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1 Introduction

The study of mean-value properties of solutions of elliptic PDEs has a long and fruitful history. For
harmonic functions in the Euclidean setting, the study goes back to Gauss, Koebe, Volterra, and
Zaremba, to mention just a few, see also [1] for recent results in Carnot groups. A generalized mean-
value property originating in [14] and [15], called the asymptotic mean-value property, facilitates
similar analysis of p-harmonic functions, one of the most important nonlinear counterparts of
harmonic functions. Related are applications of p-harmonic functions in statistical Tug-of-War
games, see for instance [14] and [17]. In the setting of Carnot groups, similar studies have been
conducted in [8] and [9].

A new approach to the asymptotic mean-value property has been recently proposed in [11] (see
also [2] for relations with statistical games). More precisely, in [11], the authors proved that every
viscosity solution u to the normalized p-laplacian in an open set Ω ⊂ Rn for a given 1 ≤ p ≤ ∞
(Definition 2.2), can be characterized using an asymptotic mean-value property in terms of the
function µp(ε, u)(x), defined as the unique minimizer of the following variational problem

‖u− µp(ε, u)‖Lp(Bε(x))
= min

λ∈R

‖u− λ‖Lp(Bε(x))
,

where Bε(x) ⊂ Ω denotes the ball centered at x with radius ε. This notion encompasses the
median, the mean-value and the min-max mean of a continuous function, see [11] for details.

In the present paper we generalize the results of [11] to the setting of an arbitrary Carnot group.
Let G be a Carnot group of step k (Definition 2.1). Denote by ∆N

p,G the subelliptic normalized p-
Laplacian (see (2) and (3)) and by µp(ε, u) the generalized median of a function u defined uniquely
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as in (5). The theorem below stays that a viscosity solution of ∆N
p,Gu = 0 can be characterized

asymptotically by the minimum µp(ε, u). This provides one more, intrinsic, way to characterize
p-harmonic functions via a variant of the asymptotic mean-value property.

Theorem 1.1. Let 1 < p ≤ ∞ and let Ω ⊂ G be open. For a function u ∈ C0(Ω) the following
are equivalent:

(i) u is a viscosity solution of ∆N
p,Gu = 0 in Ω;

(ii) u(x) = µp(ε, u)(x) + o(ε2) as ε→ 0, in the viscosity sense for every x ∈ Ω.

In order to prove this theorem we first prove Lemma 3.1, where the asymptotic behavior of
minimizers µp is described for quadratic polynomials on balls. We illustrate the discussion with
examples of the Heisenberg group and Carnot groups of step 2, see Examples 3 and 4 in Section
3. As presented in Remark 1 in Section 3, our results generalize those obtained in the Euclidean
setting in [11]. The techniques employed in [11] do not allow us to include in our discussion the
case p = 1, see Remark 2 at the end of Section 3.

2 Carnot groups

In what follows, we briefly recall some standard facts on Carnot groups, see [5, 7, 10, 16] for a more
detailed treatment.

Definition 2.1. A finite dimensional Lie algebra g, is said to be stratified of step k ∈ N, if there
exists subspaces V1, . . . , Vk of g such that:

g = V1 ⊕ · · · ⊕ Vk and [V1, Vi] = Vi+1 i = 1, . . . , k − 1; [V1, Vk] = {0}.

We denote by vk the dimension of Vk.
A connected and simply connected Lie group G is a Carnot group if its Lie algebra g is finite

dimensional and stratified. We also set h0 := 0, hi :=
∑i

j=1 vj and m := hk.

Using the exponential map, every Carnot group G of step k is isomorphic as a Lie group to
(Rm, ·) where · is the group operation given by the Baker-Campbell-Hausdorff formula.

For each x ∈ G we define left translation by τx : G −→ G by

τx(y) := x · y.

For each λ > 0 we define a dilation δλ : G −→ G by

δλ(x) = δλ(x1, . . . , xm) := (λσ1x1, . . . , λ
σkxm),

where σi ∈ N is called the homogeneity of the variable xi in G and it is defined by σj := i, whenever
hi−1 < j ≤ hi.

We endow G with a pseudonorm and pseudodistance by defining

|x|G := |(x(1), . . . , x(k))|G :=
( k∑

j=1

‖x(j)‖ 2k!
j

) 1
2k!

(1)

d(x, y) := |y−1 · x|G,

where x(j) := (xhj−1+1, . . . , xhj
) and ‖x(j)‖ denotes the standard Euclidean norm in R

hj−hj−1 . We
define the pseudoball centered at x ∈ G of radius R > 0 by

B(x,R) = BR(x) := {y ∈ G : |y−1 · x|G < R}.

We illustrate the concept of Carnot groups with the following important examples.
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Example 1 (The Heisenberg groups Hn). The n-dimensional Heisenberg group G = Hn, is the
Carnot group with a 2-step Lie algebra and orthonormal basis {X1, . . . , X2n, Z} such that

g1 = Span {X1, . . . , X2n}, g2 = Span {Z},

and the nontrivial brackets are [Xi, Xn+i] = Z for i = 1, . . . , n.
In particular, if n = 1, then the Heisenberg group H1 is often presented using coordinates (z, t),

where z = x + iy ∈ C and t ∈ R, and multiplication defined by (z1, t1)(z2, t2) = (z1 + z2, t1 +
t2 + 2 Im(z1z̄2)). The pseudonorm given by ‖(z, t)‖ = (|z|4 + t2)1/4 gives rise to a left invariant
distance defined by dH1(p, q) = ‖p−1q‖ which is called the Heisenberg distance. A dilation by r > 0
is defined by δr(z, t) = (rz, r2t) and the left invariant Haar measure λ is simply the 3-dimensional
Lebesgue measure, moreover δ∗rdλ = r4dλ. It follows that the Hausdorff dimension of the metric
measure space (H1, dH1 , λ) is 4, and the space is 4-Ahlfors regular, i.e., there exists a positive
constant c such that for all balls B with radius r, we have 1

c r
4 ≤ H4(B) ≤ cr4, where H4 denotes

the 4-dimensional Hausdorff measure induced by dH1 .

The following proposition, proved in [5], shows that the Lebesgue measure is the Haar measure
on Carnot groups.

Proposition 2.1. Let G = (Rm, ·) be a Carnot group. Then the Lebesgue measure on Rm is
invariant with respect to the left and the right translations on G. Precisely, if we denote by |E| the
Lebesgue measure of a measurable set E ⊂ Rm, then for all x ∈ G we have that |x·E| = |E| = |E ·x|.
Moreover, for all λ > 0 it holds δλ(E)| = λQ|E|, where Q :=

∑m
j=1 vjσj.

A basis X = {X1, . . . , Xm} of g, is called the Jacobian basis if Xj = J(ej) where (e1, . . . , em) is
the canonical basis of Rm and J : Rm −→ g is defined by J(η)(x) := Jτx(0) · η, where Jτx denotes
the Jacobian matrix of τx.

