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Abstract — In this paper the performances of two state-of-the-art Interpolated Discrete Fourier 

Transform (IpDFT) algorithms are analyzed when sine-wave frequency must be estimated over short 

observation intervals. The first estimator, called enhanced IpDFT (e-IpDFT) algorithm, exploits a two-

point interpolation and compensates the detrimental contribution of the fundamental image component on 

the estimated frequency by using an iterative procedure. The second estimator, called IpDFT-EIF 

algorithm, eliminates that contribution by using a three-point interpolation. Both algorithms reduce the 

spectral leakage due to time-domain truncation by weighting the acquired signal by a Maximum Sidelobe 

Decay (MSD) window. The analysis is performed in the case of ideal, noisy, and noisy and harmonically 

distorted sine-waves.  Theoretical expressions for the estimation Mean Square Errors (MSEs) due to noise 

and harmonics are derived and verified through simulations and experiments. The performed analysis 

allows the selection of the best frequency estimator for given signal-to-noise-ratio, harmonic content, and 

number of acquired cycles.   
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1. Introduction 

Sine-waves are used in many applications such as communications, instrumentation, power systems, 

sonar, and vibration analysis. Either time-domain and frequency-domain approaches have been proposed 

for accurate measurement of their parameters [1]. Since frequency-domain methods exhibit both good 

accuracy and low computational burden, they are often preferred to time-domain methods, especially 

when dealing with real-time applications. One of the most widely adopted frequency-domain approaches 

is the so-called Interpolated Discrete Fourier Transform (IpDFT) procedure. Indeed, it provides accurate 

estimates and it is simple to implement [2-11]. To reduce the detrimental contribution on the estimated 

parameters due to spectral interference from narrow band disturbances like harmonics or spurious tones, 

the IpDFT procedure weights the analyzed signal by a suitable window function. Cosine class windows 

are often employed since they are simple to generate and their spectrum can be expressed in closed form. 

In particular, Maximum Sidelobe Decay (MSD) windows [6, 12] are often adopted since the related 

IpDFT sine-wave parameter estimates are expressed by simple analytical relationships [2, 5, 6]. Moreover, 

they exhibit the highest sidelobe decay rate among all the cosine windows with a given number of terms, 

thus ensuring very good spectral leakage suppression capabilities [12]. Using the IpDFT procedure, at first 

the sine-wave frequency is estimated by interpolating the two discrete spectrum samples with the largest 

magnitude [4]. Then, the sine-wave amplitude and phase are determined exploiting the estimated 

frequency value. As a result, frequency estimation accuracy affects any estimated parameters. One of the 

main drawbacks of the IpDFT procedure is that a minimum number of sine-wave cycles (usually at least 3 

or 4 cycles, depending on the adopted window) needs to be analyzed. Indeed, if very few sine-wave cycles 

are observed, as occurs for instance when monitoring power grids [8], frequency estimates are heavily 

affected by the interference from both the fundamental image component and harmonics. An enhanced 

two-point IpDFT algorithm that exhibits a high rejection to the spectral interference from the image 
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component has been proposed in [8]. This algorithm, called e-IpDFT frequency estimator in the following, 

is similar to the one proposed in [9], but the contribution of the fundamental image component on the 

spectrum samples is removed by using an iterative procedure. It is worth noticing that the accuracy of the 

e-IpDFT frequency estimator can be improved by using a more accurate phase spectrum model than the 

one adopted in the literature. Therefore, a modified e-IpDFT algorithm based on such a model will be 

considered in the following. 

Another approach to achieve the same goal exploits multipoint frequency-domain interpolation [13-

19]. In particular, a three-point IpDFT algorithm which totally Eliminates the contribution of the spectral 

Image of the Fundamental component (called in the following IpDFT-EIF frequency estimator) has been 

proposed in [15] and then recently extended to sine-waves affected by dc-offset [19]. That algorithm 

provides accurate sine-wave amplitude and phase estimates [17], and outperforms the multi-point IpDFT 

algorithms based on finite differences of the interpolation points [14, 15].  

Due to their capability of suppressing the detrimental contribution of the fundamental image 

component, the e-IpDFT and IpDFT-EIF procedures are expected to provide accurate frequency estimates 

when only very few signal cycles are observed. However, in practice the acquired signal is usually 

affected by harmonics and wideband noise. Unfortunately, to the best of the authors’ knowledge, the 

contribution of such disturbances to the e-IpDFT and IpDFT-EIF frequency estimator accuracies has not 

been yet analyzed in the scientific literature. To this aim analytical expressions for the Mean Square Errors 

(MSEs) of the returned frequency estimators are derived in this paper and then verified through both 

simulation and experimental results.  

The performed analysis allows the determination of the minimum number of sine-wave cycles 

required to ensure a specified IpDFT frequency estimation accuracy. It also enables a rational choice of 

the best IpDFT frequency estimator for a given application.  

