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Abstract

URL parser and normalization processes are common and important oper-
ations in different web frameworks and technologies. In recent years, security
researchers have targeted these processes and discovered high impact vulner-
abilities and exploitation techniques. In a different approach, we will focus
on semantic disconnect among different framework-independent web tech-
nologies (e.g., browsers, proxies, cache servers, web servers) which results
in different URL interpretations. We coined the term “Path Confusion” to
represent this disagreement and this thesis will focus on analyzing enabling
factors and security impact of this problem.

In this thesis, we will show the impact and importance of path confusion
in two attack classes including Style Injection by Relative Path Overwrite
(RPO) and Web Cache Deception (WCD). We will focus on these attacks as
case studies to demonstrate how utilizing path confusion techniques makes
targeted sites exploitable. Moreover, we propose novel variations of each
attack which would expand the number of vulnerable sites and introduce new
attack scenarios. We will present instances which have been secured against
these attacks, while being still exploitable with introduced Path Confusion
techniques.

To further elucidate the seriousness of path confusion, we will also present
the large scale analysis results of RPO and WCD attacks on high profile sites.
We present repeatable methodologies and automated path confusion crawlers
which detect thousands of sites that are still vulnerable to RPO or WCD only



with specific types of path confusion techniques. Our results attest the sever-
ity of path confusion based class of attacks and how extensively they could hit
the clients or systems. We analyze some browser-based mitigation techniques
for RPO and discuss that WCD cannot be dealt as a common vulnerabil-
ity of each component; instead it arises when an ecosystem of individually
impeccable components ends up in a faulty situation.

Keywords
[Path Confusion, Relative Path Overwrite, Scriptless Attack, Content Deliv-
ery Network, Web Cache Deception]
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Chapter 1

Introduction

Today’s World Wide Web has grown fully fledged and heterogeneous tech-
nologies and frameworks have been introduced to increase security and avail-
ability. Most of these technologies (e,g. browser, cache, load balancer, web
application firewall, web server, etc.) need to deeply understand and parse
HTTP requests to serve the response to clients. More precisely, parsing and
normalization are considered as initial and important parts of almost all of
HTTP processing-chain technologies.

A Uniform Resource Locator (URL) is composed of different components,
e.g., scheme, authority, host, path, query and fragment. Any technology uses
its own method to parse a URL and extract different components in order to
apply pre-defined rules and policies. For more than a decade, security experts
and researchers have targeted each URL parser implementation. Different
classes of vulnerabilities have been discovered and exploited for each specific
technology and web framework. For instance, Orange Tsai presented a series
of exploitation techniques that take advantage of the quirks of built-in URL
parsers in popular programming languages and web frameworks [129, 130].

The important point here is that each HTTP processing-chain technol-
ogy autonomously parses and normalizes the HTTP requests and URLs. A
major overlooked problem arises when distinct parts of the processing chain
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have disagreements on their interpretations of the URL components, hence
different paths would be established. In other words, in this class of vulner-
abilities, there is no problem about individual interpretation but the whole
established path would not be correctly induced. Despite studies focused
on each component, literature is so sparse on how drastic the result of such
disagreements in path interpretation could be.

A fitting example of this category of vulnerability is the one which targets
the Host header in a HTTP request. Chen et al [23] shows how inconsistent
interpretation of a HTTP request with ambiguous host fields (e.g., with mul-
tiple Host headers) between two different technologies can impose security
risks. This disagreement could be studied in different components of a URL
and might expose the system to different attack scenarios and security risks.
Our focus in this thesis is URL Path component.

Web application attacks such as cross-site scripting or Cross-site request
forgery, are well-understood and studied by both academics and the general
security community. However, as mentioned previously, the security impli-
cations of path confusion have started to garner attention only recently, and
academic literature on the subject is sparse. Even though these attacks have
been dealt with as separate scenarios, we realized them to be all stemming in
the disagreement among different web components’ URL interpretation. We
coined the name Path Confusion and investigate the problem more in depth
in this thesis. In the following, we will discuss Relative Path Overwrite and
Web Cache Deception as two samples of path confusion based attacks.

Relative Path Overwrite. Relative Path Overwrite (RPO) is a recent tech-
nique to inject style directives into sites even when no style sink or markup
injection vulnerability is present. It exploits path confusion differences in
how browsers and web servers interpret relative paths to make a HTML page
reference itself as a stylesheet; a simple text injection vulnerability along with
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CHAPTER 1. INTRODUCTION

browsers’ leniency in parsing CSS resources results in an attacker’s ability to
inject style directives that will be interpreted by the browser. Even though
style injection may appear less serious a threat than script injection, it has
been shown that it enables a range of attacks, including secret exfiltration.

Web Cache Deception. Web cache deception (WCD) is an attack proposed
in 2017, where an attacker tricks a caching proxy into erroneously storing
private information transmitted over the Internet and subsequently gains
unauthorized access to that cached data. Web cache technologies may be
configured to make their caching decisions based on complex rules such as
pattern matches on file names, paths, and header contents. Launching a
successful WCD attack requires an attacker to craft a malicious URL that
triggers a caching rule, but also one that is interpreted as a legitimate request
by the web server.

For the first time, we extend the exploitability of this class of attacks by
developing novel attack techniques. We evaluate them through novel and
repeatable methodologies in large scales that show to which extent these at-
tacks could be impactful. This area of research is so sparse and possible
attacks and their impacts are overlooked. We explore mentioned path confu-
sion based attacks and introduce new variations of them that would expand
the number of vulnerable systems. Moreover, we propose unprecedented path
confusion based techniques and analyze them at scale.

We shed light on path confusion based attacks as well as their severity
by analyzing them in the wild. Moreover, we introduce novel variations of
path confusion to increase the likelihood of exploitability. Descriptions of
our thesis contributions and outline are detailed in the following sections.
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1.1. THESIS CONTRIBUTIONS

1.1 Thesis Contributions

In this thesis, we investigate two different path confusion based attack scenar-
ios which stem in path interpretation disagreement among different system
components, each of which is not necessarily faulty but would result in a
malfunctioning system, vulnerable to path confusion attacks. Our proposed
attack scenarios and contributions in each part have been specified as follows.

• We present the first large scale study of the Web through a repeatable
methodology to measure the prevalence and significance of style injec-
tion using RPO in the wild. Our work shows that around 9% of the
sites in the Alexa Top 10K contain at least one vulnerable page, out of
which more than one third can be exploited.

• We introduce new variations of RPO and study the popularity of them
among top 1M Alexa. We also conduct an assessment of novel path
confusion techniques and their impact on exploitation of RPO vulnera-
bilities.

• We analyze and discuss in detail various impediments and range of fac-
tors that prevent a RPO vulnerability from being successfully exploited,
and make recommendations for remediations.

• We propose a novel, repeatable methodology to detect sites impacted by
WCD at scale. Unlike existing WCD scan tools that are designed for site
administrators to test their own properties in a controlled environment,
our methodology is designed to automatically detect WCD in the wild.

• We present findings that quantify the prevalence of WCD in 295 sites
among the Alexa Top 5K, and provide a detailed breakdown of leaked
information types. Our analysis also covers security tokens that can be
stolen via WCD as well as novel security implications of the attack, all
areas left unexplored by existing WCD literature.
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CHAPTER 1. INTRODUCTION

• We introduce the new variation of WCD using different path confusion
techniques that would expand the number of vulnerable systems. We
conduct a follow-up measurement over 340 sites among the Alexa Top
5K that show variations on the path confusion technique to make it
possible to successfully exploit sites that are not impacted by the original
WCD attack. Our proposed attack and research was voted and led to
an award as the top web hacking technique of 2019 by the hacking and
research community and the PortSwigger panel [22, 108].

• We analyze the default settings of popular CDN providers and docu-
ment their distinct caching behavior, highlighting that mitigating WCD
necessitates a comprehensive examination of a website’s infrastructure.
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1.2. THESIS OUTLINE

1.2 Thesis Outline

This dissertation is organized as follows. Chapter 2 discusses preliminary
concepts and related attacks which would be later be utilized during the
thesis. In Chapter 3, we provide a concise description of the Path Confusion
problem which would be studied in more detail in the wild throughout the
next chapters. Chapter 4 investigates RPO in the wild by introducing novel
variation of path confusion techniques in an automated methodology and
present results of large scale analysis of style injection. In Chapter 5, we
present the large-scale measurement and a detailed analysis of WCD and
investigate the root cause of it among popular CDNs. We conclude the
thesis by discussions and conclusions in Chapter 6.
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Chapter 2

Background & Related Works

2.1 Cross-Site Scripting

Many sites have vulnerabilities that let attackers inject malicious script. Dy-
namic sites frequently accept external inputs that can be controlled by an
attacker, such as data in URLs, cookies, or forms. While the site developer’s
aim would have been to render the input as text, lack of proper sanitization
can result in the input being executed as script [106]. The inclusion of unsan-
itized inputs could occur on the server side or client side, and in a persistent
stored or volatile reflected way [103]. To the victim’s web browser, the code
appears as originating from the first-party site, thus it is given full access
to the session data in the victim’s browser. Thereby, the attacker bypasses
protections of the Same-Origin Policy.

The script-based attacks has been studied extensively, such as systematic
analysis of XSS sanitization frameworks [140], detecting XSS vulnerabili-
ties in Rich Internet Applications [3], large-scale detection of DOM-based
XSS [76, 85], persistent client-side XSS [119], and bypassing XSS mitiga-
tions by Script Gadgets [75, 74]. An array of XSS prevention mechanisms
have been proposed, such as XSS Filter [110], XSS-Guard [16], SOMA [100],
BluePrint [86], Document Structure Integrity [95], XSS Auditor [14], No-
Script [88], Context-Sensitive Auto-Sanitization (CSAS) [112], DOM-based
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2.2. SCRIPTLESS ATTACKS

XSS filtering using runtime taint tracking [120], preventing script injection
through software design [64], Strict CSP [139], ScriptProtect [94], and DOM-
Purify [50]. However, the vulnerability measurements and proposed counter-
measures of these works on script injection do not apply to scriptless injection
attack.

2.2 Scriptless Attacks

Cross-Site Scripting is perhaps the most well-known web-based attack, against
which many sites defend by filtering user input. Client-side security mech-
anisms such as browser-based XSS filters [14] and Content Security Pol-
icy [118, 136] also make it more challenging for attackers to exploit injection
vulnerabilities for XSS. This has led attackers (and researchers) to investi-
gate potential alternatives, such as scriptless attacks. These attacks allow
sniffing users’ browsing histories [83, 59], exfiltrating arbitrary content [70],
reading HTML attributes [52, 73], and bypassing Clickjacking defenses [52].
In the following, we highlight two types of scriptless attacks proposed in the
literature. Both assume that an attacker cannot inject or execute script into
a site. Instead, the attacker abuses features related to Cascading Style Sheets
(CSS).

Heiderich et al. [49] consider scenarios where an attacker can inject CSS
into the context of the third-party page so that the style directives are in-
terpreted by the victim’s browser when displaying the page. That is, the
injection sink is either located inside a style context, or the attacker can in-
ject markup to create a style context around the malicious CSS directives.
While the CSS standard is intended for styling and layout purposes such as
defining sizes, colors, or background images and as such does not contain
any traditional scripting capabilities, it does provide some context-sensitive
features that, in combination, can be abused to extract and exfiltrate data.
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CHAPTER 2. BACKGROUND & RELATED WORKS

If the secret to be extracted is not displayed, such as a token in a hidden
form field or link URL, the attacker can use the CSS attribute accessor and
content property to extract the secret and make it visible as text, so that
style directives can be applied to it. Custom attacker-supplied fonts can
change the size of the secret text depending on its value. Animation features
can be used to cycle through a number of fonts in order to test different
combinations. Media queries or the appearance of scrollbars can be used to
implement conditional style, and data exfiltration by loading a different URL
for each condition from the attacker’s server. Taken together, Heiderich et
al. demonstrate that these techniques allow an attacker to steal credit card
numbers or CSRF tokens [105] without script execution.

Rather than using layout-based information leaks to exfiltrate data from
a page, Huang et al. [56] show how syntactically lax parsing of CSS can be
abused to make browsers interpret an HTML page as a “stylesheet.” The
attack assumes that the page contains two injection sinks, one before and
one after the location of the secret in the source code. The attacker injects
two CSS fragments such as {}*{background:url(’//attacker.com/? and
’);}, which make the secret a part of the URL that will be loaded from the
attacker’s server when the directive is interpreted. It is assumed that the
attacker cannot inject markup, thus the injected directive is not interpreted
as style when the site is conventionally opened in a browser. However, the
CSS standard mandates that browsers be very forgiving when parsing CSS,
skipping over parts they do not understand [135]. In practice, this means
that an attacker can set up a site that loads the vulnerable third-party site
as a stylesheet. When the victim visits the attacker’s site while logged in, the
victim’s browser loads the third-party site and interprets the style directive,
causing the secret to be sent to the attacker. To counter this attack, modern
browsers do not load documents with non-CSS content types and syntax
errors as stylesheets when they originate from a different domain than the
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2.3. WEB CACHES

including page. Yet, attacks based on tolerant CSS parsing are still feasible
when both the including and the included page are loaded from the same
domain. Relative Path Overwrite attacks can abuse such a scenario [143].

2.3 Web Caches

Repeatedly transferring heavily used and large web objects over the Inter-
net is a costly process for both web servers and their end-users. Multiple
round-trips between a client and server over long distances, especially in the
face of common technical issues with the Internet infrastructure and routing
problems, can lead to increased network latency and result in web applica-
tions being perceived as unresponsive. Likewise, routinely accessed resources
put a heavy load on web servers, wasting valuable computational cycles and
network bandwidth. The Internet community has long been aware of these
problems, and deeply explored caching strategies and technologies as an ef-
fective solution.

Today web caches are ubiquitous, and are used at various—and often
multiple—steps of Internet communications. For instance, client applications
such as web browsers implement their own private cache for a single user.
Otherwise, web caches deployed together with a web server, or as a man-
in-the-middle proxy on the communication path implement a shared cache
designed to store and serve objects frequently accessed by multiple users. In
all cases, a cache hit eliminates the need to request the object from the origin
server, improving performance for both the client and server.

In particular, web caches are a key component of Content Delivery Net-
works (CDN) that provide web performance and availability services to their
users. By deploying massively-distributed networks of shared caching proxies
(also called edge servers) around the globe, CDNs aim to serve as many re-
quests as possible from their caches deployed closest to clients, offloading the
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CHAPTER 2. BACKGROUND & RELATED WORKS

origin servers in the process. As a result of multiple popular CDN providers
that cover different market segments ranging from simple personal sites to
large enterprises, web caches have become a central component of the Inter-
net infrastructure. A recent study by Guo et al. estimates that 74% of the
Alexa Top 1K make use of CDNs [47].

The most common targets for caching are static but frequently accessed
resources. These include static HTML pages, scripts and style sheets, images
and other media files, and large document and software downloads. Due to
the shared nature of most web caches, objects containing dynamic, person-
alized, private, or otherwise sensitive content are not suitable for caching.
We point out that there exist technologies such as Edge Side Includes [131]
that allow caching proxies to assemble responses from a cached static part
and a freshly-retrieved dynamic part, and the research community has also
explored caching strategies for dynamic content. That being said, caching
of non-static objects is not common, and is not relevant to WCD attacks.
Therefore, it will not be discussed further in this chapter.

The HTTP/1.1 specification defines Cache-Control headers that can be
included in a server’s response to signal to all web caches on the communi-
cation path how to process the transferred objects [40]. For example, the
header “Cache- Control: no-store” indicates that the response should
not be stored. While the specification states that web caches MUST respect
these headers, web cache technologies and CDN providers offer configuration
options for their users to ignore and override header instructions. Indeed, a
common and easy configuration approach is to create simple caching rules
based on resource paths and file names, for instance, instructing the web
cache to store all files with extensions such as jpg, ico, css, or js [35, 28].