Let us recall the following classical proposition describing the Jacobian basis on Carnot groups,
see [5, Corollary 1.3.19] for a proof.

Proposition 2.2. Let G = (Rm, ·) be a Carnot group of step k ∈ N. Then the elements of the
Jacobian basis {X1, . . . , Xm} have polynomial coefficients and if hl−1 < j ≤ hl, 1 ≤ l ≤ k, then

Xj(x) = ∂j +

m∑

i>hl

a
(j)
i (x)∂i,

where a
(j)
i (x) = a

(j)
i (x1, . . . , xhl−1

) when hl−1 < i ≤ hl, and a
(j)
i (δλ(x)) = λσi−σja

(j)
i (x).

The following definition is one of the key concepts of the analysis on Carnot groups. Let
X = {X1, . . . , Xm} be a Jacobian basis of G = (Rm, ·). For any function u ∈ C1(Rm), we define
its horizontal gradient by the formula

∇V1u :=

h1∑

i=1

(Xiu)Xi

and the intrinsic divergence of u as

divV1 u :=

h1∑

i=1

Xiu.

Moreover, for 2 ≤ j ≤ k, we set ∇Vj
u :=

∑

hj−1<i≤hj
(Xiu)Xi. The horizontal Laplacian ∆Gu of a

function u : G −→ R is defined by the following

∆Gu :=

h1∑

i=1

X2
i u.
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A priori, one studies solutions to the Laplace equation under the C2-regularity assumption. How-
ever, as in the Euclidean setting, it is natural to weaken the required degree of regularity and
consider weak solutions belonging to the so-called horizontal Sobolev space. For further details we
refer to e.g. [6, 13].

The following results describe the Taylor expansion formula in the Carnot groups, see [5, Propo-
sition 20.3.11] .

Proposition 2.3. Let Ω ⊂ G be an open neighborhood of 0 and let u ∈ C∞(Ω). Then, the following
Taylor formula holds for any point P = (x(1), x(2), . . . , x(k)) ∈ Ω:

u(P ) = u(0) + 〈∇V1u(0), x
(1)〉Rh1 + 〈∇V2u(0), x

(2)〉Rh2 +
1

2
〈D2,∗

V1
u(0)x(1), x(1)〉Rh1 + o(‖P‖2)

where

D2,∗
V1
u :=

(
(XiXj +XjXi)u

2

)

1≤i,j≤h1

is the so called symmetrized horizontal Hessian of u.

Next, we recall the definition of the main differential operator studied in this work. For p ∈
[1,+∞] the subelliptic normalized p-Laplace operator is

∆N
p,Gu :=

divV1(|∇V1u|p−2∇V1u)

|∇V1u|p−2
if 1 ≤ p <∞ (2)

and

∆N
∞,Gu :=

〈

D2,∗
V1
u

∇V1u

|∇V1u|
,

∇V1u

|∇V1u|

〉

|∇V1u|2
. (3)

Note that for p = 2, ∆2,Gu = ∆Gu is the so called Kohn-Laplace operator in G. Thus, the p-
Laplace operator is the natural generalization of the Laplacian. Furthermore, the ∞-Laplacian can
be viewed as a limit of p-Laplacians in the appropriate sense for p → ∞. Among its applications,
let us mention best Lipschitz extensions, image processing and mass transport problems, see e.g.
the presentation in [14] and references therein.

In the case of the non-renormalized p-Laplacian, notions of a viscosity solution and a weak
solution agree for 1 < p < ∞, see [12] for the result in the Euclidean setting and [3] for the
Heisenberg group. Since the normalized p-Laplacian is in the non-divergence form, the concept of
viscosity solutions is more handy than weak solutions. Let us now introduce this notion.

Definition 2.2. Fix a value of p ∈ [1,∞] and consider the subelliptic normalized p-Laplace
equation

∆N
p,Gu = 0 in Ω ⊂ G. (4)

(i) A lower semi-continuous function u, is a viscosity supersolution of (4), if for every x0 ∈ Ω,
and every φ ∈ C2(Ω) such that ∇V1φ(x0) 6= 0 and u− φ has a strict minimum at x0 ∈ Ω, we
have ∆N

p,Gφ ≤ 0 in Ω.

(ii) A lower semi-continuous function u, is a viscosity subsolution of (4), if for every x0 ∈ Ω, and
every φ ∈ C2(Ω) such that ∇V1φ(x0) 6= 0 and u−φ has a strict minimum at x0 ∈ Ω, we have
∆N

p,Gφ ≥ 0 in Ω.

(iii) A continuous function u is a viscosity solution of of (4), if it is both a viscosity supersolution
and a viscosity subsolution in Ω.
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Fix an open set Ω ⊂ G, let 1 ≤ p ≤ ∞ and let u be a real-valued continuous function in Ω.
For a given x ∈ Ω, choose ε > 0 so that Bε(x) ⊂ Ω, we define the number µp(ε, u)(x) (or simply
µp(ε, u) if the point x is clear from the context) as the unique real number satisfying

‖u− µp(ε, u)‖Lp(Bε(x))
= min

λ∈R

‖u− λ‖Lp(Bε(x))
. (5)

The following properties of µp(ε, u)(x) have been proved in [11] for the setting of compact topo-
logical spaces X , equipped with a positive Radon measure ν such that ν(X) <∞. Here we apply
results from [11] to X = Bε(x) ⊂ G and ν the Lebesgue measure, cf. Proposition 2.1.

In Theorem 2.1 below, we summarize results proven in Theorems 2.1, 2.4 and 2.5 in [11].

Theorem 2.1. Let 1 ≤ p ≤ ∞ and u ∈ C(Bε(x)).

(1) There exists a unique real valued µp(ε, u) such that

‖u− µp(ε, u)‖Lp(Bε(x))
= min

λ∈R

‖u− λ‖Lp(Bε(x))
.

Furthermore, for 1 ≤ p <∞, µp(ε, u) is characterized by the equation

ˆ

Bε(x)

|u(y)− µp(ε, u)|p−2
(u(y)− µp(ε, u)) dy = 0, (6)

where for 1 ≤ p < 2 we assume that the integrand is zero if u(y)− µp(ε, u) = 0. For p = ∞
we have the following equality:

µ∞(ε, u) =
1

2

(

min
B(x,ε)

u+ max
B(x,ε)

u

)

. (7)

(2) If 1 ≤ p ≤ ∞ then it follows that

∣
∣
∣‖u− µp(ε, u)‖Lp(Bε(x))

− ‖v − µp(ε, v)‖Lp(Bε(x))

∣
∣
∣ ≤ ‖u− v‖Lp(Bε(x))

for any u, v ∈ Lp(Bε(x)). Moreover, if un → u in Lp(Bε(x)) for 1 ≤ p ≤ ∞ and un, u ∈
C0(Bε(x)) for p = 1, then µp(ε, un) → µp(ε, u) as n→ ∞, the same is true for any p ∈ [1,∞]

if {un} ⊂ C0(Bε(x)) converges uniformly on Bε(x) as n→ ∞.

