ON THE NUMERICAL RANGE OF MATRICES DEFINED OVER
A FINITE FIELD

E. BALLICO
ABSTRACT. Let ¢ be a prime power. For u = (u1,...,un),v = (v1,...,0n) €
FZZ let (u,v) := > ; ulv; be the Hermitian form of F?,. Fix an n X n matrix

M over Fpa. Set Num(M) := {{u, Mu) | u € IFZZ, (u,u) = 1} (the numerical
range of M introduced by Coons, Jenkins, Knowles, Luke and Rault (case ¢ a
prime ¢ = 3 (mod 4)) and by the author (arbitrary ¢)). When n = 2 we prove
an upper bound for [Num(M)|. We describe Num(M) for several classes of
matrices, mostly for n = 2, 4.

1. INTRODUCTION

Let g be a prime power. Let [F; denote the only field, up to field isomorphisms,
with [Fo| = ¢ ([19, Theorem 2.5]). Let ei,...,e, be the standard basis of Fj,.
For all v,w € FZQ, say v = aje; + -+ + ane, and w = bye; + -+ + byey, set
(v,w) =371, afbi. (, ) is the standard Hermitian form of F;. For any n > 1 and
any a € Iy set

Cu(a) == {(1, -, on) €T | 28" 428t = a).

The set Cp,(1) is an affine chart of the Hermitian variety of P"(F,2) ([14, Ch. 5],
[16, Ch. 23]). Take M € M, ,,(IF,2), i.e. let M be an n x n matrix with coefficients
in Fp2. For any k € Fy set Numy(M) = {(u,Mu) | u € Cp(k)} C Fgp. Set
Num(M) := Numj(M). The set Num(M) is called the numerical range of M.
These concepts were introduced in [8] when ¢ is a prime ¢ = 3 (mod 4) and in [1]
in the general case.

If n > 2 we have Num(M) = F 2 for “most " M € M, ,(F,2). This is the case
for most diagonal matrices, as it is possible to describe the numerical range of block
diagonal matrices. More precisely, fix A € My, ;n(Fy2), B € M,.,(F,2) and set

A 0
M= <O B> '
Thus M € My m4r(Fg2). There is a complete description of Num(A/) in terms
of all Num(A4), Numg(A4), Num(B) and Numg(B) ([8, Proposition 3.1], [1, Lemma
1]) and this description shows how easy from a given A to find B (even with r =1
if m > 2 and A is not too special) with Num(M) = F.

If n = 2 we may use Num(M) to give a good description of M, up to a unitary
transformation, at least if ¢ # 2. In particular |Num(M)| describes in which field
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the eigenvalues of M are contained, if the eigenvectors of M are in C3(0) or not
and if they are orthogonal with respect to (, ) (Remark 1).

For any M = (my;) € Myn(Fg2) set MT := (m%,) € M, ,(Fz2). Note that
M = M and that (u, Mv) = (MTu,v) for all u,v € F7.. The matrix M is
unitary if and only if MT = M. In [2] the author defined the real part and the
imaginary part first of any « € F,2 and then of any M € M, ,(F,2). We briefly
recall here the case ¢ odd. In Section 2 we give more details and explain the case
g even. Assume g odd. Fix a € Fy, which is not a square in F, and fix a root
B € Fg2 of the equation t2 —a = 0, so that Fg2 is an Fy-vector space with 1 and
B. For any z = z + yfB € Fpe with z,y € Fy set 2z :=  and 3z := y. We have
z= (24 27)/2 and Sz = (2 — 29)/23. For any square matrix M € M, ,(F,2) set
M, = (M — M")/2 and M_ := (M + M")/23. We have M = M, + BM_. If
M = MY, then Num(M) C F, (Remark 4). Thus for any square matrix M we have
Num(M;) CF, and Num(M_) CF,.

We first prove the following upper bound for |[Num(M)|.

Theorem 1. Fiz any M € M;2(F,2). Then:
(i) |Num(M)| < ¢* —2q + 2;
(i) if [Num(M,)| < ¢g—1 and [Num(M_)| < g—1, then |[Num(M)| < ¢*>—2q+1;
(iii) of esther [Num(M,)| < ¢—2 or [Num(M_)| < g—2, then either M = cllaxa
and Num(M) = {c} or ¢ — 1 < |Num(M)| < g¢;
(iv) if {|Num(M )], Num(M_)[} = {g — 1, g}, then [Num(M)| < ¢ — 2q +2;
(v) if INum(M,)| = |[Num(M_)| = q, then [Num(M)| < ¢® — 4q + 8.

Then we describe Num(M) for many classes of 2 x 2 matrices. In the classical
case of the numerical range of complex matrices the case of 2 x 2 matrices was the
critical one for the convexity theorem, while n > 2 was reduced to the 2 x 2 case
([10, Lemma 1.1.1 and Theorem 1.1.2], [11, 12, 20]).