Caching mechanisms in many Internet technologies (e.g., ARP, DNS) have
been targeted by cache poisoning attacks, which involve an attacker storing
a malicious payload in a cache later to be served to victims. For example,
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James Kettle recently presented practical cache poisoning attacks against
caching proxies [68, 69]. Likewise, Nguyen et al. demonstrated that nega-
tive caching (i.e., caching of 4xx or 5xx error responses) can be combined
with cache poisoning to launch denial-of-service attacks [98]. Although the
primary goal of a cache poisoning attack is malicious payload injection and
not private data disclosure, these attacks nevertheless manipulate web caches
using mechanisms similar to web cache deception. Hence, these two classes
of attacks are closely related.

More generally, the complex ecosystem of CDNs and their critical posi-
tion as massively-distributed networks of caching reverse proxies have been
studied in various security contexts [122, 47]. For example, researchers have
explored ways to use CDNs to bypass Internet censorship [54, 145, 41], exploit
or weaponize CDN resources to mount denial-of-service attacks [128, 24], and
exploit vectors to reveal origin server addresses behind proxies [134, 61]. On
the defense front, researchers have proposed techniques to ensure the integrity
of data delivered over untrusted CDNs and other proxy services [78, 80, 91].
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Chapter 3

Path Confusion

3.1 Introduction

Traditionally, URLs referenced web resources by directly mapping them to
a web server’s filesystem structure, followed by a list of query parameters.
For instance, example.com/home/index.html?lang=en would correspond
to the file home/index.html at that web server’s document root directory,
and lang=en represents a parameter indicating the preferred language.

Since two syntactically different URLs could be correspondent, URL nor-
malization process has been utilized to determine whether different URLs are
referring to the same web resource location on different frameworks, e.g. web
browsers, proxies, cache servers and web servers. As every different web com-
ponent has implemented URL normalization differently from others, there are
different attacks which may target any of these components.

While web applications grew in size and complexity, web servers intro-
duced sophisticated URL rewriting mechanisms to implement advanced ap-
plication routing structures as well as to improve usability and accessibility.
In other words, web servers parse, process, and interpret URLs in ways that
are not clearly reflected in the externally-visible representation of the URL
string. Consequently, browser, the rest of the communication endpoints and
man-in-the-middle entities may remain oblivious to this additional layer of
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Page URL: http :// example.com/rpo/test.php
Style Path: dist/styles.css

Style URL: http :// example.com/rpo/dist/styles.css

Figure 3.1: Conversion of Relative Path to Absolute URL

abstraction between the resource filesystem path and its URL, and process
the URL in an unexpected—and potentially unsafe—manner. We coin the
term path confusion to describe this phenomenon.

We inspect the path confusion based attacks in two classes of Relative
Path Overwrite (RPO) and Web cache deception (WCD) in the following
sections.

3.2 Relative Path Overwrite

Relative Path Overwrite vulnerabilities can occur in sites that use relative
paths to include resources such as scripts or stylesheets. Before a web browser
can issue a request for such a resource to the server, it must expand the
relative path into an absolute URL. For example in Figure 3.1, assume that
a web browser has loaded an HTML document from http://example.com/

rpo/test.php which references a remote stylesheet with the relative path
dist/styles.css. Web browsers treat URLs as file system-like paths, that
is, test.php would be assumed to be a file within the parent directory rpo/,
which would be used as the starting point for relative paths, resulting in the
absolute URL http://example.com/rpo/dist/styles.css.

However, the browser’s interpretation of the URL may be very different
from how the web server resolves the URL to determine which resource should
be returned to the browser. The URL may not correspond to an actual server-
side file system structure at all, or the web server may internally rewrite parts
of the URL. For instance, when a web server receives a request for http:
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Page URL: http :// example.com/rpo/test.php/
Style Path: dist/styles.css

Style URL: http :// example.com/rpo/test.php/dist/styles.css

Figure 3.2: Path Confusion Due to Server-Side URL Mapping

//example.com/rpo/test.php/ with an added trailing slash as shown in
Figure 3.2, it may still return the same HTML document corresponding to the
test.php resource. Yet, to the browser this URL would appear to designate
a directory (without a file name component), thus the browser would request
the stylesheet from http://example.com/rpo/test.php/dist/styles.css.
Depending on the server configuration, this may either result in an error
since no such file exists, or the server may interpret dist/styles.css as a
parameter to the script test.php and return the HTML document. In the
latter case, the HTML document includes itself as a stylesheet. Provided
that the document contains a (text) injection vulnerability, attackers can
carry out the scriptless attacks; since the stylesheet inclusion is same-origin,
the document load is permitted.

The first account of RPO is attributed to a blog post by Gareth Heyes [53],
introducing self-referencing a PHP script with server-side URL rewriting.
Furthermore, the post notes that certain versions of Internet Explorer allow
JavaScript execution from within a CSS context in the Compatibility View
mode [92], escalating style injection to XSS [142]. Another blog post by
Dalili [32] extends the technique to IIS and ASP.Net applications, and shows
how URL-encoded slashes are decoded by the server but not the browser,
allowing not only self-reference but also the inclusion of different resources.
Kettle [66] coins the term Path Relative StyleSheet Import (PRSSI) for a
specific subset of RPO attacks, introduces a PRSSI vulnerability scanner
for Burp Suite [18], and proposes countermeasures. Terada [125] provides
more exploitation techniques for various browsers or certain web applications,
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and [143] discusses an example chaining several vulnerabilities to result in
a combination of RPO and a double style injection attack. Gil shows how
attackers can deceive web cache servers by using RPO [42, 43]. Some of the
attacks discussed in the various blog posts are custom-tailored to specific
sites or applications, whereas others are more generic and apply to certain
web server configurations or frameworks.

3.2.1 Threat Model

The general threat model of Relative Path Overwrite (RPO) resembles that
of Cross-Site Scripting (XSS). Typically, the attacker’s goal is to steal sen-
sitive information from a third-party site or make unauthorized transactions
on the site, such as gaining access to confidential financial information or
transferring money out of a victim’s account. The attacker carries out the
attack against the site indirectly, by way of a victim that is an authorized
user of the site. The attacker can trick the victim into following a crafted
link, such as when the victim visits a domain under the attacker’s control and
the page automatically opens the manipulated link, or through search engine
poisoning, deceptive shortened links, or through means of social engineering.

3.2.2 Preconditions for RPO Style Attacks

In this thesis, we focus on a generic type of RPO attack because its precon-
ditions are less specific and are likely met by a larger number of sites. More
formally, we define a page as vulnerable if:

• The page includes at least one stylesheet using a relative path.

• The server is set up to serve the same page even if the URL is manip-
ulated by appending characters that browsers interpret as path separa-
tors.
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• The page reflects style directives injected into the URL or cookie. Note
that the reflection can occur in an arbitrary location within the page,
and markup or script injection are not necessary.

• The page does not contain a <base> HTML tag before relative paths
that would let the browser know how to correctly expand them.

This attack corresponds to style injection by means of a page that ref-
erences itself as a stylesheet (PRSSI). Since the “stylesheet” self-reference
is, in fact, an HTML document, web servers would typically return it with
a text/html content type. Browsers in standards-compliant mode do not
attempt to parse documents with a content type other than CSS even if ref-
erenced as a stylesheet, causing the attack to fail. However, web browsers
also support quirks mode for backwards compatibility with non-standards
compliant sites [115]; in this mode, browsers ignore the content type and
parse the document according to the inclusion context only.

We define a vulnerable page as exploitable if the injected style is inter-
preted by the browser–that is, if an attacker can force browsers to render the
page in quirks mode. This can occur in two alternative ways:

• The vulnerable HTML page specifies a document type that causes the
browser to use quirks mode instead of standards mode. The document
type indicates the HTML version and dialect used by the page; Sec-
tion 4.3.4 provides details on how the major web browsers interpret the
document types we encountered during our study.

• Even if the page specifies a document type that would usually result in
standards mode being used, quirks mode parsing can often be enforced
in Internet Explorer [66]. Framed documents inherit the parsing mode
from the parent document, thus an attacker can create an attack page
with an older document type and load the vulnerable page into a frame.
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This trick only works in Internet Explorer, however, and it may fail if
the vulnerable page uses any anti-framing technique, or if it specifies an
explicit value for the X-UA-Compatible HTTP header (or equivalent).

Our measurement methodology in Section 4.2 tests how often these pre-
conditions hold in the wild in order to quantify the vulnerability and ex-
ploitability of pages with respect to RPO attacks.

3.2.3 Motivation

In the previous section, we surveyed a number of style-based attacks in the
scientific literature, and several blog posts discussing special cases of RPO.
We are not aware of any scholarly work about RPO, or any research about
how prevalent RPO vulnerabilities are on the Web. To the best of our knowl-
edge, Burp Suite [18] is the first and only tool that can detect PRSSI vulnera-
bilities based on RPO in web applications. However, in contrast to our work,
it does not determine if the vulnerability can be exploited. Furthermore, we
are the first to provide a comprehensive survey of how widespread RPO style
vulnerabilities and exploitabilities are in the wild.

3.3 Web Cache Deception

The widespread use of clean URLs (also known as RESTful URLs) help illus-
trate the issues resulting from different interpretations of a URL. Clean URL
schemes use structures that abstract away from a web server’s internal organi-
zation of resources, and instead provide a more readable API-oriented repre-
sentation. For example, a given web service may choose to structure the URL
example.com/index.php?p1=v1&p2=v2 as example.com/index/v1/v2 in
clean URL representation.

Now, consider the case where a user accesses the same web service using

20



CHAPTER 3. PATH CONFUSION

Victim

Attacker

Web Cache

Web Server

GET /account.php/nonexistent.jpg 

200 OK

Cache-Control: no-store

<account.php> (!) 

GET /account.php/nonexistent.jpg 200 OK

<account.php> (!) 

1

2
3

Figure 3.3: An illustrated example of web cache deception. Path confusion between a web
cache and a web server leads to unexpected caching of the victim’s private account details.
The attacker can then issue a request resulting in a cache hit, gaining unauthorized access
to cached private information.

the URL example.com/index/img/pic.jpg. While different URL normal-
izations might be applied by different components of the system, there is still
possible for the path to be inconsistently interpreted by different partners.
The user’s browser and all technologies in the communication path (e.g., the
web browser, caches, load balancers, proxies, web application firewalls) are
likely to misinterpret this request, expect an image file in return, and treat
the HTTP response accordingly (e.g., web caches may choose to store the
response payload).

However, in reality, the web service will internally map this URL to
example.com/index.php?p1=img&p2=pic.jpg, and return the contents of
index.php with an HTTP 200 status code. Note that even when img/pic.jpg
is an arbitrary resource that does not exist on the web server, the HTTP 200
status code will falsely indicate that the request was successfully handled as
intended. Described behaviour is the root cause of Web Cache Deception
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attack.
WCD is a recently-discovered manifestation of path confusion that an

attacker can exploit to break the confidentiality properties of a web applica-
tion. This may result in unauthorized disclosure of private data belonging
to end-users of the target application, or give the attacker access to sensitive
security tokens (e.g., CSRF tokens) that could be used to facilitate further
web application attacks by compromising authentication and authorization
mechanisms. Gil proposed WCD in 2017, and demonstrated its impact with
a practical attack against a major online payment provider, PayPal [44, 45].

3.3.1 Threat Model

In order to exploit a WCD vulnerability, the attacker crafts a URL that
satisfies two properties:

1. The URL must be interpreted by the web server as a request for a
non-cacheable page with private information, and it should trigger a
successful response.

2. The same URL must be interpreted by an intermediate web cache as a
request for a static object matching the caching rules in effect.

Next, The attacker uses social engineering channels to lure a victim into
visiting this URL, which would result in the incorrect caching of the victim’s
private information. The attacker would then repeat the request and gain
access to the cached contents. Fig. 3.3 illustrates these interactions.

In Step 1 , the attacker tricks the victim into visiting a URL that requests
/account.php/nonexistent.jpg. At a first glance this appears to reference
an image file, but in fact does not point to a valid resource on the server.

In Step 2 , the request reaches the web server and is processed. The
server in this example applies rewrite rules to discard the non-existent part
of the requested object, a common default behavior for popular web servers
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and application frameworks. As a result, the server sends back a success
response, but actually includes the contents of account.php in the body,
which contains private details of the victim’s account. Unaware of the URL
mapping that happened at the server, the web cache stores the response,
interpreting it as a static image.

Finally, in Step 3 , the attacker visits the same URL which results in a
cache hit and grants him unauthorized access to the victim’s cached account
information.

Using references to non-existent cacheable file names that are interpreted
as path parameters is an easy and effective path confusion technique to mount
a WCD attack, and is the original attack vector proposed by Gil. However,
we discuss novel and more advanced path confusion strategies in Sec. 5.4.
Also note that the presence of a Cache-Control: no-store header value
has no impact in our example, as it is common practice to enable caching
rules on proxy services that simply ignore header instructions and implement
aggressive rules based on path and file extension patterns (see Sec. 2.3).

3.3.2 Motivation

WCD garnered significant media attention due to its security implications
and high damage potential. Major web cache technology and CDN providers
also responded, and some published configuration hardening guidelines for
their customers [84, 17, 15]. More recently, Cloudflare announced options for
new checks on HTTP response content types to mitigate the attack [25].

Researchers have also published tools to scan for and detect WCD, for in-
stance, as an extension to the Burp Suite scanner or as stand-alone tools [57,
116]. We note that these tools are oriented towards penetration testing,
and are designed to perform targeted scans on web properties directly un-
der the control of the tester. That is, by design, they operate under certain
pre-conditions, perform information disclosure tests via simple similarity and
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edit distance checks, and otherwise require manual supervision and interpre-
tation of the results. This is orthogonal to the methodology and findings
we present in Chapter 5. Our experiment is, instead, designed to discover
WCD vulnerabilities at scale in the wild, and does not rely on page similarity
metrics that would result in an overwhelming number of false positives in an
uncontrolled test environment.
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Chapter 4

Relative Path Overwrite

4.1 Introduction

Cross-Site Scripting (XSS) [103] attacks are one of the most common threats
on the Web. While XSS has traditionally been understood as the attacker’s
capability to inject script into a site and have it executed by the victim’s
web browser, more recent work has shown that script injection is not a nec-
essary precondition for effective attacks. By injecting Cascading Style Sheet
(CSS) directives, for instance, attackers can carry out so-called scriptless
attacks [49] and exfiltrate secrets from a site.

The aforementioned injection attacks typically arise due to the lack of
separation between code and data [36], and more specifically, insufficient
sanitization of untrusted inputs in web applications. While script injection
attacks are more powerful than those based on style injection, they are also
more well-known as a threat, and web developers are comparatively more
likely to take steps to make them more difficult. From an attacker’s point
of view, style injection attacks may be an option in scenarios where script
injection is not possible.

There are many existing techniques of how style directives could be in-
jected into a site [49, 56]. A relatively recent class of attacks is Relative
Path Overwrite (RPO), first proposed in a blog post by Gareth Heyes [53] in
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2014. These attacks exploit the semantic disconnect between web browsers
and web servers in interpreting relative paths (path confusion). More con-
cretely, in certain settings an attacker can manipulate a page’s URL in such
a way that the web server still returns the same content as for the benign
URL. However, using the manipulated URL as the base, the web browser
incorrectly expands relative paths of included resources, which can lead to
resources being loaded despite not being intended to be included by the de-
veloper. Depending on the implementation of the site, different variations of
RPO attacks may be feasible. For example, an attacker could manipulate the
URL to make the page include user-generated content hosted on the same
domain [125]. When an injection vulnerability is present in a page, an at-
tacker could manipulate the URL such that the web page references itself as
the stylesheet, which turns a simple text injection vulnerability into a style
sink [53]. Among these attack instantiations, the latter variant has precon-
ditions that are comparatively frequently met by sites. Our work focuses on
this variant of RPO.

