An improved Jaya optimization algorithm
with Lévy flight

Giovanni Iacca®, Vlademir Celso dos Santos Junior”, Vinicius Veloso de Melo®

@ Department of Information Engineering and Computer Science
University of Trento
Povo, Italy
b Institute of Science and Technology
Federal Unwersity of Sao Paulo
Sao José dos Campos, Sao Paulo, Brazil
¢ Wawanesa Insurance
Department of Analytics
Winnipeg, Manitoba, Canada

Email addresses: giovanni.iacca@unitn.it (Giovanni Iacca), vladejrs@hotmail.com
(Vlademir Celso dos Santos Junior), vvdemelo@wawanesa.com (Vinicius Veloso de Melo)

Preprint submitted to Elsevier July 27, 2020

Abstract

Recent advances in metaheuristics have shown the advantages of using the Lévy
distribution, which models a kind of random walk (named “Lévy flight”) with
occasional “big” steps. This characteristic makes Lévy flight especially useful
for performing large “jumps” that allow the search to escape from a local op-
timum and restart in a different region of the search space. In this paper,
we investigate this idea by applying Lévy flight to Jaya, a simple yet effective
Swarm Intelligence optimization algorithm recently proposed in the literature.
We perform experiments on the CEC 2014 benchmark as well as five industrial
optimization problems taken from the CEC 2011 benchmark, and compare the
performance of the proposed Lévy flight Jaya Algorithm (LJA) against several
state-of-the-art algorithms for continuous optimization. Our numerical results
show that, although both Jaya and LJA are in general less efficient than the
most advanced algorithms on the CEC 2014 benchmark, LJA largely outper-
forms the original Jaya algorithm in most cases, and is also highly competitive
on the tested industrial problems.

Keywords: Continuous Optimization, Swarm Intelligence, Jaya, Lévy Flight

1. Introduction

Optimization methods often deal with hard-to-solve problems with a large
number of decision variables, with many local optima, and computationally ex-
pensive calculations: in these situations, searching for solutions that minimize
or maximize the given objective function as efficiently as possible can become
incredibly challenging. For this purpose, researchers have been proposing dif-
ferent kinds of optimization algorithms over the years, whose applicability and
performance typically depend on the features of the problem at hand and its
mathematical formulation.

A broad class of general-purpose optimization algorithms consists of the
so-called metaheuristics, i.e., algorithms that use various computational intelli-
gence strategies to guide the process of exploring the solution space in search of
the best value. Some of these metaheuristics are nature-inspired, such as Evo-
lutionary Algorithms, that try to replicate the mechanisms behind biological
evolution, or Swarm Intelligence algorithms, that instead mimic the collective
behavior of different species of animals or plants, in order to achieve a more
efficient search for the global optimum. Well-known examples of Swarm Intelli-
gence are —to name a few— the Particle Swarm Optimization (PSO) (Kennedy,
2010), based on the movement of organisms in a bird flock or fish school, the
Firefly Algorithm (FA) (Yang, 2010b), based on the flashing light patterns of
fireflies, or the Artificial Bee Colony (ABC) (Karaboga & Basturk, 2007), based
on the collective behavior of honey bees. There exist, though, several other
algorithms inspired by different natural phenomena.

Importantly, most metaheuristics rely on some (typically fine-tuned) pa-
rameters whose effect can dramatically change the algorithmic performance,
depending on the specific function to be optimized. On the other hand, from
a practitioner’s point of view, it would be desirable to have an algorithm that
requires as few parameters as possible to generalize its use without the need
for further efforts to adjust the parameter setting for each specific problem.
Therefore, a recent trend in metaheuristic optimization research is to devise
self-adaptive algorithms that can be applied “out-of-the-box” to any optimiza-
tion problem, with no tuning at all. An example that goes in this direction
is the Teaching-Learning-Based Optimization (TLBO) algorithm (Rao et al.,
2011), which only needs two parameters, i.e., the population size and the num-
ber of generations, which are somehow indispensable for all Swarm Intelligence
algorithms. No other parameter setting is needed, hence applying this algo-
rithm is straightforward. In the past few years, TLBO has inspired many other
algorithms based on similar principles, among which the so-called Jaya algo-
rithm (Rao, 2016), which also does not need any other parameter besides the
population size and the number of generations, has lately shown promising re-
sults on various kinds of optimization problems.

Even though such self-adaptive algorithms are of great value from an ap-
plication point of view, in most cases they still suffer from a more fundamen-
tal problem that underlies practically all metaheuristics: stochasticity. Indeed,
while metaheuristics perform —in one way or another— a “guided” search towards
better values of the objective function, they are, essentially, stochastic processes
in which randomness is used either to promote a better exploration of the search
space, to escape from a local optimum, or to refine local search. In TLBO, as
well as in many other Swarm Intelligence algorithms, stochasticity is usually
implemented through sampling random numbers from a uniform distribution
U(0,1). Other algorithms use instead the Gaussian distribution, see e.g. the
Gaussian mutations in Evolutionary Algorithms (Opara & Arabas, 2018). Re-
gardless the specific way in which random numbers are used in metaheuristics,
one problem with the commonly-used uniform and Gaussian distributions is
that they may prevent the algorithm from escaping a local optimum: the more
the generations advance, the more the solutions in the population get close to
each other, such that it becomes more difficult for the algorithm to generate new
solutions that are far away from the existing ones. Although such convergence
is usually a desirable exploitation effect, it may be useless if the population has
not reached the region where the global optimum lies yet. In other words, these
distributions do not promote “bigger steps” in the search space, which can be
occasionally needed to get a stuck search unstuck.

To overcome this issue, one obvious solution is to restart the algorithm ac-
cording to some criteria (Caraffini et al., 2013; de Melo & Tacca, 2014). However,
one could also think of “embedding” the restart mechanism directly into the way
random numbers are sampled during the algorithm execution: in order to do
that, recent works have proposed the use of different distributions with different
properties (e.g., kurtosis and skewness) and therefore different effects on the
algorithmic functioning. One particularly interesting case is the Lévy distri-

bution (Viswanathan et al., 1999), which is used to model the so-called “Lévy
flight”, a kind of random walk with occasional “big” steps. In optimization, this
characteristic makes Lévy flight especially useful for performing large “jumps”,
which are precisely what is needed to allow a possibly stuck algorithm to escape
from a local optimum and restart the search in a different region of the search
space.

Here, we investigate this idea by applying Lévy flight to Jaya. The choice
of Jaya for this study is motivated by its extreme algorithmic simplicity, cou-
pled with a good optimization performance, which allows us to focus on the
effect of Lévy flight without the need to perform an ablation study to dissect
the algorithm in all its components. A preliminary investigation of this kind
has been recently conducted in (Bekdag, 2019), although that study focused on
the application of various hybrid variants of Lévy flight-based Jaya to a struc-
tural design problem, rather than a thorough algorithmic analysis, that is the
purpose of the present work. Furthermore, in (Bekdag, 2019) the details of the
Lévy flight model are not discussed, nor the effect of the parametrization on the
algorithmic performance. To cover this gap, here we study the effect of applying
Lévy flight to Jaya thoroughly; also, we discuss the details of the Lévy flight
model, and the effect of the § parameter used in the model. Finally, to assess
the performance of the proposed Lévy flight Jaya Algorithm (LJA), we conduct
numerical experimentation on the CEC 2014 benchmark (Liang et al., 2013)
and five industrial optimization problems taken from the CEC 2011 benchmark
on real-world problems (Das & Suganthan, 2010). We compare the perfor-
mance of LJA against that of the original Jaya, as well as other state-of-the-art
metaheuristics and deterministic global search algorithms for continuous opti-
mization. Our experiments show, on the one hand, that the inclusion of the
Lévy flight mechanism greatly improves the performance of the original Jaya
algorithm and makes it competitive, at least in some limited cases, against the
compared algorithms; on the other hand, we also observed —as expected— that
the performance of a very simple algorithm such as LJA is in general inferior to
that of the most advanced metaheuristics available in the literature.

The remaining of this paper is organized as follows. In the next section,
we provide a brief survey of the related works on Lévy flight applied to Swarm
Intelligence algorithms. Then, in Section 3, we introduce the main concepts of
Lévy flight and Jaya. In Section 4, we introduce the proposed Lévy flight Jaya
Algorithm (LJA) obtained by applying the Lévy flight model to the original
Jaya algorithm. Section 5 describes the experimental setup, the comparison
methodology, and presents the numerical results. Finally, in Section 6 we give
the conclusions of this work.

2. Related works

Various works have recently investigated the use of Lévy flight in Swarm
Intelligence algorithms. For instance, the Lévy flight PSO (Hariya et al., 2015)
works similarly to the traditional PSO, except for the fact that the inertia co-
efficient is defined by the Lévy distribution. In particular, at each iteration,

each particle has a position and a velocity, and the velocity at the next iter-
ation is updated based on the sum of: 1) the current velocity, multiplied by
a random number sampled from the Lévy distribution, 2) the vector pointing
to the personal best, multiplied by a random number sampled from a uniform
distribution, and 3) the vector pointing to the global best, multiplied by another
random number sampled from a uniform distribution. The new position is then
defined by the sum of the current position and the new velocity.

Another algorithm based on Lévy flight is the Cuckoo Search algorithm
(CS) (Yang & Deb, 2009), whose search logic is based on a cuckoo species
behavior. This algorithm first generates n random solutions, which are called
“nests”. Then, a new solution, which represents a cuckoo egg, is generated
through the Lévy distribution, and is compared to the solution of a random
nest: if the new solution is better than the previous one, then the previous
solution is replaced. Finally, a fraction of the worst solutions is replaced by
new random solutions, and a new solution is again generated through the Lévy
distribution, such that the process is repeated until reaching a stopping criterion.
A multi-objective version of CS with Lévy flight was presented in (Nguyen &
Vo, 2017), while two interesting applications of CS with Lévy flight can be found
in (Pandey et al., 2019), where the algorithm is used for power optimization in
smartphone displays, and (Majumder & Laha, 2016), where a discrete version
of CS with Lévy flight is used for solving a 2-machine robotic cell scheduling
problem.

The Lévy flight Firefly algorithm (LFA) (Yang, 2010a) mimics instead the
behavior of fireflies, which use flashing lights to attract mating partners. In
this algorithm, each possible solution is considered a firefly with a light inten-
sity proportional to its fitness, and an attractiveness, directly proportional to
its brightness and inversely proportional to its distance from another solution.
The less bright fireflies move towards brighter fireflies in steps proportional to
the attractiveness, according to a value sampled from the Lévy distribution. A
“compact” variant of LFA also exists (Tighzert et al., 2018), which uses a prob-
abilistic distribution model (Neri et al., 2013) instead of an actual swarm of
fireflies. Of note, a GPU-based variant of LFA was implemented in (Kalantzis
et al., 2016), for solving a constrained optimization problem related to the treat-
ment planning of intensity-modulated radiation therapy.

The Lévy flight Krill Herd algorithm (LKH) (Wang et al., 2013) bases its
working principles on the behavior of krill swarms. In this case, the position
of each solution is defined by the movement of other solutions, the foraging
motion, and the random diffusion, while the step-size is sampled from the Lévy
distribution.

The Lévy flight Artificial Bee Colony (LFABC) (Sharma et al., 2016) also
uses Lévy flight to determine the step-size used for moving solutions. However,
in this case, each solution is considered a food source, which is manipulated by
three groups of bees: 1) worker bees, that modify the food sources based on
personal experience and the fitness of the new food source; 2) onlooker bees,
that receive information from the worker bees and based on that look for better
solutions; and 3) scout bees, that replace abandoned food sources with randomly

chosen food sources.

The Flower Pollination algorithm (FPA) (Yang, 2012), inspired by how pol-
lination occurs in nature, considers each solution as a pollen particle that moves
in the search space according to two different position update rules: local pol-
lination and global pollination. At each step, one of the two rules is chosen
randomly: if the chosen movement is local pollination, the particle moves in a
limited neighborhood, and the step-size is multiplied by a random number sam-
pled from the uniform distribution (0, 1); if the global movement is chosen,
the particle moves towards the global best, and the step-size is multiplied by a
random number sampled from the Lévy distribution.

Finally, in (Wang et al., 2019) Lévy flight was combined with three ad-
hoc local search methods for solving a specific scheduling problem, that is the
dynamic allocation of berths in seaports. The peculiarity of this work is that, in
order to handle the combinatorial nature of the problem, the step-sizes generated
by the algorithm are rounded to integer numbers.

3. Background

In the following we introduce the original Jaya algorithm (Subsection 3.1)
and the Lévy flight model (Subsection 3.2).

3.1. The Jaya algorithm

Jaya is a recent Swarm Intelligence optimization algorithm proposed in (Rao,
2016). Its name comes from the word “victory” in the Sanskrit language, as it
was designed in such a way that it needs as few parameters as possible. The
result is an algorithm that only requires two parameters, i.e., the population
size and the maximum number of generations. As in most Swarm Intelligence
algorithms, the functioning of Jaya is based on the principle that each solution
has a particular “position” in the search space (corresponding to its variables)
and the search process should change these positions so to guide the solutions
towards the optimum. In particular, Jaya updates the positions based on the
assumption that each solution should move away from the worst solution found
so far during the search process, and get closer to the best one. This update
rule is described by the following equation:

XJZ,—Z:I = le:,k + Tl(XjZ:,best - |X;,k|) - TQ(X]Z:,worst - |X2,k|)’ (1)

where X;k is the value of the j** variable of the k' particle at the i*" gen-

eration, Xibest is the value of the j*" variable of the best solution in the "
generation, X* j,worst is the value of the 4t variable of the worst solution in the
ith generation, r; and 79 are two random numbers sampled from the uniform
distribution ¢(0,1), and Xj”,;l is the j*" variable of X,i“, i.e. the new solution
(position) to be evaluated. In case of improved fitness, X;' replaces X;. The

complete pseudo-code of the Jaya algorithm is provided in Algorithm 1.

Algorithm 1 Pseudo-code of the Jaya algorithm.

: Input: objective function (f), problem bounds (LB, UB), problem dimensionality (D),
population size (P), maximum number of generations (G)

: Output: best solution and best objective function value

// initialization

initialize ¢ = 0

: randomly initialize P solutions within the problem bounds (LB, UB)

: evaluate the initial P solutions

: // loop

: while i < G do

©

10: find the best and worst solutions in the current population
11: for k€ [1,...,P] do
12: for je[l,...,D] do
13: calculate XJH,;I according to Eq. (1)
14: // saturate X;J'l;l within the problem bounds (LB, UB)
15: if Xt! < LB; then
. i+1)
16: X;,k = LB;
17: else if X3! > UB; then
. i+1 .
18: X;,k = UB;
19: // replace the current solution in case of improvement
20: if f()_(}jl) < f(X}) then
21: Xj =X}t

22: i=1+1

As one may see, the algorithm is extremely simple (it can be coded in a
very few lines), and it does not require any other parameter except the pop-
ulation size (P) and the number of generations (G). Therefore, it can be ap-
plied straightforwardly to various optimization problems without the need for
a specific parameter tuning, as it has been shown in the context of engineering
optimization (Rao & Saroj, 2017), urban traffic light scheduling (Gao et al.,
2017), image classification (Wang et al., 2017; Zhang et al., 2016), and binary
problems (Aslan et al., 2019). Furthermore, the simplicity of Jaya makes it also
a suitable algorithm to work with from an algorithmic point of view, in order
to propose simple changes that can improve its performance without affecting
its general simple algorithmic design, see (Iacca et al., 2012; Piotrowski & Napi-
orkowski, 2018) for a more complete discussion on why and how metaheuristics
should be kept simple.

3.2. Lévy flight

Many flying animals show a flying behavior with characteristics typical of
Lévy flight (Viswanathan et al., 1999; Heidari & Pahlavani, 2017). Lévy flight
is a kind of random walk in which the probability density function (PDF) of
the step-sizes is heavy-tailed, which means that a particle that moves according
to Lévy flight performs occasional “big” steps interspersed with many frequent
“small” steps. A typical motion pattern goes like this: the particle moves locally
at first, performing a number of small steps, then it performs a big step and,

after that, it moves again locally. From a mathematical point of view, the Lévy
flight PDF can be defined as:

Distributionpe,, = U/|V|*/?, (2)
where 3 denotes the power-law index, V denotes a random number sampled

from the Gaussian distribution N'(0,1), and U is a random number sampled
from the Gaussian distribution A(0,0?), where the std. dev. o is given by:

. (m +8) # sm(”;ﬁ)> 5

F(#) *6*2%

3)

where I denotes the gamma function.