The remaining of the paper is organized as follows. In Section 2 the expressions for the MSEs of the 

e-IpDFT and IpDFT-EIF estimators due to both wideband noise and harmonics are derived. The 

sensitivity to harmonics and noise of the e-IpDFT and IpDFT-EIF frequency estimator MSEs are analyzed 
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in Section 3. The e-IpDFT and IpDFT-EIF estimator accuracies are also compared through both computer 

simulations and experimental results in Section 4. Finally, Section 5 presents some conclusions.      

 

2.  MSEs of the e-IpDFT and the IpDFT-EIF frequency estimators  

2.1. Theoretical Background  

Let us consider the following noisy signal: 
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where x(⋅) is the harmonically distorted sine-wave, composed by the fundamental component (associated 

to k = 1) and K–1 harmonics, e(⋅) is an additive white Gaussian noise with zero mean and variance 2σ , 

and M is the number of acquired samples. In (1) Ak, kfin/fs, and φk are the amplitude, the normalized 

frequency, and the initial phase of the kth harmonic, where fin is the frequency of the continuous-time 

signal and  fs is the sampling rate. The normalized signal frequency can be expressed as: 
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whereν = l + δ is the number of acquired cycles, in which l is the rounded value of ν  and δ ∈ [-0.5, 0.5) is 

the inter-bin frequency location. It is worth noticing that non-coherent sampling (i.e. δ ≠ 0) often occurs in 

practice. In (1) K is assumed smaller than 0.5M/ν in order to avoid aliasing.  

 Observe also that (1) assumes that possible DC offset component has been removed. 

To reduce spectral leakage, the samples (1) are weighted by a suitable window w(⋅) [20]. The 

Discrete Time Fourier Transform (DTFT) of the windowed signal yw(m) = y(m)⋅w(m), m = 0, 1,…, M – 1 

can be expressed as: 
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where Xw(⋅) is the DFT of the weighted harmonically distorted sine-wave xw(m) = x(m)⋅w(m), Ew(⋅) is the 
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DFT of the weighted wideband noise ew(m) = e(m)⋅w(m), and W(⋅) is the DTFT of the window w(⋅). In (3) r 

is an integer, which can take the values -1, 0, or 1 when using the e-IpDFT or the IpDFT-EIF algorithms.  

Moreover, the second term in the square brackets in (3) is related to the image of the kth spectral line.  

The IpDFT-EIF and the e-IpDFT algorithms have been proposed for the H-term MSD window, which 

is expressed by [12]: 
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in which [6]: 221
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].!!)/[(! qqppC p
m −=  The two-term MSD window is also  known as the Hann window [12]. 

When M >> 1 and |λ| << M, the DTFT of the H-term MSD window can be approximated by [6]: 
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 In the following, the number of acquired signal cycles estimated by the e-IpDFT and the IpDFT-EIF 

algorithms will be denoted as pp l 22
ˆˆ δν +=  and ,ˆˆ 33 pp l δν +=  respectively. 

  

2.2. MSE of the e-IpDFT  frequency estimator  

The e-IpDFT algorithm estimates the sine-wave frequency using a two-step procedure. In the first 

step, called coarse-search, the spectrum peak location is determined by means of a maximum search 

procedure applied to the periodogram of the weighted signal yw(⋅). When the frequency Signal-to-Noise 

Ratio is higher than about 17 dB the probability of correct bin selection is very high [5]. The second step, 

called fine-search, returns the inter-bin frequency location p2δ̂ . It interpolates two weighted DFT samples 

using the iterative procedure proposed in [8] and described in Table 1 using a pseudo-code. 
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Table 1. Iterative procedure implementing the e-IpDFT frequency estimator. 

Step 1: i: = 0   

Step 2: estimate the inter-bin frequency location )0(
2

ˆ
pδ  by the IpDFT algorithm [2, 5, 6]  

Step 3: estimate the sine-wave amplitude and phase by the IpDFT algorithm [6] 

           
)ˆ(

2ˆ
)0(

2

)0()0(
1

p

w

W

Y
A

δ
=  and  { },)ˆ()ˆ(

2
ˆ1}{ˆ )0(

20
)0(

2
)0(

2)0(
)0(

1 pppw Wanglesign
M

MYangle δδπδπφ −−−
−

−=  

Step 4: i := i + 1 

Step 5:compute the ratio: 

                 ,

)ˆ12(
2

ˆ

)ˆ2(
2

ˆ

)1(
1

)1(
1

ˆ)1(
2

)1(
1

)1(

ˆ)1(
2

)1(
1

)(
)1(

−

−

−−
−

−

−−
−

−

++−+

+++

=
i

i

ji
p

i

sw

ji
p

i

sw
i

eslW
j

A
Y

eslW
j

A
Y

φ

φ

δ

δ

β   

                              where s = 0 if |Yw(-1)|> |Yw(1)| and s = 1 if |Yw(1)|> |Yw(-1)|  

Step 6: determine the inter-bin frequency estimate [6]: 
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Step 7: determine the sine-wave amplitude and phase estimates: 
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Step 8: repeat Steps 4-7 a predefined number I of iterations. 

  

In steps 3 and 7, the function sign(z) represents the sign of its argument z (i.e. it is equal to -1 when z 

< 0 and 1 when z ≥ 0),  and 
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It is worth noticing that the above phase estimator is more accurate than that used in the classical IpDFT 

algorithm, in which the approximation 1)1/( ≅−MM is used and the term { })ˆ(0 δ−Wangle  is neglected [5].   