To date, little is known about how widespread RPO vulnerabilities are
on the Web. Especially since the attack is more recent and less well-known
than traditional XSS, we believe it is important to characterize the extent of
the threat and quantify its enabling factors. In this chapter, we present the
first in-depth study of style injection vulnerability using RPO. We extract
pages using relative-path stylesheets from the Common Crawl dataset [31],
automatically test if style directives can be injected using RPO, and deter-
mine whether they are interpreted by the browser. Out of 31 million pages
from 222 thousand Alexa Top 1M sites [8] in the Common Crawl that use
relative-path stylesheets, we find that 377 k pages (12 k sites) are vulnerable;
11 k pages on 1 k sites can be exploited in Chrome, and nearly 55 k pages on
over 3 k sites can be exploited in Internet Explorer. We analyze a range of
factors that prevent a vulnerable page from being exploited, and discuss how
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Common 
Crawl

Identifying 
Candidate Pages

Detecting 
Vulnerable Pages

Detecting 
Exploitable Pages Report

Figure 4.1: Methodology Overview. Candidate pages use relative stylesheet paths, vul-
nerable pages reflect injected style directives, and exploitable pages parse and render the
injected style when opened in a browser.

these could be used to mitigate these vulnerabilities.
The contributions of this chapter are summarized as follows:

• First automated and large-scale study of the prevalence and significance
of RPO vulnerabilities in the wild.

• Analysis of various path confusion techniques and their impact on ex-
ploitation of RPO vulnerabilities.

• Discussing a range of factors that prevent a vulnerability from being
exploited, and find that simple countermeasures exist to mitigate RPO.

• Linking many exploitable pages to installations of Content Management
Systems (CMSes), and notify the vendors.

4.2 Methodology

Our methodology consists of three main phases , as shown in Figure 4.1:
we seed our system with pages from the Common Crawl archive to extract
candidate pages that include at least one stylesheet using a relative path.
To determine whether these candidate pages are vulnerable, we attempt to
inject style directives by requesting variations of each page’s URL to cause
path confusion and test whether the generated response reflects the injected
style directives. Finally, we test how often vulnerable pages can be exploited
by checking whether the reflected style directives are parsed and used for
rendering in a web browser.
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4.2.1 Candidate Identification

For finding the initial seed set of candidate pages with relative-path stylesheets,
we leverage the Common Crawl from August 2016, which contains more than
1.6 billion pages. By using an existing dataset, we can quickly identify can-
didate pages without creating any web crawl traffic. We use a Java HTML
parser to filter any pages containing only inline CSS or stylesheets referenced
by absolute URLs, leaving us with over 203 million pages on nearly 6 million
sites. For scalability purposes, we further reduce the set of candidate pages
in two steps:

1. We retain only pages from sites listed in the Alexa Top 1 million ranking,
which reduces the number of candidate pages to 141 million pages on
223 thousand sites. In doing so, we bias our result toward popular sites–
that is, sites where attacks could have a larger impact because of the
higher number of visitors.

2. We observed that many sites use templates customized through query
strings or path parameters. We expect these templates to cause similar
vulnerability and exploitability behavior for their instantiations, thus we
can speed up our detection by grouping URLs using the same template,
and testing only one random representative of each group.

In order to group pages, we replace all the values of query parameters
with constants, and we also replace any number identifier in the path
with a constant. We group pages that have the same abstract URL as
well as the same document type in the Common Crawl dataset. Table
4.1 shows instances of grouped web pages by either query values or path
parameters.

Since our methodology contains a step during which we actively test
whether a vulnerability can be exploited, we remove from the candidate set
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Table 4.1: Sample Grouped Web pages.

Group By Web page

Query Value
http://www.example.com/?lang=en
http://www.example.com/?lang=it

Path Parameter
http://www.example.com/028
http://www.example.com/142

all pages hosted on sites in .gov, .mil, .army, .navy, and .airforce. The
final candidate set consists of 137 million pages (31 million page groups) on
222 thousand sites.

4.2.2 Vulnerability Analysis

To determine whether a candidate page is vulnerable, we implemented a
lightweight crawler based on the Python Requests module. At a high level,
the crawler simulates how a browser expands relative paths and tests whether
style directives can be injected into the resources loaded as stylesheets using
path confusion.

For each page group from the candidate set, the crawler randomly selects
one representative URL and mutates it according to a number of techniques
explained below. Each of these techniques aims to cause path confusion and
taints page inputs with a style directive containing a long unique, random
string. The crawler requests the mutated URL from the server and parses
the response document, ignoring resources loaded in frames. If the response
contains a <base> tag, the crawler considers the page not vulnerable since
the <base> tag, if used correctly, can avoid path confusion. Otherwise, the
crawler extracts all relative stylesheet paths from the response and expands
them using the mutated URL of the main page as the base, emulating how
browsers treat relative paths (see Section 3.2). The crawler then requests
each unique stylesheet URL until one has been found to reflect the injected
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style in the response.

The style directive we inject to test for reflection vulnerabilities is shown
in the legend of Figure 4.2. The payload begins with an encoded newline
character, as we observed that the presence of a newline character increases
the probability of a successful injection. We initially use %0A as the newline
character, but also test %0C and %0D in case of unsuccessful injection. The
remainder of the payload emulates the syntax of a simple CSS directive and
mainly consists of a randomly generated string used to locate the payload in
the body of the server response. If the crawler finds a string match of the
injected unique string, it considers the page vulnerable.

In the following, we describe the various URL mutation techniques we use
to inject style directives. All techniques also use RPO so that instead of the
original stylesheet files, browsers load different resources that are more likely
to contain an injection vulnerability. Conceptually, the RPO approaches
we use assume some form of server-side URL rewriting as described in Sec-
tion 3.2. That is, the server internally resolves a crafted URL to the same
script as the “clean” URL. Under that assumption, the path confusion caused
by RPO would result in the page referencing itself as the stylesheet when
loaded in a web browser. However, this assumption is only conceptual and
not necessary for the attack to succeed. For servers that do not internally
rewrite URLs, our mutated URLs likely cause error responses since the URLs
do not correspond to actual files located on these servers. Error responses
are typically HTML documents and may contain injection sinks, such as
when they display the URL of the file that could not be found. As such,
server-generated error responses can be used for the attack in the same way
as regular pages.

Our URL mutation techniques differ in how they attempt to cause path
confusion and inject style directives by covering different URL conventions
used by a range of web application platforms.
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example.com/page.asp
example.com/page.asp/PAYLOAD //
example.com/page.asp/PAYLOAD/style.css

(a) Path Parameter (Simple)

example.com/page.php/param1/param2
example.com/page.php/PAYLOAD param1/PAYLOAD param2 //
example.com/page.php/PAYLOAD param1/PAYLOAD param2/style.css

(b) Path Parameter (PHP or ASP)

example.com/page.jsp;param1;param2
example.com/page.jsp;PAYLOAD param1;PAYLOAD param2 //
example.com/page.jsp;PAYLOAD param1;PAYLOAD param2/style.css

(c) Path Parameter (JSP)

example.com/dir/page.aspx
example.com/PAYLOAD /..%2Fdir/PAYLOAD /..%2Fpage.aspx//
example.com/PAYLOAD /..%2Fdir/PAYLOAD /..%2Fpage.aspx/style.css

(d) Encoded Path

example.com/page.html?k1=v1&k2=v2
example.com/page.html%3Fk1=PAYLOAD v1&k2=PAYLOAD v2//
example.com/page.html%3Fk1=PAYLOAD v1&k2=PAYLOAD v2/style.css

(e) Encoded Query

example.com/page.php?key=value
example.com/page.php//?key=value
example.com/page.php/style.css

Original Cookie: k1=v1; k2=v2
Crafted Cookie: k1=PAYLOAD v1; k2=PAYLOAD v2

(f) Cookie

Figure 4.2: Various techniques of path confusion and style injection. In each example,
the first URL corresponds to the regular page, and the second one to the page URL
crafted by the attacker. Each HTML page is assumed to reference a stylesheet at ../
style.css, resulting in the browser expanding the stylesheet path as shown in the third
URL. PAYLOAD corresponds to %0A{}body{background:NONCE} (simplified), where
NONCE is a randomly generated string.
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Path Parameter. A number of web frameworks such as PHP, ASP, or JSP
can be configured to use URL schemes that encode script input parameters as
a directory-like string following the name of the script in the URL. Figure 4.2a
shows a generic example where there is no parameter in the URL. Since
the crawler does not know the name of valid parameters, it simply appends
the payload as a subdirectory to the end of the URL. In this case, content
injection can occur if the page reflects the page URL or referrer into the
response. Note that in the example, we appended two slashes so that the
browser does not remove the payload from the URL when expanding the
stylesheet reference to the parent directory (../style.css). In the actual
crawl, we always appended twenty slashes to avoid having to account for
different numbers of parent directories. We did not observe relative paths
using large numbers of ../ to reference stylesheets, thus we are confident that
twenty slashes suffice for our purposes.

Different web frameworks handle path parameters slightly differently, which
is why we distinguish a few additional cases. If parameters are present in
the URL, we can distinguish these cases based on a number of regular ex-
pressions that we generated. For example, parameters can be separated by
slashes (Figure 4.2b, PHP or ASP) or semicolons ( Figure 4.2c, JSP). When
the crawler detects one of these known schemes, it injects the payload into
each parameter. Consequently, in addition to URL and referrer reflection,
injection can also be successful when any of the parameters is reflected in the
page.

Encoded Path. This technique targets web servers such as IIS that decode
encoded slashes in the URL for directory traversal, whereas web browsers
do not. Specifically, we use %2F, an encoded version of ‘/’, to inject our
payload into the URL in such a way that the canonicalized URL is equal
to the original page URL (see Figure 4.2d). Injection using this technique
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succeeds if the page reflects the page URL or referrer into its output.

Encoded Query. Similar to the technique above, we replace the URL query
delimiter ‘?’ with its encoded version %3F so that web browsers do not
interpret it as such. In addition, we inject the payload into every value of
the query string, as can be seen in Figure 4.2e. CSS injection happens if
the page reflects either the URL, referrer, or any of the query values in the
HTML response.

Cookie. Since stylesheets referenced by a relative path are located in the
same origin as the referencing page, its cookies are sent when requesting
the stylesheet. CSS injection may be possible if an attacker can create new
cookies or tamper with existing ones (a strong assumption compared to the
other techniques), and if the page reflects cookie values in the response. As
shown in Figure 4.2f, the URL is only modified by adding slashes to cause
path confusion. The payload is injected into each cookie value and sent by
the crawler as an HTTP header.

4.2.3 Exploitability Analysis

Once a page has been found to be vulnerable to style injection using RPO, the
final step is to verify whether the reflected CSS in the response is evaluated
by a real browser. To do so, we built a crawler based on Google Chrome,
and used the Remote Debugging Protocol [1] to drive the browser and record
HTTP requests and responses. In addition, we developed a Chrome extension
to populate the cookie header in CSS stylesheet requests with our payload.

In order to detect exploitable pages, we crawled all the pages from the
previous section that had at least one reflection. Specifically, for each page we
checked which of the techniques in Figure 4.2 led to reflection, and crafted the
main URL with a CSS payload. The CSS payload used to verify exploitability
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is different from the simple payload used to test reflection. Specifically, the
style directive is prefixed with a long sequence of } and ] characters to close
any preceding open curly braces or brackets that may be located in the source
code of the page, since they might prevent the injected style directive from
being parsed correctly. The style directive uses a randomly-generated URL
to load a background image for the HTML body. We determine whether the
injected style is evaluated by checking the browser’s network traffic for an
outgoing HTTP request for the image.

Overriding Document Types. Reflected CSS is not always interpreted by
the browser. One possible explanation is the use of a modern document type
in the page, which does not cause the browser to render the page in quirks
mode. Under certain circumstances, Internet Explorer allows a parent page
to force the parsing mode of a framed page into quirks mode [66]. To test how
often this approach succeeds in practice, we also crawled vulnerable pages
with Internet Explorer 11 by framing them while setting X-UA-Compatible

to IE=EmulateIE7 via a meta tag in the attacker’s page.

4.2.4 Limitations

RPO is a class of attacks and our methodology covers only a subset of them.
We target RPO for the purpose of style injection using an HTML page ref-
erencing itself (or, accidentally, an error page) as the stylesheet. In terms of
style injection, our crawler only looks for reflection, not stored injection of
style directives. Furthermore, manual analysis of a site might reveal more
opportunities for style injection that our crawler fails to detect automatically.

For efficiency reasons, we seed our analysis with an existing Common
Crawl dataset. We do not analyze the vulnerability of pages not contained in
the Common Crawl seed, which means that we do not cover all sites, and we
do not fully cover all pages within a site. Consequently, the results presented
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in this chapter should be seen as a lower bound. If desired, our methodology
can be applied to individual sites in order to analyze more pages.

4.2.5 Ethical Considerations

One ethical concern is that the injected CSS might be stored on the server
instead of being reflected in the response, and it could break sites as a result.
We took several cautionary steps in order to minimize any damaging side
effects on sites we probed. First, we did not try to login to the site, and we
only tested RPO on the publicly available version of the page. In addition,
we only requested pages by tainting different parts of the URL, and did not
submit any forms. Moreover, we did not click on any button or link in the
page in order to avoid triggering JavaScript events. These steps significantly
decrease the chances that injected CSS will be stored on the server. In order
to minimize the damaging side effects in case our injected CSS was stored,
the injected CSS is not a valid style directive, and even if it is stored on the
server, it will not have any observable effect on the page.

In addition, experiment resulted in the discovery of vulnerable content
management systems (CMSes) used world-wide, and we contacted them so
they can fix the issue. We believe the real-world experiments that we con-
ducted were necessary in order to measure the risk posed by these vulnera-
bilities and inform site owners of potential risks to their users.

4.3 Analysis

For the purposes of our analysis, we gradually narrow down the seed data
from the Common Crawl to pages using relative style paths in the Alexa Top
1M, reflecting injected style directives under RPO, and being exploitable due
to quirks mode rendering.

Table 4.2 shows a summary of our dataset. Tested Pages refers to the set
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Table 4.2: Narrowing down the Common Crawl to the candidate set used in our analysis
(from left to right).

Relative CSS Alexa Top 1M Candidate Set

All Pages 203,609,675 141,384,967 136,793,450
Tested Pages 53,725,270 31,448,446 30,991,702
Sites 5,960,505 223,212 222,443
Doc. Types 9,833 2,965 2,898

of randomly selected pages from the page groups as discussed in Section 4.2.1.
For brevity, we are referring to Tested Pages wherever we mention pages in
the remainder of the chapter.

4.3.1 Relative Stylesheet Paths

To assess the extent to which our Common Crawl-seeded candidate set covers
sites of different popularity, consider the hatched bars in Figure 4.3. Six out
of the ten largest sites according to Alexa are represented in our candidate
set. That is, they are contained in the Common Crawl, and have relative style
paths. The figure shows that our candidate set contains a higher fraction of
the largest sites and a lower fraction of the smaller sites. Consequently, our
results better represent the most popular sites, which receive most visitors,
and most potential victims of RPO attacks.

While all the pages in the candidate set contain at least one relative
stylesheet path, Figure 4.4 shows that 63.1% of them contain multiple rela-
tive paths, which increases the chances of finding a successful RPO and style
injection point.

