;. We have the following
claim.
Claim. Setting
T +Tig1
o = ——
2

then U; C UC(OZ),WH, where Ko, m,,, is given by [B.29) with a; and m,4; in place of o and m,
respectively.

Note that, once we have proved the claim, the fact that U; C Ui(f_)l is straightforward, because

Kaimipr € Uiyr and in turn U; C ﬂcﬁiimm C Ui(i)l. This concludes the proof of the fact that
{Ui}i>2 is an in-approximation. Once proved the claim we are then left to choose U; in such a
way that {U;};>1 is still an in-approximation and condition (328 is satisfied.

Proof of the claim. Fixed A € U;, we can assume without restrictions that symA is the diagonal
matrix diag (p2(symA), p1(symA), us(symA)). Proceeding as in [5l proof of Corollary 2], let us
set

BT := A" + skwA, B~ == A" + skwA,
with
w2 (symA) 0 0
AT = 0 w1 (symA) +24 ,

0 0 us(symA)
so that ) 1

A=-Bt+-B". .

BT+ 3 (3.33)

Choosing

§ = /(i + pi(symA))(ai + pa(symA)),
we obtain that § is well-defined and positive because u1(symA) > —r; > —a;, and we get

pi(symB*) = —ai,  pa(symBF) = pa(symA),  pa(symB*) = a; — pa(symA).  (3.34)
Also, note that

|skwB¥| < |skwA*| + |skwA| < /26 + m;, (3.35)
and that, since a; < 1/2, uz(symA) < 1, and —r;41 < —a; < —1r; < pp(symA) < —r;_1, then
3 3
o< \/5(041 + ul(symA)) < \/§(Ti+1 — Tifl). (336)

Estimates (335) and (330]) give
lsymBE| < \/3(rix1 — ri_1) + mi. (3.37)
Now we want to show that, given any matrix B € ngs such that

pi(symB) = —ay, po(symB) € (=1, —ri—1),  ps(symB) < 20y, (3.38)

|Sk’LUB| < v/ 3(Ti+1 - ri—l) + m;, (339)

and satisfying

then
1 1
B= §C+ + EC’,, for some Cy,C_ € Kq, m,,, such that rank(Cp —C_)=1.
To see this, let us suppose that symB is in diagonal form
symB = diag (—a;, p2(symB), ps(symB)),
and, following [l proof of Proposition 4], let us write
1 1
B=-C —C_ A4
5+ + S (3.40)

where
Cy:= Dy + skwB, C_:=D_ + skwbB,
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and
—q; 0 0
Dy = 0  pua(symB) +2¢
0 0 pa(symB)
Choosing

& = /(=20 + pa(symB))(—2a; + pz(symB)),
we obtain that ¢ is well-defined and positive because us(symB) < 2«;, and we get
w1 (symCy) = —ay,  pa(symCy) = —ay, ps(symCy) = 2aq;. (3.41)
Moreover, from ([B38)-(339) and from the fact that B € M3*?® we obtain

e = /o~ palsymB)) (o — jlsymB)) < \/ 5 (riss —ri1),

and in turn

|skwCy| < |skwD| + |skwB| < V2 4+ /3(rig1 — ri1) + ms
< 24/ 3(7‘1'4_1 — Ti—l) +m,;. (342)

Equations (3.31), (3.41) and [B.42)) imply that Cy € Ka, m,,,. The fact that rank (C, —C_) =1

comes from the construction.

Finally, going back to [333]) and noting from [3.34)) and (331) that BT and B~ satisfy (3.38))-
B39), we have that (333) holds with

1 1 1 1
Bt =_-Cf+zC* B™ =-C7 +-C” 3.43
50+ T3t 3¢+ T3¢ (3-43)
for some Cf, C*, C7, C= € Ka, m,,, such that rank (C7 — Ct) = rank (C; — CZ) = 1. Since
from the construction we have also that rank (BT — B~) = 1, equations (3.33) and [B.43) give

that A € 9(&%)7mi +1- This concludes the proof of the claim.
Now, let us choose the first elements of the sequences {r;};>1 and {m;};>1 such that

1
essinfq uy(e(w)) > —ry > —3» esssupg us(e(w)) < 2r <1, my > ||V -
By this choice we have that condition ([B:28)) is satisfied with
Up = {AeM*?: —ry < pi(symA), us(symA) < 2ry, |skwA| < my},

which is a set open in ngg. Taking a1 := (11 + 12)/2, proceeding as in the proof of the claim
gives that Uy € Kgi{mz and in turn U; € U2(2), being Ky, m, C Us. O

