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Abstract 10 

Torsional and flexural-torsional buckling of compressed steel members are relevant phenomena for 11 

monosymmetric and built-up cross-sections frequently employed in bracing systems or in truss 12 

structures. Despite the great interest shown by researchers relative to the instability of steel 13 

elements in fire, there is a lack of studies on the torsional and flexural-torsional buckling behaviour 14 

of steel members in compression at elevated temperature, and no provisions are given in EN 1993-15 

1-2. In this work, a comprehensive numerical investigation of the behaviour of axially compressed 16 

angles, Tee and cruciform steel cross-sections at elevated temperature was performed. In this 17 

respect, a parametric study was carried out on Class 1 to 3 profiles subjected to uniform temperature 18 

distribution. It was found that the buckling curve given in EN 1993-1-2 provides unconservative 19 

results for slenderness ranges of practical interest. Improved buckling curves to better predict the 20 

behaviour of angles, Tee and cruciform compressed cross-sections at elevated temperature were 21 

proposed. 22 
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1. Introduction 26 

The resistance of compressed steel members, usually designated as columns, is influenced by 27 

instability phenomena. While members characterised by slender cross-sections may also buckle due 28 

to local effects, for more compact sections a global buckling mode, i.e. flexural, torsional or 29 

flexural-torsional, governs the behaviour in compression. For typical hot-rolled or welded I or H 30 

profiles used as columns in compression, torsional effects are rare, unless flexural buckling around 31 

the weak axis is prevented by lateral restraints, as purlins may do in steel industrial halls. However, 32 

for angles, Tee and cruciform steel sections, torsional or flexural-torsional buckling usually is the 33 

relevant buckling mode. These cross-sections are widely used for bracing systems or for elements in 34 

truss structures and angles can be coupled back-to-back to obtain T or cruciform shaped closely 35 

built-up sections. Hereafter angles, Tee and cruciform sections are referred to as L, T and X 36 

sections respectively. In design practice, the prediction of the behaviour of compressed steel 37 

members relies on the buckling curves provided in the Eurocodes, both at ambient [1] and elevated 38 

temperature [2]. These curves were first calibrated on H- and I-members and were then extended to 39 

other profiles, such as L. In the fire situation many different buckling curves were proposed for 40 

compressed steel members. In [3] and [4], Franssen et al. proposed the model for flexural buckling 41 

adopted in EN 1993-1-2 [2]. Based on this model, several curves were proposed for other types of 42 

instability modes. For instance, in the last years, researchers have put their effort in the 43 

investigation of lateral-torsional buckling [5-11] and its interaction with local instabilities [12-14] 44 

of steel members subjected to fire. Major findings about the interaction of global and local buckling 45 

in hot-rolled Class 4 cross-sections were collected in [15]. Indeed, torsional and flexural-torsional 46 

buckling have mainly attracted the interest when the behaviour of cold-formed steel profiles at both 47 

ambient and elevated temperatures was concerned [16-21]. For such sections, due to the shape and 48 

the small thickness, buckling typically occurs as an interaction of local, distortional and global 49 

buckling. Dinis et al. [22] showed such interaction for L, T and X thin-walled columns, beams and 50 

beam-columns at ambient temperature. X sections were also investigated at ambient temperature in 51 
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[23-25], while laterally restrained I-sections that buckle due to torsional and flexural-torsional 52 

deformation were studied in [26]. In addition, a consistent approach of the Ayrton-Perry 53 

formulation, on which the European buckling curves are based [1, 2], was proposed for torsional 54 

buckling by Chapman et al. [27] and later extended to the general case of beam-columns buckling 55 

in [28]. In conclusion, based on the literature review, it is clear that despite the great interest about 56 

the instability phenomena of steel structures in fire, there is a paucity of studies devoted to 57 

investigate torsional and flexural-torsional buckling at elevated temperatures of hot-rolled and 58 

welded steel sections. In this context, the aim of the present work is to fill this gap by numerically 59 

investigating the resistance to compression of L, T and X thin-walled steel elements in fire in order 60 

to provide improved design buckling curves.  61 

The paper is organised as follows: in Section 2 a brief recall on the buckling of compressed steel 62 

members is provided; Section 3 presents the result of a comprehensive parametric analysis on 63 

concentrically compressed L, T and X members with Class 1 to 3 subjected to uniform temperature. 64 

Numerical analyses were performed by means of beam and shell elements based on a corotational 65 

formulation, developed by the authors in [Errore. L'origine riferimento non è stata trovata.] and 66 

[30]. In Section 4, a new buckling curve model is proposed to account for the buckling behaviour at 67 

elevated temperature of L, T and X members and, finally, conclusive remarks are drawn in Section 68 

5. 69 

2. Buckling resistance of compressed steel members in fire 70 

In general, compressed members may buckle due to flexural, torsional or flexural-torsional 71 

buckling. For typical H- or I-profiles employed in multi-storey buildings, torsional effects are less 72 

likely to occur and compressed columns usually buckle according to a flexural mode around the 73 

weak axis. Conversely, torsional or flexural-torsional buckling can be more significant for other 74 

cross-section shapes, such as L, T or X sections. In this section, a brief insight into the procedure 75 

for the definition of the relevant (lowest) elastic buckling mode and the associated critical load at 76 
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ambient temperature is provided for monosymmetric, i.e. equal leg L and T sections, and 77 

bisymmetric cross-sections (X sections). The general case of sections with no symmetry axes, for 78 

instance L sections with unequal legs, was not investigated, because asymmetric profiles are rarely 79 

employed in the design practice, as they are usually coupled to obtain monosymmetric profiles, e.g. 80 

T sections made of two L profiles. Detailed information about the buckling of monosymmetric and 81 

bisymmetric sections can be found in [31, 32]. The derivation of the elastic buckling load at 82 

ambient temperature is necessary to the definition of the actual design curve at elevated 83 

temperatures (EN 1993-1-2 [2]), which is described in the last part of this section. 84 

2.1. Elastic buckling of monosymmetric and bisymmetric sections  85 

The critical load 𝑁𝑐𝑟 of a monosymmetric section with symmetry about the 𝑦 axis (Figures 1a, 1b 86 

and 1c) can be defined as the lowest load between the pure flexural critical load 𝑁𝑐𝑟,𝐹,𝑧 and the 87 

flexural-torsional critical load 𝑁𝑐𝑟,𝑇𝐹. 88 

 𝑁𝑐𝑟 = min

{
 

 
𝑁𝑐𝑟,𝐹,𝑧 = 𝑁𝑐𝑟,𝑧

𝑁𝑐𝑟,𝑇𝐹 =
(𝑁𝑐𝑟,𝑦 + 𝑁𝑐𝑟,𝑇) − √(𝑁𝑐𝑟,𝑦 + 𝑁𝑐𝑟,𝑇)