Figure 1 shows a 2-dimensional random walk compared to a 2-dimensional
Lévy flight, where it is possible to see the difference between the two patterns:
random walk provides approximately the same size for every step, while Lévy
flight performs a number of small steps and occasionally a big step.

Figure 1: Random walk (left) vs. Lévy flight (right).
4. Lévy flight Jaya algorithm (LJA)

As shown in previous literature (Rao, 2016), in some cases the original Jaya
algorithm may not be able to find the global optimum, due to the presence of
local optima that can get the search trapped. To overcome this problem, we
propose to modify the original Jaya algorithm such that the size of its steps are
multiplied by random numbers —see r1 and r2 in Eq. (1)— which are no longer
sampled from the uniform distribution (0, 1), but rather from the Lévy distri-
bution. In the proposed approach, named “Lévy flight Jaya algorithm” (LJA),
the particles perform a local search and occasionally “jump” to another region
of the search space for a new local search. This way, the risk that the algorithm
gets stuck in a local optimum is drastically reduced, while it is still possible to
perform sufficient local refinements. In other words, the algorithm presents a
natural balance between exploration and exploitation. The pseudo-code of LJA
is the same as that of the original Jaya algorithm, shown in Algorithm 1, with

the only exception being that instead of using Eq. (1) to update the particle
position (line 13 in the pseudo—code), the following equation is used:

thl:l -]Z:,k + |l€’Uy1|(j best | k|) - |l€'l}y2|(J worst | |)7 (4)

where levy; and levys are two random numbers sampled from the Lévy dis-
tribution. It should be noted that the only additional parameter with respect
to the original Jaya algorithm is the power-law index 3, needed in Eq. (2) to
sample random numbers from the Lévy distribution. Despite being a simple
change in the algorithm, this new distribution induces drastic changes in the
optimization process which, as we show below, in turn lead to an increase in
the overall performance in terms of solution quality.

5. Numerical experiments

In this section, we first present the experimental setup (Subsection 5.1),
followed by an explanation of the overall experimental methodology (Subsec-
tion 5.2). We then report a detailed analysis of the effect of the 5 parameter
(Subsection 5.3), followed by a comparison of the performance of the proposed
LJA against Jaya (Subsection 5.4), a comparison against the metaheuristics
that participated in the CEC 2014 competition (Subsection 5.5), and a compar-
ison against twp deterministic global search algorithms (Subsection 5.6). We
conclude the experimentation with an analysis (Subsection 5.7) of the results

of the proposed LJA on five real-world industrial optimization problems taken
from the CEC 2011 benchmark.

5.1. Experimental setup

We considered in our experimentation two different sets of problems, namely
the 30 benchmark functions of the CEC 2014 benchmark (Liang et al., 2013) and
five industrial optimization problems taken from the CEC 2011 benchmark (Das
& Suganthan, 2010). The details of the tested problems are presented below.

5.1.1. CEC 2014 benchmark

To assess the performance of the proposed Lévy flight Jaya Algorithm, in
the first parts of the experimentation we considered the 30 benchmark functions
used at the CEC 2014 competition. The main details of the benchmark functions
are summarized in Table 1, while the complete mathematical description of each
function can be found in (Liang et al., 2013). Of note, all functions are non-
separable except for fg and fig.

5.1.2. Real-world industrial optimization problems

The last part of our experimentation is devoted to evaluate LJA on real-
world optimization problems. In order to do that and ensure reproducibility, we
considered five publicly available problems included in the CEC 2011 benchmark
for real-world optimization (Das & Suganthan, 2010), namely P;, Ps, Ps, Py and
Ps, respectively with 6, 30, 1, 1, and 30 decision variables. It is important to

Table 1: CEC 2014 benchmark functions.

Function types No. Function Optimum
1 Rotated High Conditioned Elliptic Function 100
Unimodal 2 Rotated Bent Cigar Function 200
3 Rotated Discus Function 300
4 Shifted and Rotated Rosenbrock Function 400
5 Shifted and Rotated Ackley Function 500
6 Shifted and Rotated Weierstrass Function 600
7 Shifted and Rotated Griewank Function 700
8 Shifted Rastrigin Function 800
Simple 9 Shifted and Rotated Rastrigin Function 900
Multimodal 10 Shifted Schwefel Function 1,000
11 Shifted and Rotated Schwefel Function 1,100
12 Shifted and Rotated Katsuura Function 1,200
13 Shifted and Rotated HappyCat Function 1,300
14 Shifted and Rotated HGBat Function 1,400
15 Shifted and Rotated Expanded Griewank plus Rosenbrock Function 1,500
16 Shifted and Rotated Expanded Scaffer F6 Function 1,600
17 Hybrid Function 1 (N=3) 1,700
18 Hybrid Function 2 (N=3) 1,800
. 19 Hybrid Function 3 (N=4 1,900
Hybrid 20 Hybrid Function 4 EN 4; 2,000
21 Hybrid Function 5 (N=5) 2,100
22 Hybrid Function 6 (N=5) 2,200
23 Composition Function 1 (N=5) 2,300
24 Composition Function 2 (N=3) 2,400
25 Composition Function 3 (N=3) 2,500
Composition 26 Composition Function 4 (N=5) 2600
27 Composition Function 5 (N=5) 2,700
28 Composition Function 6 (N=5) 2,800
29 Composition Function 7 (N=3) 2,900
30 Composition Function 8 (N=3) 3,000
Domain [~100, 100]”

note that these functions are only box-constrained. A brief description of these
five problems follows:

e P, (Parameter Estimation for Frequency-Modulated (FM) Sound Waves):
This problem consists in optimizing 6 variables which describe a wave signal
that correspond to generating a sound similar to a given target sound. The
fitness function, to be minimized, is the sum of the squared errors between
the estimated wave and the target wave. This problem is highly multimodal
and has a strong epistasis.

e P, (Lennard-Jones Potential Problem): This problem consists in finding the
position of N atoms to form the Lennard-Jones cluster having the lowest
molecular potential energy. The resulting optimization problem requires to
find the three coordinates x, y and z for each atom (N = 10 in this study,
thus resulting into a 30-dimensional problem) and displays a number of local
minima increasing exponentially with V.

e P3 (Bifunctional Catalyst Blend Optimal Control Problem): This problem
consists in optimizing a chemical process which converts methylcyclopentane

10

to benzene in a tubular reactor. In particular, the goal is to find the optimal
value of one single variable, the catalyst blend v € [0.6,0.9] such that a
performance metric J representing the benzene concentration at the exit of
the reactor is mazimized. This problem is reported to have as many as 300
local optima.

e P, (Optimal Control of a Non-Linear Stirred Tank Reactor): This problem
consists in optimizing a first-order irreversible chemical reaction carried out in
a continuous stirred tank reactor (CSTR). Similarly to Ps, the goal is to find
the optimal value of one single variable, u so that a performance index J is
minimized. It should be noted that this problem does not have any predefined
bound for u, but the initial guess lies in [0.0, 5.0]. Also this problem is highly
multimodal.

o P5 (Tersoff Potential for model Si (B)): This problem consists in minimizing
the Tersoff potential of a set of silicon atoms. Similarly to P,, the problem
requires to find the three coordinates z, y and z for each atom (N = 10 in this
study, thus resulting into a 30-dimensional problem) and displays a number
of local minima increasing exponentially with V.

5.2. Methodology

Except for the experiments on the real-world problems (see Subsection 5.7),
for which we executed 25 independent runs for each tested algorithm on each
problem, in all the experiments on the CEC 2014 benchmark we executed each
tested algorithm for 51 independent runs on each test function'. For the al-
gorithms that participated in the CEC 2014 competition, we considered the
original raw data available online?. LJA was parametrized with a population of
P = 5x D solutions and a maximum number of generations G = 2,000, thus for
a total of 10,000 x D function evaluations as indicated in (Liang et al., 2013),
where D is the problem dimensionality (depending on the experiments, either
D =10 or D = 30). As for the power-law index [, as we describe below, its
value was chosen after performing a preliminary analysis to verify the existence
of a statistical difference between three different values.

All the experiments have been conducted using the Stochastic Optimisation
Software (SOS) Java platform (Caraffini & Iacca, 2020) on a workstation pow-
ered by an Intel® Core™ i9-7940x CPU @ 3.10GHz, 64GB RAM. The Java
code was tested on Ubuntu 19.10 (kernel GNU/Linux 5.3.0-40-generic x86_64),
while the Python 3 numpy v1.18.4 and matplotlib v3.2.2 libraries were used for
data processing. The experimentation was conducted in various steps, which
can be summarized as follows.

IWe set the number of independent runs for each problem according to the indications
in (Das & Suganthan, 2010) and (Liang et al., 2013), respectively for the real-world and the
benchmark optimization problems.

2The raw data of the compared algorithms were taken from: https://github.com/
P-N-Suganthan/CEC2014

11

Table 2: List of the compared metaheuristics from the CEC 2014 competition.

Algorithm Acronym
Differential Evolution with Rotation-Invariant Mutation and Competing Strategies Adaptation (Bujok et al., 2014) b3e3pbest
Covariance Matrix Leaning and Searching Preference (Chen et al., 2014) CMLSP
Controlled Restart in Differential Evolution (Polakova et al., 2014) DE-b6e6rl.w.r.
Differential Evolution Strategy based on the Constraint of Fitness Values Classification (Li et al., 2014) FCDE
Memetic Differential Evolution Based on Fitness Euclidean-Distance Ratio (Qu et al., 2014) FERDE
Fireworks Algorithm with Differential Mutation (Yu et al., 2014) FWA-DM
Gaussian Adaptation based Parameter Adaptation for Differential Evolution (Mallipeddi et al., 2014) GaAPADE
Linear Population Size Reduction SHADE (Tanabe & Fukunaga, 2014) L-SHADE
Mean-Variance Mapping Optimization (Erlich et al., 2014) MVMO
Bee-Inspired Algorithm (Maia et al., 2014) OptBees
Partial Opposition-Based Adaptive Differential Evolution Algorithms (Hu et al., 2014) POBL-ADE
Memetic Algorithm based on Regions and Local Search Chains (Molina et al., 2014) rmalschcma
Non-Uniform Mapping in Real-Coded Genetic Algorithms (Yashesh et al., 2014) NRGA
Differential Evolution with Replacement Strategy (Xu et al., 2014) RSDE
Simultaneous Optimistic Optimization (Preux et al., 2014) SO0
Simultaneous Optimistic Optimization with BOBYQA (Preux et al., 2014) SOO+BOBYQA
United Multi-operator Evolutionary Algorithms (Elsayed et al., 2014) UMOEAs

Firstly (see Subsection 5.3), we evaluated the performance of three different
B values to choose the best one for the following steps. The performance was
evaluated by measuring the error (the lower the better) between the best fitness
obtained by the algorithms under comparison and the corresponding known
optimum shown in Table 1, averaged across the 51 available runs on each of the
30 CEC 2014 benchmark functions (in this case, for D = 10). We then employed
the pairwise Wilcoxon rank-sum test (Wilcoxon, 1945), with 5% significance
level, as well as the sequentially rejective Holm-Bonferroni procedure (Garcia
et al., 2008; Holm, 1979), described in Appendix A, to rank the mean errors
of the runs for each value of 8 on the 30 CEC 2014 benchmark functions.
Furthermore, we show the distribution of the errors across the runs, in terms
of violin plots (Hintze & Nelson, 1998), and the convergence curves, in order to

observe the difference in performance during the optimization process?.

Secondly (see Subsection 5.4), we compared the original Jaya algorithm
against the proposed LJA, again on the 30 CEC 2014 benchmark functions,
in this case for D = 10 and D = 30. Since this specific comparison is between
only two algorithms, in this case we used only the pairwise Wilcoxon rank-sum
test and did not apply the Holm-Bonferroni procedure. Also in this case we
report the violin plots and the convergence curves of the two algorithms.

Thirdly (see Subsection 5.5), we compared LJA against the 17 algorithms
that participated in the CEC 2014 competition (Liang et al., 2013) (listed in
Table 2). Also in this case we tested the algorithms on the 30 CEC 2014

31t should be noted that the CEC 2014 benchmark defines an accuracy of 1e-08, i.e. a
problem is considered solved if the error is below this threshold. While some graphical methods
have recently been proposed to show how many problems are solved by multiple algorithms
at different budget values (Hare et al., 2018; Sergeyev et al., 2018), we have noted in our
experimentation that these methods do not provide meaningful information on the CEC 2014
benchmark since none of the tested algorithms —apart from some of those that participated
in the CEC 2014 competition— reach that accuracy on a significant number of test problems.
For this reason, we preferred not to use these methods but report our comparisons in terms
of statistical tests, violin plots, and convergence curves.

12

benchmark functions for D = 10 and D = 30, and we used the Wilcoxon rank-
sum test as well as the Holm-Bonferroni procedure.

Then (see Subsection 5.6), we compared LJA against two deterministic
global search optimization algorithms, namely DIRECT (Jones et al., 1993)
and its locally-biased version DIRECT-L (Gablonsky & Kelley, 2001), again on
the 30 CEC 2014 benchmark functions for D = 10 and D = 30, and applied the
Wilcoxon rank-sum test as well as the Holm-Bonferroni procedure. This sort of
comparison is meant to show how a simple metaheuristic such as LJA compares
to much more complex optimizers that use a rather sophisticated search logic.

Finally, in order to show the applicability of LJA to real-world problems,
we compared LJA, the original Jaya algorithm, DIRECT and DIRECT-L on
the five selected industrial optimization problems described above. Also in this
case we used the Wilcoxon rank-sum test and the Holm-Bonferroni procedure
to assess the results in statistical terms.

5.8. Effect of the 8 parameter on LJA performance

We performed an initial analysis to investigate the behavior of the § pa-
rameter. As previously explained, this parameter affects the distribution of the
step-sizes sampled from the Lévy distribution. Thus, it is important to adjust
it to generate useful values that are neither too small nor too big, in the range
[1.0,2.0] to ensure a stable distribution (Chechkin et al., 2008), and in particular
with a value > 1.5 to allow a fair compromise between small and big steps (Tran
et al., 2014). In the following, we show the analysis for 5 = {1.6,1.8,2.0} on the
CEC 2014 benchmark functions for D = 10. The result of the Holm-Bonferroni
procedure is reported in Table 3, while the detailed results in terms of average
error £ std. dev. and the outcome of the Wilcoxon rank-sum test are reported
in Table B.9 in the Appendix.

Table 3: Holm-Bonferroni procedure (reference: LJA (8 = 1.8), Rank = 2.83e+00) for LJA
(B = 1.8) against LJA (8 = 1.8) and LJA (8 = 2.0) on the CEC 2014 benchmark in 10

dimensions.

j Optimizer Rank zj D afj Hypothesis

1 LJA(8=16) 217e+00 -3.65e+00 1.30e-04 5.00e-02 Rejected
2 LJA (8=20) 1.00e+00 -1.00e+01 5.00e-24 2.50e-02 Rejected

Both the pairwise comparisons and the sequential rejection of the Holm-
Bonferroni procedure show that superior optimization results can be obtained
with 8 = 1.8. In particular, it is worth noticing that the value 8 = 2.0 leads
the algorithm to premature convergence in several cases, as it can be noted in
the violin plots and the convergence curves reported respectively in Figure 2
and 3, and it does not allow a sufficient exploitation. On the other hand, as it
can be noted in the figures, the value f = 1.6 allows the algorithm to converge
to better values, although these results are worse than those obtained with
[= 1.8. Based on these observations, we chose 8 = 1.8 as the best parameter
for the subsequent experiments. This value indeed seems to offer a good trade-off

13

between small and big steps across the different CEC 2014 benchmark functions
in 10 dimensions.

w] & & . - <
; ‘ wl T
B=16 =18 B=20 B=16 B=18 B=20 B=16 B=18 B=20 B=16 B=18 B=20 B=16 B=18 B=20
fi f2 f3 fa fs
- ; % 5 +
10 10 I 10 |
100 107
® | © &
‘ e - N ? : Y
B=16 B=18 B=20 B=16 5='18 B=20 ﬂ=.16 B=18 B=20 B=16 B=18 B=20 B=16 B=18 B=20
fe fr fs fo f1o

B=16 B=18 B=20 B=16 B=18 p=20 B=16 B=18 p=20 B=16 B=18 p=20 B=16 p=18 p=20

f11 f12 f13 f14 fis
10%; H
A $| | - gl - .
o0 o [- ‘
| w0 ,
" w @ L & i w @ 2
B=16 B=18 B=20 B=16 B=18 B=20 B=16 B=18 B=20 B=16 ﬂ:‘la B=20 B=16 B=18 B=20
f16 fir f1s f19 f20

B=16 =18 B=20 B=16 B=18 B=20 B=16 B=18 B=20 B=16 B=18 B=20 B=16 B=18 B=20
fa1 fa2 f23 faa fos
10° 108 [
+ _\{ & 10 ;1_’
imi 10f).
. " [.]
! 108
:) w0
- ; . 3
100 -) 10 e - = e —
B=16 B=18 B=2.0 B=16 B=18 B=2.0 B=16 B=18 B=2.0 B=16 B=18 B=20 B=16 B=18 B=20
fa6 far fas f29 f30

Figure 2: Violin plots for LJA with three values of 8 on the CEC 2014 benchmark functions
with D = 10. The y-axis shows the fitness error (in log scale).

