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Abstract

Metamaterials represent a new trend in the field of seismic engineering. Their

capacity to attenuate waves at the superstructure level is highly desirable and

sought after in recent years. One of their main drawbacks to date, is the exces-

sive size of the necessary resonators and, consequently, the uneconomic design

they require. In order to tackle this problem, we apply the concept of negative

sti↵ness to a metamaterial-based foundation system and analyse the potential

improvements such a mechanism may have on the metamaterial as well as the

coupled structural behaviour. Since negative sti↵ness is a property that cannot

be achieved through conventional measures, a novel mechanism, designed for the

implementation in periodic metamaterial-based structures, is proposed herein.

The inevitable nonlinearity of the mechanism will be discussed and taken into

account, while the advantages of the negative sti↵ness element (NSE) will be

treated analytically and verified numerically. Additionally, through an opti-

mization in the frequency domain and nonlinear time history analyses (THAs),

the performance of the system coupled with a fuel storage tank is elaborated.

With only 50% of the theoretically allowable NSE value, the foundation system

could be reduced to 1/3 of its size. Furthermore, the nonlinear e↵ect of the

device has proven to diminish the band gap of the periodic system, which led us

to introduce nonlinearity parameters that can help avoid the strongly nonlinear
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range. In sum, this article tackles three problems that are intertwined: (i) re-

ducing the size of metamaterial-based structures; (ii) the design of a mechanism

that exerts a negative sti↵ness in a periodic structure; and (iii) the study of the

inevitable nonlinearity of NSEs and the subsequent e↵ect on the metamaterial

behaviour.

Keywords: Metafoundation, Negative Sti↵ness, Seismic protection, Fuel

Storage Tanks, Nonlinear Metamaterials

1. Introduction

Metamaterials are entering the field of seismic engineering and other re-

search areas with a variety of interesting structures. The two most prevalent

concepts in the field of seismic protection are phononic crystals [1] and locally

resonant metamaterials [2], where both are able to create the so called bad gap5

phenomenon. Band gaps signify frequency regions where waves cannot prop-

agate through the material and are therefore able to provide new solutions to

existing vibration problems. For the present work we focus on locally resonant

materials, due to their ability to attenuate waves at wave lengths much greater

than their unit cell size, which is a particularly important property for seismic10

metamaterials. To date, locally resonant materials have been used to conceive

foundation systems [3, 4, 5, 6, 7] and wave barriers [8, 9, 10, 11]. While metabar-

riers have the advantage of being placed besides the structure, and can therefore

be installed after the completion of the building, they can only attenuate sur-

face waves. Metamaterial-based foundations on the other hand, can in principle15

attenuate any type of incoming wave, but have to be placed below the structure

of interest, hence limiting their application to new buildings. The present work

is concerned with foundation systems, which show a variety of di↵erent designs

and applications in the current literature. A particularly interesting founda-

tion was proposed by Cheng and Shi [5] who conceived a system tuned to the20

ground motion for the protection of nuclear power plants. Their foundation

showed di↵erent band gaps for the vertical and horizontal direction, thereby ad-
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dressing the vertical component of earthquakes. This is especially relevant for

high consequence structures like nuclear power plants, since classical isolation

systems, like concave sliding bearings, are not able to address the vertical motion25

[12]. Besides this, also Casablanca et al. [7] developed an interesting founda-

tion based on concrete plates separated by Teflon sliding surfaces and verified

its behaviour with laboratory experiments. Their experiments clearly depicted

that these types of structures are feasible with common construction materials

and can exert the band gap phenomenon. However, neither Cheng and Shi nor30

Casablanca et al. took the feedback from the structure into account. La Salan-

dra et al. [4] on the other hand designed a foundation system and conducted a

study on the most influencing factors on the attenuation behaviour. Two impor-

tant findings shall be mentioned, namely, the influence of the sti↵ness and the

non-negligibility of the feedback of the superstructure. Subsequently, Basone35

et al. [13] developed a foundation system based on their results and conceived

an optimization procedure that can take a structure as well as an ensemble of

expected ground motions into account. However, their design shows significant

restrictions in terms of e↵ectiveness due to the constraints given by the governing

building codes (i.e. Eurocode 3 and 8, [14, 15]). Besides this, an experimental40

study on the coupling e↵ects between a tank isolated with a metamaterial-based

foundation and a pipeline suggested that this type of foundation may provide a

compromise between base shear attenuation and horizontal displacement [16],

which is a property that cannot be obtained with classical isolation systems.

Further worth mentioning is the work of Witarto et al. [17] who studied the45

application of metamaterial-based systems to small scale nuclear reactors; and

the work done by Ungureanu et al. [18] who used auxectic like materials to

protect high-rise buildings. Finally, a comprehensive review of seismic metama-

terials including metabarriers as well as foundation systems was given recently

by Mu et al. [19]. From their review one can clearly conclude that one of the50

most pressing problems of metamaterial-based foundations is the excessive size

necessary to obtain a functional foundation. However, two advantages may be-

come attainable through such foundations in future, namely: (i) attenuation of
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the vertical component [5] and rocking motions [20], which cannot be addressed

by traditional base isolation systems [21]; and (ii) a compromise between base55

shear reduction and horizontal displacement [16]. One idea to improve the

performance of a metamaterial-based system was proposed by Antoniadis et al.

[22] who showed that a negative sti↵ness element (NSE) inserted in the res-

onator mechanism could potentially improve the system behaviour significantly.

Note that this is not an e↵ective negative sti↵ness as discussed in e.g. [23], but60

a composite spring system where the resulting force assists motion and does not

oppose it. Note that Antoniadis et al. [22] included only a conceptual negative

sti↵ness element that would exert the desirable amplification force, while a de-

sign for an actual mechanism that could be applied to a periodic structure was

still missing. To date, most proposals including negative sti↵ness and metama-65

terials aim at the continuum level [24, 25], while Morris et al. [26] conducted an

experimental study on such a continuous metamaterial with buckling type insta-

bilities and showed the energy dissipation capabilities of the structured medium.

These proposals are interested mainly in the material level, and therefore, do

not investigate the application to a structure or the inevitable nonlinear e↵ect70

of an NSE on the band gap.

It is worth noting that research work on nonlinear metamaterials is still

limited and primarily concerned with weakly nonlinear resonant chains. A per-

turbation approach for the dispersion analysis of weakly nonlinear chains has

been proposed by Chakraborty and Mallik [27], which clearly depicts that: (i)75

solutions to nonlinear wave equations are amplitude dependent; (ii) wave ampli-

tudes influence their own propagation characteristics, the so-called self-action;

and (iii) analysis methods in the presence of self-action often do not trace all

solutions when more than one dominant component is involved. Another neat

approach to calculating the band gaps for such materials relies on the harmonic80

balance method (HBM) as has been demonstrated by Lazarov and Jensen [28].

