A MIMD interpreter for Genetic Programming

Vinicius Veloso de Melo!, Alvaro Luiz Fazenda!

Léo Francoso Dal Piccol Sotto!, and Giovanni Iacca?

! Federal University of Sdo Paulo
Sao José dos Campos
Séao Paulo, Brazil
2 Department of Information Engineering and Computer Science
University of Trento
Via Sommarive 9, 38123 Povo, Italy

Abstract. Most Genetic Programming implementations use an inter-
preter to execute an individual, in order to obtain its outcome. Usually,
such interpreter is the main bottleneck of the algorithm, since a single
individual may contain thousands of instructions that must be executed
on a dataset made of a large number of samples. Although one can use
SIMD (Single Instruction Multiple Data) intrinsics to execute a single
instruction on a few samples at the same time, multiple passes on the
dataset are necessary to calculate the result. To speed up the process,
we propose using MIMD (Multiple Instruction Multiple Data) instruc-
tion sets. This way, in a single pass one can execute several instructions
on the dataset. We employ AVX2 intrinsics to improve the performance
even further, reaching a median peak of 7.5 billion genetic programming
operations per second in a single CPU core.

Keywords: Genetic Programming - Interpreter - Vectorization - Multi-
ple Instruction Multiple Data.

1 Introduction

Genetic Programming (GP) [I] is an evolutionary algorithm that evolves com-
puter programs to perform automatic programming. Standard GP represents
individuals as s-expressions applying functions to variables, constants or other
functions, which are recursively evaluated to obtain the individual’s final value.
This step is usually the bottleneck of the algorithm: for instance, when dealing
with a classification or regression task, GP needs to employ an interpreter to
calculate the outcome of each individual, for each sample in the dataset at hand.

Several researchers have investigated approaches to speed up the evaluation
process, such as better individuals representation [2I3], compilation of individuals
to machine-code [4l5], single-machine parallel (multi-core) evaluation [2], multi-
machine distributed evaluation [6], or Single Instruction Multiple Data (SIMD)
operations with hardware accelerators by means of FPGAs [7/g].

More recently, General Purpose Graphic Processing Units (GPGPUs) have
also been proposed as a computing platform well-suited for parallel GP processes,

2 V. de Melo et al.

with a seminal work in [3], and further extensions focused on sub-tree paralleliza-
tion [9], two-dimensional stacks [10] and quantum-inspired linear GP [11]. Given
that GPUs have thousands of computing units, huge speedups can be achieved
since each unit executes the interpreter on a different block of data. However,
since GPUs are still considerably more expensive that CPUs (also due to the
recent high demand of GPUs from the crypto-currencies market, that led to a
further increase in the GPU prices), not everybody can have access to these de-
vices nowadays. Therefore, CPUs can be considered still the main GP computing
platform, which justifies further investigations in the direction of exploiting vari-
ous levels of parallelism on CPUs. For instance, previous literature has proposed
CPU-based approaches that try to exploit parallelism at instruction level by
means of SIMD instruction sets, such as Streaming SIMD Extensions (SSE) in-
structions [2], or by converting individuals into SIMD assembly instructions [12].
This way, a single instruction such as an addition can be applied to several data
from an array at same time, resulting in large speedups.

Aiming at a further performance improvement in CPU-based GP, this paper
proposes the inclusion of MIMD (Multiple Instruction Multiple Data) instruction
sets in the GP interpreter. These MIMD operators are compiled to AVX2 (Intel
Advanced Vector Extensions version 2) intrinsicsE| and can perform up to four
float operations in parallel. It is important to note, though, that this approach
is not limited to CPUs: since we use an interpreter, any interpreted GP system
can benefit from our approach, even those based on FPGAs and GPUs.

The paper is organized as follows. Section [2] presents the related works. Sec-
tion 3] introduces our proposed approach. The experimental analysis is presented
and discussed in Section [4 Conclusions are given in Section

2 Related work

Over the past few years, a number of approaches have been proposed to improve
the performance of GP, by implementing parallelism either at population level
(i.e., parallelizing the evaluations of multiple individuals), or at instruction level
(i.e., parallelizing the instructions within the evaluation of a single individual).