(3) Let u and v be two functions which, in the case 1 < p ≤ ∞, belong to Lp(Bε(x)), and in the
case p = 1, belong to C0(Bε(x)). If u ≤ v a.e. in Bε(x), then µp(ε, u) ≤ µp(ε, v).

(4) µp(ε, u+ c) = µp(ε, u) + c for every c ∈ R.

(5) µp(ε, cu) = cµp(ε, u) for every c ∈ R.

The following is [11, Corollary 2.3] in Carnot groups of step k:

Corollary 2.1. Let u ∈ Lp(Bε(x)), for 1 < p ≤ ∞, or in C0(Bε(x)) for p = 1. Let uε(z) =
u(xδε(z)) for z ∈ B1(0), then

µp(ε, u)(x) = µp(1, uε)(0).

Proof. For every λ ∈ R and 1 ≤ p <∞ it holds:

‖u−λ‖pLp(Bε(x))
=

ˆ

Bε(x)

|u(ξ)−λ|p dξ = εσ1+···+σk

ˆ

B1(0)

|uε(ξ)−λ|p dξ = εv1+2v2+···+kvk‖uε−λ‖pLp(B1(0))

and
‖u− λ‖L∞(Bε(x)) = ‖uε − λ‖L∞(B1(0))

and the conclusion follows by (1) in Theorem 2.1.
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Next we state carefully what is meant by the statement that the asymptotic expansion of the
function u in terms of µp holds in the viscosity sense, see (5) and Definition 2.4. First, we need
the following auxiliary definition.

Definition 2.3. Let h be a real valued function defined in a neighborhood of zero. We say that

h(x) ≤ o(x2) as x→ 0+

if any of the three equivalent conditions is satisfied:

a) lim sup
x→0+

h(x)

x2
≤ 0,

b) there exists a nonnegative function g(x) ≥ 0 such that h(x) + g(x) = o(x2) as x→ 0+,

c) lim
x→0+

h+(x)

x2
≤ 0.

A similar definition is given for h(x) ≥ o(x2) as x→ 0+ by reversing the inequalities in a) and
c), requiring that g(x) ≤ 0 in b) and replacing h+ by h− in c)1.

Let f and g be two real valued functions defined in a neighborhood of x0 ∈ R. We say that f
and g are asymptotic functions for x → x0, if there exists a function h defined in a neighborhood
Vx0of x0 such that:

(i) f(x) = g(x)h(x) for all x ∈ Vx0 \ {x0}.

(ii) limx→x0 h(x) = 1.

If f and g are asymptotic for x→ x0, then we simply write f ∼ g as x→ x0.

Definition 2.4. A continuous function defined in a neighborhood of a point x ∈ G, satisfies

u(x) = µp(ε, u)(x) + o(ǫ2),

as ǫ→ 0+ in the viscosity sense, if the following conditions hold:

(i) for every continuous function φ defined in a neighborhood of a point x such that u − φ has
a strict minimum at x with u(x) = φ(x) and ∇V1φ(x) 6= 0 , we have

φ(x) ≥ µp(ε, φ)(x) + o(ǫ2), as ǫ→ 0+.

(ii) for every continuous function φ defined in a neighborhood of a point x such that u − φ has
a strict maximum at x with u(x) = φ(x) and ∇V1φ(x) 6= 0, then

φ(x) ≤ µp(ε, φ)(x) + o(ǫ2), as ǫ→ 0+.

3 The proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following key lemma.

Lemma 3.1 (cf. Lemma 3.1 in [11]). Let G be a Carnot group of step k. Moreover, let Ω ⊂ G

be an open set and x ∈ Ω be a point such that Bε(x) ⊂ Ω for all small enough ε ≤ ε0(x). Let
1 < p ≤ ∞ and ξ ∈ Rv1 \ {0}, η ∈ Rv2 . Let further A be a symmetric v1 × v1 matrix with trace
tr(A). Moreover, consider the quadratic function q : Bε(x) → R given by

q(y) = q(x)+ 〈ξ, (x−1y)(1)〉Rv1 + 〈η, (x−1y)(2)〉Rv2 +
1

2
〈A(x−1y)(1), (x−1y)(1)〉Rv1 , y ∈ Bε(x), (8)

1 As usual, we denote by h+(x) := max{h(x), 0} and h−(x) := −min{h(x), 0}.
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where (x−1y)(1) and (x−1y)(2) are the horizontal and the vertical components of x−1y, respectively
and 〈·, ·〉Rv1 and 〈·, ·〉Rv2 denote the Euclidean scalar products on R

v1 and R
v2 , respectively. It then

follows that

µp(ε, q)(x) = q(x) + ε2c

(

tr(A) + (p− 2)
〈Aξ, ξ〉Rv1

|ξ|2
)

+ o(ε2), (9)

where

c := c(p, v1, . . . , vk) =
1

2(p+ v1)

B
(

vk
2(k−1)! ,

p+
∑k−1

j=1 jvj

2(k−1)! + 1

)

B
(

vk
2(k−1)! ,

p−2+
∑k−1

j=1 jvj

2(k−1)! + 1

)

k−1∏

j=2

B
(

jvj
2k! ,

p+
∑j−1

i=1 ivi
2k! + 1

)

B
(

jvj
2k! ,

p−2+
∑j−1

i=1 ivi
2k! + 1

)

and B (x, y) denotes the Beta function B (x, y) =
´ 1

0
tx−1(1− t)y−1 dt for all x, y > 0. Furthermore,

if u ∈ C2(Ω) with ∇V1u(x) 6= 0, then

µp(ε, u)(x) = u(x) + c∆N
p,Gu(x)ε

2 + o(ε2), as ε→ 0+. (10)

Remark 1. The formula describing the constant c(p, v1, . . . , vk) is complicated and not easily
simplified using the properties of the Beta function.

Before we prove the lemma, let us discuss its assertion in some particular cases:

Example 2 (The Euclidean space RN). If G is the Euclidean space RN then c(p, v1, . . . , vk) agrees
with the constant computed in [11], namely

c(p,N) =
1

2(p+N)
.

Example 3 (The Heisenberg group H1, cf. Example 1). If G = H1, then quadratic function q
in (8) takes the form:

q(y) = q(x) + 〈ξ, (x−1y)(1)〉+ w(x−1y)(2) +
1

2
〈A(x−1y)(1), (x−1y)(1)〉R2 , y ∈ Bε(x),

where w ∈ R, ξ ∈ R2 \ {0}. Furthermore, the constant c = c(p) appearing in (9) and (10) takes
the following form

c(p) =
2

(p+ 2)(p+ 4)

(

Γ
(
p+6
4

)

Γ
(
p+4
4

)

)2

,

where for t > −1, Γ(t) =
´∞

0 xt−1e−x dx is the Gamma function.