Banerjee et al. [29] on the other hand provide a comprehensive review of 1D

metamaterials including materials with nonlinear oscillators. Both showed clas-

sical bi-atomic lattices with nonlinear oscillators, e.g. Du�ng oscillator, pendu-
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lum, impacting resonators, and concluded that an increase in elastic nonlinear-85

ity, entails a shift and an elongation of the band gap. Based on the current state

of the art, the present work conceives a new mechanism applicable to periodic

structures, which is able to reduce the size of metamaterial-based foundations.

In order to present a realistic application, a fuel storage tank was chosen as a su-

perstructure and its feedback taken into account when designing and optimizing90

the foundation. Note that fuel storage tanks represent the most vulnerable and

consequence intensive components of industrial plants during earthquakes, and

that their seismic protection is still an ongoing issue [30, 31, 32, 33, 34]. The

coupled Metafoundation tank system is analysed on its performance for various

foundation heights and di↵erent levels of applied negative sti↵ness herein. Note95

that the practical application includes only a one layered foundation, while fur-

ther analyses, carried out on the system considered as a periodic structure, shed

light on the wave propagation in nonlinear negative sti↵ness enhanced materials.

1.1. Scope100

The present work tackles three main research issues, namely: (i) Size reduc-

tion of metamaterial-based structures for seismic applications; (ii) development

of an NSE that can be implemented in a metamaterial; and (iii) investigation

of the inevitable nonlinear behaviour. The manuscript discusses these issues in

the following order: Section 2 elaborates the structure, the foundation, and the105

mechanism and shows the simplified dynamic system used in the subsequent

analyses; Section 3 shows the metamaterial-like behaviour of a periodic system

with and without considering the nonlinear e↵ect; Section 4 demonstrates an

optimization algorithm for the optimal design of the foundation; Section 5 in-

vestigates the behaviour of the complete coupled and optimized structure under110

real seismic action; and Section 6 closes the paper with conclusions and future

developments.
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2. Description of the structure

The Metafoundation was initially conceived in [4] and later developed and

designed according to common construction standards by [13]. The proposed115

foundation is based on steel columns that support concrete slabs, with res-

onators placed in between the columns, in order to provide the system with its

locally resonant properties, see Figure 1(a). Additionally, for an improved per-

formance of the system, a new type of NSE is designed and implemented in the

structure by mounting it to the columns and resonators as displayed in Figure120

1(b) and 2. It is further worth noting that the columns govern the horizontal

sti↵ness of the system, which has a significant impact on the functionality of

the foundation during earthquakes as shown by [4, 13]. They also investigated

multiple foundation set-ups, where the one layered design turned out to be the

most material e�cient version, due to construction standard requirements on125

the steel columns. Therefore, the present work treats a one layered foundation

for feasibility investigations, while a multi-layered foundation system will be

discussed only on its wave propagation behaviour. Along these lines, 3 di↵erent

foundations, namely the FULL, REDUCED and MINIMAL systems, are stud-

ied herein, which are distinguished by their heights and column cross sections,130

as listed in Table 1. Note that Figure 1 shows the MINIMAL foundation layout

where the foundation height amounts to 1 m, while the column width is 0.17

m. Moreover, the columns consist of steel hollow sections with a plate thickness

of 0.03 m for all foundation set-ups. It is worth mentioning that each systems

has been designed to remain elastic for a return period of 2475 years at the site135

Priolo Gargallo, Italy, according to Eurocode 3 and 8 [14, 15]. Finally, due to

the double symmetry of the structure, the system is condensed to a 1D repre-

sentation that propagates only shear type waves to the superstructure, which is

elaborated in Sections 2.1 and 2.2.

2.1. Negative sti↵ness element NSE140

Since a simple spring with a negative e↵ective sti↵ness does not exist, it is

necessary to design a suitable mechanism that can exert the desired forces. For
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Figure 1: Layout of the Metafoundation for the MINIMAL system: (a) Isometric view; (b)

Internal view of the foundation components.

Table 1: Geometric properties of the various foundation setups.

FULL REDUCED MINIMAL

Foundation height 3 m 2 m 1 m

Resonator height 2.7 m 1.7 m 0.75 m

Column width 0.3 m 0.24 m 0.17 m

Comp. mem. length l 2.7 m 1.7 m 0.7 m
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the mechanism at hand we employ a compression member and subject it to a

prestress force, as depicted in Figure 2. Note that the compression member is

guided vertically along the column and horizontally along the slab above, in or-145

der to allow for an inclination in the displaced state. Due to this inclination, the

compression member releases the stored potential energy from the prestressed

spring as a horizontal force pair on the resonators and the columns, see Figure

3. Furthermore, as can be seen from Figure 1, the mechanism is placed between

resonators on both sides of the relevant columns, which amounts to a total of 12150

mechanisms per horizontal axis of the foundation. The 9 resonators on the other

hand are assumed to slide on frictionless surfaces and have identical properties.

2.1.1. NSE analytical model

All resonators, columns and installed mechanisms are identical, and are

therefore condensed to one resonator, one column and one mechanism for one

layer of foundation. The kinematics of the system can subsequently be simpli-

fied as depicted in Figure 3(a), where k1 denotes the condensed sti↵ness of all

columns in one layer, m2 is the mass of all resonators, m1 represents the mass

of the concrete slab, kR denotes the condensed spring sti↵ness of all springs

that support the resonators (see also Figure 2), and kp is the sti↵ness of all

prestressed springs. In order to substitute the mechanism with an equivalent

nonlinear spring, the force equilibrium needs to be formulated on the displaced

system, as shown in Figure 3(b). Here, FR denotes the horizontal force applied

to the resonator and the bottom slab; FS describes the vertical force applied

by the prestressed spring; l is the length of the compression member; u is the

vertical displacement of the member; and v is the horizontal displacement of

the resonator and the compression member at its top. When establishing the

force equilibrium around the member as depicted in Figure 3 (b), the following
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Figure 2: Negative sti↵ness mechanism.
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Figure 3: Kinematic system in the displaced state: (a) Resonator and mechanism in displaced

state; (b) Force equilibrium on the displaced system.
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geometrical relationships can be drawn,

FS = ukp � P (1)

FR =
FS

(l � u)/l

v

l
(2)

(l � u)2 = l2 � v2 (3)

Here, P is the prestress force applied to the spring when the member is in

its vertical position. After some algebra the horizontal force FR can be put in

relation to the displacement of the resonator v with,

FR(v) =
v(�P + kp(l �

p
l2 � v2))

p
l2 � v2

(4)

Eq. (4) clearly is a nonlinear relation for the force displacement path of

the resonator, due to the relationship between the displacements u and v. It is

important to note that the denominator of this function becomes 0 for v ! l,

which has the e↵ect of an infinite sti↵ness at v = l. The length of the mech-

anism, therefore, plays a significant role in the behaviour of the nonlinearity.