Our interest in the classical, i.e. over C, numerical range came from our interest
in quantum computing, quantum error correcting codes and convolutional codes
(4, 5, 6, 9, 13, 17, 21, 22]). Let V be a (finite-dimensional for error correcting
code purpose) complex vector space equipped with an Hermitian form (, ), i.e. a
finite dimensional Hilbert space. Over a finite field one uses the Hermitian form
(, ) over Fp2. The map vy : Cp(1) — Fp2 defined by the formula u — (u, Mu)
(which we call the numerical range map) should play an important role in the use
of Hermitian forms over finite fields for these topics.

In [3] we proved that the restriction of the numerical range (over F,2) to sub-
spaces of ]FZ2 sometimes determines the matrix or it is sufficient to describe its main
properties. This is another reason for the interest of Num(A) where A € M, .(F,2)
and r is very low. Restrictions are also usual in classical block codes.

Let L,,x» denote the unity n x n matrix. The matrix N € My 2(Fy2) is called
unitary if NTN = I,,x, (or equivalently NNt = I,,.,,). Note that Numy (M) =
Numy, (UTMU) for every unitary matrix U.

To state our results we consider the following geometric terminology.

As in [8] for any a € Fp2 and any b € F, \ {0} the circle S, with center a
and squared-radius b is the set {z € F2 | (z — a)?™ = b}. We obviously have
|Sas| = ¢+ 1 (Remark 6 or [1, Remark 3]). If we know the center of a circle, to
get its squared-radius (and so to get all points of the circle) it is sufficient to know
one of its points. Two different circles with the same center are disjoint. In the
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set-up of [8] it was obvious that 2 distinct circles have at most 2 common points.
We prove (Lemma 5) that this is the case for all finite fields with odd order and so
if ¢ is odd a circle is uniquely determined by 3 of its points.

Fix d € F2 \ {0} and k& € F, \ {0,1}. The ellipse associated to (d,k) or of
type (d, k) is the set of all k(dz? + z) for some z € F,2 with 27! = k(1 — k). For
any b € F2 aset B C F2 is called an un-centered ellipse of type (d, k,b) if B —b
(the set of all a — b with a € B) is an ellipse associated to (d, k). Unions of un-
centered ellipses (with respect to different translations b) occur in the statement of
Proposition 2. See Lemma 2 for the cardinalities of the ellipses.

In Section 4 we prove the following results.

Proposition 1. Take M € My 3(F,2). There are linearly independent ui,us € IF?IZ
such that

<U1,U2> = <U1,MU1> = <UQ,MU2> =0

if and only if there is a unitary transformation U of IF; such that

0 b
st _
N.—UMU—(b, 0)

for some b,b'. In the latter case Fp2ui and Fpeuy are uniquely determined by M.
If bt # 0, then b and b’ are uniquely determined by M.

(i) If b=V =0, then Num(M) = {0}.

(i1) Assume bb' = 0 and (b,b') # (0,0). Set p := q/2 — 1 if q is even and
p:=(qg—1)/2 if q is odd. Then Num(M) is the union of 0 and p distinct circles
with center at 0.

(iii) Assume bb' # 0 and q even. Let ¢ be the only element of F 2 with ¢* = bl'.
Set y :=c/b. If y?™t =1, then [Num(M)| = ¢ — 1. If y?*t1 # 0, then Num(M) is
the union of {c} and q/2 — 1 disjoint circles with center ¢ and hence |[Num(M)| =
1+ (¢+1)(¢/2-1).

(iv) Assume q odd, bb' # 0 and that bb' is a square in Fp2, say bb' = c*. If
ettt ¢ {—1,1}, then Num(M) is the union of {—c,c} and q¢ — 2 not necessarily
disjoint circles. If ¢it' = 1, then [Num(M)| = ¢ and Num(M) = {z € F,2 |
294z =1}. If 91 = —1, then |[Num(M)| = ¢ — 1.

(v) Assume bb' # 0, q odd and that bb' not a square in Fp2. Set d :=b/b' and
E = %N. Then Num(E) is the union of 0 and of g — 2 ellipses of type (d, k), one
for each k € Fy \ {0,1}.

Proposition 2. Tuke q odd and let N € My o(Fp2) with no eigenvalue in F 2.
Then N has two different eigenvalues in Fgs. Let c € Fg2 be the trace of N and set
M := N — (¢/2)lax2. Write a := my1, b:= mya, d := mao;. We have may = —a,
b#0,d#0 and b/d is not a square in Fp2. Num(M) is the union of {—a,a} and
the ¢ — 2 sets B(k,a,b,d), where é(B(k,d, b,d) + a(2k — 1)) is an ellipses of type
(b/d, k), ke Fy \ {0,1}.

In the next statement we use the trace map Trqu2 JF, ([19, Definition 2.22 and
Theorem 2.23]) (see section 2).

Proposition 3. Fiz M € M 5(Fy2) such that M has a unique eigenvalue ¢y with
eigenspace of dimension one spanned by u; € ng with (u1,u1) = 0, M_ has a
unique eigenvalue c¢1 with eigenspace of dimension one spanned by ugs € IF32 with
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(ug,us) = 0 and uy is not proportional to uy. Then |Num(M)| = q and there is
V' €Fy, and b" € Fy such that Num(M)/V is the Fy-line TYIE; /7, ®".