4. APPENDIX

In this section we prove the following Theorem [Tl and Proposition 4.2, adapting the procedure
used in [I4] to the linear constraint divu = 0. The set € is a bounded and Lipschitz domain of
RY. We denote by [A, B] the segment between the matrices A and B. We use the symbols || - ||«
and || - ||1,00 for the L>- and the W1°°-norm, respectively. When we want to indicate the domain
explicitly, we write [[u||poc(a;rm) OF [[ul[1.00 (pAsmm), for u: A — R™.

Theorem 4.1. Suppose that Ky C MéVXN admits an in-approzimation {U;} in the sense of
Definition [3.3 with ¥ replaced by MéVXN. Suppose that v : Q — RN is piecewise affine, Lipschitz,
and such that
Vv eU; a.e. in . (4.1)
Then, for every e > 0 there exists a Lipschitz map u. : 2 — R™ such that
(i) Vue. € Ky a.e. in €,
(ii) us = v on 01,
(i) |Jus —v||oo < e.
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The proof of this theorem is the last step of an approximation process which passes through
some preliminary results: Lemma 3] Lemma 3 and Theorem [£6 In Lemma[£3 the following
problem is considered: given two rank-one connected matrices A and B and given C' = (1—-\)A+
AB for some A € (0,1), we construct a map u which satisfies the constraint divu = 0 and the
boundary condition u(z) = Cz, and whose gradient lies in a sufficiently small neighbourhood of
[A, B]. The next step consists in considering U relatively open in Mév *N  Lemma B states that
for every affine boundary data z + Cx with C' € U'®, there exists a piecewise affine and Lipschitz
map u whose gradient is always in U'® and is such that the set where Vu ¢ U is very small. Then,
by the same iterative method used in the proof of Lemma [£.3]it is possible to remove step by step
the set where Vu ¢ U and allow for boundary data v such that Vv € U a.e. in Q: this is the
content of Theorem 6l Finally, the relatively open set U is replaced by a set Kq satisfying the
in-approximation property (see Theorem ELT]). This last step requires another iteration process.

The following proposition, whose proof is postponed at the end of this section, allows us to
extend Theorem EJ] to the case where the boundary data v is of class C*(Q;RY) for some

€ (0,1), and satisfies ([@T]).

Proposition 4.2. Let u € CH*(Q;RY) be such that divu = 0 in Q.
For every § > 0 there exists a piecewise affine Lipschitz map us : Q — RN such that

divus =0 a.e. in Q,
us =u on 0L,
[lus — ul|1,00 < 0.
The following lemma represents the first step of the process leading to the proof of Theorem .11
Lemma 4.3. Let A, B € M)"*" be such that rank(A — B) = 1 and consider
C=(1-XNA+ B, for some A € (0,1). (4.2)
For every € > 0 there exists a piecewise affine Lipschitz map u. : Q — RN such that
Vu, € MéVXN a.e. in €,
ue(x) = Cx  for every x € 09,
dist(Vue, [4,B]) < e a.e. in L,
Hz € Q : dist(Vue, {A, B}) > e}| < ¢|Q],

sup |us(z) — Cz| < e.
e

o T R
ol ool o o
- O Ot R~ W
—_ =

The constant ¢ appearing in ([EQ) is such that 0 < ¢ < 1 and depends only on the dimension N.

For the proof of Lemma it is useful to construct an explicit divergence-free vector field u
on the equilateral triangle 7" with vertices

O L S

Let V4, V5, and Vi be the middle points of the segments joining the centre O of T' to the middle
points of [V, V3], [V, V4], and [V1, Vo], respectively. We divide T into the triangles T;, i = 1, ..., 7,
illustrated in Figure Il They are such that
T 7 T

Ty =|Ty| = |Ts| = —, |To|=|T5| =|T%| = —=|T T3 = —. 4.9

Tl =Tl = |Te| = 7=, 2| = |T5| = T7| = ITI,  |T3] = 35 (4.9)
Consider the following vectors representing displacements applied at the points Vi, V5, Vg, re-
spectively:

uf = g(—1,\/§), ul = —g(l, V3),  wd:=4(1,0). (4.10)
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These three vectors have been chosen in such a way they have the same length § and uj, ug, ug

have the same direction as V3 — V5, Vi — V3, Vo — Vi, respectively. Finally, we define u as the
piecewise affine function defined by

u(Vi) = u(Va) = u(V3) =0, u(Vi) =ul, i=4,5,6. (4.11)