2
− 4𝑁𝑐𝑟,𝑦𝑁𝑐𝑟,𝑇𝑟0

2/(𝑟0
2 + 𝑦0

2)

2𝑟0
2/(𝑟0

2 + 𝑦0
2)

 (1) 

Where 𝑟0
2 = (𝐼𝑦 + 𝐼𝑧)/𝐴 and 𝑦𝑜 is the y-coordinate of the centre of torsion (or shear centre) C with 89 

respect to the centroid position G. 𝑁𝑐𝑟,𝑧 and 𝑁𝑐𝑟,𝑦 are the pure flexural elastic critical loads about 90 

the z and y axis respectively and 𝑁𝑐𝑟,𝑇 is the pure torsional elastic critical load 91 

 

𝑁𝑐𝑟,𝑦 =
𝜋2𝐸𝐼𝑦

𝐿0𝑦
2  

𝑁𝑐𝑟,𝑧 =
𝜋2𝐸𝐼𝑧

𝐿0𝑧
2  

𝑁𝑐𝑟,𝑇 = (𝐺𝐽 +
𝜋2𝐸𝐼𝑤

𝐿0𝑇
2 )

1

𝑟2
 

(2) 
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With 𝑟2 =
(𝐼𝑦+𝐼𝑧)

𝐴
+ 𝑦𝑜 , while 𝐿0𝑦, 𝐿0𝑧 and 𝐿0𝑇 are the buckling lengths according to the relevant 92 

buckling mode. 𝑦 and 𝑧 are principal axes, but differently from the Eurocodes nomenclature, 𝑦 is 93 

not necessarily the strong axis. In fact, for equal leg L profiles and T sections obtained by coupling 94 

two of those L profiles (see Figure 1a and 1b), 𝑦 is always the strong axis. However, when two L 95 

profiles with unequal legs were coupled, the strong axis of the T section became the 𝑧 axis, as 96 

shown in Figure 1c.  97 

In bisymmetric sections the centroid and the centre of torsion coincide and thus, 𝑦𝑜 = 𝑧𝑜 = 0 (see 98 

Figure 1d). Interaction between the different buckling modes disappears and the critical load 𝑁𝑐𝑟 is 99 

simply the lowest between the pure flexural and pure torsional buckling loads given in Eq. (2).  100 

 

Fig. 1. Analysed sections a) L section, b) T section built up with 2 equal leg L; c) T section built up with 2 unequal leg 101 

L; d) X section 102 

a) b) 

c) d) 
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2.2. Design provisions for members in fire 103 

Since an improved buckling curve will be proposed in Section 4, a brief review of the procedure for 104 

the definition of the design buckling resistance of compressed steel members in fire 𝑁𝑏,𝑓𝑖,𝑡,𝑅𝑑 as 105 

given in EN 1993-1-2 [2] is here provided. The resistance of members of Class 1, Class 2 or Class 3 106 

cross-sections with uniform steel temperature 𝜃𝑎 is determined from: 107 

 𝑁𝑏,𝑓𝑖,𝑡,𝑅𝑑 = 𝜒𝑓𝑖𝐴𝑘𝑦,𝜃𝑓𝑦/𝛾𝑀,𝑓𝑖 (3) 

where 𝛾𝑀,𝑓𝑖 is the safety factor for the fire design situation, 𝐴 is the area of the cross-section, 𝑘𝑦,𝜃 is 108 

the reduction factor for the yield strength of steel at temperature 𝜃𝑎 and 𝑓𝑦 is the yield strength at 109 

ambient temperature. The formulation consists in the reduction of the cross-sectional compression 110 

capacity by the flexural buckling coefficient in the fire design situation 𝜒𝑓𝑖. This coefficient should 111 

be determined according to the following equation: 112 

 
𝜒𝑓𝑖 =

1

𝜑𝜃 +√𝜑𝜃2 − 𝜆̅𝜃
2

 
(4) 

with 113 

 𝜑𝜃 =
1

2
[1 + 𝜂𝐸𝐶3.1−2 + 𝜆̅𝜃

2
] (5) 

The generalised imperfection factor 𝜂𝐸𝐶3.1−2 is defined as 114 

  𝜂𝐸𝐶3.1−2 = 𝛼𝜆̅𝜃 (6) 

𝛼 is the imperfection factor, which depends on the yield strength 𝑓𝑦 expressed in MPa 115 

 𝛼 = 𝛽√235/𝑓𝑦;        𝛽 = 0.65 (7) 

The non-dimensional slenderness 𝜆̅𝜃 at the temperature 𝜃𝑎, is given by: 116 

 𝜆̅𝜃 = 𝜆̅[𝑘𝑦,𝜃/𝑘𝐸,𝜃]
0.5

 (8) 

where 𝑘𝑦,𝜃 and 𝑘𝐸,𝜃 are the reduction factors for the yield strength and Young’s modulus at 117 

temperature 𝜃𝑎, respectively, and 𝜆̅ is the non-dimensional slenderness at ambient temperature. No 118 
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further information about the definition of 𝜆̅ is given in this code. Moreover, since 𝜒𝑓𝑖 is defined as 119 

the smaller between the flexural buckling coefficients 𝜒𝑦,𝑓𝑖 and 𝜒𝑧,𝑓𝑖, it seems that no particular 120 

attention has been given to possible flexural-torsional behaviour. However, EN 1993-1-1 [1] 121 

prescribes that at ambient temperature the reduction factor should be defined according to the 122 

slenderness associated with the lowest relevant buckling mode, as shown in Eq. (9). In fact, for 123 

Class 1, 2 and 3 cross-sections it reads: 124 

 𝜆̅ = 𝜆̅𝑐𝑟 = √
𝐴𝑓𝑦

𝑁𝑐𝑟
 (9) 

where 𝑁𝑐𝑟 is the lowest elastic critical load at ambient temperature, as defined in Eq. (1). Hence, it 125 

seems reasonable to employ a similar method in the fire situation and to define more in general 𝜒𝑓𝑖 126 

as a function of the relevant buckling mode at elevated temperature, as presented in Section 4. 127 