Assume ¢ odd. By Propositions 1 and 2 the assumptions of Proposition 3 are
satisfied only in the case (iv) with ¢?t! = 1 of Proposition 1. Compare Theorem 2
below to see why matrices with [Num(M)| = ¢ are interesting.

Proposition 4. Assume q odd. Take M € My 2(F2) such that M has 2 eigenvalues
c1,c2 € Fe, ¢y # ca, with eigenvectors uy,ug with (uz,uj) # 0 for alli,j. If ¢ >5
(resp. ¢ =3), then [Num(M)| > (¢+1)(¢+ 3)/4 (resp. |Num(M)| > 4).

Remark 1. It seems that (after [1, 2, 8]) Proposition 2 was the only missing piece
for the rough classification of numerical ranges for n = 2: if we know Num(M) we
more or less know if M has eigenvalues in [F g2, if they are 2 or one with multiplicities
2, if an eigenspace is one dimensional spanned by a vector v with (v,v) # 0 or not
and partial information on Num(M) may exclude some cases.

In [2, Theorem 1] we proved a lower bound for |Num(M)|, unless M is a specific
class, when ¢ is odd. We complete the proof for the case ¢ even, ¢ # 2, and prove
the following result.

Theorem 2. Assume q # 2. Take M € My, ,(F,2) such that M is not a multiple of
the identity matriz L, x,. Then either |Num(M)| > q orn =2, |Num(M)| =q—1,
M has a unique eigenvalue, ¢, with dimker(M — clax2) = 1 and the kernel of
M — claxo is spanned by a vector v € ker(M — cllaxo) with (v,v) = 0.

We conclude the paper with the description of Numy (M) for the following class
of 4 x 4 matrices.

Proposition 5. Tuoke

d b 0 0
s A be b
M=1q b d b
0 b 0 d

with dy,d,b; € qu, 1<i<7, by 75 0 and k € Fq. Then Numk(M) =F

q2.

We thanks the referees for feedback and suggestions.

2. PRELIMINARIES

The Galois group of the inclusion F, C Fg2 has order 2 and it is generated by
the Frobenius map o : ¢t — t9.

Following [2] we recall the definitions of &, R, M, and M_.

First assume g odd. If ¢ is odd, Fy» is obtained from [, adding a root § of the
polynomial f(t) :=t* — «, where « is not a square in F,. The other root is —3 and
hence o(3) = —f3, i.e. f? = —fp. Thus Fp2 = F, + F,8 as an F,-vector space. For
any z = x +yB € Fpe with 2,y € F, set Rz := 2z and Sz := y. Since 0(2) =z — fy,
we have Rz = (z + 29)/2 and Sz = (2 — 29)/26. For any M € M, ,(F;2) set
M, == (M+M1) /2 and M_ := (M—M")/28. We have MI = M, . Since 7 = — 4,
we have M| = M_. Hence M = My +pBM_ with My and M_ Hermitian matrices.
For any u € F}'; we have (u, Mu) = (u, My u) + B(u, M_u) with (u, M, u) € Fy and
(u, M_u) € Fy (|2, Lemma 1]). Thus the map z — Rz (resp. z — Sz) induces a
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surjection pq : Num(M) — Num(My) C Fy (resp. p2 : Num(M) — Num(M_) C
F,) and in particular [Num(M)| > max{|Num(M, )|, [Num(M_)|}.

Now assume ¢ even. Since F2 is a degree 2 extension of Iy, there is € € IF; such
that the polynomial f(t) = t>+t+¢ has no root in IF, and two distinct roots in Fye.
We fix one of these roots, 3. Note that (8+ 1)+ 8+ 1= 32+ 3 and hence 3+ 1
is the other root of f(t). Since these two roots are conjugate by the Galois group
of the extension Fy, < F,2 (which is generated by the Frobenius map o : t — t9),
we have f? = f+1and (B+ 1)1 = 3. If 2 =x+ypB € Fpe with 2,y € Fy, then
set Nz := x and Jz :=y. The maps N : Fpo = F, and §: Fp2 — F, are Fy-linear.
Since o : Fj2 — F,2 is F,-linear, o2 is the identity map and o(8) = 8+ 1, we have
27=0(z) =xz+y+yp. Thusy=z+z2%and x =z+ Py = (8+1)z+ [2z9. For any
M € M, ,(F2) set My := (B+1)M +BM" and M_ = M + M?'. Obviously M_ is
Hermitian and (since 28 =0) M = My +SM_. Since (8+1)? = f and p? = +1,
M is Hermitian. Thus the map z — Rz (resp. z — $2) induces surjections
p1 : Num(M) — Num(M,) C Fy (resp. p2 : Num(M) — Num(M_) CFy).

Thus for arbitrary ¢ we have

1) max{[Num(M, )|, [Num (M, )[} < [Num(A)].