It is obvious that v = 0 on dT. Moreover, using the following lemma it is easy to check that
diveu =0 a.e.in T.

|

P T,

I

V. V.

FIGURE 4.1. Triangle T and a prototype of a piecewise affine vector field u such
that divu =0 a.e. in T and u = 0 on 97T

Lemma 4.4. Consider a triangle T C R? with vertices Vi, Va, and Vi, and an affine function
w:T — R? such that u(Vy) = u(Vz) = 0. Then,

divu =0 if and only if w(V3) is parallel to Vi — Va.

Proof. Suppose for simplicity that V3 — V5 is parallel to the first vector of the canonical basis
of R2. Let vy, va, and v3 be the outer unit normals on the sides [V, Va], [Va, V3], and [V, V4],
respectively, so that

1 = (0,a), witha =1 or a = —1. (4.12)
Since Vu is constant, from the Divergence Theorem we infer that
2T tr Vi = u(Va) - (v Vs — Va| + ws|Vs — VA). (4.13)

Using the equivalence v1|Vy — Va| + 12|Va — V3| + 13|V — V4| = 0, we obtain from ([@I3]) that
2|T|tr Vu(z) = —|Vi — Va|u(V3) - 1. In view of ([@I2), this implies that divu = 0 if and only if
the second component of u(V3) is zero. O

Proof of Lemma[f.3 We follow [I5] and provide the explicit proof in the case N = 2 for the
readers’ convenience.

Here, we use the notation (z,y) or (&,n) for a point of R?, and we consider M?*? endowed
with the [, norm denoted by |- |w. It is not restrictive to suppose that dist is the distance
corresponding to this norm. The proof is divided into three cases.

Case 1. Consider the matrix
0 1
E = ( 00 >, (4.14)

and suppose that A — B = E and C = 0. In this case, equation ([£2) gives that A = AE and
B=(A-1)E, and

dist(M, [A, B]) = 01<nﬂir<11 M + (u— A)E|so, for every M € M**2.
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From the definition of E' we have in particular that
diSt(M, [A, B]) = max{|M11|, |M21|, |M22|}, if A—1 S M12 S A (415)

The idea is to construct a piecewise affine function w. which satisfies (£3)-(£7) on a compact
set T with |T.| > 0, and then conclude the proof of Case 1 applying Theorem 231 Consider the
piecewise affine function u of components (u1,usz) defined by [@I0)-(ETII) on the triangle T" with
vertices ([L8). Computing the explicit expression of u we get that

aul
IVull oo (rppzxz) = esssup(,, ) er| Vi@, y)loo = a—y(x,y), for every (x,y) € Th,

where %—?(m,y) = 24/3§ for every (z,y) € T;. Choosing § = 28\;3 and relabelling u by u®, we
obtain that

out
% =&’ on Ty, (4.16)
Y
and that
||VU€||LW(T;M2><2) = 53, ||UE||L<>¢(T;R2) < 653, (417)

for some constant ¢ > 0 independent of €. Direct computations show that

81T1p aau; = sup{ ag;j : %—f < 0} =3, (4.18)
Seting m. := e3max{1/A,1/(1 — A\)} and choosing £ < min{\, 1 — A}, we have that
0<m. < 1. (4.19)
Then, define
Se 1= < \/STE (1) ) and  T.:= S-NT),
e

and note that the function

w (&, m) = S s (Ss (g)) for every (¢,n) € T¢,

satisfies conditions ([@3))-([@7). Indeed, the construction of u® implies that divw® = 0 a.e. on T
and w® = 0 on 97.. For what concerns property (43)), note that

duf 1 0uf
Vws(§,n) = ( magug méugy

€ Ox dy >(\/m75§, n )

me

,  forevery (1) € T,

so that
ows 7 ows 7 ows (4.20)
¢ 313 on

in view of (I7) and (@I9). Moreover, (£I]) and the definition of m. give that A—1 < 6611:; <A\