Furthermore, a Taylor series approximation of (4) at the origin is also desired,

in order to allow simplified nonlinear calculations in the frequency domain with

the HBM. With the classical formulation of the Taylor series,

T (x) =
1X

n=0

fn(a)

n!
(x� a)n (5)

the force-displacement relationship (4) can be rewritten for a 3rd order ap-

proximation at the origin, with a = 0, and n 2 {0, 1, 2, 3}, as,

FR (v) = �
P

l
v +

kp l � P

2 l3
v3 +HO(v5) (6)

The behaviour of the mechanism can now be dissected into a negative linear

and positive nonlinear part,

FR (v) = aNSEv + bNSEv
3 (7)

with,

aNSE = �
P

l
= kN (8)
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bNSE =
kp l � P

2 l3
=

kp
2 l2

(1�
P

kp l
) (9)

From these expressions the maximal sti↵ness of the mechanism appears at

the initial configuration and amounts to kN = aNSE = �P/l, which will be

used as an approximation of the NSE for linear analyses. Furthermore, since kp

appears exclusively in the nonlinear part of the polynomial approximation, it

can be used to tune the nonlinear shape of the mechanisms force displacement

path. Note that when kpl results in a value smaller than P , the system is

subjected to softening instead of hardening, which is physically not meaningful

for the system under study. The limits of the mechanism can therefore be set

to P
l  kp  1 and a dimensionless nonlinearity parameter established with,

✏ = 1�
P

kpl
, 0  ✏  1 (10)

When ✏ ! 0 the system behaves linear, while when ✏ ! 1 the nonlinear155

component becomes infinite and the system enters it’s nonlinear state immedi-

ately. The following values were chosen for the sake of demonstration for Figure

4(a), l = 2.7 m, P = 10 000 kN and ✏ as 0, 0.5, 0.75, and 0.9.

Besides this, a value of ✏ = 0.95 was regarded as a realistic value for all

set-ups, as it resulted in prestress distances of the prestressed spring equal to160

13.5 cm, 8.5 cm, and 3.5 cm for the FULL, REDUCED, and MINIMAL system,

respectively. Since the length of the compression member plays a vital role in

the nonlinear behaviour, a second force-displacement diagram was investigated

with length l of 1, 0.5 and 0.2 m for ✏ = 0.95, and displayed in Figure 4(b).

Clearly, the linear approximation is very close to the exact path for small dis-165

placements, which is desirable not only for the sake of simplicity, but also for the

later proposed optimization algorithm, based on computations in the frequency

domain.

2.2. Dynamic system

Once the mechanism can be substituted with a simple nonlinear spring en-170

dowed with the force-displacement relationship of Eq. (4) or (7), the dynamic
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Figure 4: Force displacement path: (a) Variation of parameter ✏; (b) Variation of member

length l.

system can be established for the condensed structure as depicted in Figure

5(a). Here, a fuel storage tank with a diameter of 8 m, a height of 12 m and

a steel wall thickness of 6 mm is used as a superstructure and modelled as a 2

degree of freedom (DOF) system. The two DOFs represent the impulsive and175

convective mode according to the procedure proposed by Malhotra et al. [35]

and are characterized by their sti↵ness ki, kc and masses mi, mc, respectively.

In the interest of brevity, the procedure is not elaborated here, while only the

sti↵ness, mass and damping coe�cients are listed in Table 2. The reader may

note that in Figure 5 the sti↵ness of the resonators kR is a compound sti↵ness180

comprised of kF � kN . Here, kN represents the linearized sti↵ness of the NSE,

which also corresponds to the maximal negative sti↵ness value, while kF de-

notes that part of kR that determines the resonant frequency of the resonator.

Modelling the springs in this way has the following advantages: (i) when kN is

small, kF becomes the dominant sti↵ness and can be used to evaluate the eigen-185

frequency of the resonator with !R =
p

kF /m2; and (ii) if kF becomes small,

the local stability of the resonator is still fulfilled by the opposing positive sti↵-

ness �kN . Furthermore, in Figure 5 the displacement of the foundations top

slab and resonator are denoted with u1 and u2, respectively, while the relative
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Table 2: Parameters for the discretized system.

Parameter FULL REDUCED MINIMAL

m1 [kg] 5.88358e+04 5.00074e+04 4.36692e+04

m2 [kg] 2.67907e+05 1.78605e+05 7.93800e+04

k1 [N/m] 8.50176e+08 1.36080e+09 3.30624e+09

kF [N/m] to be evaluated to be evaluated to be evaluated

kN [N/m] to be evaluated to be evaluated to be evaluated

cR [Ns/m] to be evaluated to be evaluated to be evaluated

mi [kg] 4.51666e+05 4.51666e+05 4.51666e+05

mc [kg] 8.57730e+04 8.57730e+04 8.57730e+04

ki [N/m] 8.35184e+08 8.35184e+08 8.35184e+08

kc [N/m] 3.86480e+05 3.86479e+05 3.86479e+05

ci [Ns/m] 1.94223e+06 1.94222e+06 1.94222e+06

cc [Ns/m] 1.82070e+03 1.82070e+03 1.82070e+03

ground displacement is represented with ug.190

For the damping of the structure, we chose a Rayleigh model with 5% damp-

ing at 0.5 and 7 Hz applied to the structure without resonators and tank. The

resonators on the other hand are assigned with a linear visco-elastic damper,

denoted with cR, which works in parallel with kR, and is also subjected to

the optimization procedure described later in this work. Furthermore, the two195

DOFs of the tank have been endowed with damping values of 5% and 0.5% for

the impulsive and convective mode, respectively, and are denoted with ci and cc.

All relevant values of the condensed dynamic system for all subsequent analyses

are shown in Table 2.

Besides this, the proposed foundation will be analysed not only as a one200

layered system for the protection of fuel storage tanks, but also on its wave

propagation properties when arranged as a periodic stack. For this purpose, a

multi-layered foundation can be imagined as depicted in Figure 5(b), where one

layer represents the unit cell of the system.
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Figure 5: Dynamic systems: (a) Coupled foundation-tank system; (b) Foundation modelled

as a periodic structure.

