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“Any road followed precisely to its end leads precisely nowhere.”

Frank Herbert
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Abstract

Coherence is the quality that gives a text its conceptual unity, making a text a coor-
dinated set of connected parts rather than a random group of sentences (turns, in
the case of dialogue). Hence, coherence is an integral property of human commu-
nication, necessary for a meaningful discourse both in text and dialogue. As such,
coherence can be regarded as a requirement for conversational agents, i.e. machines
designed to converse with humans. Though recently there has been a proliferation
in the usage and popularity of conversational agents, dialogue coherence is still a
relatively neglected area of research, and coherence across multiple turns of a dia-
logue remains an open challenge for current conversational AI research. As conver-
sational agents progress from being able to handle a single application domain to
multiple ones through any domain (open-domain), the range of possible dialogue
paths increases, and thus the problem of maintaining multi-turn coherence becomes
especially critical.

In this thesis, we investigate two aspects of coherence in dialogue and how they
can be used to design modules for an open-domain coherent conversational agent.
In particular, our approach focuses on modeling intentional and thematic information
patterns of distribution as proxies for a coherent discourse in open-domain dialogue.
While for modeling intentional information we employ Dialogue Acts (DA) theory
(Bunt, 2009); for modeling thematic information we rely on open-domain entities
(Barzilay and Lapata, 2008). We find that DAs and entities play a fundamental role in
modelling dialogue coherence both independently and jointly, and that they can be
used to model different components of an open-domain conversational agent archi-
tecture, such as Spoken Language Understanding, Dialogue Management, Natural
Language Generation, and open-domain dialogue evaluation.

The main contributions of this thesis are: (I) we present an open-domain modular
conversational agent architecture based on entity and DA structures designed for
coherence and engagement; (II) we propose a methodology for training an open-
domain DA tagger compliant with the ISO 24617-2 standard (Bunt et al., 2012) com-
bining multiple resources; (III) we propose different models, and a corpus, for pre-
dicting open-domain dialogue coherence using DA and entity information trained
with weakly supervised techniques, first at the conversation level and then at the
turn level; (IV) we present supervised approaches for automatic evaluation of open-
domain conversation exploiting DA and entity information, both at the conversa-
tion level and at the turn level; (V) we present experiments with Natural Language
Generation models that generate text from Meaning Representation structures com-
posed of DAs and slots for an open-domain setting.
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Chapter 1

Introduction

1.1 Motivation

Example 1
“Mad Hatter: ‘Why is a raven like a writing-desk?’
(...)
‘Have you guessed the riddle yet?’ the Hatter said, turning to Alice again.
‘No, I give it up,’ Alice replied: ‘What’s the answer?’
‘I haven’t the slightest idea,’ said the Hatter.
‘Nor I,’ said the March Hare.
Alice sighed wearily. ‘I think you might do something better with the time,’
she said, ‘than waste it in asking riddles that have no answers.’ ”
Lewis Carroll, Alice’s Adventures in Wonderland

Incoherent responses in a dialogue, such as the ones given by the Mad Hatter who
asks riddles which do not have answers, can easily make interlocutors weary and
give them the impression that the interaction is a waste of time, just as it happens
to Alice in the example. Discourse coherence can thus be regarded as a requirement
of conversational interaction, insofar as when this requirement is disappointed the
whole trust of participants in the conversation might break down.

Sentences in a body of text are not just collections of unrelated items, but are usu-
ally organised according to a structure of relations connecting sentences with one
another. This property, i.e. what makes a body of text a discourse, rather than a
random group of sentences, is known as coherence. What this structure consists of,
however, and how to define it is less agreed upon.

The concept of coherence plays a cardinal role in several theoretical approaches to
discourse and pragmatics (De Beaugrande and Dressler, 1981a; Conte, 1980; Halli-
day and Hasan, 1976), i.e. the fields of Linguistics which analyse language in con-
text1. While in various theories coherence is considered the condicio sine qua non of
discourse, there is a lack of consensus regarding the formalization of this concept
and which factors contribute to it (Taboada, 2004; Bublitz, 2011). Some theories,
for example, ascribe a major role to the interpretation of speakers’ intentions (Grice,
1970; Sperber and Wilson, 1986); others concentrate more on the importance of the
logical relations connecting different parts of a text (Fillmore, 1998; Hobbs, 1979);
others emphasize the role of the thematic and informational structure (Hopper, 1979;

1The difference between the fields of study of pragmatics and discourse has been a matter of dis-
cussion among linguists. According to Horn and Kecskés (2013), while pragmatics concentrates on
studying individual utterances in context, discourse analyzes organized groups of utterances. In gen-
eral, both fields can be considered synergistic.
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Givón, 1983); while some others point out the importance of the temporal structure
(Lascarides and Asher, 1993) or of establishing a common ground (Clark and Schae-
fer, 1989).

Notwithstanding their heterogeneity, theoretical approaches to discourse thus share
the general assumption that coherence is a tenet of human communication (Gruber
and Redeker, 2014).
Given its pivotal role, we would thus expect the ability to entertain a coherent dis-
course to be an essential feature for a system aimed at interacting with humans.
Nonetheless, producing coherent responses across multiple turns of a dialogue re-
mains an open research problem for State-of-the-art (SOTA) conversational agents
(CA), i.e. computational models able to converse with humans (also known as dia-
logue systems, or intelligent virtual assistants). Although the last few years have seen
a steep surge in popularity of CAs among users2, the task of building intelligent
dialogue systems seems still far from being solved (Goode, 2018).

From a research perspective, the area of conversational Artificial Intelligence (AI) is
currently divided between building task-oriented CAs, aimed at performing a lim-
ited selection of tasks such as reserving a restaurant or booking a flight, and non-
task-oriented CAs, mainly able to perform chitchat, both with their drawbacks and
without a real integration between the two.
On one hand, task-oriented CAs address the coherence problem by restricting their
application domain, for example to restaurant reservations or movie tickets book-
ing, and handcrafting the system’s possible states and actions (Williams and Young,
2007; Wen et al., 2016a). These approaches typically rely on a pipeline of different
modules, which usually includes: a Spoken Language Understanding (SLU) com-
ponent, which assigns a semantic representation to the user’s utterances; a Dia-
logue Manager (DM), in charge of selecting the next action of the system; and a
Natural Language Generation (NLG) module, which transforms the selected action
into a sentence. This type of architectures usually relies on a Meaning Representa-
tion (MR) language based on slots, the types of concepts relevant for the task (e.g.
restaurant_price), and intents, the possible speakers’ intentions behind a given ut-
terance relevant for the task (e.g. request_price). Although slots and intents-based
MRs proved very successful as building units for representing task-oriented inter-
actions3, there also evident limitations in their application. Crucially, both slots and
intents are usually closed sets handcrafted for a specific application by the system
designer, by making assumptions regarding the overall end goal of users employing
that given application (De Mori et al., 2008). While research on task-oriented CAs
is fairly well established, the handcrafting required in their design brings issues of
scalability to novel domains.
On the other hand, non-task-oriented approaches, mostly based on black-box Deep
Neural Networks (DNN) models trained on large dialogue datasets (Serban et al.,
2016d), seem a more promising direction given the advantage that they do not re-
quire hand-crafted design and can thus be considered open-domain, i.e. not depen-
dant on a given domain. However these models are difficult to control and tend to
give incoherent, non committal responses that break user engagement over a few

2The market value of virtual assistants is projected to be around US dollars 11.3 Billion in 2024
according to recent reports (Group, 2019).

3The slots and intents MR framework is currently at the basis of most libraries for developing task-
oriented CAs, for example the Alexa Skills Kit (Kumar et al., 2017), Dialog Flow (https://cloud.
google.com/dialogflow/docs/basics) or Rasa (Bocklisch et al., 2017).

https://cloud.google.com/dialogflow/docs/basics
https://cloud.google.com/dialogflow/docs/basics
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turns (Li et al., 2016a), which makes them difficult to apply for commercial applica-
tions.

Moreover, progresses in the field are curbed by a lack of standardized metrics to
evaluate dialogue systems. Current automatic metrics for dialogue evaluation are
not able to report an analysis of the characteristics of good conversations: some rely
on surface features such as the words used (Papineni et al., 2002), others work only
for task-oriented CAs (Walker et al., 1997). For evaluation, the field still relies heavily
on user satisfaction, an expensive and time–consuming process which poses its own
challenges given the subjectivity of human judgement.

In general, it seems we have still much to understand regarding the characteristics
of successful conversations regardless of the task, that is the underlying structures
of dialogue that CAs should learn in order to ensure successful interactions with
humans. This gap in our understanding of multi-turn dialogue structure, which
factors contribute to it and how they interact constitutes a significant bottleneck for
progress in the field of conversational AI. Without clearer insights on which aspects
affect our perception of a good conversation it is difficult to assess and compare
the performance of different models across various tasks and domains. Vice versa,
designing effective CAs not bound to a specific domain without an understanding of
what might make interlocutors perception of the conversation quality break down
becomes very challenging.

In this thesis, we explore computational models of coherence in open-domain dia-
logue. Naturally, a comprehensive approach to coherence modeling in open-domain
conversation would be too ambitious to address in a single dissertation. Instead, in
this thesis we select two aspects studied by previous work in connection to dialogue
coherence and investigate how they can be used to learn models of coherence in
dialogue and design different components of an open-domain coherent CA.

1.2 Research objectives

Coherence is a multifaceted property which has been studied under several different
perspectives in the literature, both in linguistic and computational approaches to
discourse.

Linguistic approaches to coherence From a linguistic perspective, we mentioned
how coherence is regarded as an integral principle of meaningful text by several the-
oretical approaches in discourse and pragmatics (Conte, 1980; De Beaugrande and
Dressler, 1981b), accounting for the very structure of discourse. This foundational
role is given by the fact that coherence is essentially an “intrinsic” property of text,
i.e. rather than being a property given by the text in itself, it is a property which
comes from the interpretation of the receivers of the text (Andorno, 2003).
Indeed, many of the most recent theoretical approaches in pragmatics and discourse
revolve around the central role of the intentions of speakers in creating and interpret-
ing a text to describe its global sense (Andorno, 2003), rather than on the text itself. It
is not surprising, then, that speakers’ intentions behind a given utterance are at the
center of some of the most influential theoretical approaches to discourse, especially
the ones focusing on dialogic interaction (Grice, 1970; Sperber and Wilson, 1986). In
these approaches the coherence of a conversation is thus given not by what is explic-
itly said, but rather by the underlying intentions of interlocutors (Levinson, 1983),
categorized in some approaches as speech acts (Austin and Urmson, 1962; Searle,
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1965) or in others as conversational actions (Schegloff, 1968; Schegloff and Sacks,
1973).
The intuition that the way we shape a given text is crucially influenced by how we
think our text will be received and interpreted is also at the basis of another fertile
research area in discourse: the one of information structure (Halliday, 1967). This re-
search area is based on the idea that speakers distribute information in a utterance,
such as given versus novel information, according to the perceived mental model of
their interlocutors. Although this idea accounts for a wide range of discourse phe-
nomena, by far the most studied and pervasive phenomena explored in connection
to information structure are those involving lexical chains (Lambrecht, 1994) and
how entities (typically noun phrases) are introduced and referred to in a coherent
discourse (Halliday and Hasan, 1976). These studies lead to identify important di-
chotomies, such as the one between the theme (or topic) of a given sentence, that is
the information given for granted in the mental model of the receiver, and the rheme
(or focus), that is the information considered novel for the receiver.

Computational approaches to coherence From a computational perspective, co-
herence in dialogue has also been repeatedly attributed to speaker intentions already
in early approaches (Cohen and Perrault, 1979; Allen and Perrault, 1980). This inten-
tional (Moore and Pollack, 1992) approach to coherence, inspired by speech acts the-
ory (Austin, 1975; Searle, 1965), was mainly developed for task-oriented dialogues.
Following this research direction, Grosz and Sidner (1986) developed one the most
comprehensive and influential formal theories of the structure of coherent discourse
in dialogue. Grosz and Sidner (1986)’s approach defines discourse structure in con-
versation as composed by three different interacting levels: the linguistics level (i.e.
the level of the text), the intentional level, given by speakers purposes and account-
ing for the global structure of the discourse, and the attentional level, defined by the
entities currently in focus in a given part of the conversation and thus accounting for
the local coherence of the discourse. In this approach, the intentional level interacts
with the attentional state by modifying the information state (the mental model) of
the other participants in the conversation. Although very successful from an aca-
demic perspective, this research direction was so rich in its annotation schema that
proved rather difficult to apply to large scale scenarios.
Focusing only on the attentional level, Grosz and Sidner (1986)’s approach was later
developed into Centering theory (Grosz, Weinstein, and Joshi, 1995), an entity-based
computational theory of local coherence of text. This theory formulates a series of
constraints for anaphora resolution and other discourse phenomena, based on the in-
tuition that in a locally coherent text salient entities are more likely to appear across
subsequent sentences in prominent syntactic positions (i.e. subject) and thus become
referents. Centering theory proved very influential in the Natural Language Pro-
cessing community, inspiring several approaches and applications (Walker, Joshi,
and Prince, 1998). However, Centering theory rather than being data-driven, relies
on a specific theory of discourse. Inspired by Grosz, Weinstein, and Joshi (1995),
Barzilay and Lapata (2008) propose the successful entity grid approach, which im-
plements some of Centering intuitions using a data-driven approach without being
bound to a specific theory. Another important advantage of this approach is the
fact that it does not rely on annotated data. Indeed, the coherence tasks proposed
within this framework (Barzilay and Lapata, 2008; Elsner and Charniak, 2011b) em-
ploy automatic data generation methodologies where negative samples are created
by disrupting the order of texts assumed to be coherent. Although mainly explored
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for written text (news, summary), this framework has found several extensions (Fil-
ippova and Strube, 2007; Guinaudeau and Strube, 2013; Li and Hovy, 2014; Moon
et al., 2019) and widespread applications (Li et al., 2017; Farag, Yannakoudakis, and
Briscoe, 2018; Clark, Ji, and Smith, 2018).

In this dissertation, we are interested in modelling coherence in open-domain dia-
logue. As we have seen, coherence is a property which has been approached with
a plethora of different perspectives across multiple research fields. Nevertheless, in
our opinion across the literature there are some recognizable patterns, some aspects
which have been repeatedly associated to dialogic coherence by different scholars
in various approaches. In our view, these patterns repeatedly point to two phenom-
ena as particularly crucial for modelling conversational coherence: the intentions of
speakers behind given utterances, which we call the intentional aspect of coherence,
and the patterns of distribution of entities across subsequent sentences, which we
refer to in this thesis as the thematic4 aspect of coherence.
More specifically, in our approach to capture the thematic aspect we rely on entity-
based models following previous approaches (Barzilay and Lapata, 2008), while for
the intentional structure we rely on Dialogue Acts (DA) theory (Bunt, 1999; Bunt,
2009), a more generalised version of intents which proved useful for dialogue sys-
tems research. As recognised in previous work (Grosz and Sidner, 1986) these two
aspects are closely related, since DAs can be thought of as serving the function of
updating information in the interlocutors mental states (Huang, 2017, Chapter19).

Hence, the main hypotheses we explore throughout this dissertation can be formu-
lated as:

H1: Can we model coherence in dialogue using Dialogue Acts and entities?
H2: Can we use Dialogue Acts and entities as units to build models for an open-domain
coherent conversational agent?

H1 postulates that coherent dialogue is characterized by patterns of distribution of
DAs and entities both as independent and joint signals. Moreover, a corollary of H1
is that modelling DAs and entities improve the performance of models aimed at pre-
dicting dialogue coherence. Assuming these patterns do exist, H2 further suggests
that it is possible to design models based on such DA and entity patterns of distri-
bution in order to create different components of a coherent CA.
While the first research question has a more empirical nature, the second research
question is more application oriented. Interestingly, in our work the results of one
hypothesis feeds into the other one and vice versa.

Throughout the dissertation, our main hypotheses are further declined into specific
sub-hypotheses, as shown in Table 1.1. In particular, for H1 we explore two types of
approaches, namely weakly supervised and fully supervised techniques. Addition-
ally, in both cases, coherence prediction is explored at two levels: the macro level of
the whole conversation and the micro level of single turns. On the other hand, H2
is also declined into the different components and tasks of a possible open-domain

4In this thesis, we decided to refer to this phenomenon as the “thematic” level following the notion
of theme in Halliday and Hasan (1976). This choice was made to avoid confusion with other possible
terms to indicate this aspect, such as “information structure” whose terminology might overlap for
example with “informational approaches” to coherence, referring to approaches based on coherence
relations following Moore and Pollack (1992).
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coherent CA, that is Spoken Language Understanding, Dialogue Management, Nat-
ural Language Generation and evaluation. In some cases this double perspective,
empirical and application-oriented, is used within the same approach, as shown in
Table 1.1.

1.3 Research challenges

Throughout this thesis’ work we faced several challenges involved in the topic under
investigation. The main challenges we encountered are:

1. Difficulty of open-domain dialogue evaluation: Investigating coherence in
open-domain dialogue leads inextricably to the issue of evaluation. However,
open-domain dialogue is difficult to evaluate even for humans and can be very
subjective, since people might have diverse expectations from a conversation
and hold it to different standards (as indicated, for example, by the results of
our annotation experiments in 6.1.7).

2. Sparsity of related theoretical background: As we have seen in sections 1.1
and 1.2, theoretical approaches to coherence offers great insights, but no defi-
nite solutions. Compared to other Linguistics fields, such as syntax, the field
of pragmatics and discourse are not consistent, but are rather fragmented into
several theories not necessarily compatible with each other. Additionally, ap-
proaches to coherence are also fragmented across different research areas, such
as psychology, philosophy, sociology and of course natural language process-
ing, and the lines identifying single fields from each other may be quite blurry
(some computational approaches could easily be described as making strong
contributions to the field of theoretical Linguistics). Moreover, even within a
single field and area of interest, approaches may vary widely. For example,
in the case of DAs, we have several different DA schemas which might not
be consistent with each other (sections 2.3.2 and 4.2.1 present a variety of DA
schemas).

3. Data problem: This thesis mainly focuses on data-driven approaches, thus the
availability of relevant data for the different tasks we explore is crucial. How-
ever, in general there is a lack of large good quality corpora for open-domain
dialogue, especially datasets with coherence annotations. Hence, throughout
the dissertation we investigate different methodologies to overcome this data
issue. In Chapter 3, for example, we explore an architecture not fully trained
though designed to be trainable; in Chapter 4 we create a dataset combining
multiple available resources, while whole Chapter 5 is dedicated to weakly
supervised methodologies for training which do not rely on annotated data.
Additionally, in the same Chapter we also create a novel publicly available
resource with turn coherence ratings for open-domain dialogue. Finally, in
Chapter 6, given the lack of annotated resources at the time, we explore differ-
ent signals as proxies for coherence in dialogue.

1.4 Contributions

Table 1.1 shows the thesis structure in terms of contributions to the main research
hypotheses for each chapter.
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Chapters
Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7

H1: Can we model coherence in dialogue using
iiiiii DAs and entities–based approaches?
iiH1.1 Weakly supervised approaches
iiiiiiH1.1.1 Conversation level X
iiiiiiH1.1.2 Turn level X
iiH1.2 Supervised approaches
iiiiiiH1.1.1 Conversation level X
iiiiiiH1.1.2 Turn level X
H2: Can we use DAs and entities to create
iiiiiimodels for a coherent open-domain CA?
iiH2.1 Spoken Language Understanding (SLU) X X
iiH2.2 Dialogue Manager (DM) X X
iiH2.3 Natural Language Generation (NLG) X
iiH2.4 Evaluation X X

TABLE 1.1: Structure of the dissertation in terms of main contribu-
tions to the thesis hypotheses across different chapters.

The empirical contributions of this dissertation in regards to H1 point to the crucial
importance of both DA and entities, especially when combined, for predicting open-domain
dialogue coherence and evaluation.
In particular, our empirical contributions towards H1 include:

• Our experiments on standard coherence tasks across different (single and open-
domain) spoken dialogue corpora indicate the crucial role of DA information
both independently and in combination with entities information for conversation-
level coherence prediction (in Chapter 5, section 5.1.5).

• A statistical analysis of a dialogue corpus annotated with turn coherence rat-
ings indicates the importance of both DA and entities information for turn co-
herence perception in open-domain conversation (in Chapter 5, section 5.2.5).

• Results across traditional and neural ML models for predicting human turn
coherence ratings point to the essential role of entities, DAs and especially
their combinations for turn coherence ranking in open-domain conversation
(in Chapter 5, section 5.2.8).

• DAs and topic representations are found useful for predicting user ratings for
entire conversations using a supervised approach (in Chapter 6, section 6.1.9).
Specific DAs are also found to be correlated with conversational user ratings
(in Chapter 6, section 6.1.5).

• Both DAs and entities information are also found to be relevant for predicting
turn level coherence and engagement using a supervised approach (in Chapter
6, section 6.2.8).

Other empirical contributions of this thesis, indirectly related to the main hypothe-
ses, include:

• Our experiments during the Alexa Prize competition indicate that system-
driven initiatives lead to higher user ratings in chitchat open-domain conver-
sation (in Chapter 3, section 3.4.1).
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• We show the importance of combining multiple publicly available corpora to
achieve better performances in open-domain DA tagging through a corpus ab-
lation study (in Chapter 4, section 4.5.2).

• An annotation experiment performed on chitchat conversations between Alexa
users and a CA indicates the difficulty of predicting user ratings of open-
domain non-task-oriented human-machine conversations for human experts
(in Chapter 6, section 6.1.7).

On the other hand, the contributions of this dissertation to H2 are organized accord-
ing to different components of a possible modular CA pipeline. The contributions of
the thesis towards H2 include:

• General

– We propose Roving Mind, an entire modular architecture for open-domain
dialogue designed for coherence and engagement relying on Functional
Units structures, composed by DAs and entities (in Chapter 3).

– We present a methodology to use a Commonsense Knowledge Base to
create engaging responses in open-domain conversation (in Chapter 3,
section 3.3.2).

• Spoken Language Understanding

– We propose a SLU module for open-domain conversation which parses
an utterance into a list of Functional Units, composed by Dialogue Acts
and open-domain entities (in Chapter 3, section 3.3.3).

– We propose a methodology to map several available corpora for training
an ISO-standard compliant open-domain DA tagger (in Chapter 4).

– We present a simple yet efficient DA tagging model, whose performance
we assess first on the Switchboard Dialogue Act Corpus (with SOTA re-
sults compared to models published at the time) using the DAMSL scheme
and then on three out-of-domain corpora using the ISO standard scheme
(in Chapter 4).

• Dialogue Management

– We propose a novel type of sequential Dialogue Management architec-
ture designed for coherence and engagement in open-domain conversa-
tion based on DAs and entities structures, which relies on different sub-
modules each expleting a different conversational function (in Chapter 3,
section 3.3.4).

– We present different ranking strategies based on conversational functions
to ensure the selection of the best response in DM (in Chapter 3, section
3.3.4).

– We propose models based on DAs and entities information trained in a
weakly supervised fashion (response selection) which could be used for
ranking possible responses in the DM (in Chapter 5, section 5.2).

• Natural Language Generation

– We apply the MR-to-text framework (typical of NLG for task-oriented di-
alogue) to an open-domain QA application (in Chapter 7).
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– We explore the importance of adding the previous conversational context
to improve the quality of the generated output (in Chapter 7).

– We investigate the possibility of learning NLG models using a MR-to-
text approach with increasingly larger ontologies in terms of slot types
(in Chapter 7).

– We experiment with multi-task learning for NLG between open-domain
QA and task-oriented dialogue (in Chapter 7).

– We also propose new evaluation metrics for open-domain NLG to capture
the variability of output in open-domain QA compared to NLG for task–
oriented dialogue (in Chapter 7).

• Evaluation

– We explore models based on entities and DAs and their combinations for
ranking whole open-domain conversations according to their coherence
on weakly supervised standard coherence tasks (in Chapter 5, section 5.1).

– We investigate different models relying on entities and DAs information
for ranking turns of open-domain conversations according to their coher-
ence trained on weakly supervised tasks (response selection) and further
tested on a corpus annotated with human coherence ratings (in Chapter
5, section 5.2).

– We propose different entities and DAs information representations which
can be used as input for various machine learning models (in Chapter 5).

– We investigate supervised models for predicting user ratings for open-
domain conversations combining intentional (DA) and thematic (LDA)
features using real-world conversations between users and an open-domain
CA (in Chapter 6, section 6.1).

– We propose supervised models for predicting turn level coherence and
engagement based on features combinations including entities and DA
trained on a large annotated corpus of chitchat conversations (in Chapter
6).

Our contributions in terms of publicly available code are:

• Resource to train ISO standard compliant DA tagger and map different corpora
to the ISO standard 5.

• Resource to train coherence models for dialogue at the conversation-level 6.

The contributions of this thesis in terms of corpora are:

• Corpus of dialogues annotated with DAs generated by combining publicly
available resources which we mapped to a subset of the DA ISO standard (de-
scribed in Chapter 4) 7.

5Available at https://github.com/ColingPaper2018/DialogueAct-Tagger
6Available at https://github.com/alecervi/Coherence-models-for-dialogue
7Generated using https://github.com/ColingPaper2018/DialogueAct-Tagger

https://github.com/ColingPaper2018/DialogueAct-Tagger
https://github.com/alecervi/Coherence-models-for-dialogue
https://github.com/ColingPaper2018/DialogueAct-Tagger
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• The Switchboard Coherence (SWBD-Coh) corpus, where 1000 source dialogues
from the Switchboard Dialogue Acts corpus are annotated with coherence rat-
ings at the turn level using Amazon Mechanical Turk (described in Chapter
5)8.

1.5 Thesis outline

In Chapter 2 we review the background literature relevant for this dissertation. First,
we describe current approaches in conversational AI, from modular task-oriented ar-
chitectures to non-task-oriented models, and their evaluation. Afterwards, we offer
a perspective on linguistic theories about coherence. Finally, we present computa-
tional approaches to coherence modeling which have been a source of inspiration for
this dissertation, with a particular focus on approaches based on entities and DAs.

In Chapter 3, based on Cervone et al. (2017), we present Roving Mind, the open-
domain conversational agent we built for the first edition of the Amazon Alexa Prize
competition. In the competition participants were challenged to create a CA able to
talk to random users about popular topics (such as sports, politics etc.) in a coherent
and engaging manner. We describe the main components of our proposed architec-
ture based on DAs and entities structures and designed for coherence and engage-
ment. Additionally, we present experiments performed during the semifinals phase
which point to the influence of system-driven strategies on user ratings.

In Chapter 4, based on Mezza et al. (2018), we present a methodology to train a DA
tagger for CAs compliant with the ISO standard (Bunt et al., 2010), the latest inter-
nationally accepted standard for DAs. To address the reduced number of available
resources, we propose to map publicly available corpora to a subset of the standard.
We find that in order to train a DA tagger able to be robust for all types of DAs from
both task-oriented and non-task-oriented conversation, it is crucial to use a combi-
nation of multiple corpora for training.

Chapter 5 is dedicated to weakly supervised approaches to learning coherence models
for open-domain dialogue based on entities and DAs information. The first part of
the chapter, based on Cervone, Stepanov, and Riccardi (2018), explores models com-
bining DAs and entities for standard weakly supervised coherence tasks at the con-
versation level. We find that DAs play a crucial role for dialogue coherence, especially
when combined with entities information. In the second part of the chapter, based
on Cervone and Riccardi (2020), we focus on modelling coherence at the turn level.
First, we collect the Switchboard Coherence corpus, a resource annotated with turn
level coherence ratings, in order to investigate human perception of turn coherence
in correlation with DAs and entities patterns of distributions. Our statistical analy-
sis of the corpus indicate that DAs and entities indeed correlate with turn coherence
perception both independently and jointly. Then, we present models based on DAs
and entities information trained using a weakly supervised methodology and use
the collected corpus as testset. The results of our experiments point once again to
the importance of combining both DAs and entities information for predicting turn
coherence in open-domain conversation.

Chapter 6 focuses on supervised approaches to open-domain dialogue evaluation.
In the first section, based on Cervone et al. (2018), we propose supervised models
for automatic prediction of user ratings at the conversation level using a dataset of

8Available at https://github.com/alecervi/switchboard-coherence-corpus

https://github.com/alecervi/switchboard-coherence-corpus
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human-machine chitchat conversations. We find that predicting user ratings is a dif-
ficult task even for humans and that DAs are useful for predicting conversational
ratings. In the second section, based on Yi et al. (2019), we explore supervised mod-
els for automatic prediction of coherence and engagement at the turn level in open-
domain human-machine chitchat conversation. Our models rely on a combination
of features including DAs and entities information. Additionally, we also investigate
how to use these turn level evaluation models for coherent and engaging response
generation.

Chapter 7, based on Cervone et al. (2019), investigates models for Natural Language
Generation with open-domain entities. Our models apply the Meaning-Representation-
to-text approach typical of task-oriented dialogue, where the MR is composed by a
DA and a list of entities (slots), to an open-domain setting.

Finally, in Chapter 8 we summarize the contents of our work and draw on the con-
clusions of this thesis.

1.6 Publications

The contents of this thesis are partially based on the following peer-reviewed publi-
cations (ordered according to their appearance in the dissertation):

1. Cervone, A., Tortoreto, G., Mezza, S., Gambi, E., and Riccardi, G. (2017). Rov-
ing mind: a balancing act between open–domain and engaging dialogue sys-
tems. First Proceedings of the Alexa Prize.

2. Mezza, S., Cervone, A., Stepanov, E., Tortoreto, G., and Riccardi, G. (2018).
ISO-Standard Domain-Independent Dialogue Act Tagging for Conversational
Agents. In Proceedings of the 27th International Conference on Computational Lin-
guistics (pp. 3539-3551).

3. Cervone, A., Stepanov, E., and Riccardi, G. (2018). Coherence Models for Dia-
logue. Proceedings of the 19th Annual Conference of the International Speech Com-
munication Association 2018, 1011-1015.

4. Cervone, A., and Riccardi, G. (2020). Is this Dialogue Coherent? Learning
from Dialogue Acts and Entities. Proceedings of the 21st Annual SIGdial Meeting
on Discourse and Dialogue (SIGDIAL).

5. Cervone, A., Gambi, E., Tortoreto, G., Stepanov, E. A., and Riccardi, G. (2018).
Automatically Predicting User Ratings for Conversational Systems. In Fifth
Italian Conference on Computational Linguistics (CLiC-it).

6. Yi, S., Goel, R., Khatri, C., Cervone, A., Chung, T., Hedayatnia, B., Venkatesh,
A., Gabriel R., and Hakkani-Tur, D. (2019). Towards Coherent and Engaging
Spoken Dialog Response Generation Using Automatic Conversation Evalua-
tors. Proceedings of the 12th International Conference on Natural Language Genera-
tion (pp. 65-75).

7. Cervone, A., Khatri, C., Goel, R., Hedayatnia, B., Venkatesh, A., Hakkani-Tur,
D., and Gabriel, R. (2019). Natural Language Generation at Scale: A Case
Study for Open Domain Question Answering. Proceedings of the 12th Interna-
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tion: from the Twittersphere to the News Space. In Fourth Italian Conference on
Computational Linguistics (CLiC-it) (Vol. 2006).
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Chapter 2

Background

In this Chapter, we review some of the background work on which the contribu-
tions of this thesis rely. First, in Section 2.1, we review current approaches to con-
versational AI research, mainly divided between modular task-oriented conversa-
tional agents (described in Section 2.1.2) and non-task-oriented dialogue models
(discussed in Section 2.1.3), both with their advantages and disadvantages. We con-
clude this first section with a discussion about the growing area of dialogue evalua-
tion (in Section 2.1.4).

Then, in Section 2.2, we describe approaches to coherence from a theoretical Linguis-
tics perspective, with a particular focus on how this concept has been studied for the
dialogue genre.

Finally, in Section 2.3, we provide an overview of how coherence has been inves-
tigated from a Computational Linguistics perspective. Also in this case, our main
focus is on coherence in dialogue, rather than on the text genre. In the last part of
the section, we discuss in more details approaches to coherence based on entities
and on Dialogue Acts.

2.1 Conversational AI

As humans, one of the very first attributes that comes to our mind when defining
the concept of intelligence is the ability of an entity to communicate with us through
language. Indeed the Turing test (Turing, 1950), still the most influential test in Ar-
tificial Intelligence (AI) to demonstrate the ability of a machine to replicate human
intelligence, is framed into a supposedly natural conversation between the entity
being tested and a human.

Nevertheless, conversational AI, the research domain aimed at building machines
able to interact with humans through language, is a relatively yet unexplored area
in AI research. Although it could prove useful for several different applications, this
field gained the attention of the wider research community only in recent years, due
to its complexity.

As shown in Figure 2.1, given as input a sentence produced by a human in the form
of a waveform, a classic CA architecture processes that acoustic signal in order to
determine the sequence of words uttered, extract their semantic meaning and then
elaborate a response for the user and output it in the form of a waveform.
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This means that a CA relies on the integration of several different technologies (such
as Automatic Speech Recognition, Spoken Language Understanding, Natural Lan-
guage Generation, Text-To-Speech) together into a complex architecture. Until re-
cently, however, many of these technologies were not mature enough to be actively
employed for such complex applications and thus research on CAs has been quite
sparse and limited to relatively few laboratories in the last quarter of the 20th cen-
tury.

Over the last decade, however, due to improvements in Machine Learning tech-
niques especially with the employment of Deep Neural Networks (LeCun, Bengio,
and Hinton, 2015) algorithms, we have seen major advances in prominent fields for
conversational AI such as Automatic Speech Recognition (Hinton et al., 2012; Xiong
et al., 2016), Natural Language Processing (Bengio et al., 2006; Mikolov et al., 2010;
Mikolov and Zweig, 2012; Devlin et al., 2019) and Text-to-Speech (Oord et al., 2016).

Thanks to these advancements, in the last few years the field has witnessed an ex-
plosion of CAs also in commercial applications (e.g. Apple Siri, Amazon Alexa, the
Google Assistant and several others) and is projected to grow even more in the next
years (KennethResearch, 2020).

While current commercial applications are mostly based on task-oriented designs,
there is also another line of research in conversational AI which focuses on non-task-
oriented approaches. This distinction between task-oriented and non-task oriented
approaches, which has characterized conversational AI research since the early days,
still divides current research approaches, with only few works attempting to fill the
gap in between. In particular, the two approaches have evolved into two differ-
ent types of architectures: on one hand we have task-oriented CAs which typically
rely on modular architectures, on the other we have non-modular approaches, such
as response generation models, which have been mainly explored for chitchat con-
versations without a real practical task to accomplish. We will discuss both these
approaches, with their respective advantages and disadvantages, in the next sec-
tions.

However, before discussing current trends in conversational AI approaches, in the
next section we provide some basic terminological distinctions for the growing area
of dialogue research.

2.1.1 Terminology

The recent explosion in usage of CAs also corresponded to an explosion in the re-
lated terminology, as a natural consequence of the renewed interest in the field. This
terminological explosion, however, could have negative consequences, such as fos-
tering confusion on specific’ models designs and thus making models’ comparabil-
ity harder. Here, we introduce some terminological distinctions useful within the
context of this thesis:

Chatbot, socialbot, dialogue system, conversational agent Computational mod-
els able to have a dialogic interaction with humans have been referred to with several
different names over the years and across separate fields. These terms, however, are
not necessarily synonyms, since some typically refer only to specific instances of the
broad category. An additional layer confusion is also given by the different usage
of the same term across separate fields (for example research papers’ terminology
might differ from the one used in commercial applications).
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The name chatbot, for example, typically refers to a dialogue model designed with-
out a specific task in mind (e.g. chitchat models), but rather for entertainment. Also,
at least in the earliest days, chatbots were relying on simple keywords mechanisms
for generating conversational responses to the user (see the description of Eliza in
Section 2.1.3). However, since this term has entered the field of commercial applica-
tions, it is now also used in some cases within this context to refer to models based
on a more structured Meaning Representation (such as the one based on slots and
intents) or even to the whole category of dialogue systems. The term socialbot, simi-
larly to chatbot, is used to denote a dialogue model designed for entertainment and
especially user engagement 1.
On the other side of the spectrum, the term dialogue system more typically refers to
models designed for task-oriented interaction, usually based on a modular struc-
tured architecture (see the next Section). The term conversational agent is also typi-
cally used in reference to modular dialogue systems, though it is also used in some
cases to refer broadly to the whole category.
In this thesis, we use the term dialogue systems or CAs when referring to models
based on a modular architecture (both task- and non-task-oriented), while we pre-
fer the term dialogue models (and, occasionally, the term chatbot) when referring to
models based on non-modular architectures (such as response generation models).
The term socialbot is used within the context of the Amazon Alexa Prize to describe
various non-task-oriented models implemented by participants to the competition.

Single-domain vs open-domain This dichotomy refers to the difference in the do-
main coverage of a given CA. While single-domain models are designed to cover
only one domain (e.g. restaurants reservation), open-domain models do not depend
on a given domain in their design, but could rather handle any domain (non-task-
oriented models tend to belong to this latter category). Early task-oriented CAs were
typically single-domain, though also thanks to the rapid acceleration seen by the
field in recent years, we are witnessing an increasing number of multi-domain CAs.
A multi-domain CA is a system able to support multiple, though still predefined
sets of domains (Wen et al., 2016b).

Task-oriented vs non-task-oriented The distinction between task-oriented (or task-
based) and non-task-oriented CAs indicates whether the model has been designed
with the goal of accomplishing given tasks for the user or not. As pointed out in
Grosz and Sidner (1986), any conversation is in some way task–oriented, however in
some conversations the task at hand is less defined or practical compared to others.
The term task-oriented CAs thus usually indicates CAs able to accomplish practical,
short-term tasks (standard examples of these tasks are making a restaurant reserva-
tion or booking movie tickets).

System-initiative, user-initiative and mixed-initiative CAs can be categorised also
according to who, between the machine and its interlocutors, has the initiative in the
conversation (Walker and Whittaker, 1990). A Question-Answering system, for ex-
ample, is usually characterised by user-initiative, since it is the user who has the
initiative in the interaction. However, spontaneous human conversation is usually
based on mixed initiative, that is the case where all interlocutors can take the conver-
sational initiative. Early task-oriented CAs, for tasks such as call-routing, tended to

1As it has been used, for example, in the context of the Amazon Alexa Prize to refer to all models
implemented by the competing teams, regardless of the underlying architecture.
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be more based on system-initiative where the interaction could be easier to handle
for the machine, while current CAs tend to be more mixed-initiative.

Intents Classical CAs architectures are usually based on a MR language involving
the notion of intents. Intents are typically taxonomies predefined by the system’s
designer to capture the possible intentions the user might have in the interaction
with the machine. For example, when designing a CA for restaurant reservation we
might have an intent category such as request_price, to capture users’ utterances,
such as “Could you tell me the price of the restaurant?”, which have the goal of re-
questing the price of a given restaurant.
The notion of intents can be confused with the one of Dialogue Acts, since both
involve taxonomies for speakers’ intentions behind given utterances. However, in-
tents are usually heavily bound to their end application domain. DAs, on the other
hand, can be considered a generalised version of intents with the aim of capturing
more abstract aspects of the interaction. For example, in the case of the utterance
mentioned the DA would be of a directive type, since the speaker is directing to ma-
chine towards sharing a given information (in this case the price). We provide a
more in-depth discussion on the notion of DAs in Section 2.3.2.

Slots Within a task-oriented CA, slots can be described as the semantic concepts
relevant for a given task. This notion, associated to frame-based semantics (Tur and
De Mori, 2011), is another crucial part together with intents of classic task-oriented
CAs Meaning Representation language. To each slot type usually corresponds a set of
slot values. An example of slot type could be restaurant_name, where its associated
slot types could be {The Shed, Da Marco, Chez moi}. While prototypical examples
of slot values tend to be Noun or also Adjective Phrases (see also the example in
Figure 2.1), in some cases this category has been used to capture also binary choices
(as the slot type kidsallowed with {yes, no} values in the San Francisco restaurant
dataset (Wen et al., 2015)).

2.1.2 Task-oriented Modular Dialogue systems

The area of task–oriented CAs, which have the goal of accomplishing predefined
tasks given by users (e.g. booking movie tickets), is fairly well–established.

Early applications of task–driven CAs started from call–routing (AT&T’s HMIHY
(Gorin, Riccardi, and Wright, 1997)) and travel planning (GUS (Bobrow et al., 1977),
ATIS (Hemphill, Godfrey, and Doddington, 1990) or DIALOGOS for italian telephone-
based railway timetable inquiries (Albesano et al., 1997)). Most commercial CAs
(Alexa, Google assistant, Cortana) belong to this type and task–oriented dialogue
systems are also the most investigated ones in the literature, probably because of
the more practical (and arguably easier) function they are required to accomplish
compared to non-task-oriented models.