The e-IpDFT frequency estimation error can be expressed as: 

,ˆ
,2,22 2 nphpp p ννν νν ∆+∆=−=∆        (7) 

where 
hp,2ν∆ and 

np,2ν∆  represent the frequency estimation errors due to harmonics and wideband noise, 

respectively. Both error components 
hp,2ν∆ and 

np,2ν∆ can be modeled as statistically independent random 

variables [7, 15] since they are due to different physical phenomena. Thus, the MSE of the estimator p2ν̂ is 

given by: 
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where E[⋅] represents the expectation operator.  

Assuming that the contribution of the spectral image component on the e-IpDFT frequency estimator is 

negligible, following the same procedure adopted in [7] we obtain: 
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in which δα klkk +−=
∆

)1( , 1φφφ −=∆
∆

kk  , s = 0 if |Yw(-1)| > |Yw(1)| while s = 1 if |Yw(1)| > |Yw(-1)|, and W(λ) 

is given by (5).   

Since in practice sampling is incoherent, the initial phases of the fundamental component and harmonics 

vary randomly in subsequent observation intervals. Thus, they can be modeled as independent uniformly 

distributed random variables. This implies that the factors ))1(cos( δπφ −+∆=
∆

kc kk , k = 2, 3,…, K 

exhibit a U-shaped  probability density function (pdf) with zero mean [21], i.e.  
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Moreover, since the phases are independent it follows that: 
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whose envelope, which is a decreasing function of ν,  represents the maximum contribution of the kth 

harmonic to the estimated frequency.  

Conversely, ][ 2
,2 np

E
ν

∆  is expressed by [6, 7]: 
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where )2/( 22
1 σASNR

∆
=  is the Signal-to-Noise Ratio, while the window Scalloping Loss SL and 

Equivalent Noise BandWidth ENBW  [6, 20] are given by (A.21) and (A.22) reported in the Appendix, 

respectively.  

From (15) it follows that the accuracy of the estimator p2ν̂ increases as ν, M, and SNR increases and H 

decreases. 

 By replacing (13) and (15) into (8) we finally achieve: 
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Expression (16) shows that the sensitivity of the frequency estimator MSE to the normalized power of the 

kth harmonic, i.e. to 2
1

2 / AAk  is 
1|

2
2

2
,2 )(5.0)( AAphp k

kkc == ρν .  Conversely, the estimator MSE sensitivity 

to the SNR related to the wideband noise component is SNRc
pnp /2

ˆ,2 2νσ−= . The values and the behaviors 

of such sensitivities will be analyzed in Section 3. 

 

2.3. MSE of the IpDFT-EIF frequency estimator  

The IpDFT-EIF algorithm estimates the number of acquired signal cycles ν by [16]: 
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Similarly to the e-IpDFT estimator, the frequency estimation error can be expressed as: 

,ˆ
,3,33 3 nphpp p ννν νν ∆+∆=−=∆        (20) 

where 
hp,3ν∆ and 

np,3ν∆  are the frequency estimation errors due to harmonics and wideband noise, 

respectively. Thus we can write: 
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In (21), using a similar derivation as in Sec. 2.2, we have (see (A.9) in the Appendix): 



 10 

,)(5.0][
2

2
3

22
,3 ∑

=

≅∆
K

k
p kE

hp
ρνν        

(22) 

in which: 

,
)(
)(

2
1)( 22

22

1

2

3 δ
α

α
δρ

−

−

−

−−
=

W
W

H
H

A
Akk k

k

k
p        

(23) 

whose envelope, which is a decreasing function of ν,  represents the maximum contribution of the kth 

harmonic to the estimated frequency.  

Moreover (see (A.20) in the Appendix): 
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In (24) γ1 and γ2 represent the correlation coefficients between two DFT spectral samples located one bin or 

two bins apart, respectively [6, 22-24]. They are given by (A.16) and (A.18) reported in the Appendix.   

Also, (24) shows that the accuracy of the estimator p3ν̂ increases as ν, M, and SNR increases, as already 

observed in [18].  It also increases as H decreases.    

By replacing (22) and (24) into (21) we finally achieve: 
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It is worth noticing that, when l >> H, substituting γ1 and γ2 with (A.16) and (A.18), respectively, (24) 

returns the variance of the frequency estimator provided by the three-point IpDFT algorithm, which is 

[15]: 
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Expression (26) shows that, when the contribution of the fundamental image component is negligible (i.e. 

when l >> H ), the IpDFT-EIF estimator has almost the same accuracy as the three-point IpDFT frequency 

estimator. Conversely, when that contribution is relevant, the IpDFT-EIF frequency estimator outperforms 

the classical three-point IpDFT frequency estimator.  

Moreover, from (25) it follows that the sensitivity of the frequency estimator MSE to the normalized 

power of the kth harmonic 2
1

2 / AAk  is 
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,3 )(5.0)( AAphp k

kkc == ρν . Conversely, the estimator MSE 

sensitivity to the SNR due to wideband noise component is SNRc
pnp /2

ˆ,3 3νσ−= . The behaviors of such 

sensitivities will be analyzed in Section 3. 