5.4. Comparison with Jaya

After choosing the proper value of 8, we proceeded to the comparison be-
tween the original Jaya algorithm and the proposed LJA. To obtain a fair com-
parison, we parametrized Jaya with the same parameter setting of LJA, i.e. with
a population of P = 5 x D solutions and a maximum number of generations
G = 2,000. In this case we considered the CEC 2014 benchmark functions for

14

0 10e+05

o 10e+05

10e+05

1.0e+05

0 10e+05

0 10e+05

0 10e+05

10e+05

10e+05

fis

1.0e+05

0 1.0e+05

— p=16

0 T0e+05

fi6

0 10e+05

fi7

10e+05

fis

—
T0e+05

f19

0 10e+05

f20

— B=16
—— p=18
— p=20

— p=16
— p=18
— B=20

— B=16
— p=18
— B=20

0 10e+05

fo1

0 10e+05

10e+05

fos

1.0e+05

0 10e+05

fas

— p=16
— B=18
— p=20

— B=16

0 10e+05

fa6

Figure 3: Convergence curves for LJA with three values of 8 on the CEC 2014 benchmark
functions with D = 10. The x-axis shows the number of function evaluations. The y-axis
shows the fitness error (in log scale).

both D =10 and D = 30. The detailed results in terms of average error + std.
dev., together with the outcome of the Wilcoxon rank-sum test, are reported in
Tables B.10-B.11 in the Appendix.

From the tables, it results that for D = 10, LJA statistically outperforms
Jaya in 22 out of 30 functions, with 6 ties and only two cases (fip and fa3)
in which Jaya outperforms LJA. For D = 30, the advantage of LJA is further
clearer since it outperforms Jaya in 25 out of 30 functions, with 5 ties. Thus we
can conclude that the proposed LJA is superior to the original Jaya algorithm.

To gain further insight in the difference between LJA and Jaya, we show also

0 T0e+05

far

10e+05

fas

15

T.0e+05

f29

0 T0e+05

f30

in this case the error distribution in terms of violin plots, see Figures 4-5, and the
convergence curves, see Figures 6-7. From the violin plots, it can be seen that for
most functions LJA reaches lower errors than Jaya. Furthermore, it can be noted
that, in the case of LJA, the median errors (represented by the horizontal bar
inside each violin plot) are usually lower than the mean errors, which indicates
an asymmetric distribution of the error (tending to lowest values). As for the
std. dev., the values for both algorithms are usually low, suggesting that both
algorithms are able to converge to similar solutions in most of their respective
runs.

As for the convergence curves, it can be observed that the two algorithms
tend to converge in most cases with a similar dynamic behavior, apart from some
cases such as f1gp and fo; for D = 10 where it can noted that a few occasional
runs of Jaya reach better results. In general though, it can observed that in
most cases LJA tends to converge faster and to better results w.r.t. the original
Jaya algorithm.

5.5. Comparison with the metaheuristics from the CEC 2014 competition

The next step of our experimentation consisted in comparing the proposed
LJA with the metaheuristics from the CEC 2014 competition. In this case, we
ran LJA for D = 10 and D = 30, to assess its scalability in comparison with
the algorithms from the competition. We present in Table 4 the results of the
Holm-Bonferroni procedure, while the detailed results in terms of average error
+ std. dev., together with the outcome of the Wilcoxon rank-sum test, are
reported in Tables B.14-B.17 in the Appendix.

It is important to remember that the proposal of this paper is to investigate
the performance of a different sampling strategy in Jaya. Therefore, the fun-
damental comparison is the one presented in the previous section. Given the
complexity of Jaya and LJA, it is not reasonable to expect it to outperform
the CEC 2014 competitors. Nevertheless, the results presented in the current
section are useful for understanding how far LJA is from the state-of-the-art
algorithms that participated in the CEC 2014 competition.

In Table 4, one can notice that the reference algorithm is UMOEAs because it
is the one with the best rank. LJA is the last in the table because it obtained the
worst rank. Only the top three algorithms in that table have a performance that
is statistically similar to UMOEAs. Therefore, taking UMOEAs as a reference,
LJA did not achieve overall competitive results when all functions are considered
together. However, one might evaluate individual results to look for scenarios
where LJA performs well.

When considering the 1e-08 solution quality error threshold required by the
CEC 2014 competition, many competitors can solve at least one of the prob-
lems. On the other hand, the best result for LJA is on function f14. However,
when making pairwise comparisons, one can notice that LJA does reach better
solutions than some competitors. Below, we highlight some examples where
LJA statistically outperforms other algorithms.

For the experiment with 10 dimensions, LJA did surprisingly well on several
functions and defeated even some of the best algorithms in these cases:

16

<

Java UA Java UA Jaya Jaya ua Jaya UA

fi f2 f3 fa fs

Jaya A Java A Java A Java A Java UA

fe fr fs fo f1o

NEIELE CRILEILE.

Jaya A Jaya A Jaya A Jaya A Jaya A

f12 f13 f1a f15

B T 0
e A :
1 10 A .
| i 10
| 10° | -

\ ‘ w0 \ =

. - 10
Java UA Java UA Tava UA Tava A Tava A

f16 fi7 f18 f19 f20

gl
5

Tava [0 Jaya Ua Java

fa1 fa2 f23 foa f25

Jaya A Jaya UA

v . 108] 1 [1
N 10° -
‘ 10 o || 10 ' o

Jaya LA Jaya LA Jaya UA Jaya UA Jaya UA

f26 far fag f29 f30

Figure 4: Violin plots for LJA vs Jaya on the CEC 2014 benchmark functions with D = 10.
The y-axis shows the fitness error (in log scale).

b3e3pbest: fi, f1a, fo3-
CMLSP: f14, fao.

L-SHADE f4, f23 .

NRGA: fi4, f18, fo1, f23, [, f30-
e POBL-ADE: fi4, fo3.

SOO: f1, fi7, f18, f20, f21, fo2-

17

Jaya

Jaya

Jaya

A

Jaya

A

Jaya

UA

f1 f2 f3 fa fs
‘ *
= I u = [
\ 7
10t v v
Jaya ua Jaya LA Jaya A Jaya UA Jaya [y
fe fr fs fo f1o
Y | @ J#
| % !
Jaya U.A Jaya UA Jaya I.J.A Jaya UA Jaya ua
fia f12 f13 f1a f15
10¢. E
+ \ ‘ ; w0
B =
N . T 4
‘ | ® (=
Jaya Ua Jaya LA Jaya A Jaya UA Jaya [y
fie fi7 fis f19 f20
Jaya UAa la.YE UA Jaya Ua Jaya \J.A Jaya UA
fa1 fa2 f23 foa f25
N 107 n
10? P - @ .
i o £ |
+ LN | : * * B
I : o e 10° T
Jaya ua Jaya LA Jaya A Jaya UA Jaya [y
f26 for fos f29 f30

Figure 5: Violin plots for LJA vs Jaya on the CEC 2014 benchmark functions with D = 30.

The y-axis shows the fitness error (in log scale).

For the experiment with 30 dimensions, LJA only achieved better results than

SOO and its variant with BOBYQA:

e SOO: fi7, f19, f20, f1, f22, fos-
e SOO+BOBYQA: fa0, fa2, fos-

As it can be noticed, although ranking last in the overall comparison, LJA is
still able to find better solutions than other high-quality algorithms, including
the top-performer ones such as CMLSP and L-SHADE. However, the functions

18

10 — Jaya w — jaya | ¥ — Jaya | — Jaya
0 A UA 10 UA UA
108 107 10°
10 108 102
.
10° = 10*
J T a w0 Tew o Toeres Toeres
f2 f3 fa
0 — Jaya — Jaya — Jaya
o —uA —uA —— uA
10t
10°
b Toem o T o Toe o oo Toe
I7 fs fo
— Jaya - — Jaya 100 — Jaya 0 — Jaya
10! LA LA | LA 107 LA
o 10%
F 10° 10° 10:'
10°
= 1078 — 10!
J w0 T o T o s o Toeres
fi2 fi3 f1a fis
100 10
— Jaya — Jaya 10° — Jaya 0 — Jaya
—uA 100 —— uA . —— uA — uA
107
10¢ 100 1o
10t 100 o
B T o T o T o T o oo
fie fir fis fi9 f20
101
— Jaya 107 — Jaya 10¢ — Jaya — Jaya 10? — Jaya
100 — ua — ua — uA — uA — uA
10°- 10°
10°
- 100 108
e — h =
J T o T o w0 T o Toeres
f21 fo3 foa fos
— Jaya) —ya | —Java | . — Jaya
—— UA 1 — LA B — LA — LA
.
10° 108 106
L 10° 10°
. e E
b T o T o Tos o To o oot
f26 for fos fo9 f30

Figure 6: Convergence curves for LJA vs Jaya on the CEC 2014 benchmark functions with
D = 10. The x-axis shows the number of function evaluations. The y-axis shows the fitness
error (in log scale).

above have different characteristics and there is no clear pattern to explain why
LJA works better than the competitors on these functions. On the other hand
these results are a strong motivation to improve LJA further.

5.6. Comparison with deterministic global optimization algorithms

An often overlooked aspect in the study of metaheuristics is to evaluate how
these compare w.r.t. alternative approaches such as mathematical programming
methods for global optimization (Kvasov & Mukhametzhanov, 2018). For this
reason, we included in our analysis a comparison between the proposed LJA and

19

— Jaya — Jaya — Jaya — Jaya — Jaya
100 108
UA 101 LA | LA UA UA
107, m 104
10°. 10%, 10t 10°
3.0e+05 o 3.0e+05 o 3.0e+05 o 3.0e+05 "‘"‘0 3.0e+05
f1 f2 f3 fa f5
10°
—Jaya | — Jaya
— LA — UA
o 30er05 o 300105 o 30er05 o 30er0 o 30er05
I7 fs fo fio
Jaya — Jaya 10° — Jaya
UA UA) UA
10 ! 10t J 10°)
10%
= 10°
300105 o 300405 o 300105 o 300005 o 300005
fis
10%-
Jaya — Jaya
— LA 208 — UA
107
10%
oo Soes o Soeros o Soeres
fir fis f20
107 Jaya 10 — Jaya — Jaya — Jaya —— Jaya
100 — UA — UA 1 —— UA —— UA — LA
108 10°- 10°
10*
o 10% 10°
10° LL N
300105 o 300405 o 300405 o 300005 o 300005
fo1 fa2 fo3 foa fos
104 100 10°
— Jaya — Jaya — Jaya — Jaya — Jaya
—UA 10t — UA o — UA o WA 0 oA
107
10%. I ———— 10%
107 10
00105 o 300105 30er05 o 30er0 o 300705
f26 for fos fo9 f30

Figure 7: Convergence curves for LJA vs Jaya on the CEC 2014 benchmark functions with
D = 30. The x-axis shows the number of function evaluations. The y-axis shows the fitness
error (in log scale).

two well-known deterministic global search optimization algorithms, namely DI-
RECT (Jones et al., 1993) and its locally-biased version DIRECT-L (Gablonsky
& Kelley, 2001), for which we used a publicly available Java implementation?.
Both DIRECT variants have been applied to the CEC 2014 benchmark for

4Available at: https://github.com/mike-gimelfarb/optim4j/blob/master/src/main/
java/opt/multivariate/unconstrained/order0/direct/DirectAlgorithm. java. It should
be noted that this Java implementation is a direct porting of the original FORTRAN code
by (Gablonsky & Kelley, 2001).

20

Table 4: Holm-Bonferroni procedure (reference: UMOEAs, Rank = 1.44e+-01) for LJA against
the CEC 2014 competitors on the CEC 2014 benchmark in 10 and 30 dimensions.

j Optimizer Rank 2j Dj alj Hypothesis
1 L-SHADE 1.42e+01 -1.81e-01 4.28e-01 5.00e-02 Accepted
2 MVMO 1.28¢+01 -1.75e+00 3.98e-02 2.50e-02 Accepted
3 CMLSP 1.26e+01 -1.90e+00 2.88e-02 1.67e-02 Accepted
4 GaAPADE 1.22e+01 -2.35e+00 9.38e-03 1.25e-02 Rejected
5 DE-b6ebrl.w.r. 1.21e+01 -2.48e+00 6.63e-03 1.00e-02 Rejected
6 rmalschcma 1.18e+01 -2.78e+00 2.69e-03 8.33e-03 Rejected
7 FERDE 1.12e+01 -3.49e+00 2.42e-04 7.14e-03 Rejected
8 RSDE 9.33e+00 -5.48e+00 2.16e-08 6.25e-03 Rejected
9 FWA-DM 9.07e+00 -5.77e+00 4.04e-09 5.56e-03 Rejected
10 SOO+BOBYQA 8.97e+00 -5.88¢+00 2.11e-09 5.00e-03 Rejected
11 SO0 7.87e+00 -7.07e4+00 7.84e-13 4.55e-03 Rejected
12 OptBees 7.82e+00 -7.12e4+00 5.30e-13 4.17e-03 Rejected
13 POBL-ADE 7.05e+00 -7.95e+00 9.02e-16 3.85e-03 Rejected
14 NRGA 5.50e+00 -9.64e+00 2.84e-22 3.57e-03 Rejected
15 FCDE 4.82e+00 -1.04e+01 1.59e-25 3.33e-03 Rejected
16 b3e3pbest 3.33e+00 -1.20e+01 2.12¢-33 3.13e-03 Rejected
17 LJA 2.37e+00 -1.30e+01 3.92e-39 2.94e-03 Rejected

D = 10 and D = 30 with the default parametrization suggested in (Gablon-
sky, 2001): tolerance = 0.0, volper = 0.0, sigmaper = 0.0, mazxDim = 64,
maxDivs = 3,000. As for maxzDepth, we used the default value 600 for DI-
RECT, while we used 6,000 for DIRECT-L.

In Table 5, we report the result of the Holm-Bonferroni procedure while the
detailed results in terms of average error + std. dev. and Wilcoxon rank-sum
are shown also in this case in the Appendix, Tables B.12-B.13.

Table 5 shows that LJA ranks last in the Holm-Bonferroni procedure, and
both DIRECT versions obtain statistically similar results. At first, that is pre-
cisely the result we were expecting to obtain, given how these algorithms work.
Nonetheless, when the pairwise comparisons are analyzed, the results show that
the deterministic method cannot perform well in all problems, getting stuck in
local optima many times. In those cases, the stochastic nature of LJA allows it
to escape from poor-quality regions and achieve better results.

Table 5: Holm-Bonferroni procedure (reference: DIRECT-L, Rank = 2.15e+00) for LJA
against DIRECT and DIRECT-L on the CEC 2014 benchmark in 10 and 30 dimensions.

j Optimizer Rank Zj Dj alj Hypothesis

1 DIRECT 1.97e+00 -1.42e+00 7.78e-02 5.00e-02 Accepted
2 LJA 1.57e+00 -4.52e+00 3.11e-06 2.50e-02 Rejected

The next analysis compares the results in terms of Wins, Ties, and Losses for
each dimension (10 and 30) and problem type. Table 6 contains the values for

21

DIRECT and DIRECT-L compared with LJA. What is important in the table
is to investigate when LJA wins. For instance, LJA is superior to DIRECT and
DIRECT-L even on f;, which is a unimodal function, where the LJA results
are one order of magnitude better than those of DIRECT and DIRECT-L. The
most notable results are those for the hybrid function type: LJA wins in 5 out
of 6 functions. A possible explanation is that these functions are characterized
by different properties for each of their function sub-components, leading the
DIRECT-based algorithms to the wrong location, or making them stop earlier.
This suggests that an exciting investigation for future work would be a hybrid
optimizer combining LJA and DIRECT, in order to leverage the best features
of the two algorithms.