3. Parametric analysis 128 

In order to check whether the EN 1993-1-2 buckling curve provides accurate and safe predictions of 129 

concentrically compressed members subjected to fire that may be sensitive to torsional or flexural-130 

torsional buckling, a large number of Finite Element Analysis (FEA) were carried out. In particular, 131 

more than 23500 geometrically and materially imperfect nonlinear analyses (GMNIA) were 132 

performed on columns, axially compressed through the centroid of the cross section, with different 133 

length and temperature by means of 3D beam and shell elements. The finite elements employed in 134 

this paper are based on a corotational formulation and are suitable for the analysis of steel structures 135 

in fire conditions. Their features and capabilities, as well as their validation against well-known 136 

commercial software, are detailed in [29, 30]. In [29] it was shown that, differently from the beam 137 

elements used in commercial software like ABAQUS and SAFIR, the beam elements employed in 138 

this paper properly allow for torsional behaviour at elevated temperature. Thus, they are particularly 139 

suited for the analysis of structural elements with open cross-sections subjected to torsional actions 140 

such as torsion, torsional buckling, flexural-torsional buckling and lateral-torsional buckling. 141 
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Further details about the employed finite elements can be found in [29, 30]. The columns were 142 

subjected to uniform temperature distributions from 400°C to 800°C, as similarly to columns that 143 

buckle flexurally [3], this is the most relevant temperature range for practical cases. Hence, columns 144 

subjected to five different uniform temperatures were studied (400°C, 500°C, 600°C, 700°C, 145 

800°C): for each temperature about 4700 columns were analysed. In order to investigate steel 146 

columns of practical interest, the members had a minimum length of at least 3 times the largest 147 

cross-section dimension. 148 

45 different equal leg L profiles of commercial dimensions were studied. 68 T sections and 45 X 149 

sections were defined by coupling 2 and 4 L sections, respectively. Sectional dimensions of the 150 

investigated columns are reported in Tables 1-3 for all section types. In the case of closely built-up 151 

members, in which L sections are connected through packing plates or for star-battened angles, 152 

members can be checked for buckling as single integral members if the spacing of the connections 153 

is short enough [1]. As performed by other authors [22-25], the behaviour of coupled members 154 

considered as single and integral, leads to meaningful predictions of the buckling modes. 155 

Nevertheless, it is clear that a more refined numerical investigation could be performed accounting 156 

for the connecting plates or battens in the models. In the parametric analysis, the cross-sections 157 

were of Class 1, Class 2 or Class 3. The classification in fire situation was performed according to 158 

EN 1993-1-2 [2]. The class of each investigated cross-section is provided in Tables 1-3. Since 159 

closely built-up sections are usually connected at discrete points along the member length, it was 160 

decided to conservatively classify the T and X cross sections based on the classification of the 161 

single angular of which they are composed. It has to be noted that in particular for single angles 162 

with equal legs in pure compression, due to the class limits given in the Eurocode, the cross sections 163 

are essentially either of Class 1 or of Class 4. Since the behaviour of Class 4 cross-sections is 164 

affected by local buckling that occurs before the attainment of yield stress in one or more parts of 165 

the cross-section [1], they were not studied and a separate investigation would be necessary. 166 

Therefore, most of the cross sections were of Class 1. Moreover, commercial L profiles with 167 
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unequal legs were mainly in Class 4 and thus, less profiles were available for numerical 168 

investigation of T section made of these sections. 169 

Table 1. List of the cross-section dimensions for L and X profiles 170 

Section 

L section X section S
2

3
5
 

S
2

7
5
 

S
3

5
5
 B1 (=B2) 

[m] 

t1 (=t2) 

[m] 

B1/t1 B1 (=B2) 

[m] 

t1 (=t2) 

[m] 
B1/t1 

 
 

 

  

0.050 

0.090 

0.065 

0.060 

0.100 

0.045 

0.065 

0.100 

0.200 

0.250 

0.150 

0.250 

0.200 

0.070 

0.250 

0.120 

0.150 

0.140 

0.300 

0.110 

0.120 

0.250 

0.140 

0.300 

0.160 

0.180 

0.009 

0.016 

0.011 

0.010 

0.016 

0.007 

0.010 

0.015 

0.028 

0.034 

0.020 

0.033 

0.026 

0.009 

0.032 

0.015 

0.018 

0.016 

0.033 

0.012 

0.013 

0.027 

0.015 

0.032 

0.017 

0.019 

5.56 

5.63 

5.91 

6.00 

6.25 

6.43 

6.50 

6.67 

7.14 

7.35 

7.50 

7.58 

7.69 

7.78 

7.81 

8.00 

8.33 

8.75 

9.09 

9.17 

9.23 

9.26 

9.33 

9.38 

9.41 

9.47 

0.100 

0.180 

0.130 

0.120 

0.200 

0.090 

0.130 

0.200 

0.400 

0.500 

0.300 

0.500 

0.400 

0.140 

0.500 

0.240 

0.300 

0.280 

0.600 

0.220 

0.240 

0.500 

0.280 

0.600 

0.320 

0.360 

0.018 

0.032 

0.022 

0.020 

0.032 

0.014 

0.020 

0.030 

0.056 

0.068 

0.040 

0.066 

0.052 

0.018 

0.064 

0.030 

0.036 

0.032 

0.066 

0.024 

0.026 

0.054 

0.030 

0.064 

0.034 

0.038 

5.56 

5.63 

5.91 

6.00 

6.25 

6.43 

6.50 

6.67 

7.14 

7.35 

7.50 

7.58 

7.69 

7.78 

7.81 

8.00 

8.33 

8.75 

9.09 

9.17 

9.23 

9.26 

9.33 

9.38 

9.41 

9.47 

 

□1 

 

 

□1 

 

 

□1 

 

 

□1 

 

□1 

 

 

□1 

□1 

□1 

□1 

□1 

□1 

□1 

 

□2 

□1 

□1  

+1 

+1 

 

+1 

+1 

+1 

+1 

+1 

+1 

+1 

 

+1 

+1 

+1 

 

+1 

+1 

+1 

 

 

 

 

 

 

 

 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

 

 

 

 

 

 

 

 

 

 

 

Superscript = Class at elevated temperature [2] 

Table 2. List of the cross-section dimensions for T profiles (coupled equal leg L profiles) 171 