This fact, together with [@IH) and (£20), implies that (@3] is true for w® a.e. in T.. Also,
equivalence ([EI6) gives that, for every (&,n) € S7H(Ty) C 1%, dist(Vw® (€, n), {4, B}) < &, and
in turn that

{(&m) € Te « dist(Vw® (§,n),{A, B}) > e} < [T\ ST (Th)| = %|T€|7

where the last equality is due to (£3) and to the fact that S=! is volume-preserving. This proves
(#6). From the definition of w® and from (&IT), we infer that

3
2

||’LUE|| , ||UE||L°°(T;]R2) €2¢
Leo(TeiR?) = /e ~ max{\,1— A}’

so that [[we||pe~ (1. r2) < €, if € is sufficiently small, and property (A1) follows.
We remark that the function (§,n) — Aw®({/\,n/\) satisfies ([@3))-([{@7) on the dilated set AT
for every A > 0, and the same holds for the function (£,7) — w®(§ — En— 7]) on the translated
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set T- + (£,7). By Theorem 23] there exists a disjoint numerable union U, T2 C Q of dilated and
translated sets of T, such that

=0,

o\ J7

and from the previous remark there exist piecewise affine Lipschitz maps wf : T2 — R? satisfying
@E3)-@ED) on T.. Therefore, the function w. : Q — R? defined as w. = wf on T for each i

satisfies (d3)- (@) on Q.

Case 2. Here, suppose C = 0. Since A and B are rank-one connected, 0 is an eigenvalue of
A — B which may have algebraic multiplicity equal to either 1 or 2. The Jordan Decomposition
Theorem tells us that, in the first case, there exists an invertible matrix L and p € R\ {0} such

that A — B = L7t ( ’g 8 ) L. But this is impossible, because tr(4A — B) = 0. Therefore, we

have that A — B = L7'EL, where E is defined in ([@I4), for some invertible matrix L. Let
w be given by Case 1 and satisfying conditions {@3)-(ET), on a rectangle R, for A := LAL™!
and B := LBL™! (note that A — B = F and (1 — M)A + AB = 0). It is easy to verify that

w(é,m) == L1 (w (L (g))) satisfies conditions (3)-@T) on L~!(R). Using again Theorem
and covering €2 by dilated and translated copies of L™(R), we obtain a function satisfying

conditions ([E3)—(E1) on Q.

Case 3. Finally, suppose C, A, and B to be generic and satisfying the the hypotheses. The
matrices A := A—C and B := B— C are such that (1 —X)A+ AB = 0. Thus, from Case 2, there
exists w : 0 — R? piecewise affine and Lipschitz satisfying ([@3)-@7) with A, B and 0 in place

of A, B and C, respectively. Then u(z,y) := w(x,y) + C (z) satisfies ([@3))- (@7 on . O

Before stating the next lemma, let us remark that if U is relatively open in Mév *N then U'e
is relatively open in Mév *N too. Indeed, suppose that U is relatively open in Mév *N - consider
C € UM, and suppose that C+D € M{Y"*". We have that C' = (1—\)A+AB for some 0 < A < 1
and some A, B € U. Note that A+ D, B+ D € My*" and that A+ D, B+ D € U if |D| is
sufficiently small. Therefore, C + D € UW if | D| is sufficiently small, because

C+D=(1-NA+D)+ AXB+D),
and rank[(A + D) — (B + D)] = 1. By induction we have that U'® is relatively open in M *".

Lemma 4.5. Let U C M(])VXN be bounded and open in M(Z)VXN, and let C € U'. For every e > 0
there exists a piecewise affine Lipschitz map ue : Q@ — RN such that

Vu. € U a.e. in 9,
us(x) = Cx for every x € 09,
{zx € Q : Vu.(x) ¢ U} < €|Q|,
sup |us(z) — Czx| <e.
zeQ
From the proof of this lemma it is clear that the fact that U' is open in Mév *N s a key
condition to obtain the result. At a later stage, this condition is replaced by the requirement that
U admits a suitable approximation {U;} by sets U; open in M *".

Proof. Suppose first that C € UM, where U™ is the set of first order laminates of U, and let
us prove that properties [@2I)-@24) with UM in place of U hold for a certain u. : Q — RN
piecewise affine and Lipschitz.