Given their predefined purpose (e.g. booking a restaurant), when building task-
based dialogue systems designers can make assumptions regarding the user goals
(e.g. make a reservation), the type of entities that will be introduced in the conversa-
tion (e.g. menus, prices, locations) and thus the probable paths the conversation will
follow (e.g. the user requests a specific type of restaurant, the machine proposes a
range of restaurants satisfying those requirements etc.). Task-oriented CAs are thus
usually designed for a specific domain (e.g. restaurant reservations), with a prede-
fined set of slots (e.g. restaurant prices, names), user intents (e.g. request a chinese
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restaurant) and machine states (e.g. the machine believes the user is looking for a
chinese restaurant) and actions (e.g. search a database of restaurants).

Figure 2.1 shows an example of a typical task-oriented CA architecture, composed
of a pipeline of multiple modules. Excluding the speech-related modules (Auto-
matic Speech Recognition and Text-To-Speech), in the next paragraphs we give an
overview of the role of each module in the pipeline and how the tasks associated to
that module have been approached in the literature.

TTS

NLG

ASR

SLU DM

KB

DIALOGUE	STATE
	type:	chinese	
	price:	30-40	$
	time:	8	pm
	city:	London

DSTDP

INTENT
	ask_confirm_type
SLOTS
	type:	chinese	

INTENT
inform_type:	0.8
SLOTS	
[type:	chinese]:	0.4	

[type:	japanese]:	0.2	
[city:	Leeds]:	0.1	

So	you'd	like	chinese
food?

Leeds	restaurant:	0.5	
chinese	restaurant:	0.2	
japanese	restaurant:	0.1	

FIGURE 2.1: Traditional task-oriented modular conversational agent
architecture. The user utterance is processed by the Automatic Speech
Recognition (ASR) module, which produces a list of hypotheses re-
garding the sequence of words uttered. The Spoken Language Un-
derstanding (SLU) module, takes as input these hypotheses and out-
puts a semantic parsing of the given utterance (typically into intents
and slots). Then, the Dialogue Manager (DM), using the information
coming from the SLU, updates the current dialogue state in the Di-
alogue State Tracker (DST) and consequently chooses the policy for
the next action in the Dialogue Policy (DP). The chosen action, struc-
tured as a series of intents and associated slots, is then passed to the
Natural Language Generation (NLG) that transforms it into a textual
format, which is finally passed to the Text-To-Speech (TTS) module.

Spoken Language Understanding The goal of the SLU is to produce a probability
distribution of semantic hypotheses over the meaning of the input utterance, start-
ing from a distribution over word sequences coming from the ASR. In traditional
task-oriented CAs, the main tasks of the SLU are intent and domain classification
(the latter being necessary when the CA is multi-domain) and slot filling (Tur and
De Mori, 2011, Chapter 3). Domain and intent detection in task–oriented CAs are
usually modelled as classification problems, addressed in the literature using vari-
ous Machine Learning classifiers, such as SVMs (Haffner, Tur, and Wright, 2003) or
MaxEnt (Chelba, Mahajan, and Acero, 2003), Deep Belief Networks (Sarikaya, Hin-
ton, and Deoras, 2014), and LSTM (Wang, Shen, and Jin, 2018). On the other hand,
slot filling in task–driven CAs has been considered in many approaches as a sequence
labelling task, accomplished employing models such as HMMs (Wang, Deng, and
Acero, 2005), CRFs (Raymond and Riccardi, 2007), RNNs (Mesnil et al., 2015) and
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Encoder-Decoder models (Zhu and Yu, 2017).
While several works address intent classification and slot filling as separate tasks,
recent work also showed advantages in combining the two (Guo et al., 2014; Liu and
Lane, 2016).
Interestingly, some successful approaches to task–based CAs more concentrated on
Dialogue Management propose to skip SLU all together (Henderson, Thomson, and
Young, 2014b; Henderson, Thomson, and Young, 2014a; Wen et al., 2016a) and give
directly the ASR n–best distribution as input to the DM in order to avoid information
loss in the SLU component. This approach, however, it’s easier to apply to single do-
mains where the range of slot types is restricted, while it would be more difficult to
handle for open–domain conversation.

Dialogue Management Taking as input either the full SLU n–best distribution or
only the most probable hypothesis, the Dialogue Manager is aimed at selecting the
next action of the system, usually interacting with a Knowledge Base which could
be a simple database (Wen et al., 2016a) or combine various sources in more compli-
cated applications (e.g. calendars, phonebook, API, web crawling) (Lemon, 2012).
The techniques and architecture used in this component can vary greatly according
to the approaches.
While DMs can be a simple set of rules (see the one of Eliza in Section 2.1.3), in
traditional CAs research DM are usually divided into two subcomponents:

• a Dialogue State Tracker, which, given as input the distribution of hypotheses
over possible intents and slots from the SLU, estimates and updates the dia-
logue state of the conversation keeping track of the information gathered by
the system up to the current utterance (the dialogue state usually consists of a
predefined set of slot types-value pairs, as in Figure 2.1);

• a Dialogue Policy, which receives as input the chosen dialogue state and selects
the next action of the machine (usually framed as a structure of intents and
associated slots) to be passed to the NLG.

DST is currently one of the most fertile and well–studied areas of conversational
AI research, also thanks to the Dialogue State Tracking Challenge (Williams, Raux,
and Henderson, 2016). Following Williams, Raux, and Henderson (2016), DST ap-
proaches can roughly be divided into rule-based (Wang and Lemon, 2013; Sun et al.,
2016), generative statistical models (Young et al., 2013) and discriminative statistical
models (Xie et al., 2018).
On the other hand, the task of learning the best Dialogue Policy has been extensively
researched using Reinforcement Learning training techniques (Williams and Young,
2007; Georgila and Traum, 2011).

Natural Language Generation Although NLG is quite a broad and comprehensive
field, in this thesis when referring to this area we will consider mainly the data-to-
text approaches typically used in CAs architectures (Gatt and Krahmer, 2018). Given
as input the next action chosen by the DM, typically framed as a MR composed
by intents and associated slots (e.g. in Figure 2.1 where the intent is ask_confirm
_type and the slot is type:chinese), this module is responsible for generating a cor-
responding utterance (e. g. “so you’d like chinese food?” ).
Although quite important especially for usability and for creating a believable per-
sona for the CA, NLG has not been relatively less investigated by researchers com-
pared to the previous modules. Commercial applications and research still rely
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heavily on handcrafted templates (Cheyer and Guzzoni, 2014), although some ap-
proaches tried using an overgeneration and reranking approach (Oh and Rudnicky,
2000). State-of-art approaches are usually based on neural models using LSTM (Wen
et al., 2015) and encoder-decoder models (Nayak et al., 2017).

Research on task-oriented CAs has been carried out mostly on each module inde-
pendently in early years, without considering the interdependence across different
tasks in the pipeline, with the risk of error propagation and loss of information over
the flow of the system. To overcome such issues, in recent years researchers have in-
creasingly investigated joint training across different modules (Bayer and Riccardi,
2012; Yang et al., 2017; Rastogi, Gupta, and Hakkani-Tur, 2018) in the pipeline and
end-to-end trainable CAs architectures (Wen et al., 2016a; Dhingra et al., 2017).

Among the main advantages of the traditional task-oriented pipeline are its inter-
pretability at each step of the process and thus the comparatively high control that
designers can exercise over the CA behaviour. Interpretability and control are cru-
cial characteristics for systems designed to interact with humans, especially in the
case of real-world deployment. Achieving interpretability is possible also thanks to
the mapping of the conversation to a more abstract set of categories, i.e. the Mean-
ing Representation, which through the notion of intents and slots allows to capture
users’ behaviour and relevant concepts into a predefined set of labels over which
each module can reason and learn. However, such a dependence on a predefined
set of categories, usually valid only for a single domain, can also lead to important
issues.

Indeed, the main drawback of task-oriented CAs lies in their scalability. While for a
small number of tasks it makes sense to hand-craft the possible states of the machine
and rely on a closed-set MR language (where only a predefined set of slots and in-
tents are defined), this methodology poses real issues for scalability and the ability
of models to transfer even to similar domains.

2.1.3 Non-task-oriented models

On the other hand of conversational AI research, we have the less established area
of non–task–oriented dialogue models, where the machine does not have a specific,
practical task to accomplish, but rather its main goal is typically engaging the user
in open–domain conversation.

Actually, some of the very earliest examples of human-machine interaction come
from this type of models. The well known Eliza system (Weizenbaum, 1966), for
example, was not designed with specific, practical tasks in mind, but rather with the
goal of engaging users in conversation and study human-machine interaction. Here
is a famous example of an interaction between a user and Eliza, where the system
plays the role of a Rogerian psychologist (Johnson, 2011):

Example 2
young woman: Men are all alike.
eliza: In what way?
young woman: They’re always bugging us about something specific or other.
eliza: Can you think of a specific example?
young woman: Well, my boyfriend made me come here.
eliza: Your boyfriend made you come here?
young woman: He says I’m depressed much of the time.
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eliza: I am sorry to hear you are depressed.
young woman: It’s true. I’m unhappy.
eliza: Do you think coming here will help you not to be unhappy?
young woman: I need some help, that much seems certain.
eliza: What would it mean to you if you got some help?
young woman: Perhaps I could learn to get along with my mother.
eliza: Tell me more about your family.
young woman: My mother takes care of me.
eliza: Who else in your family takes care of you?
young woman: My father.
eliza: Your father.

Reading this conversation could give the impression that Eliza was able to under-
stand the complexity of the meaning portrayed in the user’s utterances. Nothing
further from the truth. Eliza was designed by its creator to rely upon very simple
pattern matching rules on purpose, for example the fact that the user might mention
a keyword matching a family member (e.g. “mother”) would trigger the template re-
sponse “Tell me more about your family”. With such simple mechanisms, its creator
wanted to show how superficial human-machine interaction could be. Surprisingly
for its creator, several users who engaged in conversation with Eliza seemed to at-
tribute to the system a real understanding of the conversation. Parry, another model
of the same period built using similar mechanisms but designed to play the part of
a paranoid person, even passed a version of the Turing test (Colby et al., 1972). In-
terestingly, researchers also experimented with making Parry and Eliza talk to each
other. Here’s an extract from one of their interactions (Johnson, 2011):

Example 3
parry: People get on my nerves sometimes.
eliza: I am not sure I understand you fully.
parry: You should pay more attention.
eliza: Suppose you should pay more attention?
parry: You’re entitled to your opinion.
eliza: What makes you think I’m entitled to my opinion?
parry: It bothers me just to be around people.
eliza: Please go on.
Parry continues with some paranoid ramblings about horseracing, bookies,
and the Mafia
parry: I know the mob controls the big rackets.
eliza: Who are you really talking about?
parry: Have you ever really thought about the Mafia?
eliza: Suppose you ever really thought about the Mafia?
parry: Let’s talk about something else.
eliza: I am not sure I understand you fully.
parry: You keep asking me the same things, why not change the topic?
eliza: In what way?
.....
parry: I am getting tired of answering the same questions over and over.
eliza: What resemblance do you see?
parry: Why do you need to know that?
eliza: What do you think?
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......
parry: You harp on the same questions too much.
eliza: What does that similarity suggest to you?
parry: I don’t get you.
eliza: Do you wish that you did get it?
parry: It’s about time you showed some interest in my feelings.
eliza: Oh, I showed some interest in your feelings?

Compared to Example 2 where the reader might attribute a form of intelligence
and deep understanding of the conversation to Eliza, in this case it would be much
harder to attribute intelligence to any of the two machines involved. The impression
given by the Eliza-Parry interaction is indeed one of a lack of sense, a lack of coher-
ence across the various turns of the conversation. Example 3 shows how both these
models crucially rely on the human interpreter for maintaining the coherence of the
conversation and therefore give the illusion of intelligence. While Eliza and Parry
were early examples of what today are known as “chatbots”, or non-task-oriented
dialogue models, there are models that rely on a very close architecture still used to
this day (see Alice (Wallace, 2009)).

The type of behaviour shown in Example 3 highlights one of the perils of non-task-
oriented open-domain models, that is that in several cases they lack control of the
conversation without a structured representation for users’ goals. Although open–
domain dialogue seems by far a more challenging task than booking a flight since
we cannot make assumptions over the conversation flow and restrict the space of
the possible directions the dialogue can take, current approaches to open–domain
CAs (Ritter, Cherry, and Dolan, 2011; Sordoni et al., 2015; Sutskever, Vinyals, and
Le, 2014; Serban et al., 2016d) also have a level of control over the conversation that
is much less than the one achieved by SOTA task-oriented approaches.
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FIGURE 2.2: Non-modular models typically replace the whole
pipeline of Spoken Language Understanding, Dialogue Manager
and Natural Language Generation with a single response generation

module.
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INPUT: what is your name?
I don’t know.
I don’t know!
I don’t know, sir
Oh, my god!
...
My name is Robert
My name is John

TABLE 2.1: Sample responses generated by a Seq2Seq model to a
given input, ordered according to their probability (taken from Li et
al. (2016a)). The ellipsis indicates several other responses not shown

before the final one.

Excluding again the necessary speech-related modules, the pipeline of submod-
ules used in task–based systems is here reduced to a single module (see Figure 2.2)
which selects the most similar response to the user utterance as learned from a large
database of dialogues using Machine Learning techniques such as DNN, in partic-
ular various versions of Sequence-to-sequence (Seq2seq) – also known as Encoder-
Decoder – (Sutskever, Vinyals, and Le, 2014) neural networks (Sordoni et al., 2015;
Vinyals and Le, 2015). These type of models thus, initially borrowed from Machine
Translation, directly map the user input utterance to the machine response without
intermediate representations (such as the MR used in the task-oriented framework).
This literature has mostly focused on two tasks: response selection and response
generation.

Response selection This task, also known as Next Utterance Classification (NUC),
consists of selecting the optimal response to a given utterance (which could be ex-
tended to include a larger context of the previous conversation), given a list of can-
didate responses (Lowe et al., 2017b). Models trained on this task can be applied
for ranking the output of generation models, or for selecting the next response in a
retrieval-based dialogue model. The latest SOTA models (Kim et al., 2019) typically
rely also on large pretrained language models for the task (Devlin et al., 2019).

Response generation This task, also known as Next Utterance Generation (NUG),
consists of generating a response to a given utterance (also here the context could be
extended). Models trained on this task could be directly applied as whole dialogue
models, without using other modules, as shown in Figure 2.2. Although Encoder-
Decoder models have been the most extensively used for this task, also in this case,
the latest models use large pretrained models (Zhang et al., 2019; Adiwardana et al.,
2020).

Probably the biggest advantage of these models compared to the task–oriented frame-
work is that they require no hand–crafted features. Indeed, without relying on in-
termediate representations (i.e. MRs) and using tasks that can be addressed using
weakly supervised approaches (datasets for response selection and generation can
be created automatically), these models do not necessarily require annotation effort.
However, very large datasets are necessary for training these models, which are not
easy to retrieve or produce.

Moreover, these models present also structural problems that are not due only to
lack of data. The main idea behind these approaches is indeed the fact that the most
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A: how old are you? (1)
B: I’m 16. (2)
A: 16? (3)
B: I don’t know what you are talking about (4)
A: You don’t know what you are saying. (5)
B: I don’t know what you are talking about (6)
A: You don’t know what you are saying. (7)
...

TABLE 2.2: Sample conversation generated by making two Seq2Seq
models interact with each other (taken from Li et al. (2016c)), exem-
plifying how models quickly fall into “conversational black holes”.

probable responses to a given message are learned from a large dataset of conver-
sations. However, the majority of responses in any large database of conversations
tend naturally to be also the shorter, less engaging and more repetitive ones (such
as ‘I don’t know’ or ‘I see’ as in Table 2.1), while the more content–related ones are
more sparse and bound to the greater context of the conversation. This problem is
known as the generic response problem. Generally these models seem unable to keep
the conversation context for more than a few turns and thus give a sense of meaning-
less, incoherent conversation to users when interacting over multiple turns. This type
of behaviour is exemplified in Table 2.2, which reports a conversation (somewhat re-
minding of Example 3) where two Seq2Seq models interact with each other and over
a few turns the conversation ends up in a loop of generic responses. Moreover, since
the training dataset contains thousands of responses from different users, the mod-
els do not have a consistent persona and could give incoherent responses even to the
same question over the course of the same interaction (as shown in Table 2.1).

Recent models tried to overcome these issues either by extending the DNN architec-
ture to incorporate more context (dialogue history) (Serban et al., 2016b; Serban et
al., 2017c) or by trying to use different features for the training of the model in order
to promote more diverse and on–topic responses using Reinforcement Learning (Li
et al., 2015; Li et al., 2016c).

Following the second approach, Li et al. (2016c) use Reinforcement Learning to
model a reward function according to these ideal conversation properties: infor-
mativity (it penalizes the cosine similarity between two adjacent machine turns),
semantic coherence (using Maximum Mutual Information (Bahl et al., 1986), a met-
ric which evaluates the mutual interdependence between two sequences), and ease
of answering (manually compiling a short list of common dull responses in Seq2Seq
models and designing a function to extract their common features with the hope
to cover similar cases). Although this model shows consistent improvements over
a combination of metrics (length of generated turns, number of different bigrams,
human evaluation), the authors admit how the reward function does not yet cover
many crucial aspects which contribute to a good conversation.

2.1.4 Evaluation

Evaluation of dialogue systems is an open issue, since so far there are no standard-
ized automatic metrics valid for both task- and non-task-oriented models. Addition-
ally, while in modular task-oriented approaches each module has its own evaluation
techniques besides metrics used to evaluate the entire system (although the two do
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not necessarily coincide (Takanobu et al., 2020)), naturally the same is not true for
non-modular models. In the latter case, the evaluation of the entire model coincides
with single units evaluation and therefore having meaningful metrics becomes even
more crucial.

Current approaches to dialogue evaluation can be roughly grouped into task-oriented
metrics, metrics based on surface text, metrics relying on learned models and human
judgement 2.

Task-oriented metrics This class of metrics, based on the task success rate, works
only for task-oriented CAs evaluation (Walker et al., 1997). This family of metrics
is generally aimed at evaluating the success of the system in accomplishing the task
requested by the user. Danieli and Gerbino (1995), for example, propose contextual
appropriateness, implicit recovery and transaction success, as metrics to evaluate the
ability of the system to appropriately deal with a user request and recover from er-
rors. Perhaps the most famous framework of evaluation proposed for task-oriented
dialogue is PARADISE (Walker et al., 1997). In PARADISE, the task success rate is
measured using matrices which represent the information requirements towards ac-
complishing a given dialogue task. We can observe how these metrics focus mainly
on the ability of the CA to accomplish a given task, but do not cover other less prac-
tical aspects which might however also contribute towards the system’s evaluation
(i.e. did the user feel the machine was respectful towards the user? did the user give
more implicit signals of dissatisfaction with the interaction?).

Surface-based metrics This group of metrics, mostly borrowed from Machine trans-
lation, evaluates directly the text generated by the machine responses. BLEU (Pap-
ineni et al., 2002) and METEOR (Banerjee and Lavie, 2005), for example, evaluate
the similarity between two sentences based on formal factors such as the number
of overlapping n-grams (sequences of words of various lengths) among the two.
These metrics are thus used to measure the ability of the machine to replicate ex-
actly a given expected response. Although these metrics are widely used to this day
to evaluate non-task-oriented response generation models, they have been shown
to have a poor correlation with human judgements (Liu et al., 2016). This is hardly
surprising, since in dialogue responses with very different surfaces forms might be
perfectly valid conversational responses in the same context.

Model-based metrics This class of approaches propose to create to train Machine
Learning models on the task of dialogue models evaluation. Although a promising
direction, in many cases the models proposed learn to predict generic human judge-
ments without providing closer insights to why a given utterance has been given a
particular evaluation score or to the characteristics that machine responses should
have in order to achieve a good evaluation score (Lowe et al., 2017a).

Human judgement In general, manual surveys still remain the best option, al-
though the process is expensive and not completely reliable given the subjectivity
of user judgements, especially non-expert ones.

2Computational models of evaluation for dialogue focusing on coherence will be discussed in Sec-
tion 2.3.
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Overall, it seems we’re still far away from having automatic standardised evaluation
metrics for both task- and non-task-oriented dialogue. Additionally, good evalua-
tion metrics should also be informative regarding which characteristics of conver-
sation quality a given CA fulfills or not in order to allow designers to act upon the
reported issues, which is usually not the case for surface-based and model-based
metrics. The current void in evaluation methodologies creates a real bottleneck es-
pecially for open-domain models, since these models are also often optimised using
functions based on such surface-metrics, which are easy to compute, but are at the
same time highly inadequate to evaluate conversational responses.

2.2 Coherence in theoretical Linguistics

In Linguistics literature the property which gives a unified meaning to a text is de-
fined as its coherence (De Beaugrande and Dressler, 1981b). A discourse can be re-
garded as coherent if we can recognise in it a conceptual unity, a sense.

More formal definitions of coherence are however rather difficult to formulate, given
the abstract nature of this concept. In order to better understand the idea of coher-
ence the Linguistics literature has devised the concept of cohesion (or local coherence)
(Halliday and Hasan, 1976), that is the property that makes the different sentences
in a text connected to each other by a series of surface devices, such as having a
coherent consecutio temporum (concordance of the grammatical tenses used in the
sentences) or a continuity in the entities mentioned. In order to be coherent, a text
must be cohesive (or locally coherent), but cohesion is not a sufficient condition for
global coherence.

Example 4
“ ‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might be; and if it
were so, it would be; but as it isn’t, it ain’t. That’s logic.’ ”
Lewis Carroll, Through the Looking-Glass, and What Alice Found There

Example 4 can be regarded as cohesive (or locally coherent), since the different
clauses are connected by the reference to the same entity (in the text “it”), but it
is nonetheless not globally coherent for the reader, because it does not have a recog-
nizable sense.

The literature makes thus a distinction between global coherence — the “deep” con-
ceptual unity of an entire text including also the goals of the speaker — and local
coherence — the “surface” realization of coherence expressed through shared syn-
tactic and semantic features across neighboring sentences.

As Andorno (2003) correctly identifies, the concept of coherence can be considered
an overarching principle in Pragmatics and Discourse Linguistics. This concept is
considered as hierarchically higher compared to other integral principles of Lin-
guistics (Conte, 1980; Gernsbacher and Givón, 1995) since it represents a constitu-
tive part of the very essence of texts. Ultimately the property of coherence does not
even pertain to the text itself, but rather to the interpretation that the receiver of the
text creates of it (Conte, 1989). The same text, could indeed be considered coherent
or not according by different interpreters. For example, let’s consider the following
conversation:

Example 5
A: Where is Michael?
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B: The train left the station.

Reading Example 5 one could think of it as incoherent, as the relation between the
two utterances is not clear: A poses a question and B seems to make an unrelated
statement. However, if we imagine that A told B in a previous part of the conver-
sation or in another context that Michael would take that train, we could end up
considering this exchange as perfectly coherent, since B’s sentence would be consid-
ered an Answer to A’s question.

This idea of the centrality of the interpretation process is a common thread across
several approaches in Pragmatics and Discourse. The influential relevance theory
(Sperber and Wilson, 1986), for example, posits that the meaning of an utterance
goes much beyond its literal meaning and mainly stems from the effort made by the
listener to find relevance in the message of the speaker, that is to find a consistent
goal behind the speaker’s messages. The reliance of the concept of coherence on
the receiver’s interpretation is also exemplified by the interaction between Eliza and
Parry in Example 3, where the two machines quickly lose the sense of the conversa-
tion after a few turns and get stuck in loops seemingly without content or a purpose,
and the same happens in the conversation between Seq2seq models reported in Table
2.2. In both cases, none of the two participants in the conversation was maintaining
the coherence by interpreting in a unified way the utterances of the other speaker,
assigning a goal behind the other’s speakers utterances and hence giving a structure
to the interaction (which instead is happening in Example 2).

Indeed one of the main tenets of the fields of Pragmatics and Discourse is that dis-
course has a structure. The way that utterances in a message are ordered is not
random, but constitutes a structure that is an integral part of the meaning of the
message itself. So much that if the order was changed, even by one sentence, the
meaning, i.e. the interpretation of the message would change. Over the years, sev-
eral theories have been proposed in Linguistics to uncover this sentence-by-sentence
structure. Different theories, for example, focused on the importance of the interpre-
tation process of the intentions of the producer in creating a given text (Grice, 1970;
Sperber and Wilson, 1986). Several works studied discourse structure in terms of
continuity of relevant entities across different parts of a text (Givón, 1983; Halliday
and Hasan, 1976), also in connection to grounding (Givón, 1987). Other works con-
centrated more on the logical types of relations connecting a piece of text, also in
connection to speaker’s goals (Hobbs, 1979). Others identified a consistency in the
use of tenses across a text in connection to discourse structure (Kamp and Rohrer,
1983; Moens and Caenepeel, 1994). While there are certainly overlaps and connec-
tions among the phenomena and the theoretical approaches of these works, the fields
of Pragmatics and Discourse are generally more fragmented compared to other ar-
eas of Linguistics (e.g. Synthax, Morphology). As Andorno (2003) notices, this is
not an issue of these research fields, but rather a defining factor: the main object of
study of Pragmatics and Discourse is the parole (De Saussure, 1989), the language in
context, where the context could be infinitely complex and various.

Notwithstanding the fragmentation of the field, there are some phenomena that
have attracted the attention of scholars more compared to others. One of such phe-
nomena is the way in which entities are introduced and referred to across different
sentences in a coherent text, which we call the thematic aspect of discourse. One of
the reasons why the response of B in Example 5 could be perceived as incoherent
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is the fact that the entity “train” is mentioned with the definite article “the”, as if
B assumed that A (or the reader) should know what train B is talking about. If in
the previous context A had said for example “Michael should take a train at 11.40”,
B’s response would be considered coherent and the reference to the train would be
easily resolved by the receiver. The use of definite versus indefinite articles is indeed
connected to whether or not a given entity has already been introduced within the
context of a discourse or not. This is just one example of phenomena connected to
the thematic structure of discourse. This area of study encompasses also phenom-
ena such as how the load of information (such as novel versus already mentioned
entities) is positionally and syntactically distributed within a sentence (the theme VS
rheme dichotomy (Halliday and Matthiessen, 2013)), coreference and many others.
Although present in any kind of discourse, this type of structures have been studied
in particular for text, compared to other genres such as dialogue.

The thematic phenomena described are crucially connected to the concept of mental
models (Van Dijk, 1985; Dijk, 1987; Van Dijk, 1999). The idea of mental models, also
used in other research areas such as cognitive science, refers to mental constructs
about shared knowledge that participants create and continuously update during
the course of an interaction. Mental models imply thus a dynamic, rather than static
approach to process the information exchange that takes place during an interaction.
This concept affects both the way that speakers shape their messages and the way
that receivers interpret messages. According to this idea, speakers carve the con-
tents of their discourse according to the mental model they have about the receivers’
knowledge status regarding the contents they are communicating. Vice versa, re-
ceivers construct their interpretation of a message according to the mental model
they have of the mental model that they think speakers might have of their knowl-
edge about a given topic. Hence, mental models are used by receivers to integrate
their previous knowledge with the novel contents introduced in the conversation
and thus make sense of the interaction. In this framework, coherence could be de-
fined as the recognition by the receiver that a message was constructed using a men-
tal model.

Coherence in dialogue As a genre, dialogue can be considered a privileged field
of study for Pragmatics, since it is is even more dependent on the context compared
to written text. Dialogic interactions have therefore been studied extensively in this
research area, so much that there is even an whole genre-specific dedicated to the
dialogic form, called Conversation analysis.
We have already mentioned the central role played by the interpretation of the re-
ceiver for coherence perception. This interpretation is inherently shaped by the in-
tentions that the receiver attributes to the speaker. While the intentional aspect is
important in any interaction, it has been particularly studied within the context of
dialogue, where compared to text we have a more dynamic relation among the par-
ticipants to a given act of communication.
The intentional aspect plays an important role in several recent influential theoretical
approaches to Pragmatics. Grice’s approach, for example, proposes that the whole
communicative (non-natural) meaning of utterances is based on the intentional as-
pect, that is on the intended effect that the speaker wants to have on the receivers
with that act of communication (Grice, 1970). Also according to relevance theory
(Sperber and Wilson, 1986; Sperber, Cara, and Girotto, 1995), an influential Pragmat-
ics framework proposed in recent years, speakers intentions play a central role in
defining utterances’ meaning. Naturally, the intentional aspect is also at the heart of
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Speech acts theory (Austin and Urmson, 1962; Searle, 1965), a theory first developed
in philosophy of language that studies the non-literal meaning of utterances in terms
of conversational actions 3. Another important line of research that investigates the
intentional aspect of discourse is Conversational Analysis with the concept of adja-
cency pairs (Schegloff, 1968; Schegloff and Sacks, 1973; Sacks and Jefferson, 1995).
Adjacency pairs are recognizable patterns of conversational actions (such as the fact
that a question is usually followed by an answer in a conversation), categorised as
a set of allowed speakers’ intentions in the dialogue. Adjacency pairs capture an
important characteristic of the intentional aspect: its dependence on context, that
is the fact that the meaning of a given intention can be understood only within the
larger conversational context of previous intentions shown by participants. While
adjacency pairs mainly focus on capturing sequences of two intentions, other theo-
ries analysed intentional patterns spanning larger portions of the conversation (as
we will see in Section 2.3.2). All these theories have been extensively studied over
the years and used to investigate the structure of coherent discourse.
It is interesting to notice, that mental models are not just connected to the thematic
aspect, but also to the intentional aspect of discourse, if we consider speakers’ in-
tentions as concepts that capture conversational actions associated to given changes
in the information status of participants to the interaction. For example, a question
could be considered a request to fill a gap in the knowledge of the participant posing
the question or a statement could be considered an action to update the knowledge
of the other participant with some given contents.

Hence, although these two important aspects, the thematic one and the intentional
one, at the heart of different influential theories of discourse, might appear inde-
pendent, they could actually be considered intertwined within a framework such
as mental models. While the thematic aspect, capturing phenomena such as lexical
chains and coreference, has been traditionally considered as an expression of local
coherence; the intentional aspect, capturing phenomena such as adjacency pairs, has
been often linked to the notion of global coherence. In the next section, dedicated to
computational approaches to coherence, we will deepen both aspects and how they
have been approached from a computational perspective.

2.3 Computational models of coherence

Computational Discourse and Pragmatics4 are the fields of study that investigate
computational models of utterances’ meaning beyond their literal single-sentence
meaning, but within the larger context (such as the interactional context or the larger
linguistic context of an entire text or dialogue)5.

One possible way of categorizing computational approaches to Pragmatics and Dis-
course is according to the methodological approach followed. While earlier research
relies on an inferential approach, mainly based on belief logic and utilising logical
inference; current research tends to rely on a probabilistic approach, based on the use
of Machine Learning techniques (Horn and Ward, 2004, Chapter 26).

3The implications of Speech Acts and its evolution into Dialogue Acts theory will be discussed in
Section 2.3.2

4Similarly to their Linguistics counterparts, while computational Pragmatics concentrates more on
modeling language in context, computational Discourse focuses more on modeling the relationships
among groups of utterances. Also in this case, there are overlaps among the two fields.

5For an introduction to Computational Pragmatics see (Huang, 2017, Chapter 19); for an introduc-
tion to Computational Discourse see (Jurafsky and Martin, 2009, Chapter 21).
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Another way of categorizing computational approaches to Pragmatics and Discourse
is according to their main object of study. While also in the case of computational
approaches coherence plays a pervasive role across different theories, Moore and
Pollack (1992) divides the main computational approaches to coherence into infor-
mational and intentional ones.6 Although Moore and Pollack (1992) advocate for a
synergy among the informational and intentional approach based on the fact that in
a coherent discourse different clauses can be connected simultaneously by multiple
type of relations, the two approaches have been largely investigated independently,
also in terms of the genre studied. While traditionally informational approaches to
coherence have been applied to written text (e.g. news); intentional approaches have
been explored within the context of dialogic interaction.

Computational models of coherence in text Informational approaches (Moore and
Pollack, 1992) have probably been the most influential approaches to coherence for
written text, besides entity-based ones7.
Moore and Pollack (1992) calls informational approaches a class of theories (Mann
and Thompson, 1987; Prasad et al., 2008) which identify sets of coherence relations
holding across different sentences in a coherent text. These coherence relations (also
known as rhetorical or discourse relations, according to the approach), capture the
rhetorical structure of discourse, describing how the contents of a given clause are
logically related to the contents of other clauses within a coherent discourse. For
example in the text “It was raining. But I had forgotten the umbrella” the first and
second sentence are connected by a contrastive type of relation, since the two events
described are in contrast with one another, as expressed by the connective “but”.
Instead, if we consider the text “I brought the umbrella. It was raining.” the two
sentences are connected by a causal type of relation, albeit in an implicit manner.
Within this general approach, we can further identify two main theoretical approaches:
the Rhetorical Structure Theory (Mann and Thompson, 1988) and the approach be-
hind the Penn Discourse Treebank (Prasad et al., 2008). While the former theory
posits that it is possible to reconstruct a hierarchical structure among the different
coherence relations in a text, a process known as discourse parsing (Marcu, 2000),
the Penn Discourse Treebank approach only identifies flat types of relations among
different clauses of a text. Current approaches to discourse parsing are generally
based on probabilistic approaches using neural models (Braud, Coavoux, and Sø-
gaard, 2017; Jia et al., 2018; Lin et al., 2019), rather than on inferential approaches.

Computational models of coherence in dialogue As we have seen for coherence
approaches focusing on dialogic interaction in Linguistics; also computational ap-
proaches to coherence in dialogue mostly concentrate on the intentional aspect, that
is the role of speakers’ intentions in the conversation. In particular, this class of
approaches rely on the intuition that dialogue coherence across different turns is in-
herently defined by the participation of each utterance to an overall goal, a plan that
speakers have for that interaction (Cohen and Perrault, 1979; Allen and Perrault,
1980). Here, the purpose of dialogic interaction is thus to modify the participants
mental state regarding given contents (Moore and Pollack, 1992).

6While in Linguistics the term informational is typically used within the context of information struc-
ture research, that is approaches that investigate phenomena such as discourse referents and lexical
chains, which in this thesis we refer to as the thematic aspect of discourse; in this case the term in-
formational refers to discourse relations theories, that rather capture the rhetorical relations between
different parts of a text.

7Entity-based approaches to coherence will be extensively discussed in Section 2.3.1.
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In this context, speech acts are considered as the key units, the operators used to
put into action the overall plan (Allen and Perrault, 1980). However, we notice how
early approaches analyse mainly the case of task-oriented dialogue. Thus, within
these frameworks the speech acts used are usually very limited sets of categories
specifically related to the speakers’ beliefs and goals (in Allen and Perrault (1980), for
example, the only speech acts analysed are REQUEST and INFORM). These works
in general are based on inferential approaches.
Following Cohen and Perrault (1979) intuition, Grosz and Sidner (1986) propose ar-
guably the most prominent theoretical framework for dialogue coherence also based
on the essential role of the intentional aspect. Grosz and Sidner (1986) propose a
framework that crucially combines the intentional and the thematic aspects for defin-
ing dialogue structure, and hence its coherence. In particular, Grosz and Sidner
(1986)’s approach relies on the definition of an abstract model of dialogic discourse
structure as an interaction of three components: the linguistic level, that is the se-
quence of utterances in their surface textual form; the intentional structure, which
captures speakers’ purpose in the conversation; and the attentional state, which de-
fines the shifting focus of attention at each point in the conversation.
In this framework, the intentional structure is defined by the segmentation of the
discourse in different segments, each one with a specific discourse purpose, which
defines how that segment contributes to the overall purpose of the interaction. Simi-
larly to Cohen and Perrault (1979), here the speakers’ intentions considered are only
the ones useful for the goal of the discourse and thus related to the beliefs of differ-
ent participants. Different discourse purposes are connected by two main relations:
dominance and satisfaction-precedence, governing the structure of the dialogic in-
teraction and how different segments contribute to the overall purpose.
The attentional structure, on the other hand, is a dynamic model representing the
participants’ focus of attention as the discourse unfolds (Grosz and Sidner, 1986).
Each discourse segment has thus an associated focus space, recording entities that
are salient in the current segment. From this perspective, the structure of the conver-
sation can then be understood as a series of shifts in focusing spaces, governed by
specific transition rules (where focusing is the process of manipulating these spaces).
The attentional structure, hence, captures the thematic aspect of dialogue coherence.
These two different structures, along with the linguistic one, all interactively con-
tribute to the segmentation of the dialogue in discourse segments.
Grosz and Sidner (1986) shows how this abstract model can be used to account for
a series of linguistic phenomena, such as pronominalization and interruptions. Also
in this case, the main genre considered is task-oriented dialogue and the approach
is inferential-based rather than probabilistic. Grosz and Sidner (1986) approach has
been very influential over the years, especially from an academic perspective, and it
remains to this day one of the most highly regarded approaches to discourse struc-
ture in general. However, while this framework offers great insights, it found limited
applicability so far for real-world applications (such as conversational agents de-
sign). While for specific use cases (such as task-oriented dialogue) this framework is
easier to define, the same is not true for more extended cases (such as open-domain
dialogue). Some of the reasons for its limited application are thus the difficulty in
identifying (and finding agreement) the boundaries of discourse segments, and in
general the richness of the theoretical model, which made the creation of dedicated
annotated resources and tools a very time consuming effort. Additionally, while
inferential-based approaches were very popular in the past, current AI research has
shifted more towards a probabilistic data-driven framework.
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In this section, we provided an overview of important approaches to coherence mod-
elling in computational linguistics, with a focus on intentional approaches proposed
for coherence modelling in dialogue. The next sections are dedicated to the two
main computational approaches to coherence relevant for this thesis. First, we give a
deeper insight into entity-based coherence models, which capture thematic phenom-
ena; then, we review Dialogue Acts theory which has also been linked to dialogue
coherence and which addresses intentional aspects of dialogue.

2.3.1 Entity-based models

Computational approaches to coherence modelling relying on entities capture what
in this thesis we call the thematic phenomena of discourse. This group of approaches,
which proved very influential over the years, posits that a coherent discourse is char-
acterised by specific patterns of distributions in the continuity of given entities across
different sentences. According to these frameworks, intuitively a text where each
sentence mentions different entities would be thus perceived as less coherent com-
pared to a text where the same entity appears in prominent positions across different
sentence (as it happens for the entity “Microsoft” in Table 5.1). By prominent posi-
tions, these approaches intend for example the fact that a given entity would appear
with the syntactic role of subject rather than a less prominent role such as the one of
indirect object.

The most influential theory among entity-based approaches to coherence is Center-
ing theory (Grosz, Weinstein, and Joshi, 1995), evolved from a combination of Grosz
and Sidner (1986)’s work and theories laid out in Joshi and Kuhn (1979) and Joshi
and Weinstein (1981). In particular, Centering is proposed as a framework for mod-
eling the local level of the attentional structure defined in Grosz and Sidner (1986).
Centering theory crucially relies on the idea that each utterance in a discourse is
characterised by a center, i.e. a salient entity currently in focus. Within this frame-
work, the perceived coherence of a discourse is affected by the continuity of cen-
ters across different sentences. This phenomenon is formalised in the notions of
backward-looking centers and forward-looking ones. In Centering, each utterance
has a backward looking center, i.e. the entity in focus at the current moment, and a
number of forward-looking centers, that is a group of candidates to become the next
salient entities in the following sentences. These candidates are not all considered
on the same level, but are rather ranked according to their prominence (such as their
syntactic role) in the sentence. For example, in Table 5.1 the backward-looking cen-
ter of sentence 1 can be considered “the Justice Department", while "anti-trust trial"
or "Microsoft Corp" could be considered forward-looking centers (indeed the entity
“Microsoft”, referred also as “the corporation” in the same sentence, will become the
next backward-looking center in the following sentences). Using these categories,
Centering theory then formulates rules to describe centers transitions behaviour, for
example to capture pronominalization phenomena of entities across different sen-
tences. Centering theory has found various applications, in particular for tasks such
as coreference resolution.

While Centering has been a very influential approach, there are also recognisable
shortcomings of this framework. Poesio et al. (2004), for example, notice how some
of the notions on which Centering relies are only partially specified, and thus there
have been several different interpretations of how to correctly instantiate the theory.
Additionally, another disadvantage of Centering is its top-down rather than data-
driven approach to modeling discourse phenomena. Indeed, Centering assumes a
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s1: [The Justice Department]S is conducting an [anti-trust trial]O against [Microsoft Corp.]X
with [evidence]X that [the company]S is increasingly attempting to crush [competitors]O.
s2: [Microsoft]O is accused of trying to forcefully buy into [markets]X where [its own
products]S are not competitive enough to unseat [established brands]O.
s3: [The case]S revolves around [evidence]O of [Microsoft]S aggressively pressuring
[Netscape]O into merging [browser software]O.
s4: [Microsoft]S claims [its tactics]S are commonplace and good economically.

TABLE 2.3: Entity grid example extracted from Table 1 and 2 in Barzi-
lay and Lapata (2008) with a document composed by four sentences
(s1-4). Entities in the sentences are annotated with their syntactic role:

subject (S), object (O) or neither (X).

specific theory regarding how entities are continued in a coherent discourse and
although several of its assumptions might be correct, they cannot define all nuances
and variations of real-world linguistic behaviour.