Section B1 [m] B2 [m] t1 [m] t2 [m] B1/t1 B2/t2 

S
 2

3
5
 

S
 2

7
5
 

S
 3

5
5
 

 

0.100 

0.180 

0.130 

0.120 

0.200 

0.090 

0.130 

0.200 

0.400 

0.500 

0.050 

0.090 

0.065 

0.060 

0.100 

0.045 

0.065 

0.100 

0.200 

0.250 

0.009 

0.016 

0.011 

0.010 

0.016 

0.007 

0.010 

0.015 

0.028 

0.034 

0.018 

0.032 

0.022 

0.020 

0.032 

0.014 

0.020 

0.030 

0.056 

0.068 

11.11 

11.25 

11.82 

12.00 

12.50 

12.86 

13.00 

13.33 

14.29 

14.71 

2.78 

2.81 

2.95 

3.00 

3.13 

3.21 

3.25 

3.33 

3.57 

3.68 

 

□1 

 

 

□1 

 

 

□1 

 

 

+1 

+1 

 

+1 

+1 

+1 

+1 

+1 

+1 

+1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 

*1 
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0.300 

0.500 

0.400 

0.140 

0.500 

0.240 

0.300 

0.280 

0.600 

0.220 

0.240 

0.500 

0.280 

0.600 

0.320 

0.360 

0.150 

0.250 

0.200 

0.070 

0.250 

0.120 

0.150 

0.140 

0.300 

0.110 

0.120 

0.250 

0.140 

0.300 

0.160 

0.180 

0.020 

0.033 

0.026 

0.009 

0.032 

0.015 

0.018 

0.016 

0.033 

0.012 

0.013 

0.027 

0.015 

0.032 

0.017 

0.019 

0.040 

0.066 

0.052 

0.018 

0.064 

0.030 

0.036 

0.032 

0.066 

0.024 

0.026 

0.054 

0.030 

0.064 

0.034 

0.038 

15.00 

15.15 

15.38 

15.56 

15.63 

16.00 

16.67 

17.50 

18.18 

18.33 

18.46 

18.52 

18.67 

18.75 

18.82 

18.95 

3.75 

3.79 

3.85 

3.89 

3.91 

4.00 

4.17 

4.38 

4.55 

4.58 

4.62 

4.63 

4.67 

4.69 

4.71 

4.74 

□1 

 

□1 

 

 

□1 

□1 

□1 

□1 

□1 

□1 

□1 

 

□2 

□1 

□1 

 

+1 

+1 

+1 

 

+1 

+1 

+1 

 

 

 

 

 

 

 

 

*1 

*1 

*1 

*1 

*1 

 

 

 

 

 

 

 

 

 

 

 

Superscript = Class at elevated temperature [2] 

Table 3. List of the cross-section dimensions for T profiles (coupled unequal leg L profiles) 172 

Section B1 [m] B2 [m] t1 [m] t2 [m] B1/t1 B2/t2 

S
 2

3
5

 

S
 2

7
5

 

S
 3

5
5

 

 

0.100 

0.100 

0.100 

0.110 

0.110 

0.120 

0.130 

0.130 

0.140 

0.140 

0.150 

0.200 

0.130 

0.130 

0.130 

0.140 

0.140 

0.160 

0.180 

0.180 

0.180 

0.180 

0.200 

0.200 

0.009 

0.010 

0.012 

0.010 

0.012 

0.012 

0.012 

0.014 

0.012 

0.014 

0.014 

0.016 

0.018 

0.020 

0.024 

0.020 

0.024 

0.024 

0.024 

0.028 

0.024 

0.028 

0.028 

0.032 

11.11 

10.00 

8.33 

11.00 

9.17 

10.00 

10.83 

9.29 

11.67 

10.00 

10.71 

12.50 

7.22 

6.50 

5.42 

7.00 

5.83 

6.67 

7.50 

6.43 

7.50 

6.43 

7.14 

6.25 

□3 

□2 

□1 

□3 

□1 

□2 

□3 

□1 

□3 

□2 

□3 

□3 

 

+3 

+1 

+3 

+2 

+3 

 

+2 

 

+3 

+3 

 

 

 

*2 

 

*3 

 

 

*3 

 

 

 

 

Superscript = Class at elevated temperature [2] 

3.1. Numerical model 173 

The material nonlinearity was introduced with the nonlinear stress-strain constitutive law of steel at 174 

elevated temperatures, while residual stresses were deemed negligible. The latter assumption was 175 

extensively investigated by many authors and residual stresses were always found to have no 176 

significant effects on the resistance of steel members in fire [3,11,20,33,34,35]. In fact, residual 177 

stresses at ambient temperature influence the plate load-bearing capacity but at elevated 178 

temperatures a relaxation effect of initial residual stresses is likely to occur owing to the steel 179 

temperature increase [33,35]. The steel elasto-plastic isotropic behaviour was based on the Von 180 
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Mises yield function and on the uniaxial stress-strain relationship provided by the EN 1993-1-2 [2]: 181 

Young’s modulus at ambient temperature equal to 210 GPa, Poisson ratio equal to 0.3 and three 182 

different steel grades, namely S235, S275, S355 were adopted. For each column initial geometric 183 

imperfections were defined according to the buckling mode obtained by a linear eigenvalue 184 

buckling analysis. The imperfections were scaled in order to obtain a maximum nodal displacement 185 

along the column of 1/1000 of the length. Note that when a pure torsional imperfection is 186 

introduced in X sections the maximum nodal displacement is the displacement induced by rotation 187 

𝜗 at the end node of one of the flanges (see Figure 2a). 188 

Beam finite elements developed in [Errore. L'origine riferimento non è stata trovata.] were 189 

employed for the monosymmetric sections, whereas for the X section, due to the nature of its 190 

buckling behaviour, the shell element proposed in [30] was used in the numerical simulation. 191 