Consider the nontrivial case C' = (1 — A\)A + AB for some 0 < A < 1, A, B € U. Given ¢ > 0,

by Lemma [£3] there exists a piecewise affine Lipschitz map wgl) : Q — RN satisfying conditions
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(E3)-ED) with £/2. In particular, wt fulfils [#E22)), it is such that

sup |w® (2) — Cx| < g (4.25)
e
and satisfies property @2I) with U in place of U, in view of ([@3), [@3)), and of the openness
of UMW in MY N Also, note that {w'" ¢ U} C {dist(Vw", {4, B}) > ¢}, again in view of the
openness of U, so that (£6) implies

{xe: ngl)(x) ¢ U} < ¢|Q], (4.26)

where 0 < ¢ < 1 is a constant depending only on the dimension N. Building on wél), the next

part of the proof consists in an iterative process which improves [@26]) to (£23). To simplify the
notation, we write w® in place of wgl).

Since wV is piecewise affine, there exist countably many mutually disjoint Lipschitz domains
Qp, C Q such that w,(cl) = w|(§12)k is affine and |Q\ J, Qx| = 0. If {Qg)}k C {Q} are the sets

where Vw") ¢ U, then by 20)
3 ‘QS)‘ < |9, (4.27)
k

Applying again Lemma 3] on each QS), with § in place of €, we find w,(f) : QS) — R piecewise

affine and Lipschitz such that Vw,(f) eUW ae. in QS), w,(f) =w® on GQS),
H:c eV : vul?(2) ¢ U}‘ <o), (4.28)
and -
sup|w,(€2) —wWM] < =,
QECI) 4

(4.29)

Defining w® : Q — R as

@ . ) w® onQ\U, o,
we = (2) (1)
wy’ on £,

we obtain that w(?) is piecewise affine and Lipschitz, Vw® € UM a.e. in Q, and w?(2) = Cx

for every x € 9. Also, from ([@25) and [@27)-([@E29) we get
Hz e : Vo (z) ¢ UH -y H:c eV v (z) ¢ U}’ <),
i

and

1
sup |w® (z) — Cz| < sup {‘w@)(a)) - w(l)(:n)‘ + ‘w(l)(:n) - CZC‘} << (1 + —) .

z€Q zeQ 2 2
Tterating this procedure gives that for every m € N\ {0} there exists a piecewise affine Lipschitz
map w™ : Q — RY such that Vw(™ € UM a.e. in Q, w™ (x) = Cx for every x € 99, and

m—1
AR vaRC) m (m) S
HzEQ : Vw (z)%U}‘ < ™9, sup |w'™ (z) — Cz| < = —.
e 2 i—0 2

Since 0 < ¢ < 1, then ¢™ < ¢ for m sufficiently large. Setting u. := w(™ for such a big m, we
have obtained that u. satisfies (E21)-(@24) with U™ in place of U'c.
The proof of the lemma can be concluded by a simple inductive argument which proves that if
C € UW, where C is the set of i-th order laminates of U, then there exists a piecewise affine
Lipschitz function satisfying @21)-@24) with U in place of U'e. O

By the same iterative method used in the proof of Lemma £ one can remove step by step the
set where Vu ¢ U obtaining the following theorem.
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Theorem 4.6. Let U € MY*™ be bounded and open in MY ™Y, and suppose that v : Q — RN
is piecewise affine Lipschitz map such that

Vo e U ae inQ.

For every € > 0 there exists a piecewise affine Lipschitz map u. : Q — RN such that

Vu. €e U a.e. in Q, (4.30)
u: =v on 08, (4.31)
[lue — v]|oo < e. (4.32)

Proof. Consider first the case where v is affine, so that Vu(z) = Cx for every z € 2, for some
C € U'. Fixed € > 0, by Lemma there exists a Lipschitz map u( : Q@ — RN such that

Vul € Ul ae. in Q, vV = v on 9Q, and such that uz(-l) = ul(glz) is affine on countably many

mutually disjoint Lipschitz domains ©; C Q with [\ |J,; ;| = 0. Note that we can write
Q= U QZ(-I) U U le) UN® | where
ieA) ieB)

AV = {ien: vulV ev}, BWi={ien: val) ¢U}, INU|=0.
Moreover, u(!) can be chosen in such a way that

IMD)| < €[], [u® = o]0 < =

5 (4.33)

where M := J;c50) QZ(-l). Applying again Lemma [£5 on each le) with i € BM | with % in place
of £, we find ul@) : QZ(-I) — RY piecewise affine and Lipschitz such that Vul@) e U'e, uz(-Q) =u®
on 891(-1), and