Since Num(My) C F,, Num(M_) CF,, (u, Mu) = (u, Myu)y+5{u, M_), (u, Myu) €
F, and (u, M_u) € F, (Remark 4), we have

(2) Num(M)]| < [Num(M,.)|[Num(M_)|.

Remark 2. If ¢ = 2 and n = 2 with M = (mij), i,j = 1,2, then Num(M) =
{m11,ma2} ([1, Remark 8]).

Remark 3. Fix c¢,d € Fp= and k € F;. For any n x n matrix M over F,2 we have
Numg (el xpn, + dM) = ck? + dNumy,(M).

Remark 4. If M = M', ie. if M is a Hermitian matrix, then Num(M) C
Fq ([2, Lemma 1]). In particular for any square matrix N, Num(Ny) C F, and
Num(N_) CF,,.

Remark 5. Let Tr]Fq2 /E, : Fgz — Fy denote the trace map. The formula a — a?+a
defines the trace map Trg , /v, : Fz = Fq (case m = 2 of [19, Definition 2.22]). The
function TrFq2/]Fq : Fp2 — Fy is Fy-linear and non-zero ([19, Theorem 2.23]) and
hence it is surjective with as its kernel a 1-dimensional [Fy-linear subspace of 2
seen as a 2-dimensional Fg-vector space. Since Trg ,/r, is an Fy-linear surjective
map, for each a € F, the set Tr[;ql2 /F, (a) is an affine Fy-line and in particular

T o (0)] = 0.

We use the following lemma proved in [2].

Lemma 1. (]2, Lemma 2]) Assume q # 2 and take M € My o(Fp2) such that
Mt = M. Then either M = clyyo with ¢ € Fy, or M has two distinct eigenvalues
ci,¢ca € Fy and M is unitarily equivalent to cillix1 © callix1, or M has a unique
eigenvalue ¢ € F 2 (and hence ¢ € Fy), dimker(M — clayxo) = 1 and ker(M — claxo)
is generated by v € ]ng with (v,v) = 0.

Remark 6. Fix a € F}. Since ¢ + 1 is invertible in F,, the polynomial tatl _ g
and its derivative (¢ + 1)t¢ have no common zero. Hence the polynomial t¢*! — q
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has ¢ + 1 distinct roots in F,. Fix any one of them, b. Since a?~! = 1([14, page 1],
[19, Theorem 2.8]), we have b? ~* = 1. Hence b € F?2. Thus there are exactly ¢ +1
elements ¢ € F}, with it = ¢,

We need the following 4 results proved in [1, 2, 8].

Proposition 6. ([1, Proposition 1], [8, Lemma 3.5]) Assume n = 2 and that M
has a unique eigenvalue, ¢, that its eigenspace has dimension 1, and that {(v,v) # 0
for some eigenvector v. Set p:=q/2—1 if q is even and p := (¢ —1)/2 if q is odd.
Then |Num(M)| = 1+ p(qg + 1) and Num(M) is the disjoint union of {c} and p
disjoint hermitian circles with centers at c.

Proposition 7. ([2, Proposition 1]) Assume n = 2 and that M has eigenvalues
ci,c2 € Fgz and v; € IF32 \ {0}, i = 1,2, such that ¢; # c2, Mv; = c¢;v; and
(vi,v5) = 0 for all i. Then [Num(M)| = q and Num(M) = {t € Fp= |19+t = 1}.

Proposition 8. (]2, Proposition 2], [8, Lemma 3.6]) If ¢ is odd, set p = (¢ —1)/2.
If q is even, set p:=q/2—1. Assumen = 2 and that M has 2 different eigenvalues
c1,c2 € F2 and that for each i = 1,2 there is v; € ]F32 with Mv; = c¢;v; and
(v1,v1) # 0. Assume (v1,v2) # 0, i.e. assume that M has not a unitary basis.

Then Num(M) is the union of {c1,ca} and p Hermitian circles and hence we have
Num(M) <2+ p(qg+1).

3. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1: Write M = (myj), ¢,j = 1,2. By Remark 2 we may assume
q # 2 (note that the assumptions of (ii) imply m1; = mas if ¢ = 2 by Remark 2).
Part (ii) follows from (2). Part (i) is a logical consequence of parts (ii), (iii), (iv) and
(v). Thus it is sufficient to prove parts (iii), (iv) and (v). Since Num(M;) C F, and
Num(M_) C F,, we have |[Num(M, )| < ¢ and |[Num(M_)| < ¢g. By Lemma 1 (or
by [2, Theorem 1)) if [Num(M;)| < ¢ — 1, then [Num(M,)| =1 and M4 = allaxo
for some a € F;. The same holds for M_. Using this observation for M, and M_
and using (1) and (2) we get that if [Num(My)| < ¢ — 1, then either M = cllayxo
for some ¢ € Fp2 or ¢ — 1 < |[Num(M)| < ¢, concluding the proof of part (iii).