Table 6: Number of Wins, Ties, and Losses (w/t/1) for DIRECT and DIRECT-L in each
dimension and problem type. The reference is LJA.

D Problem type DIRECT DIRECT-L
Unimodal Functions 2/0/1 2/0/1
10 Simple Multimodal Functions ~ 10/1/2 10/1/2
Hybrid Function 1 1/0/5 1/0/5
Composition Functions 5/2/1 6/1/1
Unimodal Functions 2/0/1 2/0/1
30 Simple Multimodal Functions ~ 13/0/0 13/0/0
Hybrid Function 1 1/0/5 1/0/5
Composition Functions 7/0/1 7/0/1

5.7. Real-world industrial optimization problems

For this last part of the experimentation, we considered the five industrial
optimization problems described in Subsection 5.1. It is important to remember
that these functions are only box-constrained. Constraint handling in LJA is a
possible topic for a future investigation. On these problems, we compared the
proposed LJA, the original Jaya algorithm, DIRECT, and DIRECT-L.

Table 7: Average fitness + standard deviation and statistic comparison (reference: LJA)
for LJA against Jaya, DIRECT and DIRECT-L on the five selected industrial optimization
problems taken from the CEC 2011 benchmark. The boldface indicates the lowest average
fitness per each problem.

LJA DIRECT DIRECT-L Jaya
Py 1.46¢ + 01 £ 3.49¢ + 00 2.11e +01£0.00e +00 + 2.10e +01+3.55¢ — 15 + 1.24e+01+6.42¢ +00 —
P, —599¢+400 £ 1.34e4+00 5944+ 06+£2.91e+07 + 84Te+04+4.15¢+05 + —6.28e+00+1.57e+00 =
P; 1.15e—05 + 1.63e —19 1.15¢ — 05+3.39¢ — 21 + 1.15e — 054 3.3%¢ — 21 t 1.15e =05+ 1.77e — 19 =
Py 1.0le — 02 + 4.94¢ — 02 0.00e + 00+0.00e +00 - 0.00e +00+0.00e +00 - 0.00e + 00 + 0.00e + 00
Ps 0.00e+00 £ 0.00e +00 3.27e4+01+£3.80e+01 + 6.97e+01+1.35e+02 + 0.00e +00+£0.00e +00 =

Tables 7 and 8 report respectively the results in terms of average fitness +
std. dev. and Wilcoxon rank-sum test on the five problems (it should be noted

22

Table 8: Holm-Bonferroni procedure (reference: Jaya, Rank = 3.20e400) for LJA against
Jaya, DIRECT and DIRECT-L on the five selected industrial optimization problems from the
CEC 2011 benchmark.

j Optimizer Rank zj D alj Hypothesis
LJA 2.80e+00 -6.32e-01 2.64e-01 5.00e-02 Accepted

1
2 DIRECT-L 1.80e+00 -2.21e+00 1.34e-02 2.50e-02 Rejected
3 DIRECT 1.40e+00 -2.85e+00 2.21e-03 1.67e-02 Rejected

that the optimum is unknown for all problems, so the error cannot be computed
in this case), and the outcome of the Holm-Bonferroni procedure.

From the tables, it can be observed that LJA is statistically on par with Jaya
in four out of five problems, while Jaya is superior in the case of P,. In general,
on these problems Jaya appears slightly more efficient in terms of average fitness.
In fact, LJA obtains a lower fitness than Jaya only on Ps. It is also interesting
to note that the two deterministic global optimization algorithms, DIRECT
and DIRECT-L, seem to perform relatively poorly on these problems, which is
probably due to their extremely high multimodality. In fact, LJA results are
statistically superior to both of them in four out of five problems, i.e. except
P;. One possible explanation for the slightly worse performance of LJA on
Py is likely the lower exploitation capability due to Lévy flight, whose jumps
might, in some cases, interrupt the exploitation phase. These observations are
also confirmed by the Holm-Bonferroni procedure, where it can be seen that
LJA ranks second after Jaya, but before both DIRECT-L and DIRECT (in
this order). On the other hand, the null-hypotheses of statistical equivalence is
accepted on the comparison between LJA and Jaya, while it is rejected in the
comparison against DIRECT-L and DIRECT.

As a final note, such a “jump effect” could be controlled by tuning the S
parameter, which was not done in our experimentation because we decided to
employ the same configuration for all the experiments. Nevertheless, as we
discuss below it opens the possibility of self-adapting 8 during the optimization
process.

6. Conclusions and future works

In this paper, we proposed the Lévy flight Jaya Algorithm (LJA) for global
continuous optimization. The algorithm was obtained by employing the Lévy
distribution to determine the step-size and thus control the balance between
exploration and exploitation. This modification, while still keeping the original
simple algorithmic philosophy of Jaya, has a dramatic impact on its performance
as it allows the algorithm to escape from local optima by performing occasional
‘jumps” in the search space. Of note, such behavior occurs without having an
explicit restart mechanism, but only relying on the way random numbers are
sampled from the Lévy distribution.

23

We assessed the performance of the proposed LJA on the CEC 2014 bench-
mark and compared it against that of the original Jaya, as well as the meta-
heuristics that participated in the CEC 2014 competition. Furthermore, we
compared LJA against two deterministic DIRECT-based global optimization
algorithms on the CEC 2014 benchmark functions and five industrial optimiza-
tion problems. Our results showed that, thanks to Lévy flight, LJA consistently
outperforms the canonical Jaya algorithm, but, apart from a few cases, it re-
sults less efficient than the most advanced metaheuristics that participated in the
CEC 2014 competition. For instance, this happened on the CEC 2014 unimodal
functions, where we observed that Lévy flight hampered a full exploitation due
to its occasional big steps. On the other hand, the improvement w.r.t. Jaya
on most of the highly multimodal functions in the CEC 2014 benchmark was
quite evident, both in terms of lower fitness error and higher robustness (i.e.,
std. dev. across multiple runs). These superior results confirm the advantage
of using Lévy flight to escape local optima.

Apart from the specific numerical results reported here, we should remark
that one of the main advantages of LJA is its simplicity: LJA is much simpler
to implement and tune (in fact, it inherits the two Jaya’s parameters, i.e. the
population size and the number of generations, but it adds a third one, §) than
most of the compared algorithms from the state-of-the-art. As such, it can
represent a very useful optimizer not only for practitioners — who might need
to use an optimization algorithm without having sufficient time and knowledge
for tuning its parameters— but also for algorithm experts who might want to
embed LJA into more complex algorithmic schemes and/or hybridizing it with
other algorithms. In this sense, this work paves the road to several possible
future research directions. For instance, it would be interesting to further mod-
ify the Jaya scheme by using different mechanisms for handling the boundary
constraints (see lines 15-18 in Algorithm 1), as suggested e.g. in (Zhang et al.,
2004), or to design a mechanism to automatically adapt the 8 parameter and/or
the population size (thus making the algorithm truly parameter-less). Further-
more, another possible research direction would be to investigate how other
kinds of distribution —alternative to Lévy flight— may affect the search. Finally,
it might be worth hybridizing LJA with other algorithms, such as deterministic
search methods for solving Lipschitz continuous functions (Sergeyev & Kvasov,
2015; Kvasov & Sergeyev, 2015; Paulavicius et al., 2020), or including specific
techniques borrowed from mathematical programming (Zhigljavsky & Zilinskas,
2007; Paulavi¢ius & Zilinskas, 2014) for dimensionality reduction and balancing
of exploitation and exploration (Lera & Sergeyev, 2018).

Acknowledgments

This paper was supported by FAPESP grant (#2017/20844-0) to V.V.M.
and CAPES to V.C.S.Jr.

24

References

Aslan, M., Gunduz, M., & Kiran, M. S. (2019). Jayax: Jaya algorithm with xor
operator for binary optimization. Appl. Soft Comput., 82, 105576.

Bekdag, G. (2019). Optimum design of post-tensioned axially symmetric cylin-
drical walls using novel hybrid metaheuristic methods. Struct. Des. Tall Spec.
Build., 28, e1550.

Bujok, P., Tvrdik, J., & Polakova, R. (2014). Differential evolution with
rotation-invariant mutation and competing-strategies adaptation. In IEEFE
Congress on Evolutionary Computation (CEC) (pp. 2253-2258).

Caraffini, F., & Tacca, G. (2020). The SOS platform: designing, tuning and
statistically benchmarking optimisation algorithms. Mathematics, 8, 785.

Caraffini, F., Neri, F., Passow, B. N., & Iacca, G. (2013). Re-sampled inher-
itance search: high performance despite the simplicity. Soft Comput., 17,
2235-2256.

Chechkin, A. V., Metzler, R., Klafter, J., Gonchar, V. Y. et al. (2008). Intro-
duction to the theory of Lévy flights. In Anomalous transport: Foundations
and applications (pp. 431-451). John Wiley & Sons.

Chen, L., Zheng, Z., Liu, H. L., & Xie, S. (2014). An evolutionary algorithm
based on covariance matrix leaning and searching preference for solving CEC
2014 benchmark problems. In IEEE Congress on Evolutionary Computation
(CEC) (pp. 2672-2677).

Das, S., & Suganthan, P. N. (2010). Problem definitions and evaluation criteria
for CEC 2011 competition on testing evolutionary algorithms on real world
optimization problems. Technical Report Jadavpur University, Nanyang Tech-
nological University, Kolkata.

Elsayed, S. M., Sarker, R. A., Essam, D. L., & Hamza, N. M. (2014). Test-
ing united multi-operator evolutionary algorithms on the CEC 2014 real-
parameter numerical optimization. In ITEEFE Congress on Evolutionary Com-
putation (CEC) (pp. 1650-1657).

Erlich, I., Rueda, J. L., Wildenhues, S., & Shewarega, F. (2014). Evaluating the
mean-variance mapping optimization on the CEC 2014 test suite. In IEFE
Congress on Evolutionary Computation (CEC) (pp. 1625-1632).

Gablonsky, J. M. (2001). Modifications of the DIRECT Algorithm. Ph.D. thesis
North Carolina State University.

Gablonsky, J. M., & Kelley, C. T. (2001). A locally-biased form of the direct
algorithm. J. Global Optim., 21, 27-37.

25

Gao, K., Zhang, Y., Sadollah, A., Lentzakis, A., & Su, R. (2017). Jaya, harmony
search and water cycle algorithms for solving large-scale real-life urban traffic
light scheduling problem. Swarm FEvol. Comput., 37, 58-72.

Garcia, S., Fernandez, A., Luengo, J., & Herrera, F. (2008). A study of statisti-
cal techniques and performance measures for genetics-based machine learning;:
accuracy and interpretability. Soft Comput., 13, 959-977.

Hare, W., Loeppky, J., & Xie, S. (2018). Methods to compare expensive stochas-
tic optimization algorithms with random restarts. J. Global Optim., 72, 781—
801.

Hariya, Y., Kurihara, T., Shindo, T., & Jin’no, K. (2015). Lévy flight PSO. In
IEEE Congress on Evolutionary Computation (CEC) (pp. 2678-2684).

Heidari, A. A., & Pahlavani, P. (2017). An efficient modified grey wolf optimizer
with lévy flight for optimization tasks. Appl. Soft Comput., 60, 115-134.

Hintze, J. L., & Nelson, R. D. (1998). Violin plots: a box plot-density trace
synergism. Am. Stat., 52, 181-184.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand.
J. Stat., 6, 65-70.

Hu, Z., Bao, Y., & Xiong, T. (2014). Partial opposition-based adaptive differ-
ential evolution algorithms: Evaluation on the CEC 2014 benchmark set for
real-parameter optimization. In IEEE Congress on Evolutionary Computation

(CEC) (pp. 2259-2265).

Tacca, G., Neri, F., Mininno, E., Ong, Y.-S., & Lim, M.-H. (2012). Ockham’s ra-
zor in memetic computing: Three stage optimal memetic exploration. Inform.
Sciences, 188, 17-43.

Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993). Lipschitzian opti-
mization without the Lipschitz constant. J. Optim. Theory App., 79, 157-181.

Kalantzis, G., Shang, C., Lei, Y., & Leventouri, T. (2016). Investigations of a
GPU-based Lévy-firefly algorithm for constrained optimization of radiation
therapy treatment planning. Swarm Evol. Comput., 26, 191-201.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm. J.
Global Optim., 39, 459-471.

Kennedy, J. (2010). Particle swarm optimization. In C. Sammut, & G. I. Webb
(Eds.), Encyclopedia of Machine Learning (pp. 760-766). Springer.

Kvasov, D. E., & Mukhametzhanov, M. S. (2018). Metaheuristic vs. deter-
ministic global optimization algorithms: The univariate case. Appl. Math.
Comput., 318, 245-259.

26

Kvasov, D. E., & Sergeyev, Y. D. (2015). Deterministic approaches for solving
practical black-box global optimization problems. Adv. Eng. Softw., 80, 58—
66.

Lera, D., & Sergeyev, Y. D. (2018). GOSH: derivative-free global optimization
using multi-dimensional space-filling curves. J. Global Optim., 71, 193-211.

Li, Z., Shang, Z., Qu, B. Y., & Liang, J. J. (2014). Differential evolution strategy
based on the constraint of fitness values classification. In IEEE Congress on
Evolutionary Computation (CEC) (pp. 1454-1460).

Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2013). Problem definitions and
evaluation criteria for the CEC 2014 special session and competition on single
objective real-parameter numerical optimization. Technical Report Zhengzhou
University and Nanyang Technological University.

Maia, R. D., de Castro, L. N., & Caminhas, W. M. (2014). Real-parameter
optimization with OptBees. In IEEE Congress on Evolutionary Computation
(CEC) (pp. 2649-2655).

Majumder, A., & Laha, D. (2016). A new cuckoo search algorithm for 2-machine
robotic cell scheduling problem with sequence-dependent setup times. Swarm
FEvol. Comput., 28, 131-143.

Mallipeddi, R., Wu, G., Lee, M., & Suganthan, P. N. (2014). Gaussian adapta-
tion based parameter adaptation for differential evolution. In IEEE Congress
on Evolutionary Computation (CEC) (pp. 1760-1767).

de Melo, V. V., & Tacca, G. (2014). A modified covariance matrix adaptation
evolution strategy with adaptive penalty function and restart for constrained
optimization. Ezpert Syst. Appl., 41, 7077-7094.

Molina, D., Lacroix, B., & Herrera, F. (2014). Influence of regions on the
memetic algorithm for the CEC 2014 special session on real-parameter sin-
gle objective optimisation. In IEEE Congress on FEvolutionary Computation
(CEC) (pp. 1633-1640).

Neri, F., Iacca, G., & Mininno, E. (2013). Compact optimization. In Handbook
of Optimization: From Classical to Modern Approach (pp. 337-364). Springer.

Nguyen, T. T., & Vo, D. N. (2017). Modified cuckoo search algorithm for
multiobjective short-term hydrothermal scheduling. Swarm FEwvol. Comput.,
37, 73-89.

Opara, K., & Arabas, J. (2018). Comparison of mutation strategies in differen-
tial evolution — a probabilistic perspective. Swarm FEvol. Comput., 39, 53—69.

Pandey, N., Verma, O. P., & Kumar, A. (2019). Nature inspired power opti-
mization in smartphones. Swarm Evol. Comput., 44, 470-479.

27

Paulavicius, R., Sergeyev, Y. D., Kvasov, D. E., & Zilinskas, J. (2020). Globally-
biased BIRECT algorithm with local accelerators for expensive global opti-
mization. Ezpert Syst. Appl., 144, 113052.

Paulavicius, R., & Zilinskas, J. (2014). Simplicial global optimization. Springer.

Piotrowski, A. P., & Napiorkowski, J. J. (2018). Some metaheuristics should be
simplified. Inform. Sciences, 427, 32—62.

Polakova, R., Tvrdik, J., & Bujok, P. (2014). Controlled restart in differential
evolution applied to CEC 2014 benchmark functions. In IEEE Congress on
Evolutionary Computation (CEC) (pp. 2230-2236).