While focusing on the same phenomena, the fertile entity grid framework (Barzilay
and Lapata, 2008) relies on a different approach to modeling local coherence com-
pared to Centering. Instead of assuming a particular theory about entities transitions
in a coherent text, the entity grid approach relies on a data-driven methodology
which lets the model learn a function directly from the data by simply providing
relevant linguistic information (such as the grammatical roles of entities across mul-
tiple sentences).

As shown in Table 5.1, in this approach the authors propose to represent the struc-
ture of a text through a grid displaying relevant information (the grammatical role)
about entities across neighboring sentences in a text. The grammatical role can be:
subject (S), direct object (O) or neither (X), plus a symbol (−) to signal the entity
does not appear in that sentence s. For example, in the case of the grid represented
in Table 5.1 we notice how the sentences are connected by the continuity of the en-
tity “Microsoft” which assumes prominent grammatical roles across all sentences.
By computing the probabilities over all possible transitions of length n from one cat-
egory to all others (thus {S, O, X,−}n) we can turn this representation into a feature
vector, representing the syntactic role transitions over entities in the text. Barzilay
and Lapata (2008) then use these feature vectors to train a Machine Learning model
(in their case a Support Vector Machine) framing coherence as a ranking problem.

Rather than using a supervised approach, which would depend on the time consum-
ing process of data labeling, Barzilay and Lapata (2008) propose a weakly supervised
approach to automatically generate the training data for the task. The authors auto-
matically create a set of positive examples, by assuming a group original documents
to be coherent, and a set of negative samples, by randomly permuting the order
of the sentences in the original documents and assuming these to be examples of
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incoherent documents. Models are then trained using pairwise training on the data
generated in such fashion. Intuitively, the authors expect the model to learn patterns
of distribution in local entities transitions that differentiate coherent from incoher-
ent texts. The authors also experiment with models using only salient entities (the
most frequent ones) and models using all entities, getting higher scores with the first
setting. The typical tasks on which local coherence models are measured are:

• sentence ordering discrimination: where the task is to rank original documents
(considered coherent) higher than the same documents with randomly per-
muted sentences (assumed to be not coherent);

• sentence insertion: where the task is to rank original documents (considered
coherent) higher than the same documents with only one sentence permuted
to a different position (assumed to be not coherent).

• summary coherence rating: where automatically generated summary rankings
are compared to coherence rankings created by humans.

It is important to notice, how both sentence ordering discrimination and insertion
use synthetic data, which could show different characteristics compared to coher-
ence violations found my human readers. Summary coherence rating, however,
shows the correlation of the models’ performances with human judgement.

The algorithm proposed in Barzilay and Lapata (2008) derives thus automatically
this abstract representation for a text, with as the only requirement a syntactic parser
and a dataset. Among the weak points of this framework, however, there is the
fact that it models only local coherence (patterns of distribution across adjacent sen-
tences) and a data sparsity problem. Moreover, the grid does not keep lexical infor-
mation about the entities, which could prove useful for assessing text coherence.

Over the years, entity grid model inspired numerous extensions and similar imple-
mentations. Filippova and Strube (2007), for example, tried to extend the model
using semantic relatedness of the entities but without much improvement. Elsner
and Charniak (2011b) extended the entity grid by adding all nouns (not just head
nouns as in Barzilay and Lapata (2008)) to the grid and entity specific features such
as named entity information or number of entity modifiers in order to stress the
saliency of some entities compared to other ones. This extended version of the orig-
inal entity grid achieved the best results compared to all other proposed extensions.
Guinaudeau and Strube (2013) model the problem as a graph using a similar idea
to the entity grid, but making it completely unsupervised. Although this graph rep-
resentation achieved comparable scores, it was not able to beat the original model.
Mesgar and Strube (2016) also follows a similar intuition by using a graph-based ap-
proach to modeling lexical coherence. Li and Hovy (2014) used a distributed repre-
sentation of the sentences in the document with Recursive and Recurrent NN, how-
ever without using the entity grid representation. Nguyen and Joty (2017) presents
an approach that uses the entity grid as input to a Convolutional Neural Network
(CNN), with the advantage of being able to model long-term transitions compared
to the original grid model. Mesgar and Strube (2018) propose a coherence model
based on a combination of Recurrent Neural Networks and CNN and find it found
useful for essay scoring and readability assessment. The current SOTA on the bench-
mark tasks for text coherence is achieved by Moon et al. (2019) which uses an LSTM
sentence encoder and combines the entity grid representation with other features
such as discourse relations.
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While most research on entity-based coherence models is based on text, different
works have also shown that these models can be useful also for other genres, such
as dialogue (Purandare and Litman, 2008; Elsner and Charniak, 2011a). Elsner and
Charniak (2011a), for example, show that the local coherence models off the shelf
(among which the original entity grid and the extended one from (Elsner and Char-
niak, 2011b)) transfer well also to human-human conversation (Elsner and Charniak,
2011a). Gandhe and Traum (2008) finds that ordering tasks correlate well with co-
herence perception in dialogue. More recently, Joty, Mohiuddin, and Nguyen (2018)
proposed an extended version of local coherence models based on entities for mod-
eling threads on forums, emails and other genres of asynchronous conversations.

As we have seen throughout this section, research on entity-based coherence mod-
els is still active to this day, with various extensions and applications for different
tasks. The models presented here, however, are mainly aimed at modeling local co-
herence, that is the surface features that make a text locally connected. Poesio et al.
(2004) notices that local coherence models must be supplemented with other factors
of coherence, besides entity-based ones. Additionally, in Grosz and Sidner (1986)’s
approach, the global coherence of dialogue was rather give by the intentional level,
compared to the attentional one. In the next section, we will introduce Dialogue Acts
theory, an approach capturing the intentional phenomena of dialogue.

2.3.2 Dialogue Acts

As we’ve seen in Sections 2.2 and 2.3, the intentional aspect is deemed essential for
coherence in dialogue across different approaches. In particular, in various theories
this aspect is linked to the global coherence of dialogue, that is to the overall structure
of the conversation (Grosz and Sidner, 1986). However, while thematic phenomena,
being more linked to the surface form, are somewhat easier to define; the same is
not true for phenomena connected to the intentional level. Being more connected to
the implicit meaning of utterances, the intentional aspect can be harder to define, and
thus approaches might consequently be quite different and at the same time prone
to confusion with one another, as we will see throughout this section.

The concept of Dialogue Acts (DAs) has evolved from the one of Speech Acts, orig-
inally formulated within the field of philosophy of language (Austin and Urmson,
1962; Searle, 1965; Austin, 1975). Speech acts theory posits that utterances have mul-
tiple levels of meaning. The first one, the locutionary level, represents the surface
literal form of the utterance, somewhat similarly to the linguistic level of Grosz and
Sidner (1986). The second one, the illocutionary level, indicates the purpose behind
a given utterance, such as offering to do something or thanking someone. The final
level, the perlocutionary one, represents the intended effect should have the utter-
ance has on the speaker, such as triggering specific feelings or thoughts. In the classic
example “Can you pass the salt?”, the locutionary level simply asks about the ability
of a person to perform the action of passing the salt (if interpreted only in this way,
the other participant could answer “yes”, without passing the salt). The illocution-
ary level, on the other hand, identifies this utterance as a request to pass the salt:
“Please, pass me the salt”. The perlocutionary level is the actual effect of the other
person passing the salt. Importantly, illocutionary acts can be further categorised
into groups, such as the one of commissives, where someone commits or offers to do
something, or directives, where someone tries to make another person do something,
for example with a request or an order. Over the years, it has been indeed the notion
of illocutionary acts, the one which inspired most research and extensions.
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The notion of Dialogue Acts is indeed derived from the illocutionary level of Speech
act theory. Although the concepts of Speech and Dialogue Acts are considered syn-
onymous in some approaches, they are different in various regards (Huang, 2017,
Chapter 19). While Speech Act theory is more theoretical, being formulated within
philosophy of language; Additionally, according to Huang (2017, Chapter 19), the
two theories are different in other fundamental aspects. Compared to Speech Acts,
focused on verbal behaviour, DA theory encompasses also non-verbal behaviour
DA theory includes also non-verbal behaviour. Moreover, while in Speech Act theory
utterances have only one associated speech act, in DA theory utterances can have
multiple associated DAs, i.e. they can be multifunctional. Indeed within DA the-
ory utterances are segmented into functional segments, described as a “a minimal
stretch of communicative behaviour that has a communicative function (and possi-
bly more than one)” (Geertzen, Petukhova, and Bunt, 2007). Furthermore, Speech
Acts are considered in isolation, while DAs are explicitly contextual, that is they are
dependant on the relations with the context for interpretation, and are connected by
a more articulate structure. Last but not least, DAs have a connected interpretation
in terms of information state updates of dialogue participants. Within the latter theory,
DAs have indeed a semantics defined by their functions as update operations of the
participants’ knowledge status (Poesio and Traum, 1998). This notion, connected to
the one of mental models (Dijk, 1981) previously introduced, is also at the basis of
research on grounding (Clark and Schaefer, 1989). In grounding approaches, par-
ticipants to a conversation are assumed to share a common ground, that is a set of
mutual knowledge available to all speakers in that moment. Computational models
(Traum, 1994) of grounding, explored especially for task-oriented dialogue, also cru-
cially rely on the use of acts to model the dynamic updates of the common ground.

Besides the difference between DA and Speech Act theory, another common confu-
sion among different approaches to the intentional aspect, is the one between DAs
and the intents used in task-oriented dialogue approaches, as mentioned in the Ter-
minology section (see 2.1.1 on intents). Although both approaches rely on a taxon-
omy of possible functions that participants’ utterances express in a conversation;
DAs can be considered a more abstract version of intents, capturing more high-level
and less practical purposes. Intents are typically domain-specific, while DAs are
domain-independent. Moreover, intents are usually bound to specific arguments, fol-
lowing a predicate-argument structure (Marinelli et al., 2019); while DAs are not.
In the example of the utterance ‘Can you book the tickets for the movie?”, the as-
sociated intent book_tickets has a structure composed of the predicate “book” fol-
lowed by the argument “tickets”, while we using a DA taxonomy we would simply
consider this utterance a request. This dependency from specific arguments in the
taxonomy design, makes intents much more domain-dependant compared to DAs.

As introduced in Section 2.3, one possible way of categorising approaches to Com-
putational Discourse and Pragmatics is according to their methodology . This is
especially true for the area of research of Dialogue Acts (Horn and Ward, 2004, Chap-
ter 26). On one side, we have the inferential approaches, relying on belief logic and
inferences (Cohen and Perrault, 1979; Allen et al., 1996); on the other, we have proba-
bilistic approaches relying on Machine Learning models. Inferential approaches tend
to rely on very rich and expressive formalisms related to the connection of dialogue
acts to a specific plan, which however could prove difficult to apply in the real-
world. On the other hand, probabilistic approaches tend to be rely on more shallow
formalisms and rather let models learn the intended behaviours directly from the
data, without imposing any particular interpretation of the phenomenon studied.
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Due to such reasons, while the inferential approaches were more popular in ear-
lier years; probabilistic ones are definitely the most popular ones in current days.
In this thesis, while taking inspiration from the intuitions at the basis of inferential
approaches, we focus on data-driven probabilistic approaches.

Dialogue Act taxonomies Being empirically-based, the history of DA theory is in-
herently connected to the development of different DA taxonomies over the years.
Importantly, DA taxonomies were usually developed with a bottom-up approach,
that is by examining a large set of dialogues and attempting to create a categoriza-
tion that would capture the conversational behaviour in a specific dataset. One of
the earliest examples of such efforts is the HCRC MapTask scheme (Anderson et al.,
1991), developed for a corpus composed of conversations where participants were
asked to complete a task involving a map. The MapTask scheme makes a distinction
between initiating moves, with an action initiation component (examples are ques-
tions, giving instructions), and response moves, with more of a reaction component to
a previous DA (examples include answers to a previous question, acknowledgments
of previous statements etc.). This scheme was developed for a specific type of task-
oriented conversations and thus could not be directly applied to non-task-oriented
conversations.
The Discourse Annotation and Markup System of Labeling (DAMSL) (Core and
Allen, 1997), represents instead an example of taxonomy developed for capturing
non-task-oriented conversations behaviour, specifically the ones part of the Switch-
board Dialogue Act corpus (Jurafsky, 1997; Stolcke et al., 2000a). Inspired by pre-
vious work (Allwood, Nivre, and Ahlsén, 1992; Allwood, 1995), the DAMSL tagset
makes a distinction between the forward-looking function and the backward-looking
function of utterances. Similarly to the MapTask scheme distinction between initiat-
ing and response moves for task-oriented dialogue, the DAMSL distinction captures
the relation of DAs to the previous and following context. While backward-looking
DAs are those that respond to a previous DA, such as agreeing or rejecting a pro-
posal, answering questions or requests or signaling non-understanding; forward-
looking DAs are those that have an intended effect on future DAs, such as requests
of information, committing to a future action or statements. Although an improve-
ment compared to previously proposed tagsets, DAMSL has also issues, related for
example to the fact that there is no hierarchy among categories resulting in a flat
taxonomy, making it hard to find the similarities among different tags.
The ISO 24617-2 standard (Bunt et al., 2010; Bunt et al., 2020), the latest internation-
ally accepted standard for DA annotation, represents an attempt to create a unified
taxonomy both domain- and task-independent. Compared to DAMSL, the ISO stan-
dard taxonomy is hierarchical, allowing to group the various DA categories accord-
ing to their similarities and differences and therefore making it more easily map-
pable and flexible for different requirements (for example it would be possible to
map a given utterance to different levels of the tree, or to add additional leaves in
case the designers would like to capture more nuances).

Dialogue Act tagging The task of automatically recognising the DA of a given
utterance is known as DA tagging and the models trained to perform such a task
are commonly known as DA taggers. As a task, DA tagging has been mainly mod-
eled in the literature as text classification, using techniques such as SVM (Quarteroni
and Riccardi, 2010) or neural models (Lee and Dernoncourt, 2016), and sequence la-
beling, using for example HMM (Stolcke et al., 2000b), CRF (Quarteroni, Ivanov,
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and Riccardi, 2011) or more recently neural models (Kumar et al., 2018). Impor-
tantly, among sequence labeling approaches, we distinguish those aimed at simul-
taneously segmenting the utterance into multiple DAs and classifying them (Quar-
teroni, Ivanov, and Riccardi, 2011; Zhao and Kawahara, 2018), from those simply
aimed at classification (Ji, Haffari, and Eisenstein, 2016).
Another important difference is the one between offline and online approaches. While
offline approaches frame the task of DA tagging for an entire conversation at once,
and therefore for tagging the DA of the utterance at timestep ti consider both previ-
ous utterances (for example the one at timestep ti−1) and the following ones (for ex-
ample the utterance at timestep ti+1). Offline approaches (Ji, Haffari, and Eisenstein,
2016; Kumar et al., 2018) can be useful for analysing the structure of conversations,
however for online use, for example within a CA, online approaches (Bothe et al.,
2018), which consider only the conversation history up to the present point, are the
only ones that can be used.

In this thesis, we explore probabilistic approaches to DA theory to study the inten-
tional aspect of coherence in dialogue. However, such approaches mostly rely on a
linear, flat representation of DAs. While a linear representation focuses on the tem-
poral dimension of dialogue, it can also be regarded as somewhat simplistic, if we
consider the long-range dependencies among multiple DAs that can exist in human
conversation. Other approaches, on the other hand, investigated non-linear, struc-
tured representations of DAs to capture such dependencies. Traum and Hinkelman
(1992), for example, propose a DA theory based on multiple levels, which include
larger DAs (e.g. argumentation acts) composed of sequences of other types of (core)
DAs. Such dependencies have especially been explored in the context of Discourse
Representation theory (Poesio and Traum, 1997) and Segmented Discourse Repre-
sentation theory (Asher and Lascarides, 2003; Lascarides and Asher, 2008).The use-
fulness of such non-linear DA representations is particularly evident for multi-party
and asynchronous conversations. In this case, rather than relying only on the tempo-
ral dimension, graph approaches have been explored for capturing long-range de-
pendencies across different parts of the conversation (Joty, Carenini, and Lin, 2011;
Afantenos et al., 2015). While structured approaches to DA representation are cer-
tainly interesting, they have been comparatively less researched compared to linear
ones. Most current probabilistic approaches to DA tagging are based on linear rep-
resentations, which we use in this thesis.

DA theory has been used and it is still used nowadays for various tasks, such as
understanding conversational structures and as a key component of several CA
applications. As we discussed, DAs have also been repeatedly linked to dialogue
multi-turn coherence (Allen and Perrault, 1980; Grosz and Sidner, 1986). However,
although DA and entity-based phenomena have been linked across various theo-
ries of discourse structure in the literature, such as mental models (Dijk, 1987), the
relation between the two aspects has not been extensively investigated in the liter-
ature, especially with data-driven methodologies. In this thesis, we explore how
to combine DA and entity-based theories using (whenever possible) a probabilistic
approach for both coherence modeling in dialogue and for creating different mod-
ules of a open-domain CA designed to maintain coherence across multiple turns of
a conversation.
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2.4 Summary

In this Chapter, we provide a general overview of the background work related to
this thesis. First, we introduce key concepts and a brief history of conversational
AI research within the perspective of coherence. In particular, we discussed the di-
chotomy between task-oriented domain-dependent modular CAs and open-domain
non-modular chitchat dialogue models. While the former ones crucially rely on
domain-dependent Meaning Representation structures usually composed of intents
and slots, as an abstract representation of the interaction; the latter rely directly on
the surface forms as input for an end-to-end non modular Machine Learning mod-
els, which allows them to be trained on any domain. From the perspective of main-
taining multi-turn coherence, both have their advantages and disadvantages. On
one hand modular CAs are generally able to maintain coherence by remaining in a
fixed set of domains and handcrafting the dialogue state and MR by making expert
assumptions about the domains considered. However, this solution is not scalable
when progressing towards designs able to handle larger number of domains through
open-domain more flexible solutions. On the other hand, chitchat models while rep-
resenting a more flexible alternative, have serious issues with maintaining multi-
turn coherence in conversation. At the end of our overview of conversational AI,
we discussed current approaches to dialogue evaluation. In particular, we saw the
reliance of the field on time-consuming human evaluation and the current void of
standardised automatic evaluation methodologies that would be able to effectively
compare both task- and non-task-oriented models.

The second part of our overview was dedicated to how the concept of coherence
has been investigated in theoretical Linguistics. We saw how the field distinguishes
between global and local coherence of discourse, and the reliance of the concept of
coherence not on the text itself, but rather on the interpretation of the receiver of a
message. Within the field, we highlighted the importance of two main strands of
research on coherence: one studying thematic phenomena and more investigated
for written text, and another one studying the intentional aspect of discourse, more
studied for dialogic interactions. Although often considered independently, we dis-
cussed how these two phenomena are actually connected if we consider the notion
of mental models.

In the third part of the Chapter, we reviewed computational approaches to coher-
ence. We saw how approaches to coherence in Computational Linguistics can be di-
vided into those more concerned with written text, such as informational and entity-
based ones, and those more interested in dialogue, i.e. intentional approaches. In
particular, we gave a brief introduction to Grosz and Sidner (1986)’s inferential ap-
proach to the discourse structure of dialogue, which posits the crucial interaction
of intentional and attentional (related to the thematic level) structures for defining
conversational coherence. Then, we provided a closer overview to entity-based ap-
proaches to coherence which investigate the thematic aspect, such as the data-driven
entity grid model which has the advantage of relying on a weakly supervised data
generation methodology. Finally, we introduced Dialogue Act theory which studies
the intentional level, discussing the distinction of the approach compared to Speech
Acts and intents and the definition of DAs in terms of information-state update of
interlocutors.

In the next chapters, we delineate the contributions of this thesis, which rely on intu-
itions from entity-based and DA theories for modelling coherence in open-domain
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conversation and for designing different modules of a domain–independent coher-
ent CA.
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Chapter 3

Roving Mind: an open-domain CA
designed for coherence and
engagement

This Chapter1, presents Roving Mind, the open-domain conversational agent (CA)
we designed for the first edition of the Amazon Alexa Prize (Ram et al., 2018), a
university competition to design CAs able to talk about popular open-domain topics
(i.e. sports, music), while maintaining coherence and user engagement.

First, we describe Roving Mind’s modular architecture, which relies on a Meaning
Representation (MR) language based on functional units, i.e. structures based on
open-domain Dialogue Acts and entities. Using such MR structures, the CA archi-
tecture is designed to be at the same time modular and to maintain coherence and
engagement across multiple turns in open-domain conversation, by keeping track
of DAs and entities previously used in the interaction.

Then, we present results from a series of experiments performed during the com-
petition’s semifinals. The results of our experiments highlight the importance of
system’s directed strategies in open-domain conversation for user engagement.

3.1 The Alexa Prize competition

The Alexa Prize2 is a competition among university teams, first launched by Ama-
zon in September 2016, with the goal of encouraging open-domain conversational
AI research. The first edition of the competition, described in this Chapter, took
place between November 2016 and November 2017 (Ram et al., 2018).

The main goal of the competition was to create chitchat dialogue models (“social-
bots”, in the competition’s terms) able to talk coherently and engagingly with random
users on popular topics (such as sports, politics, entertainment etc.). Competing
teams had the possibility of testing their models on real Amazon Alexa users. Dur-
ing the competition, users based in the United States could simply open a special
Alexa Prize skill and would then be randomly connected with one of the competing
socialbots. Users could end the conversation at any time they wanted. At the end
of the interaction, users were asked to rate the conversation on a 1-5 Likert scale,
according to how likely it was they would want to speak to that specific socialbot

1The Chapter is based on Cervone et al. (2017).
2The Amazon Alexa Prize (https://developer.amazon.com/alexaprize) is currently at its third

edition.

https://developer.amazon.com/alexaprize
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again. The Grand challenge posed by the competition was to speak to a user coher-
ently and engagingly for 20 minutes. While it was not expected for a team to win the
Grand challenge within the first edition (which hasn’t been won yet so far), the best
university team would still win the first year’s competition. While users rating were
the main variable for evaluation, the Alexa Prize team developed several additional
metrics to evaluate socialbots: Coherence, Engagement, Conversational User Expe-
rience, Domain Coverage, Topical Diversity and Conversational Depth (Ram et al.,
2018).

Fifteen universities were selected to participate in the first year, with teams com-
posed by university students, advised by a faculty advisor. Semifinals took place
for 6 consecutive weeks between July 1 and August 15 2017, after which three teams
were selected to compete in the finals: the two teams which on average had the
higher user ratings throughout semifinals and a third wildcard team chosen by the
Alexa Prize team.

As we will see throughout the Chapter, the competition posed several challenges.
One of the most important ones is the lack of data. While nowadays random con-
versations are available in large number over the internet, it is much harder to find
resources for what could be defined as good conversations. Furthermore, conversa-
tions annotated with quality metrics are even harder to find. Additionally, the lack of
data is also relevant in terms of available open-source resources that can offer good
performance on spoken dialogue for common NLP tasks (i.e. coreference resolution,
parsing etc.).
Another challenge posed by the competition was the fact that compared to task-
oriented conversation, chitchat open-domain models have been less investigated by
the research community. Notions such as what makes a person engaged in an open-
domain conversation, are still not well understood.
The Alexa Prize also involved the challenge of scalability, both from an engineering
perspective, by being able to support up to hundreds of conversations at the same
time without latency, and in terms of domain coverage, i.e. designing able to handle
virtually any popular topic, including those whose knowledge might be very recent,
such as daily news.
Finally, interacting with real-users is a challenge per se. The virtually unbound range
of people that could interact with out model meant that no assumption could be
made in terms of social characteristics of the users’ pool (such as age, gender, inter-
ests, opinions etc.). Moreover, competing socialbots were required to comply with
different rules in order to keep the interaction to a polite level, which required creat-
ing offensive speech detection modules and implementing specific strategy to avoid
responding to profanities or inadvertently discussing inappropriate content (exam-
ples of dangers of an uncontrolled behaviour in this regard would be answering to
questions such as “Should I kill myself?” or “Should I buy those stocks?”). This
last challenge highlights the need for exercising some control over the generated re-
sponses. As we will see throughout the Chapter, our model was designed keeping
these challenges in mind.

3.2 Introduction

The structure of human dialogue is closely connected to the underlying goals of
the participants to the conversation. Therefore, having a model of the speakers’
intentions currently represents the only way to have a form of control (as well as
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understanding) on the decision–making process of the machine in human–computer
conversational interactions. Additionally, having an explicit model of participants’
intentions in the conversation can be useful to maintain the contextual coherence of
the responses.

Traditional task–oriented approaches to dialogue generation (Young et al., 2013)
solve this issue by circumscribing the application of the dialogue system to a specific
domain (e.g. restaurant reservations); and usually rely on carefully hand–crafted
parameters, such as the state and action space for the domain. Such constrained
settings allow the system to be in good control of the interaction at each turn, rep-
resenting the user input through intents (the user’s goals) and their associated slots
(relevant concepts for the task mentioned in the conversation); and allow using mod-
ular architectures (Wen et al., 2016a). However, given the dependency on either
domain–specific data or hand–crafted features, this approach is difficult to scale to
open–domain conversations.

A different line of research emerged in recent years which replaces the modular
pipeline of traditional systems with a single model (e.g. sequence-to-sequence recur-
rent neural networks (Serban et al., 2016d)) trained on a large collection of dialogues.
Such models directly generate the most probable response to a user utterance. Since
the most probable responses tend to be the most generic and dull ones, while the
most diverse and interesting ones are naturally much more sparse (Li et al., 2016a),
such systems are hardly engaging. Due to the fact that sequence-to-sequence models
learn a direct association between string sequences, there is no need for hand-crafted
features or explicit representations of user intents. However, this lack of explicit rep-
resentations makes them difficult to interpret and control; and hard to generate re-
sponses at the same time coherent with the conversation context (due to difficulties
in capturing and maintaining the long-term context) and engaging for more than a
few turns (Li et al., 2016a). Typically, such models end up in loops of dull responses
after a short conversational context (Li et al., 2016c).

Sequence-to-sequence models have the benefit of being domain-independent given
the right dataset. Traditional modular domain-specific task-oriented architectures
have the benefit of control and interpretability of their decision–making. However,
the design of open-domain and controllable conversational agents still remains an
open issue. Additionally, user engagement in human-machine interaction, crucial
for open-domain conversations, is a rather new research area addressed by very few
(Yu et al., 2016a). Moreover, regardless of the approach, there is a lack of large and
high-quality data to train domain-independent conversational systems. In Roving
Mind (RM) the advantages of both approaches are joined into a system which is
at the same time modular and domain–independent, with a specific submodule to
address user engagement. In particular the characteristics of our architecture (shown
in Figure 3.1) are:

• modularity: in RM the behavior of each module is not affected by others. This al-
lows firstly to interpret and control the decision–making process of each submod-
ule and secondly to easily combine and replace rule–based approaches (currently
required by the lack of appropriate training data) with data–driven ones. More-
over, the modularity of the approach allowed to add an Engagement submodule
to our architecture with the task of keeping the user engaged in the interaction.
RM’s architecture can therefore be described as a balance between human–expert
design (for the global architecture) and data–driven approaches (locally).
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• domain independence: we represent both user and machine utterances through
domain-independent functional unit (FU) structures, consisting of a list of entities
(slots in task-based approaches) and a dialogue act (DA) structure representing
the goal of that FU (intents in task-oriented approaches). The reliance on this
domain-independent abstract representation of the conversation, stored in the
dialogue history of RM, allows the system to maintain coherence across multiple
turns of the conversation, also through the use of single- and multi-turn domain-
independent strategies. Our system also supports queries to various domain-
independent knowledge bases (KBs), such as news, useful for user engagement.

To the best of our knowledge RM represents the first attempt to build a modular,
open-domain dialogue system architecture, with an explicit representation of user
intents and the entities mentioned in the conversation and a fully automatic module
for user engagement.

After detailing the system architecture in section 3.3, in section 3.4 we analyze the re-
sults of the Alexa Prize semifinals, during which RM was tested and rated by a large
group of Amazon Alexa customers. While our initial setting during the competition
was completely open-topic, we report the results of a set of experiments performed
in order to optimize user ratings using features aimed at making the conversation
more driven towards the topics where we had the highest coverage, without chang-
ing our architecture. We have observed a significant correlation between user ratings
and cumulative sentiment – a combination of sentiment and DAs revealing sentiment
of the user towards a topic – which could be used in the future as a potential error–
signal for user engagement. Finally in section 3.6 we draw on the conclusions of our
work.

3.3 System design and architecture

In this section we will go through a coarse-grained description of RM’s scalable in-
frastructure pipeline (section 3.3.1) and its KBs (section 3.3.2). Subsequently, we
describe the design and implementation of the Spoken Language Understanding
(SLU) pipeline in section 3.3.3 and the Dialogue Manager (DM) and Natural Lan-
guage Generation (NLG) modules in section 3.3.4.

3.3.1 System pipeline

The input of the system pipeline is the data structure coming from the Alexa Skill Kit
Automatic Speech Recognition (ASR) module. The first element of the pipeline is the
client application, whose main goal is to address predefined intents of the Alexa Skill
Kit and redirect everything else to the server, which will generate the response. The
client application was implemented using an AWS Lambda function, as in common
practice in Alexa Skills implementation.
The server exposes a RESTful API to communicate with the client. Its first task, once
the request is received, is to interact with a database to retrieve the dialogue history
collected during the interaction. After this information is retrieved, the server runs
through the SLU pipeline to create the list of user FUs and then passes the results
to the DM module, which produces the output machine Dialogue State. During the
DM phase, AWS RDS is used to manage the KBs. These KBs are constantly updated
through independent scripts running on separate EC2 instances. The last step of the
pipeline is the NLG module, which transforms the generated list of machine FUs
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FIGURE 3.1: In our architecture the Dialogue Manager (DM) takes as
input a list of user functional units (FUs) (i.e. consisting of an associ-
ated dialogue act (DA) structure and a list of entities) created by the
Spoken Language Understanding (SLU) module from the Automatic
Speech Recognition (ASR) output. This list is processed progressively
by each of the three DM submodules to create a list of machine FUs
(also retrieving information from a set of knowledge bases). This list
is then passed to the Natural Language Generation (NLG) module,
where the corresponding template for each machine FU is generated

and joined together to produce the final response.

into a string output. This output is finally returned to the client application, which
sends the text to the Alexa Text-To-Speech (TTS) provided by the Alexa Skill Kit.
The server API was implemented using an AWS Elastic Beanstalk, which eases the
scalability of the system and makes it more robust and reliable, while the database
containing users data was implemented with an AWS DynamoDB, which allows
high read–write throughput.

3.3.2 Knowledge Bases

Roving Mind has a rich set of content sources to keep the user engaged and to max-
imize the coverage of the topics provided by the user. In its final version, the system
features News, external Opinions, Fun Facts and a knowledge graph to perform
Commonsense reasoning. Factual question answering (Q&A) is performed query-
ing the EVI answer engine.

News The News database is based on two main scripts that run continuously in
background, updating the KB every day. The first script downloads the news from
the Washington Post API and stores them in an AWS Aurora database. In this phase
news are clustered together, according to the ’section’ parameter provided by the
API. An affinity propagation(Frey and Dueck, 2007) clustering technique is used to
group news efficiently and enable a fast search for related news on the same domain.
The second script processes the downloaded news articles for both generating article
summaries and linking news to a specific keyphrase. To be able to link news articles
to keyphrases, sentences in an article are represented as lists of triplets in the form
<subject,predicate,object>. The approach was adapted from the ClausIE framework
(Del Corro and Gemulla, 2013); and allows to classify each sentence as relevant or
not to a keyphrase.

Opinions Opinions are extracted from news articles using Conditional Random
Fields (CRF) models trained on the Parc dataset (Pareti, 2012). This model extracts
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quote spans and attribute them to their authors. The obtained quote spans are pro-
cessed for keyphrase extraction and triplet generation. Each quote is then classi-
fied as relevant or not to the keyphrase according to the keyphrase’s position in the
triplet. Finally, in the KB, the quote is represented with the disambiguated speaker
of the quote, the span and the main keyphrase.

Commonsense For our third KB, representing commonsense, we use the data from
ConceptNet 5 (Speer and Havasi, 2012) and integrate it with data regarding entities
connected to the relation “occupation” from Wikidata. With the collected data we
created a graph. On the resulting graph we defined a set of queries that are per-
formed online during the execution of commonsense strategies (see section 3.3.4).

Fun Facts Fun facts were collected online3. Similarly to news, we extract keyphrases
and generate lists of triplets in order to trigger fun facts related to a given keyphrase
mentioned by user.

3.3.3 Spoken Language Understanding

Spoken Language Understanding (SLU) for task-based systems is traditionally ap-
proached as identification of the intent (the purpose behind the utterance) and de-
tection of its arguments (slot-filling) from a user utterance (Tur and De Mori, 2011).
In a task and domain-specific SLU the set of intents and slots is usually predefined;
in a domain-independent SLU, on the other hand, it is not the case.
Since the range of user intents in an open-domain dialogue is virtually unbound,
in RM intents rely on domain-independent dialogue acts (DA) (e.g. questions, re-
quests), and are further specified with an additional set of qualifiers. Intents cover
various aspects of a conversation, as they can represent information exchanges (e.g.
questions and points of view expressed by the user), social obligations (e.g. thank-
ing, salutations) and action discussions (e.g. requests, orders). In addition, a user
utterance can contain one or more intents: e.g. greeting and an action request; thus,
an utterance needs to be segmented with respect to these intents. The recently ac-
cepted international ISO standard for DA annotation – DiaML (ISO 24617-2) (Bunt
et al., 2013) – is a good choice to address these necessities. An utterance is segmented
into functional units (FU) and each unit is attributed a DA that consists of seman-
tic dimension (e.g. Social Obligation) and communicative function (e.g. Thanking).
Thus, the specification naturally lends itself to the design of open-domain systems.
In RM, the ISO specification was adapted, following in the work of (Chowdhury,
Stepanov, and Riccardi, 2016), with emphasis on the communicative aspect rather
than the semantic dimension.
Similarly to intents, in a domain-independent non-task-based setting the range of
possible slots is unlimited. In RM, we replace the notion of slot, predefined in task-
based systems, with the one of entity. An entity is defined as any user-provided
content that can function as a topic of a conversation – Named Entities, keyphrases,
etc. – or that triggers specific dialogue functionality – News, Opinions etc. Entities
are not predefined, but classified into types according to their association to our KBs.
Hence, in RM each FU is represented by an intent, that is a DA structure composed
by a DA (identified by semantic dimension and communicative function) and its
qualifiers, and a set of entities extracted from the span of that FU (see Table 3.1).
The rest of the section describes the system pipeline for the segmentation into func-
tional units and identification of user intents, and entity extraction.

3https://www.thefactsite.com/

https://www.thefactsite.com/
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Pre-processing: The SLU pipeline starts with the pre-processing of user input. First,
the ASR output is case-restored to improve the detection of Named Entities. Then,
the input is split into sentences using the state-of-the-art sentence-boundary detec-
tion algorithm of (Read et al., 2012), without prosodic information (not available).
Each detected ’sentence’ is used to extract information for a FU structure.

Intent Identification: The first step in intent identification is DA tagging. For DA
tagging we consider three semantic dimensions from DiaML (Bunt et al., 2013): (1)
Social Obligation dimension that addresses basic social conventions such as greet-
ings, (2) Feedback dimension that addresses user’s feedback regarding the previous
machine statement, and (3) Task dimension that addresses user’s actions such as re-
quests for information or action.
Given that each of the semantic dimensions consists of specific set of communicative
functions, the DA tagger is implemented in two separated steps. We first identify
the dimension of the DA, and then use dimension specific classifiers to identify the
communicative function. For the Social Obligation dimension, the communicative
functions are assigned using a lexicon-based system. Functions from this dimension
capture salutations, apologies and thanking, following the ISO standard definition.
For the Feedback dimension, on the other hand, there is only one communicative
function which is simply called ’Feedback’. The Task dimension is more complex
and, in RM, consists of 16 communicative functions, which correspond to the "Gen-
eral Function" tags of the ISO standard scheme, where some of the lower level tags
are not considered. These tags are arranged in a tree structure: at the first level there
is a separation between Action discussion, which captures specific dialogue-related
actions by the user (e.g. Stop, Repeat, Start Quiz), and information-transfer, which
captures an information exchange (statement or question) between the user and the
system. Lower levels provide more details about the interaction, specifying for ex-
ample whether it is an Information providing or seeking (for Information transfers)
or whether the action performed by the user is Directive or Commissive (for Action
Discussions).
DAs are further analyzed to determine sentiment polarity, factual information type
and subjective information type (i.e. qualifiers). The sentiment polarity qualifier
records the attitude of a user towards the entities (or topics) present in FU, senti-
ment analysis is performed using a lexicon-based analyser following (Alistair and
Diana, 2005). The factual information type qualifier is similar to the Expected An-
swer Type in Q&A and records if the provided/requested information is about a
specific time, place, reason, entity, etc. The subjective information type qualifier, on
the other hand, categorizes non-factual information such as opinions or personal in-
formation (e.g. “My favorite sport is football”). The qualifier assignment is handled
with lexicon and rule-based systems.
Finally, a lexicon based functionality classifier determines whether the user dialogue
act contains a request for a specific functionality of the system: such functionalities
are divided in (1) dialogue control functionality: built-in intents such as Stop, Re-
peat and Continue; and (2) Content Request functionality: requests for one of the
featured contents of the system such as News or Fun Facts.
DA taggers were trained using multiple corpora – Switchboard (Godfrey, Holliman,
and McDaniel, 1992), AMI (Carletta, 2006), the HCRC Maptask corpus (Anderson
et al., 1991), the BT Oasis Data and the VerbMobil2 (Alexandersson et al., 1998). Fol-
lowing the approach of (Fang et al., 2012a), the DA annotation of these corpora was
mapped to the modified tag hierarchy of RM. We use a combination of CRF and Sup-
port Vector Machine classifiers for tagging; as it achieved the highest performance
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on the withheld 10% of data.

Entity Extraction and Linking: RM extracts Named Entities and keyphrases which
are later linked to nodes in the KBs. Keyphrase extraction is performed via a simple
Noun Phrase Chunker. After an initial filtering step to remove phrases contain-
ing ‘taboo’ words (specified by a stop-word list), extracted chunks are linked to KB
nodes using the approach of (Chisholm and Hachey, 2015). Commonsense nodes
extraction is performed via a Breadth First Search on the dependency parsing tree
for the user utterance, starting from the root, down to the leaves. All paths are
explored, and sibling nodes sharing common properties become candidate nodes.
When all candidates are collected, each of them is verified against the label present
in our commonsense KB and, if a match is found, it is stored in the FU structure. The
list of user FUs generated by the SLU is then passed to the DM.

3.3.4 Dialogue Manager and Natural Language Generation

The Dialogue Manager of Roving Mind is modular (see Figure 3.1), and consists
of three main components, each addressing a specific dialogue function: the Er-
ror Recovery, the Management and the Engagement modules. The design of these
different components was inspired by DA theories, which divide DA categories
among backward- and forward-looking, according to their relation to the conver-
sational context (Allwood, Nivre, and Ahlsén, 1992; Jurafsky, 1997). The sequential
design of our Dialogue Manager follows thus an ideal abstract intentional struc-
ture of the conversational turn, where we assume a progression from backward-
looking to forward-looking DAs. When constructing the response for the user, RM
goes first through the Error Recovery component, with the possibility of generating
backward-looking DAs such as signal-non-understanding; then, the response gen-
eration phase progresses through the Management, with a different class of back-
ward looking DAs such as answers, or addressing previous requests; afterwards,
the response generation reaches the Engagement module, , which presents a set of
associated forward-looking DAs, such as statements or questions.

Hence, in our design, these three components work in a sequence, each taking as
input the output of all previous modules, i.e. the list of user FUs (Bunt et al., 2013),
the list of generated machine FUs so far, and the entire history of the conversation
in terms of strategies, entities and FUs selected in previous turns. Each DM module
can generate zero, one or more new FUs and add them to the list of machine FUs
which will then be passed to the NLG to generate the final turn. The only difference
between user and machine FUs is that each machine FU is associated with a specific
strategy and the relevant content, retrieved from the KBs to fill the NLG template
for that strategy. In RM, the list of current user FUs, the list of current machine FUs
and the previous dialogue history constitute the dialogue state.

Internally, all the three submodules are based on similar components, most of which
are currently rule–based due to the lack of training data, but are easily replaceable
by data–driven modules thanks to the modularity of the architecture. There are two
main phases for each module: machine FU creation and content retrieval. In the first
phase, taking as input the list of current user FUs, the list of current machine FUs and
the previous dialogue history, the system can (but it’s not mandatory) create a new
machine FU with its related machine DA structure, entities and strategy. Starting
from this partially formed FU, in the second step the system tries to instantiate the
selected strategy by retrieving the content required by the strategy through queries
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on the available KBs. If the content retrieval phase fails the control is returned to the
machine FU creation step which can create another machine FU selecting a different
combination of strategy/entities/DA structure.