 

3. Sensitivity to harmonics and noise of the IpDFT frequency estimator MSEs 

 According to (14) and (23), the ratio c2p,h(k)/c3p,h(k) between the sensitivities of the e-IpDFT and the 

IpDFT-EIF frequency estimator MSEs to the normalized power of the kth harmonic is expressed by: 
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Fig. 1 shows the above ratio for k = 2, 3, and 4 as a function of the number of acquired signal cycles 

ν when the two-term (Fig. 1(a)) and the three-term (Fig. 1(b)) MSD windows are used. The number of 

acquired signal cycles ν  takes values in the range [1.51, 6) cycles with a step of 1/20. It is worth noticing 

that at least 1.5 cycles are considered because leakage suppression capabilities of the IpDFT-EIF 

algorithm prevails for lower values of ν, as it will be shown in the next section. Observe also that a ratio 
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smaller than one means that the e-IpDFT frequency estimator is less sensitive to the considered harmonic 

than the IpDFT-EIF estimator.   

 

  

(a) (b) 

Fig. 1. The ratio (27) between the MSE sensitivities of the e-IpDFT and the IpDFT-EIF frequency 

estimators when the sine-wave is affected only by the kth harmonic, k = 2, 3, and 4, versus ν . Two-term 

(a) and three-term (b) MSD windows. 

 

Fig. 1 shows that both frequency estimators provide accuracies close to each other when the 

fractional frequency δ is positive (i.e. in the intervals l < ν < l + 0.5, with l integer), although the IpDFT-

EIF estimator outperforms the e-IpDFT estimator. Conversely, when δ is negative, the IpDFT-EIF 

frequency estimator is highly sensitive to harmonics, especially to the 2nd and the 3rd order ones. 

Moreover, the ratio c2p,h(k)/c3p,h(k) decreases as H increases.  

Fig. 2 shows the squares of the maximum contributions to the estimated frequency due to the kth 

harmonic )(2
2 kpρ and )(2

3 kpρ , k = 2 and 3, when assuming Ak  = A1, as a function of the number of 

observed cycles ν. The two-term (Fig. 2(a)) and the three-term (Fig. 2(b)) MSD windows are used.  

 



 13 

  

(a) (b) 

Fig. 2. Square of the maximum contributions of the kth harmonic )(2
2 kpρ and )(2

3 kpρ on the frequency 

estimates returned by the e-IpDFT and the IpDFT-EIF algorithms versus ν when Ak = A1, k = 2, 3. Two-

term (a) and three-term (b) MSD windows. 

 

As it can be seen, when the sine-wave is affected by a 2nd harmonic the e-IpDFT estimator 

outperforms the IpDFT-EIF estimator when ν  < H + 1 cycles, except when 2 < ν  < 2.5 cycles for H = 2, 

and when 2 < ν  < 2.5 cycles or 3 < ν  < 3.5 cycles for H = 3, where the considered estimator accuracies 

are close to each other. For the remaining values of ν, the e-IpDFT estimator provides better accuracy in 

the intervals l + 0.5 < ν < l + 1, l integer (i.e. -0.5 < δ < 0), while the IpDFT-EIF estimator is more 

accurate when l < ν < l + 0.5 (i.e. 0 < δ < 0.5). Conversely, when considering the contribution of a 3rd 

harmonic the IpDFT-EIF and the e-IpDFT estimators have almost the same accuracy for both H = 2 and H 

= 3, except when ν < H were the e-IpDFT estimator performs better. Moreover, estimators errors of both 

algorithms are significant when very few cycles are observed, especially when the signal is affected by a 

2nd harmonic, even though errors quickly decrease as ν increases. 

When the contribution of wideband noise to the estimation error dominates the effect of harmonics, 

(15) and (24) provide the following expression for the ratio between the sensitivities to noise c2p,n and c3p,n 

of the e-IpDFT and the IpDFT-EIF frequency estimator MSEs, respectively: 



 14 

{
} .)]()2([)]2()][2([4

4)2(2)]2([2)]2([

|)|(
12|)|)(34(2

12
8

][

][

1
2

2222
1

22

2232222

2

2222

2
ˆ

2
ˆ

2

2

,3

,2

3

2

,3

,2

−
−+−+++−+−+

+−++−+++×

+

−+−−
−

≅≅
∆

∆
=

γδδγδδδδ

δδδδ

δ
δδν

σ

σ

ν

ν

ν

ν

HlHlHHlH

HlHHlHlH

H
HH

H
H

E

E

c
c

p

p

np

np

np

np

       

 

(28) 

Usually that situation occurs when the number of observed cycles ν is much greater than the window 

order H. In that case ][ 2
,3 np

E ν∆  is given by (26), and (28) becomes: 
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(29) 

Fig. 3 shows the ratio (28) as a function of the number of observed cycles ν  in the range [3, 9) (Fig. 

3(a)) and [31, 37) (Fig. 3(b)), for both H = 2 and 3. In addition, in Fig. 3(b) the ratio (29) is also reported. 