Preux, P., Munos, R., & Valko, M. (2014). Bandits attack function optimization.
In IEEFE Congress on Evolutionary Computation (CEC) (pp. 2245-2252).

Qu, B. Y., Liang, J. J., Xiao, J. M., & Shang, Z. G. (2014). Memetic differential
evolution based on fitness Euclidean-distance ratio. In IEEE Congress on
Evolutionary Computation (CEC) (pp. 2266-2273).

Rao, R. V. (2016). Jaya: A simple and new optimization algorithm for solv-
ing constrained and unconstrained optimization problems. Int. J. Ind. Eng.
Comput., 7, 19-34.

Rao, R. V., & Saroj, A. (2017). A self-adaptive multi-population based Jaya
algorithm for engineering optimization. Swarm Ewvol. Comput., 37, 1-26.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based
optimization: A novel method for constrained mechanical design optimization
problems. Comput. Aided Des., 43, 303-315.

Sergeyev, Y. D., & Kvasov, D. E. (2015). A deterministic global optimization
using smooth diagonal auxiliary functions. Commun. Nonlinear Sci., 21,
99-111.

Sergeyev, Y. D., Kvasov, D. E., & Mukhametzhanov, M. S. (2018). On the
efficiency of nature-inspired metaheuristics in expensive global optimization
with limited budget. Sci. Rep., 8, 1-9.

Sharma, H., Bansal, J. C., Arya, K. V., & Yang, X.-S. (2016). Lévy flight
artificial bee colony algorithm. Int. J. Syst. Sci., 47, 2652-2670.

Tanabe, R., & Fukunaga, A. S. (2014). Improving the search performance of
SHADE using linear population size reduction. In IEEE Congress on FEvolu-
tionary Computation (CEC) (pp. 1658-1665).

Tighzert, L., Fonlupt, C., & Mendil, B. (2018). A set of new compact firefly
algorithms. Swarm Evol. Comput., 40, 92-115.

Tran, T., Nguyen, T. T., & Nguyen, H. L. (2014). Global optimization using
Lévy flights. CoRR, abs/1407.5739.

28

Viswanathan, G. M., Buldyrev, S. V., Havlin, S., Da Luz, M., Raposo, E., &
Stanley, H. E. (1999). Optimizing the success of random searches. Nature,
401, 911.

Wang, G., Guo, L., & Gandomi, A. H. (2013). Lévy-flight krill herd algorithm.
Math. Probl. Eng., .

Wang, R., Nguyen, T. T., Li, C., Jenkinson, L., Yang, Z., & Kavakeb, S. (2019).
Optimising discrete dynamic berth allocations in seaports using a Lévy flight
based meta-heuristic. Swarm Evol. Comput., 44, 1003-1017.

Wang, S., Rao, R. V., Chen, P., Zhang, Y., Liu, A., & Wei, L. (2017). Abnor-
mal breast detection in mammogram images by feed-forward neural network
trained by Jaya algorithm. Fundam. Inform., 151, 191-211.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics
Bulletin, 1, 80-83.

Xu, C., Huang, H., & Ye, S. (2014). A differential evolution with replacement
strategy for real-parameter numerical optimization. In IEEE Congress on
Evolutionary Computation (CEC) (pp. 1617-1624).

Yang, X.-S. (2010a). Firefly algorithm, Lévy flights and global optimization.
In M. Bramer, R. Ellis, & M. Petridis (Eds.), Research and Development in
Intelligent Systems XX VI (pp. 209-218). Springer.

Yang, X.-S. (2010b). Firefly algorithm, stochastic test functions and design
optimisation. Int. J. Bio-Inspir. Com., 2, 78-84.

Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In
J. Durand-Lose, & N. Jonoska (Eds.), International Conference on Uncon-
ventional Computation and Natural Computation (UCNC) (pp. 240-249).

Yang, X.-S., & Deb, S. (2009). Cuckoo search via Lévy flights. In World Congress
on Nature Biologically Inspired Computing (NaBIC) (pp. 210-214).

Yashesh, D., Deb, K., & Bandaru, S. (2014). Non-uniform mapping in real-
coded genetic algorithms. In IEEE Congress on Evolutionary Computation
(CEC) (pp. 2237-2244).

Yu, C., Kelley, L., Zheng, S., & Tan, Y. (2014). Fireworks algorithm with
differential mutation for solving the CEC 2014 competition problems. In
IEEE Congress on Evolutionary Computation (CEC) (pp. 3238-3245).

Zhang, W.-J., Xie, X.-F., & Bi, D.-C. (2004). Handling boundary constraints for
numerical optimization by particle swarm flying in periodic search space. In
IEEE Congress on Evolutionary Computation (CEC) (pp. 2307-2311). vol-
ume 2.

29

Zhang, Y., Yang, X., Cattani, C., Rao, R. V., Wang, S.; & Phillips, P. (2016).
Tea category identification using a novel fractional fourier entropy and Jaya
algorithm. Entropy, 18.

Zhigljavsky, A., & Zilinskas, A. (2007). Stochastic global optimization volume 9.
Springer Science & Business Media.

30

Appendix A. Holm-Bonferroni procedure

The sequentially rejective Holm-Bonferroni procedure (Garcia et al., 2008;
Holm, 1979) is a multiple comparisons test that applies the to Bonferroni correc-
tion to counteract the fact that the more null-hypotheses are checked, the higher
the probability of obtaining Type I errors (false positives). The Holm-Bonferroni
therefore adjusts the rejection criterion for each of the individual hypotheses.
In a nutshell, the procedure consists of the following: considering the error ob-
tained by all the algorithms at the end of the computational budget, averaged
across all the available runs, for each problem a score R; is assigned to each
algorithm, for i = 1,2,..., N4 (where N4 is the number of algorithms under
analysis), being N4 the score of the algorithm displaying the best performance
on that problem, N4 — 1 the score of the second-best, and so on. The algorithm
displaying the worst performance scores 1. These scores are then averaged, for
each algorithm, over the whole set of test problems. The algorithms are sorted
based on these average scores. Indicating with Ry the Rank of the algorithm
displaying the highest average score, which is considered as the reference algo-
rithm, and with R; for j =1,2,..., N4 — 1 the Ranks of the remaining N4 — 1
algorithms, the values z; are calculated as:

R; — Ry
Zj E r———————
NA(NAJrl)
V 6NTp
where Npp is the number of test problems in consideration. By means of the
z; values, the corresponding cumulative normal distribution values p; are de-
rived. Finally, the p; values are compared to the corresponding 6/j where ¢ is
the confidence interval, set to 0.05: if p; < §/j, the null-hypothesis (that the

reference algorithm has the same performance as the j-th algorithm) is rejected,
otherwise is accepted as well as all the subsequent tests.

31

Appendix B. Detailed results on CEC 2014 benchmark

Table B.9: Average error + standard deviation and statistic comparison (reference: LJA
(B = 1.8)) for LJA (8 = 1.8) against LJA (8 = 1.8) and LJA (8 = 2.0) on the CEC
2014 benchmark in 10 dimensions. The boldface indicates the lowest average error per each

problem.
LJA (5 =1.8) LJA (8 =1.6) LJA (8 =2.0)
fi 6.99e+ 05 £+ 2.56e+ 05 1.56e +06+6.27¢+05 + 4.13e +08+£2.74e+08 +
fo 4.06e +07 £+ 1.36e+ 07 2.05e + 08 £ 6.26e + 07 1.35e + 10+ 4.02e + 09 -
f3 88le+03 + 3.29¢+03 1.88¢+04+4.81e+03 + 4.03e+06+6.74e+06 +
fi 243e+01 + 9.43e+00 297e+01+81le4+00 + 3.38¢+03+1.68¢+03 +
fs 2.03e¢ + 01 £ 7.94e — 02 2.03e+01+8.78¢ —-02 = 21le+01+£1.75e—-01 +
fe 6.77e+00 £ 7.64e —01 7.69¢+00£6.03¢e —01 + 1.40e+01+1.14¢+00 +
fr 7.03e — 01 + 7.65e — 02 8.84e —01£9.77e — 02 + 243e+02£7.97¢+01 +
fs 3.18e+01 + 4.01e+00 3.95e + 01+6.68¢ + 00 + 1.32e4+02+2.11e4+01 +
fo 3.59e+01 £+ 5.24e+00 4.6le+01+6.41e+00 + 1.37e+02+2.09e+01 +
fio 5.00e+02 £+ 1.74e+02 4.23e+02+1.78e+02 - 257e+03+2.64e+02 +
fii1 1.12e+03 + 1.70e + 02 1.22e + 03+ 1.49¢e + 02 2.60e + 03 +2.63e+ 02 +
fiz 1.06e +00 £ 2.07e — 01 9.76e —01+2.45e —01 = 4.90e+00+£1.28¢+00
fiz 3.3Te—01 £ 497e—-02 4.97¢—01£87le—02 + 5.46e+00£1.07e+00 +
fia 1.36e — 01 + 3.06e — 02 2.26e — 01 £1.09¢ — 01 + 6.4le+01+1.62¢e+01 +
f1s 2.96e+00 + 519¢ —01 4.23¢+00£6.23¢ —01 + 2.80e+05+£2.29¢ +05 -+
fie 3.34e+00 £+ 1.24e — 01 3.53e +00+£1.49¢ — 01 + 4.53e+00+1.48¢—-01 +
fir 854e+03 £ 6.77e +03 248¢+04+1.55¢e+04 + 1.91e+07+1.96e+07 +
fis 4.03e + 03 £+ 3.30e + 03 7.49e + 03 £7.14e + 03 + 1.95e +08+2.02e +08 +
fio 3.37e+00 £+ 4.03e — 01 4.24e+00+8.15e —01 + 1.08e+02+6.88¢+01 +
foo 8.13e+02 £+ 5.63e+02 2.80e+03+429¢+03 + 1.67¢+07+£2.68¢+07 +
for 897e+02 £+ 1.85e+02 1.55e + 03+ 5.25¢e + 02 1.11e+ 07+ 1.32e + 07
foo 4.0le+01 £+ 6.78¢+00 3.77e+01+7.64e+00 = 6.99¢+02+1.82¢+02 +
foz 3.29e+02 £ 1.04e —02 3.29¢+02+£7.43¢—-02 + 6.7le+02+£1.4le+02 +
foa 1.41le+ 02 £ 4.93e + 00 1.52e + 02 £ 7.16e + 00 + 2.5le+02+1.64e+01 +
fos 1.84e+02 4+ 1.91e+ 01 1.98¢ + 02 £1.03e + 01 + 2.26e+02+1.15e+01 +
f26 1.00e + 02 + 8.62e¢ — 02 1.00e + 02 £1.20e — 01 + 1.10e+02+1.04e+01 +
for 2.51le+ 02 £+ 1.56e + 02 2.83e + 02+ 1.47e + 02 = T712e+02+1.22e4+02 +
fos 4.24e+02 £ 491e+01 4.22e+02+4.38¢+01 = 1.82e+03+3.62¢+02 +
foo 6.84e+04 £+ 3.35e+05 6.86e+04+3.35e+05 + 3.69e+07+2.74e+07 +
fao 6.76e+02 £ 1.57e+02 8.00e +02+1.97¢+02 + 6.69¢ +05+£7.6le+05 +

32

Table B.10: Average error £ standard deviation and statistic comparison (reference: LJA) for
LJA against Jaya on the CEC 2014 benchmark in 10 dimensions. The boldface indicates the

lowest average error per each problem.

LJA

Jaya

f16
fi7
fis
f19
f20
fa1
fa2
fo3
foa
fos
fa6
for
fosg
f29
f30

6.99¢e + 05 + 2.56e + 05
4.06e + 07 + 1.36e + 07
8.81e + 03 + 3.29e + 03
2.43e + 01 £+ 9.43e + 00
2.03e + 01 + 7.94e — 02
6.77¢ + 00 = 7.64e — 01
7.03e — 01 £+ 7.65e — 02
3.18¢ + 01 + 4.01e + 00
3.59¢ + 01 £+ 5.24e + 00
5.00e + 02 £ 1.74e + 02
1.12e + 03 £+ 1.70e + 02
1.06e + 00 £ 2.07e — 01
3.37e — 01 + 4.97e — 02
1.36e — 01 + 3.06e — 02
2.96e + 00 + 5.19e — 01
3.34e + 00 + 1.24e — 01
8.54e +03 £ 6.77e + 03
4.03e + 03 + 3.30e + 03
3.37e + 00 + 4.03e — 01
8.13e + 02 + 5.63e + 02
8.97e + 02 + 1.85e + 02
4.0le + 01 £ 6.78¢ + 00
3.29¢ + 02 + 1.04e — 02
1.41e + 02 £+ 4.93e + 00
1.84e + 02 £ 1.91e + 01
1.00e + 02 + 8.62e — 02
2.51e + 02 + 1.56e + 02
4.24e + 02 + 4.91e + 01
6.84e + 04 + 3.35e + 05
6.76e + 02 + 1.57e + 02

9.13e + 05 +4.02¢e 4 05
1.19¢e 4 08 £ 5.04e + 07
1.23e + 04 £4.91e + 03
3.04e + 01 £ 8.53e 4 00
2.03e + 01 £7.70e — 02

6.66e + 00 £9.37e — 01

7.39e — 01 £9.16e — 02
3.48¢e + 01 £4.04e 4 00
3.90e + 01 £ 5.58¢e 4 00

3.74e + 02 £ 2.21e 4 02

1.27e 403 £1.59¢ + 02

1.06e + 00+ 2.21e — 01

3.98¢ — 01 +£6.31e — 02
1.59e — 01 £ 3.90e — 02
3.36e + 00 £ 5.23e — 01
3.46e + 00+ 1.15e — 01
2.30e + 04 £ 1.61e + 04
7.77e + 03 £ 8.05¢e +- 03
3.94e + 00 £ 8.27e — 01
1.23e + 03 £8.69¢ + 02
1.18e + 03 £ 3.21e + 02

3.23e + 01 £5.63e +- 00

3.29¢ + 02 £2.94e — 02
1.44e + 02 4+4.73e + 00
1.99¢ + 02 +9.45¢ + 00
1.00e + 02 £ 6.29¢ — 02
2.83¢ +02+1.72¢ + 02
4.39¢ + 02 £5.94¢ + 01
1.70e + 05+ 5.13e + 05
7.68¢ + 02 +2.15¢ + 02

I+ 4+ + +

e e i e [R

I+ 4+ +

+

33

Table B.11: Average error + standard deviation and statistic comparison (reference: LJA) for
LJA against Jaya on the CEC 2014 benchmark in 30 dimensions. The boldface indicates the

lowest average error per each problem.

LJA

Jaya

f16
fi7
fis
f19
f20
fa1
fa2
fo3
foa
fos
fa6
for
fosg
f29
f30

6.31e + 07 =+ 1.87e + 07
4.77e + 09 + 6.03e + 08
6.91e + 04 + 1.07e + 04
4.08¢e + 02 £+ 5.38¢ + 01
2.09e + 01 + 4.97¢ — 02
3.39e + 01 + 1.29e + 00
1.58e + 01 £+ 2.80e + 00
2.24e + 02 £+ 9.93e + 00
2.6le + 02 + 1.47e + 01
5.68e + 03 + 3.95¢ 4+ 02
6.88e¢ + 03 £+ 3.12e + 02
2.49e + 00 + 2.73e — 01
1.08e + 00 £+ 1.19¢ — 01
4.33e + 00 £+ 1.70e + 00
5.05e + 01 + 9.36e + 00
1.28e¢ + 01 & 1.78e — 01
2.63e + 06 + 9.76e + 05
1.26e + 07 4+ 1.06e + 07
3.78e + 01 + 3.46e + 01
9.92e + 03 + 3.69e + 03
6.94e + 05 + 2.03e + 05
5.47e + 02 + 1.05e + 02
3.43e +02 + 3.41e + 00
2.57e +02 + 4.04e + 00
2.16e + 02 £+ 2.58e + 00
1.0le+ 02 £+ 1.02e — 01
9.86e + 02 + 2.48¢ + 02
1.13e+ 03 £+ 6.63e + 01
9.82e + 05 + 2.07e + 06
1.09¢ + 04 + 4.24e + 03

8.47e + 07+ 2.25e 4 07
7.55e + 09 +=1.18e 4 09
8.10e + 04 £ 1.24e + 04
5.69¢ 4 02 = 1.29¢ + 02

2.09¢ +01£4.7T1le — 02

3.48¢ + 01 £1.77e 4+ 00
2.59¢ + 01 +=5.83¢ + 00
2.29¢ + 02 +1.34e + 01
2.64e + 02 +£1.85¢ + 01

5.59e 4- 03 =4.35e + 02

6.91e + 03 £ 3.16e + 02

2.44e +00+2.63e — 01

1.80e + 00 £ 3.59¢ — 01
1.23e + 01 +1.82¢ + 00
8.39¢ + 01 £ 7.03¢ + 01
1.30e + 01 +1.70e — 01
4.69e + 06 £ 1.36¢e + 06
2.97e + 07+ 3.19¢ + 07
3.85¢ +01£1.91e + 01
1.16e + 04 £ 3.70¢e + 03
9.02e 4+ 05 £ 3.08¢ 4+ 05
6.45¢ + 02 £+ 1.38¢ + 02
3.57¢ + 02 £ 6.69¢ + 00
2.61le + 02 +4.74e + 00
2.23e¢ + 02 +5.18¢ + 00
1.0le + 024+ 1.70e — 01
1.08e + 03 = 1.96¢e + 02
1.21e + 03 £ 1.70e + 02
1.57¢ + 06 &= 3.06¢e + 06
1.56e + 04 + 6.41e + 03

I+ 4+ 0 ++++

i et S e el el S S |

34

Table B.12: Average error + standard deviation and statistic comparison (reference: LJA) for
LJA against DIRECT and DIRECT-L on the CEC 2014 benchmark in 10 dimensions. The
boldface indicates the lowest average error per each problem.