Overall we designed more than 60 dialogue strategies (mapped to DAs), each one
selectable by one or more modules. Strategies were grouped among error–recovery,
management and engagement strategies. As mentioned, some of our strategies rely
on queries on our KBs (e.g. the ones providing relevant news summaries given an
entity of type Keyphrase).

Probably the most interesting set of strategies were the ones relying on commonsense,
which could be selected in case an entity of type Commonsense node was found. The
commonsense strategies were created to create engaging content (such as RM state-
ments or follow-up questions) coherent with the previous conversation and with
the previous machine FUs generated so far for the current context. Firstly we cre-
ated a list of categories of nodes relevant for open–domain conversation (e.g. human
activity, entertainment event) from our commonsense KB. Each category was iden-
tified by a set of commonsense relations that nodes belonging to the category had
to fulfill. Then we created a dataset of conversational natural language templates
each one based on one of the selected categories and associated to a list of additional
queries on our commonsense KB. Each template was tagged with an utterance type
(question or statement) and a DA structure (e.g. its communicative function etc.) as
described in 3.3.3. Given as input from the DM a list of commonsense node entities,
the DA structure and the utterance type, our commonsense strategies first selects
the list of templates matching that DA structure and utterance type. Afterwards,
if any templates are found, the strategy verifies that the input nodes belong to the
category appearing in the templates and finally, if additional commonsense queries
are required to fill the template, it executes them online. At last, if any templates
were generated, the most relevant template is chosen (i.e. the one sharing the higher
number of commonsense entities with the original), otherwise the strategy fails and
the control is returned to the DM.

Given the basic two steps previously described, each DM submodule works in a
slightly different way according to its main goal.

Error recovery module The Error Module is the first module of the pipeline to be
executed, with a backward-looking function, i.e. to address an event that happened in
the previous conversational context. One of the main functions of the Error Recov-
ery module is to trigger a strategy for user FUs with low ASR confidence in order to
signal non-understanding. We extended the goal of this module to a more generic
analysis of user FUs that are not “well–formed” according to “explicit” content (us-
ing a dictionary) and personal information (using Regex). This decision is due to
the fact that the system handles these cases in a similar manner, filtering them from
the FUs to store. The strategies this module can select from are traditional error–
recovery strategies (e.g. asking the user to repeat in case of low ASR).

Management module Once the input has been filtered, the output is passed to the
Management module, whose main goal is to address the potential requests (includ-
ing questions) expressed by the user in the last turn, with a backward-looking function.
Together with the Error module the Management can be used independently from
the last module as a Q&A system or a task–based system. The second goal of this
module is to update the active entities in the system, by adding any entity the user
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mentioned in the input utterance to the entity pool of the current dialogue state.
Moreover, if the user utterance has a negative sentiment towards entities introduced
by the system during the previous turn, they are discarded. In addition, this module
manages the continuation of multi–turn strategies (such as subdialogues) started by
the system in previous turns.
In this module, during the machine FU creation step each user FU is mapped to a
machine FU through a rule-based approach. Afterwards, in the content retrieval step,
each machine FU is associated to a set of strategies (applied in a sequence) designed
to address that specific request (e.g. an entity of type question is sent to the Q&A
strategies). If the system detects a user FU that cannot be handled by the system,
the content retrieval step will generate a machine FU with a strategy informing the
user that the required functionality couldn’t be handled. If every strategy fails, the
system creates an empty machine FU that will be used by the Engagement module
to determine the next action and discarded later on. The same approach is applied
if the user FU does not contain any requests/questions. Regarding the Q&A strate-
gies, questions detected as factual are redirected to Evi, while for personal questions
we use the previously described commonsense strategies.

Engagement Module After all requests have been satisfied the output is passed
to the Engagement module, responsible for keeping the user engaged in the con-
versation, thus with a forward-looking function. The idea of having engagement as
a module in a dialogue system design was introduced in (Yu et al., 2016a), where
engagement is defined as the user’s interest in continuing the conversation. The au-
thors shows how having a module which addresses directly user engagement leads
to a better user experience. The difference with (Yu et al., 2016a) is that our engage-
ment module is fully automatic and takes into account the machine FUs created by
previous modules for the current turn.
The Engagement Module takes as input the utterances generated by previous mod-
ules with the updated history of active entities and the history of the conversation,
for generating contents coherent with the previous context. In the machine FU cre-
ation step, the module firstly verifies whether machine FUs created by the previous
modules require additional engaging content. If that is the case, entities from the his-
tory are sorted according to a series of criteria, which include the types of the avail-
able entities, whether they are user-introduced or machine-introduced and their age
in the system. Once entities are ranked and the entities to be used is decided, the list
of engagement strategies is filtered by selecting the ones compatible with the type of
entities. Then the strategies are ranked in a rule-based submodule according to three
main features: the current turn index of the conversation (e.g. some strategies work
better if they are run in an early/late stage of the conversation), the amount of times
the strategy has been used in the previous turns and the ratio between questions and
statements in the dialogue history (in order to keep a balance between them when
interacting with the user). Finally, in the content retrieval step, the selected strategies
are executed according to their ranking until one of them succeeds. If all of them fail,
a different set of entities is selected and the process is repeated all over again until
either a strategy succeeds or the maximum number of attempts is reached, in which
case a entity-less strategy is selected.

NLG The last step of the pipeline is the NLG module, which receives as input a list
of machine functional units, each one with a corresponding strategy and the related
content retrieved from the Contents KBs. For each of these FUs the NLG generates
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FIGURE 3.2: The figure shows the positive effect of our experiments
on our daily average ratings. The daily volume of rating was constant
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rated interactions compared to the daily conversations average.

an output utterance filling the template associated to that strategy with the related
content. All the created utterances are then concatenated in the final response and
passed to the TTS.

3.4 Evaluation

During the Alexa Prize semifinals, Roving Mind was tested for 6 consecutive weeks
by Amazon Alexa users, which at the end of the interaction were asked to rate how
likely they were to interact with that socialbot again on a 1–5 scale.
The initial RM dialogue system (active till 21st of July) was completely open – there
was no bias towards any domain or topic. In the following weeks, a set of new
functionalities was added such that each new functionality was evaluated for a short
period of time and compared to the previous system ratings. The dates and results of
these changes are visible in Figure 3.2. The details of the experiments are discussed
in Section 3.4.1.
The new functionalities evaluated during semifinals are the following: (1) driving
conversation towards a specific set of domains/topics via initial prompt, (2) addition
of “entertaining” features such as quizzes and tests, (3) system-driven subdialogues,
and (4) change to the request rejection prompts.

3.4.1 Experiments

Open Prompt vs Directed Prompt Our first experiment was changing the opening
prompt from a very generic “What do you want to talk about” to “We can talk about
topics like sports, politics or celebrities. What would you like to chat about ?”. This
was done after noticing a large number of conversations in which users appeared
confused about the features of the system and were expecting a list of possible topics,
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System Time Window Mean Rating
RM (baseline) Jul 15 - Jul 20 (6) 2.44
RM+IP (+initial prompt) Jul 21 - Jul 26 (6) 2.75*
RM+IP+PT (+personality tests) Jul 27 - Aug 01 (6) 2.89*
RM+IP+PT+PSD (+predefined subdialogue) Aug 02 - Aug 07 (6) 3.07*
RM+IP+PT+PSD+RP (+rejection prompt) Aug 08 - Aug 15 (8) 3.17

TABLE 3.1: Changes to the Roving Mind system with the time win-
dow for data collection (number of days in parentheses) and mean
user rating received for the rated conversations within that window.
The ratings for each version of the system are compared to the pre-
vious one. The statistically significant changes in rating are marked

with * (p < 0.01).

rather than coming up with their own. Also, the change of opening prompt gave us
the possibility of driving the user towards topics where Roving Mind has a high
coverage across different strategies. To evaluate the results of the change we drew
a comparison with the previous week ratings, as visible in Table 3.1. Results are
statistically significant and show that average rating has improved with the simple
addition of a driving opening prompt.

Personality Tests and Quizzes Personality tests and Quizzes have been added to
evaluate the effect of simple user–entertaining features on user ratings without any
modification of our architecture. The five personality tests and the only quiz pro-
posed share the same simple structure, at the beginning the quiz or test is proposed
to the user, if the user accepts the offer, the system will go through a set of pre-
defined questions asking the user to select one among multiple choices. The quiz
is interrupted by any question and request made by the user. After three or four
questions the system provides the result of the test. In the window considered, the
personality test is proposed according to the entities introduced by the user or a ran-
dom one when the user does not introduce any entity. We decided to compare the
ratings of conversations during a week with personality tests and during the previ-
ous week, when tests were not yet part of the system. Results, as visible in Table 3.1,
show a high statistically significant difference between the rating before and after
the introduction of quizzes.

Predefined subdialogues The results of the personality tests seemed to suggest a
positive effect of predefined multi–turn structures on user ratings. For this reason
we created a set of predefined subdialogues where the user is guided through a se-
quence of coherent prescripted responses and decided to verify their effect on user
ratings. The structure of subdialogues is similar to the one of personality tests and
quizzes. The main difference is the fact that the system adds a reaction to the user
statement, supports a set of predefined question related to each machine turn and
according to the sentiment of the user response can choose a different question for
the next turn. This setting allows to have a tight control on the user interaction dur-
ing the subdialogue. We defined a small set of subdialogues that do not require any
entity introduced by the user that start at the beginning of the interaction and an-
other set of subdialogues triggered when a set of specific entities was mentioned in
the conversation. The results show a boost in ratings as shown in Table 3.1. How-
ever, the system achieves the best performances when the user experiences both
subdialogues and quizzes together, as visible in Table 3.2.

Changed Request Rejection Prompt Given that in previous experiments guiding
the user through the conversation had a positive effect on user ratings, we decided
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Dialogue Subset Mean Rating
no personality test or predefined subdialogue 2.66
personality test or predefined subdialogue 3.08*
personality test and predefined subdialogue 3.71*

TABLE 3.2: The effect of the activation of predefined subdialogues
and personality tests on user ratings, between July, 21st and Au-
gust, 10th. Each strategy activation setting has been compared to the
row above, and ratings with statistically significant differences are

marked with * (p < 0.01).

to change the prompt used by the machine in case the requested feature was not
supported. Instead of simply saying that the system was not able to satisfy the re-
quest, the changed prompt provided alternatives on our system’s capabilities. This
change had a positive effect on user ratings as visible in Table 3.1.

User Interaction and Ratings: In the course of evaluation users were providing
subjective ratings, which are expensive to obtain while developing conversational
systems. An objective metric that could be used as an online error signal for user
engagement towards a topic or a DM strategy is a sentiment score, already com-
puted in RM. Cumulative average sentiment is computed as the average of user FU
sentiments combined with the sentiment expressed by DAs revealing the user’s sen-
timent towards a topic (e.g. yes/no answers to topic proposals), sentiment analysis
is performed as described in section 3.3.3. Since engagement is also reflected in the
conversation length, it is another evaluated objective metric. Analysis of user ratings
with respect to conversation length and cummulative sentiment over the duration
of conversation reveals statistically significant differences between low-ranked (rat-
ing 1-2) and high-ranked (3-5) conversations using t-test and p < 0.01. Low ranked
conversation had an average conversation length of 9, while high ranked ones of 13
turns. Moreover, sentiment score that considers only DAs yields statistically signifi-
cant differences as well.

3.5 Discussion

While innovative in different ways, RM also presents limitations, in part due to the
short time span of the competition. Similarly to other competitors in the first year,
including the winning team (Fang et al., 2017), RM has a modular, rather than an
end-to-end non-modular approach, heavily relying on SLU module and knowledge
bases for coherence and engagement. According to Ram et al. (2018), having a ro-
bust NLU and knowledge bases lead to successful ratings with users. While using
the news and Evi as knowledge sources was done by several teams in the first year
(also because of the Washington Post and Evi’s APIs support), usage of other knowl-
edge sources was more varied. To the best of our knowledge, for example, RM was
the only socialbot among competitors of the first year Alexa Prize to utilise a com-
monsense knowledge base. Sounding Board (Fang et al., 2017), on the other hand,
successfully employed an unstructured type of knowledge using Reddit conversa-
tions for driving users’ engagement.

While Sounding Board and RM architecture appear somewhat similar, given the
modular approach and the use of DAs as part of the SLU, the approach to the DM
component was different. RM presents a sequential DM, to recreate the intentional
internal structure of a turn following DA theory, which was the same across different
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domains. Sounding Board, on the other hand, relies on a more vertical, albeit frag-
mented approach to the DM component, with independent DMs (Miniskills) built
for each of the supported domains (Fang et al., 2017). Such a vertical approach on
the most popular domains (e.g. Sports, Music, etc.) was also used by several other
teams (Pichl et al., 2017; Serban et al., 2017b; Papaioannou et al., 2017), thus compris-
ing all finalists. One of the advantages of using a fragmented approach to Dialogue
Management is being able to deliver more effective and varied on the supported do-
mains. However, in our opinion, such an approach also brings some disadvantages,
such as a lack of robustness on less popular domains which might bring to break
user engagement in cases those domains end up being discussed; and a lack of in-
tegration and possibly coherence for the DM, which could make it more difficult for
the DM to learn successful patterns of distribution for coherent and engaging re-
sponses across different domains. While RM’s more horizontal approach enables it
to discuss virtually any domain (we had conversations spanning from philosophy, to
cocktails, to what are the attributes of a good politician), it has the disadvantages of
possibly not supporting the most popular domains with enough content. However,
we notice how more in-domain support could easily be added to RM’s architecture.

Another important feature which could be improved in the current RM architecture
is performing better reranking of the generated responses. Other competitors relied
more heavily on ensembling and reranking (Papaioannou et al., 2017; Serban et al.,
2017b), which also lead to positive scores according to Ram et al. (2018), especially if
combined with a robust SLU component.

3.6 Conclusions

We presented a modular open–domain dialogue system which reacts to user engage-
ment. Our experiments suggest that a fully open-domain, non task-based dialogue
system makes users confused and tends to produce lower ratings. This emerged
by the progressive success of all our experiments (prompt change, personality tests,
prescripted dialogues and prompt for unsupported request change). Another key
aspect of the interaction with the user that came out during the semifinals is that
users do not necessarily expect a regular, conversation-based interaction with social
bots: many users are pleased with non canonical discussions such as personality
tests, quizzes and word games, especially if they are coherently inserted in a conver-
sation.

These results could be due to the fact that usually Alexa skills are based on strict, pre-
defined interactions, and users expect the same kind of interaction from the Alexa
Prize socialbots. In addition, our analysis shows that users have an average of 1.07
conversations, with a variance of 0.14, which could explain how strategies like per-
sonality tests and scripted dialogues kept giving good results throughout the com-
petition, despite the fact that these strategies would probably annoy the users if
proposed more than once. Another interesting finding was the positive correlation
between both average length of conversations and average user’s cumulative senti-
ment and user ratings. This suggests that users tend to give higher ratings to longer
conversations and conversations in which they discuss entities towards which they
have a positive attitude.

Regarding the future work, one improvement of our architecture would be the re-
placement of rule-based modules with data–driven ones using data collected during
the competition, exploiting the modularity of our system. Useful features to train
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these modules could include successful patterns of strategies found in high-rated
conversations, as well as information about the sentiment which emerged from the
analysis of the user logs. We could also exploit our findings regarding cumulative
sentiment to develop an error signal to integrate in our architecture. Another impor-
tant improvement would be to enrich the commonsense knowledge base with other
Wikidata information besides the “occupation” relation (e.g. movies, videogames,
books), while at the same time refining the way entities and relations introduced by
the machine are selected, for example ranking entities according to how much they
appear in our news KB in order to select entities users are familiar with.

3.7 Summary

In this section, we presented Roving Mind (RM), the open-domain modular CA ar-
chitecture which participated in the Alexa Prize 2017 competition, whose main chal-
lenge was to create models able to talk coherently and engagingly with real users
about popular chitchat topics. The system presented in this Chapter was built from
scratch by our team during the course of the competition.

RM architecture was designed to balance domain-independence and modularity, to
address the need to have a form of control over the generated content (particularly
important, given the open-domain nature and the interaction with real users). In
order to address the challenges of multi-turn coherence and user engagement, RM
crucially relies on Functional Units (FUs), i.e. Meaning Representation (MR) struc-
tures composed of open-domain DAs and entities. FUS are used throughout the
entire design of our system, in the SLU, DM, NLG and KBs components.

In particular, the SLU module, relying on a domain-independent DA tagger and a
chunker, parses the user input into a list of FUs and connects the extracted entities
to our open-domain KBs. Then, the DM module is designed to generated a list of
machine FUs which will then be realised by the NLG component into full utterances.
In particular, the presented DM is based on a novel sequential architecture designed
to mirror the intentional structure of conversational responses, following intuition
from DA theory, to generate utterances coherent with the previous context and at the
same time engaging. Progressing from components designed to fulfill a backward-
looking function (Error Recovery and Management module) to those aimed at ful-
filling a forward-looking function (Engagement module), each DM component in
the sequence is associated to specific DA categories and connected strategies. Ad-
ditionally, RM’s DM is connected to a series of open-domain KBs, including a com-
monsense one, for coherent content generation.

In the last part of the Chapter we presented experiments conducted throughout the
competition to test the usefulness of system-directed strategies to ensure a better ex-
perience for users. Overall, our experiments showed that directing the conversation
towards specific topics can help ensuring a better interaction within the context of
chitchat dialogue.

We also discussed how RM presented various issues, which could be addressed to
improve the model’s performance. For example, several parts of the architecture,
though designed to be trainable, were not trained for lack of available data. Addi-
tionally, we highlighted the need for better ranking strategies, such as the ranking of
entities selected for response generation, which we believe affected the performance
of our system in the semifinals.
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Chapter 4

ISO-standard open-domain
Dialogue Act Tagging for
Conversational Agents

This Chapter1 addresses the problem of Dialogue Act (DA) tagging for a domain-
independent Conversational Agent application. In particular, we describe the effort
to create the DA tagger used as a crucial component of Roving Mind within the
context of the Alexa Prize, where the model needed to be robust to capture DAs
typical of chitchat open-domain conversation (such as Information transfers) and
also be able to understand and address DAs more frequent in task-oriented dialogue
(such as Action discussions).

However, at the time of publication of this work, the publicly available corpora
(and connected schemes) available for DA tagging were either only focused on task-
oriented conversation (e.g. MapTask) or only on chitchat (Switchboard); and re-
search on DA tagging models was mainly based on in-domain approaches, where
the model was trained and tested on the same dataset and dataset-dependant scheme.

In order to address these challenges, in this Chapter we propose a methodology to
map different publicly available resources to the domain-independent ISO-standard
scheme. Additionally, we present experiments to train domain-independent DA
tagging models. First, we benchmark the performance of our proposed DA tag-
ging models in-domain on the Switchboard Dialogue Act corpus obtaining SOTA
results compared to similar models at the time; then we experiment with domain-
independent DA tagging by training the tagger on the aggregated corpus and testing
it on three out-of-domain datasets.

4.1 Introduction

The correct interpretation of the intents behind a speaker’s utterances plays an essen-
tial role in determining the success of a dialogue. Hence, the module responsible for
intents classification lies at the very core of many dialogue systems, both in research
and industry (e.g. Alexa, Siri). Moreover, although the task of intent recognition
is traditionally linked to task-based systems, recently it has also proved crucial for
non task-based conversational agents (CAs). According to the results of the Amazon
Alexa Prize challenge (Ram et al., 2018), the most successful CA in the competition

1The Chapter is based on Mezza et al. (2018).
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relied on a strong spoken language understanding module, while more than 60% of
the approaches explicitly used intents.

Nevertheless, automatic intent recognition is hard, since participants’ intents in a
dialogue are implicit. Intent classification has therefore been mostly modeled as a
supervised machine learning problem (Gupta et al., 2006; Xu and Sarikaya, 2013;
Yang et al., 2016), with the consequent definition of intents taxonomies. Over time
this led to the creation of expensive annotated resources (Price, 1990; Henderson,
Thomson, and Williams, 2014) with the related time-consuming design of multiple
intent schemes. In most cases, however, intents taxonomies are defined specifically
for a given application or a dataset and are not generalizable to other systems or
tasks, making these resources difficult to reuse (e.g. the popular Air Travel Infor-
mation Services (ATIS) corpus include heavily domain-dependent intents such as
Airfare or Ground Service).

Dialogue Acts (DA), also known as speech or communicative acts, represent an at-
tempt to create a formalized and generalized version of intents. As such, DAs have
been investigated by the research community for many years (Stolcke et al., 2000b)
and have been applied successfully to many tasks. In particular, their aspiration
to generality makes them an appealing option for non task-based application (e.g.
more than 20% of the teams in Amazon Alexa Prize Challenge explicitly used DAs
(Cervone et al., 2017; Bowden et al., 2017), including the winning team (Fang et al.,
2017)). Also, in the case of DAs, over the years there have been several efforts to
produce publicly available annotated resources (Godfrey, Holliman, and McDaniel,
1992; Carletta, 2006; Alexandersson et al., 1998) to train DA taggers. The DA tax-
onomies created for these resources, albeit arguably more general compared to cor-
pora like ATIS (for example utilizing categories such as wh-questions), are still dataset
specific; since many of these schemes lack coverage of some crucial aspects of dia-
logic interaction. Furthermore, given that all these datasets utilize different schemes,
these resources are hardly compatible.

The ISO 24617-2 (Bunt et al., 2010; Bunt et al., 2012), the international ISO standard
for DA annotation, represents the first attempt to create a truly domain and task
independent scheme. Given its holistic approach compared to previous schemes,
ISO 24617-2 can be used as a lingua franca for cross-corpora DA mapping, as con-
firmed by successful attempts to remap single corpora to the standard (Chowdhury,
Stepanov, and Riccardi, 2016; Fang et al., 2012b).

However, there is no reference training set for the standard, since the only public
resource currently available with ISO 24617-2 annotation (DialogBank, (Bunt et al.,
2016)) is too small to be used to train classifiers. Therefore, most DA tagging research
still focuses on in-domain studies on large datasets with incompatible DA annota-
tions (Stolcke et al., 2000b; Ji, Haffari, and Eisenstein, 2016). Moreover, most publicly
available corpora are imbalanced with respect to the distribution of various DA di-
mensions such as Information Transfer (e.g. “What’s your favourite book?”) or Action
Discussion (e.g. “Tell me the news.”), which are required for successful open-domain
CAs.

In this work, we show how to reuse and combine publicly available annotated re-
sources to create a large training corpus for domain-independent DA tagging ex-
periments. We map different corpora using an ISO standard compliant DA taxon-
omy, following the previous research on the topic (Fang et al., 2012b; Petukhova,
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Malchanau, and Bunt, 2014) and we share this resource with the research commu-
nity.2

In order to investigate the soundness of our approach compared to in-domain mod-
els we further experiment with domain-independent DA tagging. As previously
done in the literature we cast the Dialogue Act tagging task as a supervised multi-
class classification problem using Support Vector Machines. The correctness of the
approach is first tested on the de facto DA tagging standard – the Switchboard
(SWBD-DA) corpus (Godfrey, Holliman, and McDaniel, 1992), using the reference
training and test sets and achieving SOTA performance compared to similar ap-
proaches. Secondly, we experiment with domain-independent DA tagging follow-
ing the same approach and using our combined resource as a training corpus. The
DialogBank corpus, that represents a reference manual DA annotation for the ISO
standard, is used for the evaluation of the tagger. To the best of our knowledge this
is the first attempt to test automatic DA annotation on this corpus.

The domain-independence and suitability of the tagger for CAs trained on multi-
ple resources is additionally evaluated on two other corpora annotated following
our optimized taxonomy (human-machine conversations from the Amazon Alexa
Prize Challenge). The performances achieved on these three datasets suggest that
the training on multiple corpora represents a step forward for DA tagging of open-
domain non task-based human-machine conversations. Finally, we present exper-
iments to investigate the contribution of the different corpora to the performance
of the classifiers. The results of our experiments show the importance of utilizing
multiple resources to achieve a sound performance across different types of DA cat-
egories. The multi-domain DA tagger presented here was successfully employed in
Roving Mind, our open-domain CA for the Alexa Prize described in Chapter 3.

4.2 State of the Art

4.2.1 Dialogue Act Annotation Schemes

The notion of Dialogue Acts can be traced back to the one of illocutionary acts in-
troduced by (Austin and Urmson, 1962). The illocutionary act represents a level of
description of an utterance’s meaning that goes beyond the purely semantic level
(“Is the window open?”) to encompass the intent of the speaker in producing that
utterance (“Please, close the window.”).

One of the first DA taxonomies was the one created for the task-based corpus Map-
Task (Anderson et al., 1991) in the early nineties. The MapTask scheme distinguishes
between initiating moves – such as giving instructions, explaining, checking infor-
mation or asking questions – and response moves – for example acknowledging in-
structions, answering questions and clarifying information. The corpus also makes
a distinction regarding the grammatical and semantic structure of the interactions,
classifying, for example wh-questions, yn-questions and positive/negative answers. Al-
though pioneering at the time, the MapTask annotation scheme is very specific to the
described scenario, and some of its DAs (e.g. instruct, clarify, check) do not scale well
to generic, non task-based conversations. Moreover, its taxonomy was not designed
to capture all human behaviours during conversations, and, as a consequence, its
coverage for labelling a non task-based interaction is inadequate.

2The suite of scripts we wrote to map and combine publicly available corpora can be found at
https://github.com/ColingPaper2018/DialogueAct-Tagger

https://github.com/ColingPaper2018/DialogueAct-Tagger
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The first attempt to define a unified, non task-based standard for DA tagging was the
Discourse Annotation and Markup System of Labeling (DAMSL) (Core and Allen,
1997) tag-set for the SWBD-DA (Godfrey, Holliman, and McDaniel, 1992) corpus.
This annotation scheme proposes a taxonomy of 42 tags, describing both semantic
aspects of conversation (opinion, non-opinion, preference, etc.), syntactic aspects (yn-
questions, wh-questions, declarative questions, etc.) and behaviours related to the dia-
logue (conventional closing, hedge, backchanneling, etc.). Nevertheless, the taxonomy
still has some issues: tags are mutually exclusive (making it impossible to anno-
tate, for example, a no answer which was also signaling non-understanding) and
are organised in a flat taxonomy, which does not take into account similarities and
differences between the tags.

Bunt (1999) introduced the Dynamic Interpretation Theory (DIT) for dialogues, set-
ting the theoretical foundation for a domain-independent and task-independent DA
taxonomy. The paper introduced some very important concepts like the idea of
multidimensionality of DAs and the distinction between Action-Discussion, a macro-
category of DAs encompassing cases in which interlocutors negotiate actions to be
performed (e.g. requests like “Let’s switch topic.”), and Information-Transfer interac-
tions, capturing the DAs through which speakers exchange information (e.g. sharing
personal information like “My name is John.”). The DIT++ taxonomy (Bunt, 2009)
was then defined in 2009 with the aim of providing a unique and universally recog-
nized standard for DA annotation based on the theoretical ideas introduced in the
DIT scheme. Its fifth version was accepted as ISO 24617-2.

The core aspects of the ISO standard are its multidimensionality and its domain and
task independence. The ISO scheme is multidimensional in the sense that it makes
a clear distinction between semantic dimensions (i.e. the aspect of the communication
which the DA describes) and communicative functions (i.e. the illocutionary act per-
formed within that dimension). In this way, ambiguities between various aspects
of the communication and overlapping between DAs are removed. Furthermore,
the scheme contains a generic dimension and communicative functions, which is
suitable for mapping virtually any kind of conversation, both task-based and non
task-based. Moreover, its multidimensional aspect and hierarchical taxonomy make
it extensible and potentially adaptable to specific conversational sets.

4.2.2 Dialogue Act Tagging

The automatic recognition of Dialogue Acts has been addressed by the literature us-
ing various machine learning techniques. In particular DA classification has been
modeled both as a sequence labeling problem, using techniques such as HMM (Stol-
cke et al., 2000b), neural networks (Ji, Haffari, and Eisenstein, 2016; Lee and Dernon-
court, 2016) or CRF (Quarteroni, Ivanov, and Riccardi, 2011), and as a multi-class
classification problem, using for example SVM (Quarteroni and Riccardi, 2010). Ad-
ditionally, different approaches cast the DA tagging task as either an offline task (Ji,
Haffari, and Eisenstein, 2016), where the model considers both previous and future
utterances compared to the current one and can thus be used only after the conver-
sation is concluded, or an online task (Lee and Dernoncourt, 2016; Ortega and Vu,
2017), where the model only consider the utterances up to the current point of the
conversation. Naturally, given our goal of using the DA tagger within a CA archi-
tecture, we cast the task as online. Mentioning and comparing all DA classification
approaches is difficult because of the differences in annotation schemes and datasets
used. All approaches, however, are usually tested on in-domain data.
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FIGURE 4.1: The distribution of dialogue act categories (after map-
ping to ISO standard) in various corpora – AMI, SWBD-DA, Map-
Task (MT), VerbMobil (VM) and BT Oasis (O). The represented DA
categories are Social Obligations Management (SOM) and Feedback
dimension DAs, as well as Action-Discussion (AD) and Information-

Transfer (IT) DAs from general dimension..

One of the most popular datasets for benchmarking is SWBD-DA (Godfrey, Holli-
man, and McDaniel, 1992), a dataset of human-human open-domain telephone con-
versations. The SOTA at the time of publication of this work on SWBD-DA was
achieved by (Ji, Haffari, and Eisenstein, 2016) using deep neural networks in offline
mode (77.0% accuracy) and by (Ortega and Vu, 2017) for online mode (73.8%accu-
racy).

The ISO standard (Bunt et al., 2010) can be seen as a generalization of all these anno-
tation schemes. However, there is no available training data for the ISO standard.

4.3 Data Sets

4.3.1 Training sets

The scarcity of resources of adequate size annotated with the ISO standard makes it
difficult to train a DA tagger for this taxonomy. To the best of our knowledge, the
DBOX corpus (Petukhova et al., 2014) – the only resource manually annotated using
the ISO standard – is not yet publicly available . The best possible approach given
the current availability of data is to map existing corpora’s DA schemes to the ISO
scheme. Given the limited – and often domain-dependent – annotation scheme of
these resources, it is impossible to map enough data to train a DA tagger for the full
ISO taxonomy, since some of the ISO dialogue acts have no correspondence in any of
the considered corpora. Therefore, we opted for a reduced version of the taxonomy,
limiting our research to subsets of the General (Task), Social Obligation Management
and Feedback dimensions. So far, we mapped the following five different corpora to
our scheme:

SWBD-DA The Switchboard corpus (Godfrey, Holliman, and McDaniel, 1992) is
a dataset of transcribed open-domain telephone conversations. The Switchboard
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Dialogue Act Corpus (SWBD-DA) is a subset of the Switchboard corpus annotated
with DAs. SWBD-DA represents a logical choice when building a training set for
a domain-independent DA tagger, as it is a large collection of open-domain, non
task-based conversations, and therefore provides a natural similarity to the conver-
sational domain of social bots. Moreover, there are already examples in literature
of mappings from the Switchboard corpus to the ISO standard (Fang et al., 2012b).
As visible from Figure 4.1, drawbacks of the corpus with respect to the task include
its unbalancedness (60% of utterances are Information-providing) and lack of Action-
Discussion interactions (less than 1% of overall corpus).

AMI This corpus contains transcriptions from 100 hours of meeting recordings
of the European-funded AMI project (FP6-506811), a consortium dedicated to the
research and development of technology (Carletta, 2006). This dataset presents a
reasonably balanced collection of utterances and a taxonomy which shares some
similarities with the ISO standard (e.g. distinction between Action-discussion and
Information-transfer). Drawbacks of the corpus include the fact that there are mul-
tiple speakers (it is therefore more difficult to capture contextual information) and
sometimes its scheme does not map to the leaves of the ISO tree.

MapTask This is a task-based dialogue corpus collected by the HCRC at the Uni-
versity of Edinburgh (Anderson et al., 1991). Dialogues involve two participants,
one with an empty map and one with a route-marked map which must instruct the
other speaker to draw the same route. The corpus was chosen due to its abundance
of Action-discussion interactions (more than 30% of the overall corpus), which are
often lacking in other corpora.

VerbMobil This is a collection of task-based dialogues released in 1997 (Burger
et al., 2000). A subset of these dialogues is annotated with DAs (Alexandersson et
al., 1998). The scenario involves two speakers, which play respectively the roles of
a travel agent and of a client. The client usually provides a set of constraints and
requests to be satisfied, while the traveling agent has to ask questions and provide
information in order to satisfy the client’s requests. Interactions happening within
the VerbMobil 2 corpus closely resemble those usually seen with personal assistants,
with a user looking for the fulfillment of a task and a serving agent interacting with
the user to solve his/her issues making it an appealing addition to our training set.

BT Oasis The BT Oasis corpus is a collection of task-based conversations involving
personal assistance for clients of the British Telecom services (Leech and Weisser,
2003). The conversations are human-to-human, and usually involve a user who has
a problem to solve and an assistant who helps the user solving his issues. The BT
Oasis corpus was chosen as part of the training set for its interesting scheme, called
SPAAC (Speech Act Annotation scheme for Corpora), which is easily mappable to
the ISO standard due to its clear separation of grammatical and illocutionary act.

4.3.2 Test sets

DialogBank (DB) the DialogBank (Bunt et al., 2016) is a corpus3 annotated with
ISO 24617-2 which currently contains 15 English dialogues: 3 from MapTask and 3
from TRAINS (Traum, 1996) (both task-based), 5 from DBOX (games collected in a

3https://dialogbank.uvt.nl/

https://dialogbank.uvt.nl/
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Wizard-of-Oz fashion) and 4 from Switchboard (open-domain human-human con-
versation). Overall there are 1,596 DAs. The corpus currently represents the only
publicly available resource manually annotated using the ISO standard.

Common Alexa Prize Conversations (CAPC) The CAPC corpus (Ram et al., 2018)
is a dataset of 3,764 anonymised individual user turns pooled from different users
interacting with all socialbots participating in the Alexa Prize. We have extracted
a balanced subset of 458 turns and have annotated it with DAs from our adapted
version of the ISO standard by 3 annotators, with an inter-annotator agreement of
κ = 0.82. CAPC exemplifies frequent user interaction data not biased by the interac-
tion with one socialbot in particular. Another advantage of this dataset is that it is
balanced across different DA categories. One drawback is that no interaction context
(previous DA) is available for the individual turns.

Socialbot Logs (S-Logs) S-Logs is a dataset of 13 open-domain conversations that
different native American English speakers had with one of the socialbots of the
Alexa Prize Challenge 2017. Overall this dataset contains 310 machine DAs and 165
user DAs. Two annotators tagged this dataset with DAs from our adapted version
of ISO 24617-2, with an inter-annotator agreement of κ = 0.81. While we have an-
notated both machine and user turns, we test only on the latter and exploit machine
turns as features for our classification experiments.

4.4 Methodology

4.4.1 Preprocessing

Before mapping the DA schemes of the corpora to the ISO subset scheme, a series
of preprocessing steps have been performed to obtain a uniform training resource
with the same surface text features as the testing corpora, since in S-Logs data, user
input is lowercased and the punctuation is limited to apostrophes. More specifically,
the text has been lowercased (including any named entity appearing in the original
transcription and excluding the ‘I’ pronoun), punctuation has been removed (except
for the apostrophe character in contracted expressions like “let’s” and “can’t”) and
any special characters have been deleted from the utterances. Moreover, any infor-
mation regarding prosody has been removed, since this feature is not available in
our test sets.
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For experiments on the SWBD-DA DAMSL corpus we recreated the same setting
described in (Stolcke et al., 2000b), using the same train and test set and preprocess-
ing the corpus in the same way following the WS97 manual annotator guidelines
(Jurafsky, 1997).

4.4.2 Dialogue Act scheme and mapping

The Socialbot scheme (S-scheme), the DA scheme used during the classification ex-
periments, is a subset of the official ISO standard. Only three dimensions out of the
official eight defined in the standard are considered (Task, Social Obligation Manage-
ment and Feedback), and some of the communicative functions are generalized with
an higher level of the tree.

Figure 4.2 shows the labeled subset of the ISO standard taxonomy for the General-
purpose functions (i.e. functions independent from any given dimensions), while
table 4.1 shows the correspondence for dimension-specific functions. The main dif-
ference between the DA scheme labeled in this work and the complete ISO taxon-
omy is the lack of further specification for the Inform, Commissive and Directive tags.
This is due to the fact that most of the DA schemes used when building the train-
ing set do not provide contextual information detailed enough to label these tags
accurately. Moreover, there is confusion and discrepancies about when these con-
textual DA should be used, even in the official ISO guidelines. Indeed, in (Fang et
al., 2012b), which provides the official mapping from Switchboard to the ISO stan-
dard, it is reported that some contextual DA tags (for example other_answer) do not
have a direct mapping to the standard. This becomes even more problematic con-
sidering that among the training resources there are corpora like AMI, MapTask or
VerbMobil, which label answers as Informs, which would make training data for
this class extremely noisy. A similar argument can be raised on the lower leaves of
the Directive and Commissive nodes, some of which are not labeled even in the very
detailed SWBD-DA taxonomy. Mapping of the available corpora to this scheme was
done according to the available documentation in literature.

For the Switchboard corpus, a detailed mapping is provided in (Fang et al., 2012b),
which was followed exactly for the supported dimensions/communicative func-
tions. For MapTask and AMI, there is already research highlighting similarities and
differences between their schemes and the ISO standard one (Petukhova, Malchanau,
and Bunt, 2014). These results do not provide an exact mapping between the two
schemes, which in some cases is impossible: for example the AMI Elicit-inform tag is
the equivalent of ISO 24617-2’s Question, but will not map to any specific question
type (SetQ, PropQ, ChoiceQ, etc.). Utterances whose tags cannot be directly mapped
to the ISO scheme were dropped and do not appear in the training set.

Since there is no available literature on mapping the VerbMobil 2 and BT Oasis cor-
pora to the ISO standard, a specific mapping was designed from scratch by drawing
inspiration from the approaches available on other corpora.

Table 4.2 presents counts of the DAs after mapping to our scheme, across all training
and testing corpora. As mentioned in the paper, the corpora present quite imbal-
anced distributions of DA categories.
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S-scheme ISO 24617-2
Social Obligation Management

Salutation Greeting, Goodbye, Self-Intro
Apology Apology, Accept Apology
Thanking Thanking, Accept Thanking

Feedback
Feedback Auto-Feedback (all), Allo-

Feedback (all)

TABLE 4.1: Our scheme (S-scheme) compared to the corresponding
ISO 24617-2 scheme for the SOM and Feedback dimensions

DA SWBD-DA MapTask VerbMobil Oasis BT AMI DB CAPC S-Logs
Semantic Dimensions

General (Task) 83,652 15,054 5,330 2587 1,523 1035 442 142
Social OM 2,866 0 384 588 10,039 21 16 7
Feedback 39,866 5,070 2,768 1,172 31,985 407 0 16
Total∗ 126,384 20,508 8,482 2,381 43,547 855 329 109
% of Corpus 79% 100% 72% 58% 74% 100% 100% 100%

General (Task) Dimension
Commissives 63 - 7 25 1,523 57 20 1
Directives 7 4,075 2,911 181 10,039 131 93 32
Inform 75,667 4,860 - 1,648 33,403 652 105 91
Prop. Question 1,986 583 - 492 - 61 68 12
Set Question 5,506 1,692 - 241 - 134 149 6
Choice Question 423 - - - - 8 7 -
Total∗ 83,652 11,210 2,918 2,587 44,965 1,035 442 142
% of Corpus 57% 30% 32% 35% 34% N/A N/A N/A

Social Obligations Management
Salutation 2,711 - 340 231 - 13 6 2
Apology 75 - - 44 - 6 3 4
Thanking 80 - 44 193 - 2 7 1
Total∗ 2,866 0 384 468 2,201 21 16 7
% of Corpus 2% 0% 2% 8% 0% N/A N/A N/A

Feedback
Total 39,886 5,070 2,768 1,172 31,985 407 - 16
% of Corpus 79% 100% 72% 58% 74% N/A N/A N/A

TABLE 4.2: Dialogue Act category counts across the considered cor-
pora for different levels of the taxonomy. Percentages of corpora in-
dicate the percentage of data available for the particular level in the

corpus.
∗ It is frequently the case that DA tags do not map to any leaf-node,
e.g. VerbMobil for Task dimension and AMI for Social Obligations

Management.
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4.5 Experiments and Results

Since, to the best of our knowledge, there is no established SOTA on DialogBank –
the only corpus manually annotated following the ISO 24617-2 scheme – we first es-
tablish the tagging methodology on the SWBD-DA corpus using the DAMSL 42 tag
set and compare it to the SOTA for online mode (Ortega and Vu, 2017) and offline
mode (Ji, Haffari, and Eisenstein, 2016). Then, the feature set and the parameters of
the best performing models are used for the training of the DA tagger on the aggre-
gate dataset, considering some of the semantic dimensions and the communicative
functions of the ISO 24617-2 . The models are then evaluated on the DialogBank
and open-domain human-machine data from Amazon Alexa Prize Challenge. Mc-
Nemar’s test (McNemar, 1947) for statistical significance has been used to analyze
whether introduced features give a significant contribution to the overall perfor-
mance.