 

  

(a) (b) 

Fig. 3. Ratio (28) between the MSE sensitivities of the e-IpDFT and the IpDFT-EIF due to wideband noise 

versus ν  in the range [3, 9) cycles (a) and [31, 37) cycles (b). Both two-term (H = 2) (a) and three-term (H 

= 3) (b) MSD windows are considered. In figure (b) the values returned by (29) are also reported. 

 

As expected, Fig. 3 shows that the IpDFT-EIF algorithm has a higher sensitivity to wideband noise 

than the e-IpDFT frequency estimator (i.e. the ratio (28) is smaller than one), except when sampling is 
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quasi-coherent (i.e. the fractional bin deviation δ is close to 0). Indeed, the sensitivity of IpDFT frequency 

estimators to wideband noise increases as the number of interpolation points increases [15]. Fig. 3 also 

shows that the MSE sensitivity ratio slightly decreases as H increases. Moreover, for small values of ν  

(Fig. 3(a)), the maximum values of the sensitivity ratio slightly increases as ν increases, while it remains 

almost constant for ν > 8. In addition, for the values of ν considered in Fig. 3(b), (28) and (29) return 

almost the same results, i.e. the sensitivity ratio is almost independent of l. 

 

4. Computer simulations and experimental results 

In this section the accuracies of the e-IpDFT and the IpDTFT-EIF frequency estimators are compared 

to each other through both computer simulations and experimental results. Only two iterations are 

considered (i.e. I = 2 in Table 1) in the e-IpDFT algorithm since they suffice to almost reach the 

asymptotic accuracy. The Hann window has been employed in all estimators.  

4.1. Simulation results  

Simulation runs with M = 512 samples were considered. The sine-wave amplitude was A1 = 1, while 

the number of acquired signal cycles ν was varied in the range (0.5, 6) cycles. For each varying parameter, 

1000 runs were generated by choosing at random the phases of each signal component. In the following 

the accuracies ensured by the considered frequency estimators are compared in the case of pure, noisy, 

and noisy and harmonically distorted sine-waves. 

 

•  Pure sine-waves 

Fig. 4 shows the MSE of the e-IpDFT and the IpDFT-EIF frequency estimators as a function of the 

number of acquired signal cycles ν in the range [0.51, 6) cycles with a step of 0.05 cycles. The input 

signal is an ideal sine-wave.  
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Fig. 4. MSE of the frequency estimates returned by the e-IpDFT and the IpDFT-EIF algorithms based on 

the Hann window versus ν. Ideal sine-waves.  

 

As it can be seen, the best accuracy is ensured by the IpDFT-EIF frequency estimator. When 0.5 < ν 

< 1.5 cycles the e-IpDFT frequency estimator exhibits poor accuracy. Conversely, the IpDFT-EIF 

algorithm provides very accurate estimates also when observing less than one cycle. Indeed, when such a 

low number of cycles is observed, sine-wave amplitude and phase estimates involved in the e-IpDFT 

algorithm are quite inaccurate due to strong interference from the fundamental image component. The e-

IpDFT and the IpDFT-EIF estimators provide a comparable accuracy when at least about 5 cycles are 

observed. Observe also that the MSE of the IpDFT-EIF estimator essentially depends only on the 

fractional part of the number of observed cycles δ. This occurs because the IpDFT-EIF algorithm 

completely removes the effect of the fundamental image component and the residual error is due only to 

the approximated relationship (5). Conversely, the MSE of the e-IpDFT frequency estimator decreases as 

ν increases since the related image component rejection capability depends on the accuracies of the other 

estimated sine-wave parameters, which increases as the number of observed signal cycles increases.  
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• Noisy sine-waves 

Fig. 5 shows the MSEs of the considered frequency estimators returned by both theory (eqs. (15) and 

(24)) and simulations. It is worth noticing that, under the considered testing conditions, (15) and (24) 

returns the expressions (-c2p,n⋅SNR) and (-c3p,n⋅SNR), that is they are proportional to the sensitivity to noise  

of the e-IpDFT and the IpDFT-EIF frequency estimator MSEs, respectively. They are reported as a 

function of the number of acquired cycles ν  when SNR = 30 dB (Fig. 5(a)) and SNR = 60 dB (Fig. 5(b)). 

The related single tone CRLB for unbiased estimators, equal to )/(3)( 22 SNRMCR ⋅≅ πσν  [5], is also 

reported for comparison. The simulation conditions are the same as in Fig. 4, except that the signal is 

corrupted by wideband noise.  

 

  

(a) (b) 

Fig. 5. MSE of the frequency estimates returned by the e-IpDFTand the IpDFT-EIF algorithms based on 

the Hann window and the theoretical CRLB versus ν. Noisy sine-waves with SNR = 30 dB (a) and SNR = 

60 dB (b). Values returned by (15) and (24), and simulation results are reported.  

 

When 0.5 < ν < 1.5 cycles, the IpDFT-EIF estimator returns good results while the e-IpDFT 

estimator exhibits very poor accuracy. That behavior is not explained by theoretical results. Indeed, as Fig. 