LJA

DIRECT

DIRECT-L

f1

fa

f3

fa

fs

fe

fa

fs

fo

f1o
fn
fi2
fi3
fia
fis
fi6
fir
fis
f19
fa0
S
fa2
fos3
foa
fas
fa6
far
fas
fag
f30

6.99¢ + 05 + 2.56e + 05
4.06e + 07 £+ 1.36e + 07
8.81e + 03 £ 3.29¢ + 03
2.43e + 01 £ 9.43e 4+ 00
2.03e + 01 £ 7.94e¢ — 02
6.77e + 00 £+ 7.64e — 01
7.03e — 01 £ 7.65e — 02

3.18¢ + 01 + 4.01e + 00
3.59¢ + 01 + 5.24e + 00

5.00e + 02 + 1.74e + 02
1.12e¢ + 03 + 1.70e + 02
1.06e 4+ 00 + 2.07¢ — 01
3.37¢ — 01 & 4.97¢ — 02

1.36e — 01 + 3.06e — 02
2.96e + 00 £+ 5.19¢ — 01
3.34e + 00 £+ 1.24e — 01

8.54e + 03 + 6.77e + 03

4.03e + 03 + 3.30e + 03
3.37e + 00 £+ 4.03e — 01

8.13e + 02 + 5.63e + 02

8.97e + 02 + 1.85e + 02

4.0le + 01 + 6.78e + 00
3.29¢ + 02 £ 1.04e — 02

1.41e + 02 + 4.93e + 00
1.84e + 02 £+ 1.91e + 01
1.00e + 02 + 8.62¢ — 02
2.51e + 02 + 1.56e + 02
4.24e + 02 £+ 4.91e + 01
6.84e + 04 + 3.35¢ + 05
6.76e + 02 £ 1.57¢ 4+ 02

7.26e + 06 £6.52e — 09
8.88e + 03 +9.09e — 12
6.65¢ + 03 £ 3.64e — 12
2.07e - 01+1.7le — 13
2.00e +01+3.41e - 13
3.90e + 00+ 3.41e — 13
2.56e — 01 £4.55e — 13
3.18¢ + 01 £1.14e — 13
3.08e +01£9.09e — 13
6.04e + 02 £6.82e — 13
1.04e + 03 £2.27e — 12
3.16e — 01 £ 0.00e + 00
1.88e — 01 +4.55e — 13
2.25e — 01 £2.27e — 13
1.54e + 00+ 2.27¢ — 13
3.11e + 00 £ 1.59¢ — 12
5.60e + 05 £4.66e — 10
1.29e +04+1.27e — 11
3.03e + 00 £1.59¢ — 12
9.06e + 03 £9.09¢ — 12
2.46e +04£2.18¢ — 11
5.18¢ + 01 £ 1.36e — 12
2.00e + 02 +0.00e + 00
1.43e 4+ 02+ 1.36e — 12
1.57e 4+ 02+1.82e — 12
1.00e 4 02+ 1.36e — 12
2.00e + 02 +0.00e + 00
2.00e + 02 +0.00e + 00
2.00e + 02+ 0.00e + 00
2.00e + 02 £ 0.00e + 00

7.32e + 06 £9.31e — 10
1.64e + 07 £1.49¢ — 08
6.65¢ + 03 +6.37e — 12
1.69¢ 4 00 £ 0.00e + 00
2.00e + 01 +3.41e — 13
3.90e + 00+ 3.41e — 13
1.19¢ — 01 £2.27e — 13
3.18¢ + 01 = 1.14e — 13
3.18¢ + 01 +6.82¢ — 13
6.04e + 02 +6.82¢ — 13
1.06e + 03 £2.27¢ — 12
2.67e¢ — 01 +4.55¢ — 13
1.88¢ — 01 +4.55¢ — 13
1.96e — 01 £4.55¢ — 13
1.54e + 00+ 9.09¢ — 13
3.11e + 00+ 0.00e + 00
5.60e + 05+ 3.49¢ — 10
1.29¢ + 04 +7.28¢ — 12
3.03e + 00+1.36e — 12
9.06e + 03 & 3.64e — 12
2.46e + 04 +1.46e — 11
5.18¢ + 01 £+ 1.36e — 12
2.00e + 02 4 0.00e + 00
1.43¢ + 02 £2.27¢ — 12
1.52e + 02 £ 0.00e + 00
1.00e + 02 +1.82e — 12
2.00e + 02 £ 0.00e + 00
2.00e + 02 £ 0.00e + 00
2.00e + 02 £ 0.00e + 00
2.00e 4+ 02 +0.00e + 00

S

35

Table B.13: Average error + standard deviation and statistic comparison (reference: LJA) for
LJA against DIRECT and DIRECT-L on the CEC 2014 benchmark in 30 dimensions. The
boldface indicates the lowest average error per each problem.

LJA

DIRECT

DIRECT-L

fa

f3

fa

fs

fe

fa

fs

fo

f1o
fn
fi2
fi3
fia
fis
fi6
fir
fis
f1o
fao
S
fa2
fos3
foa
fas
fa6
far
fas
fag
f30

6.31e + 07 = 1.87e + 07
4.77e + 09 £ 6.03e + 08
6.91e + 04 £+ 1.07e + 04
4.08e + 02 + 5.38¢ + 01
2.09e + 01 £ 4.97e — 02
3.39e + 01 £ 1.29¢e + 00
1.58e 4 01 £ 2.80e + 00
2.24e + 02 £ 9.93e + 00
2.6le+ 02 £+ 1.47e + 01
5.68e + 03 £ 3.95e + 02
6.88e + 03 £ 3.12e + 02
2.49e + 00 £ 2.73e — 01
1.08e 4+ 00 £ 1.19¢ — 01
4.33e + 00 £ 1.70e + 00
5.05e + 01 £ 9.36e + 00
1.28¢ + 01 £ 1.78e — 01

2.63e + 06 £+ 9.76e + 05
1.26e 4 07 £ 1.06e + 07

3.78e + 01 + 3.46e + 01

9.92e + 03 £ 3.69e + 03

6.94e + 05 + 2.03e + 05

5.47e + 02 £ 1.05e + 02
3.43e +02 £+ 3.41e+ 00
2.57e + 02 £+ 4.04e + 00
2.16e + 02 £ 2.58e + 00

1.01le + 02 £+ 1.02e — 01
9.86e + 02 £ 2.48e + 02
1.13e + 03 £ 6.63e + 01
9.82e + 05 £ 2.07e + 06
1.09¢ + 04 £ 4.24e + 03

1.87e + 08 £2.98¢ — 08
3.62e + 08 £2.98e — 07
1.10e + 04 +9.09e — 12
1.62e 4+ 02+ 3.41e — 13
2.00e +01+3.41e - 13
9.00e + 00 £6.82e — 13
9.33¢ —01+£5.68¢ — 13
9.55e + 01 £4.55e — 13
1.32e + 02 £6.82e — 13
3.17e + 03 £2.73e — 12
3.98e + 03 +0.00e + 00
1.92e — 01+£6.82e — 13
5.16e — 01 £6.82e — 13
2.81e — 01 £4.55e — 13
211e+01+2.27e - 13
1.08e + 01 +0.00e + 00
1.73e + 07+ 1.12e — 08
3.96e + 03 £2.73e — 12
4.77e + 01 £9.09e — 13
2.97e +04£2.18¢ — 11
1.70e 4+ 06 £ 2.33e — 10
1.04e 4 03 £4.55e¢ — 12
2.00e + 02 +0.00e + 00
2.00e + 02 +0.00e + 00
2.00e + 02 +0.00e + 00
2.00e + 02 £0.00e + 00
2.00e + 02 +0.00e + 00
2.00e + 02 +0.00e + 00
2.00e + 02 +0.00e + 00
2.00e + 02 +0.00e + 00

1.99e 4+ 08 = 1.19¢ — 07
3.62e + 08 £5.96e — 08
1.10e 4 04 £9.09¢ — 12
8.90e +01+2.27e — 13
2.00e + 01 £3.41e — 13
9.00e +00+5.68e — 13
9.33e — 01 +4.55e — 13
9.55e +01+5.68e — 13
1.32e + 02+6.82e — 13
3.17e + 03 £4.55e — 12
3.98¢ + 03 £2.73e — 12
1.92e — 01 £1.36e — 12
5.16e — 01 +:9.09¢e — 13
2.81e — 01+9.09¢ — 13
3.91e + 01 £0.00e 4 00
1.22e 4+ 01+ 1.36e — 12
1.73e 4+ 07 4 0.00e + 00
3.96e + 03 +5.46e — 12
4.77e + 01 £9.09e — 13
4.90e 4+ 04 £3.64e — 11
4.85¢ + 06 = 4.66e — 09
1.04e 4 03 £4.55e¢ — 12
2.00e + 02 £ 0.00e + 00
2.00e + 02 £ 0.00e + 00
2.00e 4+ 02 £ 0.00e + 00
2.00e 4+ 02 £ 0.00e + 00
2.00e 4+ 02 £ 0.00e + 00
2.00e 4+ 02 £ 0.00e + 00
2.00e 4+ 02 +0.00e 4 00
2.00e + 02 £ 0.00e + 00

36

CHITFLO+I0C - T0FA0IFL0 LS - T0HTTF0 ST - 00+00FL0H200T - 00+2000FI0 00T+ 0 HIGCEFAOHILR + 0 HITUEFLOHIELT - COHIRUTFLOHIGE 20+ 0LET F 20+09L9 O

S 0+99GTFLOHLLT - T0HFABCCFLOHRIE < 10-EI9F0HTTT - 00+H00F0H+200T - 00+2000FC0+00T - COHWETFOFOIE - 0+HGCLFLOFIETT - 10+I80TF0HTIT S0+IEE F PO+ 5
S M0FOESTFCOHOLE - 00FOIELFAOH99E < [0FIG0EFOFELE - 00+H2000F0H200T - 00+2000FZ0 +200T 10+206LF20+2L6Y + C0+IB0TFIO+LLY - T0+29LFFLO+OLIE 1042167 F Q0 +oKTh N
S QOISETFIOFOT6 - I0FIIELFIOHIT < 20+ 209 TFI0+2L68 00+2000F20 + 2005 00+2000F20+200T - T0+FITFL0+9CLT 90 +29¢TF 2042187 WHITTFLO+21E 20+995T F 20+219T 44
S Q-PI9EFIOH0T - G0—9IFFLOHA00T < 0-P6FTFOH00T - TL-29ETF0H00T - TL—29ETFC0+200T 10-29FTF20+200T = 20— 21Z9FL0+200T = C0—2LPLFL0+200T 70— 2798 F W0 +200T
S M0HIETFLOHET - 00+IGTRFAOHIET < W0FOIIFFOHANYT - TL-2LLTF0HHT - £1—2606F 20+ 66T 10+22FTF 20+ 2581 10+260TF0+2T = 10+99LTF0+6LT 10+916T F 20 +28'T 4
S 00HIEEYFTOHALT - 00H+IIETFIOHICIT - 00+ICLTFCOH0T - TL-2LLTFOH9TT - TL-2LLTFO+IT - 00+2RGFL0+2LET - L0+PGCTFOH+IIET - 10+206TF0+2LTT 00+966F F C0+210'1 Vof
GEL-TFWAACE — TL-GTEFO 6L+ CL-RLTFLOHATE - 00+2000F0+200T - 00+9000FZ0+900T + TI-2LTF0HFI6TE 90— PCECF0HI6TE 80— 2LT9FTOHTE 0~ 0T F c0+60E
S 00+I896FIOHOLIT - 00H+ITEEFO0HATE - 10-20Z6F00+GTE + TL-2LLTF0HTT b E1-2606F0 9T - T0HETFI0+9GLT - 0+HREEFI0+29LE - [0+20FFFI0HOTE 0049809 F 10+2107 %
S 00HAEEFO0HOITT - T0HFITFO0OHANEY - 10-ZGTFIO-260G + TL-RCLFIOH+ILPT + TI-2CCPFEO+IIGT - COH+LTTFLO+HIRIT + €0+0ITFEO+IT8F - 10+2086F10+2976 20+268'T F 20 +226%
S T0-99T9FTI0-2ITL - T0-RFLFO0+20LT - 10-ZGTFI0-2C€T + TI-2H9EFEO+2966 + T —8TLFLO+2669 - T0+2GTTFI0H8LT = €0+2I6TFEO+ICLT - T0+29UTFI0H+2FET C0+269°C F 20 +261% O
S T0-20EEFO0HEOT - T0-RLTFI0O-260¢ - 10— LUTFI0-2.¢7 - TI-2G8TFI0-20§S - TI-2®TFI0-209¢ - 00+26YTFO0+29FT - T0—26LLF00+260T - 10— 26LLFO0+206T 10— 260F F 00+226°¢ O
S 00H2B0TFO0H200T - 00+I6ZTFO0+LT - TO-OLRTFIO-96LT + TI-29FTFF0+26T + CI-2CRTFEOHG6E - 10+200TFI0+2L0C + €0+2L0CFEO+TFL - T0+%STFI0+206T £0+208°E F €0+ 2607 ¥
S T0HAFEFIOHOLT - 00+2696F00 42608 - 00+ IFEFO0HT66 + 00+2000F0+TIE - TI-PELTFCOHFRLT - TOHASTFOHFR0E = FOHIGLTFIOHIIOT - CO+ILLTF0H+GT £0+0LL9 F £0+0bgy LY
S T0-IRTTFO0HCT - T0-6ETFO0HIRET - 10-ILTFO0HRET - E1-2LLTFO0HTGT - E1-2LLTFO0+9CET - T0-2GTFO0H6IE - [0-REPFO0+26LT - 10— 289TFO0+9LT 10— 94T F 00+946E O
S T0-2L9EFI0-2686 - T0-29TTFI0-28L9 - 20-RP6FI0-2909 - TI-2FTTFI0-20FF - EI-2FTTFI0-200T7 - 10-2296F00+26¢T - T10-86TF00+220T - 10— 69CF10-26LL 10261 F 00+2967 °
= W-TEVFI0-296T - W0 -LTFLO 966 - 20— LTEFL0 — 90 = EI-IFI0-208T = E1-XKIFI0—206T 10~ 266 TF 10~ 2LV'E. 20— APLIFT0 - 44T T0-20ZTF10- 2412 20~ 290% F 10— 2981 'Y/
S W-PCTEFI0-9RCT - W0 -2LETFI0-29TT - 20-BETFAW0-2109 - €1-26CTFA0-200€ - ET-26CFFL0 2006 = 10-299TFI0-29¢€ - Z0—2GTIFI0~28CT - 0~ RTULFI0-218T 20— 2L6F F 10— 26E *1f
- T0-METFI0-2127 - G- 869FI0- 26T - G0—ZTFFI0-201T - 00+2000F00+2000 - 00+2000F00+2000 - T0-299EFI0—2ELL - Z0O-2IESFI0—ATT - T0—IBLVFLO—2%T 10— 20T F 00+290T °f
S QIIETFOHII6T - T0HNCLFIOHICCL - Z0HAOTFOHAYT - EL-ATTFOH61E - CI-oFTTF0H6PE - L0 HINOEFL0+F2199 - Z0+9RGTFL0+20LE - 20+I6CTF0+TLE 20+20LT F £0+920T 1/
S 0HBCOFIOHANYY - D EEFL0-ALYE - Z0-2ICFI0- LT - E1-2ULTFLOHET - E1-2LLTFLOHF0ET - W HI0TFLOFZ6T - L0+HROTFLOHGTT - 00+280TF00+76¢T 20+9hLT F 20+2006 O
S 00FALOEFO0HLER - 00HOTFO0HINC - 00+ IEDTFOOHIREE - CL-ROTFOOH96R - T1-22OTFO0+2968 - O00HIELLFI0H20TC - 00+%EEF00+2698 - 00+2GPTF00+2109 00+22°¢ F 10+7658 O
- 10-2IZ6FI0-199 - 00+2000F00+2000 - 00+2000F00+2000 - 00+2000FT0+RT - 00+2000F0+268T - 00+OLECFIO+F219T - 00+9GLEF00+28C'C - 10— 2608F 10~ 29GZ 00+9T07 F 10+8T8 %/
S W -BOEFA0-ACCE - 0 -IECTFLO-RYT - E0-CTFEO-I9TE - £1-IRYGFE0 -GV - ET-2RYCFLO-206T - W0-APTFI0O-296T - 10-K0TFI0-2E0T - Z0-RETVFE0 - RPG 20 ~ YL F 10— K0L 4
- 0-2ITEFW-%6CC - M0 -CLTFI0-2688 - 10-20SEFI0-98FT - E[-IIVEFEL0-200% - E€1-PIPEFE0—200C - 00+20PTFO0+2LGE - 00+29CTFO0+260E - 10~ 20P9FT0-290L 10~ 209°L F 00+9LL'9 9
S 00FARSEFIOHOLT - 00FOTFIOHIGT - 00FIILTFIOHLET - 00+H2000FT0+200% - 00+2000F 1042002 = 20 -2668F0+260% - 00+oLLTFI0+296T - 20— 2LTTFI0+200% 20— 246L F 10+980% </
< 00P9TRFO0HOIRE - 00+ 2000F 00+ 2000 10+ 22T TF 10+ 22 S VI-OR9GFIO-8L9 - 00H2000F00+2000 - TOHIRITFIOFAART - T0+H26OTFIOH+2IET - 00+209TF00+THT 00+960'6 F 10+6vE '/
S 00H2000F00+2000 - ED-ITETFEO-PCET - 00+2000F00+2000 - 00+HI000FE0HAYY - TI-LETFEOFIASE - 00+2000F00+H2000 - £0+HACTFEOFRET - 60— 2Z0CTF60 YT £0+96TE F £0+018%
- 00F2000F00+2000 - FO-PIITFLO-2629 - 00+2000F00+2000 - FI—2EC8F00+20€9 - PI—2I8TFO—209C - 00+2000F00+2000 - €0+260TFLOF2ST6 - F0—26r6FF0 —2PE'T FL0+2907 Y
< 00+H2000F00+2000 - 00+20PRFO0HOLET - 00+2000F00+2000 + 00+2000F0+2T®R - 00+2000FE0F2LET - 00+2000F00+H2000 - TO+HWNUEFIOF6LT - TO+2LITFEO+2T0G F0+669 Y
aasy Aqudd 4avdven 008 VOAHOH 008 adod VOUN WAV 1