4.3.2 Vulnerable Pages

We consider a candidate page vulnerable if one of the style injection tech-
niques of Section 4.2.2 succeeds. In other words, the server’s response should
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Figure 4.3: Percentage of the Alexa site ranking in our candidate set.

reflect the injected payload. Furthermore, we conservatively require that the
response not contain a base tag since a correctly configured base tag can
prevent path confusion.

Table 4.3 shows that 1.2% of pages are vulnerable to at least one of the
injection techniques, and 5.4% of sites contain at least one vulnerable page.
The path parameter technique is most effective against pages, followed by the
encoded query and the encoded path techniques. Sites that are ranked higher
according to Alexa are more likely to be vulnerable, as shown in Figure 4.3,
where vulnerable and exploitable sites are relative to the candidate set in
each bucket. While one third of the candidate set in the Top 10 (two out of
six sites) is vulnerable, the percentage oscillates between 8 and 10% among
the Top 100 k. The candidate set is dominated by the smaller sites in the
ranks between 100 k and 1M, which have a vulnerability rate of 4.9% and
push down the average over the entire ranking.
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Figure 4.4: CDF of total and maximum number of relative stylesheets per web page and
site, respectively.

A base tag in the server response can prevent path confusion because
it indicates how the browser should expand relative paths. We observed a
number of inconsistencies with respect to its use. At first, 603 pages on 60
sites contained a base tag in their response; however, the server response after
injecting our payload did not contain the tag anymore, rendering these pages
potentially exploitable. Furthermore, Internet Explorer’s implementation of
the base tag appears to be broken. When such a tag is present, Internet
Explorer fetches two URLs for stylesheets—one expanded according to the
base URL specified in the tag, and one expanded in the regular, potentially
“confused” way of using the page URL as the base. In our experiments,
Internet Explorer always applied the “confused” stylesheet, even when the
one based on the base tag URL loaded faster. Consequently, base tags do
not appear to be an effective defense against RPO in Internet Explorer (They
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Table 4.3: Vulnerable pages and sites in the candidate set.

Technique Vulnerable Pages Vulnerable Sites

Path Parameter 309,079 (1.0%) 9,136 (4.1%)
Encoded Path 53,502 (0.2%) 1,802 (0.8%)
Encoded Query 89,757 (0.3%) 1,303 (0.6%)
Cookie 15,656 (<0.1%) 1,030 (0.5%)

Total 377,043 (1.2%) 11,986 (5.4%)

Table 4.4: Exploitable pages and sites in the candidate set (IE using framing).

Technique
Exploitable (Chrome) Exploitable (Internet Explorer)

Pages Sites Pages Sites

Path Parameter 6,048 (<0.1%) 1,025 (0.5%) 52,344 (0.2%) 3,433 (1.5%)
Encoded Path 3 (<0.1%) 2 (<0.1%) 24 (<0.1%) 5 (<0.1%)
Encoded Query 23 (<0.1%) 20 (<0.1%) 137 (<0.1%) 43 (<0.1%)
Cookie 4,722 (<0.1%) 81 (<0.1%) 2,447 (<0.1%) 238 (0.1%)

Total 10,781 (<0.1%) 1,106 (0.5%) 54,853 (0.2%) 3,645 (1.6%)

seem to work as expected in other browsers, including Edge).

4.3.3 Exploitable Pages

To test whether a vulnerable page was exploitable, we opened it in Chrome,
injected a style payload with an image reference (randomly generated URL),
and checked if the image was indeed loaded. As shown in Table 4.4, this test
succeeded for 2.9% of vulnerable pages; 0.5% of sites in the candidate set
had at least one exploitable page.

In Section 4.3.4 to 4.3.7, we explore various factors that may impact
whether a vulnerable page can be exploited, and we show how some of these
partial defenses can be bypassed.

39



4.3. ANALYSIS

100 101 102 103

Doc. Type Rank

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

#
of

S
it

es

Quirks Mode

Standard Mode

Figure 4.5: Number of sites containing at least one page with a certain document type
(ordered by doctype rank).

4.3.4 Document Types

HTML document types play a significant role in RPO-based style injection
attacks because browsers typically parse resources with a non-CSS content
type in a CSS context only when the page specifies an ancient or non-standard
HTML document type (or none at all). The pages in our candidate set con-
tain a total of 4,318 distinct document types. However, the majority of these
unique document types are not standardized and differ from the standardized
ones only by small variations, such as forgotten spaces or misspellings.

To determine how browsers interpret these document types (i.e., whether
they cause them to render a page in standards or quirks mode), we designed
a controlled experiment. For each unique document type, we set up a lo-
cal page with a relative stylesheet path and carried out an RPO attack to
inject CSS using a payload similar to what we described in Section 4.2.2.
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Table 4.5: Quirks mode document types by browser.

Browser Version Operating System Doc. Types

Chrome 55 Ubuntu 16.04 1,378 (31.9%)
Opera 42 Ubuntu 16.04 1,378 (31.9%)
Safari 10 macOS Sierra 1,378 (31.9%)

Firefox 50 Ubuntu 16.04 1,326 (30.7%)

Edge 38 Windows 10 1,319 (30.5%)
Internet Explorer 11 Windows 7 1,319 (30.5%)

Table 4.6: Most frequent document types causing all browsers to render in quirks mode,
as well as the sites that use at least one such document type.

Doc. Type (shortened) Pages Sites

(none) 1,818,595 (5.9%) 56,985 (25.6%)
"-//W3C//DTD HTML 4.01 Transitional//EN" 721,884 (2.3%) 18,648 (8.4%)
"-//W3C//DTD HTML 4.0 Transitional//EN" 385,656 (1.2%) 11,566 (5.2%)
"-//W3C//DTD HTML 3.2 Final//EN" 22,019 (<0.1%) 1,175 (0.5%)
"-//W3C//DTD HTML 3.2//EN" 10,839 (<0.1%) 927 (0.4%)

All 3,046,449 (9.6%) 71,597 (32.2%)

We automatically opened the local page in Chrome, Firefox, Edge, Inter-
net Explorer, Safari, and Opera, and we kept track of which document type
caused the injected CSS to be parsed and the injected background image to
be downloaded.

Table 4.5 contains the results of this experiment. Even though the exact
numbers vary among browsers, roughly a third of the unique document types
we encountered result in quirks mode rendering. Not surprisingly, both Mi-
crosoft products Edge and Internet Explorer exhibit identical results, whereas
the common Webkit ancestry of Chrome, Opera, and Safari also show iden-
tical results. Overall, 1,271 (29.4%) of the unique document types force all
the browsers into quirks mode, whereas 1,378 (31.9%) of them cause at least
one browser to use quirks mode rendering. Table 4.6 shows the most fre-
quently used document types that force all the browsers into quirks mode,
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Table 4.7: Summary of document type usage in sites.

Doc. Type At Least One Crawled Page All Crawled Pages

None 56,985 (25.6%) 19,968 (9.0%)
Quirks 27,794 (12.5%) 7,720 (3.5%)
None or Quirks 71,597 (32.2%) 30,040 (13.5%)

Standards 192,403 (86.5%) 150,846 (67.8%)

which includes the absence of a document type declaration in the page.

To test how often Internet Explorer allows a page’s document type to
be overridden when loading it in an iframe, we created another controlled
experiment using a local attack page framing the victim page, as outlined in
Section 4.2.3. Using Internet Explorer 11, we loaded our local attack page
for each unique document type inside the frame, and tested if the injected
CSS was parsed. While Internet Explorer parsed the injected CSS for 1,319
(30.5%) of the document types in the default setting, the frame override trick
caused CSS parsing for 4,248 (98.4%) of the unique document types.

While over one thousand document types result in quirks mode, and
around three thousand document types cause standards mode parsing, the
number of document types that have been standardized is several orders of
magnitude smaller. In fact, only a few (standardized) document types are
used frequently in pages, whereas the majority of unique document types are
used very rarely. Figure 4.5 shows that only about ten standards and quirks
mode document types are widely used in pages and sites. Furthermore, only
about 9.6% of pages in the candidate set use a quirks mode document type;
on the remaining pages, potential RPO style injection vulnerabilities cannot
be exploited because the CSS would not be parsed (unless Internet Explorer
is used). However, when grouping pages in the candidate set by site, 32.2%
of sites contain at least one page rendered in quirks mode (Table 4.7), which
is one of the preconditions for successful RPO.

42



CHAPTER 4. RELATIVE PATH OVERWRITE

4.3.5 Internet Explorer Framing

We showed above that by loading a page in a frame, Internet Explorer can
be forced to disregard a standards mode document type that would prevent
interpretation of injected style. To find out how often this technique can be
applied for successful RPO attacks, we replicated our Chrome experiment
in Internet Explorer, this time loading each vulnerable page inside a frame.
Around 14.5% of vulnerable pages were exploitable in Internet Explorer, five
times more than in Chrome (1.6% of the sites in the candidate set).

Figure 4.3 shows the combined exploitability results for Chrome and In-
ternet Explorer according to the rank of the site. While our methodology did
not find any exploitable vulnerability on the six highest-ranked sites in the
candidate set, between 1.6% and 3.2% of candidate sites in each remaining
bucket were found to be exploitable. The highest exploitability rate occurred
in the ranks 1 k through 10 k.

Broken down by injection technique, the framing trick in Internet Explorer
results in more exploitable pages for each technique except for cookie injection
(Table 4.4). One possible explanation for this difference is that the Internet
Explorer crawl was conducted one month after the Chrome crawl, and sites
may have changed in the meantime. Furthermore, we observed two additional
impediments to successful exploitation in Internet Explorer that do not apply
to Chrome. The framing technique is susceptible to frame-busting methods
employed by the framed pages, and Internet Explorer implements an anti-
MIME-sniffing header that Chrome appears to ignore. We analyze these
issues below.

4.3.6 Anti-Framing Techniques

Some sites use a range of techniques to prevent other pages from loading them
in a frame [111]. One of these techniques is the X-Frame-Options header. It
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accepts three different values: DENY, SAMEORIGIN, and ALLOW-FROM followed
by a whitelist of URLs. In the vulnerable dataset, 4,999 pages across 391
sites use this header correctly and as a result prevent the attack. However,
1,900 pages across 34 sites provide incorrect values for this header, and we
successfully attack 552 pages on 2 sites with Internet Explorer.

A related technique is the frame-ancestors directive provided by Con-
tent Security Policy. It defines a (potentially empty) whitelist of URLs al-
lowed to load the current page in a frame, similar to ALLOW-FROM. However,
it is not supported by Internet Explorer, thus it cannot be used to pre-
vent the attack. Out of all vulnerable pages, 52 pages across 3 sites used
frame-ancestors. Although we expected these pages to be exploitable in
Internet Explorer, none of them would let an attack to proceed successfully
as they used X-Frame-Options header as well.

Furthermore, developers may use JavaScript code to prevent framing of a
page. Yet, techniques exist to bypass this protection [104]. In addition, the
attacker can use the HTML 5 sandbox attribute in the iframe tag and omit
the allow-top-navigation directive to render JavaScript frame-busting
code ineffective. However, we did not implement any of these techniques
to allow framing, which means that more vulnerable pages could likely be
exploited in practice.

4.3.7 MIME Sniffing

A consequence of self-reference in the type of RPO studied in this sec-
tion is that the HTTP content type of the fake “stylesheet” is text/html

rather than the expected text/css. Because many sites contain miscon-
figured content types, many browsers attempt to infer the type based on
the request context or file extension (MIME sniffing), especially in quirks
mode. In order to ask the browser to disable content sniffing and refuse in-
terpreting data with an unexpected or wrong type, sites can set the header
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X-Content-Type-Options: nosniff [12, 65, 90].
To determine whether the injected CSS is still being parsed and executed

in presence of this header while the browser renders in quirks mode, we ran
an experiment similar to Section 4.3.4. For each browser in Table 4.5, we
extracted the document types in which the browser renders in quirks mode,
and for each of them, we set up a local page with a relative stylesheet path.
We then opened the page in the browser, launched an RPO attack, and
monitored if the injected CSS was executed.

Only Firefox, Internet Explorer, and Edge respected this header and did
not interpret injected CSS in any of the quirks mode document types. The
remaining browsers did not block the stylesheet even though the content
type was not text/css. With an additional experiment, we confirmed that
Internet Explorer blocked our injected CSS payload when nosniff was set,
even in the case of the framing technique.

Out of all the vulnerable pages, 96,618 pages across 232 sites had a
nosniff response header; 23 pages across 10 sites were confirmed exploitable
in Chrome but not in Internet Explorer, since the latter browser respects the
header while the former does not.

4.3.8 Content Management Systems

While analyzing the exploitable pages in our dataset, we noticed that many
appeared to belong to well-known CMSes. Since these web applications are
typically installed on thousands of sites, fixing RPO weaknesses in these
applications could have a large impact.

To identify CMSes, we visited all exploitable pages usingWappalyzer [138].
Additionally, we detected two CMSes that were not supported by Wappa-
lyzer. Overall, we identified 23 CMSes on 41,288 pages across 1,589 sites.
Afterwards, we manually investigated whether the RPO weakness stemmed
from the CMS by installing the latest version of each CMS (or using the on-
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line demo), and testing whether exploitable paths found in our dataset were
also exploitable in the CMS. After careful analysis, we confirmed four CMSes
to be exploitable in their most recent version that are being used by 40,255
pages across 1,197 sites.

Out of the four exploitable CMSes, one declares no document type and
one uses a quirks mode document type. These two CMSes can be exploited
in Chrome, whereas the remaining two can be exploited with the framing
trick in Internet Explorer. Beyond the view of our Common Crawl candidate
set, Wappalyzer detected nearly 32 k installations of these CMSes across
the Internet, which suggests that many more sites could be attacked with
RPO. We reported the RPO weaknesses to the vendors of these CMSes using
recommended notification techniques [81, 121, 21]. Thus far, we heard back
from one of the vendors, who acknowledged the vulnerability and are going
to take the necessary steps to fix the issue. However, we have not received
any response from the other vendors.

4.4 Countermeasures

In this section we discuss potential defense techniques against RPO. The ob-
served mitigations, although not intentionally designed to prevent RPO, but
were successful to alleviate the exploitation probability. We, also, discuss
some defense techniques which could be successfully employed to safeguard
the system against RPO. It worths mentioning that since RPO is a com-
plicated attack which relies on multiple prerequisites to be successful, its
countermeasures could be simpler compared to XSS or other common attack
techniques. Therefore, obstructing one of the preconditions, which include
using relative path stylesheet, reflect inserted directives in the input, and
rendering the response in quirk mode, would suffice to barricade the attack.
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4.4.1 Observed Mitigations

Relative Path Overwrites rely on the web server and the web browser inter-
preting URLs differently. Based on our experiments, using absolute path and
including the <base> tag are observed to be preventive against RPO. Even
though pre-mentioned techniques were not intended to prevent RPO, those
pages unintentionally afforded protection against it.

HTML pages can use only absolute (or root-relative) URLs, which removes
the need for the web browser to expand relative paths. Alternatively, when
the HTML page contains a <base> tag, browsers are expected to use the
URL provided therein to expand relative paths instead of interpreting the
current document’s URL. Both methods can remove ambiguities and render
RPO impossible if applied correctly. Specifically, base URLs must be set
according to the server’s content routing logic. It should be mentioned that
if developers choose to calculate base URLs dynamically on the server side
rather than setting them manually to constant values, there is a risk that
routing-agnostic algorithms could be confused by manipulated URLs and
re-introduce attack opportunities by instructing browsers to use an attacker-
controlled base URL. Furthermore, Internet Explorer does not appear to
implement this tag correctly.