2.3. Stability condition of the system205

Due to the use of a local instability, it is necessary to determine the maxi-

mal allowable parameters, where the local instability does not impose a global

instability on the system. The failure mode interesting for this analysis is the

collapse of the unit cell due to an excessive negative force in the NSE, which

leads to the analysis of a single layer without tank, see also Figure 5(a). The

system of equations of motion (EOMs) can be written as,

m1ü1(t) + k1u1(t) + (kF � kN )u1(t)� (kF � kN )u2(t) = m1üg(t) (11)

m2ü2(t)� (kF � kN )u1(t) + (kF � kN )u2(t) + kNu2(t) = m2üg(t) (12)

Here, u1 denotes the displacement of the slab, u2 describes the motion of the

resonator, and üg is the relative ground acceleration. Under harmonic excitation

üg (t) = ug0ei!t the displacement responses can be assumed harmonic with

u1 (t) = u10ei!t, and u2 (t) = u20ei!t, and the system expressed in the frequency
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domain (after dividing by ei!t on both sides) with,

(�!2 + k1 + kF � kN )u10 � (kF � kN )u20 = m1ug0 (13)

(�!2m2 + kF � kN + kN )u20 � (kF � kN )u10 = m2ug0 (14)

When substituting (14) into (13) and rearranging the terms, the frequency

response function FRF for u10 can be written as,

u10 =
kNm2 � kFm1 � kFm2 +m1m2!

2

kN 2 � k1kF � kF kN + (kFm1 + k1m2 + kFm2 � kNm2)!
2 �m1m2!4

ug0

(15)

The denominator of the FRF, being the characteristic equation of the system,

takes up the form,

y = !4↵1 + !2↵2 + ↵3 (16)

with,

↵1 = �m1m2

↵2 = kFm1 + k1m2 + kFm2 � kNm2

↵3 = kN
2
� k1kF � kF kN

(17)

This represents a fourth order polynomial without odd terms, which there-

fore is symmetric. Due to its symmetry, the equation has two positive real roots

that are mirrored around the y-axis, and can be expressed in its factored form

as,

y = �m1m2(! � !1)(! � !2)(! + !1)(! + !2) (18)

After expansion this equation yields,

y = !4�1 + !2�2 + �3 (19)

with,

�1 = �m1m2

�2 = m1m2(!1
2 + !2

2)

�3 = �m1m2!1
2!2

2

(20)
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A comparison of the coe�cients of (17) and (20) yields the following equa-

tions,

k2m1 + kNm1 + k1m2 + k2m2 = m1m2(!1
2 + !2

2) (21)

k1k2 + k1kN + k2kN = m1m2!1
2!2

2 (22)

In order to be dynamically stable, the systems eigenfrequencies have to be real

and positive,

!1 > 0; !2 > 0 (23)

This necessitates the right-hand sides of (21) and (22) to be greater than 0,

and therefore, two conditions for kN can be elaborated,

kN > �
kFm1 + k1m2 + kFm2

m1
(24)

and,

kN >
kF
2

�

s
kF

2

4
+ k1kF (25)

A parametric study, which is omitted in the interest of brevity here, has

shown that the latter condition is stricter than the former one, and therefore, is

governing for the design. For the remainder of this work, the maximum negative

sti↵ness of the NSE will be determined relative to the maximal value of eq. (25)

in percent %.210

3. Band gaps and wave propagation

On the one hand the e↵ect of the NSE on the band gap behaviour is expected

to be advantageous due to the amplification force, while on the other hand the

e↵ect of its inevitable nonlinearity is yet unknown. In this section the potential

band gaps of the system will be investigated for the linearized as well as the215

elastic non-linear structure with parameters corresponding to the FULL system.

3.1. Band gaps of the linear system

Based on the multi-layered foundation depicted in Figure 5(b), a chain of

unit cells endowed with NSEs can be established as shown in Figure 6, where
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u denotes the displacement of the discretized mass with the subscript (1,2)

determining the mass and the superscript (j � 1, j, j + 1) defining the relative

location of the unit cell. Note that for the linear case the NSE is represented

by a linear negative spring with value kN from Eq. (8). Under the aid of the

Floquet-Bloch theorem [36] it becomes possible to relate the movement of the

previous and subsequent unit cells, to the unit cell under study with,

u (x, t) = u0e
i(qx�!t) (26)

Here, u (x, t) denotes the displacement vector at position x at time t, u0 the

amplitude of the displacement at the reference position (x = 0), ! the frequency

of the propagating wave, and q the wave vector. For a 1D system the wave

vector becomes a scalar and is defined as the inverse of the wavelength (q =

1/�). Furthermore, the distance between the cells will be set to unity, therefore

reducing the position vector x to a scalar of±1 and the range of q to�⇡  q  ⇡.

It is now possible to write the boundary conditions in the frequency domain for

a discretized chain with,

u1,2
j±1 = u1,2e

±iq (27)

This condition can be applied to the EOMs of a typical periodic unit cell which

read,

m1ü
j
1 + (2k1 + kF )u

j
1 � k1u

j+1
1 � k1u

j�1
1 � (kF � kN )uj

2 = 0 (28)

m2ü
j
2 � (kF � kN )uj

1 + kFu
j
2 � kNuj�1

1 = 0 (29)

After the application of the boundary condition (28) to (29), the discrete

eigenvalue problem can be formulated with,

�
K� !2

M
�
u = 0 (30)

The non-trivial solution for this problem yields the dispersion relation,

Cos (q) =

2k1kF + 2kF kN � 2kN
2 + (�kFm1 � 2k1m2 � kFm2)!2 +m1m2!4

2(�k1kF � kF kN + kN
2) + 2k1m2!2

(31)
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which sheds light on the wave propagation behaviour. For the sake of demon-

stration, the frequency of the resonator shall be set to 3 Hz, while all other

structural values match the FULL system from Table 2. The dispersion is de-220

picted in Figure 7(a) for varying NSE values, with the percentage indicating

the relationship of the applied NSE to the maximal allowable negative sti↵ness

value from (25). Here the maximum values of the acoustic branches are high-

lighted with dotted lines, while also the minimum value of the optical branch is

marked with a dotted line, in order to highlight the band gap. When observing225

the dispersion branches, it becomes clear that an increase in negative sti↵ness

entails a downwards shift of the band gaps lower bound, i.e. the acoustic branch,

while the upper bound, i.e. optical branch, remains unchanged. Clearly, this is

related to the shift of Eigenfrequencies in the system, which can be attributed to

the softening e↵ect of the NSE. Furthermore, Figure 7(b) depicts the frequency230

response function FRF of the system with 75% of the maximal allowable NSE

for 1, 10, and 100 Layers. The reader may note that for the constellations of 1,

and 10 Layers, the attenuation zone stretches further than the band gap pre-

dicts, which is a property that cannot be found in classical metamaterials and

is most likely due to the assembly of the springs. More precisely, the resonators235

are connected not only to the slab they are intended to act upon, but also, by

means of the NSE, to the previous slab.