2 € 1 2 1
i = a0 52 < o {z e oM vul® (@) ¢ U} < eV, (4.34)
for every i € B(). Now, define u(? : Q — RY by

u®  on U le)UN(l),

u® = €A™

u?  on le), ie B,

K2

Again we can write MM = U QZ(-Q) U U QZ(-Q) UN® | where ul@) is affine on each Ql@) and
i€ AR i€B®)

A = {z eN: vu® e U}, B = {z eN: vu? ¢ U} ,IN®|=o.
Setting M@ := ;e g 952), we obtain that
IM®)| = |{z e MY . vu? ¢ U} < e|lMD| <20, (4.35)

that u(® is a piecewise affine Lipschitz function such that Vu(® € U'¢ a.e. in Q, that v(?) = v on

0f), and that
(2) g 1 1
[|lu —’U||oo<—2( —|——2 .
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Note that u® =« on Q \ M® . By iterating this procedure, we find the piecewise affine
Lipschitz function

u® on U le) UN®,
ic A
u® on U QEQ) UN®,

; 2
m) . _ i€A®

u(m_l) on U Q(mfl) U N(’m—l)’

i€ A(m—1)
uz(-m) on ng_l), = B(mfl),

where M (™= =, p(m-1) ng_l) is such that
HzeQ : Vul™ ¢ U} < |M™|<em|Q.

Moreover, {M(m)} is a strictly decreasing sequence of sets, (™ = u("=1) on Q \ MOm=1 and

m—1
. . € 1
Vul™ e U ae. in Q, u™ =v on 99, [[u™) — 0|0 < 5 5
i=0
From the above properties we infer that the sequence of functions {u(m)} defines in the limit
m — oo a piecewise affine Lipschitz function on 2 satisfying (£30)-(E32).
To conclude the proof it remains to consider the case where v is piecewise affine. In this case,

one can repeat the above argument on every domain where v is affine. 0

We are now in a position to prove Theorem Il where the condition that U C Mév *N g
open (and bounded) in Mév *N s replaced by the condition that Ky C Mév *N admits an in-
approximation {U;}. The idea of the proof is to construct a solution of Vu € Ky by considering
suitable solutions of Vu; € U;.

Proof of Theorem[{-1] As in the proof of Theorem [L.6] we can assume without loss of generality
that v is affine. Fix ¢ > 0. Since Vv € U; C Uﬁc, by Theorem [0l there exists a piecewise affine
Lipschitz map us : © — R such that Vus € Uy a.e. in Q, ug = v on 99, and ||juz — v||e <
€/2 =: g5. Consider the set

1
Qy = {x € Q : dist(z, 00Q) > 5},
which is nonempty up to replacing 1/2 by some smaller positive constant, and let {ps} be a family
of mollifiers, so that there exists 0 < do < 1/2 such that
||p52*VU2 — VUQHLI(QQ;MNXN) < 1/2

For i > 3, choosing 0 < §; < min{d;_1,1/2'} and setting &; := §;¢;_1, an application of Theorem
at each step yields that there exists a piecewise affine Lipschitz map u; : Q — RY such that

Vu; € U; a.e.in €, u; = uj_1 on O, ||’U,l — ui_1||oo < &;. (436)

Moreover,
1

||p5i*vui — V’U,Z'HLl(Qi,MNxN) < 5, (437)
where €; == {2 € Q : dist(z,00) > 1/2""1}. Since &; — 0, from the third condition in (Z36)
we deduce that {u;} is a Cauchy sequence in L°°({;RY). This fact, together with the first
condition in (E30) and Definition (2), implies that {u}; converges uniformly on Q to some
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u € WHee(€Q; RY). This implies in particular that u satisfies (i) and (iii), also in view of the fact
that

i i—1
€ 1
i — ]| < J§_3j||uj — oo + [z — vl]oo < 5;_05 <e.

It remains to show that u satisfies condition (i). Since ||Vps, |[11(ory) < 6% for some constant
C > 0 independent of d;, using again the third condition in ([£36]) we get

C X C X
||p5i*(vui7VU>||L1(Q“MN><N) S 5_7,;”'&[ *Ul+1||oo < E;5l€l+l

oo
< CZEHJ < 2Cei41.