Indeed, in beam analyses the introduction of imperfections associated to a pure torsional buckling 192 

of a bisymmetric section would results in no displacement of the centroid of the section. Thus, the 193 

configuration of the columns would essentially remain undisturbed. This is not the case of shell 194 

analyses, in which not only the centroid, but also the nodes that define the section can be displaced, 195 

allowing for proper representation of torsion (see Figure 2a). Nevertheless, beam elements were 196 

used for the monosymmetric cross-sections as they allow for faster analyses and an easier definition 197 

of the boundary conditions. In these analyses simply-supported conditions were employed. The 198 

rotation along the longitudinal axis was blocked. In shell element-based models, simply supported 199 

conditions are not straightforward to apply and the investigation of clamped columns was instead 200 

preferred. The axial displacement was free on the loaded side and fixed on the opposite one. The 201 

axial load was applied to the centroid and uniform axial displacement was guaranteed on the loaded 202 

side by master-slave constraints. Convergence investigation proved that 30 elements were sufficient 203 

for accurate solutions in beam analyses, while the mesh varied with the length of the columns in the 204 

shell-based simulations. The depth-to-width ratio of the shell elements was kept constant and close 205 

to 1, as for this ratio the employed triangle elements have the best performance. 7 nodes in each 206 
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dimension of the section were always used. The typical deformed configuration of half of the 207 

member associated with a pure torsional and a pure flexural buckling mode for a X section with 208 

B1=0.3m and t1=0.04m are depicted in Figure 2b and Figure 2c respectively. 209 

 

  

Fig. 2. Shell model for X sections: a) imperfection for the torsional mode; b) deformed shape of half of the member due 210 

to torsional buckling mode; c) deformed shape of half of the member due to flexural buckling mode. 211 

3.2. Validation of the numerical model 212 

A preliminary analysis was carried out to validate the numerical model, as proposed in [35]. The 213 

numerical results for the flexural buckling of an IPE300 S235 steel column about the strong axis 214 

were compared to the relevant buckling curve given in EN 1993-1-1 [1]. The numerical analysis 215 

was performed on simply supported columns by means of the beam finite element. Flexural 216 

buckling about the weak axis was prevented by restraining the out-of-plane displacements at all the 217 

nodes along the beam, as shown in Figure 3a. Columns of different lengths (and thus in turn 218 

slenderness 𝜆̅) were tested by applying an increasing axial load and measuring the load at failure. 219 

As suggested by Jönsson and Stan in [36], in order to reproduce the European buckling curves, 220 

finite element analysis may be performed with equivalent column bow imperfections extracted 221 

directly from the Ayrton-Perry formulation. As a result, being the generalised imperfection factor 𝜂 222 

in the analytical Ayrton-Perry approach for the derivation of the buckling curves defined as 𝜂 =223 

𝑒/𝑘, it turns out that for the generalised imperfection factor proposed in EN 1993-1-1 [1] one gets 224 
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  𝜂𝐸𝐶3.1−1 = 𝛼(𝜆̅ − 0.2) = 𝑒/𝑘 (10) 

Where 𝜆̅ is the non-dimensional slenderness as defined in Eq. (9), 𝑒 is the eccentricity of the 225 

column and 𝑘 is kernel radius. The latter is the ratio between the relevant section modulus 𝑊 of the 226 

section, i.e. the one about the strong axis in this case, and the cross-section area 𝐴 (𝑘 = 𝑊/𝐴). It 227 

follows that introducing an imperfection 𝑒 derived from Eq. (10) a good numerical model should 228 

give results in very good agreement with the Eurocode buckling curve. Thus, the geometric 229 

imperfection introduced in the model was defined as follows 230 

  𝑒 = 𝛼𝑘(𝜆̅ − 0.2) (11) 

Numerical analysis and the buckling curve a are compared in Figure 3b, where the ratio between 231 

the failure load 𝑁 and the yield load 𝑁𝑦𝑖𝑒𝑙𝑑 is plotted against the non-dimensional slenderness 𝜆̅. 232 

From Figure 3b it is possible to observe a good agreement between design predictions and 233 

numerical outcomes. The fact that numerical results are almost superimposed to the buckling curve 234 

from EN 1993-1-1 proves the reliability of the implemented model. 235 

 

a) 
 

b) 

Fig. 3. Model validation: a) IPE300 constraints; b) Numerical results vs. design curve predictions 236 

As no experimental tests are available in literature, a further numerical validation is here presented to 237 

check the ability of the developed models to well capture flexural-torsional buckling. In this respect, 238 

the behaviour of a compressed T 300x150x20x40 section (see Table 2) at 600°C was investigated by 239 
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means of both the beam and shell finite elements employed in this work. The column was clamped at 240 

the ends and the length was chosen so that the column was sensitive to flexural-torsional buckling, 241 

i.e. L=1.67 m. In fact, linear buckling analysis identified flexural-torsional buckling as the lowest 242 

buckling mode for both shell and beam models, as shown in Figure 4a. The associated critical 243 

buckling loads were  𝑁𝑐𝑟,𝐵𝐸𝐴𝑀  = 12150 kN and 𝑁𝑐𝑟,𝑆𝐻𝐸𝐿𝐿= 12550 kN for the beam and the shell 244 

models, respectively, which means a difference of 3.2%. Once identified, the first buckling mode 245 

shape was scaled and introduced as initial imperfection in the numerical models. A constant and 246 

uniform temperature of 600°C was applied to the column and the compressive load 𝑁 was then 247 

increased at each step of the analysis. Results in terms of the ratio between the applied axial load 𝑁 248 

and the yield load 𝑁𝑦𝑖𝑒𝑙𝑑 = 𝐴𝑘𝑦,600°𝐶𝑓𝑦 are given in Figure 4b as a function of the axial displacement 249 

of the loaded node. For comparison purposes, the outcomes of the same analysis performed with a 250 

shell model developed in SAFIR [37] are also shown in Figure 4b. The three analyses are in excellent 251 

agreement and an almost identical load level with a maximum difference of 3.7% was reached. 252 

 
 

Fig. 4. a) T 300x150x20x40 constraints and lowest buckling mode; b) Load vs axial displacement of the loaded node 253 

3.3. Numerical results 254 

The results of the parametric analysis for the 4 different section shapes are shown in Figure 5 and 255 

compared with the EN 1993-1-2 [2] buckling curve at elevated temperature. In Figure 5 each single 256 

graph shows the results obtained through non-linear FE analysis by varying the length of the 257 
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members defined in Tables 1-3. The numerical failure load 𝑁 is expressed with respect to the yield 258 

load at elevated temperature 𝑁𝑦𝑖𝑒𝑙𝑑 = 𝐴𝑘𝑦,𝜃𝑓𝑦, while the slenderness at elevated temperature 𝜆̅𝜃 259 