Instead of preventing RPO and style injection vulnerabilities, the most
promising approach could be to avoid exploitation. In fact, declaring a
modern document type that causes the HTML document to be rendered
in standards mode makes the attack fail in all browsers except for Inter-
net Explorer. Web developers can harden their pages against the frame-
override technique in Internet Explorer by using commonly recommended
HTTP headers: X-Content-Type-Options to disable “content type sniffing”
and always use the MIME type sent by the server (which must be configured
correctly), X-Frame-Options to disallow loading the page in a frame, and
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X-UA-Compatible to turn off Internet Explorer’s compatibility view.

4.4.2 Suggested Defense Techniques

Web developers can reduce the attack surface of their sites by eliminating
any injection sinks for strings that could be interpreted as a style directive.
However, doing so is challenging because in the attack presented in this
chapter, style injection does not require a specific sink type and does not
need the ability of injecting markup. Injection can be accomplished with
relatively commonly used characters, that is, alphanumeric characters and
(){}/".

Experience has shown that despite years of efforts, even context-sensitive
and more special character-intensive XSS injection is still possible in many
sites, which leads us to believe that style injection will be similarly difficult to
eradicate. Even when all special characters in user input are replaced by their
corresponding HTML entities and direct style injection is not possible, more
targeted RPO attack variants referencing existing files may still be feasible.
For instance, it has been shown that user uploads of seemingly benign profile
pictures can be used as “scripts” (or stylesheets) [125].

4.5 Chapter Summary

This chapter presented a systematic study of CSS injection by RPO in the
wild. We showed that over 5% of sites in the intersection of the Common
Crawl and the Alexa Top 1M are vulnerable to at least one injection tech-
nique. While the number of exploitable sites depends on the browser and is
much smaller in relative terms, it is still consequential in absolute terms with
thousands of affected sites. RPO is a class of attacks, and our automated
crawler tested for only a subset of conceivable attacks. Therefore, the results
of our study should be seen as a lower bound; the true number of exploitable

48



CHAPTER 4. RELATIVE PATH OVERWRITE

sites is likely higher.
Compared to XSS, it is much more challenging to avoid injection of style

directives. Yet, developers have at their disposal a range of simple mitiga-
tion techniques that can prevent their sites from being exploited in modern
browsers.
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Chapter 5

Web Cache Deception

5.1 Introduction

Web caches (also called HTTP caches or web accelerators) have become an es-
sential component of the Internet infrastructure with numerous use cases such
as reducing bandwidth costs in private enterprise networks and accelerating
content delivery over the World Wide Web. Today caching is implemented
at multiple stages of Internet communications, for instance in popular web
browsers [93, 126], at caching proxies [133, 117], and directly at origin web
servers [9, 97].

In particular, Content Delivery Network (CDN) providers heavily rely on
effective web content caching at their edge servers, which together comprise
a massively-distributed Internet overlay network of caching reverse proxies.
Popular CDN providers advertise accelerated content delivery and high avail-
ability via global coverage and deployments reaching hundreds of thousands
of servers [29, 7]. A recent scientific measurement also estimates that more
than 74% of the Alexa Top 1K are served by CDN providers, indicating that
CDNs and more generally web caching play a central role in the Internet [47].

While there exist technologies that enable limited caching of dynamically-
generated pages, web caching primarily targets static, publicly accessible
content. In other words, web caches store static content that is costly to de-
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liver due to an object’s size or distance. Importantly, these objects must not
contain private or otherwise sensitive information, as application-level access
control is not enforced at cache servers. Good candidates for caching include
frequently accessed images, software and document downloads, streaming
media, style sheets, and large static HTML and JavaScript files.

In 2017, Gil presented a novel attack called web cache deception (WCD)
that can trick a web cache into incorrectly storing sensitive content, and
consequently give an attacker unauthorized access to that content [44, 45].
Gil demonstrated the issue with a real-life attack scenario targeting a high
profile site, PayPal, and showed that WCD can successfully leak details of
a private payment account. Consequently, WCD garnered significant me-
dia attention, and prompted responses from major web cache and CDN
providers [84, 25, 17, 15, 99, 26].

At its core, WCD results from path confusion between an origin server and
a web cache. In other words, different interpretations of a requested URL
at these two points lead to a disagreement on the cacheability of a given
object. This disagreement can then be exploited to trick the web cache into
storing non-cacheable objects. WCD does not imply that these individual
components—the origin server and web cache—are incorrectly configured per
se. Instead, their hazardous interactions as a system lead to the vulnerability.
As a result, detecting and correcting vulnerable systems is a cumbersome
task, and may require careful inspection of the entire caching architecture.
Combined with the aforementioned pervasiveness and critical role of web
caches in the Internet infrastructure, WCD has become a severely damaging
issue.

In this chapter, we first present a large-scale measurement and analysis
of WCD over 295 sites in the Alexa Top 5K. We present a repeatable and
automated methodology to discover vulnerable sites over the Internet, and
a detailed analysis of our findings to characterize the extent of the prob-
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lem. Our results show that many high-profile sites that handle sensitive and
private data are impacted by WCD and are vulnerable to practical attacks.
We then discuss additional path confusion methods that can maximize the
damage potential of WCD, and demonstrate their impact in a follow-up ex-
periment over an extended data set of 340 sites.

To the best of our knowledge, this is the first in-depth investigation of
WCD in a scientific framework and at this scale. In addition, the scope of
our investigation goes beyond private data leakage to provide novel insights
into the severity of WCD. We demonstrate how WCD can be exploited to
steal other types of sensitive data including security tokens, explain advanced
attack techniques that elevate WCD vulnerabilities to injection vectors, and
quantify our findings through further analysis of collected data.

Finally, we perform an empirical analysis of popular CDN providers, doc-
umenting their default caching settings and customization mechanisms. Our
findings underline the fact that WCD is a system safety problem. Site opera-
tors must adopt a holistic view of their infrastructure, and carefully configure
web caches taking into consideration their complex interactions with origin
servers.

To summarize, we make the following contributions:

• We propose a novel, repeatable methodology to detect sites impacted by
WCD at scale. Unlike existing WCD scan tools that are designed for site
administrators to test their own properties in a controlled environment,
our methodology is designed to automatically detect WCD in the wild.

• We present findings that quantify the prevalence of WCD in 295 sites
among the Alexa Top 5K, and provide a detailed breakdown of leaked
information types. Our analysis also covers security tokens that can be
stolen via WCD as well as novel security implications of the attack, all
areas left unexplored by existing WCD literature.
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Figure 5.1: A high-level overview of our WCD measurement methodology.

• We conduct a follow-up measurement over 340 sites among the Alexa
Top 5K that show variations on the path confusion technique make it
possible to successfully exploit sites that are not impacted by the original
WCD attack.

• We analyze the default settings of popular CDN providers and docu-
ment their distinct caching behavior, highlighting that mitigating WCD
necessitates a comprehensive examination of a website’s infrastructure.

Ethical Considerations. We have designed our measurement method-
ology to minimize the impact on scanned sites, and limit the inconvenience
we impose on site operators. Similarly, we have followed responsible disclo-
sure principles to notify the impacted parties, and limited the information we
share in this paper to minimize the risk of any inadvertent damage to them
or their end-users. We discuss details of the ethical considerations pertaining
to this work in Sec. 5.2.5.

5.2 Methodology

We present our measurement methodology in three stages: (1) measurement
setup, (2) attack surface detection, and (3) WCD detection. We illustrate
this process in Fig. 5.1. We implemented the tools that perform the de-
scribed tasks using a combination of Google Chrome and Python’s Requests
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library [109] for web interactions, and Selenium [113] and Google Remote
Debugging Protocol [46] for automation.

5.2.1 Stage 1: Measurement Setup

WCD attacks are only meaningful when a vulnerable site manages private
end-user information and allows performing sensitive operations on this data.
Consequently, sites that provide authentication mechanisms are prime targets
for attacks, and thus also for our measurements. The first stage of our
methodology identifies such sites and creates test accounts on them.1

Domain Discovery. This stage begins by visiting the sites in an initial mea-
surement seed pool (e.g., the Alexa Top n domains). We then increase site
coverage by performing sub-domain discovery using open-source intelligence
tools [102, 2, 51]. We add these newly-discovered sub-domains of the primary
sites (filtered for those that respond to HTTP(s) requests) to the seed pool.

Account Creation. Next, we create two test accounts on each site: one for a
victim, and the other for an attacker. We populate each account with unique
dummy values. Next, we manually explore each victim account to discover
data fields that should be considered private information (e.g., name, email,
address, payment account details, security questions and responses) or user-
created content (e.g., comments, posts, internal messages). We populate
these fields with predefined markers that can later be searched for in cached
responses to detect a successful WCD attack. On the other hand, no data
entry is necessary for attacker accounts.

1In the first measurement study we present in Sec. 5.3, we scoped our investigation to sites that
support Google OAuth [107] for authentication due to its widespread use. This was a design choice
made to automate a significant chunk of the initial account setup workload, a necessity for a large-scale
experiment. In our follow-up experiment later described in Sec. 5.4 we supplemented this data set with an
additional 45 sites that do not use Google OAuth. We discuss these considerations in their corresponding
sections.
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Table 5.1: Sample URL grouping for attack surface discovery.

Group By URL

Query Parameter
http://example.com/?lang=en
http://example.com/?lang=fr

Path Parameter
http://example.com/028
http://example.com/142

Cookie Collection. Once successfully logged into the sites in our seed pool,
crawlers collect two sets of cookies for all victim and attacker accounts. These
are saved in a cookie jar to be reused in subsequent steps of the measurement.
Note that we have numerous measures to ensure our crawlers remain authen-
ticated during our experiments. Our crawlers periodically re-authenticate,
taking into account cookie expiration timestamps. In addition, the crawlers
use regular expressions and blacklists to avoid common logout links on visited
pages.

5.2.2 Stage 2: Attack Surface Detection

Domain Crawls. In the second stage, our goal is to map from domains in
the seed pool to a set of pages (i.e., complete URLs) that will later be tested
for WCD vulnerabilities. To this end, we run a recursive crawler on each
domain in the seed pool to record links to pages on that site.

URL Grouping. Many modern web applications customize pages based on
query string or URL path parameters. These pages have similar structures
and are likely to expose similar attack surfaces. Ideally, we would group them
together and select only one random instance as a representative URL to test
for WCD in subsequent steps.

Since performing a detailed content analysis is a costly process that could
generate an unreasonable amount of load on the crawled site, our URL group-
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ing strategy instead focuses on the structure of URLs, and approximates page
similarity without downloading each page for analysis. Specifically, we con-
vert the discovered URLs into an abstract representation by grouping those
URLs by query string parameter names or by numerical path parameters.
We select one random instance and filter out the rest. Table 5.1 illustrates
this process.

This filtering of URLs significantly accelerates the measurements, and also
avoids overconsumption of the target site’s resources with redundant scans in
Stage 3. We stop attack surface detection crawls after collecting 500 unique
pages per domain for similar reasons.

5.2.3 Stage 3: WCD Detection

In this final stage, we launch a WCD attack against every URL discovered in
Stage 2, and analyze the response to determine whether a WCD vulnerability
was successfully exploited.

WCD Attack. The attack we mount directly follows the scenario previously
described in Sec. 3.3 and illustrated in Fig. 3.3. For each URL:

1. We craft an attack URL that references a non-existent static resource.
In particular, we append to the original page “/<random>.css”2. We
use a random string as the file name in order to prevent ordinary end-
users of the site from coincidentally requesting the same resource.

2. We initiate a request to this attack URL from the victim account and
record the response.

2Our choice to use a style sheet in our payload is motivated by the fact that style sheets are essential
components of most modern sites, and also prime choices for caching. They are also a robust choice for
our tests. For instance, many CDN providers offer solutions to dynamically resize image files on the CDN
edge depending on the viewport of a requesting client device. Style sheets are unlikely to be manipulated
in such ways.
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3. We issue the same request from the attacker account, and save the
response for comparison.

4. Finally, we repeat the attack as an unauthenticated user by omitting
any session identifiers saved in the attacker cookie jar. We later analyze
the response to this step to ascertain whether attackers without authen-
tication credentials (e.g., when the site does not offer open or free sign
ups) can also exploit WCD vulnerabilities.

Marker Extraction. Once the attack scenario described above is executed,
we first check for private information disclosure by searching the attacker
response for the markers that were entered into victim accounts in Stage 1.
If victim markers are present in URLs requested by an attacker account,
the attacker must have received the victim’s incorrectly cached content and,
therefore, the target URL contains an exploitable WCD vulnerability. Be-
cause these markers carry relatively high entropy, it is probabilistically highly
unlikely that this methodology will produce false positives.

Secret Extraction. We scan the attacker response for the disclosure of secret
tokens frequently used as part of web application security mechanisms. These
checks include common secrets (e.g., CSRF tokens, session identifiers) as
well as any other application-specific authentication and authorization tokens
(e.g., API credentials). We also check for session-dependent resources such as
dynamically-generated JavaScript, which may have private information and
secrets embedded in them (e.g., as explored by Lekies et al. [77]).

In order to extract candidates for leaked secrets, we scan attacker re-
sponses for name & value pairs, where either (1) the name contains one of
our keywords (e.g., csrf, xsrf, token, state, client_id), or (2) the value
has a random component. We check for these name & value pairs in hidden
HTML form elements, query strings extracted from HTML anchor elements,
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and inline JavaScript variables and constants. Similarly, we extract random
file names referenced in HTML script elements. We perform all tests for ran-
domness by first removing dictionary words from the target string (i.e., using
a list of 10,000 common English words [63]), and then computing Shannon
entropy over the remaining part.

Note that unlike our checks for private information leaks, this process can
result in false positives. Therefore, we perform this secret extraction process
only when the victim and attacker responses are identical (a strong indicator
of caching), or otherwise when we can readily confirm aWCD vulnerability by
searching for the private information markers. In addition, we later manually
verify all candidate secrets extracted in this step.

5.2.4 Verification and Limitations

Researchers have repeatedly reported that large-scale Internet measurements,
especially those that use automated crawlers, are prone to being blocked or
served fake content by security solutions designed to block malicious bots and
content scrapers [101, 137]. In order to minimize this risk during our mea-
surement, we used a real browser (i.e., Google Chrome) for most steps in our
methodology. For other interactions, we set a valid Chrome user-agent string.
We avoided generating excessive amounts of traffic and limited our crawls as
described above in order to avoid triggering rate-limiting alerts, in addition
to ethical motivations. After performing our measurements, we manually
verified all positive findings and confirmed the discovered vulnerabilities.

Note that this measurement has several important limitations, and the
findings should be considered a potentially loose lower bound on the incidence
of WCD vulnerabilities in the wild. For example, as described in Sec. 5.3,
our seed pool is biased toward sites that support Google OAuth, which was a
necessary compromise to automate our methodology and render a large-scale
measurement feasible. Even under this constraint, creating accounts on some
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sites required entering and verifying sensitive information such as credit card
or US social security numbers which led to their exclusion from our study.

Furthermore, decisions such as grouping URLs based on their structure
without analyzing page content, and limiting site crawls to 500 pages may
have caused us to miss additional instances of vulnerabilities. Similarly,
even though we manually filtered out false positives during our secret token
extraction process and verified all findings, we do not have a scalable way of
detecting false negatives. We believe that these trade-offs were worthwhile
given the overall security benefits of and lessons learned from our work. We
emphasize that the results in this measurement represent a lower bound.

5.2.5 Ethical Considerations

Here, we explain in detail important ethical considerations pertaining to this
work and the results we present.