=i

From this estimate and from (£37)) we can deduce that
||V’u1 - Vu||L1(Q;MNxN) < ||V’u1 - vu”Ll(Qi;MNxN) + ||Vuz - VUHLl((Z\Qi;MNXN)
1
< 5 +2Ce;_1 + ||ps;*Vu — Vul| 1 + ||Vu; — VU”LI(Q\Q“MNXN). (4.38)

Since 6;,&; — 0, and since |Q\ ;| — 0 and {Vu;} is bounded in L>(Q, RY), from (@35 we
obtain that Vu; — Vu in L'(Q,MY*¥). In particular, we have that, up to a subsequence,
Vu; = Vu a.e. in Q and in turn, by the first condition in (36) and by Definition B3] that
Vu e K. O

In what follows, we denote by Bj the ball B(0,1) C RY and by []o or []a,a the standard
seminorm in C%®(A;R™), and we provide the proof of Proposition In order to do this, we
use a procedure already used in [I4], which is based on a preliminary result (Lemma 7] below).
This consists in proving that starting from a divergence-free function v € C1*(By; RY) such that
[Vulo <6, it is possible to construct another divergence-free function @ which is affine on B/,
and such that u € C**(By \ By)o; RY) and |lu — @1, (p,;rv) < C6. Such a construction can
be done by using [7, Theorem 14.2]. This result of Dacorogna says that form > 0and 1 < a <1
there exists a constant K = K (m, a, Q) > 0 with the following property: if f € C™%(Q) satisfies
Jo f(@)dz = 0, then there exists L(f) € C™ 1 (Q; RY) verifying

divL(f)=f inQ,
{ u =0 on 0,

and such that ||ul|gm+1.e < K|[f[|om.a.

Once the intermediate result has been established, the proof of Proposition 2] consists roughly
in filling © by a disjoint union Ui]:1 B(a;,r) and applying the intermediate result to each ball
B(a;, ), so that we can replace u by a function & which is affine of UiI:1 B(a;,7/2) and endowed
with the same regularity of u on Q\ Ule B(a;,r/2). It is then possible to repeat the same
argument to @ on Q '\ Ule B(a;,r/2) and then iterate it. Choosing smaller and smaller radii,
this iterative procedure converges to a piecewise affine function 1, such that u. = u on 99.

Lemma 4.7. For every 0 < a < 1, there exists a constant C = C(N,«) > 0 with the following
property. For every § >0, a € RN, r >0, and every u € C»*(B(a,r);RY) such that

divu=0 in B(a,r) and rY[Vula <9, (4.39)

there exists . € C°(B(a,r); RN) N CY*(B(a,r) \ B(a,r/2); RN) satisfying
divi=0 a.e. in Bla,r), (4.40)
Va(x) = Vu(a) for every x € Bla,r/2) and @ = u on 0B(a,r/2), (4.41)

M — 1|oo + ||Vu — Vii]|s < C6. (4.42)
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Proof. Let us first prove the lemma in the case a = 0, r = 1, and u(0) = 0. For any u €
C12(By;RY) such that

divu=0 in B and [Vulo <9, (4.43)
define the affine function ug(z) := Vu(0)x, for every x € By, and the interpolation @ := @ug +
(I—@)uonU = By \ By, where p € C2°(By) is a fixed cut-off function such that ¢ =1 on B .
It is easy to see that

||u - u0||Loo(Bl7RN) S ||Vu - vu0||Loo(Bl7MN><N) S 20‘[Vu]a. (444)
In particular, we have that
||u — UOHCO’O‘(Bl;]RN) < Cl (a, N)[Vu]a (445)
Defining
fi=divi=Veg- (uy—u), (4.46)

we have that f € C%*(U) and that [, fdz = 0. Thus, by Dacorogna’s result and by (48), there
exists L(f) € C1*(U;RY) such that div L(f) = f in U, L(f) = 0 on dU, and such that
IL(N)lcreirny < Co(N, a)||u = uol|co.oumn)- (4.47)
Now, consider the function L
- J uo on B,
v { a—L(f) onU.
It is clear that 7 is a function of class C°(By; RN)NCYH@ (U; RY) satisfying properties (E240)- EZT)
with @ = 0 and r» = 1. To check (£42), note that the definition of @ and estimates (£.44)-(£.45)
imply that
l — @llys.e oy vy < (N, 0) [V (4.43)
By using ([&43), from estimate [Z4R) we deduce that #242) holds with » = 1 and C' = C3(N, a).