(see Eq. (8)) of the investigated columns was defined according to the relevant buckling mode. As 260 

the slenderness affects the distribution of the plotted numerical data, the geometrical properties used 261 

for its definition should be carefully evaluated. In the beam analysis the Saint-Venant torsional 262 

constant 𝐽 and the warping torsional constant 𝐼𝑤 were determined by means of finite element 263 

numerical analysis. These two numerical quantities may differ from the ones obtained through the 264 

analytical equations [38,39] typically employed in the design practice. As one of the purposes of 265 

this work is to provide buckling curves that could be used in design practice, the non-dimensional 266 

slenderness 𝜆̅𝜃  was determined according to the geometrical properties derived analytically. 267 

A brief separate discussion is addressed for the X sections studied by means of shell elements. 268 

Buckling occurred in its pure flexural form for almost all the numerical results in Figure 5. 269 

Additional analyses were performed for stockier columns, which buckled torsionally, but the results 270 

associated to these columns occurred for loads higher than the yield load (𝑁 > 𝑁𝑦𝑖𝑒𝑙𝑑). Several 271 

researches showed that columns may attain failure loads exceeding the yield load when shell 272 

elements are employed [12-14, 21]. However, such results were not considered as they would imply 273 

buckling coefficients 𝜒𝑓𝑖 > 1, whereas 𝜒𝑓𝑖 should never exceed the value of 1. Nevertheless, even 274 

though the data reported in Figure 5 for X sections are mainly associated to pure flexural buckling, 275 

a new buckling curve was proposed in Section 4, as the predictions from the EN 1993-1-2 design 276 

curve do not accurately represent the numerical observations. 277 

It can be noted that columns with 𝜆̅𝜃 ≥ 0.7 consisting of L and T profiles are not particularly 278 

sensitive to torsional effects and mainly buckle according to a flexural mode. In the 0.25 ≤ 𝜆̅𝜃 <279 

0.7 range torsional effects are more important and numerical results are more scattered, especially 280 

for L sections. The appearance of scattered data is mainly related to the use of analytical quantities 281 

in the definition of the non-dimensional slenderness 𝜆̅𝜃. In fact, for L, T and X sections the 282 

analytical warping torsional constant 𝐼𝑤 is zero and the pure torsional buckling load 𝑁𝑐𝑟,𝑇 does not 283 
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vary with the length of the column (see Eq.(2)). This load affects the value of 𝜆̅𝜃 by means of 284 

Eq.(1), (8) and (9). Thus, the more the column length decreases, the more the torsional effects 285 

become significant, the lesser 𝜆̅𝜃 varies with the length of the column and numerical data are 286 

consequently not well distributed along the abscissa. In addition, numerical results are affected by 287 

the B/t ratio, as shown in Figure 6b, and cannot be easily represented by buckling curves that do not 288 

account for the influence of this parameter. Pure flexural buckling governed the behaviour of X 289 

members in the whole plotted slenderness range characterised by 𝜆̅𝜃 > 0.20 and numerical 290 

outcomes are less scattered. 291 

When numerical data are compared to the actual design curve, a few common traits can be 292 

identified. As expected, good predictions are obtained for slender columns with 𝜆̅𝜃 ≥ 1.5, when 293 

flexural buckling governs the failure of all the section types. Nevertheless, the buckling curve from 294 

EN 1993-1-2 provides non-conservative results for a large slenderness range of practical interest. 295 

Indeed, by decreasing the slenderness, the resistance to compression is overpredicted, while at about 296 

𝜆̅𝜃 = 0.5 predictions are both safe and unsafe. This is the case in particular of L and T profiles, for 297 

which scattered numerical data appear due to the definition of the non-dimensional slenderness 𝜆̅𝜃, 298 

as explained before. For very stocky columns (𝜆̅𝜃 < 0.5) predictions are mainly overconservative 299 

for L, T and X sections. Thus, the introduction of improved buckling curves to better predict the 300 

behaviour of L, T and X compressed cross-sections at elevated temperature would be beneficial. 301 
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Fig. 5. Buckling curves for S235, S275 and S355 302 

All subfigures of Figure 5 include the effects of different temperatures and of the B/t ratio that 303 

deserve a deeper description. The numerical results obtained for each investigated temperature are 304 

shown in Figure 6a for an L150x150x20x20 (B/t =7.5) section with S355 steel grade. Similar 305 

observations can be made for all the cross-sections and steel grades. Though the resistance at 306 

elevated temperature is significantly lower than the one at ambient temperature, there is no big 307 

variation in the 400°C-800°C range. For columns subjected to significant torsional effects ( λ̅θ <308 

0.7), the result variation is larger. Similar observations can be made for the T cross-sections. 309 

Analogously, the influence of the B/t ratio is illustrated in Figure 6b, where the failure loads of all 310 

the investigated L sections are presented for temperature equal to 400°C and steel grade equal to 311 

355MPa. It can be observed that the B/t ratio has no influence on the results until torsional effects 312 
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are significant, i.e. λ̅θ < 0.7. Hence, for very stocky columns, predictions obtained from a single 313 

buckling curve regardless of the temperature and of the B/t ratio are less accurate for  λ̅θ < 0.7. 314 

However, it was decided to propose one simple model of buckling curve that provides safe and 315 

reasonable accurate predictions. It is worth to point out that the variation of results for  λ̅θ < 0.7 316 

was considerably reduced in the second model when the flexural slenderness at elevated 317 

temperature is used, as described in Section 4.2. 318 

 
 

Fig. 6 a) Influence of temperature on numerical results for an L150x150x20x20 S355 steel section; b) Influence of the 319 

B/t ratio on numerical results for L S355 steel section at 400°C 320 

4.  Buckling curve proposal 321 

The procedure provided in EN 1993-1-2 [2] was modified based on the results from the parametric 322 

analysis. Both the procedures at ambient [1] and at elevated temperature [2] are derived from the 323 

same equations and differ only in the definition of the generalised imperfection factor 𝜂. At elevated 324 

temperature 𝜂𝐸𝐶3.1−2 = 𝛼𝜆̅𝜃 (see Eq. (5)), while at ambient temperature a plateau representing the 325 

evolution of the buckling reduction factor 𝜒 is introduced for non-dimensional slenderness values 326 