3.2. Band gaps in the nonlinear system

In this subsection, the e↵ect of nonlinearity on the band gap behaviour is

discussed. More precisely, the HBM will be applied to the unit cell formulation240

of the system of EOMs and a dispersion relation, dependent on the nonlinearity

of the system, established. Note that this procedure will provide an approx-

imate but analytical solution for the nonlinear band gap problem, where the

Floquet-Bloch theorem is not strictly applicable. However, some studies have

shown that periodic structures with weak nonlinearities can propagate Bloch-245

like waves with one dominant component and can, therefore, be analysed by

means of standard techniques [37]. As a result, the HBM can be applied to find
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Figure 7: Wave propagation behaviour of the linear system: (a) Dispersion relation of the

unit cell for varying NSE values (acoustic branch = AB); (b) FRF of the linear system for 1,

10, and 100 Layers with an NSE value of 75%.
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Bloch wave compatible solutions when coupled with the Floquet 1D bound-

ary conditions [28, 38]. Additionally, THAs will be run for di↵erent excitation

frequencies and amplitudes, in order to obtain an amplitude dependent FRF,250

which subsequently can be compared to the results of the band gap analysis.

3.2.1. Analytical evaluation of nonlinear band gaps

In order to apply the HBM, we first need to define the EOMs of the nonlinear

system. For the sake of simplicity, the displacement of the resonator is defined

as relative to the main mass and is denoted with vx, where x 2 {j � 1, j, j + 1}

denotes the relative unit cell. The EOMs read,

m1ü
j
1 + (2k1+kF )u

j
1 � k1u

j�1
1 � (kF � kN )(uj�1

1 + vj�1)� k1u
j+1
1 � f = 0

(32)

m2(ü
j
1 + v̈j) + (kF � kN )(uj

1 + vj) + uj+1
1 (kF � kN ) + f = 0

(33)

Here, f describes the nonlinear force, which will be simplified with (4) (7)

and (9) to read,

f(t) = aNSEv(t) + bNSEv(t)
3 (34)

This system is reminiscent of a du�ng oscillator. Note however, that the res-

onators are connected to the unit cells above and below them, therefore, repre-

senting a new type of resonator chain. The general formulation of the harmonic

balance method with complex exponentials can be written as,

y (t) =
1X

n=1

Yne
in!t + Ȳne

�in!t (35)

with y (t) being the motion of a generic degree of freedom in time, n denotes the

harmonic, while Yn and Ȳn are the complex and complex conjugate amplitudes

of the complex exponential series. Conveniently, the Floquet-Bloch boundary

condition can be applied to this formula as follows,

yj±1 (t) =
1X

n=1

�
Yne

in!t + Ȳne
�in!t

�
e±iqn (36)
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with qn being the wave number for harmonic n. Note that this formulation

is equivalent to the formulation for the linear system and assumes a resonator

mass chain with unitary distance between unit cells. This method can now be

truncated for the first harmonic (n = 1) yielding,

uj±1 (t) =
�
U1e

i!t + Ū1e
�i!t

�
e±iq1 (37)

vj±1 (t) =
�
V1e

i!t + V̄1e
�i!t

�
e±iq1 (38)

Here U1, Ū1, V1 and V̄1, denote the complex and complex conjugate ampli-

tudes of the harmonic motion of u(t) and v(t), respectively. Subsequently these

expressions must be applied to the EOMs (32) and (33) and their harmonics

balanced, by equating the coe�cients in front of ei!t with 0, which yields the

following set of equations,

� (U1 + U1 (kF � kN ) + V1 (kF � kN ))e�iq1 � U1k1e
iq1 � aNSEV1

� 3bNSEV
2
1 V̄1 + 2U1k1 + U1 (kF � kN )� U1m1!

2 = 0
(39)

� U1 (kF � kN ) eiq1 + aNSEV1 + 3bNSEV
2
1 V̄1 + U1 (kF � kN )

+ V1 (kF � kN )� (U1m2 + U1m2)!
2 = 0

(40)

After the substitution of (40) in (39), U1 can be eliminated and the following

dispersion relation can be obtained,

cos (q1) =
N

D
(41)

with the numerator N and the denominator D being equal to,

N = 3bNSEV1V̄1

⇥
2k1 + 2 (kF � kN )� (m1 +m2)!

2
⇤

+ aNSE

⇥
2k1 + 2 (kF � kN )� (m1 +m2)!

2
⇤

� !2 [(kF � kN ) (m1 +m2) + 2k1m2]

+ 2k1 (kF � kN ) + !4m1m2

(42)

and,

D = 6bNSEV1V̄1 [k1 + kF � kN ]

+ 2aNSE [k1 + kF � kN ]

+ k1
⇥
kF � kN �m2!

2
⇤

(43)
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Figure 8: Dispersion diagram of the non-linear FULL system with varying amplitudes and

75% of the maximum NSE value.

The new dispersion relation is dependent on bNSEV1V̄1, which represents the

nonlinearity of the system, and is plotted dependent on the amplitude |V1| =
p
V1V̄1, but for a constant bNSE in Figure 8. Here, the dispersion branches move255

to a higher frequency spectrum since an increase of nonlinearity entails a higher

participation of bNSE , which in turn causes a sti↵ening of the system. The

upwards shift of the dispersion branches may seem to indicate that the band

gap shifts towards higher frequencies and that the band gap widens, as has

been found for classical du�ng oscillator type metamaterials [28, 29]. However,260

when waves that fall within the band gap of a specific level of nonlineartiy are

attenuated, their change in intensity subsequently changes the level activated

nonlinearity and therefore also the resulting band gap of the system. Based on

this we conclude that only the common band gap of the linear and nonlinear

system can be retained, which entails that the frequency range narrows towards265

the upper bound with an increase in nonlinearity. This is highlighted with the

dotted line for the lower bound and the dashed line for the upper bound in
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Figure 8 and will be illustrated more clearly with the simulations in the time

domain conducted in the next section.

The reader may note that Figure 8 shows amplitudes up to 1 m relative270

displacement, which is not possible for the geometry shown earlier. However,

the motion range of the resonators is restricted only by the column spacing,

which in turn can easily be changed in order to achieve a highly nonlinear range.

Therefore, amplitudes up to 1 m are considered to clearly show the trend of the

dispersion branches. Finally, while a relative displacement of 1 m may not seem275

realistic, both the dispersion and wave propagation analysis display possible

e↵ects that the nonlinear NSE entail on a periodic system.