Performance Considerations. We designed our methodology to minimize the
performance impact on scanned sites and inconvenience imposed on their op-
erators. We did not perform repeated or excessive automated scans of the
targeted sites, and ensured that our measurements did not generate unrea-
sonable amounts of traffic. We used only passive techniques for sub-domain
enumeration and avoided abusing external resources or the target site’s DNS
infrastructure.

Similarly, our stored modifications to crawled web applications only in-
volved creating two test accounts and filling out editable fields with markers
that we later used for data leakage detection. We believe this will have
no material impact on site operators, especially in the presence of common
threats such as malicious bots and credential stuffing tools that generate far
more excessive junk traffic and data.
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Security Considerations. Our methodology entirely avoids jeopardizing the
security of crawled sites or their end-users. In this work, we never injected or
stored any malicious payload to target sites, to web caches on the communi-
cation path, or otherwise maliciously tampered with any technology involved
in the process. Likewise, the experiments we performed all incorporated
randomized strings as the non-existent parts of URLs, thereby preventing
unsuspecting end-users from accidentally accessing our cached data and re-
ceiving unexpected responses.

Note that this path randomization measure was used to prevent inconve-
niencing or confusing end-users; since we never exploited WCD to leak real
personal data from a web application or stored a malicious payload, our work
never posed a security risk to end-users.

Our experiments did not take into account robots.txt files. This was a
risk-based decision we consciously made, and we believe that ignoring exclu-
sion directives had no negative impact on the privacy of these sites’ visitors.
Robots.txt is not a security or privacy mechanism, but is intended to signal
to data aggregators and search engines what content to index – including
a directive to exclude privacy sensitive pages would actually be a misuse of
this technology. This is not relevant to our experiments, as we only collect
content for our analysis, and we do not index or otherwise publicly present
site content.

Responsible Disclosure. In this chapter, we present a detailed breakdown
of our measurement findings and results of our analysis, but we refrain from
explicitly naming the impacted sites. Even though our methodology only
utilized harmless techniques for WCD detection, the findings point at real-
world vulnerabilities that could be severely damaging if publicly disclosed
before remediation.

We sent notification emails to publicly listed security contacts of all im-
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pacted parties promptly after our discovery. In the notification letters we
provided an explanation of the vulnerability with links to online resources
and listed the vulnerable domain names under ownership of the contacted
party. We informed them of our intention to publicly publish these results,
noted that they will not be named, and advised that they remediate the issue
as adversaries can easily repeat our experiment and compromise their sites.
We also explicitly stated that we did not seek or accept bug bounties for
these notifications.

We sent the notification letters prior to submitting this work for review,
therefore giving the impacted parties reasonably early notice. As of this
writing, 12 of the impacted sites have implemented mitigations.

Repeatability. One of the co-researchers of this measurement is affiliated
with a major CDN provider at the time of writing. However, the mea-
surements and results we present in this chapter do not use any internal or
proprietary company information, or any such information pertaining to the
company’s customers. We conducted this work using only publicly available
data sources and tools. Our methodology is repeatable by other researchers
without access to any CDN provider internals.

5.3 Measurement Study

We conducted two measurement studies to characterize web cache decep-
tion (WCD) vulnerabilities on the Internet. In this first study we present in
this section, the research questions we specifically aim to answer are:

(Q1) What is the prevalence of WCD vulnerabilities on popular, highly-
trafficked domains? (§5.3.2)

(Q2) Do WCD vulnerabilities expose PII and, if so, what kinds? (§5.3.3)
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Table 5.2: Summary of crawling statistics.

Crawled Vulnerable

Pages 1,470,410 17,293 (1.2%)
Domains 124,596 93 (0.1%)
Sites 295 16 (5.4%)

(Q3) Can WCD vulnerabilities be used to defeat defenses against web ap-
plication attacks? (§5.3.3)

(Q4) CanWCD vulnerabilities be exploited by unauthenticated users? (§5.3.3)

In the following, we describe the data we collected to carry out the study.
We discuss the results of the measurement, and then consider implications
for PII and important web security defenses. Finally, we summarize the
conclusions we draw from the study. In Sec. 5.4, we will present a follow-up
experiment focusing on advanced path confusion techniques.

5.3.1 Data Collection

We developed a custom web crawler to collect the data used in this mea-
surement. The crawler ran from April 20-27, 2018 as a Kubernetes pod that
was allocated 16 Intel Xeon 2.4 GHz CPUs and 32 GiB of RAM. Following
the methodology described in Sec. 5.2, we configured the crawler to identify
vulnerable sites from the Alexa Top 5K at the time of the experiment. In
order to scalably create test accounts, we filtered this initial measurement
seed pool for sites that provide an option for user authentication via Google
OAuth. This filtering procedure narrowed the set of sites considered in this
measurement to 295. Table 5.2 shows a summary of our crawling statistics.

5.3.2 Measurement Overview

Alexa Ranking. From the 295 sites comprising the collected data set, the
crawler identified 16 sites (5.4%) to contain WCD vulnerabilities. Fig. 5.2
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Figure 5.2: Distribution of the measurement data and vulnerable sites across the Alexa
Top 5K.

presents the distribution of all sites and vulnerable sites across the Alexa
Top 5K. From this, we observe that the distribution of vulnerable sites is
roughly proportional to the number of sites crawled; that is, our data does
not suggest that the incidence of WCD vulnerabilities is correlated with site
popularity.

Category. Figure 5.3 shows the categories extracted from McAfee Smart-
Filter [89]. Overall, 13 out of 49 categories had at least one vulnerable site
in our dataset. It is noteworthy that we found 16 vulnerable sites (as seen
in Table 5.2) while it seems to have totally 20 vulnerable ones as per statis-
tics illustrated in Figure 5.3. This difference is because of classifying some
of the sites in more than one category at the same time based on McAfee
SmartFilter.
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Figure 5.3: Categories

Shopping and Marketing categories have the highest rank of vulnerable
sites. While Marketing observed to be in the second rank in total, but we
found 3 out of 11 (27.2%) of this category to be vulnerable which is the
highest among all other categories. Shopping had 3 out of 16 vulnerable
sites (18.75%), however, 3 out of 24 (12.5%) crawled sites in the category
was detected to be vulnerable. It is worth to notice that Business and News
categories have the least portion of vulnerable sites with regard to their
number of sites.

Content Delivery Networks (CDNs). Using a set of heuristics that searches
for well-known vendor strings in HTTP headers, we labeled each domain and
site with the corresponding CDN. Table 5.3 shows the results of this labeling.
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Table 5.3: Pages, domains, and sites labeled by CDN using HTTP header heuristics.
These heuristics simply check for unique vendor-specific strings added by CDN proxy
servers.

CDN
Crawled Vulnerable

Pages Domains Sites Pages Domains Sites

Cloudflare 161,140 (11.0%) 4,996 (4.0%) 143 (48.4%) 16,234 (93.9%) 72 (77.4%) 8 (50.0%)
Akamai 225,028 (15.3%) 16,473 (13.2%) 100 (33.9%) 1,059 (6.1%) 21 (22.6%) 8 (50.0%)
CloudFront 100,009 (6.8%) 10,107 (8.1%) 107 (36.3%) 2 (<0.1%) 1 (1.1%) 1 (6.2%)
Other CDNs 244,081 (16.6%) 2,456 (2.0%) 137 (46.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Total CDN Use 707,210 (48.1%) 33,675 (27.0%) 244 (82.7%) 17,293 (100.0%) 93 (100.0%) 16 (100.0%)

Table 5.4: Response codes observed in the vulnerable data set.

Response Code Pages Domains Sites

404 Not Found 17,093 (98.8%) 82 (88.2%) 10 (62.5%)
200 Ok 205 (1.2%) 19 (20.4%) 12 (75.0%)

Note that many sites use multiple CDN solutions, and therefore the sum of
values in the first four rows may exceed the totals we report in the last row.

The results show that, even though WCD attacks are equally applicable
to any web cache technology, all instances of vulnerable pages we observed
are served over a CDN. That being said, vulnerabilities are not unique to
any one CDN vendor. While this may seem to suggest that CDN use is
correlated with an increased risk of WCD, we point out that 82.7% of sites
in our experiment are served over a CDN. A more balanced study focusing
on comparing CDNs to centralized web caches is necessary to eliminate this
inherent bias in our experiment and draw meaningful conclusions. Overall,
these results indicate that CDN deployments are prevalent among popular
sites, and the resulting widespread use of web caches may in turn lead to
more opportunities for WCD attacks.
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Table 5.5: Cache headers present in HTTP responses collected from vulnerable sites.

Header Pages Domains Sites

Expires: 1,642 (9.5%) 23 (24.7%) 13 (81.2%)

Pragma: no-cache 652 (3.8%) 11 (11.8%) 6 (37.5%)

Cache-Control: 1,698 (9.8%) 26 (28.0%) 14 (87.5%)
max-age=, public 1,093 (6.3%) 10 (10.8%) 7 (43.8%)
max-age= 307 (1.8%) 1 (1.1%) 1 (6.2%)
must-revalidate, private 102 (0.6%) 1 (1.1%) 1 (6.2%)
max-age=, no-cache, no-store 67 (0.4%) 3 (3.2%) 2 (12.5%)
max-age=, no-cache 64 (0.4%) 4 (4.3%) 1 (6.2%)
max-age=, must-revalidate 51 (0.3%) 1 (1.1%) 1 (6.2%)
max-age=, must-revalidate, no-transform, private 5 (<0.1%) 3 (3.2%) 1 (6.2%)
no-cache 5 (<0.1%) 2 (2.2%) 1 (6.2%)
max-age=, private 3 (<0.1%) 1 (1.1%) 1 (6.2%)
must-revalidate, no-cache, no-store, 1 (<0.1%) 1 (1.1%) 1 (6.2%)
post-check=, pre-check=

All 1,698 (9.8%) 26 (28.0%) 14 (87.5%)

(none) 15,595 (90.2%) 67 (72.0%) 3 (18.8%)

Response Codes. Table 5.4 presents the distribution of HTTP response
codes observed for the vulnerable sites. This distribution is dominated by
404 Not Found which, while perhaps unintuitive, is indeed allowed behavior
according to RFC 7234 [40]. On the other hand, while only 12 sites leaked
resources with a 200 OK response, during our manual examination of these
vulnerabilities (discussed below) we noted that more PII was leaked from
this category of resource.

Cache Headers. Table 5.5 shows a breakdown of cache-relevant headers col-
lected from vulnerable sites. In particular, we note that despite the presence
of headers whose semantics prohibit caching—e.g., “Pragma: no-cache”,
“Cache-Control: no-store”—pages carrying these headers are cached re-
gardless, as they were found to be vulnerable to WCD. This finding provides
evidence that site administrators indeed take advantage of the configuration
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Table 5.6: Types of vulnerabilities discovered in the data.

Leakage Pages Domains Sites

PII 17,215 (99.5%) 88 (94.6%) 14 (87.5%)
User 934 (5.4%) 17 (18.3%) 8 (50.0%)
Name 16,281 (94.1%) 71 (76.3%) 7 (43.8%)
Email 557 (3.2%) 10 (10.8%) 6 (37.5%)
Phone 102 (0.6%) 1 (1.1%) 1 (6.2%)

CSRF 130 (0.8%) 10 (10.8%) 6 (37.5%)
JS 59 (0.3%) 5 (5.4%) 4 (25.0%)
POST 72 (0.4%) 5 (5.4%) 3 (18.8%)
GET 8 (<0.1%) 4 (4.3%) 2 (12.5%)

Sess. ID / Auth. Code 1,461 (8.4%) 11 (11.8%) 6 (37.5%)
JS 1,461 (8.4%) 11 (11.8%) 6 (37.5%)

Total 17,293 93 16

controls provided by web caches that allow sites to override header-specified
caching policies.

A consequence of this observation is that user-agents cannot use cache
headers to determine with certainty whether a resource has in fact been
cached or not. This has important implications for WCD detection tools
that rely on cache headers to infer the presence of WCD vulnerabilities.

5.3.3 Vulnerabilities

Table 5.6 presents a summary of the types of vulnerabilities discovered in the
collected data, labeled by manual examination.

PII. 14 of the 16 vulnerable sites leaked PII of various kinds, including
names, usernames, email addresses, and phone numbers. In addition to
these four main categories, a variety of other categories of PII were found to
be leaked. Broad examples of other PII include financial information (e.g.,
account balances, shopping history) and health information (e.g., calories
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burned, number of steps, weight). While it is tempting to dismiss such in-
formation as trivial, we note that PII such as the above can be used as the
basis for highly effective spearphishing attacks [37, 58, 55, 20].

Security Tokens. Using the entropy-based procedure described in Sec. 5.2,
we also analyzed the data for the presence of leaked security tokens. Then,
we manually verified our findings by accessing the vulnerable sites using a
browser and checking for the presence of the tokens suspected to have been
leaked. Finally, we manually verified representative examples of each class of
leaked token for exploitability using the test accounts established during the
measurement.

6 of the 16 vulnerable sites leaked CSRF tokens valid for a session, which
could allow an attacker to conduct CSRF attacks despite the presence of a
deployed CSRF defense. 3 of these were discovered in hidden form elements
used to protect POST requests, while an additional 4 were found in inline
JavaScript that was mostly used to initiate HTTP requests. We also discov-
ered 2 sites leaking CSRF tokens in URL query parameters for GET requests,
which is somewhat at odds with the convention that GET requests should
be idempotent.

6 of the 16 vulnerable sites leaked session identifiers or user-specific API
tokens in inline JavaScript. These session identifiers could be used to im-
personate victim users at the vulnerable site, while the API tokens could be
used to issue API requests as a victim user.

Authenticated vs. Unauthenticated Attackers. The methodology we de-
scribed in Sec. 5.2 includes a detection step intended to discover whether
a suspected WCD vulnerability was exploitable by an unauthenticated user
by accessing a cached page without sending any stored session identifiers
in the requests. In only a few cases did this automated check fail; that is,
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in virtually every case the discovered vulnerability was exploitable by an
unauthenticated user. Even worse, manual examination of the failure cases
revealed that in each one the crawler had produced a false negative and that
in fact all of the remaining vulnerabilities were exploitable by unauthenti-
cated users as well. This implies that WCD, as a class of vulnerability, tends
not to require an attacker to authenticate to a vulnerable site in order to
exploit those vulnerabilities. In other words, requiring strict account verifi-
cation through credentials such as valid SSNs or credit card numbers is not
a viable mitigation for WCD.

Similarity. As a fundamental assumption, we expect the attacker to receive
the exact same page in WCD as the one which has been sent to the victim
and stored on CDN. It is worth mentioning that some WCD detection tools
use the same assumption to detect the vulnerability. Since our crawler has
recorded the response pages which has been sent to the victim along with the
pages sent to both authenticated and unauthenticated attackers, we tried to
verify this similarity assumption.

With the same assumption, we expected the page which has been sent to
the victim to be the same as the one saved on CDN and sent to attacker.
Interestingly, we observed only 99.2% similarity between the pages in 14 out
of 16 (87.5%) sites sent to victims and the ones received by the attacker while
the rest had slight changes in comparison with their corresponding pages.
We investigated to find the reason behind this difference and we observed
the difference had appeared in pages stored on Cloudflare CDN. Cloudflare
uses the "Email Address Obfuscation" protection to avoid bots and scrappers
from accessing the stored emails on the pages by replacing email addresses
with some randomly generated numbers [27]. Since Python bots parse the
page they cannot find the saved email address, while the requesting browser
can render the page and produce the stored email address correctly. Because
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Table 5.7: Attack scenarios.

Attack Scenario Vulnerable Exploitable

Session Hijacking 6 6
Cross-site Request Forgery 5 4
oAuth Redirection URI CSRF 1 1
Cross-site Script Inclusion (XSSI) N/A 2

email’s replacement is different for every access to the page contents stored
on CDN, the returned page would be unexpectedly slightly different when
attacker tries to access the same page.