*(g 11ed) suorsuewutp (T ul sioj1adwod FTOZDHD SNSIoA (90UsI9)or) Y] 10] uosireduIod D1ISIYL)S PUR UOIJRIASD PIepUR)s - 10110 oSeIaAy :GT'd 9[qR],

© 0 RETFW O - T0FRELFLOHSE - EOFARTFEOCZET - 0FGUEF0LOTT - G0HAOTT0FREY - W0 HAUZEFWLAET - 0FRGTFO Y - T0FGETFW L - W0FARIOF0 LG 20+ LT F 20+ 90
S T0-REVFO4WET - 0+HATTFOHNECT - FOHIGIFIOFIRYT - 00+000FA0+200T - S0HIIEETOHIGE - 10+ TF0+ - T0+0SREFTOHOIRT - HOTFLW0FRIT - T0FRCTFLOHULT €O+ IGEE F 10+ 89 5
S T0HATEFAILE - T0-ACTFOF2L0E - T0+GERFOFANTT - 10+ 210LF0+8T T0HIECSFA LT - T0HASTFLWHEIE - - WITFL0FIYE - T0+HIL08FL0+68% 1049167 F 20+ ATT Y
S THETTIOHILE - 0096§TTO0HOTVL - T HAAGTFA0F AT - WA TFA 9T - T0HII0RFI0+2667 - W0HBLLFI0F2ALT - QOFIECTFIOH2T9 - 20+9SeTFA0+968'T 20 +99¢T F 20 +91¢ 44/
- W ITFL 00T 10 -2I6TFL0+200T - 10 -2FEEF0+200T - S Q- PIETFLO 00T - Z0-0TTFZOHR00T - 20 RITFLOFA0T - 20— EFEF0HN0T - 20— 0FTFL 00T 20— 28R F 202001 %
S T0H0PFLOEIEET - T0+IA6TTFE0+90T 10+2TTEFL0+098T - THIEITTA0 T - T0HGETFAO 9T - 00+ 98TLTZOFO9TT - < T0FETEFA LT 104216 F Q0+ AT
< 00499TTFLOOLOT - Q0FAKOFLOFAET - T0FAPTFOFIET - S WHAETTWHATT - 00HIEGTFAOHROT - 00HGTFLOFA0T - 00+ I0TFLOHAIT - 00+GTFA0HIR0T 00+ 86T F 0+ T VY

£1- 260620 +262°% 20+ IO TFE0 +7LT 0+ TFOFIIEE = T0+HTTFAO 00T+ 10— 0GTFA0 +60E QT FATE b T TFWHITE T 2TFA0FATE £1-2606F20+260 ©0— 0T F 20+ 2608
S Z0-PGLTFTO-PIFE - 00HAFLFI0FALT - 20+I0LTF 0+ LY 10+ 7996 F 10+ © WHALEFI0H00E - 3 T - FO-289T - W0-2ITFO-CT - 10+%RUTFO0+2L0'S 00+2809 F 10+2107 %
- T0-°90EFT0 9807 - S F0+MICTFEOHA00G - ©WHRTFLO 0T - OVS - 00+IETFO0FILET - 00+IETFIO-LYL - 0+OLFI0+ET 20+2 w+aLes Y
- - - TFE0+269¢ - FALTFOA6T - 10FUTFO0+25T - —OILE - W0-PIGEFI0-ETE - T0-9BTBFTO-96E'E - I0HWTTF00F90% 20+ Q0 +ogr8 07

- 3 - S 00+CEFO0+OLT - —OWEFO0 G - 00+ SOTFO0 0T - © O W0-CILTFIO-RET - G- 0CFI0-GT - G0 —20FFFE0 ~999°L Yy
© - EF0- T - ©EIAPTFOFAET - WFACIFOH0E - W0FEEEFI0HTEE - 10— 2LIOF 10— S W0-rLFI0- © - IEFI0-ATY - 00+ 96CTF00+TEC sy
S 00+9L0TFTI0-9LL6 - CGOFBIFFCOFA0T - 0FRYTFIOHIEIE - Z0HIEYTFAHLET - 10+ALETFO0+ S 10+210TF 00 + 29 S 00+PZECFO0FA0FT - 0+ 6F6F 10+ YL €0+ a8 41/
S 0= 0EF0HATT - S I0-WTOFO0HST - 0= TEIOFOOHACT - 0-AWUCFO0HIFT - 10— ZYCF00+ S 0= R0F00+ S W0 ECTFO0HAUST - T0—90LFF00+950°T 00+2p8E O
- Z0-oWg9F10-099E - ©WHARTFOFALT - 0-I@TF0-268 - 0-RETFO-TIL - W0-ZLTFI0-2299 - W0-AFIF0-2%EF - 10-0CTF0-%EL - 20— A96F10- 1LY 00+2067 “f
- 20— oEETFTO - OPTR 10— 9261 F 10~ %69°E 0042961 F 10 — 2880 W-2ETCFI0-268T + 10-26TFI0-209C - 20-2IFEF0-20IT - W0-ALEF0 2168 - 20— 8LTFI0 21T 20— 208EF 10~ 2921 y
- 20K TFE0 - 29T 10-2I8TFI0-29TF = 10-20FEFI0-2216 - 20 -2601F20-2LT - W-AITFI0-2ET - E0—OVRIFEO VY6 - Q0 -EPTIFA0~266E - 20— 2ICEFI0- 8T - 20~ 2UGTF0 ~A6TE o
SR -GTFW - - - ILLLFIO-ET - T0-ILFOFI0 08 - G0 CCLF0-E0E - G0 ASCFI0-I69T - 00+0000F00+0000 - L0 HLTFL0-TE - @0 -SCCFI0-IECT - G0 - KRETFE0 90T 0042907
S W0HWBLEFIOFICE - Q0 AOTFLOHEGE - LHIRCPFAO KL - QOHIROTFOFRCT - OHAWTFWR0T - G HIPTFW AN - 0+20LFI049896 - T0H9GLFA0 6T - T0HOEZETL0HOI0T 20+20LT F E0+aarT 1
S @ -LTTFEO-OLER - QFOTFLOHGIT - WHIELCFAOFOIEE - 0+0GF0 06T - G0HCTTF0ECT - W0-TGLFI0-ALE - 00+ TETFOOFATT - €0 P99BFE0-0TLT - [0+AETTO0H WYL 20+IALT F 20 +a00e OIf
S 0-TESTOOLALT - Q0FACLFI0HR0T - 0FIGETFIOF0TT - 00+OVETF00+099T - 00+260TFO0+HP%9L -~ 00+IBETFO0+26LT - TFOOHAIE - 00HI0TFO0FART - 00+ FEYTFO0HTEE 00+ ATE F 10+ H¢E O
© 00F2000F00+2000 - ET-26CTF00H2000 - T0+HPETFIOFZET - 00+ ILTFO0+220T - S 00+2000F00+H2000 - FI=202ZF00H2000 - 00+2000F00+2000 - 00+9000F 002000 00+210F F 10+81E
S L0-APIFLO-M0E - T0-ETFI0-295T - 00FAPEEFO0FIIEE - 00+ 2000F00+2000 - S 00H000F00+H000 - ZO-EFTFLO-RT - 20— IRTTFL0 69T - 00+9000F 009000 70— 299L F 10— £0L 4
S0 ATTFEO-MGLT - 00H2LTTF00+R0E - 00+209EF00+H6LT - T0-2IETFL0- ALY - T0—IELLFO0HR0T - 00F2000F00+2000 - Z0—S0TFLO-FE - 00+2000F00+2000 - FO—ALEFHO-ASPL 10— 9L F 00+2200
S 00HIRIRFIOFOIIT - FO—2UTTFI0H200T - T0—29RTFI0+20T - 00+2LTLFI0H69T - 00+29CEFI0+2I6T - 00+2ITLFI0+289T - LF0+99T - S 00+9PTEFLO+OLET 20— 6L F 10+280T

W0+ TF0+P6T = 00+ 7T F 00 +269T W0+26SF0+26S - PL—98ETF 0042000 W0+2FTFI0+26T = 00+2000F00+2000 - S 00+ETFOOFALLT - T0-2I09F 20~ 20¢8 00+ 8F6 F 0+grT
- -] - - —AKTFFO—290T = L0—WSTFHO—PL'C = 00+2000F00+ - < 00+2000F00+9000 - 10— ICGLFLO =0T £0+I6TE F o
- - 3 < SOHMELFSOLATT - SL-RYGFO0FN00 - S0HATEFLOFLET - 00+ AN00F00+ - <00+ A000F 00+ < 00+9000F00+9000 L0+%9¢1 F i
- S T AROFOHAL - S L0-ECFL-ALT - WOHALETHAGYT - 00+000F00+ < WO RGLFFO-ET - 00+ 2000F 00 + -~ 00+9000F00+9000 €0+%9¢T F O+%69

HAVHST sagido dSTND AAY-190d SVAONN ONAN TAHI9HA i S VI

(1 9red) suotsuowtp T ur s109190dwod FTOZDHD SNSIOA (9ouaIefor) YT 10J uostreduiod 211S19e)S PUR UOIJRIADD PIRPUR)S F I0LI9 9RI0AY :F1°¢ 9[qR],

S Z0FRERTFEOFAOLT - QOHIGUEFEOHOCTT - COHIROFEOFIGT - 00+I000FZ0 00T - 00+A00DF0 00T - EOFIGTIFEOHIRET - QOFIEFECFEOH YT - QO+ IGTFL0HIIGT €0+ IITT