4.5.1 Experiments on SWBD-DA

Prior to training the classification models, the SWBD-DA (Jurafsky, 1997) utterances
are preprocessed following (Stolcke et al., 2000b). The dataset is split into train-
ing (1,115 dialogues) and test set (19 dialogues) following the same paper, and the
remaining 21 dialogues are used as development set to tune the C parameter of Sup-
port Vector Machines (SVM) (Vapnik, 1995). For the experiments, we used the SVM
implementation of scikit-learn (Pedregosa et al., 2011) with linear kernel (i.e. its lib-
linear (Fan et al., 2008) wrapper).

The results of the experiments on SWBD-DA are presented in Table 4.3. The per-
formances are on the SWBD-DA test set with the SVM C parameter set to 0.1, with
respect to the best results on the development set. It is worth mentioning that tun-
ing the C parameter boosts the performance on the development set by 2 points.4

For comparison, the table also includes majority baseline, the results from different
online mode taggers, including (Stolcke et al., 2000b; Quarteroni and Riccardi, 2010;
Lee and Dernoncourt, 2016) and the SOTA (Ortega and Vu, 2017). Additionally, we
also include the SOTA for offline mode (Ji, Haffari, and Eisenstein, 2016).

Following the previous studies on SWBD-DA (Stolcke et al., 2000b; Quarteroni and
Riccardi, 2010), we experiment with n-grams (unigrams, bigrams, and trigrams) and
previous DA tag features. We do not consider the unit length feature from (Quar-
teroni and Riccardi, 2010), since classification instances in the SWBD-DA scheme and
ISO 24617-2 are different (slash unit vs. functional unit). The results are reported in
Table 4.3; since the results reported were obtained with SVM C parameter set to 0.1,
they are higher than the ones reported in (Quarteroni and Riccardi, 2010): e.g. for
1-2-grams 70.0 vs. 71.7.

The first observation is that the addition of the previous DA significantly improves
the performance. Addition of part-of-speech tags does not yield any improvement;
however, when POS-tags are indexed with their positions in an utterance, accuracy
is significantly improved and rises to 76.2. Addition of dependency relations (both
with and without indexing with their position) does not improve the performance.
The addition of the averaged pre-trained word-embedding vectors (from Google

4From 73 (C = 1.0) to 75 (C = 0.1) for the model trained on unigrams, bigrams and previous DA-tag.
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Task definition Models Accuracy
online Baseline: Majority 31.5

HMM (Stolcke et al., 2000b) 71.0
SVM (Quarteroni and Riccardi, 2010) 72.4
CNN (Lee and Dernoncourt, 2016) 73.1
LSTM (Ortega and Vu, 2017) 73.8

online SVM 1-grams 71.2
SVM 1-2-grams 71.7
SVM 1-2-3-grams 71.4
SVM 1-2-grams + PREV 74.6*
SVM 1-2-grams + PREV + POS 74.6
SVM 1-2-grams + PREV + I-POS 76.2*
SVM 1-2-grams + PREV + I-POS + DEP 76.0
SVM 1-2-grams + PREV + I-POS + I-DEP 76.1
SVM 1-2-grams + PREV + I-POS + WE 76.7*

offline DrLM (LSTM) (Ji, Haffari, and Eisenstein, 2016) 77.0

TABLE 4.3: Classification accuracy of the different feature combina-
tions on the SWBD-DA test set. The best results are highlighted in
bold. The results that are significantly better are marked with *. Be-
sides the Majority baseline, we report the results of online models,
which consider only the dialogue history up to the current turn and to
which also our model belong, and results of offline models (Ji, Haffari,
and Eisenstein, 2016), which consider both past and future utterances

for DA prediction of the current utterance.

News) to the model with indexed POS-tags, however, rises the accuracy to 76.7, mak-
ing it a SOTA resulst compared to previously published online approaches (though
coming 0.3 short of the offline model reported in (Ji, Haffari, and Eisenstein, 2016)).

4.5.2 Experiments on Aggregate ISO-standard Data

The methodology established on SWBD-DA is applied to training the ISO 24617-2
subset models using the aggregate data set. Since in ISO 24617-2 annotation scheme
DAs consist of semantic dimensions and communicative functions, the utterances
are first classified into the considered semantic dimensions – general, social obliga-
tions management (SOM), and feedback. Then, we experiment with the Task di-
mension, reporting the results without error propagation from the previous step,
in order to give the reader a clearer understanding of the current classification ca-
pabilities when restricting interactions with the system to general communicative
functions.

Semantic Dimension Classification

The results of the binary dimension classification models on the test sets – Dialog-
Bank (DB), CAPC, and S-Logs – are reported in Table 4.4. The CAPC corpus consists
of isolated utterances; consequently, the Feedback dimension is not present. On DB
and S-Logs, on the other hand, the Feedback dimension yields the lowest accuracy in
comparison to General and SOM dimension communicative functions. Low perfor-
mances on the Feedback dimension could be explained by the fact that the training
data mostly contains Allo-feedback and lacks Auto-feedback and Feedback elicitations,
which are present in DB.
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Dimension DB CAPC S-Logs
General 73.3 83.0 80.2
SOM 78.1 90.7 86.6
Feedback 56.3 – 71.3
Overall 68.4 83.3 79.4

TABLE 4.4: Classification accuracies of the binary semantic dimen-
sion models: General, SOM and Feedback. The CAPC corpus does
not contain Feedbacks, therefore results for this dimension are not re-

ported.

Features DB CAPC S-Logs
BL: Majority 53.4* 22.9* 63.4*
1-2-grams 64.2* 71.2* 78.7*
+ PREV 64.3* 70.7* 81.6*
+ I-POS 65.8* 73.8* 82.2*
+ I-DEP 67.1* 74.3* 82.3*
+ WE 65.2* 74.8* 82.0*
+ I-DEP + WE 66.6* 75.1* 81.8*

TABLE 4.5: Accuracies of the feature combinations on the general-
purpose communicative functions on the test sets. The best results

are marked in bold, and statistically significant differences with *.

Communicative Function Classification

The utterances are further classified into communicative functions of the General
(Task) dimension, using the methodology established on SWBD-DA, i.e. the same
hyper-parameter settings (C = 0.1) and features. However, since models with de-
pendency relations do not yield statistically significant differences, they are also
considered. The results of the models on the test sets are reported in Table 4.5. The
behavior of the models trained with various feature combinations is in-line with the
SWBD-DA experiments: the addition of the previous DA tags and part-of-speech
tags indexed with their positions in a sentence improves the performance. Different
from the SWBD-DA, the addition of the indexed dependency relations improves the
performance on the test sets. In the case of DialogBank and CAPC, their contribution
is statistically significant. Additionally, unlike for SWBD-DA, the addition of word
embeddings with and without index dependency relation (I-DEP) does not produce
significant improvements for all but CAPC. Consequently, the model trained on 1-2-
grams, previous DA tags, indexed POS-tags and dependency relations is chosen for
the ablation study.

Corpora Combinations

The aggregation of all the corpora mapped to our subset of ISO 24617-2 is not nec-
essarily the best one, as the distributions of DA categories varies from corpus to
corpus. Consequently, we also present results on the test sets for the models trained
solely on SWBD-DA and AMI; as well as perform an ablation experiment removing
one corpus at a time. The best performing model from the previous subsection (1-
2-grams, previous DA-tag, indexed POS-tags, and indexed dependency relations) is
used for the study. The results of these experiments are reported in Table 4.6.
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Dataset DB CAPC S-Logs
All 67.1 74.3 82.3
All except AMI 59.7 73.7 71.3
All except SWBD-DA 60.2 68.3 77.5
All except Oasis BT 66.1 74.2 81.8
All except MapTask 66.8 74.6 80.5
All except VerbMobil 66.5 74.0 82.6
Only SWBD-DA 57.9 71.3 53.5
Only AMI 53.2 39.8 61.6

TABLE 4.6: Accuracies of the corpora combinations on the test sets –
Dialog Bank (DB), CAPC, and S-Logs.

While the best results for Dialog Bank are achieved considering all the corpora, for
CAPC the best results are achieved by removing MapTask. For S-Logs, on the other
hand, the best performing corpora combination is all except VerbMobil. However,
the performance differences from the models trained on all corpora are not statis-
tically significant. Training DA taggers solely on SWBD-DA and AMI – the largest
and the most diverse corpora – yields performances inferior to the combination of all
the corpora. From the table, we can also observe that these two corpora – SWBD-DA
and AMI – contribute most to the performance, as removing them affects the per-
formance the most. On the other hand, removing the smaller datasets – BT Oasis,
MapTask, and VerbMobil – affects the performance less.

4.6 Conclusions

We have presented an effective methodology for corpora aggregation for domain-
independent Dialogue Act Tagging on a subset of the ISO 24617-2 annotation. We
have also reported an accurate evaluation of our approach on both in-domain and
out-of-domain datasets, proving that the described DA tagging technique is indeed
independent from the underlying scheme and task of the annotated corpora. Finally,
the machine learning technique used for DA tagging was tested on a popular DA
tagging task (the Switchboard corpus), obtaining SOTA results for the online mode
(which considers only the utterances up to the current point).

This work represents one of the first attempts to use an ISO compliant DA scheme for
a real-life application, as well as one of the first structured approaches for evaluation
of dialogue resources annotated with this taxonomy.

Research on available training resources is one of the first things to look forward
to, since the current data proved to be effective, but also presented numerous draw-
backs (lack of adequate coverage for the Feedback dimension, imbalanced DAs, lack
of context-aware communicative functions). In the meanwhile, we plan to make our
resource continue to grow in the future by adding and mapping additional corpora,
such as the MRDA (Shriberg et al., 2004) corpus.

Additionally, the approach to DA tagging presented in this work presents some lim-
itations, which should be addressed in future work. First, our models address only
the task of DA classification. However, according to the ISO standard (Huang, 2017,
Chapter 19), utterances can be multifunctional from a sequential perspective, i.e. the
same utterance can be composed of multiple DAs in sequence. This means that, in
order for our DA tagging models to be employed we first need a segmentation step
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(unless we assumed that each utterance contains only one DA). DA segmentation is
indeed an often overlooked step by SLU modules. In RM the segmentation and clas-
sification steps are done independently, as reported in Section 3.3.3. Having these
steps performed independently though, could lead to an error propagation across
modules, therefore over the years there have been approaches to jointly perform DA
segmentation and classification, such as Quarteroni, Ivanov, and Riccardi (2011) and
most recently Zhao and Kawahara (2019). In order to properly address this issue, in
future work we could explore joint DA segmentation and classification using the
datasets proposed in this work.

A second limitation of our approach is the fact that our models currently utilise
only the immediate previous context (i.e. the preceding turn). However, DAs are
contextual, and the dependencies across different DAs can span also several turns,
as we discussed in section 2.3.2. In future work we should explore how to include
the full length of the context to account for such long range dependencies.

4.7 Summary

In this Chapter, we addressed the challenge of training a DA tagger that can be used
online in a real-world domain-independent CA application using publicly available
resources.

First, we analysed current approaches and resources for DA tagging. We discussed
currently available corpora annotated with DAs and showed their imbalance in
terms of distribution of crucial DA macro-categories; looking in particular at Action
Discussion and Info transfer which are both essential for a real-world open-domain
CA. In general, we highlighted the need to create resources with a consistent distri-
bution of diverse DA categories across different domains.

Our first main contribution was then to create a methodology to create an aggregated
multi-domain corpus for DA tagging by mapping 5 different publicly available cor-
pora (SWBD-DA, AMI, MapTask, VerbMobil and BT OAsis), each one with its own
in-domain scheme, to a subset of the ISO 24617-2 standard, the latest accepted tax-
onomy for domain-independent DAs.

Afterwards, we presented a serious of experiments for both in-domain and out-of-
domain DA tagging, proposing a simple, yet efficient SVM-based model. In our first
set of experiments we assessed the performance of our model on the popular SWBD-
DA, commonly used as a benchmark for DA tagging models. Compared to other
online models (i.e. considering only the utterances up to the current one) our model
achieved SOTA results at the time. Afterwards, we presented experiments of out-of-
domain DA tagging, by training our model on the aggregated corpus and testing on
3 out-of-domain corpora (DialogBank, and two corpora created using Alexa Prize
data). Finally, we performed ablation experiments, by assessing the performance of
the model when removing specific corpora from the aggregated resource. Overall,
the experiments showed the importance of combining multiple resources for per-
forming robustly on different DA categories.

Besides being a key component of Roving Mind (see Section 3), the DA tagger pre-
sented in this Chapter is used also in Section 6.1 to add DA features for conversation
evaluation experiments .
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Chapter 5

Weakly supervised approaches for
open-domain dialogue coherence

In this Chapter, we investigate methodologies to train ranking models for coherence
in open-domain dialogue using weakly supervised data generation methodologies.
Compared to supervised techniques, weakly supervised ones could be useful to al-
leviate the data bottleneck typical of dialogue (as described in Section 1.3).

In particular, we propose coherence models for open-domain dialogue based on DA
and entity information, first considering whole conversations1 and then at the level
of single turns2. Our findings throughout this Chapter indicate that DA and entity
play an essential role for assessing dialogue coherence, especially if combined.

5.1 Conversation-level

5.1.1 Introduction

This Section addresses the problem of automatic coherence assessment of conversa-
tions. Coherence – what makes a text unified rather than a random group of sen-
tences – is an essential property to pursue for a system aimed at conversing with
humans. Nonetheless, producing coherent responses across conversation turns re-
mains an open research problem for state-of-the-art (SOTA) open-domain dialogue
models (Li et al., 2016a; Li et al., 2016c).

Furthermore, progresses in open-domain dialogue modelling are currently curbed
by a lack of standardized automatic metrics to evaluate and compare conversational
systems (Liu et al., 2016). Most available automatic metrics for dialogue evaluation
either rely on surface features such as the words used (e.g. BLEU (Papineni et al.,
2002)), try to replicate generic human judgments (Lowe et al., 2016), or work only
for task-based dialogue systems (Walker et al., 1997). For evaluation, the field still
relies heavily on user satisfaction, an expensive and time-consuming process which
poses its own challenges given the subjectivity of human judgment. While coherence
has been proposed multiple times as an important metric to evaluate open-domain
dialogue, there have been only few studies on open-domain dialogue coherence as-
sessment (Gandhe and Traum, 2016; Higashinaka et al., 2014; Venkatesh et al., 2018).

1Section 5.1 is based on Cervone, Stepanov, and Riccardi (2018).
2Section 5.2 is based on Cervone and Riccardi (2020).
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On the other hand, the Natural Language Processing (NLP) literature has made sev-
eral attempts (Grosz, Weinstein, and Joshi, 1995; Barzilay and Lapata, 2008) to for-
malize the notion of text coherence into coherence models. The entity grid, one the
most popular approaches to coherence modelling in this community, proposes to
represent documents according to the patterns of distribution of entities mentioned
in the text across adjacent sentences (Barzilay and Lapata, 2008). Besides its correla-
tions with human judgment, among the reasons behind the success of this approach
is the fact that it is linguistically motivated, capturing important aspects of discourse
coherence related to entities distribution (Joshi and Kuhn, 1979; Givón, 1987). Since
its original proposal, the entity grid has undergone multiple extensions and has been
widely applied to different tasks such as text coherence rating, automatic summaries
assessment and sentence ordering, among others (Barzilay and Lapata, 2008; Elsner
and Charniak, 2011b). It has also been successfully applied to dialogue (Purandare
and Litman, 2008; Elsner and Charniak, 2011a), for example for chat disentangle-
ment.

Being a local coherence model, i.e. modelling paragraphs internal coherence rather
than the global coherence of the entire text, the extensions of the grid proposed for
dialogue do not take into account one essential characteristic of dialogue coherence
that has been studied for several years: its intentional structure.

Several theories studying dialogue coherence are indeed rooted on the idea of an
internal structure given by participants’ intents in a conversation (Sacks, Schegloff,
and Jefferson, 1974; Sacks and Jefferson, 1995; Schegloff, 1968; Schegloff and Sacks,
1973). In many approaches, the basic units of these sequences are a variation of
Dialogue Acts (DAs), a concept based on Speech Acts theory (Austin, 1975), that
conveys the illocutionary function of an utterance in a conversation; and represents
a formalized and generalized lexicon of speaker intents. Attempts to formalize com-
putationally similar theoretical intuitions about dialogue coherence (Grosz and Sid-
ner, 1986; Allen and Perrault, 1980) did not find wide-spread application, since they
require extensive expertise.

In this section, we propose entity-grid inspired coherence models for dialogue aug-
mented with intentional information, represented by DA transitions across turns.
To the best of our knowledge, this work is the first to combine entity grid coherence
models with DAs. We compare our models to the original entity grid on the two
de-facto standard tasks for coherence, i.e. sentence (in our case turn) ordering dis-
crimination and insertion. We perform our experiments on three publicly available
datasets conveying different types of dialogue (task-based and open-domain) and
DAs annotation schemes, namely Switchboard (Godfrey, Holliman, and McDaniel,
1992), AMI (Carletta, 2006) and Oasis (Leech and Weisser, 2003). Our results show
the crucial importance of the DA information for assessing dialogue coherence.

5.1.2 State of the art

One of the most fertile frameworks for local coherence modelling in text is the entity
grid (Barzilay and Lapata, 2008). As shown in Figure 5.1, this approach proposes to
represent the structure of a document (in our case a dialogue) through a grid dis-
playing transitions in the syntactic roles of entities (the heads of Noun Phrases (NP))
across neighbouring sentences in the text. In the grid, the rows represent subsequent
sentences (turns in our case, as in Elsner and Charniak (2011a)) while each entity is
represented by a column. A grammatical role can be: subject (S), direct object (O) or
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neither (X), plus a symbol (−) to signal that an entity does not appear in that turn
t. The assumption is that the grid topology of coherent texts exhibits certain reg-
ularities associated to the way entities are introduced and become the focus of the
discourse. For example, in the case of the grid represented in Figure 5.1, Table A we
can notice how the sentences are connected by the continuity of the entity “drugs”
across different turns. If an entity appears more than once in the same turn the most
prominent syntactic role is chosen (S > O > X).

By computing the probabilities over all possible transitions of length n from one cat-
egory to all others (thus {S, O, X,−}n) we can turn this representation into a feature
vector, similar to a language model over the entity tags, representing the syntactic
role transitions of entities in the whole document. It is important to notice that the
entity grid is not lexicalised, since this information is lost when creating the feature
vectors.

In Barzilay and Lapata (2008), the authors use these feature vectors to train a Support
Vector Machine (using SVMlight (Joachims, 2002)) modelling coherence as a rank-
ing problem and using as a training dataset a set of original documents as positive
(coherent) examples, paired with a set of the same documents with the sentences
randomly permuted as negative (incoherent) examples (a procedure called pair-
wise training). The authors also experiment with models using different degrees
of saliency (entity frequency) and transitions lengths (between 2 and 4), and by em-
ploying coreference resolution systems to detect entity chains (however given the
performances of SOTA systems this addition does not provide improvements).

The algorithm proposed in Barzilay and Lapata (2008) derives thus automatically
an abstract representation for a text, with as the only requirement a syntactic parser
and a dataset. Among the weak points of this framework, however, is the fact that it
models only local coherence (patterns of distribution across adjacent sentences) and
a data sparsity problem.

Over the years, the entity grid model inspired numerous extensions (Guinaudeau
and Strube, 2013; Filippova and Strube, 2007; Elsner and Charniak, 2011b) and simi-
lar implementations. Some approaches (Filippova and Strube, 2007), for example,
augmented the model using the semantic relatedness of the entities but without
much improvement. Others (Elsner and Charniak, 2011b) showed the usefulness
of incorporating entity–specific features such as named entity information and con-
sidering also nouns which do not head NPs (as in Figure 5.1, turn 2, where in the NP
“a drug testing policy” we consider both “drug” and “policy” as entities).

The typical tasks on which local coherence models are currently evaluated are: sen-
tence ordering discrimination, where the system needs to rank original documents
higher than randomly permuted ones, and insertion, introduced by Elsner and Char-
niak (2011b), where the system has to rank the position of a sentence removed from
a document. The state of the art for these tasks was recently achieved by Nguyen
and Joty (2017), which uses the entity grid as input to a Convolutional Neural Net-
work. The authors report an accuracy of 88.69 (compared to 81.58 of the original
grid with both head and non-head nouns) and an insertion score of 25.95 (compared
to 22.13 of the same model). One of the advantages of the neural model compared
to the original one is its ability to model long range entity transitions. Other recent
works inspired by the entity grid include coherent paragraph generation (Li and Ju-
rafsky, 2017), and applications to automated essay scoring (Farag, Yannakoudakis,
and Briscoe, 2018) and neural stories text generation (Clark, Ji, and Smith, 2018).
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Entity-based local coherence models apply well to dialogue as is or with some ex-
tra features, but have not been investigated in connection to DAs (Purandare and
Litman, 2008; Elsner and Charniak, 2011a). Dialogue coherence has been explored
outside of the entity grid approach as well (Higashinaka et al., 2014; Gandhe and
Traum, 2016; Venkatesh et al., 2018). In Gandhe and Traum (2016), the authors pro-
pose a semi-automatic approach to evaluate dialogue coherence using only DA and
relying on turn level coherence ratings from multiple sources. To the best of our
knowledge, the only approach that combines entity and DA information for dia-
logue coherence evaluation is Higashinaka et al. (2014), which did not utilize the
entity grid and models coherence as a binary classification task on utterance pairs
rather than the whole conversation.

Huh.

Well does [the company]S you work for test for [drugs]X ?(turn 1) A: (DA1) QY
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O: object
X: present
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Actually they just recently started [a policy]O of testing
for [drugs]X , which was kind of interesting.

(turn 2) B: (DA1) NA

because when I went to work for them, uh, they didn't do
that

(DA3) SDE

but, uh, since then they've started  [a drug]O testing [policy]X ,
not because of their own, uh [convictions]X, but because [the
clients]S of [our company]X are requests that we do that.

(DA4) SD

(turn 3) A:
How about you?(turn 4) B:
Uh, no(turn 5) A:
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FIGURE 5.1: Entity grid example (A) vs. our modified grid (B) for the
extract of the dialogue 002_4330 from the Switchboard Dialogue Act
(SWBD-DA) corpus (upper part). Entities in the sentences are anno-
tated with their syntactic role: subject (S), object (O) or neither (X).
The Dialogue Act tags are directly taken from the SWBD-DA DAMSL

annotation.
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5.1.3 Methodology

Both the original and its SOTA extensions for coherence assessment focus on mod-
elling local (entity-based) coherence, which is a form of surface coherence of the text
(cohesion in Pragmatics theory (Halliday and Hasan, 1976)). However we can easily
imagine how the entity grid or its extensions would not capture the lack of coher-
ence in the following example:

A. Do you have dogs?
B. What is the average height of dogs?

In this case the text would be judged coherent given the continuation of the entity
“dogs” across both turns. Nonetheless this example is incoherent because B does not
answer A’s question, but rather introduces an unrelated question.

In this work we augment the original entity grid document representation with a no-
tion of global coherence, as provided by the intentional structure of the conversation
in the form of Dialogue Acts. Our hypothesis is that DA information could improve
coherence models performance on dialogue. This hypothesis is also motivated by
the fact that syntactic roles might no be so prominent or reliable when transferred
to the spoken dialogue domain, since for some dialogue types turns tend to be quite
short and syntactic parsers are not very robust when there is no punctuation.

In order to test our hypothesis, we experiment with various grid constructions in
order to find the best way to combine the DAs information with the original rep-
resentation. For clarity, we follow a template <row>-Grid:<cell> for naming our
different document representations. In particular the <row> refers to text span (row
in the grid) chosen, either the Turn (T) as in Elsner and Charniak (2011a) or the text
span of the DA (D); the <cell> refers to the category in the grid cells, either the
syntactic role (role), the presence of the entity (presence, reducing the vocabulary to
entities presence (X) or not (−) already proposed in Barzilay and Lapata (2008)) or
the DA tag (DA, which varies according the DA schema of each dataset). In the rest
of the section we detail the document representations in our experiments.

Baselines: The baselines SVM entrole gridturn and SVM entpresence gridturn replicate re-
spectively the original entity grid in its all nouns variant (proposed by Elsner and
Charniak (2011b)) and a simplified version of the grid where the vocabulary is re-
stricted to two items.
SVM entrole gridDA: This variation differs from the entrole gridturn only for the fact
that the text span units are DAs, rather than turns, while the vocabulary is still com-
posed by syntactic roles. The disadvantage of this representation is that it is more
sparse than its preceding one, but it is able to capture in-turn entities transitions.
SVM DA gridDA: In this variant the syntactic roles tags are substituted by the DA
categories (according to the dataset’s DA scheme). This is the modified grid shown
in Figure 5.1, Table B. In this document representation an extra "no_entities" column
is added to capture the DA tags where no entity is mentioned.
SVM DA: This text representation is the same as the previous one, with the differ-
ence that here all entities are dropped and we keep only one column with all the
DAs.
Combinations: SVM entpresence gridturn + DA and SVM entrole gridturn + DA represent
the combination of SVM DA with the two baselines by simply concatenating their
feature vectors. These variations combine the entities and DAs feature vectors as
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SWBD-DA AMI Oasis
Number DA tags 42 16 41
Av. Number tokens/turn 13.1 15.1 10.6
Av. Number turns/dialogue 109 86.4 10.6
Number Train dialogues 740 356 191
Number Test dialogues 231 111 59
Number Dev dialogues 184 89 45

TABLE 5.1: We report the count of Dialogue Act tags, the average
number of tokens per turn, the average count of turns per dialogue
and counts of our Training, Test and Developments splits for our three
datasets: SWBD-DA, AMI and Oasis. The document counts are given
for the original documents, therefore need to be multiplied times 20
(pairs) for the discrimination task and times 100 (10x10) for the inser-

tion task.

two separate sources of information.

5.1.4 Experimental setup

Tasks: We evaluate our models on the sentence ordering discrimination task pro-
posed in the original (Barzilay and Lapata, 2008) and on the insertion task proposed
in Elsner and Charniak (2011b), which represent the standard evaluation tasks for
coherence models. In order to ensure comparability across our experiments, when
permuting the order in the documents, we always permute the entire turn (therefore
multiple rows in case we have several DAs in the same turn) and the same permu-
tations are kept across all settings.

The first task, discrimination, is usually evaluated as accuracy of the model in rank-
ing the original text higher than a permuted one (we use 20 permutations per doc-
ument following previous work (Barzilay and Lapata, 2008; Elsner and Charniak,
2011b; Nguyen and Joty, 2017)). In order to better analyse our results, we add to
this metric two widely used ranking metrics, i.d. Mean Reciprocal Rank (MRR, the
average of reciprocal ranks in a set of queries) and Precision at One (P@1, the ability
of the model to rank the original higher than all the permutations). In both these
metrics, instead of comparing the original document with each of its permutation
we compare the rank of the original document to all its permutations at the same
time.

On the other hand, the insertion task is evaluated as the average number of sentences
per document inserted in the correct position (therefore the average of the P@1). For
the insertion task, we randomly pick 10 turns per dialogue and insert each one in 10
random positions (for each dataset we used the same turns and positions to ensure
intra-dataset comparability).

Datasets In order to verify the robustness of our models across different DAs schemes
and dialogue types, we perform all our experiments on three different publicly avail-
able datasets with DA annotation, namely BT Oasis (Leech and Weisser, 2003), AM I
(Carletta, 2006) and the Switchboard Dialogue Act corpus (Godfrey, Holliman, and
McDaniel, 1992) (SWBD-DA). Table 5.1 shows some differences across the datasets.3

3The code is available at: https://github.com/alecervi/
Coherence-models-for-dialogue

https://github.com/alecervi/Coherence-models-for-dialogue
https://github.com/alecervi/Coherence-models-for-dialogue
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SWBD-DA
Discrimination Insertion

Acc. MRR P@1 Av. P@1
Random 50.00 16.98 4.76 8.70
SVM DA 99.76 98.76 97.80 45.45
SVM entpresence gridturn 70.65 38.60 24.24 10.74
SVM entrole gridturn 64.78 29.39 13.85 12.08
SVM entrole gridDA 63.25 28.50 13.85 10.00
SVM DA gridDA 99.57 97.36 95.67 38.79
SVM entpresence gridturn + DA 99.76 98.76 97.84 45.58
SVM entrole gridturn + DA 99.68 99.17 98.70 44.98

TABLE 5.2: We report results on the two tasks of Discrimination and
Insertion on the Switchboard Dialogue Act (SWBD-DA) corpus. For
Discrimination, we report the standard Accuracy (Acc.), Mean Recip-
rocal Rank (MRR) and Precision at one (P@1). For Insertion, we report
the standard metric for this task, i.e. Precision at one (P@1) averaged

for the dialogue.

The dialogues in SWBD-DA are open-domain telephone conversations. The individ-
ual turns tend to be quite long while the dialogues are the longest across the three
datasets. For the DA categories we employ the 42 DAMSL ones. Oasis, on the other
hand, is quite the opposite. A dataset of task-based conversations between clients
and British Telecom help desk, here the turns tend to be quite short and the dia-
logues very short. AMI presents yet another type of dialogue data. Compared to the
other datasets here the dialogues are between multiple speakers. In these dialogues
participants were asked to discuss a project, so turns tend to be very long. This is
also the dataset with the less rich annotation scheme compared to the previous two
(only 16 DA categories).

Parameters As in the original entity grid paper we test all our models using the
preference kernel implemented in SVMlight (Joachims, 2002) with default parame-
ters. We follow the default original grid parameters (saliency:1, transitions length:2)
for all our experiments. This was done to ensure a fair comparison between the
datasets with few entities and short dialogues (Oasis) and those with many turns
and several entities (Switchboard, AMI). For preprocessing the text to extract noun
phrases and their syntactic roles we use spacy (Honnibal and Johnson, 2015).

5.1.5 Results

We report the results of our experiments on SWBD-DA in Table 5.2, on AMI in Ta-
ble 5.3 and on Oasis in Table 5.4. To the model described in Section 5.1.3 we add a
Random baseline, to give a measure of how the difficulty of both tasks vary across
the datasets. To assess the respective significance of the coherence models, for dis-
crimination accuracy and P@1 we use the McNemar test, while for discrimination
MRR and the insertion Average P@1 we use Fisher’s randomization test.

Regarding the discrimination task, the first thing to notice is how SVM DA, the model
capturing DAs transitions without taking into account entities information, is a very
competitive model across all the three datasets. Indeed the intentional structure in-
formation alone is so strong that on SWBD-DA and AMI, the task of discriminating
an original document from randomly shuffled re-orderings of the same document
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AMI
Discrimination Insertion

Acc. MRR P@1 Av. P@1
Random 50.00 18.93 6.31 9.44
SVM DA 98.78 95.27 92.79 30.75
SVM entpresence gridturn 76.71 40.88 25.23 7.21
SVM entrole gridturn 79.59 46.73 28.83 11.71
SVM entrole gridDA 59.41 25.40 11.71 11.71
SVM DA gridDA 95.41 83.02 75.68 19.25
SVM entpresence gridturn + DA 98.47 93.74 90.09 31.41
SVM entrole gridturn + DA 98.51 94.56 91.89 32.43

TABLE 5.3: We report results on the two tasks of Discrimination and
Insertion on the AMI corpus. For Discrimination, we report the stan-
dard Accuracy (Acc.), Mean Reciprocal Rank (MRR) and Precision at
one (P@1). For Insertion, we report the standard metric for this task,

i.e. Precision at one (P@1) averaged for the dialogue.

Oasis
Discrimination Insertion

Acc. MRR P@1 Av. P@1
Random 50.00 17.39 5.08 9.16
SVM DA 91.53 68.47 54.24 41.44
SVM entpresence gridturn 72.03 33.94 18.64 23.49
SVM entrole gridturn 65.25 26.34 10.17 18.80
SVM entrole gridDA 49.58 17.08 3.39 15.52
SVM DA gridDA 87.80 57.64 40.68 28.96
SVM entpresence gridturn + DA 92.46 69.75 57.63 42.74
SVM entrole gridturn + DA 91.78 70.39 57.63 42.49

TABLE 5.4: We report results on the two tasks of Discrimination and
Insertion on the Oasis corpus. For Discrimination, we report the stan-
dard Accuracy (Acc.), Mean Reciprocal Rank (MRR) and Precision at
one (P@1). For Insertion, we report the standard metric for this task,

i.e. Precision at one (P@1) averaged for the dialogue.
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seems even too easy. With similar setup and data (also Switchboard but a different
subset of dialogues with 505 original dialogues for training and 153 for testing) El-
sner and Charniak (2011a) reports an accuracy of 86.0 for its extended version of the
grid. The strength of the intentional structure information is still prominent, but less
visible in Oasis, where the dialogues are much shorter compared to the previous two
datasets and it might be possible that random shuffling of turns might not disrupt
the dialogue coherence so effectively.

In general, we notice the importance of DA information across the three datasets
also for the rest of the proposed models for the discrimination task. As expected, the
lowest results are achieved by the SVM entrole gridDA model, which are still much
better than the Random baseline. This model is similar to the original grid with the
disadvantage of increasing the sparsity of entities.

The next lowest scores are then achieved by the SVM entpresence gridturn and SVM
entrole gridturn. While the second performs better on AMI, where turns are the longest
and we can expect sentence structure to be more complicated, the SVM entpresence
gridturn outperforms SVM entrole gridturn both on Oasis and SWBD-DA, confirming
our hypothesis regarding the diminished importance of syntactic roles in dialogue.
The next best model across all datasets for discrimination is SVM DA gridDA with a
large distance compared to SVM entpresence gridturn and SVM entrole gridturn.

The best performing models are the combinations, where the entity and DA infor-
mation are encoded separately. These models achieve the best results on SWBD-DA
and Oasis, while their distance to SVM DA is not statistically significant on AMI.

The observations made on the discrimination task are reinforced on the insertion
task. Only by looking at the performances (between 8.70 and 9.44) for the Random
baseline, we notice how much the task is harder than the previous one (as mentioned
in 5.1.2 the SOTA in the Wall Street Journal is 25.95). The noticeable difference in the
results for the SVM entpresence gridturn, SVM entrole gridturn compared to SVM DA
gridDA for insertion confirms once again how crucial is the intentional information.
While also for insertion the intentional structure alone gives a very strong signal
across all the datasets, the best results are achieved by combining the DAs with the
entity information. This result is consistent with the nature of the task, where entity
information could provide an important contribution to locating the exact place of a
turn in the conversation. Also for this task, the syntactic role information yields the
highest scores only for AMI, the dataset with the longest turns, while on SWBD-DA
and Oasis the best results are achieved by the simpler model – SVM entpresence gridturn
+ DA.

The SVM DA model significantly outperforms the entity grid coherence models
without DAs. However, while the models using the combination of entity grid and
DAs (SVM entpresence gridturn + DA, SVM entrole gridturn + DA) yield better perfor-
mance on SWBD-DA and Oasis, overall their differences are not statistically signifi-
cant.

5.1.6 Conclusions

In this section, we applied the entity grid local coherence approach to dialogue. We
experimented with different variations of its document representation in order to
find the best way to augment it with participants’ intents, an expression of global
coherence and a signal which has been widely studied in dialogue to describe the
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structure of conversations. Our experiments confirm the crucial importance of the
intentional structure for dialogue coherence, but also show how its combination with
entity information could be useful for harder tasks connected to dialogue coherence,
such as insertion.

Furthermore, our experiments show how the task of sentence ordering discrimina-
tion might be too easy on dialogue, where the DAs already give a very strong signal.
On the other hand, the task of insertion is by far more difficult. In the next section,
we will explore other tasks for coherence modelling that might be more useful for
dialogue, such as automatic prediction of the next dialogue turn.

It is also important to notice that our proposals for document representation are
independent of the Machine Learning models employed. They could therefore be
used, for example, in combination with a CNN as implemented in Nguyen and Joty
(2017). Another application we foresee for these models is to be used in the reward
function for training dialogue systems in a Reinforcement Learning setting. More-
over, it is worth noticing that our experiments were performed using gold DAs.
One of the first future experiments to perform would be to replicate the experiments
with predicted DA labels (as, for example, was recently done in (Mesgar, Bücker,
and Gurevych, 2020)), rather than gold ones to verify the robustness of the approach
when using a DA tagger (the current approaches to DA tagging on Switchboard
report accuracies above 75% (Ji, Haffari, and Eisenstein, 2016; Mezza et al., 2018)).
In such a setting, we imagine that the entities information might play even more
important role in assessing dialogue coherence. Other possible directions include
applying our coherence models to chat disentanglement, as well as the automatic
evaluation of conversational agents’ coherence.

5.2 Turn-level

5.2.1 Introduction

Dialogue evaluation is an unsolved challenge in current human-machine interaction
research. This is particularly true for open-domain conversation, where compared
to task-oriented dialogue (i.e., restaurant reservations), we do not have a finite set
of entities and intents, and speakers’ goals are not defined a priori. We address the
problem of dialogue evaluation from the perspective of dialogue coherence and how
this concept can be formalized and evaluated. Our approach could be applied to
both task-oriented and non-task-oriented dialogue.

Coherence in language, i.e., the property which determines that a given text is a log-
ical and consistent whole rather than a random collection of sentences, is a complex
multifaced concept which has been defined in different ways and to which several
factors contribute (Redeker, 2000), e.g., rhetorical structure (Hobbs, 1979), topics dis-
cussed, and grounding (Traum, 1994).

While much recent work has focused on coherence for response generation (Serban
et al., 2016c; Li et al., 2016a; Yi et al., 2019), we argue that there is still much to be un-
derstood regarding the mechanisms and substructures that affect human perception
of dialogue coherence. In our approach, in particular, we are interested in study-
ing the patterns of distribution of entities and Dialogue Acts (DAs), in regards to
dialogue coherence.
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Approaches to coherence based on entities have been studied extensively by the Nat-
ural Language Processing literature (Joshi and Kuhn, 1979; Grosz, Weinstein, and
Joshi, 1995), especially in text (e.g., news, summaries). Coherence evaluation tasks
proposed by this literature (Barzilay and Lapata, 2008) have the advantage of us-
ing weakly supervised training methodologies, but mainly considering documents
as-a-whole, rather than evaluating coherence at the utterance level. The dialogue
literature (Sacks and Jefferson, 1995; Schegloff, 1968), on the other hand, has focused
mainly on coherence in connection to DAs, a generalized version of intents in di-
alogue (e.g., yes-no-question, acknowledgement). In section 5.1, in particular, showed
the importance of both DAs and entities information for coherence modeling in dia-
logue. However, even in this case dialogue coherence was rated for entire dialogues
rather than studying turn coherence structures.

In this Section, we investigate underlying conversation turn substructures in terms
of DA and entity transitions to predict turn-by-turn coherence in dialogue. We start
by annotating a corpus of spoken open-domain conversations with turn coherence
ratings, the Switchboard Coherence corpus (SWBD-Coh)4, and perform an analysis
of the human perception of coherence in regards to DAs and entities. A multiple
regression analysis shows the importance of both types of information for human
rating of coherence. Secondly, we present novel neural models for turn coherence
rating that combine DAs and entities and propose to train them using response se-
lection, a weakly supervised methodology. While previous work on response selec-
tion (Lowe et al., 2017b; Yoshino et al., 2019) is mainly based on using the entire text
as input, we deliberately choose to use only entities and DAs as input to our models,
in order to investigate entities and DAs as a signal for turn coherence. Finally, we
test our models on the SWBD-Coh dataset to evaluate their ability to predict turn
coherence scores 5.

The main contributions of this work are:

• creating the Switchboard Coherence corpus, a novel human-annotated resource
with turn coherence ratings in non-task-oriented open-domain spoken conver-
sation;
• investigating human perception of coherence in spoken conversation in rela-

tion to entities and DAs and their combination;
• proposing novel neural coherence models for dialogue relying on entities and

DAs;
• exploring response selection as a training task for turn coherence rating in di-

alogue.

5.2.2 Related work

Coherence evaluation in text Coherence models trained with weakly supervised
methodologies were first proposed for text with applications to the news domain
and summarization (Barzilay and Lapata, 2008). These models rely on the entity
grid, a model that converts the entities (Noun Phrases) mentioned in the text to a
sentence-by-sentence document representation in the form of a grid. The tasks on
which coherence models in this line of research are usually evaluated are sentence or-
dering (Barzilay and Lapata, 2008), i.e., ranking original documents as more coherent

4The Switchboard Coherence corpus is available for download at: https://github.com/alecervi/
switchboard-coherence-corpus

5The code for the models presented here can be found at: https://github.com/alecervi/
turn-coherence-rating

https://github.com/alecervi/switchboard-coherence-corpus
https://github.com/alecervi/switchboard-coherence-corpus
https://github.com/alecervi/turn-coherence-rating
https://github.com/alecervi/turn-coherence-rating
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than the same documents with the order of all sentences randomly permuted, and
insertion, i.e., ranking original documents as more coherent than documents with
only one sentence randomly misplaced. These tasks are still considered standard
to this day and found wide applications, especially for text (Farag, Yannakoudakis,
and Briscoe, 2018; Clark, Ji, and Smith, 2018). Recent models proposed for these
tasks are based on Convolutional Neural Networks (Nguyen and Joty, 2017), also
applied to thread reconstruction (Joty, Mohiuddin, and Nguyen, 2018), while the
current State-of-the-art is based on a combination of bidirectional Long Short-Term
Memory encoders and convolution-pooling layers (Moon et al., 2019). These tasks,
however, consider documents as-a-whole and rely mainly on entities information.