Example 4 (Carnot groups of step 2). Let G be a Carnot group of step 2, then the quadratic
function q in (8) takes the form:

q(y) = q(x) + 〈ξ, (x−1y)(1)〉Rn + 〈η, (x−1y)(2)〉Rk +
1

2
〈A(x−1y)(1), (x−1y)(1)〉Rn , y ∈ Bε(x),

that is v1 = n, v2 = k, ξ ∈ R
n \ {0} and η ∈ R

k. Moreover, the constant c = c(p, n, k), appearing
in (9) and (10), takes the following form

c(p, n, k) :=
1

2(n+ p)

B
(
k
2 ,

n+p+4
4

)

B
(
k
2 ,

n+p+2
4

) .

In the proof of Lemma 3.1 we employ the following integral formula.

Lemma 3.2. Let α1, . . . , αn be real numbers such that αi > −1 for i = 1, . . . , n. It then follows
that

ˆ

Tn

xα1
1 · . . . · xαn

n dx =
1

2n

∏n
i=1 Γ(

αi+1
2 )

Γ(n+2+
∑

αi

2 )
(11)

where Tn :=
{
(x1, . . . , xn) ∈ Rn : x21 + . . .+ x2n < 1, xi ≥ 0 for i = 1, . . . , n

}
.
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Proof of Lemma 3.2. Let a, b > −1. Upon applying the change of variables t = sin2 x, we obtain
the following equation:

ˆ π
2

0

sina x cosb xdx =

ˆ 1

0

t
a
2 (1− t)

b
2

1

2
√
t
√
1− t

dt =
1

2

ˆ 1

0

t
a−1
2 (1− t)

b−1
2 dt =

1

2
B
(
a+ 1

2
,
b+ 1

2

)

.

Now we are in a position to calculate the left-hand side of (11). We apply the spherical
coordinates 





x1 = r cosϕ1

x2 = r sinϕ1 cosϕ2

x3 = r sinϕ1 sinϕ2 cosϕ3

...
...

xn−1 = r sinϕ1 sinϕ2 · . . . · cosϕn−1

xn = r sinϕ1 sinϕ2 . . . sinϕn−1

with the Jacobian determinant |J | = rn−1 sinn−2 ϕ1 sin
n−3 ϕ2 · . . . · sinϕn−2 and the spherical

coordinates varying as follows: r ∈ (0, 1), ϕi ∈ (0, π/2) for i = 1, . . . , n− 2. The result is

ˆ

Tn

xα1
1 · . . . · xαn

n dx =

ˆ 1

0

ˆ π
2

0

. . .

ˆ π
2

0

[

r
∑n

i=1 αi+n−1 · cosα1 ϕ1 sin
∑

n
i=2 αi+n−2 ϕ1

· cosα2 ϕ2 sin
∑n

i=3 αi+n−3 ϕ2 · . . . · cosαn−1 ϕn−1 sin
αn ϕn−1

]

dϕ1 . . . dϕn−1dr

=
1

n+
∑n

i=1 αi

1

2
B
(∑n

i=2 αi + n− 1

2
,
α1 + 1

2

)
1

2
B
(∑n

i=3 αi + n− 2

2
,
α2 + 1

2

)

· . . . · 1
2
B
(
αn + 1

2
,
αn−1 + 1

2

)

,

which is equal to the right-hand side of (11) upon using the well-known formula B (x, y) = Γ(x)Γ(y)
Γ(x+y) .

Proof of Lemma 3.1. In the proof we follow the steps of the proof of Lemma 3.1 in [11]. However,
since the setting of Carnot groups differs from the Euclidean one, the computations are to some
extent, more demanding and nontrivial.

We begin with computing µp(ε, q). For z = (z(1), . . . , z(k)) ∈ B := B(0, 1), we introduce the
following functions:

qε(z) := q(xδε(z)), vε(z) :=
qε(z)− q(x)

ε
and v(z) := 〈ξ, (z1, . . . , zv1)〉Rn := 〈ξ, z(1)〉Rv1 .

We know that µp(ε, q)(x) = µp(1, qε)(0) by Corollary 2.1. Then, by points (4) and (5) of Theorem
2.1, we see that

µp(ε, q)(x)− q(x)

ε
= µp(1, vε)(0).

Let us further observe that

vε(z) = 〈ξ, z(1)〉+ ε

2
〈Az(1), z(1)〉+ ε〈η, z(2)〉 (12)

which shows that vε converges uniformly to v as ε → 0 on B. We appeal to the second part
of claim (2) in Theorem 2.1 to obtain that µp(1, vε)(0) → µp(1, v)(0) as ε → 0. Recall that the
characterization of λ = µp(1, v)(0) given by (6) in Theorem 2.1 states that if p ∈ [1,∞), then λ is
the unique number such that

ˆ

B

|〈ξ, y(1)〉 − λ|p−2(〈ξ, y(1)〉 − λ)dy = 0.
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On the other hand we have
ˆ

B

|〈ξ, y(1)〉|p−2(〈ξ, y(1)〉)dy = 0,

which follows from the symmetry of the unit ball and the following natural change of variables

Φ(y(1), y(2), . . . , y(k)) = (−y(1), y(2), . . . , y(k)), |JΦ| = 1, Φ(B) = B.

It now follows that µp(1, v)(0) = λ = 0.
If p = ∞, then by (7):

µ∞(1, v)(0) =
1

2

(

min
B

〈ξ, y(1)〉+max
B

〈ξ, y(1)〉
)

=
1

2
(−|ξ|+ |ξ|) = 0.

Next, we split the discussion into the cases depending on the value of p. Let us define

γε :=
µp(ε, q)(x) − q(x)

ε2
.

3.1 Case 1: 1 < p < ∞.

For the sake of brevity, we introduce a function f(s) = |s|p−2s. Then, upon applying (6) to
µp(1, vε)(0) = εγε, we obtain

ˆ

B

f(vε(z)− εγε)dz = 0.

By using (12), this can be transformed to the following expression:

ˆ

B

f

(

〈ξ, z(1)〉+ ε

(
1

2
〈Az(1), z(1)〉 − γε + 〈η, z(2)〉

))

dz = 0. (13)

Without loss of generality we may assume that |ξ| = 1, since otherwise we can consider the
quadratic function q̃ = q/|ξ|. Let us apply the change of variables z = (z(1), z(2), . . . , z(k)) =
(Ry(1), y(2), . . . , y(k)) in (13), where R is a v1 × v1 rotation matrix with RT ξ = e1 and e1 denotes
the first element of the canonical basis of Rν1 . Set C = RTAR, then (13) reads as

ˆ

B

f

(

y1 + ε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

dy = 0.

Since
´

B
f(y1)dy = 0, it follows that for all ε > 0, we have:

ˆ

B

1

ε

(

f

(

y1 + ε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

− f(y1)

)

dy = 0.

Therefore, by the Fundamental Theorem of Calculus, we have:

ˆ

B

[
ˆ 1

0

f ′

(

y1 + tε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

dt

](
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)

dy = 0.