3.2.2. FRF of the nonlinear system

In order to evaluate the FRF of the nonlinear system, an iterative time inte-

gration procedure was implemented based on a Newton-Raphson solver inserted

into an implicit Newmark beta scheme. The equations of motion for the system

read,

Mü(t) +Cu̇(t) +Ku(t) +R(u, t) = F(t) (44)

where M, C, and K are the linear mass, damping and sti↵ness matrices, which

can be written for the system displayed in Figure 5(b) with an arbitrary number

of layers. Note that the damping matrix C contains Rayleigh damping of 3%

between 2 and 8 Hz for the system without resonators, in order to attenuate

the vibration of the eigenmodes induced by the transient nature of the simu-

lation. Note that the actual proportional damping of the complete system is

even lower, due to the added mass and sti↵ness of the resonators, which were

not taken into account when constructing the damping matrix. This further

provides the band gap range with low damping values, while the resonators re-

main undamped, which minimizes the e↵ect that the overall damping has on

the band gap phenomenon. Moreover, R(u, t) denotes the vector containing the

nonlinear restoring forces, deriving from the NSE i.e. eqs. (4) or (7), while the

forcing term F(t) can be rewritten as MIüg(t), since the EOMs were formulated

in terms of relative ground displacement. A harmonic ground acceleration for
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every frequency can be obtained with,

üg(t) = Aei!gt (45)

with A being the amplitude of the wave and !g being the radial frequency of

the excitation. Integrate twice over time and a harmonic ground displacement

can be obtained with,

ug = �!2
gAei!gt (46)

In order to obtain an FRF, a finite chain of masses and resonators is subjected to

this harmonic excitation on one side (the ground) and its absolute displacement280

response, once the steady state is reached, recorded on the other side. For

these simulations the true nonlinearity and the polynomial approximation were

considered for 1, 10 and 20 layers, without the presence of a superstructure and

an NSE level of 25% of the maximum. In Figures 9(a), (b), (c), (d), (e) and

(f) the FRFs are displayed with the frequency on the x-axis, the amplitude of285

excitation in meters on the y-axis, and the absolute displacement response of

the top layer relative to the excitation frequency on the z-axis. Furthermore, a

gray horizontal plane is drawn at unity, where the response at the top is equal

to the input at the bottom, which highlights the attenuation of the excitation.

If the response is smaller than unity, the signal is being attenuated and a band290

gap can be expected. Note that the first mode of the complete 20 layered system

(including the resonators) was located at !1 = 3.68rad/s at a modal damping

value of ⇣1 = 1.4%, which resulted in a settling time of tS = 4/ (⇣1!1) = 80s.

Therefore a simulation length of 100 seconds was chosen.

For low excitations the structure remains in the linear range, which entails295

that the numerical FRF resembles the linear FRF for the lowest amplitude.

When observing the FRFs for the true nonlinear system, an area without con-

vergence can be seen in the high frequency, high excitation, region, due to the

infinite sti↵ness at v ! l. Furthermore, when comparing the true nonlinear sys-

tem to the polynomial approximation, it becomes clear that the approximation300

yields very similar results, even in the highly nonlinear range, where higher har-

monics start to appear. This becomes particularly evident for the one layered
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system where a clear upwards shift of the eigenfrequency can be observed and a

second spike representing a higher harmonic appears at 3 times the value of the

systems first eigenfrequency. Furthermore, as discussed in the previous section,305

the upper bound of the band gap, or in the finite case the attenuation zone,

does not shift upwards with an increase in excitation amplitude (activation of

nonlinearity). Instead, Figure 9 depicts clearly that the upper bound shows

only a slight upwards shift, due to the finiteness of the system, while the lower

bound approaches the upper bound with increased nonlinearity. Moreover, with310

more layers the system tends to show a better attenuation within the band gap,

which is due the added layers, but also due to the necessary damping present

in the systems. From these results and the nonlinear dispersion analysis from

the previous section, we conclude that with an increase of excitation amplitude

the band gap will gradually disappear towards the upper bound.315

However, for the system to introduce resonance in the higher harmonics,

some of the wave energy must be shifted away from the primary modes, which

will be discussed with further THAs in Section 5. With respect to the band

gap behaviour on the other hand, the e↵ects of the nonlinearity are clearly

detrimental.320

4. Optimization of the coupled system

As shown in previous publications [4] and [13], once the Metafoundation is

coupled to a superstructure, the complete coupled system needs to be optimized.

For this reason, we propose an optimization algorithm herein, based on calcula-

tion in the frequency domain, which represents a simplification of the algorithm325

established in [13] and depends on the structure and the ground motion.

4.1. Ground motion models

To narrow down the expected vibrations for the structure at hand, we chose

to place it at a seismic prone site in Italy, namely Priolo Gargallo, and charac-

terized it with a uniform hazard spectrum (UHS). The red solid line in Figure330
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Figure 9: Numerical FRF for the FULL system with 25% NSE: (a) 1 layer and polynomial

nonlinearity; (b) 1 layer and true nonlinearity; (c) 10 layers and polynomial nonlinearity; (d)

10 layers and true nonlinearity; (e) 20 layers and polynomial nonlinearity; (f) 20 layers and

true nonlinearity.
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Figure 10: Ground motion spectra: (a) Response spectra including the UHS and the mean

response spectrum; (b) PSDs of all ground motion records and their average estimated with

Welch’s method.

10 shows the UHS of Priolo Gargallo for a return period of 475 years, which

can be fitted with real records of ground motions (Figure 10(a) dashed grey

lines). Here, the average response spectrum of the seismic events, see Figure

10(a) black dashed-dotted line, was fitted to the UHS in a least square sense.

These records will later also be used to validate the functionality of the system335

and are listed in Table 3.

In order to obtain the power spectral density (PSD) of the selected records,

which can be used in the optimization algorithm, Welch’s method was applied

with the following parameters: 8000 data points per seismic record, 1000 data

points per finite section of the signal, 500 data points overlap, and a stan-340

dard Hamming window. The resulting average PSD for each individual record

(dashed grey lines) and the total average over all records (solid red line) are

displayed in Figure 10(b).

4.2. Optimization algorithm

Given the epistemic and aleatoric uncertaintity of the seismic input, it is

not feasible to tackle an optimization problem of a system endowed with linear

or nonlinear devices on a conventional time basis. Therefore, a more accurate

probabilistic (stochastic) approach is required in which both the excitation and
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Table 3: List of ground motion records.

Event ID M RJb [km] PGA [m/s2]

Loma Prieta BRN090 6.93 3.85 0.4067

Kalamata 000414ya 5.9 11 0.3738

South Iceland 004673ya 6.5 15 0.4224

L’Aquila Mainshock IT0792ya 6.3 4.8698 0.6287

Friuli 2nd Shock IT0078ya 5.6 26.2079 0.4023

Northridge-01 ORR360 6.69 20.11 0.3749

Umbria Marche 000594ya 6 11 0.4224

Montenegro 000199ya 6.9 16 0.3071

Erzincan 000535ya 6.6 13 0.4224

Friuli Italy-01 A-TMZ270 6.5 14.97 0.2585

South I. (aftershock) 006328ya 6.4 12 0.3914

Ano Liosia 001715ya 6 14 0.3103

L’Aquila Mainshock IT0789ya 6.3 4.6338 0.4024

L’Aquila Mainshock IT0790ya 6.3 4.3919 0.4459

L’Aquila Mainshock IT0791ya 6.3 5.6501 0.3300
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the response are described in terms of statistical parameters such as the mean

square, - that is null for seismic excitations- and the variance of vibration am-

plitudes. As a result, the herein proposed approach heavily relies on random

vibration [39] and optimizes the foundation under consideration of the super-

structure and the ground motion. The first step is to formalize the system of

Equations Of Motion (EOMs) with,

Mü (t) +Cu̇ (t) +Ku (t) = MIüg(t) (47)