Coherence evaluation in dialogue Models for dialogue coherence evaluation have
mainly been explored using supervised approaches, i.e., training on corpora with
human annotations for coherence, mostly at the turn level (Higashinaka et al., 2014;
Gandhe and Traum, 2016; Venkatesh et al., 2018; Lowe et al., 2016; Yi et al., 2019).
Different approaches tried to apply the standard coherence tasks to conversational
domains such as dialogue and threads, but mainly considering the evaluation of
dialogues as-a-whole (Purandare and Litman, 2008; Elsner and Charniak, 2011a;
Vakulenko et al., 2018; Joty, Mohiuddin, and Nguyen, 2018; Mesgar, Bücker, and
Gurevych, 2020; Zhou, Lan, and Wang, 2019). In particular, in section 5.1 we found
that discrimination might be over-simplistic for dialogue coherence evaluation when
considering Dialogue Act (DA) information. In this work, we propose a novel frame-
work to model entities and DAs information for turn coherence prediction using a
weakly supervised training methodology. Furthermore, our focus is on predicting
coherence of single turns rather than entire dialogues.

Response Selection As a task, response selection has become a standard (Lowe et al.,
2017b; Yoshino et al., 2019; Kumar, Agarwal, and Joshi, 2019) for training both task-
oriented and non-task-oriented retrieval-based dialogue models. The task proved
to be useful for evaluating models in task-oriented (Ubuntu), social media threads
(Twitter Corpus), and movie dialogues (SubTle Corpus) (Lowe et al., 2016). Recently
the task has also been proposed for pre-training models for task-oriented dialogue
(Henderson et al., 2019) and for Dialogue Act tagging (Mehri et al., 2019). In this
work, we investigate response selection as a task for training coherence rating mod-
els for spoken dialogue. Additionally, while response selection models are usually
based on the entire text as input (Lowe et al., 2017b), we rely solely on entities and
DAs information, in order to investigate their effect on turn coherence perception.

5.2.3 Methodology

In this work, we are interested in the relation between Dialogue Acts (DAs) and
entities and how they can be modelled to train automatic predictors of next turn
coherence in non-task-based dialogue.

Our hypothesis is that both entities and DAs are useful to predict the coherence
of the next turn. In order to verify such hypothesis, we first perform an analysis of
entities and DAs patterns of distribution in the Switchboard Coherence (SWBD-Coh)
corpus, a novel dataset of human-human telephone conversations from Switchboard
annotated with human coherence ratings per turn.

Secondly, we hypothesize that we can model entities and DAs to predict next turn
coherence ratings. Rather than using supervised data for coherence prediction, we
use a weakly supervised training methodology, i.e. training on the task of response



5.2. Turn-level 83

Train Dev Test
Number source dialogues 740 184 231
Number insertion points 7400 1840 2310
Number pos/neg pairs 66600 16560 20790

TABLE 5.5: Train, development and test data size for response selec-
tion for both Internal and External Swap.

selection (which proved useful for other dialogue tasks (Henderson et al., 2019))
and testing on coherence ratings. In response selection given a context, i.e. the his-
tory of the dialogue up to the current turn, and a list of next turn candidates, models
are asked to rank candidates according to their appropriateness with the previous
dialogue history. The positive training samples for this task are automatically gen-
erated by randomly selecting a given turn in a dialogue, and considering this turn
as a positive (coherent) example with the current history of the conversation (the
context). Negative samples are generated by selecting other random dialogue turns,
assuming that they will mostly be not appropriate as the next turn in the dialogue.
In particular, we investigate two methodologies to generate negative samples from
the training data automatically:

• Internal swap: a random turn is selected from a subsequent part of the same
conversation. We assume this task to be harder for coherence evaluation since
typically conversations do not have radical topic shifts.

• External swap: a random turn is selected from other conversations. We assume
this task to be easier given the probable shifts in topic.

In our first set of experiments, we thus train our models on response selection. One
of the possible shortcomings of the data generation procedure used in response se-
lection, however, is the amount of false negatives. Although it is assumed that the
majority of negative samples generated with this methodology will not be appropri-
ate for the context, there could still be cases in which they are.

In order to verify the performance of our models based on DAs and entities to pre-
dict real human coherence judgments, in our second set of experiments models are
tested on SWBD-Coh. Analogously to response selection, in turn coherence rating
models need to rank next turn candidates given the history of the dialogue. In this
case, however, the ranking is not binary but is rather based on a graded coherence
rating given by humans for next turn candidates (for further details on the SWBD-
Coh corpus see Section 5.2.4).

5.2.4 Data

The dataset chosen for our experiments is the Switchboard Dialogue Act corpus
(Stolcke et al., 2000a) (SWBD-DA), a subset of Switchboard annotated with DA infor-
mation. The Switchboard corpus is a collection of human–human dyadic telephone
conversations where speakers were asked to discuss a given topic. This dataset was
chosen both to ensure comparability with previous work on dialogue coherence and
because it is open-domain. Also, this corpus has DA annotations. Interestingly,
SWBD-DA is a real-world (transcribed) spoken corpus, so we have sudden topic
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FIGURE 5.2: A source dialogue (at the center of the figure) is trans-
formed into a grid representation (left) and into a linearized repre-
sentation (right). In the grid representation, entities and Dialogue
Acts (DAs) are transformed into feature vectors and can then be con-
catenated. Our linearized representation, i.e. the input to our neural
models, shows 3 different possibilities: one where we only consider
entity features at the turn level (top-left), another one which considers
only DA features (top-right), and a joined one where DAs and entities

are combined (bottom).

changes, overlap speech, disfluencies and other typical characteristics of spoken in-
teraction. Since our goal was to study coherence in a real-world spoken dialogue
setting, rather than removing these features as errors, we considered them an inte-
gral part of spoken conversations and did not remove them.

Response Selection Source dialogues are split into train, validation, and test sets
(see Table 5.5) using the same distribution as in Section 5.1. For each dialogue, we
randomly choose ten insertion points. Each insertion point is composed by a context
(dialogue history up to that point) and the original turn following that context (re-
garded as positive). In order to have 10 next turn candidates, for each insertion point
9 adversarial turns (regarded as negatives) are then randomly selected either from
subsequent parts of the dialogue, i.e. Internal Swap (IS), or from other dialogues, i.e.
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External Swap (ES), within the same data subset, so that for example external adver-
sarial turns for training are only taken from other source dialogues in the training
set.

Switchboard Coherence corpus The dataset for turn coherence rating, the Switch-
board Coherence corpus (SWBD-Coh), was created using as source dialogues the
ones from SWBD-DA which are in the testset of Section 5.1. The data were anno-
tated using Amazon Mechanical Turk (AMT). 1000 insertion points were randomly
selected, following the constraints that the context (dialogue history up to the orig-
inal turn) could be between 1 and 10 turns length. Since in this task we want to
evaluate the coherence of a given turn with the previous dialogue history, 1 turn of
context was the minimum required. We set the maximum length to 10 turns to re-
duce annotation time. For each insertion point, six adversarial turns were randomly
selected, besides the original one (3 using the IS methodology, 3 using the ES one)
for a total of 7 turn candidates. Overall the SWBD-Coh dataset is thus composed of
7000 pairs (1000 contexts × 7 turns).
Each context and turns pair was annotated by 5 AMT workers with coherence rat-
ings. More specifically, for each dialogue workers were presented with the dialogue
history up to the insertion point and the next turn candidates (randomly shuffled).
Workers were asked to rate on a scale of 1 (not coherent), 2 (not sure it fits) to 3
(coherent) how much each response makes sense as the next natural turn in the dia-
logue. All workers (37) who annotated the dataset were first evaluated on a common
subset of 5 dialogues where they had an average Weighted Kappa agreement with
quadratic weights with two gold (internal) annotators of κ = 0.659 (min: 0.425, max:
0.809, STD: 0.101) and among each other an average leave-one-out correlation of
ρ = 0.78 (i.e. correlating the scores of each worker with mean scores of all other
workers who annotated the same data), following the approach used in other co-
herence rating datasets (Barzilay and Lapata, 2008; Lapata, 2006). 6 Scores for each
candidate turn were then averaged across all annotators. Original turns were re-
garded on average as more coherent (µ = 2.6, SD= 0.5) than adversarial turns, while
turns generated with IS were considered more coherent (µ = 1.8, SD= 0.7) than the
ones generated via ES (µ = 1.4, SD= 0.6). In terms of distribution (prior to averag-
ing), scores were rather polarized: candidates were considered not coherent in 53%
of the cases, coherent in 29%, while the score of 2 (not sure it fits) was given 17% of
the cases.

5.2.5 Data analysis

In this section, we analyse the Switchboard Coherence (SWBD-Coh) dataset in re-
gards to the distribution of Dialogue Acts (DAs) and entities. In particular, we are
interested in analysing which features might affect human judgement of coherence
of a given next turn candidate. For entities, we analyse two features: the number of
entities mentioned in the next turn candidate that overlap with entities introduced
in the context and the number of novel entities introduced in the turn. Additionally,
we create a binary feature for each DA type that registers the presence of that DA in
the turn candidate.

We use multiple regression analysis to verify how these different features correlate
with human coherence ratings. Table 5.6, reports the Multiple Correlation Coeffi-
cient (MCC) of regression models using R squared and Adjusted R squared (Theil,

6More details about our data collection procedure are available in Appendix A.
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MCCR2 MCCAR2

Entities 0.27 0.26
DAs 0.34 0.29
All (Entities + DAs) 0.45 0.41
Relevant features in All Coeff. Sign.
Overlapping entities 0.26 **
DA: decl. yes-no-question -0.48 *
DA: statement-opinion -0.31 **
DA: statement-non-opinion -0.30 **
DA: acknowledge 0.27 **

TABLE 5.6: Multiple Correlation Coefficients (MCC) from R squared
(R2) and Adjusted R squared (AR2) of different multiple regression
models that predict human coherence ratings for candidate turns
given a dialogue context (Next Turn Rating task). Additionally, we
report coefficients and significance (where * denotes .05 ≥p≥ .01 and
** p < .01) of some relevant features for the best-performing model

(All).

1961), adjusted for the bias from the number of predictors compared to the sample
size. The results of our analysis indicate that the best MCC, 0.41 when calculated
with the Adjusted R squared, is achieved when combining all features, both from
entities and DAs. Moreover, in the lower part of Table 5.6 we report some of the fea-
tures that proved to be the most relevant for predicting human coherence ratings. In
general, it seems that while the entities overlapping the previous context seems to af-
fect positively human coherence judgements, the DAs that most affect ratings do so
in a negative way and seem to be mostly contentful DAs, such as statement-opinion,
rather than DAs which typically present no entities, such as acknowledge. Our inter-
pretation is that, in cases when there are no overlapping entities with the context,
these DAs might signal explicit examples of incoherence by introducing unrelated
entities.

5.2.6 Models

We model dialogue coherence by focusing on two features that have been closely
associated to coherence in previous literature: the entities mentioned and the speak-
ers’ intents, modelled as Dialogue Acts (DAs), in a conversation. Our models explore
both the respective roles of entities and DAs and their combination to predict dia-
logue coherence. We investigate both standard coherence models based on Support
Vector Machines (SVM) and propose novel neural ones.

SVM models

The entity grid model (Barzilay and Lapata, 2008) relies on the assumption that tran-
sitions from one syntactic role to another of the same entities across different sen-
tences of a text indicate local coherence patterns. This assumption is formalized by
representing a text (in our case a dialogue) as a grid, as shown in Figure 5.2. For
each turn of the dialogue we extract the entities, i.e. Noun Phrases (NPs), and their
respective grammatical roles, i.e. whether the entity in that turn is subject (S), direct
object (O), neither (X), or it is not present (−). Each row of the grid represents a turn
in the dialogue, while each column represents one entity (in Figure 5.2, for example,
the first turn of speaker A is represented by the first row of the grid O−−). Using
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this representation, we can derive feature vectors to be used as input for Machine
Learning (ML) models by extracting probabilities of all roles transitions for each col-
umn.

More formally, the coherence score of a dialogue D in the entity grid approach can
be modelled as a probability distribution over transition sequences for each entity e
from one grammatical role r to another for all turns t up to a given history h (see Eq.
4 in Lapata and Barzilay (2005)):

pcohEnt(D) ≈ 1
m · n

m

∏
e=1

n

∏
t=1

p(rt,e|r(t−h),e...r(t−1),e) (5.1)

The probabilities for each column (entity) are normalized by the column length n
(number of turns in the dialogue) and the ones for the entire dialogue by the number
of rows m (number of entities in the dialogue). In this way we obtain the feature vec-
tors shown in Figure 5.2 where each possible roles transition of a predefined length
(e.g. O−) is associated to a probability. These feature vectors are then given as input
to a Support Vector Machine (SVM) in the original model.

Following the work presented in Section 5.1, we can use the same approach to con-
struct similar feature vectors for DAs information:

pcohDA(D) ≈ 1
n

n

∏
i=1

p(di|d(i−h)...d(i−1)) (5.2)

Here the coherence score of a dialogue is given by the probability of the entire se-
quence of DAs (d) for the whole dialogue, normalized by column length (n), i.e. the
number of DAs for each turn.

The joint model, the one combining entity and DA information 7, simply concate-
nates the feature vectors obtained from both. While other ways of combining DA
and entities have been explored in Section 5.1, we found that practically a simple
concatenation resulted in the best performances across all tasks probably due to data
sparsity issues.

Indeed among the limitations of the entity grid there is data sparsity: for example
for an entity appearing only in the last turn of a dialogue we need to add a column
to the grid which will be mostly containing “empty” −− transitions (see friends in
Figure 5.2). Another problem of this approach is the fact that the model is not lexical-
ized, since we only keep role transitions when computing the feature vectors for the
entities. Furthermore, the model makes the simplifying assumption that columns,
thus entities, are independent from each other.

Neural models

Our neural coherence models for dialogue are based on bidirectional Gated Recur-
rent Units (biGRU). While other neural coherence models (Nguyen and Joty, 2017;
Joty, Mohiuddin, and Nguyen, 2018) rely directly on the grid representation from
Barzilay and Lapata (2008), we explore a novel way to encode the dialogue struc-
ture. The input to our biGRUs is a sequential representation of the dialogue.

7The model is referred as SVM entrole gridturn + DA in Section 5.1.
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Sequential input representation We linearize the structure of a dialogue com-
posed by entities, DAs and turns into flat representations for our neural models,
as shown in Figure 5.2. These representations can then be mapped to an embedding
layer and be joined via concatenation.

In particular we consider three cases: (i) the case in which we model entity features;
(ii) the one in which we consider DAs information; (iii) the one in which we combine
both.

Entities encodings In our approach, entities are Noun Phrases, as in the entity grid
approach. For each dialogue, we consider the sequence of entities ordered accord-
ing to their appearance in the conversation (see Figure 5.2). Entities are represented
either by their grammatical roles entrole in the dialogue (using the same role vocab-
ulary Vr of the original grid), their corresponding words entword (from a vocabulary
Vw), or by both. Another feature which can be added to this representation is the
turn (whether A or B is talking). This feature could be useful to encode the dyadic
structure of the dialogue and how this might be related to entity mentions. In order
to better encode the boundaries of speaker turns, turns are mapped to the IOB2 for-
mat (where the Outside token is removed because naturally never used for turns),
for a resulting turn vocabulary Vt size of 4 tags (2 speakers x 2 IOB tags used). Spe-
cial tokens (<no_ent>) are added to both Vw and Vr for cases in which turns do not
present any entities.

DAs encodings In case we consider only DAs features, our input representation
becomes a sequence of DAs for the whole dialogue history so far, drawn from a
vocabulary Vd. Also in this case turn features can be added to mark the turn-wise
structure of the DA sequence, using the same vocabulary Vt previously described.

Entities + DAs encodings We combine entities and DAs by considering the sequence
of entities in order of their appearance within each DA and encoding DAs into IOB2
format, as previously done for turn features. In this setting, thus, the vocabulary Vd
has double the size, compared to the setting where we consider only DAs. Analo-
gously to previous settings, turn features can be added to encode turn boundaries.

It can be noticed how our representation is less sparse compared to both the original
grid (Barzilay and Lapata, 2008) and recently proposed models (Nguyen and Joty,
2017), which take as input grid columns directly. Furthermore, compared to the
original grid our representation is lexicalized.

Architecture The architecture of our models is shown in Figure 5.3. In the first
layer of the network each input feature (entrole, entword, DA, turn) is mapped to a
d-dimensional dense vector by looking up into their respective embedding matrix
E, one per feature type. All features vectors obtained can then be combined using
concatenation. This vector is then recursively passed to the bidirectional GRU layers
and then to a mean pooling layer. Finally, the output is passed through a feed-
forward neural network with one hidden layer and ReLU as non-linearity.

Our models are trained using a Margin-ranking loss with a margin of 0.5 using the
following equation:

loss(x, y) = max(0,−y ∗ (x1− x2) + margin) (5.3)

where x1 and x2 are respectively the original dialogue and the adversarial one and
y = 1. In this way, the model is asked to rank the original dialogue higher (more
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FIGURE 5.3: Our proposed architecture based on bidirectional GRUs
with input entity word embedding (entword) and grammatical role

(entrole), Dialogue Act (DA) and speaker turn features.

coherent) than the adversarial one. The model is trained by Stochastic Gradient
Descent, using the Adam update rule (Kingma and Ba, 2015).

5.2.7 Experimental set-up

Preprocessing Entities, i.e. Noun Phrases (NPs), and their syntactic roles were ex-
tracted and preprocessed with the pipeline presented in Section 5.1. Following the
original entity grid formulation (Barzilay and Lapata, 2008), only NPs heads were
kept. The DAs are taken from annotations on SWBD-DA (using the standard reduc-
tion to 42 tags compared to the DAMSL ones).

Evaluation For evaluating response selection, we use pairwise Accuracy, the met-
ric used in standard coherence tasks, which evaluates the ability of the model to rank
original turns higher than each adversarial one. However, this metric is not indica-
tive of the global ranking of all candidate turns for a given context. For this reason,
we add two ranking metrics to evaluate our models: Mean Reciprocal Rank (MRR),
which evaluates the average of reciprocal ranks of all candidate turns for a context,
and Recall at One (R@1) and Two (R@2), also used in previous work on response
selection (Lowe et al., 2017b; Zhou et al., 2018) to assess the ability of the model to
rank original turns respectively within the first or second rank among all candidates.
Compared to response selection, where we have a binary choice between coherent
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Internal Swap External Swap
Acc. MRR R@1 R@2 Acc. MRR R@1 R@2

Random 50.0 0.293 0.099 0.198 50.0 0.293 0.099 0.198
SVM entrole (Entity Grid) 36.6 0.260 0.103 0.178 39.5 0.246 0.096 0.126
SVM DA 60.6 0.398 0.206 0.335 61.3 0.403 0.212 0.346
SVM entrole + DA 62.7 0.417 0.222 0.365 64.3 0.437 0.251 0.380
biGRU entrole 41.8 0.294 0.120 0.217 45.5 0.293 0.117 0.210
biGRU entrole + turn 43.3 0.295 0.120 0.214 45.9 0.293 0.115 0.211
biGRU entword 47.8 0.324 0.151 0.252 56.4 0.397 0.236 0.337
biGRU entword + turn 49.0 0.331 0.162 0.255 56.9 0.400 0.241 0.341
biGRU entrole + entword + turn 48.6 0.327 0.156 0.253 56.1 0.394 0.232 0.338
biGRU DA 72.4 0.484 0.276 0.443 72.6 0.486 0.278 0.447
biGRU DA + turn 74.0 0.501 0.297 0.464 74.1 0.508 0.305 0.475
biGRU entword + DA + turn 75.1 0.520 0.321 0.484 77.3 0.550 0.355 0.530
biGRU all 75.0 0.521 0.321 0.489 77.2 0.549 0.354 0.529

TABLE 5.7: Average (5 runs) of Accuracy (Acc.), Mean Reciprocal
Rank (MRR) and Recall at one (R@1) and two (R@2) for response se-
lection using both data generation methodologies (Internal and Ex-

ternal Swap) on Switchboard.

and negative turns, in turn coherence rating, we have a set of candidate turns each
associated to a coherence score. In this case, we use Accuracy, MRR, R@1 and Nor-
malized Discounted Cumulative Gain (nDCG) to evaluate our models. Accuracy
was computed only for cases in which the rating of the turn was not identical across
two candidate turns. MRR and R@1 were computed dynamically, that is considering
the turn with the highest score within that particular context as the best one in the
rank. The nDCG metric (Järvelin and Kekäläinen, 2002) assesses the gain of a can-
didate according to its rank among all candidates. Compared to previous metrics,
nDCG allows taking into account the relevance (in our case, the coherence score) of
candidates. For all metrics considered, if our models predicts the same score for two
candidates, we always assume models made a mistake, i.e. among candidates with
the same predicted score positive examples are ranked after the negative ones.

Models’ settings Grid models, based on SVMs, were trained with default param-
eters using SVMlight preference kernel (Joachims, 2002)) as in the original model
(Barzilay and Lapata, 2008). For saliency, i.e. the possibility of filtering entities
according to their frequency, and transitions length we follow the default original
grid parameters (saliency:1, transitions length:2). For neural models, implemented
in Pytorch (Paszke et al., 2019), parameters were kept the same across all models
to ensure comparability. The learning rate was set to 0.0005, batch size to 32, with
two hidden biGRU layers of size 512. Embedding sizes for all features were set to
50–dimensions, except for word embeddings which had dimension 300. Models run
for a maximum of 30 epochs with early stopping, based on the best MRR score on
the development set.

5.2.8 Results

In this section, we report the results of our models for response selection. The best
performing models on response selection are then evaluated on the turn coherence
rating task using the Switchboard Coherence (SWBD-Coh) corpus as testset. For
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Train Acc. MRR R@1 nDCG
Random 50.0 0.479 0.234 0.645
biGRU IS 42.7 0.395 0.174 0.621
entword + turn ES 50.4 0.444 0.229 0.679
biGRU IS 56.0 0.553 0.326 0.717
DA + turn ES 56.0 0.558 0.337 0.725
biGRU IS 58.5 0.575 0.358 0.738
entword + DA + turn ES 61.1 0.583 0.369 0.760

TABLE 5.8: Average (5 runs) of Accuracy (Acc.), Mean Reciprocal
Rank (MRR), Recall at one (R@1) and Normalized Discounted Cu-
mulative Gain (nDCG) for turn coherence rating for models trained
using either Internal (IS) or External Swap (ES) on the Switchboard

Coherence corpus.

both tasks we compare our models to a random baseline. All reported results for
neural models are averaged across 5 runs with different seeds.

Response selection The results for response selection are reported in Table 5.7.
Neural models seem to capture better turn-level coherence compared to classic grid
SVM-based approaches. In both data generation methodologies, Internal (IS) and
External Swap (ES), SVM coherence models are outperformed by neural ones for
all metrics considered. As expected, entity features (entrole, entword) play a more
prominent role in ES compared to IS. In both cases, entity features seem to be bet-
ter captured by neural models relying on our proposed input representation. When
considering lexical information (entword), however, entrole features seem less relevant.
This might be due to the fact that spoken dialogue has usually less complex syntac-
tic structures compared to written text. Furthermore, parsers are usually trained on
written text, and thus might be more error-prone when applied to dialogue where
there are disfluencies, sudden changes of topics, etc. We notice that DAs alone (with-
out entity information) play an important role in both IS and ES. Turn features cap-
turing speaker information seem helpful for both DAs and entities.
In general, the combination of DAs and entities gives the best results both in SVM
and neural models for both tasks, with the best performing one being the model
combining entword, DA and turn features and without entrole. Additionally, if we
compare the IS setting to ES in terms of best MRR, Accuracy and Recall, the former
seems more difficult. This confirms our expectations that IS might be an harder task
for coherence.

Turn coherence rating A selection of best performing models for entities, DAs and
their combination were tested on the SWBD-Coh dataset. Table 5.8 shows models’
results under both training conditions, i.e. either using IS or ES data. The lowest
performing model seems to be the one based solely on entity features (entword + turn),
while models combining DA with entities information (entword + DA + turn) are the
best performing ones. Additionally, models trained on ES data perform better than
those trained on IS across all conditions.
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Models ranks
Context Score Candidates Ent DA Ent+DA

A: Okay.
B: Well, if you are from Iowa,
you must be very artsy crafty.
Everyone I’ve ever known from the Midwest
can do everything with their hands.
A: Oh, well, actually I’m from California
and before then I was from Utah. So.

3.0 I didn’t know anyone ever moved from California to Iowa? 1 4 1

2.6
Anyway, we are supposed to be talking about crafts. Do you, um,
do you have any hobbies that, that you do things with your hands

2 2 2

2.2 Right. 4 3 3
2.2 Uh-huh. 4 3 3
2.0 Oh, sure. 4 3 3
1.2 bags some, their most recent, uh, needle craft 3 4 4
1.0 at least at the end. 5 1 5

TABLE 5.9: Example of how different models relying only on entities
(biGRU entword + turn), only on DAs (biGRU DA + turn) or both (bi-
GRU entword + DA + turn) rank the same group of candidates for a

given context.

5.2.9 Qualitative analysis

Table 5.9 shows an example of the ranking given by different models to the same
context-candidates pairs in the SWBD-Coh corpus, compared to the average coher-
ence score given by annotators. In particular, we report the ranking given by a model
based solely on entities information (biGRU entword + turn), another one considering
only DAs (biGRU DA + turn) and a third one considering both types of information
(biGRU entword + DA + turn). All models were trained on response selection using
the External Swap methodology. The models output is reported in terms of position
in the rank. Entities appearing in the text are highlighted in bold.

In this example we notice entities overlap information with the previous context
proves rather important in order to rank candidates according to coherence. For ex-
ample, to rank the candidate with the highest coherence as the first one (I didn’t know
anyone ever moved from California to Iowa?) information regarding the overlapping en-
tities California and Iowa allows the models encoding entities information to assign
the correct rank, while the model relying only on DAs gives the candidate the fourth
position in the rank. We also notice how both annotators and all models assign very
close or the same middle rank scores to three very similar candidates (Right, Uh-huh
and Oh, sure.), which indeed all have the same DA (“acknowledgment”).

5.2.10 Conclusions

In this Section, we investigate how entities and Dialogue Acts (DAs) are related to
human perception of turn coherence in dialogue. In order to do so, we create a
novel dataset, the Switchboard Coherence (SWBD-Coh) corpus, of transcribed open-
domain spoken dialogues annotated with turn coherence ratings. A statistical anal-
ysis of the corpus confirms how both entities and DAs affect human judgements of
turn coherence in dialogue, especially when combined. Motivated by these findings,
we experiment with different models relying on entities and DAs to automatically
predict turn coherence, i.e. standard coherence models and novel neural ones. In
particular, we propose a less sparse alternative, compared to the entity grid, to en-
code entities and DAs information. Rather than using data annotated explicitly for
the task, i.e. coherence prediction, we explore two response selection methodologies
for training. We find that our newly proposed architecture outperforms standard
ones in response selection. Finally, we test our models on the SWBD-Coh corpus
in order to evaluate their ability to predict real human turn coherence ratings. Cru-
cially, we find that the combination of DAs and entities gives the best performances.

For the future work, it would be interesting to investigate how to apply large pre-
trained models to our task, such as BERT (Devlin et al., 2019). While pretrained
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models have recently been successfully explored for text-based response selection
(Kim et al., 2019; Henderson et al., 2019), integrating them with our proposed input
representation is not a straightforward task since such models typically rely on the
whole textual context, while our models do not.

While there is still much to understand regarding turn coherence in dialogue, we
believe our work could be a first step towards uncovering the relation between DAs
and entities in open-domain spoken dialogue. Moreover, we believe that the SWBD-
Coh corpus could become a useful resource for the community to study coherence
in open-domain spoken dialogue.

5.3 Summary

This Chapter was dedicated to weakly supervised methodologies for training co-
herence models for open-domain conversation relying on Dialogue Act (DA) and
entities information.

In the first part of the Chapter, we experimented with standard coherence tasks typ-
ically used for text, which involve evaluating the coherence of entire conversations.
In particular, we proposed to augment entity-based models with Dialogue Act (DA)
information, in order to combine the thematical aspect of coherence with the in-
tentional structure of dialogue. We proposed various models, relying on different
input representations combining DA and entity information, which could be used
also independently of the ML model used (for example one of these representations
is used in Section 6.2). Our experiments on conversation-level standard coherence
tasks point to the importance of DA information for coherence rating. However, we
also found that standard coherence tasks might be less useful to assess dialogue co-
herence, both from an application perspective and considering the role played by
DA information.

The second part of the Chapter is then dedicated to turn-level coherence modeling
in open-domain dialogue, which we argue could have more real-world applications
for conversational AI applications (i.e. Dialogue Management, response ranking,
turn evaluation) compared to standard coherence tasks. Our aim was to investi-
gate human perception of turn coherence in relation to entity and DA patterns of
distribution. In order to do so, we presented a novel resource of open-domain di-
alogue annotated with turn coherence ratings, the Switchboard Coherence corpus.
We performed a statistical analysis of the resource and found that DA and entity
information correlates with human judgment of turn coherence. Consequently, we
explored the possibility of modelling DA and entity information for training turn co-
herence rankers. We proposed neural coherence models relying on novel linearised
representations of the structure of conversations using entities and DAs. From a
methodological perspective, we proposed to use response selection as a weakly su-
pervised training task and then test models on turn coherence rating. The results
of our experiments on turn coherence rating indicate that DAs and entities play a
crucial role in coherence assessment, especially when combined.
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Chapter 6

Supervised approaches for
open-domain dialogue evaluation

In this Chapter, we present evaluation models for open-domain dialogue using su-
pervised approaches, that is relying on annotated corpora. While in the previous
Chapter the resources used were collected within research projects mainly in some-
what controlled environments (Switchboard, MapTask), the work presented in this
Chapter relies on human-machine interactions collected during the Alexa Prize, in
a noisier environment (users could be virtually anyone and had the possibility of
ending the conversation whenever they wanted).

In the first part of the Chapter1, we present models to evaluate the quality of entire
conversations relying on a combination of DA and topic representations using as
a supervised signal the user ratings obtained by Roving Mind, the open-domain
CA presented in Chapter 3, during the Alexa Prize competition. In the second part
of the Chapter2, we propose models relying on combination of features including
DA and entity information to predict turn level coherence and engagement, using a
larger dataset of interactions between users and different dialogue models collected
during the Alexa Prize competition.

6.1 Conversation-level

6.1.1 Introduction

We are currently witnessing a proliferation of conversational agents in both industry
and academia. Nevertheless, core questions regarding this technology remain to be
addressed or analysed in greater depth. This work focuses on one such question:
can we automatically predict user ratings of a dialogue with a conversational agent?

Metrics for task-oriented systems are generally related to the successful completion
of the task. Among these, contextual appropriateness (Danieli and Gerbino, 1995)
evaluates, for example, the degree of contextual coherence of machine turns with re-
spect to user queries which are classified with ternary values for slots (appropriate,
inappropriate, and ambiguous). The approach is somewhat similar to the attribute-
value matrix of the popular PARADISE dialogue evaluation framework (Walker et
al., 1997), where there are matrices representing the information exchange require-
ments between the machine and users towards solving the dialogue task, as a mea-
sure of task success rate.

1Section 6.1 is based on Cervone et al., 2018.
2Section 6.2 is based on Yi et al., 2019.
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Unlike task-oriented systems, non-task-oriented conversational agents (also known
as chitchat models) do not have a specific task to accomplish (e.g. booking a restau-
rant). The goal of chitchat models could arguably be defined as the conversation
itself, i.e. the entertainment of the human it is conversing with. Thus, human judg-
ment is still the most reliable evaluation tool we have for such models. Collecting
user ratings for a system, however, is expensive and time-consuming.

In order to deal with these issues, researchers have been investigating automatic
metrics for non task-oriented dialogue evaluation. The most popular of these met-
rics (e.g. BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005)) rely
on surface text similarity (word overlaps) between machine and reference responses
to the same utterances. Notwithstanding their popularity, such metrics are hardly
compatible with the nature of human dialogue, since there could be multiple ap-
propriate responses to the same utterance with no word overlap. Moreover, these
metrics correlate weakly with human judgments (Liu et al., 2016).

Recently, a few studies proposed metrics having a better correlation with human
judgment. ADEM (Lowe et al., 2017a) is a model trained on appropriateness scores
manually annotated at the response-level. (Venkatesh et al., 2018) and (Guo et al.,
2017a) combine multiple metrics, each capturing a different aspect of the interaction,
and predict conversation-level ratings. In particular, (Venkatesh et al., 2018) shows
the importance of metrics such as coherence, conversational depth and topic diver-
sity, while (Guo et al., 2017a) proposes topic-based metrics. However, these studies
require extensive manual annotation on top of conversation-level ratings.

In this work, we investigate non task-oriented dialogue evaluation models trained
without relying on any further annotations besides conversation-level user ratings.
Our goal is twofold: investigating conversation features which characterize good
interactions with a conversational agent and exploring the feasibility of training a
model able to predict user ratings in such context.

In order to do so, we utilize a dataset of non task-oriented spoken conversations
between Amazon Alexa users and Roving Mind, the open-domain system for the
Amazon Alexa Prize Challenge 2017 (Ram et al., 2017) described in Chapter 3. As an
upper bound for the rating prediction task, we re-annotate a sample of the corpus us-
ing experts and analyse the correlation between expert and user ratings. Afterwards,
we analyse the entire corpus using well-known automatically extractable features
(user sentiment, Dialogue Acts (both user and machine), conversation length and
average user turn length), which show a low, but still significant correlation with
user ratings. We show how different combinations of these features together with a
LSA representation of the user turns can be used to train a regression model whose
predictions also yield a low, but significant correlation with user ratings. Our re-
sults indicate the difficulty of predicting how users might rate interactions with a
conversational agent.

6.1.2 Data Collection

The dataset analysed in this Section was collected over a period of 27 days during
the Alexa Prize 2017 semifinals and consists of conversations between our system
Roving Mind and Amazon Alexa users of the United States. The users could end
the conversation whenever they wanted, using a command. At the end of the in-
teraction users were asked to rate a conversation on a 1 (not satisfied at all) to 5
(very satisfied) Likert scale. Out of all the rated conversations, we selected the ones
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FIGURE 6.1: Distribution of user and expert ratings on the annotated
random sample of 100 conversations (test set) compared to the dis-
tribution of ratings in the entire dataset (“All ratings”). For clarity
of presentation, from the latter we excluded the small portion of non

integer ratings (2.3% of the dataset).

longer than 3 turns to yield 4,967 conversations. Figure 6.1 shows the distribution
(in percentages) of the ratings in our dataset. The large majority of conversations are
between a system and a “first-time” users, as only 5.25% of users had more than one
conversation.

6.1.3 Methodology

In this section we describe conversation representation features, experimentation,
and evaluation methodologies used in this Section.

6.1.4 Conversation Representation Features

Since in the competition the objective of the system was to entertain users, we expect
the ratings to reflect how much they have enjoyed the interaction. User “enjoyment”
can be approximated using different metrics that do not require manual annotation,
such as conversation length (in turns), mean turn length (in words), assuming that
the more users enjoy the conversation the longer they talk; sentiment polarity – hy-
pothesizing that enjoyable conversations should carry a more positive sentiment.
While length metrics are straightforward to compute, the sentiment score is com-
puted using a lexicon-based approach (Kennedy and Inkpen, 2006).

Another representation that could shed a light on enjoyable conversations is Dia-
logue Acts (DA) of user and machine utterances. DAs are frequently used as a
generic representation of intents and the considered labels often include thanking,
apologies, opinions, statements and alike. Relative frequencies of these tags potentially
can be useful to distinguish good and bad conversations. The DA tagger we use
is the one described in Chapter 4 trained on the Switchboard Dialogue Acts corpus
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(Stolcke et al., 2000a), a subset of Switchboard (Godfrey, Holliman, and McDaniel,
1992) annotated with DAs (42 categories), using Support Vector Machines. The user
and machine DAs are considered as separate vectors and assessed both individually
and jointly.

Additional to Dialogue Acts, sentiment and length features, we experiment with
word-based text representation to insert information about the topic of the conver-
sation. Latent Semantic Analysis (LSA) is used to convert a conversation to a vec-
tor. First, we construct a word-document co-occurrence matrix and normalize it.
Then, we reduce the dimensionality to 100 by applying Singular Value Decomposi-
tion (SVD).

6.1.5 Correlation Analysis Methodology

The two widely used correlation metrics are Pearson correlation coefficient (PCC)
and Spearman’s rank correlation coefficient (SRCC). While the former evaluates the
linear relationship between variables, the latter evaluates the monotonic one.

The metrics are used to assess correlations of different conversation features, such as
sentiment score or conversation length, with the provided human ratings for those
conversations; as well as to assess the correlation of the predicted scores of the re-
gression models to those ratings. For the assessment of the correlation of both fea-
tures and regression models raw rating predictions are used.

6.1.6 Prediction Methodology

Using the conversation features described above, we train regression models to pre-
dict human ratings. We experiment with both Linear Regression and Support Vec-
tor Regression (SVR) with radial basis function (RBF) kernel using scikit-learn (Pe-
dregosa et al., 2011). Since the latter consistently outperforms the former, we report
only the results for the SVR. The performance of the regression models is evaluated
using the standard metrics of Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE). Additionally, we compute Pearson and Spearman’s Rank Correlation
Coefficients for the predictions with respect to the reference human ratings.

We experiment with the 10-fold cross-validation setting. The performance of the re-
gression models is compared to two baselines: (1) mean baseline, where all instances
in the testing fold are assigned as a score the mean of the training set ratings, and (2)
chance baseline, where an instance is randomly assigned a rating from 1 to 5 with re-
spect to their distribution in the training set. The models are compared for statistical
significance to these baselines using paired two-tail T-test with p < 0.05. In Section
6.1.9 we report average RMSE and MAE as well as average correlation coefficients.

6.1.7 Upper bound

Since human ratings are inherently subjective, and different users can rate the same
conversation differently, it is difficult to expect the models to yield perfect correla-
tions or very low RMSE and MAE. In order to test this hypothesis two human ex-
perts (members of our Alexa Prize team) were asked to rate a random subset of the
corpus (100 conversations). The rating distributions for both experts and users on
the sample is reported in Figure 6.1. We observe that expert ratings tend to be closer
to the middle of the Likert scale (i.e. from 2 to 4), while users had more conversations
with ratings at both extremes of the scale (i.e. 1 and 5).
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RMSE MAE PCC SRCC
Exp 1 vs. Exp 2 0.875 0.660 0.705 0.694
Exp 1 vs. Users 1.225 0.966 0.538 0.526
Exp 2 vs. Users 1.286 1.016 0.401 0.370

TABLE 6.1: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Pearson (PCC) and Spearman’s rank (SRCC) correlation coef-

ficients among user and expert ratings.

Feature PCC SRCC
Conversation Length 0.133** 0.111**
Av. User Turn Length -0.068** -0.079**
User Sentiment 0.071** 0.088**

User Dialogue Acts
yes-answer 0.081** 0.088**
appreciation 0.070** 0.115**
thanking 0.062** 0.089**
action-directive -0.069** -0.052**
statement-non-opinion 0.050** 0.037**
...

Machine Dialogue Acts
yes-no-question 0.042** 0.038**
statement-opinion -0.027** -0.032**
...

TABLE 6.2: Pearson (PCC) and Spearman’s rank (SRCC) correlation
coefficients for conversation lengths, sentiment score, and user and
machine Dialogue Acts. Correlations significant with p < 0.05 are

marked with * and p < 0.01 with **.

The RMSE, MAE and Pearson and Spearman’s rank correlation coefficients of ex-
pert and user ratings are reported in Table 6.1. We observe that the experts tend to
agree with each other more than they agree individually with users, since compared
to each other the experts have the highest Pearson and Spearman correlation scores
(0.705 and 0.694, respectively) and the lowest RMSE and MAE (0.875 and 0.660, re-
spectively). The fact that expert ratings do not correlate with user ratings as well
as they correlate among themselves, confirms the difficulty of the task of predicting
subjective user ratings even for humans.

6.1.8 Correlation Analysis Results

The results of the correlation analysis are reported in Table 6.2. From the table, we
can observe that conversation length has a positive correlation with human judg-
ment, while the average user turn length has a negative correlation. The positive
correlation with conversation length confirms the expectation that users tend to have
longer conversations with the system when they enjoy it. The negative correlation
with average user turn length, on the other hand, is unexpected. As expected, senti-
ment score has a significant positive correlation with human judgments.

Due to the space considerations, we report only a portion of the DAs that have signif-
icant correlations with human ratings. The analysis confirms our expectations that
user DAs, such as thanking and appreciation, have significant positive correlations.