Now, let us prove the lemma for a generic ball B(a,r) C R and for every u € C**(B(a,r);RY)
satisfying (39). The function v € C*(By; RY) defined by
o(z) = u(re + a) — u(a)
r
is such that v(0) = 0 and satisfies the conditions in (£43). The previous proof shows that then
there exists 0 € CY(By; RN) N CY(By \ Byj2; RY) satisfying (@40)-@42) with a = 0 and r = 1.
Thus, the function

r

a(z) =1 (”” — “) +u(a)

is of class C°(B(a,r);RY) N CY*(B(a,r) \ B(a,7/2);RY) and satisfies {@40)-@42) with C =
03 (N, a). ]

We are now in position to prove Proposition

Proof of Proposition[{.2 Fix 6 > 0. The idea of the proof is to construct a strictly decreasing

sequence of open sets Q;, C Q and a sequence of maps u¥) such that Qy = Q, u® = u, u® €
Whee(Q;RY), and

0
||u(k) _ U<k+1)||1,oo < SR (4.49)
divu® =0 a.e. inQ, (4.50)
u™ =u  on 99, (4.51)
Nk
uF D = 4 on U Agk) UNp =Q\Qy, forevery k>1, (4.52)

i=1

[Qeq1| < Q% (4.53)
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where 7 € (0,1), u*) is affine on each AZ(-k), and N}, is a closed set of null measure. This construc-
tion implies the existence of a Lipschitz map v : @ — RN such that «*) — v in W (Q; RY) (by

(#49)), dive = 0 a.e. on 2 (by @50)), and v = v on I (by (@EI)). Moreover, ([£49) implies

that

& k

i i 1
[lu — u(k+1)||1,oo < Z ||U( ) — Jr1)”1700 = 52 9i+1 <9,
i=0 =0

for every k, and therefore ||u — v||yy1.o < d. Finally, (£53) implies that [\ Qx| — |Q|. Since
O\ Q is the set where u®) is piecewise affine, and u; = uy, on Q \ Q. for very I > k, then v is
piecewise affine on Q. Now, let us describe the construction of the sequences {Qx} and {u(®}.
Consider Q" ccC @ cC Q such that |Q"]| > %|Q|, and cover " by a lattice of n; disjoint open
cubes CZ-(l) with half-side » < 1. If r is sufficiently small, then [J;2, CZ-(l) C Q. Also, there exists
a constant M (£2') > 0 such that

[vu]a c® S M(Q/)’ for every i = 13 ey N (454)
Let BZ-(l) be the open ball inscribed in C’i(l). By ([@54) we have that

)
r*[Vu] < 2 if  is small enough,

oz,B,El)

so that the hypotheses of Lemma 17 are satisfied by u on BZ-(l). Hence, denoting by Agl) the
open ball with the same centre as Bgl) and with radius r/2, there exists uz(-l) eC’ (BZ-(l); RN) N
cte (B A RY) such that
divuz(-l) =0 a.e. in BZ-(l), ugl) is affine in Agl), uz(-l) =u on 8Bi(1),

and

e — )| < — )| L Rl <%

U= U Mo p®ryy ST U= U Tl pee(p® RN u Wi Ml pee (BO v <Ny = 57

where the constant ¢ > 0 depends only on N and «. Now, define

ugl) on BZ-(l), 1=1,...,n1,

U(l) = " (1)
u on 0\ U B,
i=1

Q) =0\ U (A voB™M).
i=1

Note that, since the ratio between the volume of a ball and the volume of a circumscribed cube
is a constant A = A(INV) € (0, 1), we have that

ni ni )\
AP =23 e = x| = S,
;\1 IC R

and in turn Q] < |Q|, where 0 < 7 := 1 — 4 < 1. From the definition of u") we deduce that
uM) is piecewise affine in Q \ Q;, that Q\ ©; is a finite union of disjoint balls (up to a null set),
that u() € Whe(Q;RV) N Cllo’g(Ql;RN), that u(®) = u on 99, that divu™ = 0 a.e. in Q, and
that

1 c(a)d
)||W1,oo(B§1);]RN) S D) .

Ju—uD oo =  max |fu—ul
1

ie{l,...,n1}

Repeating the same construction on ; and then iterating it defines the sequences {€} and
{u®}. O
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