Most of the modern literature focuses on GPU-based implementations of GP.
In this regard, several works have recently achieved parallelism at population
level. For instance, Augusto and Barbosa [I3] developed a GP system with the
OpenCL framework, instead of the regular CUDA programming language used
in most of the GPU-based GP literature [I4II5IT6IT7I18], to parallelize multiple
individual evaluations. Although not as fast as CUDA, an interesting character-
istic of such framework is the automatic generation of machine-code for CPUs
and GPUs of any vendor that provide compatibility, whereas CUDA is only
available on Nvidia equipment. The authors tested their approach on different
CPU and GPU architectures, showing that, as expected, GPUs are several times
faster than CPUs.

3 https://software.intel.com/en-us/node/523876

https://software.intel.com/en-us/node/523876

A MIMD interpreter for Genetic Programming 3

In [19], Harding and Banzhaf have explored yet another alternative to OpenCL
and CUDA, namely GPU.NET, a commercial closed-source tool for program-
ming GPUs. They reported promising results, although hindered by the imma-
ture level of this technology, that still lacks proper debugging tools.

Staats et al. [20] introduced instead a Python framework named Karoo GP. In
the paper, the authors replaced a previous scalar architecture (based on SymPy)
with a vector architecture (based on TensorFlow), and tested both approaches
on multiple CPU cores and GPUs achieving up to 15x speedup.

Earlier attempts were made to apply instead the parallelism at instruction
level. Seminal works in this direction were proposed by Chitty [2I], and Hard-
ing and Banzhaf [22], who first developed a GPU-based implementation of GP
fitness functions. In both works, the authors followed a data parallel approach
to achieve high speedups, but they used an individual-compiled approach rather
than individual-interpreted.

Langdon and Banzhaf [3] have proposed another GPU implementation where
they replaced the traditional prefix-based recursive interpreter by a Reverse Pol-
ish Notation (RPN) postfiz stack-based interpreter. This was the first GP work
using SIMD instructions in GPUs. The authors reported a 7x speedup of the
GPU version over the CPU version.

Vasicek and Slany [12] proposed a method that is able to efficiently compile
a Cartesian GP genotype to an efficient binary machine code, without the need
to call the external C compiler. The generated machine code contains SSE/SSE2
SIMD instruction calls operating with 128-bit vectors which may process two to
four floating point numbers at once, depending on their precision. However, in
this method the translations are performed by the assembly code, thus being
dependent on the specific compiler and hardware configurations.

Finally, Chitty [2] investigated the approach of Langdon and Banzhaf [3], but
on CPUs. The author used a stack-based interpreter with several improvements
such as SIMD instruction sets -including a Multiply-Add operator- and a multi-
threaded blocking population parallel approach. In this case the execution time
of GP was significantly reduced by better utilizing the cache memory and making
efficiency savings. Thus the energy cost of executing GP was also significantly
reduced. To the best of our knowledge, this work is the closest to the present
paper: however, as it will become clear in the next section, here we introduce
more operators, and we use array variables, with compiler flags set to obtain
the automatic vectorization and generation of AVX2 codes, while in [2] this was
manually implemented by means of custom operators based on SIMD calls.

3 Proposed approach

In the SIMD approach, a traditional GP interpreter executes only a single in-
struction at a time over the entire dataset. Thus, an individual with thousands
of instructions performs thousands of loops through the data to calculate the
result. In the best-case scenario, an individual should be compiled into a single
large expression that passes a single time on the dataset. However, the compi-

4 V. de Melo et al.

lation cost may be higher than running the interpreter. Here, we propose and
evaluate a MIMD interpreter where the four arithmetic operations are fused to
perform up to three instructions in a single loop.

By using MIMD operators, the interpreter should perform fewer memory ac-
cesses than the SIMD operators, due to a loop fusion over SIMD operators loops:
this is because MIMD operators use a complex C++ arithmetic instruction in a
single line instead of two or more single separated and dependent instructions,
enclosed by separated loops.

The implementation used here uses the jump table idea (an array of infor-
mation about the type of a node, including a function pointer, arity, name, and
other characteristics) proposed in [23] where the authors state: the primary ben-
efit of such a jump table is that now we can select which function to execute
with an array de-reference as opposed to a case statement. Although compilers
will often compile a case statement into such a jump table, it will still do bounds
checking on the index, and so will be slower than the hand coded jump table.
Thus, instead of checking conditions, the jump table allows for a highly efficient
code that increments and de-references a pointer, references an array, and makes
a function call.