The mass, sti↵ness and damping matrices, M, K and C can be constructed for

the dynamic system displayed in Figure 5 (a) with the values of Table 2 and the

indication about the damping given in the text, while I represents the identity

vector. Note that for the optimization procedure, the negative sti↵ness enters

as a linear spring, since the computations in the frequency domain demand

linearity. Firstly, we multiply the EOMs with e�i!t and integrate over time to

obtain,

Z +1

�1
[Mü(t) +Cu̇(t) +Ku(t)] e�i!tdt =

Z +1

�1
MIüg(t)e

�i!tdt (48)

Subsequently, the response and excitation are transformed into the frequency

domain via a Fourier transform with,

U(!) =

Z +1

�1
u(t)e�i!tdt (49)

F(!) =

Z +1

�1
MIüg(t)e

�i!tdt (50)

where the derivatives of the response can be obtained with,

Z +1

�1
u̇(t)e�i!tdt = i!

Z +1

�1
u(t)e�i!tdt = i!U(!) (51)

Z +1

�1
ü(t)e�i!tdt = �!2

Z +1

�1
u(t)e�i!tdt = �!2

U(!) (52)

With expressions 49 - 52 the system can be reformulated in the frequency domain

as,
�
�!2

M+ i!C+K
�
U(!) = F(!) (53)
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Here, the transmission matrix can be defined and parametrized as,

H(!, kF , cR) =
⇥
�!2

M+ i!C(cR) +K(kF )
⇤�1

(54)

where kF is a variable in the sti↵ness matrix K, and cR represents a vis-

cous damper, which works in parallel with (kF � kN ), in the damping ma-

trix C. Note that the frequency of the resonator can be approximated with

!R =
p
kF /m2, while its damping can be represented with the critical damping

ratio ⇣R = cR/2
p
(kF � kN )m2. With these expressions and the definition of

the approximate Power Spectral Density (PSD) of the response given by [40] we

can rewrite the system response in terms of PSD as,

SU (!,!R, ⇣R) = |H(!,!R, ⇣R)|
2
Sg(!) (55)

where H(!,!R, ⇣R) denotes the transmission matrix as defined in eq. (54) and

Sg(!) describes the PSD of the excitation F(!), which is comprised of the

average PSD obtained in Section 4.1, multiplied with MI. Furthermore, with

the transformation by Wiener-Khintchine [40], the variance of a signal can be

calculated based on the relationship of the autocorrelation function with the

PSD as,

�2 = R (0) =

Z +1

�1
S(!)d! (56)

here, R (0), S(!), and �2
u denote the autocorrelation function, the PSD, and the

variance of the response, respectively. In line with this, the relative displacement

of the impulsive mode and the top slab can be estimated with,

�2
rel =

Z +1

�1
(Sj (!,!R, ⇣R)� Sk (!,!R, ⇣R))d! (57)

where, Sj (!,!R, ⇣R) and Sk (!,!R, ⇣R) are the PSDs of the relative ground

displacements of the jth and kth degree of freedom (DOF), while �2
rel repre-

sents the variance of the relative displacement between those DOFs. Hence, we

formulate the Performance Index PI (!R, ⇣R) as,

PI (!R, ⇣R) =
�2
META (!R, ⇣R)

�2
TRAD

(58)

where, �2
META and �2

TRAD denote the variance of the relative drift of the im-345

pulsive mode for a system with and without Metafoundation, respectively.
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5. Behaviour of the coupled system

5.1. Behaviour of the system in the frequency domain

When running the optimization procedure on the coupled system subjected

to the average PSD of the earthquakes, the PI can be computed and plotted for350

various frequency and damping ratios for the resonators, as displayed in Figures

11(a), (b), (c), and (d). Here, fR corresponds to the optimal frequency of the

resonators, while ⇣R is the optimal damping ratio of the resonators, which are

computed for the Metafoundation with 0%, 25%, 50%, and 99% of the maximal

admissible NSE value, obtained from eq. (25). Note that a change in frequency355

allows for a recalculation of the maximal value of kN , which would entail an

iteration of the optimization scheme for every increase in frequency. This would

multiply the computational e↵ort by the amount of iterations necessary to find

the final value, and has therefore been omitted in the interest of e�ciency.

Note further that the actual applicable NSE value is most likely determined360

by construction requirements, hence smaller than the theoretically possible one.

Instead, the initial guess of kF was chosen to produce a frequency of 3 Hz and

used to determine the maximal admissible NSE value.

As shown in Figure 11 the value of the PI decreases with an increase in NSE

value, while the optimal tuning frequency and damping ratio of the resonator365

have a clear e↵ect on the PI. Table 4 summarizes the optimal parameters for all

investigated systems and displays that the optimal value of the sti↵ness tends

to increase for high NSE values in the REDUCED and MINIMAL systems,

while for the FULL system it decreases first and then increases again. This is

most likely due to the NSE changing the frequency of the resonators, as can370

be observed in Figure 7; and the NSE reducing the overall sti↵ness, thereby

shifting the critical excitation frequency of the tank. From this tendency we

conclude that an optimization, as carried out herein, is necessary for the design

of a negative sti↵ness endowed system and that the superstructure should not

be neglected. Furthermore, it is worth noting that the surface becomes flatter375

with an increase in NSE value, which entails that for higher NSE values the
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system becomes less dependent on the optimal tuning of the resonators. This

e↵ect is particularly interesting for the frequency of the resonator, as a precise

tuning can be challenging in a real-life application. A similar trend can be

observed for the damping ratio, where the optimal values are located at very380

high damping ratios of 19% to 30%, while only small improvements in terms of

PI can be obtained above a value of 10%.

Table 4: Results from the optimization for the relevant Metafoundation setups.