100 Chapter 6. Supervised approaches for open-domain dialogue evaluation

RMSE MAE PCC SRCC
BL: Chance 1.967* 1.535* 0.007** 0.023**
BL: Mean 1.382* 1.189* N/A N/A
Lengths 1.400* 1.116* 0.153** 0.158**
Sentiment 1.423* 1.128* 0.109** 0.122**
DA: user 1.378* 1.106* 0.213** 0,207**
DA: machine 1.418* 1.129* 0.104** 0.099**
DA: user+machine 1.375* 1.106* 0.219** 0.211**
LSA 1.350* 1.075* 0.299** 0.288**
All - LSA 1.366* 1.100* 0.240** 0.230**
All 1.350* 1.078* 0.303** 0.290**

TABLE 6.3: 10 fold cross-validation average Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Pearson (PCC) and Spearman’s
rank (SRCC) correlation coefficients for regression models. RMSE and
MAE significantly better than the baselines are marked with *. Corre-
lations significant with p < 0.05 are marked with * and p < 0.01 with

**.

We also observe that the action-directive DA has a negative correlation. Since this DA
label covers the turns where a user issues control commands to the system, we hy-
pothesize this correlation could be due to the fact that in such cases users were using
a task-oriented approach with our system which was instead designed for chitchat
and might therefore feel disappointed (e.g. requesting the Roving Mind system to
perform actions it was not designed to perform, such as playing music).

Regarding machine DAs, we observe that even though some DAs exhibit significant
correlations, overall they are lower than user DAs. In particular, yes-no-question has
a significant positive correlation with human judgments, indicating that some users
appreciate machine initiative in the conversation. The analysis confirms the utility
of length and sentiment features, as well as the importance of some DAs (generic
intents) for estimating user ratings.

6.1.9 Prediction Results

The results of the experiments using 10-fold cross-validation and Support Vector
Regression are reported in Table 6.3. We report performances of each feature rep-
resentation is isolation and their combinations. We consider two baselines – chance
and mean. For the chance baseline an instance is randomly assigned a rating with
respect to the training set distribution. For the mean baseline, on the other hand, all
the instances are assigned the mean of the training set as a rating. The mean base-
line yields better RMSE and MAE scores; consequently, we compare the regression
models to it.

Sentiment and length features (conversation and average user turn) both yield RMSE
higher than the mean baseline and MAE significantly lower than it. Nonetheless,
their predictions have significant positive correlations with reference human ratings.
The picture is similar for the models trained on user and machine DAs alone and
their combination. The RMSE scores are higher or insignificantly lower and MAE
scores are significantly lower than the mean baseline.



6.2. Turn-level 101

For the LSA representation of conversations we consider ngram sizes between 1 and
4. The representation that considers 4-grams and the SVD dimension of 100 yields
better performances; thus, we report the performances of this models only, and use it
for feature combination experiments. The LSA model yields significantly lower error
both in terms of RMSE and MAE. Additionally, the correlation of the predictions is
higher than for the other features (and combinations).

The regression model trained on all features but LSA, yields performances signifi-
cantly better than the mean baseline. However, they are inferior to that of LSA alone.
Combination of all the features retains the best RMSE of the LSA model, but achieves
a little worse MAE score. While it yields the best Pearson and Spearman’s rank cor-
relation coefficients among all the models, the difference from LSA only model is not
statistically relevant using Fisher r-to-z transformation.

6.1.10 Conclusions

In this work we experimented with a set of automatically extractable black-box fea-
tures which correlate with the human perception of the quality of interactions with
a conversational agent. Furthermore, we showed how these features can be com-
bined to train automatic non-task-oriented dialogue evaluation models which corre-
late with human judgments without further expensive annotations.

The results of our experiments and analysis contribute to the body of observations
that indicate that there still remains a lot of research to be done in order to un-
derstand characteristics of enjoyable conversations with open-domain non-task ori-
ented agents. In particular, our analysis of expert vs. user ratings suggests that the
task of estimating subjective user ratings is a difficult one, since the same conversa-
tion might be rated quite differently.

6.2 Turn-level

6.2.1 Introduction

Due to recent advances in spoken language understanding and automatic speech
recognition, conversational interfaces such as Alexa, Cortana, and Siri have become
increasingly common. While these interfaces are task oriented, there is an increasing
interest in building conversational systems that can engage in more social conver-
sations. Building systems that can have a general conversation in an open domain
setting is a challenging problem, but it is an important step towards more natural
human-machine interactions.

Recently, there has been significant interest in building non-task-oriented dialogue
models, also known as chatbots (Sordoni et al., 2015; Wen et al., 2015) fueled by the
availability of dialogue data sets such as Ubuntu, Twitter, and Movie dialogs (Lowe
et al., 2015; Ritter, Cherry, and Dolan, 2011; Danescu-Niculescu-Mizil and Lee, 2011).
However, as most chatbots are text-based, work on human-machine spoken dia-
logue is relatively under-explored, partly due to lack of such dialogue corpora. Spo-
ken dialogue poses additional challenges such as automatic speech recognition er-
rors and divergence between spoken and written language.

Sequence-to-sequence (seq2seq) models (Sutskever, Vinyals, and Le, 2014) and their
extensions (Luong, Pham, and Manning, 2015; Sordoni et al., 2015; Li et al., 2015),
which are used for neural machine translation (MT), have been widely adopted for
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dialogue generation systems. In MT, given a source sentence, the correctness of
the target sentence can be measured by semantic similarity to the source sentence.
However, in open-domain conversations, a generic utterance such as “sounds good”
could be a valid response to a large variety of statements. These seq2seq models are
commonly trained on a maximum likelihood objective, which leads the models to
place uniform importance on all user utterance and system response pairs. Thus,
these models usually choose “safe” responses as they frequently appear in the di-
alogue training data. This phenomenon is known as the generic response problem.
These responses, while arguably correct, are bland and convey little information
leading to short conversations and low user satisfaction.

Since response generation systems are trained by maximizing the average likelihood
of the training data, they do not have a clear signal on how well the current conver-
sation is going. We hypothesize that having a way to measure conversational success
at every turn could be valuable information that can guide system response gener-
ation and help improving system quality. Such a measurement may also be useful
for combining responses from various competing systems. To this end, we build a
supervised conversational evaluator to assess two aspects of responses: engagement
and coherence. The input to our evaluators are encoded conversations represented
as fixed-length vectors as well as hand-crafted dialogue and turn level features. The
system outputs explicit scores on coherence and engagement of the system response.

We experiment with two ways to incorporate these explicit signals in response gen-
eration systems. First, we use the evaluator outputs as input to a reranking model,
which are used to rescore the n-best outputs obtained after beam search decoding.
Second, we propose a technique to incorporate the evaluator loss directly into the
conversational model as an additional discriminatory loss term. Using both human
and automatic evaluations, we show that both of these methods significantly im-
prove the system response quality. The combined model utilizing re-ranking and
the composite loss outperforms models using either mechanism alone.

The contributions of this work are two-fold. First, we experiment with various hand-
crafted features and conversational encoding schemes to build a conversational eval-
uation system that can provide explicit turn-level feedback to a response generation
system on the highly subjective task. This system can be used independently to
compare various response generation systems or as a signal to improve response
generation. Second, we experiment with two complementary ways to incorporate
explicit feedback to the response generation systems and show improvement in di-
alogue quality using automatic metrics as well as human evaluation.

6.2.2 Related Works

There are two major themes in this work. The first is building evaluators that allow
us to estimate human perceptions of coherence, topicality, and interestingness of
responses in a conversational context. The second is the use of evaluators to guide
the generation process. As a result, this work is related to two distinct bodies of
work.

Automatic Evaluation of Conversations: Learning automatic evaluation of conver-
sation quality has a long history (Walker et al., 1997). However, we still do not have
widely accepted solutions. Due to the similarity between conversational response
generation and MT, automatic MT metrics such as BLEU (Papineni et al., 2002) and
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METEOR (Banerjee and Lavie, 2005) are widely adopted for evaluating dialog gen-
eration. ROUGE (Lin and Hovy, 2003), which is also used for chatbot evaluation, is a
popular metric for text summarization. These metrics primarily rely on token-level
overlap over a corpus (also synonymy in the case of METEOR), and therefore are not
well-suited for dialogue generation since a valid conversational response may not
have any token-level or even semantic-level overlap with the ground truths. While
the shortcomings of these metrics are well known for MT (Graham, 2015; Espinosa
et al., 2010), the problem is aggravated for dialogue generation evaluation because
of the much larger output space (Liu et al., 2016; Novikova et al., 2017). However,
due to the lack of clear alternatives, these metrics are still widely used for evalu-
ating response generation (Ritter, Cherry, and Dolan, 2011; Lowe et al., 2017a). To
ensure comparability with other approaches, we report results on these metrics for
our models.

To tackle the shortcomings of automatic metrics, there have been efforts to build
models to score conversations. Lowe et al. (2017a) train a model to predict the score
of a system response given a dialogue context. However, they work with tiny data
sets (around 4000 sentences) in a non-spoken setting. Tao et al. (2017) address the ex-
pensive annotation process by adding in unsupervised data. However, their metric
is not interpretable, and the results are also not shown on a spoken setting. Our work
differs from the aforementioned works as the output of our system is interpretable
at each dialogue turn.

There has also been work on building evaluation systems that focus on specific as-
pects of dialog. Li et al. (2016c) use features for information flow, Yu et al. (2016b)
use features for turn-level appropriateness. However, these metrics are based on a
narrow aspect of the conversation and fail to capture broad ranges of phenomena
that lead to a good dialog.

Improving System Response Generation: Seq2Seq models have allowed researchers
to train dialogue models without relying on handcrafted dialogue acts and slot val-
ues. Using maximum mutual information (MMI) (Li et al., 2015) was one of the ear-
lier attempts to make conversational responses more diverse (Serban et al., 2016d;
Serban et al., 2016a). Shao et al. (2017) use a segment ranking beam search to pro-
duce more diverse responses. Our method extends the strategy employed by Shao
et al. (2017) utilizing a trained model as the reranking function and is similar to
Holtzman et al. (2018) but with different kind of trained model.

More recently, there have been works which aim to alleviate this problem by incor-
porating conversation-specific rewards in the learning process. Yao et al. (2016) use
the IDF value of generated sentences as a reward signal. Xing et al. (2017) use top-
ics as an additional input while decoding to produce more specific responses. Li
et al. (2016b) add personal information to make system responses more user spe-
cific.Li, Monroe, and Jurafsky (2017) use distillation to train different models at dif-
ferent levels of specificity and use reinforcement learning to pick the appropriate
system response. Zhou et al. (2017) and Zhang et al. (2018) introduce latent factors
in the seq2seq models that control specificity in neural response generation. There
has been recent work which combines responses from multiple sub-systems (Ser-
ban et al., 2017a; Papaioannou et al., 2017) and ranks them to output the final sys-
tem response. Our method complements these approaches by introducing a novel
learned-estimator model as the additional reward signal.
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6.2.3 Data

The data used in this study was collected during the Alexa Prize (Ram et al., 2017)
competition and shared with the teams who were participating in the competition.
Upon initiating the conversation, users were paired with a randomly selected so-
cialbot built by the participants. At the end of the conversation, the users were
prompted to rate the socialbot quality, from 1–5, with 5 being the highest.

We randomly sampled more than 15K conversations (approximately 160K turns) col-
lected during the competition. These were annotated for coherence and engagement
(See Section 6.2.3) and used to train the conversation evaluators. For training the
response generators, we selected highly-rated user conversations, which resulted in
around 370K conversations containing 4M user utterances and their corresponding
system response. One notable statistic is that user utterances are typically very short
(mean: 3.6 tokens) while the system responses generally are much longer (mean:
23.2 tokens).

Annotations

Asking annotators to measure coherence and engagement directly is a time-consuming
task. We observed that we could collect data much faster if we asked direct “yes”
or “no” questions to our annotators. Hence, upon reviewing a user-chatbot interac-
tion along with the entire conversation to the current turn, annotators3 rated each
chatbot response as “yes” or “no” on the following criteria:

• The system response is comprehensible: The information provided by the
chatbot made sense with respect to the user utterance and is syntactally correct.
• The system response is on topic: The chatbot response was on the same topic

as the user utterance or was relevant to the user utterance. For example, if a
user asks about a baseball player on the LA Dodgers, then the chatbot men-
tions something about the baseball team.
• The system response is interesting: The chatbot response contains informa-

tion which is novel and relevant. For example, the chatbot would provide an
answer about a baseball player and give some additional information to create
a fleshed-out response.
• I want to continue the conversation: Given the current state of the conversa-

tion and the system response, there is a natural way to continue the conversa-
tion. For example, this could be due to the system asking a question about the
current conversation subject.

We use these questions as proxies for measuring coherence and engagement of re-
sponses. The answers to the first two questions (“comprehensible” and “on topic”)
are used as a proxy for coherence. Similarly, the answer to the last two questions
(“interesting” and “continue the conversation”) are used as a proxy for engagement.

6.2.4 Conversation Evaluators

We train conversational response evaluators to assess the state of a given conver-
sation. Our models are trained on a combination of utterance and response pairs
combined with context (past turn user utterances and system responses) along with

3The data was collected through mechanical turk. Annotators were presented with the full context
of the dialogue up to the current turn.
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Model TREC SUBJ STS
Average Embeddings 0.80 0.90 0.45
Transformer 0.83 0.91 0.48
BiLSTM 0.84 0.90 0.45

TABLE 6.4: Sentence embedding performance.

other features, e.g., dialogue acts and topics as described in Section 6.2.5. We ex-
periment with different ways to encode the responses (Section 6.2.4) as well as with
different feature combinations (Figure 6.2).

Sentence Embeddings

We pretrained models that produce sentence embeddings using the ParlAI chitchat
data set (Miller et al., 2017). We use the Quick-Thought (QT) loss (Logeswaran and
Lee, 2018) to train the embeddings. Our word embeddings are initialized with Fast-
Text (Bojanowski et al., 2016) to capture the sub-word features and then fine-tuned.
We encode sentences into embeddings using the following methods:

a) Average of word embeddings (300 dim)

b) The Transformer Network (1 layer, 600 dim) (Vaswani et al., 2017)

c) Concatenated last states of a BiLSTM (1 layer, 600 dim)

The selected dimensions and network structures followed the original paper (Vaswani
et al., 2017). All models were trained with a batch size of 400 using Adam optimizer
with learning rate of 5e-4.

To measure the sentence embedding quality, we evaluate our models on a few stan-
dard classification tasks. The models are used to get sentence representation, which
are passed through feedforward networks that are trained for the following classifi-
cation tasks: (i) Semantic Textual Similarity (STS) (Marelli et al., 2014), (ii) Question
Type Classification (TREC) (Voorhees and Dang, 2003), (iii) Subjectivity Classifica-
tion (SUBJ) (Pang and Lee, 2004). Table 6.4 shows the different models’ performances
on these tasks. Based on this, we choose the Transformer as our sentence encoder as
it was overall the best performing while being fast.

Context

Given the contextual nature of the problem we extracted the sentence embeddings
of user utterances and responses for the past 5 turns and used a 1 layer LSTM with
256 hidden units to encode conversational context. The last state of LSTM is used to
obtain the encoded representation, which is then concatenated with other features
(Section 6.2.5) in a fully-connected neural network.

6.2.5 Features

Apart from sentence embeddings and context, the following features are also used:

• Dialogue Act: Serban et al. (2017a) show that Dialogue act (DA) features could
be useful for response selection rankers. Following this, we use model (Khatri
et al., 2018)-predicted DAs (Stolcke et al., 1998) of user utterances and system
responses as an indicator feature.
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FIGURE 6.2: Conversation Evaluators

• Entity Grid: In Section 5.1 we showed that entities and DA transitions across
turns can be strong features for assessing dialogue coherence. Starting from
a grid representation of the turns of the conversation as a matrix (DAs × en-
tities), these features are designed to capture the patterns of topic and intent
shift distribution of a dialog. We employ the same strategy for our models.

• Named Entity (NE) Overlap: We use named entity overlap between user ut-
terances and their corresponding system responses as a feature. Our named
entities are obtained using SpaCy4. Papaioannou et al. (2017) have also used
similar NE features in their ranker.

• Topic: We use a one-hot representation of a dialogue turn topic predicted by a
conversational topic model (Guo et al., 2017b) that classifies a given dialogue
turn into one of 26 pre-defined classes like Sports and Movies.

• Response Similarity: Cosine similarity between user utterance embedding
and system response embedding is used as a feature.

• Length: We use the token-level length of the user utterance and the response
as a feature.

The above features were selected from a large pool of features through significance
testing on our development set. The effect of adding these features can be seen in
Table 6.5. Some of the features such as Topic lack previous dialogue context, which
could be updated to include the context. We leave this extension for future work.

Evaluator ‘Yes’ Class Distr. Accuracy Precision Recall F-score MCC
Comprehensible 0.80 0.84 (+3%) 0.83 (+1%) 0.85 (+15%) 0.84 (+8%) 0.37 (+107%)

On-topic 0.45 0.64 (+9%) 0.65 (+10%) 0.64 (+18%) 0.64 (+13%) 0.29 (+81%)
Interesting 0.16 0.83 (-1%) 0.77 (+10%) 0.80 (-5%) 0.78 (+2%) 0.12 (+inf%)

Cont. Conversation 0.71 0.75 (+4%) 0.73 (+5%) 0.72 (+31%) 0.72 (+17%) 0.32(+179%)

TABLE 6.5: Conversation Evaluators Performance. Numbers in
parentheses denote relative changes when using our best model (all
features) with respect to the baseline (no handcrafted features, only
sentence embeddings). Second column shows the class imbalance in
our annotations. Note that the baseline model had 0 MCC for Inter-

esting

4https://spacy.io/
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FIGURE 6.3: Baseline Response Generator (Seq2Seq with Attention)

FIGURE 6.4: Reranking Using Evaluators. Top 15 candidates from
beam search are passed to the evaluators. The candidate that max-
imizes the reranker score is chosen as the output. Encoder-decoder

remain unchanged)

Models

Given the large number of features and their non-sequential nature, we train four
binary classifiers using feedforward neural networks (FFNN). The input to these
models is a dialogue turn. Each output layer is a softmax function corresponding
to a binary decision for each evaluation metric forming a four-dimensional vector.
Each vector dimension corresponds to an evaluation metric (See Section 6.2.3). For
example, one possible reference output would be [0,1,1,0], which corresponds to
“not comprehensible,” “on topic,” “interesting,” and “I don’t want to continue.”

We experimented with training the evaluators jointly and separately and found that
training them jointly led to better performance. We suspect this is due to the ob-
jectives of all evaluators being closely related. We concatenate the aforementioned
features as an input to a 3-layer FFNN with 256 hidden units. Figure 6.2 depicts the
architecture of the conversation evaluators.
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FIGURE 6.5: Response Model Configurations. The baseline is shown
at the top. The terms xn and yn correspond to nth utterance and re-

sponse respectively.

6.2.6 Response Generation System

To incorporate the explicit turn level feedback provided by the conversation evalu-
ators, we augment our baseline response generation system with the softmax scores
provided by the conversation evaluators. Our baseline response generation system
is described in Section 6.2.6. We then incorporate evaluators outputs using two tech-
niques: reranking and fine-tuning.

Base Model (S2S)

We extended the approach of Yao et al. (2016) where the authors used Luong’s dot
attention (Luong, Pham, and Manning, 2015). In our experiments, the decoder uses
the same attention (Figure 6.3). As we want to observe the full impact of conversa-
tional evaluators, we do not incorporate inverse document frequency (IDF) or con-
versation topics into our objective. Extending the objective to include these terms
can be a good direction for future work.

To make the response generation system more robust, we added user utterances and
system responses from the previous turn as context. The input to the response gen-
eration model is previous-turn user utterance, previous-turn system response, and
current-turn user utterance concatenated sequentially. We insert a special transition
token (Serban et al., 2016d) between turns. We then use a single RNN to encode these
sentences. Our word embeddings are randomly initialized and then fine-tuned dur-
ing training. We used a 1-layer Gated Recurrent Neural network with 512 hidden
units for both encoder and decoder to train the seq2seq model and MLE as our train-
ing objective.

Reranking (S2S_RR)

In this approach, we do not update the underlying encoder-decoder model. We
maintain a beam to get 15-best candidates from the decoder. The top candidate out
of the 15 candidates is equivalent to the output of the baseline model. Here, instead
of selecting the top output, the final output response is chosen using a reranking
model.
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For our reranking model, we calculate BLEU scores for each of the 15 candidate re-
sponses against the ground truth response from the chatbot. We then sample two
responses from the k-best list and train a pairwise response reranker. The response
with the higher BLEU is placed in the positive class (+1) and the one with lower
BLEU is placed in the negative class (-1). We do this for all possible candidate com-
binations from the 15-best responses. We use the max-margin ranking loss to train
the model. The model is a three-layered FFNN with 16 hidden units.

The input to the pairwise reranker is the softmax output of the 4 evaluators as shown
in Figure 6.2. The input to the evaluators are described in Section 6.2.4. The output
of the reranker is a scalar, which, if trained right, would give a higher value for
responses with higher BLEU scores. Figure 6.4 depicts the architecture of this model.

Fine-tuning (S2S_FT)

In this approach, we use evaluators as a discriminatory loss to fine-tune the baseline
encoder-decoder response generation system. We first train the baseline model and
then, it is fine-tuned using the evaluator outputs in the hope of generating more
coherent and engaging responses. One issue with MLE is that the learned models
are not optimized for the final metric (e.g., BLEU). To combat this problem, we add
a discriminatory loss in addition to the generative loss to the overall loss term as
shown in Equation 6.1.

(6.1)loss =
len

∑
i=1

p(yni|zn)log(q(ŷni|zn))− λ||Eval(xn, q(.|zn)||1

where zn = xn, yn−1, . . . , x0, y0 is the conversational context where n is the context
length. q ∈ R|V|×len of the first term corresponds to the softmax output generated
by the response generation model. The term ŷni refers to its corresponding decoder
response at nth conversation turn and ith word generated. In the second term, the
function Eval refers to the evaluator score produced for a user utterance, xn, and
decoder softmax output, q.

In Equation 6.1, the first term corresponds to the cross-entropy loss from the encoder-
decoder while the second term corresponds to the discriminative loss from the eval-
uator. In a standalone evaluation setting, the evaluator will take one hot representa-
tion of the user utterance as input, i.e., the input is len-tokens long which is passed
through an embedding lookup layer which makes it RD×len input to rest of the net-
work where D is the size of the word embeddings. To make the loss differentiable,
instead of performing argmax to get a decoded token, we use the output of the soft-
max layer (distribution of likelihood across entire vocabulary for output length, i.e.,
R|V|×len) and use this to do a weighted embedding lookup across the entire vocabu-
lary to get the same RD×len matrix as an input to rest of the evaluator network. Our
updated evaluator input becomes the following:

(6.2)RD×len = RD×|V| ×R|V|×len

The evaluator score is defined as the sum of softmax outputs of all 4 models.We keep
the rest of the input (context and features) for the evaluator as is.
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Metric Pearson Corr p-value
Comprehensible 0.2 << 0.001
On-topic 0.4 << 0.001
Interesting 0.25 << 0.001
Cont. Conversation 0.3 << 0.001

TABLE 6.6: Evaluators Correlation with Turn-level Ratings

We weight the discriminator score by λ, which is a hyperparameter. We selected λ
to be 10 using grid search to optimize for final BLEU on our development set. Fig-
ure 6.5 depicts the architecture of this approach. The decoder is fine-tuned to maxi-
mize evaluator scores along while minimizing the cross-entropy loss. The evaluator
model is trained on the original annotated corpus and parameters are frozen.

6.2.7 Reranking + Fine-tuning (S2S_RR_FT)

We also combined fine-tuning with reranking, where we obtained the 15 candidates
from the fine-tuned response generator and then we select the best response using
the reranker, which is trained to maximize the BLEU score.

6.2.8 Experiments and Results

Conversation Evaluators

The conversation evaluators were trained using cross-entropy loss. We used a batch
size of 128, dropout of 0.3 and Adam optimizer with a learning rate of 5e-5 for our
conversational evaluators. Sentence embeddings for user utterances and system re-
sponses are obtained using the fast-text embeddings and Transformer network.

Table 6.5 shows the evaluator performance compared with a baseline with no hand-
crafted features. We present precision, recall, and f-score measures along with the
accuracy. Furthermore, since the class distribution of the dataset is highly imbal-
anced, we also calculate Matthews correlation coefficient (MCC)(Matthews, 1975),
which takes into account true and false positives and negatives. It is a balanced
measure which can be used even if the classes sizes are very different. With the
proposed features we observe significant improvement across all metrics.

We also performed a correlation study between the model predicted scores and hu-
man annotated scores (1 to 5) on 2000 utterances. The annotators5 were asked to
answer a single question: “On a scale of 1–5, how coherent and engaging is this re-
sponse given the previous conversation?” From Table 6.6, it can be observed that
evaluator predicted scores has significant correlation (moderate to high) with the
overall human evaluation score on this subjective task (0.2 – 0.4 Pearson correlation
with turn-level ratings). Considering the substantial individual differences in eval-
uating open-domain conversations, we observe that our evaluators with moderate
level of correlation can be used to provide turn-level feedback for a human-chatbot
conversation.

Response Generation

We first trained the baseline model (S2S) on the conversational data set (4M utterance-
response pairs from the competition. Section 6.2.3). The data were split into 80%

5Same setup as previously described
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Conversation 1 Conversation 2
User: yes
Machine: is there something specific you want to discuss
User: fox news
Ground Truth: my developers are working hard to get
you recent news you can say topics to hear some topics
S2S(Base): I found
S2S_RR: I heard about this
S2S_FT : I heard of a man it may be
interested in this news mentioned
S2S_RR_FT: I heard about this news talked about this

User: cool
Machine: back at you ok we could talk about movies
or music
User: movies
Ground Truth: shall we chat about something else
I love talking about music and movies
S2S(Base): so do you
S2S_RR: who would you want to talk
S2S_FT : what actor love most
S2S_RR_FT: what actor

TABLE 6.7: Two randomly selected qualitative examples of responses

Metric BLEU-4 ROUGE-2 Distinct-2
S2S (Base) 5.9 5.1 0.011
S2S_RR 11.6(+97%) 6.3(+24%) 0.017(+54%)
S2S_FT 6.2(+5%) 5.3(+4%) 0.011(-1%)
S2S_RR_FT 12.2(+107%) 6.8(+33%) 0.017(+53%)

TABLE 6.8: Generator performance on automatic metrics.

training, 10% development, and 10% test sets. The baseline model was trained us-
ing Adam with learning rate of 1e-4 and batch size of 256 until the development loss
converges. The vocabulary of 30K most frequent words were used. And the reranker
was trained using the 20K number of beam outputs from the baseline model on the
development set. Adam with learning rate of 1e-4 and batch size of 16 was used for
the fine-tuning (S2S_FT).

Table 6.8 shows the performance comparison of different generation models (Sec-
tion 6.2.6) on the Alexa Prize conversational data set. We observed that reranking
n-best responses using the evaluator-based reranker (S2S_RR) provides nearly 100%
improvement in BLEU-4 scores.

Fine-tuning the generator by adding evaluator loss (S2S_FT) does improve the per-
formance but the gains are smaller compared to reranking. We suspect that this
is due to the reranker directly optimizing for BLEU. However, using a fine-tuned
model and then reranking (S2S_RR_FT) complements each other and gives the best
performance overall. Furthermore, we observe that even though the reranker is
trained to maximize the BLEU scores, reranking shows significant gains in ROUGE
scores as well. We also measured different systems performance using Distinct-
2 (Li et al., 2016a), which is the number of unique length-normalized bigrams in
responses. The metric can be a surrogate for measuring diverse outputs. We see that
our generators using reranking approaches improve on this metric as well. Table 6.7
also shows 2 sampled responses from different models.

To further analyze the impact of reranker trained to optimize on BLEU score, we
trained a baseline response generation system on a Reddit data set6, which com-
prises of 9 million comments and corresponding response comments. All the hyper-
parameter setting followed the setting of training on the Alexa Prize conversational
dataset.

We trained a new reranker for the Reddit data using the evaluator scores obtained
from the models proposed in Section 6.2.4. We show in Table 6.9 that even though

6We use a publicly available data (Baumgartner, 2015).
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Metric S2S(Base) S2S_RR
BLEU-4 3.9 7.9 (+103%)
ROUGE-2 0.6 0.8 (+33%)
Distinct-2 0.0047 0.0086 (+82%)

TABLE 6.9: Response Generator on Reddit Conversations. Due to the
size of the dataset we could not fine tune these models.

Metric Coherence Engagement
S2S(Base) 2.34 1.80
S2S_RR 2.42 2.16
S2S_FT 2.36 1.87
S2S_RR_FT 2.55 2.31

TABLE 6.10: Mean ratings for Qualitative and Human Evaluation of
Response Generators

the evaluators are trained on a different data set, the reranker learns to select better
responses nearly doubling the BLEU scores as well as improving on the Distinct-
2 score. Thus, the evaluator generalizes in selecting more coherent and engaging
responses in human-human interactions as well as human-computer interactions.
As fine-tuning the evaluator is computationally expensive, we did not fine-tune it
on the Reddit dataset.

The closest baseline that used BLEU scores for evaluation in open-domain setting is
from Li et al. (2015) where they trained the models on Twitter data using Maximum
Mutual Information (MMI) as the objective function. They obtained a BLEU score of
5.2 in their best setting on Twitter data (average length 23 chars), which is relatively
less complex than Reddit (average length 75 chars).

Human Evaluation

As noted earlier, automatic evaluation metrics may not be the best way to measure
chatbot response generation performance. Therefore, we performed human eval-
uation of our models. We asked annotators to provide ratings on the system re-
sponses from the models we evaluated, i.e., baseline model, S2S_RR, S2S_FT, and
S2S_RR_FT. A rating was obtained on two metrics: coherence and engagement.
Coherence measures how much the response is comprehensible and relevant to a
user’s request and engagement shows interestingness of the response (Venkatesh et
al. (2018)). We asked the annotators to provide the rating based on a scale of 1–5,
with 5 being the best. We had four annotators rate 250 interactions. Table 6.10 shows
the performance of the models on the proposed metrics. Our inter-annotator agree-
ment is 0.42 on Cohen’s Kappa Coefficient, which implies moderate agreement. We
believe this is because the task is relatively subjective and the conversations were
performed in the challenging open-domain setting. The S2S_RR_FT model provides
the best performance across all the metrics, followed by S2S_RR, followed by S2S_FT.

6.2.9 Conclusion

Human annotations for conversations show significant variance, but it is still possi-
ble to train models which can extract meaningful signal from the human assessment
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of the conversations. We show that these models can provide useful turn-level guid-
ance to response generation models. We design a system using various features
and context encoders to provide turn-level feedback in a conversational dialog. Our
feedback is interpretable on two major axes of conversational quality: engagement
and coherence. We also plan to provide similar evaluators to the university teams
participating in the Alexa Prize competition. To show that such feedback is useful
in building better conversational response systems, we propose two ways to incor-
porate this feedback, both of which help improve on the baselines. Combining both
techniques results in the best performance. We view this work as complementary
to other recent work in improving dialogue models such as Li et al. (2015) and Shao
et al. (2017). While such open-domain models are still in their infancy, we view the
framework presented here to be an important step towards building end-to-end co-
herent and engaging dialogue models.

6.3 Summary

This Chapter presented different evaluation models trained using supervised tech-
niques on noisy human-machine interactions collected during the Alexa Prize com-
petition. In both approaches presented, models rely on DA and a form of entity
representation (using topic representations via LDA in the first Section, and the en-
tity grid in the second one).

In the first part of the Chapter, we proposed models to automatically predict user
ratings of human-machine interactions at the conversation level without relying on
further turn-level annotation. The dataset used were interactions between US Ama-
zon Alexa users and Roving Mind. First, in order to establish an upper bound for the
task, given the subjectivity of human judgment, we asked two human experts to re-
annotate a sample of the conversations with conversational ratings. A comparison of
expert and users ratings via correlation analysis confirmed the difficulty of the task.
Afterwards, we performed a correlation analysis of the dataset and found moder-
ate, though not significant correlation of user ratings with conversation lengths and
DA turn distribution. Then, we proposed models experimenting with a combina-
tion of features including DAs and topic representations to predict user ratings. The
combination of all features yielded the best results in the experiments.

The second part of the Chapter was dedicated to turn level evaluation and response
generation using coherence and engagement. In particular, we proposed to train
turn level coherence and engagement predictors with a supervised methodology
and then use them to rerank the output of a non-task-oriented open-domain re-
sponse generation model. First, we described the turn level evaluation models, im-
plemented combining the textual input with a number of features, including DA
and entity grid representations. Our experiments on turn level evaluation show that
these features are useful in predicting coherence and engagement. Second, we de-
scribed the different response generation models and proposed two different tech-
niques to augment them with the turn evaluators signal. The first methodology uses
directly the evaluators output as input to a reranking model, used to rescore the
responses generated after beam decoding. The second methodology incorporates
the evaluator loss directly in the response generation model, as an additional dis-
criminatory term in the loss. Then, we reported the results of response generation
experiments which show that both proposed techniques significantly improve the
system response quality, according to both human and automatic evaluation.
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Overall, throughout the Chapter we saw how using noisy data could be a real chal-
lenge, given the subjectivity of human judgment. In both works presented we per-
formed additional human annotation besides the annotation used for training, in the
first part to assess a human upper bound for the task, in the second part for having
a human evaluation of the generation models. These additional experiments further
confirmed the difficulty of annotating noisy human-machine conversations, even
for humans. Nevertheless, we argue that it is also important to analyse such input,
instead of only relying on data collected in more controlled environments, since it
comes from real-world applications.
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Chapter 7

A case study for open-domain
Natural Language Generation

In this Chapter1, we address the challenge of Natural Language Generation (NLG)
for domain-independent Conversational Agents (CAs). The task of NLG as a com-
ponent in CAs architectures has traditionally been framed following a Meaning-
Representation-to-text approach, where models need to generate text conditioned
on a structure usually composed of a DA and a list of associated slots. NLG for CAs
following this approach mainly focus on task-oriented applications dependant on a
single domain relying on limited ontologies with a small amount of slot types, with-
out benefitting from examples that may be available for other domains. However,
with the current progression of CAs towards being multi-domain through open-
domain this approach, CA applications might rely on larger, more diverse ontolo-
gies.

In this Chapter, we explore NLG for CAs with an open-domain setting with larger
ontologies compared to the traditional setting. In particular, we propose to frame
NLG for open-domain Question-Answering (QA) following a Meaning-Representation-
to-text. First, we present experiments assessing the performance of our proposed
NLG models with different ontology sizes. Then, we perform multi-task-learning
cross-domain experiments across QA and task-oriented dialogue.

7.1 Introduction

In dialogue literature Natural Language Generation (NLG) is framed as the task of
generating natural language responses that faithfully convey the semantic informa-
tion given by a Meaning Representation (MR). A MR is typically a structure con-
sisting of a Dialogue Act (DA) and a list of associated slots. While the DA (Stolcke
et al., 2000a; Mezza et al., 2018) expresses the intent of the utterance to be generated
(e.g. “inform” in Table 7.1), the slots, organized as slot type-slot value pairs (e.g.
food:‘french’ in Table 7.1), represent the information which has to be conveyed in the
generated text.

So far statistical NLG for dialogue has mainly been investigated in research for task-
oriented applications (e.g. restaurant reservation, bus information) in narrow, con-
trolled environments with limited ontologies, i.e. considering a small set of DAs
and slot types (respectively 12 and 8 in the popular San Francisco restaurant dataset
(SFX) (Wen et al., 2015), 8 and 1 in the recent E2E NLG challenge (Novikova, Dušek,

1The Chapter is based on Cervone et al. (2019).
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Input Output
context MR Text

inform ‘fringale is a french
Task - name: ‘fringale’ restaurant’

Oriented food: ‘french’ ‘fringale serves
french food’

‘when inform ‘1792’
was timepoint: ’1792’ ‘kentucky formed

QA kentucky objStr: ‘kentucky’ in 1792’
founded’ claStr: ‘state’ ‘kentucky founded

relStr: ’founded’ in 1792’

TABLE 7.1: Examples of input-output pairs from a task-oriented
(Task) NLG (SFX (Wen et al., 2015)) and a Question-Answering (QA)
dataset. In NLG the input is typically a Meaning Representation (MR)
and the output is its textual realization (Text). Each MR is composed
of a Dialogue Act (bold) and a list of slot type (italic)-value pairs.
Compared to most NLG datasets, our QA corpus also has the previ-
ous question (context) as input. While in the task-oriented setting we
observe a one-to-one relation between slots in the input and the ones

realized in the text, the same is not true for QA.

and Rieser, 2017)). Furthermore, most datasets consider MRs in isolation (Novikova,
Dušek, and Rieser, 2017) i.e., they lack conversational context, even though the pre-
vious utterances in the dialogue have been shown to improve the performance of
task-oriented NLG (Dušek and Jurcicek, 2016). These characteristics of current ap-
proaches to NLG can be linked to the fact that a vast majority of dialogue NLG
research is tested on a single domain where the dialogue agent performs simple
tasks such as giving information about a restaurant, with few exceptions (Wen et al.,
2016b).

However, with the rise of conversational agents such as Amazon Alexa and Google
Assistant, there is an increasing interest in complex multi-domain tasks. These sys-
tems typically rely on hand-crafted NLG, but this approach cannot scale to the com-
plex ontologies which may be required in real-world applications (e.g. booking a
trip).

In this work we explore the applicability of current NLG models for task-oriented
dialogue, based on a MR-to-text framework using Encoder-Decoder architectures,
to open-domain QA. This allows us to investigate the performance of current NLG
research in an environment with (1) much larger numbers of slot types, and (2) a dif-
ferent application compared to task-oriented dialogue. We generate the QA datasets
for our experiments using as source a large corpus of open-domain QA pairs from in-
teractions between real-world users and a conversational agent. For evaluation, we
utilize both objective metrics and human judgment. We observe that NLG for open-
domain QA poses its own challenges compared to task-oriented dialogue, since cor-
rect answers to the same question do not necessarily convey all slot types in the MR
(see Table 7.1).

In particular, in our first set of experiments, we investigate the effect of using increas-
ingly larger ontologies with regards to slot types on the performance of our NLG
models for QA. We find that, notwithstanding the larger ontologies and the nois-
iness of our dataset, models’ performance does not degrade significantly in terms
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of naturalness of generated text and efficiency in encoding the MR information (i.e.
Slot Error Rate). Interestingly, we find it improves for some of the human evalua-
tion metrics. We also observe that using conversational context improves the quality
of generated responses. In our second set of experiments, we investigate whether
jointly training NLG models for task-oriented dialogue and QA improves perfor-
mances. To this end, we experiment with learning NLG models in a multi-task
setting between our QA data and SFX. Our experiments show that learning mod-
els in a multi-task setting lead to better performances in terms of naturalness of the
generated output for both tasks.

This work has several contributions:

1. We apply the MR-to-text framework (typical of NLG for task-oriented dialog)
to a open-domain QA application.

2. We explore the importance of adding the previous conversational context to
improve the quality of the generated output.

3. We investigate the possibility of learning NLG models using a MR-to-text ap-
proach with increasingly larger ontologies in terms of slot types.

4. We experiment with multi-task learning for NLG between open-domain QA
and task-oriented dialogue.

5. Finally we also propose new evaluation metrics (see Section 7.5) to capture the
variability of output in open-domain QA compared to NLG for task-oriented
dialogue.

7.2 Related work

While classical approaches to NLG involve a pipeline of modules such as content se-
lection, planning, and surface realization (Gatt and Krahmer, 2018), recently a large
part of the literature investigated end-to-end neural approaches to NLG. The tasks
tackled include dialogue, text, and QA. While these tasks share some similarities,
each comes with its own set of challenges and requires specific solutions.

NLG for dialogue State of the art NLG models for dialog (Dušek and Jurcıcek,
2016; Juraska et al., 2018) mostly use end-to-end neural Encoder-Decoder approaches
with attention (Bahdanau, Cho, and Bengio, 2014) and re-ranking (Dušek, Novikova,
and Rieser, 2018). Ensembling is another technique employed to boost model per-
formance (Juraska et al., 2018). Using delexicalization (Henderson, Thomson, and
Young, 2014a), i.e., the process of substituting slot values with slot types in the gen-
erated text, has also shown improvements in many settings. However, recent work
also depicted the disadvantages of delexicalization (Nayak et al., 2017). In our work,
we compare and combine both delixecalized and lexicalized inputs for the NLG sys-
tem.