Fr0+a0T

© 90+ EITFGOHAEEY - B0 FICOTFEOFI6IT - 90+00TFLOHA00C - 00F2000F20+200C - 00+2000FZ0+200T - © TOHIRUTFLOHET - 00FA06TFLOHIIIT 90 +2L0T F 0 +2e86 O
S R0FATIFOHAG06 - 10+9FTFI0FI0Y - [0FICLTFLOFALS - 00F000F0+A00T < 00+000F0+00T + TOHARCFLOFANNT + TOHALCFLOFICT - 10FPIF0HIEE 10+899 F 0+ 81T Y
S I0HPLEFI0 9T - T0HTTFIOHASE - I0HFETTFOFRTE - 00+2000F0+200T - 00+2000F0+200T - GOHRITFO LI - OHANLTFOHRLG - 10+90EF0HII0T 20+ 86T F 70 +2986 Y
- T -UPFLOH00T - 0 RELFLOHN0T - G0 2GTF0+ 00T 00+ 2000F 20+ 2002 00+2000F20+200% - T0-8CTFLO+210T - 20— 2FT6FL0+200T - T0—29CCFLO+200T 102207 F 20 +210T %
S T0-99TTFL0 0T - T0- R TFLW 00T - 20 26LLFLOHK0T - 00200020200 - 00+000FL0+200T - 00+2L6EFI0F2LT - 00HIRYTFLOHFIIIT - T0-ETFA0HII0C 00+286C F 20 +2912
S 00HAOTFLOHANTE - T0-TESFAHIEE - 00HELTFLOFATE - 00+2000F20 00T - 00+9000FE0+200T - 00+HBLIFI0FAGT - 00+IICPFLOFIRGT - 00+FGETA0H0TT 00+ K0T F 20 +226T
S 90— WETFCOHAGIE - FO—BITFAOHTE - TL—LTFEOFGIE - 00+2000F0+200T - 00+2000F0+200% - TL—ATTFEOFCIE - £O—CETFA0+CTE - £1—CGPF0+IFIE 00 +2IFE F 20+ 9616 ¥/
S THMITFOHAACT - 10+2TLFOHUT - 10+66TFI0+9929 + T —2G®TFLO+HL0T + £1-2606FC0+29¢6 - C0+299TFCO+2L6F = QO+HI6CTF0+200 - 10+6§8F0+09PT 20 +290T F 20 +2LK's %
S WHETFLOHILT - WHHOTFLO ALY - T0+CTRFLOFRIT + 00+2000FL0+2%69T - 00+2000FF0+FCT - €0+HHTEFEO+HII0E - FO+TF6FO+IIRT - Z0+IV6FE0+6TL C0+20T F C0+469 1%
S T0HORETFI0HIELE - T0H0TFIOH9RT - 00+ 2L8TF 00+ 266G 1= 2B9EFI0+ 218 T RIZFI0HIPE - 10+216LF20F 68T = E0F29TCFIO+2ITT - T0+ITOZFI0+98CT €0+ 269 F €0+ 9266 %
S 00+OGPTFO0+2G0C - T0-ATLFO0HIOL - T0-20GRFO0+ZYE + E1-260GFL0HIILT - CI-GLTFIOH2E9T - T0+TTFIOHZET - 00+262TFI0+2ET - 00+2£6TF00+9666 10+2008 F 10+282% 1f
S T0HAETFI0HAIEE - 00+2LE9FI0+9TT - 00+P0LTFO0+TEG - TI—PELTFEOHIGRT - TI-6CTFIO+29IT - T0+2E99FC0+oECT - CO+HI60LFE0+208E - TO+99EFI0+0L0L L0+290T F 20+298T I/
S TOHPIUEFLOFATT - TOHGRFLOHOPLT - W0HICETFOF00T + 00+2000FL0 28T < (-2 TFHOH2ITY - EOHIEIRFEOFIITY - GO+HIRUTFO+IGET - L0+IGECFEOHIGTY G0 +29L6 F 90+269T Y
S 10-2Z9LFTI04+290T - T0-2ECFFI0HTT - 10— RFFFO0+2886 - E1—2¢CFF00+2986 - &1 —PTTFO0+2I86 - 10— 8YCFI0+2GCT - 10-2L99F10+9CIT - 10-2ILZFI0+200T 10-28LT F 10+88T Y
S 00+29CTFO0+Z6G - T0-IILLFO0HLIT - T0-2GTPF00+290C - 00+2000F10+25CC - TL-PUTFI0+20T - 00+2%99F0+2IGT - 00+8LPFI0+22ET - 10— 29P8F00+2L8L 00+29¢°6 F 10+290°¢ Y
S W -EEEFN0-99ET - W -AL9TFI0 LT - W0 - ATEFIO-TC - E1-2LLTFI0-206T - E1-9GCTFI0-208C - 10-2TFI0- T - GO0-9P9CFIO~OLYT - 20~ 29LLFI0-260C 00+20LT F 00+2EET '/
© B0 -APSFI0-2L0E - L0 ETFI0-2I8T - GO -PIPEFI0—2PT - €I-2606F10-20¢¢ - TL-CTFIO-20FE - T0-2CTTFI0-280C - 20— 2%6GCFI0— 2182 - T0—2ISCFI0—2%68E 10— 261'T F 00+280T ©Yf
S 0-AOTFO-2T - T0-LUTFI0-209C - 10-8CTFI0—260C - E£1-2089FC0—200% - E1-2GLIFCO— 200 - 10— FFEFO0+2LET - CO—PH0LFI0-21ST - T0-2999F 10 —2ILE 10— 26LT F 00+26rC Y
S TOHEIFLOFANLT - TOHAITFLOHCLT - C0HAKTFEOF06T - 00+H000FLOIEIT - EL-2606FEOH260T - COHIELIFEOFIGIE - COHIEFIFEOLOINE - TOHIRVPTFLOHRIT C0+ITUE F €089 'Y
S WHIVTFLHICE - 00+CTFO0HIET - 00+STFO0+IATR - TI-2LLTFEOHIIET - E1-960GFEO+I%EIT - €0+NEGFE0+2LLT - <00+ ATPEFO0HIECR 20+ CHE F €0+ IR0°C O
S TOHUEOTFIOHFARE - T0HEOTFIOH0CC - 00+26CEFIO+0LT - TI-oFTTFI0H0L6C - 00+2000F 1042266 - 10+2T0EFa0+o0eT - < T0HAOTFI0H99C 10+ F 20219 O
S 00 FALEOFIOH2P0T = 00H2000F00+2000 - 00+28TTFO0+26LT - € S EL-IPEFI0H9GE6 - W0H2IZTFI0H6E6 - 00+9eLLFI0H99T - €T REPFEL VUL 0049866 F 20 +oree Y
S E0-PLETFRO-29KR - 00H+2000F00+2000 - PT=26STFO0+2000 - £1-2CCPFI0-2966 - E1-2TFI0-2607 - Q0-2ILTFAO-6LT - GO 26CTFC0—6CT - €0 IISGFE0—CGR 00+ 08T F 10+RET 4
S 00+266TF00+291°G -~ 00+ICLTFIO+OIST - 00+29UTFI0— 2619 - £1—28YCFO0+206T - £1-RYGFO0+2I6T - 00+2CEEFI0+2FIT - 00+RITFIO+28LT - 00+96C8FI0+962T 00+262T F 10+266%
S W -LGFI0HIE0T - O-TLFI0+00T - £0—REEFIO+200C - 00+2000F 1049002 - 00+9000F 1042002 = €0 -HCLFO+60Z - F0-0UTFI0+200% - 20— 0LCFI0+0T 20— 246 F 10+760T
- T0HOEETFO0HIE - 00+TSFO0H68T - TT-2ZETFLI-6LT - E1-RTFLOHI60T - 00+2000F 104289 - 10+0EF0+266% - 10+0TEFI0+2908 - T0+ITETFI0+210T 10428 F 20+ 2807 '/
S T0-SUTFE0-2PLY - PO 6TLFEO-EUT - PI—OETTF00+2000 - ZI—2POCFROHI80T - ZL-60GFLOF2I8L - Z0+2I0TPFLO+60T - €0HWOLEFLO+RET = 00-H2000F00+2000 FO+2L0T F 10 +2169 &
S 60-PE6GF60 26T - £0-2TTEFL0-6ET - ST-2689F00+000 - 00+H2000FFOHIIE - EI-PIFEFI0H2966 - 00+2000F00+2000 - €0HIIFEFEOFISEE - 00+2000F00+2000 S0 +IE0Y F 60 +2LLT G
© E0HOROTFE0H0CT - POHII0GFIOHG0C - PL-6UTFO0+2000 + 00+2000F80+29IT - 00+2000F90+229T - WOHI0GFO+IW0T - GO+AUFTFOAINLG - C0+XSTFOH9LT L0+ F 20+2189 Y
aasu aaual AAVAYD 008 VOALOH 008 AADT VOUN INA-YMd VIT

‘(g 1red) suotsuowtp (g ut s109190dwod FTOZDHD SNSIoA (90UdI0JoT)

V[T 10j uosireduwiod d1)s1je)S PUR UOIJRIASD PIepUL)S F IOLIS dSRIdAY

S W ATOFE0+ T

S W AETFO0H 00T
S W-IETFA0 0T
S 00+ IR0 TF0H T
ST ETFA0 LT
- T0HOLLTFI0H09LT
- 049068710 +089%
=00 +9GPTF00 + 080
S 10— BLOF 00+ R0
<00 +998°ZF 00 +016¢
- T0+9TVLF 0 +08RT
- 10— 9FGTF 00+ 0088
- 10— 96FZF 00 +08TT
- W0 - EETFI0 - THT
S W -ELTFI0 - AT
S W -ALETFI0 - 2I9T
- ZO+OISTFE0+08TT
- 20999 TFT0 989 T
S 00+ AL TF00+98L9
=00+ 2000700+ 2000
=00+ 2000700+ 2000
S L0 A6L6F L0~ RET
- W EFI0+210T
=00+ 2000F 00 + 2000
=00+ 2000700 + 2000
=00+ 2000700 + 2000
- 00+ 2000500 + 2000

10+ 9006 F 20+ 7£6°C
00+ 2911 F20 + 9917
10 +216TF 0 +216F
10 = 2296 F 20 + 2207
10 - 21LTF20+210°T

00+ 9T’ F 20 + 98T
20— %659 F 0 +24T'E
10+2916F20 +926°T
O +20RTFT0+9PLT
20 +ILLFT0 +26e
00+ 998'TF 00 + 2062
20+ ITLYF 0+ 96T
O+ 200 F O +2RLT
10— 2P8'9F 10+ 260'
00+ 2089 F 10+ 2121
10— 2622 F 10 = 200F
10— 297 TF 10— 219°C
©0 — 2909 F 10— 2I8'T
0+ ILYGF L0 +90LT
0 +0GTF 0+ 0T
T0+212EF 20 +2LE'T
£1—20LTFEL =TT
W0~ RLEF 0 —IGLE
00+ TPEF 10+ 29T
S0~ 210 TF10+200T
10+ 296 TF 10+ 2921
W~ ELEFE0 2TV
1 - T TF21 - 9188
S0 +IEFFO + 2268

HO+AUSEFH0+ 6T T
90+ 2L0TF G0+ HET
0+2GEEFT0+ 166
2 +I1TTFL0+ LT
10— 2£1ZF 20 +200'T
00+ 2L6EF20+ 980T
10+ 208 TF 20+ 982
10+ 266 TF 20 +261°€
20+ 268V F 20+ 8ET
90+ 966'TF 60 + 95E)
PO+ ETTFE0 + 6T E
10+92¢TF 1042107
L0+ 998 TF 00+ 2LTE
90+ 2192 F 60+ 202¢
00+ 922 TF 10+ 9211
20+ A LFE0+ T8 T
00+ 29T°EF00 + 2201
10 =21 TF 10— 218°%
10— 20ELF 10— 2066
£0+ 09 TF£0 + 088
£0+2LETF L0+ 09T
10+ 286920 +210'T
10+ 2£98F 10 +21T°¢
10+ 216 TF 00 +260°F
00+ 2128 F 10+ 20T
2607 F 10+ 9507
TV TF 1049769
WITFED+ 919G
60+ 2102 F 80+ 2LT°G
L0+ 960G F 20+ 2281

00 +200'0F20 + 200
00+ 2000520+ 2007
00 +200'0F 20 + 9007
00 +200'0F 20 + 9007
10+ 2627 F 20+ 21T T
00 +200°0F 20 + 9007
0~ 200G F 20 +200T
00 +200°0F 20 + 2007
10+ 989°GF 10 + 9600
20+ 2LTTF L0+ 20ET
00+ 907 F00 + 9616
10~ 9600 F 00 + 988°€
10+200TF 10+ 2142
20+ AREFL0 + 2066
10— 986°0F 10+ 821
00+ 922 1500+ 920°¢
20— AR0CF 10— L
20 -9LZTF 0~ OIS T
PO~ OPTHF 0 — 997’1
20+ 96T LFL0+ T8
20+ LT FEO+OLPT
00 +9€ETF 00 + 9617
10+ 9£6TF 00 + 9186
00+ 200°0F 00+ 2000
00+ 200°0F 00 + 2000
90~ 88 F 10+ 9007
90— 28GTF 90~ 2LTT
80— 2TTTF R0~ T T
00+ 200°0F 00 + 2000
01— 2058 F01 — 286

CFE0+ 60T
TFG0+ L
ITF 20+ 2916

10+ 2687 F20 +218F
10+ 2987 F 20 + 26T
00+ 26TEF 20+ 2H0T
00+ 20PLF 20+ 22T
21— 26LTFL0+6TE
10+ 9808 F 20 + 916
20+ 2061 F 20 + 29
10+ 9612 F 10 + 968
10+ 2021 F 00 + 9888
10+9LLEF 20+ 00T
20+ 201F F 60+ 2011
10 = 9T F 10+ 20
00+ €01 F00 + 2£L°L
PFL0-292T
9F 10— 298
TF10- 9166
20+ 6PEF L0+ 98
20+ 28T F L0+ ILTT
00+ 2,68 F 10+ 9958
0+ 960 F 10 +268°¢
20— 26TTF L0~ 2LET
00+ 69T F 00+ 961G
20— 290°GF 10 +290T
10+219TF 10 + 2169
60— 267 F 01 — %619
20+ AVLFL0+HTE
0+ 202 TF 0 +209°T

0+ 960 TF 20+ 2087
0+ 966 TF 50 +
+ LT F 0+ 98YE
00+ 202G F 20+ 2108
20~ 9£6'TF 20 +900'T
£0 = 8ETF 2040007
00+ 266G F 20+ 42T
-9 TFL0+IITE
10+ 2L8F 10+ 2656
20+ 206 TF 20+ RTE
00+ 200G F 10+ 21T
10~ 9RE6F 00 +218°E
10+ 982 TF 10 +926°T
20+ 2CTEFE0+ 10T

4
Q0+ HELFLO 8T
10+ 296 TF 10 +296'T
002112700+ 9618
00+ 989'TF 00 + 266'T
00 +200°0F 00 + 2000
00 +200°0F 00 + 2000
0~ 269'TF 10+ 20T
00+ 200°0F 00 + 2000
00+ 200°0F 00 + 2000
00+ 200°0F 00 + 2000
00+ 200°0F 00 + 2000

0+ 2T9F 80+ 00T
10+2197 F 20 + 296
10+21LEF 20 +0LL
10— PH9EF 0 +210T
20— ATEEF L0+ 00T
10— PEFGF 20 +960T
00+ 980T F 20 +962°T
AU —ELTFL0+06TE
10+ 9908 F 20 + 267
20+ 2ZETF L0 + 2L
20+ 980T F20 + 260'T
10~ 20V'LF00 + 980'E
10+2H0TF 10 + 268
20+ EKEFL0+ 2106
00+ 262 TF 10+ 20T
10— 2719 F00 + 28T
20— 26T F 10— %66
20— ZTEF 10— 28T
20— 980T F
20+ 998EFLO PG
10+26TEF 10+ 262
00+ 965 LF 1049167
PPYLF 10— 9868
£0 = 2L9°6F £0 — 2667

9F 10 +200T
£1 - 26GTFEL ~ 22T
Y0 - 2689 F €0~ 2TT'T
€0 - 2ZYEF G0~ RET
F0 = 2061 FE0 — 20T

20+ 9ZY9F L0+ 7TE T
0+ ITTTFA0+2L8L
10+ 2696 F 20 + 2008
10+2TFPF20 +975°6
20— 2L F 20+ 00T
10 - 2297720 +960T
10 - 2126720 + 962
21— 2TTFL0+6TE
10+ 2269 F 10 + 9980
20+ 2TV TFL0 + VT
00+ 219 F 10+ 2151
10 = 9696700 + 266°F
10+ 296 TF10 + 228
£0+216TF£0+ 21T
10— 200°€F00 + 246
10— 9£TLF00 + 218°C
20— 1CTF 10— 2T

20+ IRTTFL0+986'T
20— 2FTFI0 -1
00+ 2919 F 10+ 21FF
00 +200°0F 00 + 9000
0~ 269'TF 01 — 20T
00+ 2TPEF 1042121
0~ LTF 10+ 60T
20~ 26£°6F 10 - 2291
00 +200°0F 00 + 2000
00+ 200°0F 00 + 2000
FO+20PEFH0 + 950

20+ 86T FE0+ 0T
20+ IRETFLO T
Q0+ ETTFL0+ 4TS
10+ 98EEFT0 +08TE
10+ 986 TF 20 +920°T
00+ 65T F 20 +990T
00+ P9 F 20 + 22T
<0 - 2TRF L0+ 6TE
10+92LT9F 20+ 66T
20+ 269TF L0+ %ELG
10+ 9668 F 20 +966°T
00+ FETF00+ 928G
20+ I169F20 + 219G
20+ KTEFL0+ 869
10— 96676500 + 2606
10— 9827 F00 + 2T
£F10 - 922

20+ TR GF L0 + 66T
20+ 20 TF 10+ 8T8
00+ 226 F 10+ 2617
10— 2RETF 20— 266'T
£0— 28 TF V0 — 2667
00+ 200°TF 00+ 2PT'T
Y0~ IEGTF10+200T
00 +200°0F 00 + 2000
10+ 2669 F 10 +929°T
00 +200°0F 00 + 2000
00 +200°0F 00 + 2000

£0+H AT F 10+ 60T
90+ 20T F 60+ 9286
10+9£9°9 F £0+ €T
20+ 98VT F 70+ 986
10 =920 F 20 +210°T
00+ 3862 F 20+ 2917
00+ 3107 F 20+ 226
00+911°E F 20+ 281

90+ 60T F G0+ V69
£0+260°E F €0+ 9266
T0+991°€ F 10498
L0290 F 20+ 992
G0+ 2016 F 90+ 9£9T
UF 1049821

F 10+200
00+20L°T F 00+

10=26L7T F 0
20+ ITTE F €0+
a0+ F £0+ 2
10+0L5°T F 204219
00+ 2666 F 20+ 42T
002087 F 10+ 78¢'T
00+962°T F 10+ 268°¢
20~ 267 F 10+2607
10+ 986G F 20+ 980
YO+ 20T F 10+ 2169
R0+ 2600 F 60+ LY
L0+ 28T F 2042189

HAVHS:

s1d0

ys0qdgogq

ASTND

HAV-180d

SVHONA

ONAIN

]

[E——

VI

‘(1 9red) suotsuowrp (g ut

s109199dwod F1OgDHH) SNSIdA (9ouslsjal) Y] 10 uostreduwrod

L1°d °19BL

O19SI3B)S PUR UOIRIADD pIlepue)s F IO 98eldAy 9T (9[qe],