NSE FULL REDUCED MINIMAL

kNmax fR ⇣R PI fR ⇣R PI fR ⇣R PI

0 4.00 0.19 0.502 4.75 0.11 0.62 5.85 0.03 0.882

25 3.70 0.23 0.388 4.85 0.14 0.496 5.95 0.04 0.726

50 3.55 0.24 0.286 4.90 0.17 0.407 6.10 0.06 0.617

75 3.95 0.27 0.211 4.80 0.19 0.332 6.25 0.07 0.530

99 4.50 0.30 0.161 5.00 0.20 0.265 6.45 0.08 0.462

5.2. System response in the time domain

From the optimal values determined in the previous section, the sti↵ness of

spring kF and the damping value of cR can be evaluated from the expressions

kF = !R
2m2 and cR = ⇣R 2

p
(kF � kN )m2. Furthermore, the length of the

compression member was chosen beforehand and is shown in Table 1, while the

Prestress force in the compression member can be obtained from the relationship

aNSE = �P/l where aNSE = kN with,

P = �kN l (59)

Besides this, the nonlinearity parameter ✏ yields realistic values for kP when set

to 0.95, where kP can be evaluated form (10) as,

kp =
P

(1� ✏)l
(60)

With these parameters and the optimal values found from the optimization,

summarized in Table 4, the complete nonlinear system can be constructed and
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Figure 11: Optimization surface plots for: (a) PI for the FULL system with 0% kNmax; (b)

PI for the FULL system with 25% kNmax; (c) PI for the FULL system with 50% kNmax; (d)

PI for the FULL system with 99% kNmax.
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subjected to the ground motions from Table 3. For the sake of comparison,

various Metafoundation layouts were considered and the resulting base shear

developments of the respective tank evaluated with,

V (t) = [ui (t)� u1 (t)]ki + [uc(t)� u1(t)]kc (61)

where, V (t), ui (t), ki, uc (t), kc, and u1 (t) are the base shear development, the

displacement of the impulsive mode, the sti↵ness of the impulsive mode, the dis-

placement of the convective mode, the sti↵ness of the convective mode and the

displacement of the top slab of the foundation, respectively. For calculating the

response of the traditional system, the two SDOFs representing the tank were

subjected to the ground motions without Metafoundation, which is equivalent

to the tank being clamped to a traditional foundation, such as a concrete slab.

The maximum base shear during each earthquake was considered as the govern-

ing performance measure and recorded for the Metafoundation and traditional

foundation layouts with,

⌘ =

P15
n=1 max(V (t)meta

n )
P15

n=1 max(V (t)tradn )
(62)

Here, n identifies the earthquake, while the sums simply cumulate the maximum

base shear values of each seismic event. Figure 12(a), (b), and (c) shows the385

results for the FULL, REDUCED, and MINIMAL systems endowed with vary-

ing levels of NSE, thereby displaying how the performance measure ⌘ improves

with an increase in NSE value. Moreover, when comparing the various setups

without NSE (0% NSE), it becomes clear that the ⌘ value is significantly lower

for the larger systems FULL ⌘ = 0.79 and REDUCED ⌘ = 0.82 compared to390

⌘ = 0.93 for the MINIMAL system. This is due to the sti↵ness of the struc-

ture, which is determined by the structural design of the columns, limiting the

minimal size of the Metafoundation without NSEs. However, when considering

the positive impact that the NSE has on the system performance, it becomes

possible to achieve a similar performance with the MINIMAL system with 50%395

of the maximal allowable NSE value. Furthermore, it is interesting to observe

that the maximal recorded base shear for each earthquake tends to show less
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variation for higher NSE values. This suggests that with greater NSE, the per-

formance of the system becomes more reliable across various seismic records,

which is a very desirable property, due to the extreme variability of frequency400

and amplitude content of earthquakes.

In Subsection 3.2.2 we mentioned that the introduction of the 3rd harmonic

may transfer some energy from the first mode to this higher harmonic, and

therefore, has the potential to improve the systems performance. However,

the investigated systems FULL, REDUCED and MINIMAL do not enter the405

strongly nonlinear range, and therefore, further calculations are carried out

herein. A study of the two established nonlinear parameters l and ✏ is conducted

for l being equal to 1, 0.1, 0.09, 0.05, 0.02, and 0.01 m, and ✏ being equal to

0.5, 0.9, and 0.99. These values are applied to the FULL system with 75%

NSE, while the results are reported in Figure 13(a), (b), and (c). Although410

these values are geometrically very unrealistic for the system under study, other

applications with a di↵erent scale may reach the nonlinear range, and therefore,

may profit from the nonlinear e↵ects. However, Figure 13(a), (b), and (c)

depicts the trend of the system when entering the nonlinear regime and shows

clearly that an increase in nonlinearity acts detrimental on the performance of415

the system. More precisely, there is an obvious degradation of the performance

value from ⌘ = 0.532 for the system with a compression member length of 1 m,

to ⌘ = 0.90 for a compression member length of 0.01 m. Curiously, the setups

with l = 0.05 m and l = 0.09 m show a very small improvement over the quasi

linear system for the earthquakes 004673ya and 000594ya. For most other events420

however, the systems perform significantly worse and an advantage cannot be

concluded. On the other hand, the trend of the system with a decrease in ✏

value shows that the system is less likely to go in the nonlinear range even for

very small l values, which may be useful for the design of the mechanism.
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Figure 12: Base shear maxima from time history analyses with ✏ = 0.95 and various levels of

NSE: (a) FULL system; (b) REDUCED system; (c) MINIMAL system.
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Figure 13: Base shear maxima from time history analyses with various ✏ and l values for a

system with 75% NSE: (a) ✏ = 0.99; (b) ✏ = 0.90; (c) ✏ = 0.50.
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6. Conclusions425

In this work, a new type of NSE, based on a compression member in a

stable snap through position, has been developed for the application to seis-

mic metamaterials. The composite system showed enhanced wave attenuation

characteristics and was studied on its fully nonlinear behavior via time and fre-

quency domain analyses. Due to the implemented NSE as well as the new type430

of established resonator chain, the system displayed a widening of the band gap

and an amplification of the attenuation capabilities with an increase in NSE.

It is further worth noting that a finite system exerted an attenuation zone that

stretched into an even lower frequency range than the band gap of the periodic

system predicted. The nonlinearity on the other hand, proved to have a detri-435

mental e↵ect on the band gap range, since an increase in activated nonlinearity

narrowed the band gap towards its upper bound. Besides the study of the NSE

enhanced foundation as a periodic structure, also its application to fuel storage

tanks as a seismic protection system was discussed herein. Due to the feedback

from the superstructure and the shift of eigenfrequencies caused by the NSE,440

the tuning of the finite systems necessitated an optimization algorithm. Note

that the algorithm proposed herein considered the superstructure as well as the

ground motion spectrum and could in principle optimize any number of system

parameters. After optimizing the system a set of spectrum compatible ground

motions was used to evaluate its performance, which demonstrated that a size445

reduction to 1/3 of the original size was achievable with 50% of the physically

allowable negative sti↵ness. Additionally, the NSE enhanced systems showed a

more reliable performance across various earthquakes, which is a highly desir-

able property, due to the strong variability in frequency and amplitude content

of seismic records. It is further worth mentioning that the e↵ect of soil struc-450

ture interaction has been neglected in the present work, by assuming that the

foundation is placed on bedrock. However, due to the resonant nature of the

foundation, soil structure interaction may provide particularly interesting ef-

fects especially for vertical component damping, and therefore, deserves to be
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treated in future studies. Lastly, it should be acknowledged that the mechanism455

was designed in a general way and may be applied to other vibration problems,

where shear type waves need to be attenuated.
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