4 shows, when considering very short intervals, the results returned by the e-IpDFT algorithm are strongly 

affected by the residual contribution of the image component. Conversely, when ν > 1.5 cycles and SNR = 
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30 dB or ν > 2 cycles and SNR = 60 dB, both estimators exhibit a very good agreement between 

theoretical and simulation results. That behavior occurs because the contribution due to wideband noise 

largely prevails over the effect of the fundamental image component. In these situations, as expected from 

theory, the e-IpDFT algorithm outperforms the IpDFT-EIF algorithm, except in quasi-coherent sampling 

conditions. Also, it can be seen that when ν > 1.5 cycles the maxima of ]ˆ[ 2 pMSE ν  are reached for δ = 0, 

while those of ]ˆ[ 3 pMSE ν  for δ = -0.5. Moreover, it can observed that the MSEs of all the considered 

frequency estimators are greater than the CRLB due to windowing [6, 15].   

Fig. 6 shows the MSEs of the considered frequency estimators returned by theory (eqs. (15) and (24)) 

and simulations as a function of SNR when ν = 1.6 cycles (Fig. 6(a)) and ν = 2.3 cycles (Fig. 6(b)). The 

related CRLBs for unbiased estimators are also reported for comparison. The SNR was varied in the range 

[0, 100] dB with a step of 5 dB. 

 

  

(a) (b) 

Fig. 6. MSE of the frequency estimates returned by the e-IpDFT and the IpDFT-EIF algorithms based on 

the Hann window and the theoretical CRLB versus SNR. Noisy sine-waves with ν = 1.6 cycles (a) and ν = 

2.3 cycles (b). Values returned by (15) and (24), and simulation results are reported.   

 

As it can be observed the IpDFT-EIF frequency estimator does not suffer from the interference due 

to the fundamental image component for all the considered values of ν and SNR. When ν = 1.6 cycles the 
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e-IpDFT frequency estimator outperforms the IpDFT-EIF algorithm when SNR < 55 dB, while for SNR ≥ 

65 dB it is heavily affected by the residual effect of the fundamental image component. Conversely, when 

ν = 2.3 cycles the above detrimental effect is negligible in the whole range of considered SNR values. 

Moreover, the MSEs of both frequency estimators are close to each other.  

 

• Noisy and harmonically distorted sine-waves 

Fig. 7 shows the MSEs of the considered frequency estimators returned by both theory (eqs. (16) and 

(25)) and simulations versus the number of acquired cycles ν when considering a noisy and harmonically 

distorted sine-wave. The SNR equal to 60 dB, while the Total Harmonic Distortion (THD), equal to 5%, is 

due to the 2nd, 3rd, and 4th harmonics with amplitudes in the ratios 4:2:1 (Fig. 7(a)) or 2:4:1 (Fig. 7(b)), 

respectively. The simulation conditions are the same as in Fig. 4, except that the signal is corrupted by 

both wideband noise and harmonics. The related single tone CRLB for unbiased estimators is also shown 

in Fig. 7.  

 

  

(a) (b) 

Fig. 7. MSE of the frequency estimates returned by the e-IpDFT and the IpDFT-EIF algorithms based on 

the Hann window and the theoretical CRLB versus ν. Noisy and harmonically distorted sine-waves with 

SNR = 60 dB and THD = 5% due to 2nd, 3rd, and 4th harmonics, with amplitudes in the ratios 4:2:1 (a) 

and 2:4:1 (b). Values returned by (16) and (25), and simulation results are reported.  
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In the considered examples the contribution of harmonics generally prevails over those due to the 

fundamental image component and wideband noise since their effect on the estimated frequency is not 

effectively rejected by the algorithms. As expected, Fig. 7 shows that the IpDFT-EIF algorithm 

outperforms the e-IpDFT algorithm when 0.5 < ν < 1.5 cycles. Also, the IpDFT-EIF algorithm MSEs 

returned by theory and simulations are very close to each other for all considered values of ν, while theory 

explains the e-IpDFT algorithm MSEs only when ν > 1.5 cycles. When the 2nd harmonic prevails (Fig. 

7(a)), the same behavior as in Fig. 2(a) is achieved. Thus, the e-IpDFT frequency estimator outperforms 

the IpDFT-EIF one for ν  < 3 cycles, except when 2 < ν  < 2.5 cycles, where both estimators exhibit 

almost the same accuracy. When 3 < ν  < 6 cycles the e-IpDFT estimator provides better accuracy in the 

intervals l + 0.5 < ν < l + 1, l integer, while the IpDFT-EIF estimator is more accurate when l < ν < l + 

0.5. It is worth noticing that due to the smaller contribution of the 3rd and 4th harmonics behaviors very 

similar to those reported in Fig. 7(a) are obtained when the signal THD is due only a 2nd harmonic of 

amplitude 0.05. The MSE behavior reported in Fig. 7(b) is the same as in Fig. 7(a), even though the third 

harmonic overcomes the second one. Indeed, the 2nd harmonic contribution dominates due to its closeness 

to the fundamental component.  