(14)
Equality (14) implies that γε is a weighted mean value of the function 1

2 〈Cy(1), y(1)〉 + 〈η, y(2)〉
over B with respect to a weighted Lebesgue measure w(y)dy for

w(y) :=

ˆ 1

0

f ′

(

y1 + tε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

dt, y ∈ B.

The weight function w is nonnegative since f ′(s) = (p− 1)|s|p−2 ≥ 0. Therefore, γε is bounded by
c := ‖ 1

2 〈Cy(1), y(1)〉+ 〈η, y(2)〉‖L∞(B).
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Let us consider any subsequence of (γε) converging to γ0 as ε → 0+, which for the sake of
brevity, we also denote by (γε). Let us consider two cases. If 2 ≤ p < ∞, then for all y ∈ B we
obtain

∣
∣
∣
∣

ˆ 1

0

f ′

(

y1 + tε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

dt

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)∣
∣
∣
∣

≤ 2c(p− 1)

ˆ 1

0

∣
∣
∣
∣
y1 + tε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)∣
∣
∣
∣

p−2

dt ≤ 2c(p− 1)(1 + 2cε).

Therefore, by the dominated convergence theorem the sequence (γε) converges to

γ0 := lim
ε→0

γε =

´

B
|y1|p−2

(
1
2 〈Cy(1), y(1)〉+ 〈η, y(2)〉

)
dy

´

B |y1|p−2dy
. (15)

Let now 1 < p < 2. Fix 0 < θ < 1 and split the integral (14) into two parts: over the set
Gθ := B ∩ {|y1| > θ} and Fθ := B ∩ {|y1| ≤ θ}. Observe that for all y ∈ Gθ and for all ε > 0
satisfying 2cε < θ, we have the following:

∣
∣
∣
∣

ˆ 1

0

f ′

(

y1 + tε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

dt

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)∣
∣
∣
∣

≤ 2c ||y1| − 2cε|p−2
.

Moreover,

lim
ε→0

ˆ

Gθ

||y1| − 2cε|p−2
dy =

ˆ

Gθ

|y1|p−2dy <

ˆ

B

|y1|p−2dy, (16)

where the inequality holds uniformly for all θ ∈ (0, 1). Furthermore, the last integral turns out
to be finite which can be seen from the explicit calculation below in (17). Hence, by applying
Theorem 5.4 in [11] to X = Gθ with ν being the Lebesgue measure, we obtain the following:

lim
ε→0

ˆ

Gθ

ˆ 1

0

f ′

(

y1 + tε

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

))

dt

(
1

2
〈Cy(1), y(1)〉 − γε + 〈η, y(2)〉

)

dy

=

ˆ

Gθ

(p− 1)|y1|p−2

(
1

2
〈Cy(1), y(1)〉+ 〈η, y(2)〉 − γ0

)

.

Observe that here the upper bound in (16) allows us to conclude that the limit as θ → 0+ is finite.
We now focus on the part of the integral in (14) involving the set Fθ. Since |Fθ| =

´

Fθ
1dy, then

upon writing this integral as in (17), one sees that |Fθ| = c(k, v1, . . . , vk)θ, and so |Fθ| → 0, as

θ → 0+. Moreover, it suffices to consider θ = 2cε and the related
´

F2cε
||y1| − 2cε|p−2

dy. We again

appeal to integral (17) and reduce our computations to finding

ˆ

Bv1(0,R1)∩{|y1|≤2cε}

(2cε− |y1|)p−2
dy(1).

However, direct computation shows that this integral is of order εp−1, which then allows us to let
ε→ 0+, and in turn conclude (15).

In order to approach the proof of (9), we first need to compute integrals in (15). We begin with
computing the denominator of (15). Once this is completed, the computation of the numerator
will be more straightforward. We write

I =

ˆ

B

|y1|p−2dy =

ˆ

Bvk
(0,1)

ˆ

Bvk−1
(0,Rk−1)

. . .

ˆ

Bv2(0,R2)

ˆ

Bv1 (0,R1)

|y1|p−2dy(1)dy(2) . . . dy(k−1)dy(k),

(17)
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where for j = 1, . . . , k, Bvj (0, Rj) denotes the Euclidean ball in Rvj centered at 0 with radius

Rk = 1. Furthermore, each radius Rj > 0 is a function depending on the variables y(i) with i > j,
with the following property:

Rk−1 =Rk−1(y
(k)) =

(

1− ‖y(k)‖ 2k!
k

) k−1
2k!

Rk−2 =Rk−2(y
(k), y(k−1) =

(

1− ‖y(k)‖ 2k!
k − ‖y(k−1)‖ 2k!

k−1

) k−2
2k!

...

Rj =Rj(y
(k) . . . , y(j+1)) =

(

1− ‖y(k)‖ 2k!
k − . . .− ‖y(j+1)‖ 2k!

j+1

) j
2k!

...

R2 =R2(y
(k), . . . , y(3)) =

(

1−
k∑

i=3

‖y(i)‖ 2k!
i

) 2
2k!

R1 =R1(y
(k), . . . , y(2)) =

(

1−
k∑

i=2

‖y(i)‖ 2k!
i

) 1
2k!

.

Upon applying the scaling change of variables, followed by Lemma 3.2 with α1 = p− 2 and αi = 0
for i = 2, . . . , v1, we obtain the following equality:

ˆ

Bv1 (0,R1)

|y1|p−2dy(1) = Rv1+p−2
1

ˆ

Bv1(0,1)

|y1|p−2dy(1) = Rv1+p−2
1 2v1

ˆ

Tv1

yp−2
1 dy(1)

= Rv1+p−2
1

Γ
(
p−1
2

)
Γ
(
1
2

)v1−1

Γ
(
v1+p

2

) . (18)

Using (18) in I, we see that

I =
Γ
(
p−1
2

)
Γ
(
1
2

)v1−1

Γ
(
v1+p

2

)

ˆ

Bvk
(0,1)

. . .

ˆ

Bv2 (0,R2)

Rv1+p−2
1 dy(2) . . . dy(k). (19)

Since Rv1+p−2
1 is a radial function with respect to y(2), . . . , y(k), in particular with respect to y(2),

we use the spherical coordinates together with the observation that R1 =
(

R
2k!
2

2 − ‖y(2)‖ 2k!
2

) 1
2k!

to

obtain the following:

ˆ

Bv2(0,R2)

Rv1+p−2
1 dy(2) =

2
√
π
v2

Γ
(
v2
2

)

ˆ R2

0

(

R
2k!
2

2 − r
2k!
2

) v1+p−2
2k!

rv2−1dr

=
2
√
π
v2

Γ
(
v2
2

)

ˆ 1

0

R
v1+p−2

2
2 (1− s

2k!
2 )

v1+p−2

2k! Rv2−1
2 sv2−1R2ds (R2s := r)

=
2
√
π
v2

Γ
(
v2
2

)R
2v2+v1+p−2

2
2

ˆ 1

0

(1− s
2k!
2 )

v1+p−2
2k! sv2−1ds

=
2
√
π
v2

Γ
(
v2
2

)R
2v2+v1+p−2

2
2

2

2k!