In this paper, we are employing a postfixr RPN GP interpreter with an explicit
stack as proposed by Langdon and Banzhaf [3]. This modification allows the
replacement of temporary arrays in the function operators, such as:

float* add(valarray a, valarray b) { valarray tmp=a+b; return tmp; }

by in-place operations on the stack like:
void add() { stackftop-1]+=stack[top]; top—; }

where stack is a 2d-stack structure as used in [2], and top is the stack top. In the
2d-stack [2] the first dimension represents the maximal tree depth used, and the
second dimension consists of the number of fitness cases. This structure allows
better cache-hit rates.

The traditional and proposed operators are shown in Table[I} One may notice
that there are only eight functions using four arguments, while the total would
be 43 = 64. However, allowing only eight functions of four arguments should be
enough to evidence any difference in performance.

Let us assume that a, b, and ¢ are actually positions on the stack. The equa-
tion a+=b+ c can be either written as a b+ c+ with the traditional '+’ operator
or as a b ¢ A with the new operator. Similarly, (a+b) * (c—d) can be either writ-
tenasa b+cd—x*ora b cd U. Finally, one may sum these two expressions with
the traditional operator: (a+b+c¢)+((a+b)*(c—d))asabc Aabecd U +. One
may obtain the same equation with the traditional operators using the following
string: a b+ c+a b+ ¢ d— *+. As one may observe, the MIMD operators result
in a more compact expression, with 10 elements versus 13 in the previous sim-
ple example. This characteristic allows the creation of complex expressions with

A MIMD interpreter for Genetic Programming 5

Table 1. Traditional and proposed operators, where a, b, ¢, and d are arrays.

Opcode‘#Args‘ String ‘ Traditional Operation ‘Proposed Operation
A ab+c+ a=atb; a=a+c a+=b+c
B ab+c- a=a+b; a=a-c a+=b-c
C ab+c* a=a+b; a=a*c a = (at+b)*c
D ab+c/ a=atb; a=a/c a = (a+b)/c
E ab-c+ a=a-b; a=a+c a-=b+c
F ab-c- a=a-b; a=a-c a-=b-c
G ab-c* a=atb; a=a*c a = (a-b)*c
H 3 ab-c/ a=ab; a=a/c a = (a-b)/c
1 ab*c+ a=a*b; a=a+c a = (a*b) + ¢
J ab*c- a=a*b; a=a-c a = (a*b) - c
K ab*c* a=a*b; a=a*c a *= b*c
L ab*c/ a=a*b; a=a/c a = (a*b)/c
M ab/c+ a=a/b; a=a+c a= (a/b) + ¢
N ab/c- a=a/b; a=a-c a=(a/b)-c
O ab/c* a=a/b; a=a*c a = (a/b)*c
P ab/c/ a=a/b; a=a/c a = (a/b)/c
Q ab+cd+ +|a=a+b; c=c+d; a=a-+c a += b+c+d
R ab+cd+-|a=atb; c=ct+d; a=a+c| a=(atb)-(ctd)
S ab+cd+ *la=a+tb; c=ct+d; a=a*c| a=(atb)*(c+d)
T R b+cd+ /|a=a+b; c=ct+d; a=a/c| a=(atb)/(ct+d)
U ab+cd-*|a=a+b; c=cd; a=a*c a = (a+b)*(c-d)
Y ab+cd*-|a=ath; c=c*d; a=a-c a = (a+b)-(c*d)
w ab+cd*/|a=a+tb; c=c*d; a=a/c a = (a+b)/(c*d)
X ab+cd/-|a=atb; c=c/d; a=a-c a = (a+b)-(c/d)

shallower trees than those using only SIMD operators. Therefore, from an eval-
uation perspective, smaller stacks can be used, saving memory and processing
time.

Although both the SIMD and MIMD versions use a stack to interpret the
individuals present in the population, MIMD operations decrease the frequency
of push and pop operations. MIMD operators also allow FMA (Fused Multiply-
Add) instructions, otherwise impossible with SIMD. Instruction Level Paral-
lelism (ILP) was found in the assembly code.

In the next section, we investigate the performance of an interpreter using the
proposed MIMD operators. We will first investigate the performance of each of
them to evaluate whether they are useful and what is the expected performance
increase, and then analyze the overall performance of the MIMD interpreter.