Now assume |M, | = g, i.e. assume that M, has two distinct eigenvalues ¢q,co €
F, with ¢1 # ¢2 ([2, Lemma 2]). In this case M is unitarily equivalent to ¢i1lix1 &
cal1x1 (Lemma 1). Thus taking UTMU instead of M with U a unitary matrix we
reduce to the case My = c1l1x1 @ colljw1. Taking (ca — ¢;) "1 (M — c1]lax2) instead
of M ([8, Lemma 2.7] or [1, Lemma 1]), we reduce to the case ¢; = 0 and ¢z = 1,
i.e. ?lel = §Rm12 = §Rm21 =0 and éRmQQ =1.

Taking SM instead on M if necessary, from now on we assume |Num(M);| >
|[Num(M)_|.

(a) Now we also assume |M_| = q. For any A € M 5(Fy2) let p; : Num(A) —
Num(Ay) (resp. pa : Num(A) — Num(A_)) be the surjection induced by the map
N:Fp = Fy (resp. S :Fpe — Fy). Working with M, we proved (without any
change of the unitary frame) the existence of tg,t; € F, such that ¢, # ¢1, and
lpy1(t;)] = 1,3 = 0,1. In the same way we prove the existence of ag,a; € F, such
that ag # a1 and |p; *(a;)| = 1, i = 0,1. Hence [Num(M)| < ¢ — 4q + 8, proving
part (v).

(b) Assume |[M_| = ¢ — 1. Since ps is well-defined and |M_| = ¢ — 1, to
prove part (iv) of Theorem 1 it is sufficient to prove that 1 + Sk € Num(M) with
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k € Fy if and only if k = Qmao. Take u = (z,y) € F2, and assume u € C(1),
ie. a9ttt = 1. We have (u, Mu) = 1+ Bk if and only if (u, M u) = 1
and (u, M_u) = k. We have (u, Myu) = y?*! and thus (u, M u) = 1 if and
only if z = 0. If x = 0 and hence y9*! = 1 we have (u, M_u) = Smay. Hence
INum(M)| < ¢* — 2q + 2. O

Proof of Theorem 2: By |2, Theorem 1] to prove Theorem 2 it is sufficient to prove
the case ¢ > 4, ¢ even and n > 3. All cases with n > 3 of the proof of [2, Theorem
1] work verbatim for all even ¢ # 2, except step (b2.2). Thus it is sufficient to prove
Theorem 2 in the case ¢q even, ¢ # 2, n = 3, and for the following very particular
Hermitian matrices
1 a2 a3
A = a5112 1 a93
ajy azy 1
with a12,a13,a23 € Fy \ {0}. More precisely, it was proven that F, \ {0} C
Num(A) C F, and so Theorem 2 is true for A if and only 0 € Num(A). For all
z,y,z € Fpo set h(z,y, 2) := (u, Au) and hy (z,y,2) := h(z,y, z) —z?Tt —yrtt —z0t1
with u = (z,y,2) € F22. Since

Au = (z + a12y + a132, alyx + y + agsz, afsx + adsy + 2),
we have
hi(z,y,2) = a1zl + a13292 + afoxy? + afszz? 4 assy?z + alsy?z.

Take (a,b,c) € ng and assume h(a,b,c) = 0 and k := ((a,b,¢), (a,b,c)) # 0,
i.e. assume k := a9t 4 b9+ 4 4t 2 0. Since |[Fi| = ¢ — 1 and F72 is a cyclic
group of order (¢ + 1)(g — 1), there is t € F,2 such that t27* = 1/k. Thus, setting
u = (tx,ty,tz), we have (u, Au) = 0 and (u,u) = 1. Thus u would prove that
0 € Num(A). Thus to conclude the proof of Theorem 2 we may assume that no
such triple (a,b,c) exists, i.e. that {h(z,y,2) = 0} C {29! 4+ y9H1 4 29+1 = (}.
Set H = {x9T! 4 yat1 + 2971 = 0} C Fg’z. The set A is the affine cone of the
Hermitian curve of P?(F2) ([14, 15, 16]) and we may see in this way (or check
directly), that the degree ¢ + 1 homogenous polynomial z4+! 4 ya+1 4 24+1 g
irreducible. Since the degree ¢ + 1 homogeneous polynomial h(z,y,z) is not a
multiple of 27t + y?+1 4 29+ Bezout’s theorem applied to the curves of P?(F2)
given by these homogeneous degree ¢g+1 polynomials shows that {h(x,y, z) = 0} has
at most 1+ (¢2—1)(g+1)? elements. We have 1+ (g2 —1)(¢+1)? = ¢*+¢>—¢>. Set
A" :={h(z,y,2z) =0} and A := {hy(z,y,z) = 0}. Since ANH = A’'NH, it would be
sufficient to prove that |A] > ¢*+¢3—q?. Set g(z,vy,2) := a2ty +a13792+az3y?z.
Let Tr : F» — IF, denote the trace. The trace Tr is non-zero, F-linear and defined
by the formula Tr(t) = t¢ +¢. Thus the set v := {Tr(t) = 0} C Fp is a 1-
dimensional F,-subspace of F,2. Since ¢ is even, we have t¢ +¢ = 0 if and only
if t9 = ¢, i.e. if and only if t € Fy ([19, Theorem 2.5]). We get that A is the
set of all (a,b,¢) € F, such that g(a,b,c) € F,. The Frobenius map ¢t — t7 is a
bijection of Fy2. Since a3 # 0, azs # 0 and the Frobenius map is injective, the
set 11 = {(a,b) € ]F32 | a1327 + as3y? = 0} has ¢* elements. Fix ¢ € F, and
(a,b) € ng \ 71. There is a unique z € F, such that z(a13a9 + a23y?) + a12a%b = t.
Varying a, b and t get a subset ¥ of A with cardinality ¢(¢* — ¢?). Since ¢ > 4, we
have ¢° — ¢* > ¢* + ¢ — ¢°. O
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4. SPECIFIC MATRICES