ˆ 1

0

(1− t)
v1+p−2

2k! t
2(v2−1)

2k! t
2

2k!−1dt (t := s
2k!
2 )

=
2
√
π
v2

Γ
(
v2
2

)R
2v2+v1+p−2

2
2

2

2k!

ˆ 1

0

(1− t)
v1+p−2

2k! t
2v2
2k! −1dt

=
4
√
π
v2

2k!Γ
(
v2
2

)R
2v2+v1+p−2

2
2 B

(
2v2
2k!

,
v1 + 2k! + p− 2

2k!

)

.
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In summarise, we now have

I =
4Γ
(
p−1
2

)√
π
v1+v2−1

2k!Γ
(
v1+p

2

)
Γ
(
v2
2

) B
(
2v2
2k!

,
v1 + 2k! + p− 2

2k!

)
ˆ

Bvk
(0,1)

. . .

ˆ

Bv3 (0,R3)

R
2v2+v1+p−2

2
2 dy(3) . . . dy(k).

In order to complete the computation of the iterated integral I, we need to proceed similarly to
the previous case. As it turns out, the key step is to calculate the following integral:

ˆ

Bvj
(0,Rj)

R
θj
j−1dy

(j) (20)

where θj > 0 is defined inductively for j = 2, 3, . . . , k − 1. From the previous computations we see
that θ2 = v1 + p− 2 and θ3 = 2v2+v1+p−2

2 .

Let us observe, that from the construction of Rj , it follows that

Rj−1 =

(

R
2k!
j

j − ‖y(j)‖ 2k!
j

) j−1
2k!

.

Hence

ˆ

Bvj
(0,Rj)

R
θj
j−1dy

(j) =

ˆ

Bvj
(0,Rj)

(

R
2k!
j

j − ‖y(j)‖ 2k!
j

) (j−1)θj
2k!

dy(j) =
2
√
π
vj

Γ
(vj

2

)

ˆ Rj

0

(

R
2k!
j

j − r
2k!
j

) (j−1)θj
2k!

rvj−1dr,

which again follows by the integrand being radial. We apply the change of variables Rjs := r to
obtain

ˆ Rj

0

(

R
2k!
j

j − r
2k!
j

) (j−1)θj
2k!

rvj−1dr =

ˆ 1

0

(

R
2k!
j

j −R
2k!
j

j s
2k!
j

) (j−1)θj
2k!

R
vj−1
j svj−1Rjds

= R
(j−1)θj+jvj

j

j

ˆ 1

0

(1− s
2k!
j )

(j−1)θj
2k! svj−1ds

= R
(j−1)θj+jvj

j

j

ˆ 1

0

(1− t)
(j−1)θj

2k! t
j(vj−1)

2k!
j

2k!
t
j−2k!
2k! dt (t := s

2k!
j )

=
j

2k!
R

(j−1)θj+jvj
j

j

ˆ 1

0

(1− t)
(j−1)θj

2k! t
jvj−2k!

2k! dt

=
j

2k!
R

(j−1)θj+jvj

j

j B
(
jvj
2k!

,
(j − 1)θj

2k!
+ 1

)

.

Therefore θj is defined by the following recursive formula

θ2 = v1 + p− 2 and θj+1 = vj +
j − 1

j
θj , j = 2, . . . , k − 1,

which leads to the following explicit formula:

θj+1 =
p− 2 +

∑j
i=1 ivi

j
. (21)

Indeed, observe that

j − 1

j
· p− 2 +

∑j−1
i=1 ivi

j − 1
+ vj =

p− 2 +
∑j

i=1 ivi
j

.
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Now we are in a position to complete the calculation of the integral I, cf. (17) and (19):

I =
Γ
(
p−1
2

)√
π
v1−1

Γ
(
v1+p

2

)

ˆ

Bvk
(0,1)

. . .

ˆ

Bv2(0,R2)

Rv1+p−2
1 dy(2) . . . dy(k)

=
Γ
(
p−1
2

)√
π
v1−1

Γ
(
v1+p

2

)
4
√
π
v2

2k!Γ
(
v2
2

)B
(
2v2
2k!

,
v1 + 2k! + p− 2

2k!

)
ˆ

Bvk
(0,1)

. . .

ˆ

Bv3(0,R3)

R
2v2+v1+p−2

2
2 dy(3) . . . dy(k).

Each inner integral of R
θj
j−1 gives rise to the multiplicative constant

√
π
vj

Γ
( vj

2

)
j

k!
B
(
jvj
2k!

,
(j − 1)θj

2k!
+ 1

)

in the value of the iterated integral. Therefore, we end up with

I =
Γ
(
p−1
2

)√
π
−1+

∑k−1
j=1 vj (k − 1)!

(k!)k−1Γ
(
v1+p
2

)∏k−1
j=2 Γ

( vj
2

)

k−1∏

j=2

B
(
jvj
2k!

,
(j − 1)θj

2k!
+ 1

)
ˆ

Bvk
(0,1)

Rθk
k−1dy

(k).

Recall, that θk =
p−2+

∑k−1
j=1 jvj

k−1 , Rk = (1 − ‖y(k)‖ 2k!
k )

k−1
2k! and compute

ˆ

Bvk
(0,1)

Rθk
k−1dy

(k) =

ˆ

Bvk
(0,1)

(1− ‖y(k)‖ 2k!
k )

θk(k−1)

2k! dy(k)

=
2
√
π
vk

Γ
(
vk
2

)

ˆ 1

0

(1− r
2k!
k )

θk(k−1)

2k! rvk−1dr (s := r
2k!
k )

=
2
√
π
vk

Γ
(
vk
2

)
1

2(k − 1)!

ˆ 1

0

(1− s)
θk(k−1)

2k! s
vk−1

2(k−1)! s
1

2(k−1)!
−1ds

=

√
π
vk

Γ
(
vk
2

)
(k − 1)!

ˆ 1

0

(1− s)
θk(k−1)

2k! s
vk−2(k−1)!

2(k−1)! ds

=

√
π
vk

Γ
(
vk
2

)
(k − 1)!

B
(

vk
2(k − 1)!

,
θk(k − 1)

2(k − 1)!
+ 1

)

.

Hence we arrive at

I =
Γ
(
p−1
2

)√
π
−1+

∑k
i=1 vi

(k!)k−1Γ
(
v1+p

2

)∏k
i=2 Γ

(
vi
2

)B
(

vk
2(k − 1)!

,
θk

2(k − 2)!
+ 1

) k−1∏

i=2

B
(
jvj
2k!

,
(j − 1)θj

2k!
+ 1

)

. (22)

Next we consider the integral in the numerator of (15), namely

J :=

ˆ

B

|y1|p−2

(
1

2
〈Cy(1), y(1)〉+ 〈η, y(2)〉

)

dy.