 Many other simulations have been performed for different THD values. MSE behaviors very similar 

to those reported in Fig. 7 have been observed as long as the harmonic contribution overcomes the effect 

of wideband noise. Conversely, when wideband noise prevails, behaviors like those reported in Fig. 5 

have been obtained. 

 

4.2. Experimental results 

 Sine-waves were generated by an Agilent 33220A signal generator, which was used as arbitrary 

waveform generator through the Waveform Editor software. The generated waveforms were acquired by 

means of an NI6023E acquisition board with sampling rate fs = 100 kHz and Full Scale Range FSR = 10 

V. The sine-wave amplitude was set to 2 V and the frequencies were varied in the range [300, 580] Hz 
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with a step of 20 Hz. Since records of M = 512 samples were acquired, the number of analyzed sine-wave 

cycles varied in the range (1.5, 3.0) cycles. For each frequency value 1000 subsequent runs were analyzed 

with initial phases varying at random. Three kinds of test signals were considered. The first test signal was 

a sine-wave with a SIgnal-to-Noise And Distortion ratio SINAD of about 52 dB. Noisy and harmonically 

distorted sine-waves were then obtained by adding to that sine-wave a 2nd, 3rd, and 4th harmonics with 

amplitudes in the ratios of about 4:2:1 or 2:4:1 and chosen in such a way that the signal THD was about  

5%. In the case of noisy sine-waves, frequency, and SINAD parameters were estimated by means of the 

four-parameter sine-fit (4PSF) algorithm [26]. When considering noisy and harmonically distorted sine-

waves the multi-harmonic sine-fit (MHSF) algorithm was used to estimate frequency, fundamental 

component and harmonic phases, SINAD, and THD parameters [27]. Six iterations were performed in both 

sine-fit algorithms. They were adopted since they provide the maximum likelihood estimators (MLEs) 

when the input signal is corrupted by additive white Gaussian noise, so ensuring estimator variances very 

close to the CRLB [28].   

 Fig. 8 shows the standard deviations of the frequency estimates returned by the e-IpDFT and the 

IpDFT-EIF algorithms and the square root of the estimated CRLB as a function of the number of analyzed 

cycles ν in the case of noisy sine-waves. The value of ν was determined as the sample mean of 1000 

frequency estimates returned by the 4PSF algorithm. The square root of the CRLB was evaluated by 

considering the standard deviations of these estimates.  

Fig. 8 shows that the e-IpDFT frequency estimator outperforms the IpDFT-EIF algorithm when ν is 

close to 1.5 cycles and 2 < ν < 2.7 cycles. For the remaining values of ν, the IpDFT-EIF frequency 

estimator outperforms the e-IpDFT frequency estimator. That behavior almost agrees with simulation 

results reported in Fig. 5. Also, the variances of both analyzed frequency estimators are greater than the 

related CRLB, mainly due to windowing. 
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Fig. 8. Standard deviation of the frequency estimates returned by the e-IpDFT and the IpDFT-EIF algorithms 

based on the Hann window and the estimated square root of the CRLB versus ν. Real noisy sine-waves 

with SINAD ≅ 52 dB. Sine-wave frequency in the range [300, 580] Hz.  

 

Fig. 9 shows the standard deviations of the frequency estimates returned by the considered 

algorithms and the estimated square root of the CRLB as a function of ν in the case of noisy and 

harmonically distorted sine-waves. The value of ν was determined as the sample mean of 1000 estimates 

returned by the MHSF algorithm and the square root of the CRLB was evaluated by considering the 

standard deviations of these estimates. 

Fig. 9 shows that the e-IpDFT frequency estimator outperforms the IpDFT-EIF algorithm in most 

considered situations, except when 2 < ν < 2.5 cycles, where the latter estimator performs slightly better. 

Also, the standard deviations reported in Fig. 9(b) are smaller than those in Fig. 9(a) due to the smaller 

amplitude of the 2nd harmonic of the test signal. Moreover, as expected, the variances of both the e-

IpDFT and the IpDFT-EIF frequency estimators are higher than the related CRLB even in this case.  

Observe also that the above results are very similar to those returned by simulations and reported in Fig. 7. 
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(a) (b) 

Fig. 9. Standard deviation of the frequency estimates returned by the e-IpDFT and the IpDFT-EIF algorithms 

based on the Hann window and the estimated square root of the CRLB versus ν. Real noisy and 

harmonically distorted sine-waves with SINAD ≅ 52 dB and THD ≅ 5%; 2nd, 3rd, and 4th harmonics, with 

amplitudes in the ratios of about 4:2:1 (a) and 2:4:1 (b). Sine-wave frequency in the range [300, 580] Hz.  

 

4.3. Processing times 

 The processing times required by the considered frequency estimators when implemented in Matlab 

7.1 environment were compared to each other. The DFT was implemented using the defining formula 

(direct implementation) and the location of the DFT spectrum peak was assumed a priori known. The 

programs were running on a portable computer provided with a 2.6 GHz processor, 4 GB RAM memory, 

equipped with a Microsoft Windows 8.1 operating system. The average processing times required to 

obtain 10,000 frequency estimates were 0.27 ms or 0.25 ms when using the e-IpDFT algorithm 

implemented with two iterations or the IpDFT-EIF algorithm, respectively. Thus, the analyzed frequency 

estimators require comparable processing efforts.   