Lemma 2. The ellipse A of Fp2 associated to (d,k) has cardinality q + 1, unless
dtl =1.
(1) If d?*t =1 and q is even, then |A] = 1+ (¢/2).
(2) Ifdi™ =1, q is odd and either dk(1 — k) is not a square in F2 or any of
its square roots, ¢, has c?! = —k(1 — k), then |A| = (¢ +1)/2.
(3) Assume di*! = 1 and q odd. If dk(1 — k) is not as in (2), then |A| =
(g+3)/2.
Proof. Since k(1—k) € Fg\{0} and F7, is a cyclic group of order (¢+1)(g—1), the set
B:={z€F, | 277! = k(1 —k)} has cardinality ¢+ 1. Thus to prove the first part
it is sufficient to prove that if z,w € B and dz? 4+ z = dw? + w, then z = w, unless
d*tl = 1. Take z,w € B with z # w and dz? + z = dw? + w, i.e. (since zw # 0)
with dz9T 1w + 22w = dzw?™ + 2w?, i.e. with dk(1—k)w+ 22w = dk(1—k)z+ 2w?.
Set f.(t) = dk(1 — k)z + 2t — dk(1 — k)t — z%t. Since z # 0, the polynomial
f-(t) is a degree 2 polynomial with f.(z) = f.(w) = 0, zt* as its leading term and
dk(1 — k)z as its constant term. Hence dk(1 — k) = wz. Thus w = M and
AR (1 — k)9t = (w2)dTt = K2(1 — k)2, ie. d9! = k179(1 — k)179 = 1 (since
k7! = (1 — k)=t = 1). For arbitrary d and z # 0 we have zfz(M) =dk(1 —
k)22 +d2k3(1—k)? —d?k>(1— k)2 — 22dk(1—k) = 0. Thus if (FE=F))a 11 = k(1)
i.e. dt! =1 we have a solution w # z if and only if 2% # dk(1 — k).

First assume ¢ even. In this case there is a unique a € F2 with o = dk(1 — k).
Since (a?)?T! = dTH k(1 — k) = k(1 — k)2, 047! is the unique ¢ € F2 with
t2 = k?(1 — k)? and so 9™t = k(1 — k), i.e. o € B. Thus |A] =1+ (¢/2).

Now assume ¢ odd. If dk(1 — k) is not a square in F,2, then 22 # dk(1 — k).
Hence |A| = (q + 1)/2 if dk(1 — k) is not a square. Now assume dk(1 — k) = ¢?
for some ¢ € F 2. We have (¢?t1)? = k?(1 — k)? and hence either ¢! = k(1 — k)
or ¢t = —k(1 — k). Note that (—c)?™! = ¢?*! and so if ¢! = —k(1 — k), then
no solution of t2 = dk(1 — k) is contained in B. If ¢c¢*! = k(1 — k), then we have
exactly two z € B with z = w (c and —c). We are in Case (3). O

Lemma 3. Assume q odd and fix a,b € Fp2 with a #b. Set © := {z € Fp |
2970+ 1 =0} and Ay = {2z € Fpe | (z — a)?™ = (z = b)?"}. Then A,y =
{la+b)/2} U{(a+b)/24+t(b—a)/2}ico, |Aap| = ¢ and A,y is an Fy-line of the

two-dimensional Fy-space Fp2 containing (a +b)/2.

Proof. Note that (a +b)/2 € Ayp. Set S’ := A, — (a + b)/2 (translation) and
S = ﬁS’. We have S = A_;;. By Remark 5 it is sufficient to prove that
S ={0}u®,ie that S = {z € Fpo | 274+ 2z = 0}. We have (z — 1)9t! =
(z—1)9(z—1) = (29=1)(2—1) = 29T +1 29—z and (z+1)7! = 291 414294 2.
Thus (2 — 1)9+! = (2 + 1)1 if and only if 2(29 + z) = 0. O

Lemma 4. Assume q odd. Take a circle S = {(z—a)?™! = b} and u,v,w € S such
that [{u,v,w}| = 3. Then (with the notation of Lemma 3) we have Ay, N Ay =
{a}.