Therefore, the pages seen by victim and attacker have not to be necessar-
ily identical in all cases. This experiments gives us the takeaway that WCD
protection tools which try to detect the attack only by relying on the simi-
larity assumption, would experience false negatives due to any complicated
network and protection settings on CDNs.

5.3.4 Practical Attack Scenarios

We studied the feasibility and exploitability of leaked security tokens with
respect to potential attack scenarios to provide a better understanding of
WCD risks and impacts. We randomly picked one site within each category of
leakages listed in Table 5.6 and manually verified the exploitability of leaked
security tokens. Outcomes of this analysis have been listed in Table 5.7.

Session Hijacking. We successfully exploited the session hijacking attack
utilizing the leaked victim’s session IDs. Notably all 6 selected sites were
exploitable and we did not face any difficulty or defense-in-depth security
protection during the exploitation process. In other words, the ease of ex-
ploitability and reproducibility imposes a critical risk for sites and increases
the chance of account takeover or session hijacking attacks.
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Circumvent CSRF Token. Using random tokens in any state changing re-
quests are one of the most popular and recommended solution to mitigate
CSRF [13, 132]. Based on our manual analysis, almost all vulnerable do-
mains protected the state change requests with per-session CSRF Tokens.
We did not observe any per-request CSRF token albeit the values might not
be the same for different sites. These observations indicate the higher chance
of exploitability when the token is leaked. It is worth mentioning that per-
request CSRF token decreases the chance of successful CSRF attacks using
leaked values in that it is situational and highly depends on frequency of user
interactions with the site.

We have found 10 domains with leaked CSRF tokens including JS, POST
and GET. We randomly picked 5 out of POST and GET and exploited
the victim’s browser to ensure that leaked CSRF token could be utilized
in a practical CSRF attack. We did not select any leaked CSRF in inline
JavaScript in that the vulnerable pages usually contain the leaked session
which could be used in session hijacking with a higher damage potential,
which has been tested in previous subsection.

As shown in different studies there may be other in-depth defense mech-
anisms besides the CSRF token such as Same-Site Cookies [141], Referer or
Origin header check [13] or Double Submit Cookie [71]. However, there are
studies which show some of mentioned in-depth defense mechanisms have
pitfalls [62, 87, 72]. We did not find any of them during the exploitation sce-
nario which could protect that victim from the attack. The only exception
was one site which checked the Referer header and as a result our exploita-
tion could not be succeeded. Lack of in-depth defense solutions would make
WCD attack even more severe.

OAuth Redirect URI CSRF. We found one site which used a CSRF token
to generate an OAuth state token in order to maintain the state between
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the request and callback in Facebook’s login process. This approach is the
recommended CSRF protection for OAuth redirection URIs [11, 19, 48]. The
leaked state token provides the attacker the opportunity to exploit the CSRF
in OAuth redirection URI. Following the same attack scenario, we connected
victim’s account to attacker’s Facebook account. Consequently, user’s infor-
mation may be saved or shared to a resource which is trusted and controlled
by the attacker [114, 144, 123, 82, 39].

Cross-Site Script Inclusion. There are sites which usually generate and cus-
tomize session-state dependent dynamic JavaScripts for each user on-the-
fly. Dynamic JavaScripts may include sensitive data such as PII or security
tokens and open a door for Cross-Site Script Inclusion (XSSI) attack [77].
XSSI requires an external dynamic script to be included in the attacker’s web
page via a HTML script tag which is not subject to Same-Origin Policy
(SOP) [96]. Using an unguessable dynamic script URLs (random file name
or random token in GET parameter) is a practical protection against this
attack, which makes it impossible for the attacker to know the exact URL
of the specific dynamic script. In WCD attack, because the whole victim’s
page contents are revealed, previously-mentioned defense mechanisms would
no longer be effective to prevent XSSI.

We observed thousands of web pages through our experiments which con-
tained unguessable dynamic script URLs, however, we considered it out of
scope to investigate all those URLs to see if they are session-state dependent
dynamic scripts with sensitive information included. We randomly picked few
of the leaked unguessable JavaScript URLs for manual analysis and detected
two pages utilizing session-dependent dynamic JavaScripts. We found one of
these domains using dynamic script along with PII. However, the PII was
also observable in the contents revealed through WCD. Nonetheless, there
may be some cases in which the leaked web page through WCD attack has no
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sensitive information contained in it, but the unguessable URL included in
the leaked web contents would provide the attacker the opportunity of using
that URL and run an XSSI attack, which brings him the PII or session ID.

Cache Poisoning. Assume an authenticated attacker who stored a malicious
payload in her profile or other pages. The stored payload is just accessi-
ble within a valid attacker’s session, so it would be unaccessible for a vic-
tim who is not authorized to access the injected page. An attacker can
lure the cache server to store mentioned page by asking her browser to
load example.com/account.php/nonexistent.css. As described in sec-
tion 3.3, the web server would return a response for account.php with
nonexistent.css as a parameter. The vulnerable cache server may con-
sider the HTML response as a stylesheet file and cache (store) it. Henceforth,
nonexistent.css which contains attacker’s profile page along with malicious
payload would be accessible for all users. Finally, an attacker will lure vic-
tim’s browser to visit malicious page account.php/nonexistent.css and
the store payload get executed.

In other words, The attack scenario is the reverse of the WCD scenario
in some sense: unlike the sensitive information leakage, the attacker’s goal
is not to make the server to reveal stored users information to her browser.
The goal, however, is to save her malicious script on the cache server and
deceive the user to run it [68, 34].

5.3.5 Study Summary

Summarizing the major findings of this first experiment, we found that 16
out of 295 sites drawn from the Alexa Top 5K contained web cache decep-
tion (WCD) vulnerabilities. We note that while this is not a large fraction of
the sites scanned, these sites have substantial user populations as to be ex-
pected with their placement in the Alexa rankings. This, combined with the
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fact that WCD vulnerabilities are relatively easy to exploit, leads us to con-
clude that these vulnerabilities are serious and that this class of vulnerability
deserves attention from both site administrators and the security community.

We found that the presence of cache headers was an unreliable indicator
for whether a resource is cached, implying that existing detection tools relying
on this signal may inadvertently produce false negatives when scanning sites
for WCD vulnerabilities. We found vulnerable sites to leak PII that would be
useful for launching spearphishing attacks, or security tokens that could be
used to impersonate victim users or bypass important web security defenses.
Finally, the WCD vulnerabilities discovered here did not require attackers
to authenticate to vulnerable sites, meaning sites with restrictive sign-up
procedures are not immune to WCD vulnerabilities.

5.4 Variations on Path Confusion

Web cache technologies may be configured to make their caching decisions
based on complex rules such as pattern matches on file names, paths, and
header contents. Launching a successful WCD attack requires an attacker to
craft a malicious URL that triggers a caching rule, but also one that is inter-
preted as a legitimate request by the web server. Caching rules often cannot
be reliably predicted from an attacker’s external perspective, rendering the
process of crafting an attack URL educated guesswork.

Based on this observation, we hypothesize that exploring variations on the
path confusion technique may increase the likelihood of triggering caching
rules and a valid web server response, and make it possible to exploit addi-
tional WCD vulnerabilities on sites that are not impacted by the originally
proposed attack. To test our hypothesis, we performed a second round of
measurements fourteen months after the first experiment, in July, 2019.

Specifically, we repeated our methodology, but tested payloads crafted
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example.com/account.php
example.com/account.php/nonexistent.css

(a) Path Parameter

example.com/account.php
example.com/account.php%0Anonexistent.css

(b) Encoded Newline (\n)

example.com/account.php;par1;par2
example.com/account.php%3Bnonexistent.css

(c) Encoded Semicolon (;)

example.com/account.php#summary
example.com/account.php %23 nonexistent.css

(d) Encoded Pound (#)

example.com/account.php?name=val
example.com/account.php%3Fname=val nonexistent.css

(e) Encoded Question Mark (?)

Figure 5.4: Five practical path confusion techniques for crafting URLs that reference
nonexistent file names. In each example, the first URL corresponds to the regular
page, and the second one to the malicous URL crafted by the attacker. More generally,
nonexistent.css corresponds to a nonexistent file where nonexistent is an arbitrary
string and .css is a popular static file extension such as .css, .txt, .jpg, .ico, .js etc.

with different path confusion techniques in an attempt to determine how
many more pages could be exploited with path confusion variations. We
used an extended seed pool for this study, containing 295 sites from the
original set and an additional 45 randomly selected from the Alexa Top 5K,
for a total of 340. In particular, we chose these new sites among those
that do not use Google OAuth in an attempt to mitigate potential bias in
our previous measurement. One negative consequence of this decision was
that we had to perform the account creation step entirely manually, which
limited the number of sites we could include in our study in this way. Finally,
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we revised the URL grouping methodology by only selecting and exploiting
a page among the first 500 pages when there is at least one marker in the
content, making it more efficient for our purposes, and less resource-intensive
on our targets. In the following, we describe this experiment and present our
findings.

5.4.1 Path Confusion Techniques

Recall from our analysis and Table 5.4 that our WCD tests resulted in a 404

Not Found status code in the great majority of cases, indicating that the
web server returned an error page that is less likely to include PII. In order
to increase the chances of eliciting a 200 OK response while still triggering a
caching rule, we propose additional path confusion techniques below based
on prior work [127, 129, 130]), also illustrated in Fig. 5.4. Note that Path
Parameter in the rest of this section refers to the original path confusion
technique discussed in this work.

Encoded Newline (\n). Web servers and proxies often (but not always)
stop parsing URLs at a newline character, discarding the rest of the URL
string. For this path confusion variation, we use an encoded newline (%0A)
in our malicious URL (see Fig. 5.4b). We craft this URL to exploit web
servers that drop path components following a newline (i.e., the server sees
example.com/account.php), but are fronted by caching proxies that instead
do not properly decode newlines (account.php%0Anonexistent.css). As a
result, a request for this URL would result in a successful response, and the
cache would store the contents believing that this is static content based on
the nonexistent file’s extension.

Encoded Semicolon (;). Some web servers and web application frameworks
accept lists of parameters in the URL delimited by semicolons; however, the
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caching proxy fronting the server may not be configured to recognize such
lists. The path confusion technique we present in Fig. 5.4c exploits this
scenario by appending the nonexistent static file name after a semicolon. In
a successful attack, the server would decode the URL and return a response
for example.com/account.php, while the proxy would fail to decode the
semicolon, interpret example.com/account.php%3Bnonexistent.css as a
resource, and attempt to cache the nonexistent style sheet.

Encoded Pound (#). Web servers often process the pound character as an
HTML fragment identifier, and therefore stop parsing the URL at its first
occurrence. However, proxies and their caching rules may not be config-
ured to decode pound signs, causing them to process the entire URL string.
The path confusion technique we present in Fig. 5.4d once again exploits
this inconsistent interpretation of the URL between a web server and a
web cache, and works in a similar manner to the encoded newline tech-
nique above. That is, in this case the web server would successfully respond
for example.com/account.php, while the proxy would attempt to cache
example.com/account.php%23nonexistent.css.

Encoded Question Mark (?). This technique, illustrated in Fig. 5.4e, targets
proxies with caching rules that are not configured to decode and ignore stan-
dard URL query strings that begin with a question mark. Consequently, the
web server would generate a valid response for example.com/account.php
and the proxy would cache it. More precisely, the proxy may misinterpret the
same URL as example.com/account.php%3Fname=valnonexistent.css.

5.4.2 Results

We applied our methodology to the seed pool of 340 sites, using each path
confusion variation shown in Fig. 5.4. We also performed the test with the
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Table 5.8: Response codes observed with successful WCD attacks for each path confusion
variation.

Technique
Pages Domains Sites

200 !200 200 !200 200 !200

Path Parameter 3,870 25,932 31 93 13 7
Encoded \n 1,653 24,280 79 76 9 7
Encoded ; 3,912 25,576 91 92 13 7
Encoded # 7,849 20,794 102 85 14 7
Encoded ? 11,282 26,092 122 86 17 8
All Encoded 11,345 31,063 128 94 20 9

Total 12,668 32,281 132 97 22 9

Table 5.9: Number of unique pages/domains/sites exploited by each path confusion tech-
nique. Element (i, j) indicates number of many pages exploitable using the technique in
row i, whereas technique in column j is ineffective.

Technique Path P. Encoded \n Encoded ; Encoded # Encoded ?

Path P. - 4,390 / 26 / 7 1,010 / 5 / 4 5,691 / 11 / 3 5,673 / 12 / 3
Encoded \n 521 / 9 / 4 - 206 / 5 / 3 3,676 / 5 / 3 3,668 / 5 / 3
Encoded ; 696 / 7 / 4 3,761 / 24 / 6 - 4,881 / 9 / 2 4,863 / 8 / 0
Encoded # 4,532 / 17 / 4 6,386 / 28 / 7 4,036 / 13 / 3 - 90 / 1 / 1
Encoded ? 13,245 / 39 / 8 15,109 / 49 / 11 12,749 / 33 / 5 8,821 / 22 / 5 -

All Encoded 13,456 / 45 / 11 16,472 / 58 / 12 12,917 / 39 / 9 13,762 / 35 / 8 5,031 / 14 / 4

Path Parameter technique, which was an identical test case to our original ex-
periment. We did this in order to identify those pages that are not vulnerable
to the original WCD technique, but only to its variations.

We point out that the results we present in this second experiment for the
Path Parameter technique differ from our first measurement. This suggests
that, in the fourteen-month gap between the two experiments, either the site
operators fixed the issue after our notification, or that there were changes to
the site structure or caching rules that mitigated existing vulnerabilities or
exposed new vulnerable pages. In particular, we found 16 vulnerable sites
in the previous experiment and 25 in this second study, while the overlap
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Table 5.10: Vulnerable targets for each path confusion variation.

Technique Pages Domains Sites

Path Parameter 29,802 (68.9%) 103 (69.6%) 14 (56.0%)
Encoded \n 25,933 (59.9%) 86 (58.1%) 11 (44.0%)
Encoded ; 29,488 (68.2%) 105 (70.9%) 14 (56.0%)
Encoded # 28,643 (66.2%) 109 (73.6%) 15 (60.0%)
Encoded ? 37,374 (86.4%) 130 (87.8%) 19 (76.0%)
All Encoded 42,405 (98.0%) 144 (97.3%) 23 (92.0%)

Total 43,258 (100.0%) 148 (100.0%) 25 (100.0%)

between the two is only 4.
Of the 25 vulnerable sites we discovered in this experiment, 20 were among

the previous set of 295 that uses Google OAuth, and 5 among the newly
picked 45 that do not. To test whether the incidence distributions of vulner-
abilities among these two sets of sites show a statistically significant differ-
ence, we applied Pearson’s χ2 test, where vulnerability incidence is treated as
the categorical outcome variable and OAuth/non-OAuth site sets are com-
parison groups. We obtained a test statistic of 1.07 and a p-value of 0.30,
showing that the outcome is independent of the comparison groups, and that
incidence distributions do not differ significantly at typically chosen signifi-
cance levels (i.e., p > 0.05 ). That is, our seed pool selection did not bias
our findings.

Response Codes. We present the server response codes we observed for vul-
nerable pages in Table 5.8. Notice that there is a stark contrast in the
number of 200 OK responses observed with some of the new path confusion
variations compared to the original. For instance, while there were 3,870 suc-
cess codes for Path Parameter, Encoded # and Encoded ? resulted in 7,849
and 11,282 success responses respectively. That is, two new path confusion
techniques were indeed able to elicit significantly higher numbers of success-
ful server responses, which is correlated with a higher chance of returning
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private user information. The remaining two variations performed closer to
the original technique.