We note that
´

B
〈η, y(2)〉|y1|p−2 = 0, which follows by applying the change of variables

ψ(y(1), y(2), y(3), . . . , y(k)) = (y(1),−y(2), y(3), . . . , y(k)),

with |Jψ| = 1 and ψ(B) = B, resulting in the value of the integral being invariant under multipli-
cation by −1. Let us denote the coefficients of matrix C as follows: C = [cij ]i,j=1,...,v1 , then

2J = c11

ˆ

B

|y1|pdy
︸ ︷︷ ︸

J1

+
∑

i6=j

cij

ˆ

B

|y1|p−2yiyjdy

︸ ︷︷ ︸

J2

+

v1∑

i=2

cii

ˆ

B

|y1|p−2y2i dy

︸ ︷︷ ︸

J3

.
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Observe, that by the symmetry of B, every integral term of the sum J2 vanishes. We will
handle J1 and J3 analogously to I. First, for i = 2, . . . , v1 we compute the following integrals

ˆ

Bv1 (0,R1)

|y1|p−2y2i dy
(1) = Rv1+p

1

Γ
(
p−1
2

)
Γ
(
3
2

)
Γ
(
1
2

)v1−2

Γ
(
p+v1+2

2

) = Rv1+p
1

√
π
v1−1

Γ
(
p−1
2

)

2Γ
(
p+v1+2

2

) , (23)

where again we use Lemma 3.2 and the familiar property Γ(1 + s) = sΓ(s) with s = 1
2 (cf.

computations at (18)).
Notice that the calculations summarised in (22) work for an arbitrary p > 1. More precisely, the

integrals J1 and J3 over the ball B, can be expressed in the same way as in (17), the multiplicative
constants arising from the computation of integrals (20) will be the same but with the exponents
θj replaced by the exponents θ′j defined by the following formula (cf. definition of θj in (21)):

θ′j =
p+

∑j−1
i=1 ivi

j − 1
.

Therefore, by using (23) and calculations analogous to those between formula (20) and (22) we
arrive at

J3 =

v1∑

i=2

cii

√
π
−1+

∑k−1
j=1 vjΓ

(
p−1
2

)
(k − 1)!

2(k!)k−1Γ
(
p+v1+2

2

)∏k−1
j=2 Γ

(vj
2

)

k−1∏

j=2

B
(
jvj
2k!

,
(j − 1)θ′j

2k!
+ 1

)
ˆ

Bvk
(0,1)

(1− ‖y(k)‖ 2k!
k )

θ′
k
(k−1)

2k! dy(k)

=

v1∑

i=2

cii

√
π
−1+

∑k
j=1 vjΓ

(
p−1
2

)

2(k!)k−1Γ
(
p+v1+2

2

)∏k
j=2 Γ

( vj
2

)B
(

vk
2(k − 1)!

,
θ′k

2(k − 2)!
+ 1

) k−1∏

j=2

B
(
jvj
2k!

,
(j − 1)θ′j

2k!
+ 1

)

.

Moreover, in order to compute J1, we proceed computationally the same way we did for for (17)
with the power p instead of p− 2, and obtain (22) with p now corresponding to p+ 2:

J1 = c11
Γ
(
p+1
2

)√
π
−1+

∑
k
j=1 vj

(k!)k−1Γ
(
v1+p+2

2

)∏k
j=2 Γ

( vj
2

)B
(

vk
2(k − 1)!

,
θ′k

2(k − 2)!
+ 1

) k−1∏

j=2

B
(
jvj
2k!

,
(j − 1)θ′j

2k!
+ 1

)

.

We collect the above calculations to arrive at

J =
J1 + J3

2
=

√
π
−1+

∑
k
j=1 vj

2(k!)k−1Γ
(
v1+p+2

2

)∏k
j=2 Γ

( vj
2

)B
(

vk
2(k − 1)!

,
θ′k

2(k − 2)!
+ 1

)

×
(

c11Γ

(
p+ 1

2

)

+

v1∑

i=1

1

2
ciiΓ

(
p− 1

2

)) k−1∏

j=2

B
(
jvj
2k!

,
(j − 1)θ′j

2k!
+ 1

)

=
Γ
(
p−1
2

)√
π
−1+

∑k
j=1 vj

4(k!)k−1Γ
(
v1+p+2

2

)∏k
j=2 Γ

( vj
2

)B
(

vk
2(k − 1)!

,
θ′k

2(k − 2)!
+ 1

)

×
(

c11(p− 1) +

v1∑

i=2

cii

)
k−1∏

j=2

B
(
jvj
2k!

,
(j − 1)θ′j

2k!
+ 1

)

,

where we again use the familiar property of the Γ function as in (23). It now follows that

γ0 =
J

I
=

Γ
(
p+v1

2

)

4Γ
(
p+2+v1

2

)

B
(

vk
2(k−1)! ,

θ′

k

2(k−2)! + 1
)

B
(

vk
2(k−1)! ,

θk
2(k−2)! + 1

)

(

c11(p− 1) +

v1∑

i=2

cii

)
k−1∏

j=2

B
(

jvj
2k! ,

(j−1)θ′

j

2k! + 1
)

B
(

jvj
2k! ,

(j−1)θj
2k! + 1

)

=
1

2(p+ v1)

B
(

vk
2(k−1)! ,

θ′

k

2(k−2)! + 1
)

B
(

vk
2(k−1)! ,

θk
2(k−2)! + 1

)

k−1∏

j=2

B
(

jvj
2k! ,

(j−1)θ′

j

2k! + 1
)

B
(

jvj
2k! ,

(j−1)θj
2k! + 1

)

(

c11(p− 1) +

v1∑

i=2

cii

)

= c(p, v1, . . . , vk) ·
(

c11(p− 1) +

v1∑

i=2

cii

)

,
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where the constant c(p, v1, . . . , vk) is defined with the above equality (see also Remark 1 and
Examples 2-4 in Section 3 for further discussion about this constant).

In order to arrive at assertion (9), we express the constants c11 and tr(C) in terms of the matrix
A and the vector ξ. Recall that C = RTAR and RT ξ = e1, which imply that

c11 = 〈Ce1, e1〉 = 〈CRT ξ, RT ξ〉 = 〈R(RTAR)RT ξ, ξ〉 = 〈Aξ, ξ〉,

moreover, the orthogonality of R implies that tr(C) = tr(RTAR) = tr(A). Therefore, we can
conclude that

γ0 = c(p, v1, . . . , vk)(〈Aξ, ξ〉(p − 2) + tr(A)),

which upon substituting ξ with ξ/|ξ|, proves the assertion (9).
We now consider the second assertion of the lemma, namely the asymptotic formula (10) for

µp(ε, u) and u ∈ C2(Ω). Suppose ε > 0 is chosen so that Bε(x) ⊂ Ω. Consider the function q(y)
as in (8), with

q(x) = u(x), ξ = ∇V1u(x), A = ∇2
V1
u(x), and η = 2∇V2u(x).

Notice that with this notation (and by the assumption ξ 6= 0), it holds that

∆N
p,Gu(x) = tr(A) + (p− 2)

〈Aξ, ξ〉
|ξ|2 .