NLG for dialogue has been mostly tested in controlled environments using task-
oriented, single domain datasets with limited ontologies (Wen et al., 2015; Novikova,
Dušek, and Rieser, 2017; Balakrishnan et al., 2019). Although Wen et al. (2016b)
perform multi-domain task-oriented NLG experiments, the ontologies used are still
limited for such settings. Finally, while research has shown how encoding the previ-
ous utterance leads to better performances (Dušek and Jurcicek, 2016), most settings
consider the turns in isolation (Wen et al., 2015; Novikova, Dušek, and Rieser, 2017).
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Size Slots DAs Words Domain Context
E2E 51k 8 1 2453 restaurant no
SFX 5k 12 8 438 restaurant no

QA.1 6k 147 1 702 open yes
QA.2 16k 210 1 1528 open yes
QA.3 67k 369 1 2963 open yes

TABLE 7.2: Our QA NLG datasets compared to popular (task-
oriented) NLG datasets: San Francisco restaurant (SFX) and the NLG
E2E challenge (E2E). We report the full size of datasets in terms of
MR-text pairs, the number of slot types, DAs, words (computed af-
ter delexicalization), domain and whether the dataset comprises the

previous utterance or not.

In our work, we perform open-domain NLG with significantly larger ontologies and
also evaluate the impact of adding the context to the input.

NLG for text and QA Recent work around NLG for text involves generating text
using structured data using the encoder-decoder networks (Mei et al., 2016). Simi-
larly to dialogue, NLG for text has also been addressed in controlled environments
such as weather forecast (Liang, Jordan, and Klein, 2009) with few exceptions (Le-
bret, Grangier, and Auli, 2016).

In the literature for QA, most approaches retrieve answers directly or generate an-
swers jointly with the retrieval, and answers are usually entities or lists of entities
(Dodge et al., 2015). On the contrary, in NLG we assume the answer has already
been retrieved, and the goal is to generate text matching it. The field of QA which
most strictly relates to our work is answer generation, where current approaches
are also based on encoder-decoder networks encoding information directly from a
knowledge base (Yin et al., 2016; He et al., 2017; Wei and Zhang, 2019). An addi-
tional challenge to answer generation is that there are no publicly available datasets
for this task (Fu and Feng, 2018).

Our approach differs from answer generation in that we structure the task as in NLG
dialogue literature with a MR-to-text approach.

7.3 Datasets

7.3.1 Question Answering

Source data Our source for generating the MR-text pairs are thousands of open-
domain factual question-answer pairs from commercial data. The domains covered
in this data are manifold, including geography (e.g. ‘is canada bigger than united
states’ in Table 7.5), history (e.g. ‘when was kentucky founded’ in Table 7.1), present-
day knowledge (e.g. ‘will ferrell’s wife’ in Table 7.5), grammar (‘is there a plural
form of pegasus’) and even mathematics (‘what is one modulo seven’). Pairs are
grouped according to the type of question asked. Each group consists of a list of
specific questions (e.g. “who is the wife of barack obama”, “tell me the wives of
henry the viii”) of the same type (e.g. “who is the wife of”) asked by real users to
a conversational agent. Each specific question additionally has: (1) the answer to
the question (e.g. “michelle obama is obama’s wife”) generated by the NLG of the
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conversational system, either using information retrieval or a knowledge base search
coupled with templates; (2) relevant noun and verb phrases (e.g. “michelle obama”,
“barack obama”, “wife”) used by the system to generate the answer, including the
ones from the question. Noun phrases are tagged according to their semantic type
(examples of semantic types are timepoint and human being), while verb phrases are
tagged as “relation” types (see “founded” tagged as relStr in Table 7.1).

The answers in the source data are varied, and range from a simple entity to a fully
formed answer, as in Table 7.1 example where valid answers to the question “when
was kentucky founded” can be “1792” or “kentucky formed in 1792”. This shows an
interesting difference between our QA data and task-oriented NLG datasets. While
for task-oriented NLG all valid responses for a single MR have the same slot types
(i.e., the ones in the input MR), in our dataset this is not always true.

QA NLG datasets We generate the NLG input-output pairs for QA from our source
data. In order to perform cross-application experiments, we maintain the same MR-
text format as task-oriented dialogue NLG. The target output is the text of the an-
swers in the source data. To generate the input MRs we assumed only one DA across
all answers, i.e. “inform”; for the slots, we used the semantic types and relations for
noun phrases and verb phrases in the source data as slot types, while the actual en-
tity or verb was used as the corresponding slot value. 2 On top of the generated MR
we use, as additional input, the previously asked question as context.

Answers are delexicalized (Henderson, Thomson, and Young, 2014a) to improve
generalization. Since we do not have alignment between entities in the input and
the generated text, we use a heuristic-based aligner which we also use to filter out
data that could not be appropriately aligned. All noun phrases are delexicalized
while verb phrases are not. Furthermore, similar to (Juraska et al., 2018), we use
delexicalization for data augmentation. We generate additional references for each
MR, besides the original one, by considering all delexicalized answers in the ques-
tion group as candidate template answers for each specific question in the group
and then substituting (where possible) slots values which are already available in
the input. The text of the previous question is also delexicalized.

Finally, to investigate performances across different ontology sizes, we generate 3
different partitions of the data (QA.1, 2 and 3 in Table 7.2) with a progressively larger
number of slot types. Each QA partition was split in train, test and development set
(using a 80-10-10 split) according to the type of question asked. We ensured there
was no overlap between the different sets to test if models generalize to previously
unseen questions.

7.3.2 Task-oriented Dialogue

As a task-oriented NLG corpus for our multi-task learning experiments we use the
popular San Francisco restaurants (SFX; Wen et al. (2015)) dataset. Statistics about
the dataset is shown in Table 7.2. Although SFX is not large (6k examples), compared
to the E2E NLG corpus it presents more variation for DA (although less in style). For
all our datasets, we use the TGEN library 3 (Dušek and Jurcıcek, 2016) to delexicalize
all slot types except binary values.

2Although we use the original tags of the source data, a similar representation could be produced
by tagging noun phrases with their Named Entity type and verb phrases with a “relation” slot type.

3https://github.com/UFAL-DSG/tgen

https://github.com/UFAL-DSG/tgen
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7.4 Model and Architectures
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FIGURE 7.1: Our baseline model (A) and the models with the previ-
ous utterance (B) and for multi-task learning (C). While our baseline
model Enc MR (slot types, values) is composed by two encoders for
the MR, one for slot types and one for slot values; our model in sub-
figure B extends this baseline by adding an encoder for the previous
utterance. In the multitask learning setting, on the hand, where we
do not have the previous context but might have different dialogue

Acts (DAs), we add a corresponding encoder (see subfigure C).

In this section we present the variety of different architectures used in our experi-
ments. Although all our models are based on the Encoder-Decoder framework, we
investigate architectures with different number of Encoders (up to 3). Given this va-
riety, for clarity, we follow a template Enc <Encoder type> for naming our different
models. The type of Encoder, in particular, can be of Meaning Representation (MR)
type, when we encode parts of the MR, such as slot types, values or dialogue Act; or
it can be of Utterance type, when we encode the previous utterance context.

Encoder-Decoder with Attention Following recent state-of-the-art approaches to
NLG for dialog (Juraska et al., 2018; Balakrishnan et al., 2019), our models are based
on the Encoder-Decoder with Attention framework. In particular, we use bidirec-
tional Gated Recurrent Units (GRU) and Luong general attention (Luong, Pham, and
Manning, 2015) as our baseline. While we also experimented with other types of ar-
chitectures, such as using Long-Short-Term Memory Units (Hochreiter and Schmid-
huber, 1997) instead of GRUs and different types of attention (including Bahdanau
attention (Bahdanau, Cho, and Bengio, 2014) and Luong dot attention (Luong, Pham,
and Manning, 2015), this combination gave us the best results for our setting. De-
pending on the encoder used, either slot type or slot value, we refer to this model as
Enc MR (slot types) or Enc MR (slot values).

Multi-Encoder, Single Decoder We expand the baseline (Enc MR) models using
multiple inputs from the MR (slot types, values, DAs), each encoded by a different
encoder. The attention is performed on their concatenated output to produce the MR
context vector cMR. Figure 7.1 A shows an example of such an architecture using two
encoders, one for slot types and one for slot values. Furthermore, we experimented
with adding the previous utterance as input with an additional encoder (Enc Utter-
ance). In this case, the context vector for the previous utterance cUtt is produced by
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an independent attention mechanism and the outputs of both attentions (cMR and
cUtt) are concatenated (see Figure 7.1 B).

Multi-Encoder, Multi-Decoder We also performed multi-task learning, jointly train-
ing the models for both QA and task-oriented NLG. As shown in Figure 7.1 C, we
shared the encoders and corresponding input layers across multiple tasks while we
maintained multiple decoders for individual tasks. We alternated between mini-
batches from various data sources to perform multitasking.

7.5 Evaluation

As word overlap metrics may not have a good correlation with human judgment
for NLG output evaluation (Stent, Marge, and Singhai, 2005), we use both objective
metrics and human evaluation.

Objective metrics Besides the standard BLEU score (obtained using the official
E2E NLG challenge evaluation script 4), we report different types of Slot Error Rate
(SER). In dialog NLG approaches SER shows the number of correct slots in the out-
put compared to the input MR. We refer to this metric as SERmr to differentiate it
from its modified versions we introduce next. The formula (Wen et al., 2015) is:

SERmr =
pmr + qmr

Nmr
(7.1)

where Nmr is the total number of slots in the input MR and pmr , qmr are respectively
the number of missing and redundant slots in the output. This formula works well
for task-oriented NLG approaches, but it assumes a one-to-one relationship between
the slots in the input MR and the output text. We found this assumption might not
hold for our QA datasets where not all slots in the input MR need to be realized for
the output to be correct. An example of this is shown in Table 7.1, where the first
QA reference text (‘1792’) would be penalized with 3 missing slots, while still being
correct.

In order to capture this different behaviour we designed additional NLG metrics
tailored for QA. Slot Error Rate Target (SERtrg) is a modification of SERmr where we
simply substitute the MR with the main reference text:

SERtrg =
ptrg + qtrg

Ntrg
(7.2)

SERtrg is designed to penalize both missing and redundant slots compared to the
target sentence. Hence, using SERtrg the first QA reference text in Table 7.1 would
not be penalized.

Slot Error Rate MultiTarget (SERmtrg), on the other hand, penalizes redundant slots
that did not appear in any of the references:

SERmtrg =
pmtrg

Nmtrg
(7.3)

4We do not report other word overlap metrics (e.g., METEOR) computed by the E2E evaluation
scripts due to space limitations and correlation with the BLEU score.
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where Nmtrg are all slots appearing in any reference and pmtrg are the slots in the
output that did not appear in any reference sentence. To compute SERmtrg for the
model output “kentucky formed in 1792” given the QA MR in Table 7.1 we assume
to have two references “1792” and “kentucky formed in 1792”. In this case, SERmtrg
would consider the output correct as all of its slots appear in at least one of the
references.

Human evaluation In all experiments, for each dataset, we selected a sample of 100
MR-text pairs from the test set. Pairs were randomly selected among those where
all models under comparison in the experiment had generated different output text.
Data for all reported experiments were annotated by 2 human annotators, and final
ratings were averaged between the two. In all experiments annotators, presented
with MR and all outputs of the systems under comparison, were asked to rate the
naturalness and informativeness of the generated output using a 1-6 Likert score, as in
previous NLG dialogue evaluations (Gatt and Krahmer, 2018). Additionally, for the
QA datasets annotators had also the previous question as context. Moreover, for the
QA datasets annotators were asked to rate how conversational the output was, on the
same Likert scale, and whether or not the output could ultimately be considered an
answer to the question (answer), as a binary choice.

7.6 Experimental setup

The hyperparameters chosen for our models were empirically determined through
various experiments. Both encoder and decoder in all our models had only one
layer, as we noticed additional layers did not give improvements. All embeddings
were trained from scratch with a fixed dimension of 50. Models were trained using
a cross-entropy loss function and the Adam (Kingma and Ba, 2014) optimizer with a
learning rate of 0.001, for 1000 epochs, with early stopping on the validation set. We
used mini-batches of size 32.

For the NLG models for QA, experiments on QA.1 (not reported due to space lim-
itations) with different encoders combinations showed that the best performances
were achieved using all input types (slot type, value, and previous context) with
lexicalized (+ Enc Utterance lex) or delexicalized (+ Enc Utterance delex) previous
context in terms of all metrics, except SERtrg. On this metric, the architecture with
slot types and values, but without the previous context (Enc MR (slot types, values))
achieved the best performance (cf. Table 7.3). For this reason, we chose to report the
performances of these architectures in our QA experiments.

7.7 Results

Open domain QA In our first batch of experiments we test various Encoder-Decoder
architectures on our 3 different partitions of QA NLG data.

As we can see from Table 7.3, in general, the best performances across all QA datasets
for both BLEU and SERtrg are achieved by the model using as additional input the
lexicalized previous question, followed by the model with the delexicalized one.
However, SERmr results show the opposite picture, where the baseline with only
slot types and values performs better (except for QA.2 where the score is close to
the model with the delexicalized input) and the model with the lexicalized previous
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utterance is the worst. SERmtrg shows, on the other hand, that the context might
slightly degrade performances with bigger ontologies in terms of all text references.

Human evaluation, on the other hand, seems in line with the picture depicted by
BLEU and SERtrg. Table 7.3 shows the model with the lexicalized context is regarded
as the best, closely followed by the model with the delexicalized one in every metric
except for conversational, where delexicalized is better. This confirms our hypothesis
that SERmr might be a less reliable metric to evaluate NLG QA output. Moreover,
although we notice a consistent but not drastic degradation in terms of BLEU and
SERtrg in correlation with bigger ontologies, human evaluation shows an even more
gentle degradation between QA.1 and 3 for many metrics. Interestingly, it seems the
ability of all models to give a proper answer to the question (answer) increases from
QA.1 to 3.

Objective metrics Human evaluation
BLEU SERmr SERtrg SERmtrg Nat. Inf. Conv. Ans.

QA.1
Enc MR (slot types, values) 0.85 0.42 0.21 0.023 3.73 3.8 3.96 0.36
+ Enc Utterance delex 0.89 0.44 0.19 0.014 4.61 4.63 4.59 0.67
+ Enc Utterance lex 0.95 0.46 0.15 0.012 4.7 4.69 4.48 0.78
QA.2
Enc MR (slot types, values) 0.77 0.44 0.3 0.057 3.88 3.78 4.57 0.38
+ Enc Utterance delex 0.83 0.43 0.23 0.025 4.64 4.32 4.88 0.5
+ Enc Utterance lex 0.89 0.47 0.19 0.03 5.15 4.88 4.85 0.67
QA.3
Enc MR (slot types, values) 0.66 0.43 0.37 0.05 4.29 4.37 4.40 0.73
+ Enc Utterance delex 0.7 0.45 0.32 0.054 4.52 4.47 4.51 0.79
+ Enc Utterance lex 0.72 0.46 0.28 0.067 4.57 4.57 4.45 0.80

TABLE 7.3: Objective metrics and human evaluation results on three
QA NLG datasets with increasingly larger ontologies. The models
under comparison are a baseline with two encoders, for slot types
and slot values, and its extensions with a delexicalised or lexicalised
previous utterance. For objective metrics, while for BLEU score the
higher the better, for all types of Slot Error Rate (SER) the lower the
better. For human evaluation, we report averages of Naturalness
(Nat.), Informativeness (Inf.), and how conversational the response
was judged (Conv.) on a scale of 1 to 6. Additionally, we report the
average of whether responses could be considered an answer to the

given question (Ans.), given to annotators as a binary choice.

Dataset BLEU SERmr SERtrg SERmtrg Nat. Inf. Conv. Ans.
baseline SFX 0.727 0.40 - - 4.69 5.50 - -
+ QA.3 0.74 0.413 - - 5.11 5.40 - -
baseline QA.3 0.659 0.429 0.37 0.05 4.29 4.33 4.40 0.73
+SFX 0.673 0.44 0.368 0.07 4.43 4.38 4.5 0.72

TABLE 7.4: Objective metrics and human evaluation results of mul-
titask learning experiments combining QA (QA.3) and task-oriented
dialogue (SFX) NLG. For all Slot Error Rate (SER) metrics the lower

the better.
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Multitask learning In our multitask learning experiments we combine the biggest
QA dataset, QA.3, with a task-oriented corpus, SFX. We aim to investigate the possi-
bility of transferring knowledge across different NLG systems, notwithstanding the
diversity of the data in terms of domain, ontology size, DAs, application (QA vs.
task-oriented). Since context is not available in SFX, the model we use has 3 MR
Encoders (slot types, values, DAs) and 2 Decoders (one for each task).

Our experiments show that the NLG QA task improves the fluency on SFX both in
terms of objective metrics and human evaluation (see Table 7.4). However, training
with QA seems to slightly degrade the model efficiency in generating the correct
slots. This is to be expected given the difference in the relation between slots in MR
and output (one-to-one in SFX, variable in QA.3). As for QA.3 results, it seems the
task-oriented NLG task improves QA NLG performances in terms of fluency (BLEU
and Naturalness) and slot errors (SERtrg and Informativeness). SERmr and SERmtrg,
however, show a slight degradation. We observe task-oriented NLG also makes
QA NLG more conversational, however slightly reducing its probability of being an
answer to the posed question as well.

Finally, comparing all experiments on QA.3, we notice that although multi-task
learning helps, the previous context (either lexicalized or delexicalized) plays a crit-
ical role in improving the overall performance.

7.8 Qualitative analysis

In this section we report the qualitative analysis we performed on the human anno-
tated testset. Table 7.5 reports some output examples from different models given
the same input MR. In particular, we are interested on the impact of adding various
features and multi-tasking.

QA According to our qualitative analysis on the QA datasets, the baseline model
is the one with most grammatical errors (e.g. “will ferrell ’s ’s wife is viveca paulin”,
“no , canada is not the bigger than united states .”), while in general adding “delex”
and “lex” features generates more grammatical responses. This observation was
confirmed from both the objective (in terms of BLEU score) and subjective (natural-
ness) evaluations performed.

We also notice how lexicalizing the previous question helps in producing generally
correct (e.g. ‘unilever.’) however shorter answers, which can be regarded as less
conversational. Delexicalizing the input, on the other hand, produces more conver-
sational (e.g. ‘popsicle’s manufacturer is unilever’) but also more factually incorrect
answers. These observations seem also in line with the subjective evaluation results,
which on average reported the best scores for the model with lexicalized previous
context (+ Enc Utterance lex) on whether the generated text could be considered an
answer to the given question (answer), except for the metric rating how conversa-
tional the output was, for which the model with delexicalized previous context (+
Enc Utterance delex) was regarded as the best one across all QA partitions.

Multitask Looking at the output of the models trained in a multi-task learning
setting, we observe that the baseline tends to be more prone to grammatical errors
compared to models jointly trained with another task (e.g. in Table 7.5 ‘sanjalisco
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Dataset Input baseline +delex +lex multitask
context MR

QA.1 ‘sing your song human being: ‘sing your song ‘sing your song ‘vic ruggiero .’ -
writer’ ’vic ruggiero’, ’ coach is ’ writer is

a:’sing your song’ vic ruggiero .’ vic ruggiero .’
b:’writer’

QA.1 ‘did abraham true:’positive polarity’, ‘yes . abraham ‘yes , abraham ‘yes , abraham -
lincoln have lp:’dad’ lincoln has at lincoln had lincoln had

a dad’ ro:’abraham lincoln’ least one dad .’ a mother.’ a father.’
QA.1 ‘what is the timepoint:’1999’, ‘1999 ’s starting ‘the the masters ‘the masters -

masters a:’the masters’ date point ’s starting date was created
starting date’ b:’starting date’ is 1999 .’ point is 1999 .’ on 1999 .’

QA.3 ‘is canada false:’negative polarity’, ‘no , canada is not ‘no , canada is not ‘no , canada is not ‘no , canada is not
bigger than r:’bigger than’, the bigger than bigger than bigger than bigger than

united states’ y:’united states’, united states .’ united states .’ united states .’ united states .’
x:’canada’

QA.3 ‘will ferrell’s human being: ‘will ferrell ’s ’s wife ‘will ferrell ’s ’s wife ‘viveca paulin .’ ‘will ferrell ’s wife
wife’ ’viveca paulin’, is viveca paulin .’ is viveca paulin .’ is viveca paulin .’

a:"will ferrell ’s",
b:’wife’

QA.3 ‘popsicle business:’unilever’, ‘popsicle ’s maker ‘popsicle ’s ‘unilever .’ popsicle ’s maker
maker’ a:’popsicle’ is unilever .’ manufacturer is unilever .’

b:’maker’ is unilever .’
SFX - inform sanjalisco allows - - sanjalisco allows

(name:‘sanjalisco’, kid -s and kid -s
kidsallowed:‘yes’) is located

SFX - inform red door cafe is a - - red door cafe is a
(name:‘red door cafe’, nice restaurant in nice restaurant in
area:‘cathedral hill’) the cathedral hill cathedral hill that is

goodformeal:‘breakfast’) does not allow kid -s and good for breakfast and
kidsallowed:‘no’) is good for breakfast does not allow kid -s

SFX - inform darbar restaurant is - - darbar restaurant is
(name:‘darbar restaurant’, a pakistani restaurant a nice restaurant that

food:‘pakistani’) that allows kid -s and serves pakistani food
goodformeal:‘lunch’) is good for lunch and allows kid -s

kidsallowed:‘yes’)

TABLE 7.5: Examples of different outputs from our models when
given the same input Meaning Representation (and previous context
when available) on two of our Question-Answering datasets (QA.1,

QA.3) and on a task-based (SFX) dataset.

allows kid-s and is located’). Due to multi-tasking the models generate more gram-
matically correct and natural responses for both SFX and QA.3.

7.9 Conclusions

In this work, we apply the traditional dialogue MR-to-text approach to NLG to an
open-domain QA setting, with sensibly larger ontologies compared to current task-
oriented dialogue approaches. Our goal was to test the reliability of current ap-
proaches to NLG for dialogue in an environment where the number of slots could
be substantial, a requirement that is critical to meet if we want to move towards an
integrated NLG module across different domains.

The experiments presented show the feasibility of learning a NLG module for QA
using a MR-to-text approach. NLG models performances on datasets with progres-
sively bigger ontologies reported a continuous but not drastic decline for most met-
rics. Moreover, our multitask learning experiments showed that learning NLG mod-
els jointly for QA and task-oriented dialogue improves single tasks performances in
terms of fluency. Results across different experimental settings also point towards
the vital role played by the previous utterance context (delexicalized and especially
lexicalized) to improve NLG models for open-domain QA.

While we envision our approach as a first step towards an integrated statistical NLG
module for a dialogue system, still much remains to be done in order to achieve
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such a challenge. In this work, for example, we saw the importance of adapting ap-
proaches to NLG typical of task-oriented dialogue when moving to an open-domain
QA setting. This is important not only in terms of modelling (the essential role of
the previous utterance), but also in terms of evaluation (designing metrics able to
capture the relative importance of some slots in a given answer compared to others).
We believe an interesting research direction for follow-up work, besides expanding
our multi-task-learning experiments, would be the investigation of evaluation met-
rics for NLG in a QA setting, for example to better capture the centrality of some
slots (or entities) compared to others when answering a given question.

7.10 Summary

In this Chapter, we investigate how to apply the Meaning-Representation-to-text ap-
proach, typical of task-oriented dialogue, to open-domain Natural Language Gen-
eration (NLG). In particular, we address the task of open-domain QA, which re-
quires substantially larger ontologies compared to task-oriented single-domain in-
teractions.

First, we investigated the impact of increasing the number of slot types on the gen-
eration quality and experimented with different partitions of the QA data with pro-
gressively larger ontologies (up to 369 slot types). Second, we performed multi-
task learning experiments between open-domain QA and task-oriented dialog, and
benchmarked our model on a popular NLG dataset. Moreover, we experimented
with using the conversational context as an additional input to improve response
generation quality. Additionally, we proposed evaluation metrics for open-domain
MR-to-text NLG to capture the more flexible relation between slots in the input MR
and the ones realised in the generated text. Our experiments using both objective
metrics and human evaluation showed the feasibility of learning statistical NLG
models for open-domain QA with larger ontologies and the usefulness of training
across different tasks and domains to increase the quality of the generated response.
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Chapter 8

Conclusions

8.1 Synopsis

In this thesis, we investigated how to combine intentional and thematic aspects for
coherence modelling in open-domain dialogue and for the design of open-domain
coherent Conversational Agents (CA), relying on Dialogue Act (DA) and entity-
based theories.

Chapter 2 presented an overview of background work on which this thesis’ contri-
butions rely. First, we discussed current approaches in conversational AI, highlight-
ing the different ways in which coherence is approached in task-oriented modular
CAs and non-task-oriented dialogue models. Then, we delineated approaches to
the notion of coherence in theoretical Linguistics, with a focus on those capturing
the thematic and intentional aspects. Finally, we described approaches to main ap-
proaches to coherence in dialogue in Computational Linguistics, with a particular
concentration on entity-based coherence models and DA theory.

The first main contribution of this thesis was discussed in Chapter 3, where we pro-
posed Roving Mind, a novel architecture for an open-domain CA designed for co-
herence and engagement. We described the different components of our architecture
based on structures composed by DAs and entities and relying on several open-
domain Knowledge Bases, including one representing commonsense knowledge,
for coherent and engaging content retrieval and generation. Then, we presented
a series of experiments conducted during a period of 6 consecutive weeks during
which Roving Mind was tested daily by Amazon Alexa users within the framework
of the first Alexa Prize competition.

Afterwards, in Chapter 4, we proposed a methodology to train an open-domain
DA tagger compliant with the ISO standard by mapping different publicly available
resources with DA annotation. The proposed DA tagger was designed for online
use in CA architectures. After assessing the performance of our DA tagging models
on the Switchboard Dialogue Act corpus with in-domain experiments, our models
were tested on three out of domain corpora. Finally, through an ablation experiment,
we showed the importance of combining different resources for creating a robust
domain-independent DA tagger.

Chapter 5 was dedicated to the exploration of weakly supervised approaches to co-
herence modeling across multiple corpora relying on DA and entity information.
First, we investigated standard coherence tasks designed at the conversation level.
We proposed coherence models relying on different representations combining DA
and entity information. Our experiments showed the importance of DA information
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for coherence prediction and highlighted the fact that standard conversation-level
coherence tasks might be less useful for assessing models’ performance on dialogue
when considering DA information. Then, we explored weakly supervised coher-
ence tasks at the turn level. In particular, we proposed to use response selection
as a weakly supervised task for training turn coherence rankers, which might be
more useful compared to conversation-level tasks for real-world CAs applications.
We presented a novel dataset, the Switchboard Coherence corpus, annotated with
turn coherence ratings, which we developed in order to have a reliable testset to as-
sess the ability of our models to predict turn coherence. A statistical analysis of the
dataset showed the correlation between entity and DA information, especially when
combined, with human perception of turn coherence. Additionally, we proposed
neural models for dialogue coherence prediction, based on abstract conversational
context representations relying on DAs and entities. We assessed the performance
of our models on the response selection training task and then tested on turn co-
herence rating on the Switchboard Coherence corpus. Our experiments confirmed
the crucial importance of combining DA and entity information for predicting turn
coherence in open-domain conversation.

Subsequently, in Chapter 6 we investigated supervised approaches to open-domain
dialogue evaluation, which also utilise DA and entity information. Also in this case,
we proposed approaches for both the level of the entire conversation, and then for
the level of speaker turns. For the conversation level part, we utilised conversational
user ratings collected during the Alexa Prize competition as a supervision signal.
We proposed open-domain models combining DA with different features, including
topic representations, to automatically predict users judgement of whole human-
machine interactions. Although we found moderate correlations between our pro-
posed features and user ratings, our results pointed to the difficulty of predicting
human judgement in noisy real-world human-machine interactions. For the turn
level part, on the other hand, we utilized a large dataset of Alexa Prize conver-
sations between users and various CAs, annotated at the turn level for coherence
and engagement. We proposed turn level open-domain evaluation models based
on entity grid, DA and other features. We found all of the proposed features to be
useful for predicting turn level coherence and engagement. Then, we proposed two
different ways of utilising the evaluators feedback for open-domain coherent and
engaging response generation: by using the evaluators output to rerank the gener-
ated response, and to integrate the evaluators’ loss directly into the conversational
model. We found both techniques to be useful for coherent and engaging response
generation.

Last, in Chapter 7, we detailed our experiments towards a possible open-domain
Natural Language Generation module. In particular, we proposed to apply the
Meaning-Representation-to-text approach, where the task of the models is gener-
ating a response given a DA and list of associated slots, to open-domain Question
Answering (QA), which relies on much larger ontologies. Moreover, we presented
novel evaluation metrics to capture the more flexible relation between MR slots and
those to be realised in the output for open-domain NLG. We presented in-domain
and cross-domain experiments, which suggested the feasibility of learning open-
domain NLG models with larger ontologies.
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8.2 Summary of contributions

In this section, we detail the contributions of this dissertation in regards to the hy-
potheses proposed.

H1: Can we model coherence in dialogue using Dialogue Acts and entities? The
first aim of the thesis was the one of investigating whether we could model open-
domain dialogue coherence using a representation of the dialogue based on DAs and
entities. Across Chapter 5 and Chapter 6, we proposed different models and tasks to
model open-domain dialogue coherence using DA and entity features. Overall, the
experiments proposed indicate that both the thematic aspect, declined through entity-based
features, and the intentional aspect, captured via DA features, are useful for modeling open-
domain dialogue coherence, especially when combined.
More specifically, the thesis contributions described in Chapter 5 indicate that DA
and entity play a crucial role for predicting coherence in dialogue with weakly super-
vised techniques, both when predicting the coherence of entire conversation (Section
5.1) and when predicting the coherence of single turns (Section 5.2). We proposed
different Machine Learning techniques (SVM and neural models) and input repre-
sentations (grid-inspired and linearised representations) to capture entity and DA
joint and independent patterns of distribution. We presented a novel dataset, the
Switchboard Coherence corpus, to investigate human perception of turn coherence
in spoken dialogue and found that turn coherence perception correlates with the en-
tity mentioned in the previous context and DAs used.
On the other hand, the thesis contributions presented in Chapter 6 also point to
the usefulness of DA and entity-based features for learning evaluation models of
open-domain dialogue with supervised techniques using noisy human-machine in-
teractions data. In Section 6.1 we proposed models for predicting conversation-level
user ratings and found DA and LDA-based representations to be useful for the task.
In Section 6.2, we proposed models for predicting turn-level coherence and engage-
ment and found that DA and entity-based representations are useful for this task.
Additionally, we proposed techniques to incorporate the learned evaluators infor-
mation for response generation models and showed both methodologies to improve
coherence and engagement of the generated responses.

H2: Can we use Dialogue Acts and entities as units to build models for an open-
domain coherent conversational agent? The second aim of this dissertation was
exploring how to use DAs and entities to create different components of an open-
domain CA. While in Chapter 3 we proposed a full open-domain architecture de-
signed for coherence and engagement, across the subsequent Chapters we provided
different solutions which could be used across different modules of such an architec-
ture. For easiness of read, here we discuss our proposed solutions on a per-module
basis. In general, the models proposed throughout the thesis suggest that it is possible
to use Dialogue and entities as building blocks to create different components of domain-
independent coherent CAs.

Spoken Language Understanding In Chapter 3, we proposed an SLU module re-
lying on the notion of Functional Units structures, composed of DA and associated
open-domain entities. We proposed to use different open-domain Knowledge Bases,
including a commonsense one, to perform entity-linking within the SLU module,
for retrieving content coherent with the conversational context. In Chapter 4 we
detailed the methodology used to train a domain-independent DA tagger robust to
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different DA categories part of our proposed SLU. We presented a novel resource,
the result of the aggregation and mapping of different publicly available resources,
to train a domain-independent DA tagger compliant with the ISO 24617-2 standard.
We reported experiments showing that the proposed DA tagger achieved satisfac-
tory performance on in-domain (with SOTA results compared to other online DA
taggers at the time) and cross-domain settings and highlighted the importance of
combining multiple resources for robust domain-independent DA tagging.

Dialogue Manager In Chapter 3, we proposed a sequential architecture for an open-
domain DM, whose design relies on general pragmatic functions inspired by DA the-
ory (Jurafsky, 1997). The proposed DM, relies on the interaction with different open-
domain KBs and a dialogue history, recording DA and entities previously used, for
creating a list of Functional Units composed of DAs and entities, to be passed to the
NLG component.
Moreover, in Chapter 5, section 5.2, we proposed response coherence rankers based
on DA and entities trained with weakly supervised techniques, which could be used
within an open-domain DM for ranking the set of generated Functional Units struc-
tures before passing them to the NLG. In Chapter 6, section 6.2, we proposed re-
sponse coherence rankers trained in a supervised fashion, which could be used in a
retrieval-based open-domain DM component, for ranking the retrieved responses.

Natural Language Generation In Chapter 7 we presented experiments towards an
integrated open-domain statistical NLG for CAs. We proposed multiple Encoder-
Decoder models which generate a response conditioned on DA and open-domain
slots and the previous context. We presented experiments with NLG models with
larger ontologies, characteristic of multi- and open-domain dialogue. Furthermore,
we presented cross-domain multi-task learning experiments which point to the use-
fulness of integrating knowledge from multiple domains for improving the fluency
of domain-independent NLG. Moreover, we proposed to modify traditional unit-
testing evaluation metrics for NLG to adapt them to the more flexible open-domain
setting.

Evaluation The contributions from Chapter 5 and Chapter 6 already detailed when
discussing H1 within this Section are all mostly designed with the main goal of
open-domain model-agnostic (i.e. which could be applied regardless of the dia-
logue model used for generating responses) dialogue evaluation. Another contri-
bution of this thesis in regards to open-domain dialogue evaluation was highlight-
ing the difficulty of modeling human judgement of real-world human-machine non-
task-oriented interaction, as shown by our upper-bound annotation experiment pre-
sented in Section 6.1.7.

8.3 Conclusions and Future Directions

Overall, this dissertation represents one of many possible first steps towards a data-
driven understanding of the structure of open-domain conversation. We focused
on two aspects, the thematic and intentional one, which inspired numerous works
on coherence across the fields of Theoretical and Computational Linguistics. We
showed how these aspects could be useful for coherence modeling in open-domain
dialogue, using entity-based and DA theories. At the same time, we proposed vari-
ous methodologies for creating different components of open-domain coherent CAs
relying on DA and entity-based structures. Nonetheless, the approaches presented
in this thesis could be improved in the future in several regards.
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From the perspective of the thematic aspect, one of the first things to look forward
to will be the integration of coreference resolution in our proposed models. Unfor-
tunately, during the course of this thesis, while we initially attempted to integrate
coreference resolution SOTA models into our work, we found them not to be re-
liable yet for open-domain dialogue, especially in the case of transcribed conver-
sations. Another limitation of our approach is the fact that it relies on a syntactic
parser which might not be robust enough for spoken text. In our approach we do
not require a full syntactic parsing of utterances, but mainly the parsing of the main
syntactic roles of the sentence, that is the direct arguments of the verb on which usu-
ally parsers are more robust and chunkers can be used. Nevertheless, we believe
that the performance and precision of our models will definitely improve with the
availability of parsers more robust to the idiosyncrasies of spoken text.

On the other hand, in regards to the intentional aspect, in several cases our mod-
els rely on gold DAs. As future work, it would therefore be important to explore
the performance of our models with predicted DAs, rather than the groundtruth
ones. Additionally, instead of using only top-down expert designed DA taxonomies,
it would be interesting to investigate alternatives ways of dynamically define DA
tagsets (Marinelli et al., 2019). Moreover, given the provided insights in the rela-
tion among DAs and entities for predicting coherence, we believe a fruitful research
direction to pursue would be jointly training DA tagging models with an entities ex-
tractor, similarly to previous work done for joint intent classification and slot tagging
(Liu and Lane, 2016).

Among the considered techniques, we believe the most promising directions to be
the ones using weakly supervised, rather than supervised techniques. In recent
years, weakly supervised methodologies, also known as self-supervised, have been
successfully applied to several NLP tasks (Devlin et al., 2019). Given the current lack
of data in dialogue, we believe further exploring weakly supervised training tasks,
could be a fertile direction for learning models of discourse coherence. Nonetheless,
while exploring weakly supervised approaches for training is a promising direction,
we also found to be crucial to create reliable resources for testing utilising human
annotation, as mentioned in Section 5.2 as the motivation to build the Switchboard
Coherence corpus.

Finally, in this work we explored two aspects of coherence. However, as discussed
in Chapter 2, coherence is a multifaceted property. As such, coherence is defined by
several layers besides the aspects addressed in this work. Hence, we envision that in
the future the approaches presented in this thesis could greatly benefit from adding
additional layers of complexity, for example using Discourse Relations or exploring
augmenting our models with predicate argument structures to better encode the
different relations among entities.

Consequently, we believe the work presented here to be a useful, but not compre-
hensive solution to the challenges of training and evaluating coherent open–domain
CAs, as well as modeling dialogue coherence. Rather, we expect the insights pre-
sented in this thesis to be used in the future in combination with other metrics ad-
dressing different aspects of dialogue coherence.

Nevertheless, we believe the proposed models could be more reliable and useful
than some of the currently available automatic metrics for dialogue evaluation and
non-modular models, since instead of evaluating and modeling surface realizations
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they consider the deeper structure of dialogue based on the topics (entities) dis-
cussed and the underlying intents of the participants. Our intuition is that these
structures could be especially helpful in cases where not much data is available,
which as we saw to be often the case when creating CAs from scratch.
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Appendix A

Data collection procedure for
Switchboard Coherence corpus

A.1 Introduction

Coherence rating is an inherently subjective task and could be challenging especially
for a dataset of transcribed real-world open-domain human-human conversation
like Switchboard, where we have possible interruptions, overlaps and disfluencies
naturally occurring. Hence, in order to ensure we collected reliable judgements for
turn coherence, we followed a multi-step procedure to build the Switchboard Co-
herence (SWBD-Coh) corpus using Amazon Mechanical Turk (AMT).

A.1.1 Experiment with internal annotators

First we performed a small-scale annotation experiment to evaluate the feasibility
of the task. Two internal annotators, both with Linguistics education, were asked
to rate a set of 150 different dialogues randomly selected from the testset from (Cer-
vone, Stepanov, and Riccardi, 2018). The 150 annotation pairs (context + set of can-
didate turns) were generated using the same procedure described in Section 4 of the
paper. The coherence scale was divided into 1 (not coherent), 2 (not sure it fits) and
3 (coherent). Since we wanted to capture a general perception of coherence, rather
than bias annotators towards our own intuitions, in the guidelines annotators the
task was described as: “Your task is to rate each candidate on a scale of how much
it is coherent with the previous dialogue context, that is how much that response makes
sense as the next natural turn in the dialogue”.

Since in this case we only have two annotators, we were able to measure their inter-
annotator agreement using a weighted kappa score with quadratic weights (since
our categories are ordinal). The inter-annotator agreement was of 0.657 (which can
be regarded as substantial (Viera, Garrett, et al., 2005)). Then, we averaged scores
for each candidate turn from both annotators. As shown in Table A.1, original turns
had higher coherence scores (µ = 2.66) compared to adversarial turns, while turns
generated with Internal Swap were considered more coherent (µ = 1.78) than the
ones generated via External Swap (µ = 1.45).

A.1.2 Experiment with AMT

After having assessed the feasibility of the task, we then proceeded to set up the data
collection procedure on AMT.
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Original Internal Swap External Swap
Mean score 150 2.7 (0.5) 1.8 (0.7) 1.4 (0.7)
Mean score SWBD-Coh 2.6 (0.5) 1.8 (0.7) 1.4 (0.6)

TABLE A.1: Comparison of human annotation results for the exper-
iment with two internal annotators (150 dialogues) and the Switch-
board Coherence (SWBD-Coh) dataset. Mean scores (and standard
deviation) are reported for each candidates group: originals (Orig),

Internal Swap (IS) and External Swap (ES).

In order to select workers for our coherence annotation task we first set up a qualifi-
cation task on AMT. The qualification task consisted of 5 dialogues (taken from the
150 internally annotated) with 7 turn candidates using the same coherence rating
scale as in the gold annotation. In order to pass the qualification task a worker had
to have a weighted kappa score higher than 0.4 with both our gold annotators. This
threshold was decided empirically by first running a small scale experiment with
other 4 internal annotators on the qualification task. 37 workers passed the qualifi-
cation task. The average weighted kappa agreement with the two gold annotators
was 0.659 (min: 0.425, max: 0.809, STD: 0.101). In order to calculate the agreement
among all the 37 workers on this batch we employ leave-one-out resampling. For
each worker who annotated the data we calculate the correlation of her/his scores
with the mean ones of all other annotators in the batch. This is repeated for all work-
ers and then averaged. This technique has been used in other coherence annotation
experiments (Barzilay and Lapata, 2008; Lapata and Barzilay, 2005).

Workers who passed the qualification test could then proceed to annotate the SWBD-
Coh data. The data, consisting of 1000 dialogues, was divided into 100 batches of
10 dialogues each. Each batch was annotated by at least 5 workers. In order to
remove possible workers who did not perform well on a given batch, we employed
a combination of techniques including leave-one-out resampling and average scores
given to original turns. The average leave-one-out correlation per batch for turn
coherence rating achieved with this data collection procedure was: ρ =0.723 (min:
0.580, max: 0.835, STD: 0.055). Interestingly, as shown in Table A.1, the average
scores per candidate group (original, Internal swap, External swap) match closely
the ones obtained in our gold 150 annotation data.
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