Proof. Obviously the center of S is contained in all Ap g for all O,Q € S such that
O # @. Thus it is sufficient to prove that A, , # Ay. By Lemma 3 the affine
F,-line A, ., (resp. Ay.) is spanned by a and (u+ v)/2 (resp. a and (u + w)/2).
Thus Ay,o # Auw- O
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Lemma 5. Assume q odd. Two distinct circles have at most 2 common points and
any 3 distinct points of F2 are contained in at most one circle.

Proof. Use Lemma 4 and that a circle is uniquely determined by its center and one
of its points. O

Proof of Proposition 4: By Proposition 8 Num(M) is the union of 2 points and ¢—2
circles. If ¢ = 3 use the unique circle. For ¢ > 5 use the first (¢ + 1)/2 circles. By
Lemma 5 we get |[Num(M)| > (¢+1)(g+1)/2—2(¢+1)(¢g—1)/8 = (¢+1)(¢+3) /4. O

Remark 7. Take M € M 5(F,2). There are u; and ug with ¢ := (u1, Mu;) =
(ug, Mug) and (u1,ug) = 0 if and only if M — cly 5 is as in Proposition 1.

Proof of Proposition 1: Since ( , ) is non-degenerate and (uj,us) = 0, we have
(uisu;) # 0,4 =1,2. Since F; is a cyclic group of order (¢ + 1)(¢ — 1) and Fy is
a subgroup of Foe of order ¢ — 1 ([19, Theorem 2.5]), there is z; € F 2 such that
z;”l = 1/(us,u;). Set f; := z;u;. We have (f;, fi) =1,i=1,2, and (f;, f;) = 0 for
all i # j. Take U such that Ue; = f; for all i. We have (u, Nu) = (Uu, MUu) for all
u € F}l; and hence Num(N) = Num(M). Let f(t) be the characteristic polynomial
of N. We have b =0 = 0 if and only if M = 0lyx2. Part (i) is obvious.

(a) Assume b’ = 0 and b # 0. Hence %N is as in Proposition 6 and in particular
%N is the union of 0 and p different circles with center 0.

(b) Assume b = 0 and b’ # 0. The transpose N? of N is as in step (a) . For any
matrix A € M, ;,(Fg2) and any u € F}; we have (u, Au) = (Atu,u) = ((u, ATu))9.
If A€ M, ,(F,), then A® = AT. We apply this observation to the matrix bfl,N. The
g-power of a circle centered at 0 is the same circle. Hence éNum(M ) is as in step
(a), concluding the proof of (ii).

(c) From now on we assume bb' # 0. Since Fy, is a cyclic group of order
(¢ +1)- |[Fy.[, there is ¢ € Fga such that ¢ = bb'. Hence over F s we have
f) =@ +o)(t—c).

(c1) Assume ¢ even. In this case every element of Fy 2 is a square and hence
¢ € Fp2. In this case we have f(t) = (t — ¢)? and c is the unique eigenvalue of N.
Since N is not a multiple of the diagonal, its eigenspace Vi = ker(N — clax2) has
dimension 1 and (N —cllax2)(V1) = V4. Since (b,V') # (0,0), ez is not an eigenvector
of N, and we may take v = e; + yes as a generator of V3. Thus v # 0 and Nv = cv,
i.e. ¢ =by and cy = b’. We have (v,v) = 1+ y9TL. First assume y9™! # 1. In this
case N has an eigenvector u such that (u,u) # 0 and u spans the only eigenspace
of N, because N # claxs. Thus (N — clax2) is a multiple of one of the matrices
considered in Proposition 6, and hence Num(N) is the union of {c¢} with ¢/2 —1
distinct circles centered at ¢. Now assume 97! = 1. In this case (v,v) = 0 and
|[Num(M)| = ¢ — 1 by Theorem 2.

(c2) Now assume g odd and that bb’ is a square in F,2. In this case both
c and —c are eigenvalues of N. Since neither e; nor e; is an eigenvector of NV,
we may find eigenvectors vy (resp. wg) of N with respect to ¢ (resp. —c¢) with
v; = e; +yiea. We have y; = c and yo = —c. Thus (v;,v;) = 1+ ¢4t i = 1,2
and (v1,v2) = 1 — ¢!, First assume ¢4t ¢ {—1,1}. In this case N has 2 distinct
eigenvectors with non-zero hermitian norm and not mutually orthogonal. The set
Num(M) is described in Proposition 8 and in Corollary 4 as a union of ¢ — 2 not
necessarily disjoint circles plus 2 points (sometimes in the circles). Now assume
cd*l = —1. In this case |[Num(M)| = ¢ and Num(M) = {27 + z = 0} (Proposition



10 E. BALLICO

7). Now assume c¢?™1 = —1. In this case M and N are unitarily equivalent to a
diagonal matrix with ¢ and —c on the diagonal. Hence Num(M) = Fyc.