Set uε(z) = u(xδε(z)) and qε(z) = q(xδε(z)). Since u ∈ C2(Ω), it follows that for all t > 0,
there exists ε(t) > 0 such that for every z ∈ B and all ε ∈ (0, ε(t)) it holds |uε(z) − qε(z)| < tε2.
Furthermore, by claims (4) and (5) of Theorem 2.1 we have µp(ε, q ± tε2)(x) = µp(ε, q)(x) ± tε2.
These observations together with Corollary 2.1 and Part (3) of Theorem 2.1 allow us to obtain the
following estimates:

µp(ε, q)− u(x)

ε2
− t ≤ µp(ε, u)− u(x)

ε2
≤ µp(ε, q)− u(x)

ε2
+ t.

Applying (9) we obtain

c(p, v1, . . . , vk)∆
N
p,Gu(x)− t ≤ lim inf

ε→0

µp(ε, q)− u(x)

ε2

≤ lim sup
ε→0

µp(ε, q)− u(x)

ε2
≤ c(p, v1, . . . , vk)∆

N
p,Gu(x) + t,

which implies the assertion (10) for 1 < p <∞.

3.2 Case 2: p = ∞.

We need to demonstrate that the expression

γε =
µ∞(ε, q)− q(x)

ε2

=
1

2ε

(

min
y∈B

[

〈ξ, y(1)〉+ ε

(

〈η, y(2)〉+ 1

2
〈Ay(1), y(1)〉

)]

+max
y∈B

[

〈ξ, y(1)〉+ ε

(

〈η, y(2)〉+ 1

2
〈Ay(1), y(1)〉

)])

has a limit as ε→ 0.
Let us define a function g : G → R by setting g(y) = 〈ξ, y(1)〉+〈η, y(2)〉+ 1

2 〈Ay(1), y(1)〉. Observe
further, that the change of variables y = δ1/ε(z) implies the following equalities:

min
y∈B1(0)

[

〈ξ, y(1)〉+ ε

(

〈η, y(2)〉+ 1

2
〈Ay(1), y(1)〉

)]

=
1

ε
min

z∈Bε(0)
g(z),
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and

max
y∈B1(0)

[

〈ξ, y(1)〉+ ε

(

〈η, y(2)〉+ 1

2
〈Ay(1), y(1)〉

)]

=
1

ε
max

z∈Bε(0)
g(z),

and it follows that

γε =
1

2ε2

(

min
z∈Bε(0)

g(z) + max
z∈Bε(0)

g(z)

)

.

Next we note that ∇V1g(0) = ξ 6= 0, thus we can apply Lemma 1.5 and 1.6 in [9], and affirm

that for all small enough ε, there exist points Pε,M = (y
(1)
ε,M , . . . , y

(k)
ε,M ) and Pε,m = (y

(1)
ε,m, . . . , y

(k)
ε,m)

in ∂Bε(0) with the following properties:

max
Bε(0)

g = g(Pε,M ) and min
Bε(0)

g = g(Pε,m).

In terms of the expression we have the following estimate

1

2ε2
(g(Pε,m) + g(−Pε,m)) ≤ γε ≤ 1

2ε2
(g(Pε,M ) + g(−Pε,M )) . (24)

Moreover, by applying again [9, Lemma 1.6], we have that

lim
ε→0

y
(1)
ε,M

ε
=

ξ

|ξ| and lim
ε→0

y
(1)
ε,m

ε
= − ξ

|ξ| ,

which implies

1

2ε2
(g(Pε,M ) + g(−Pε,M )) =

1

4ε2

(

〈Ay(1)ε,M , y
(1)
ε,M 〉+ 〈A− y

(1)
ε,M ,−y

(1)
ε,M 〉

)

=
1

2
〈A
y
(1)
ε,M

ε
,
y
(1)
ε,M

ε
〉 ε→0−−−→ 1

2

〈Aξ, ξ〉
|ξ|2 .

We treat the left-hand side of (24) similarly to conclude that

µ∞(ε, q) = q(x) +
ε2

2

〈Aξ, ξ〉
|ξ|2 + o(ε2).

Upon repeating the reasoning similar to the one for ∆N
p,G, we obtain that asymptotic formula (10)

holds for ∆N
∞,G as well. Thus, the proof of Lemma 3.1 is completed for all 1 < p ≤ ∞.

We are now in position to prove Theorem 1.1.

The proof of Theorem 1.1. Let B(x) ⊂ Ω be ball and let us fix u ∈ C0(Ω) and φ ∈ C2(B(x)) with
∇V1φ(x) 6= 0. The asymptotic formula (10) implies that

φ(x) = µp(ε, φ)(x) − c(p, v1, . . . , vk)∆
N
p,Gφ(x)ε

2 + o(ε2), as ε→ 0. (25)

Suppose that u is a viscosity solution, in the sense of Definition 2.2, to the equation ∆N
p,Gu = 0

in Ω. Thus, in particular, u satisfies parts (i) and (ii) of Definition 2.2. Since u is a viscosity
supersolution of ∆N

p,G = 0 in Ω, then at point x, for φ as above such that u − φ has a strict

minimum at x and u(x) = φ(x), it holds that ∆N
p,Gφ(x) ≤ 0. Therefore, from (25) we obtain

φ(x) ≥ µp(ε, u)(x) + o(ε2), as ε→ 0,

which proves that φ at x satisfies part (i) of Definition 2.4. By using the fact that u is also a
viscosity subsolution (and so u satisfies part (ii) of Definition 2.2) we show that inequality in part
(ii) of Definition 2.4 holds as well. This proves that u(x) = µp(ε, u)(x) + o(ε2) as ε → 0 in the
viscosity sense.
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Now we will prove the converse. Suppose, that u(x) = µp(ε, u)(x) + o(ε2) as ε → 0 in the
viscosity sense. If u − φ attains a strict minimum at x, then by Definition 2.4, it follows that
φ(x) ≥ µp(ε, φ)(x) + o(ε2) as ε→ 0. Using this result in (25), we get

∆N
p,Gφ(x) =

µp(ε, φ)(x) − φ(x)

c(p, v1, . . . , vk)ε2
+ o(1) ≤ o(1),

as ε → 0, and hence ∆N
p,Gφ(x) ≤ 0. We apply a similar reasoning in the case u − φ has a strict

maximum at x. This proves, that u is a viscosity solution of ∆N
p,Gu = 0 in Ω.

We close this section with a remark of Theorem 1.1 in the case p = 1.

Remark 2. The techniques used in the proof of [11, Lemma 3.1] cannot be easily adapted to
obtain Theorem 1.1 for p = 1. Indeed, the Implicit Function Theorem employed on pg. 11 in [11]
for an ellipsoid in Rn and fε, cannot be used directly already in the setting of the Heisenberg
group H1. The noncommutativity of the group operation in H1 together with the formula for
the Koranyi–Reimann distance result in the singular set within the ellipsoid in H1 and prevent
us from using the Implicit Function Theorem. The alternative approaches lead to difficulties of
computational nature.
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