 

5. Conclusions 

This paper analyzes the accuracies of the e-IpDFT [8] and the IpDFT-EIF [16] frequency estimators 

through theoretical, simulation, and experimental results in the case when few signal cycles of ideal, 
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noisy, and noisy and harmonically distorted sine-waves are acquired. Novel analytical expressions for the 

contribution of both harmonics and wideband noise to the estimator MSEs have been derived. It has been 

shown that when 0.5 < ν < 1.5 signal cycles are observed, the IpDFT-EIF estimator provides a much 

better accuracy than the e-IpDFT estimator. For ν > 1.5 cycles, when the effect of harmonics prevails over 

the fundamental image component and wideband noise, the e-IpDFT estimator outperforms the IpDFT-

EIF one almost everywhere in the range 1.5 < ν < 3 cycles when the fractional part of the observed signal 

cycles is negative, while the IpDFT-EIF provides slightly better accuracy in the remaining situations. 

Thus, even though the IpDFT-EIF algorithm eliminates the contribution of the fundamental image 

component it does not consistently outperform the e-IpDFT algorithm, mainly because the higher number 

of points used in the frequency-domain interpolation. When the contribution of wideband noise overcomes 

the effects of the fundamental image component and harmonics, the e-IpDFT frequency estimator 

outperforms the IpDFT-EIF algorithm, except in quasi-coherent sampling conditions, where the IpDFT-

EIF estimator provides better accuracy. It has also been shown that the processing times of both the e-

IpDFT algorithm implemented with two iterations and the IpDFT-EIF frequency estimator are very close 

to each other. The obtained theoretical results have been confirmed through simulation and experimental 

results. 

The MSE expressions derived in this work allow the selection of the best sine-wave frequency 

estimator among the e-IpDFT and the IpDFT-EIF algorithms when signal-to-noise-ratio, harmonic content 

and number of acquired signal cycles are given or can be estimated.   

 

Appendix 

Derivation of the expression for ]ˆ[ 3 pMSE ν  

From (5) the following equalities can be established: 
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where .,,2,1,)1( Kkklkk =+−=
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δα  

 The contribution due to the harmonic images is negligible as compared to the other terms due to their 

greater frequency distance from the DFT samples considered by the algorithms. Thus, from (3) and the 

equalities (A.1) after some algebra we achieve: 
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where in the last expression only the most significant terms are considered. 

By replacing (A.4) in (19) we achieve: 

.
)()12(

)2)(()2(2)2)((
Re

)(
)(

)1(Re1ˆ

2/1

2
221

)1()0(
22

)1(

2
22

22

1

2
3

1 


























−
−

−
++−++−++−−+

+




















−
−

−

−
−−≅

−

=

∆∑

φ

φ

νδ
δ

δδδδδδ

δ
α

α
δνν

j

www

K

k

jk

k

k
p

eW
H

HHjA

ElHHElHHElHH

e
W

W
H

H
A
A

k k

 

 

(A.5) 

Remembering that ,2/11 xx +≅+ when |x| << 1, we obtain: 
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The first and second term in (A.6) are the frequency estimation errors due to harmonics and wideband 

noise, respectively, i.e.: 
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Since )])1(cos())1([cos( δπφδπφ −+∆−+∆ lkE lk  is equal to 0.5 when k = l and null otherwise, by 

applying the expectation operator to 2
,3 hpν∆  from (A.7) it follows that: 
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The performed simulations showed that the estimation bias is negligible as compared to the standard 

deviation as soon as the frequency-domain SNR is high enough (e.g. time-domain SNR > 0 dB and M ≥ 

256). Thus, by applying the law of uncertainty propagation [25] to (A.8) we achieve: 
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In (A.11):  
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in which 2
wXσ is the variance of the DFT samples, given by [23, 24]: 
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where NNPG is the window Normalized Noise Power Gain [20], given by [6]: 

        ,
2

5.0 44

22
44

1

1

22
0 −

−
−

−

=

∆
=+= ∑ H

H
H

H

h
h

C
aaNNPG  (A.14) 

Moreover: 

        ,}]Re{},[Re{}]Re{},[Re{ 1)1()0()0()1( γ==− wwww EEcorrEEcorr  (A.15) 

is the correlation coefficient between two DFT spectral samples located one bin apart, given by [6]:  
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while 

        ,}]Re{},[Re{ 2)1()1( γ=− ww EEcorr  (A.17) 

is the correlation coefficient between two DFT spectral samples located two bins apart, given by [22]:  
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It is worth noticing that the correlation coefficient (A.16) is negative since the real-part of Ew(-1), Ew(0), and 

Ew(1) has alternating signs at adjacent frequency bins.   

Using (A.12) – (A.18), after some algebra we obtain:  
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which can be expressed as: 
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where: 
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is the window Scalloping Loss (SL) [6, 20], 
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is the Equivalent Noise BandWidth (ENBW) [6, 20],  
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is the window Normalized Power Signal Gain [6, 20] and the Signal-to-Noise Ratio (SNR) is defined as 
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