(¢3) Now assume ¢ odd and that bb’ is not a square. Take u = ze; + yes
with (u,u) = 1, i.e. with 291 + y9t! = 1. We have (u, Nu) = bxdy + b'xyd. Set
E:= &N and d := b/b/. We have (u, Eu) = dz?y + xy?. Taking either z = 0 and
as y any element of Fg. with Yyt =1 (e.g. taking y = 1) or taking y = 0 and
as x any element of F2 with 277! = 1 (e.g. taking z = 1) we get 0 € Num(E)
and hence 0 € Num(M). Now assume zy # 0. Fix k € F, \ {0,1} and consider
the subset of Num(M) obtained from all u = (z,y) € Cy(1) with y?*t! = k and
hence #7971 = 1 — k. Set z := z/y. We have 2971 = (1 — k)/k. Conversely, for
any z € F2 and for any yo € Fpe with yd™' = &, we have (2/yo)"™' = 1 -k
and so z = xg/yo with x¢ := 2/yo and zg“ = 1—k. Since 9! = k we have
(u, Bu) = k(dz%y + zy9)/y**t! = k(dz? + 2). Hence the part of Num(E) coming
from all ,y with 2971 =1 — k and y97! = k is an ellipse associated to (d, k). O

Proof of Proposition 2: Take u = (z,y) € Fz; with (u,u) = 1, i.e. with 27" +
Yyt =1. If 2 =0, i.e. y is any y with y?t! =1, e.g. y = 1, then (u, Mu) = moy =
—a. Ify =0, i.e. 2971 =1 (e.g. # = 1), then (u, Mu) = my; = a. Now assume
ry # 0 and k := y97. We have 2%+! = 1—k. We have Mu = (az+by, dz—ay) and
(u, Mu) = ax?™t +bxly+dzy? —ay?™ = baly+dry? +a—2ka. Let A(k,a,b,d) be
the set of all (u, Mu) — a + 2ka for all u = (x,y) with 297t =1 — k and y9™* = k.
The proof of Proposition 1, case bb’ not a square in F 2, gives that éB(k, a,b,d) is
an ellipse of type (b/d, k). O

Proof of Proposition 3. We have c1,co € F,. Taking M — (c1 + c28)Iax2 instead of
M we reduce to the case ¢; = co = 0. Write M = (my;), 4,5 = 1,2. Since uy and us
are not proportional, they form a basis of IF32. Write M = (b;5), 4,5 = 1,2, in the
basis U1, U2. By assumption §Ra11 = §RCL21 = §Ra22 = 0, \(\SCLH = %QQQ = %alg =0
and there are b,d € IFZ2 such that Raj;2 = b and Sa;a = d. Since ( , ) is non-
degenerate and (u;,u;) =0, i = 1,2, we have (uj,us) # 0. Taking a multiple of u;
instead of w; if necessary we reduce to the case (ui,us) = 1. Thus (ug,u;) = 1.
Take u = zu; + yug € ng with (u,u) = 1, i.e. with 2% + zy? = 1. We have
Mu = zbuy + Bdyus and (u, Mu) = y%ab + Bdyx?. Since zly = 1 — xy?, we get
(u, Mu) = b+ (b — Bd)y?. Since ¢ — 1 = |Num(My)| < |[Num(M)| by (1), we
have b — 8d # 0. Hence (Num(M) — b)/(b — 8d) is the set A of all y%x such
that 2%y + zy? = 1. Note that zy # 0 for all (z,y) € A. Fix ¢ € Fro and set
Oc:={z€Fp|27+2=c9"} Since O, = Tr];;mq (c7971), we have |O.] = q.
Take any z € ©, and set « := zc and y := ¢. Since z € O, we have %y + xy? = 1.
Thus zc?T! = 2% € Num(M). Since ¢ # 0, 24Tt # wct™! for all z # w. Hence O,
gives a subset A, of Num(M) with cardinality q. Thus to prove that [Num(M)| = ¢
it is sufficient to prove that A, C Ay. Fix z € O, i.e assume

(3) 29I 4 et =1,
Take w := zc9. Since ¢ € F 2, we have ¢?(4+1) = ¢7+1. Hence w? = 29¢7+1. Thus
(3) gives w € ©1. Thus w? -1 € A;. Since (z¢)%c = w?, A, T Ay. O

Proof of Proposition 5: Taking M — dll4«4 instead of M we reduce to the case d = 0
with d; — d instead of d. For any u = (21, %2, 3, x4) we have

Mu = (blxg, bex1 + (dl — d)iCQ + boxs + b3y, by + bso, b7£82)
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and hence
(u, MU) = J)g(b6$1 + (dl — d){L‘Q + boxs + b3$4) + l‘g(blf({ + b5$g + b7l‘Z) + b4$gl‘4

Fix ¢ € Fp2 and set w3 := 1, 24 = ¢/by and w2 = 0. For any x; we have (u, Mu) = c.
Take z; such that 29" = k& — 297" — 28T — 297 = & — 1 — o™ /b9 (Remark

6).
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