𝜆̅ ≤ 0.2, by defining 𝜂𝐸𝐶3.1−1 as 𝛼(𝜆̅𝜃 − 𝜆̅0) and 𝜆̅0 = 0.2. With non-dimensional slenderness 327 

values 𝜆̅ ≤ 0.2, 𝜒 at ambient temperature is equal to 1. Different imperfection factors 𝛼 are 328 

provided at ambient temperature according to the shape, the buckling mode and the steel grade of 329 

the member. In a similar fashion, the proposed model is in line with the formulation of buckling 330 
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curves from [1] and [2] and only the generalised imperfection factor 𝜂 in Eq. (5) was modified as 331 

follows: 332 

 𝜂𝑃𝑅𝑂𝑃 =
𝛼

𝜆̅𝜃
𝛾 (𝜆̅𝜃 −

𝜆̅0
2

𝜆̅𝜃
) (12) 

As the imperfection factor 𝛼 is defined according to Eq. (7), only 3 parameters, namely 𝛽, 𝛾 and 𝜆̅0 333 

are needed for the complete definition of the buckling curve, i.e. the evolution of 𝜒𝑓𝑖 with 𝜆̅𝜃. 𝜆̅0 334 

represents the non-dimensional slenderness limit for the plateau. Thus, Eq. (4) should be replaced 335 

by 336 

 

𝜒𝑓𝑖 = 1                                           𝜆̅𝜃 ≤ 𝜆̅0 

𝜒𝑓𝑖 =
1

𝜑𝜃 +√𝜑𝜃2 − 𝜆̅𝜃
2

           𝜆̅𝜃 > 𝜆̅0 
(13) 

The values of 𝛽, 𝛾 and 𝜆̅0 associated with the proposed curves shown in Figure 5 are given in Table 337 

4. The calibration of such parameters was performed by comparing the predictions with the results 338 

of the parametric analysis, as illustrated in Figure 5 and Figure 7. The aim was to propose design 339 

buckling curves on the safe side and easy to apply. In addition, curves associated with normal 340 

distributions with small standard deviations and high probabilities of non-exceedance of the safe-341 

unsafe limit were preferred, as depicted in Figure 8. Several combinations of parameters were tested 342 

until the optimal agreement between the proposed design curve and the numerical outcomes was 343 

obtained. 344 

Table 4. Parameter values for the proposed buckling curve 345 

 
L T T  

(unequal) 

X 

𝛽 1.10 1.25 1.10 0.85 

𝛾 0.80 0.80 0.50 0.35 

𝜆̅0 0.30 0.25 0.25 0.20 
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4.1. Buckling curves comparison 346 

Both the EN 1993-1-2 [2] and the proposed design buckling curves are depicted in Figure 5. The 347 

EN 1993-1-2 design buckling curve is not well-suited for the context of flexural-torsional buckling. 348 

The buckling coefficient 𝜒𝑓𝑖 is overestimated for a medium slenderness range, while the absence of 349 

a plateau leads to over-conservative predictions for very stocky columns. The proposal represents 350 

more accurately the buckling resistance of compression members that are sensitive to torsional and 351 

flexural-torsional buckling. The degree of safety of the buckling curves was assessed by 352 

comparison with the results from numerical simulation. In detail, the failure loads of the buckling 353 

curves were calculated for each non-dimensional slenderness 𝜆̅𝜃 employed in the numerical 354 

analyses and were plotted against the associated numerical failure load 𝑁𝐹𝐸𝐴 (Figure 7). The 355 

numerical (𝑁𝐹𝐸𝐴) and the failure loads computed with the proposed buckling curve and the EN 356 

1993-1-2 buckling curve (𝑁) were normalised by means of the yield load 𝑁𝑦𝑖𝑒𝑙𝑑. In Figure 7, the 357 

safe-unsafe limit is identified by the first quadrant bisector line (𝑁 = 𝑁𝐹𝐸𝐴). The EN 1993-1-2 358 

design buckling curve overestimates the numerical failure load of L and T sections in the range 359 

0.3 < 𝑁𝐹𝐸𝐴/𝑁𝑦𝑖𝑒𝑙𝑑 < 0.7. Predictions of the load-bearing capacity attain values significantly higher 360 

than the ones from the numerical simulation (>10%). For higher values of 𝑁𝐹𝐸𝐴/𝑁𝑦𝑖𝑒𝑙𝑑, the EN 361 

1993-1-2 buckling curve is safer and is conservative from values 𝑁𝐹𝐸𝐴/𝑁𝑦𝑖𝑒𝑙𝑑  > 0.8. In case of X 362 

sections, the EN 1993-1-2 buckling curve results are approximately in the ±10% range. 363 

Nevertheless, the proposed buckling curve is safer than the Eurocode one. 364 

The predictions are much better distributed in the safe range between −10% and 0%, in particular 365 

for observations associated with flexural buckling. When torsional effects are more significant, the 366 

proposed curve is still safe, but the predictions are spread on a large range of values and might 367 

significantly underestimate the compression resistance. Excellent agreement was found when the 368 

proposed curve was compared with numerical results for X sections. 369 
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Fig. 7. Numerical results vs. design curves predictions 370 

The outcomes of statistical investigation are depicted in Figure 8 in the form of cumulative normal 371 

distributions. The vertical line at 𝑁/𝑁𝐹𝐸𝐴 = 1 represents the safe-unsafe limit. The new model has 372 

lower standard deviations and significantly higher probabilities of safe predictions with respect to 373 

the ones from the actual design curves. Values higher than 91% were obtained at the safe-unsafe 374 

limit for all the sections and when a safety margin of 5% was included, the values were increased to 375 

about 98%. 376 
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Fig. 8. Cumulative normal distributions 377 

As previously stated, the numerical outcomes are influenced by the parameter B/t. While for 𝜆̅𝜃 ≥378 

0.7 the depth-to-thickness ratio of the plates has no significant influence on the results, for 379 

0.25 ≤ 𝜆̅𝜃 < 0.7 numerical results are more spread (Figure 5) and in particular for L sections. 380 

Numerical observations for slenderness 0.25 ≤ 𝜆̅𝜃 < 0.7 are associated with the region of scattered 381 

data in Figure 7. The introduction in the model of terms related to the B/t ratio could improve the fit 382 

of the numerical results and condense the cloud of data. However, for sake of simplicity, the authors 383 

preferred to neglect the influence of the B/t ratio. The statistical and safety investigations proved the 384 

proposed formulation to be sufficiently accurate and safe. Predictions are never safer than 40%, 385 

which is consistent with results obtained for design curves proposed for other instability phenomena 386 

at elevated temperatures [14, 34].  387 
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4.2. Slenderness modification 388 