Vulnerabilities. In this experiment we identified a total of 25 vulnerable
sites. Table 5.10 shows a breakdown of vulnerable pages, domains, and sites
detected using different path confusion variations. Overall, the original path
confusion technique resulted in a fairly successful attack, exploiting 68.9%
of pages and 14 sites. Still, the new techniques combined were able to ex-
ploit 98.0% of pages, and 23 out of 25 vulnerable sites, showing that they
significantly increase the likelihood for a successful attack.

We next analyze whether any path confusion technique was able to suc-
cessfully exploit pages that were not impacted by others. We present these
results in Table 5.9 in a matrix form, where each element (i, j) shows how
many pages/domains/sites were exploitable using the technique in row i,
whereas utilizing the technique listed in column j was ineffective for the
same pages/domains/sites.

The results in Table 5.9 confirm that each path confusion variation was
able to attack a set of unique pages/domains/sites that were not vulnerable
to other techniques, attesting to the fact that utilizing a variety of techniques
increases the chances of successful exploitation. In fact, of the 25 vulnerable
sites, 11 were only exploitable using one of the variations we presented here,
but not the Path Parameter technique.

All in all, the results we present in this section confirm our hypothesis
that launching WCD attacks with variations on path confusion, as opposed
to only using the originally proposed Path Parameter technique, results in an
increased possibility of successful exploitation. Moreover, two of the explored
variations elicit significantly more 200 OK server responses in the process,
increasing the likelihood of the web server returning valid private information.

We stress that the experiment we present in this section is necessarily lim-
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ited in scale and scope. Still, we believe the findings sufficiently demonstrate
that WCD can be easily modified to render the attack more damaging, ex-
ploiting unique characteristics of web servers and caching proxies in parsing
URLs. An important implication is that defending against WCD through
configuration adjustments is difficult and error prone. Attackers are likely to
have the upper hand in devising new and creative path confusion techniques
that site operators may not anticipate.

5.5 Empirical Experiments

Practical exploitation of WCD vulnerabilities depends on many factors such
as the caching technology used and caching rules configured. In this section,
we present two empirical experiments we performed to demonstrate the im-
pact of different cache setups on WCD, and discuss our exploration of the
default settings for popular CDN providers.

5.5.1 Cache Location

While centralized server-side web caches can be trivially exploited from any
location in the world, exploiting a distributed set of CDN cache servers is
more difficult. A successful WCD attack may require attackers to correctly
target the same edge server that their victim connects to, where the cached
sensitive information is stored. As extensively documented in existing WCD
literature, attackers often achieve that by connecting to the server of interest
directly using its IP address and a valid HTTP Host header corresponding
to the vulnerable site.

We tested the impact of this practical constraint by performing the victim
interactions of our methodology from a machine located in Boston, MA, US,
and launching the attack from another server in Trento, Italy. We repeated
this test for each of the 25 sites confirmed to be vulnerable in our second
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measurement described in Sec. 5.4.
The results showed that our attack failed for 19 sites as we predicted, re-

quiring tweaks to target the correct cache server. Surprisingly, the remaining
6 sites were still exploitable even though headers indicated that they were
served over CDNs (3 Akamai, 1 Cloudflare, 1 CloudFront, and 1 Fastly).

Upon closer inspection of the traffic, we found headers in our Fastly exam-
ple indicating that a cache miss was recorded in their Italy region, followed
by a retry in the Boston region that resulted in the cache hit, which led to a
successful attack. We were not able to explore the remaining cases with the
data servers exposed to us.

Many CDN providers are known to use a tiered cache model, where content
may be available from a parent cache even when evicted from a child [38,
5]. The Fastly example above demonstrates this situation, and is also a
plausible explanation for the remaining cases. Another possibility is that the
vulnerable sites were using a separate centralized server-side cache fronted
by their CDN provider. Unfortunately, without a clear understanding of
proprietary CDN internals and visibility into site owners’ infrastructure, it
is not feasible to determine the exact cache interactions.

Our experiment confirms that cache location is a practical constraint for
a successful WCD attack where a distributed set of cache servers is involved,
but also shows that attacks are viable in certain scenarios without necessi-
tating additional traffic manipulation.

5.5.2 Cache Expiration

Web caches typically store objects for a short amount of time, and then evict
them once they expire. Eviction may also take place prematurely when web
caches are under heavy load. Consequently, an attacker may have a limited
window of opportunity to launch a successful WCD attack until the web
cache drops the cached sensitive information.
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Table 5.11: Default caching behavior for popular CDNs, and cache control headers hon-
ored by default to prevent caching.

CDN Cached Objects
Honored Headers

no-store no-cache private

Akamai Objects with a predefined list of static file 7 7 7

extensions only.

Cloudflare Objects with a predefined list of static file 3 3 3

extensions, AND all objects with cache control
headers public or max-age > 0.

CloudFront All objects. 3 3 3

Fastly All objects. 7 7 3

In order to measure the impact of cache expiration on WCD, we repeated
the attacker interactions of our methodology with 1 hour, 6 hour, and 1 day
delays. 3 We found that 16, 10, and 9 sites were exploitable in each case,
respectively.

These results empirically demonstrate that exploitation is viable in real-
istic attack scenarios, where there are delays between the victim’s and at-
tacker’s interactions with web caches. That being said, caches will eventually
evict sensitive data as expected, meaning that attacks with shorter delays are
more likely to be successful. We also note that we performed this test with a
randomly chosen vulnerable page for each site as that was sufficient for our
purposes. In practice, different resources on a given site may have varying
cache expiration times, imposing additional constraints on what attacks are
possible.

3We only tested 19 sites out of 25, as the remaining 6 had fixed their vulnerabilities by the time we
performed this experiment.
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5.5.3 CDN Configurations

Although any web cache technology can be affected by WCD, we estab-
lished in Sec. 5.3.2 that CDNs play a large role in cache use on the Internet.
Therefore, we conducted an exploratory experiment to understand the cus-
tomization features CDN vendors offer and, in particular, to observe their
default caching behavior. To that end, we created free or trial accounts with
four major CDN providers: Akamai, Cloudflare, CloudFront, and Fastly. We
only tested the basic content delivery solutions offered by each vendor and
did not enable add-on features such as web application firewalls.

We stress that major CDN providers offer rich configuration options, in-
cluding mechanisms for site owners to programmatically interact with their
traffic. A systematic and exhaustive analysis of CDN features and corre-
sponding WCD vectors is an extremely ambitious task beyond the scope of
this chapter. The results we present in this section are only intended to give
high-level insights into how much effort must be invested in setting up a
secure and safe CDN environment, and how the defaults behave.

Configuration. All four CDN providers we experimented with offer a graph-
ical interface and APIs for users to set up their origin servers, apply caching
rules, and configure how HTTP headers are processed. In particular, all
vendors provide ways to honor or ignore Cache-Control headers, and users
can choose whether to strip headers or forward them downstream to clients.
Users can apply caching decisions and time-to-live values for cached objects
based on expressions that match the requested URLs.

Akamai and Fastly configurations are translated to and backed by domain-
specific configuration languages, while Cloudflare and CloudFront do not
expose their back-end to users. Fastly internally uses Varnish caches, and
gives users full control over the Varnish Configuration Language (VCL) that
governs their setup. In contrast, Akamai appears to support more powerful
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HTTP processing features than Varnish, but does not expose all features
to users directly. Quoting an Akamai blog post: “Metadata [Akamai’s con-
figuration language] can do almost anything, good and bad, which is why
WRITE access to metadata is restricted, and only Akamai employees can
add metadata to a property configuration directly.” [6]

In addition to static configurations, both Akamai and Cloudflare offer
mechanisms for users to write programs that execute on the edge server, and
dynamically manipulate traffic and caches [30, 4].

In general, while Cloudflare, CloudFront, and Fastly offer free accounts
suitable for personal use, they also have paid tiers that lift restrictions (e.g.,
Cloudflare only supports 3 cache rules in the free tier) and provide profes-
sional services support for advanced customization. Akamai strictly operates
in the business-to-business market where configuration is driven by a profes-
sional services team, as described above.

Cacheability. Next, we tested the caching behavior of these CDN providers
with a default configuration. Our observations here are limited to 200 OK
responses pertaining to WCD; for an in-depth exploration of caching decisions
involving 4xx or 5xx error responses, we refer readers to Nguyen et al. [98].
We summarize our observations in Table 5.11, which lists the conditions
for caching objects in HTTP responses, and whether including the relevant
Cache-Control headers prevent caching.

These results show that both Akamai and Cloudflare rely on a predefined
list of static file extensions (e.g., .jpg, .css, .pdf, .exe) when making cacheabil-
ity decisions. While Cloudflare allows origin servers to override the decision
in both directions via Cache-Control headers, either to cache non-static files
or prevent caching static files, Akamai’s default rule applies unconditionally.

CloudFront and Fastly adopt a more aggressive caching strategy: in the
absence of Cache-Control headers all objects are cached with a default time-
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to-live value. Servers behind CloudFront can prevent caching via Cache-
Control headers as expected. However, Fastly only honors the private

header value.

5.5.4 Lessons Learned

The empirical evidence we presented in this section suggests that configuring
web caches correctly is not a trivial task. Moreover, the complexity of de-
tecting and fixing a WCD vulnerability is disproportionately high compared
to launching an attack.

As we have seen above, many major CDN vendors do not make RFC-
compliant caching decisions in their default configurations [40]. Even the
more restrictive default caching rules based on file extensions are prone to
security problems; for example, both Akamai and Cloudflare could cache
dynamically generated PDF files containing tax statements if configured in-
correctly. On the other hand, we do not believe that these observations
implicate CDN vendors in any way, but instead emphasize that CDNs are
not intended to be plug & play solutions for business applications handling
sensitive data. All CDNs provide fine-grained mechanisms for caching and
traffic manipulation, and site owners must carefully configure and test these
services to meet their needs.

We reiterate that, while CDNs may be a prominent component of the In-
ternet infrastructure, WCD attacks impact all web cache technologies. The
complexity of configuring CDNs correctly, the possibility of multi-CDN ar-
rangements, and other centralized caches that may be involved all imply that
defending against WCD requires site owners to adopt a holistic view of their
environment. Traditional security practices such as asset, configuration, and
vulnerability management must be adapted to take into consideration the
entire communication infrastructure as a system.

From an external security researcher’s perspective the challenge is even
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greater. As we have also discussed in the cache location and expiration
experiments, reasoning about a web cache system’s internals in a black box
fashion is a challenging task, which in turn makes it difficult to pinpoint issues
before they can be exploited. In contrast, attackers are largely immune to
this complexity; they often do not need to disentangle the cache structure
for a successful attack. Developing techniques and tools for reliable detection
of WCD—and similar web cache attacks—is an open research problem. We
believe a combination of systems security and safety approaches would be a
promising research direction, which we discuss in Chapter 6.

5.6 Chapter Summary & Discussion

In this chapter, we presented the first large-scale investigation of WCD vul-
nerabilities in the wild, and showed that many sites among the Alexa Top 5K
are impacted. We demonstrated that the vulnerable sites not only leak user
PII but also secrets that, once stolen by an attacker, can be used to bypass
existing authentication and authorization mechanisms to enable even more
damaging web application attack scenarios.

Alarmingly, despite the severity of the potential damage, these vulnera-
bilities still persist more than two years after the public introduction of the
attack in February 2017. Similarly, our second experiment showed that in
the fourteen months between our two measurements, only 12 out of 16 sites
were able to mitigate their WCD vulnerabilities, while the total number of
vulnerabilities rose to 25.

One reason for this slow adoption of necessary mitigations could be a lack
of user awareness. However, the attention WCD garnered from security news
outlets, research communities, official web cache vendor press releases, and
even mainstream media also suggests that there may be other contributing
factors. In fact, it is interesting to note that there exists no technology or tool
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proposed to date that allows site operators to reliably determine if any part of
their online architecture is vulnerable to WCD, or to close their security gaps.
Similarly, there does not exist a mechanism for end-users and web browsers to
detect a WCD attack and protect themselves. Instead, countermeasures are
largely limited to general guidance by web cache vendors and CDN providers
for their users to configure their services in consideration of WCD vectors,
and the tools available offer limited manual penetration-testing capabilities
for site operators with domain-specific knowledge.

We assert that the above is a direct and natural consequence of the fact
that WCD vulnerabilities are a system safety problem. In an environment
with WCD vulnerabilities, there are no isolated faulty components; that is,
web servers, load balancers, proxies, and caches all individually perform the
functionality they are designed for. Similarly, determining whether there is
human error involved and, if so, identifying where that lies are both non-
trivial tasks. In fact, site operators often have legitimate needs to configure
their systems in seemingly hazardous ways. For example, a global corpora-
tion operating hundreds to thousands of machines may find it technically or
commercially infeasible to revise the Cache-Control header settings of their
individual web servers, and may be forced to instruct their CDN provider to
perform caching based purely on file names.

These are all strong indicators that the growing ecosystem of web caches,
in particular CDN-fronted web applications, and more generally highly dis-
tributed Internet-based architectures, should be analyzed in a manner that
captures their security and safety properties as a system. As aforementioned,
venerable yet still widely-used root cause analysis techniques are likely to fall
short in these efforts, because there is no individual system component to
blame for the failure. Instead, security researchers should adopt a systems-
centric security analysis, examining not only individual system components
but also their interactions, expected outcomes, hazardous states, and acci-
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dents that may result. Modeling and analyzing WCD attacks in this way,
drawing from the rich safety engineering literature [79] is a promising future
research direction that will help the security community understand and ad-
dress similar systems-level attacks effectively.
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Chapter 6

Conclusions and Future Directions

In this section, directions for further investigations would be discussed which
could be followed to continue the research in this overlooked but important
area of research. We conclude the thesis by summarizing our findings in two
explored path confusion based attacks proposed in this thesis.

This thesis is based on different interpretations which create inconsistent
perception of path component in URLs. WCD is a path confusion problem
in web cache technologies; RPO is the result of path confusion in browsers.
A promising future direction could be investigating security impacts of path
confusion in other technologies like load balancer, proxies or even web ap-
plication firewalls. Another potential direction would be investigating inter-
pretation disagreements which occur for other components of a URL (query,
fragment and host).

In chapter 4, we presented the first large-scale study of the Web to mea-
sure the prevalence and significance of style injection using RPO. This work
shows that around 9% of the sites in the Alexa Top 10,000 contain at least
one vulnerable page, out of which more than one third can be exploited.
We analyzed in detail various impediments to successful exploitation, and
made recommendations for remediation. In contrast to script injection, rel-
atively simple countermeasures exist to mitigate style injection. However,
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there appears to be little awareness of this attack vector as evidenced by a
range of popular Content Management Systems (CMSes) that we found to
be exploitable.

In Chapter 5, we present the first large-scale study that quantifies the
prevalence of WCD in 340 high-profile sites among the Alexa Top 5K. Our
analysis reveals WCD vulnerabilities that leak private user data as well as
secret authentication and authorization tokens that can be leveraged by an
attacker to mount damaging web application attacks. Furthermore, we ex-
plore WCD in a scientific framework as an instance of the path confusion
class of attacks, and demonstrate that variations on the path confusion tech-
nique used make it possible to exploit sites that are otherwise not impacted
by the original attack. Our findings show that many popular sites remain
vulnerable two years after the public disclosure of WCD. Our empirical ex-
periments with popular CDN providers underline the fact that web caches
are not plug & play technologies. In order to mitigate WCD, site operators
must adopt a holistic view of their web infrastructure and carefully configure
cache settings appropriate for their applications.
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