Although the predictions from the proposed model are considered safe and sufficiently accurate, an 389 

improved buckling curve can be obtained by introducing a modification in the definition of the 390 

slenderness. As stated by Taras and Greiner in [26], the length of the column 𝑙 is not well 391 

represented by the non-dimensional slenderness 𝜆̅𝑐𝑟 associated with the relevant buckling mode (i.e. 392 

torsional or flexural-torsional mode). A better representation of the length range is obtained by 393 

replacing the critical buckling load 𝑁𝑐𝑟 in Eq. (9) with the lowest flexural buckling load 394 

min(𝑁𝑐𝑟,𝑦, 𝑁𝑐𝑟,𝑧)  395 

 𝜆̅ = 𝜆̅𝑐𝑟,𝐹 = √
𝐴𝑓𝑦

𝑁𝑐𝑟,𝐹
= √

𝐴𝑓𝑦

min(𝑁𝑐𝑟,𝑦, 𝑁𝑐𝑟,𝑧) 
 (14) 

A similar observation was taken for cold-formed steel members at ambient temperature by Popovic 396 

et al. [19], who recommended to determine the slenderness for the proposed design buckling curve 397 

based on the flexural buckling strength about the minor axis. Consistently with this idea, in Figure 9 398 

the numerical results are presented with respect to the non-dimensional slenderness at elevated 399 

temperature 𝜆̅𝜃 defined according to equations (8) and (14).  400 
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Fig. 9. Buckling curves for S235, S275 and S355 – 𝜆̅𝜃 = flexural slenderness 401 

In this new configuration, the numerical results associated with stocky columns are less scattered 402 

compared to Figure 5, facilitating the fit by means of buckling curves. The actual and the proposed 403 

design curves evaluated according to the new slenderness definition are also given in Figure 9. The 404 

framework described in Section 4 was employed for the buckling curve proposal, but new 405 

parameters were defined in Table 5. As the X sections were almost exclusively subjected to flexural 406 

buckling, the same parameters were used. 407 

Table 5. Parameter values for the proposed buckling curve – slenderness modification 408 

 
L T T  

(unequal) 

X 

𝛽 1.00 1.25 1.10 0.85 

𝛾 0.50 0.80 0.50 0.35 

𝜆̅0 0.15 0.22 0.20 0.20 

Failure loads from numerical simulation and from design curves are compared for the different 409 

cross-section types in Figure 10. Significantly improved predictions were obtained, as the range of 410 

underestimated values was reduced for the L and T sections. The model is still safe, as proved also 411 

by statistical investigation (Figure 11). Assuming a normal distribution, the probability of safe 412 
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predictions was more than 96% for all the sections, while more than 99% of the values were safe 413 

when a safety margin of 1.05 was considered. 414 

  

  

Fig. 10. Numerical results vs. design curves predictions – 𝜆̅𝜃 = flexural slenderness 415 
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Fig. 11. Cumulative normal distributions– 𝜆̅𝜃 = flexural slenderness 416 

In conclusion, according to the results, the model based on the flexural slenderness is more accurate 417 

and should be preferred. 418 

5. Conclusions 419 

This paper investigates the resistance at elevated temperature of compressed steel L profiles or 420 

closely spaced built-up members, whose load bearing capacity may be affected by torsional or 421 

flexural-torsional buckling. Though these members are widely used in the design practice, the EN 422 

1993-1-2 provisions do not provide guidance and very few fundamental studies can be found in 423 

literature. Indeed, research works have mainly focused on flexural and flexural-torsional behaviour 424 

of cold-formed steel members and rarely at elevated temperatures, while such a behaviour in the fire 425 

situation of hot-rolled or welded profiles was not investigated. Thus, in the present work, a 426 

comprehensive numerical analysis of the buckling resistance of concentrically compressed L, T and 427 

X sections at elevated temperature was performed. In this respect, parametric analysis that relied on 428 

more than 23500 columns with cross sections classified as Class 1 to Class 3 was carried out for a 429 

range of critical temperatures, relevant in the design practice, between 400°C and 800°C. It was 430 

found that the actual EN 1993-1-2 provisions can lead to both conservative and unconservative 431 

predictions depending on the slenderness at elevated temperature 𝜆̅𝜃. In detail, for slenderness range 432 

of practical interest 0.5 ≤ 𝜆̅𝜃 < 1.5 the EN 1993-1-2 buckling curve overestimates the load-bearing 433 
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capacity. Thus, a new buckling curve as a function of the slenderness at elevated temperature 𝜆̅𝜃 434 

and depending upon the cross-section shape and steel grade was proposed for concentrically 435 

compressed steel L, T and X members prone to torsional and flexural-torsional buckling. The 436 

proposed buckling curve is based on the general formulation provided in EN 1993-1-1 and EN 437 

1993-1-2 and was calibrated by defining three parameters, namely 𝛽, 𝛾 and 𝜆̅𝜃, that differ upon the 438 

cross-section shape. The effect of the temperature on the results is small and despite the fact the 439 

effect of the B/t ratio is more evident for 𝜆̅𝜃 < 0.7, it was decided to propose one simple model of 440 

buckling curve that provides safe and reasonable accurate predictions. Indeed, statistical 441 

investigation proved the proposal to be reliable and safe. In general, better statistical correlation was 442 

found between the finite element analysis (GMNIA) results and the proposed buckling curve rather 443 

than the EN 1993-1-2 buckling curve. Assuming normal distribution, probabilities of safe 444 

predictions higher than 91% were reached when the results were expressed in terms of the 445 

slenderness associated with the relevant buckling mode, whereas more than 96% of safe predictions 446 

were observed when the flexural slenderness was instead employed to better consider the effect of 447 

the member length. Indeed, the predictions in terms of the flexural slenderness are more accurate 448 

and its use is preferable. In conclusion, the proposed buckling curve allows for better predictions of 449 

the resistance of concentrically compressed L, T and X members in fire prone to torsional or 450 

flexural-torsional buckling. It is valid in the temperature range 400°C-800°C and for Class 1 to 451 

Class 3 cross-sections, while it does not consider the influence of local buckling typical of Class 4 452 

cross-sections. Further investigations could be performed, for instance by employing more refined 453 

finite element models to account for the influence of connecting plates or battens. Finally, since the 454 

proposal is based on numerical analyses as no experimental tests on the investigated profiles are 455 

available in literature, future experimental campaign would be beneficial to confirm the proposal 456 

effectiveness. 457 
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