4 Experimental analysis

In the experimentation, we evaluate the performance of the proposed operators
on synthetic datasets, so we can control their dimensions. All datasets have
ten variables, randomly sampled from as uniform distribution in the interval
[-1.0,1.0]. The number of cases is 100, 500, 1K, 5K, 10K, 50K, 100K, 500K,

and 1M. This way, we investigate the performance on different data sizes on the
CPU cache.

6 V. de Melo et al.

Regarding the interpreter, we test two versions. The first one is the SIMD
interpreter, using only the four arithmetical operators with a protected division;
thus, if the module of the denominator is less than 1e-8, then the result is
zero. The second version is our proposed MIMD interpreter with the operators
presented in Section

Since we are investigating the interpreter’s performance, not the solution
quality, our code only generates and evaluates a finite number of random indi-
viduals (there is no selection, crossover, and mutation) in a single generation.
Individuals are generated in a ramped half-and-half approach, with depth 20 for
SIMD and 4 for MIMD, to approximate the average number of instructions in
the population, which will be used as an evaluation criterion. This difference in
the depths is necessary because the operators in the SIMD interpreter execute
a single instruction and require two arguments, while in the MIMD interpreter
an operator can execute up to three instructions on four arguments.

Here, we investigated the performance with populations of 100, 500, 1K, 5K,
and 10K individuals. In our experiment, we first generate the population and
then investigate only the evaluation process to obtain the G Pops per second [3]
and the cache information.

We have implemented both interpreters in C++ and have compiled the
source codes with Intel ICPC compiler using the following flags to enable auto-
vectorization and AVX2 instructions:

-Ofast -std=c++11 -funroll-loops -ffast-math
-march=native -mtune=native -xave2 -mb6/ -fno-alias.

The fno-alias flag is necessary to inform the compiler that the vectors are
independent from each other (there is no aliasing), allowing a better optimiza-
tion. Also, because we are using a stack with indexes and a protect division
operation, we must insert two pragma in each operator to force loop vector-
ization: ivdep, vector always, and simd. Also, memory alignment is forced with
_mm_malloc function with 32 bytes, as recommended for AVX2 instructions.
SIMD and MIMD operators use _restricted pointers to access the stack and data
with __assume_aliased function on them. These procedures allow using our ap-
proach on the Intel C4++ Compiler. Adaptations on these configurations are
necessary to use other compilers, but performance may vary. In Figure [1} the
source-code function to perform OpCode I (table is shown, including the prag-
mas and specific data structure. As one can observe, the compiler identified the
multiplication followed by the addition and employed the proper FMA Intel in-
trinsi(ﬂ Similarly the Fused Multiply Subtract operation was used for OpCode J
(not shown).

The Intel compiler options joined with pragmas depicted above allows AVX2
code generation for an Intel CPU Haswell/Broadwell(R) processor line, as it
is possible to check in the assembly code generated by the same compiler, for
both SIMD and MIND codes. The FMA (Fused Multiply-Add) instructions are
also used for MIMD operators. Instruction Level Parallelism (ILP) was found

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=FMA%expand=2549

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=FMA&expand=2549

A MIMD interpreter for Genetic Programming 7

C++ Assembly

void eval_mult_plus() { vmovups (%rl0,%rax,4), $ymm2
float *# _ restrict a = stack[top-2]; lea (%rll,%rax,4), %rls
float *# _ restrict b = stack[top-1]; Vmovups 32(%rl0,%rax,4), %ymm3
float * _ restrict c = stack[top]; vmovups (%r9,%rax,4), %ymm0
__assume_aligned(a,32); vmovups 32(%r9,%rax,4), %ymml
__assume_aligned(b,32); vimadd213ps (%rl5), %ymm0, %ymm2
__assume_aligned(c,32); vimadd213ps 32(%rl5), %ymml, %ymm3

vmovups $ymm2, (%rl5)
#pragma ivdep vmovups gymm3, 32(%rl5)
#pragma vector always addg $16, %rax
for (int i = 0; i < ncases; ++1i) cmpg %rbx, %rax
afi] = (a[i]*b[i]) + c[i];

top-=2;
GPop+=2;

Fig. 1. Opcode I C++ source-code function (left) and assembly code fragment (right)
showing the FMA operation (vfmadd213ps) employed by the compiler.

in assembly code generated, including two FMA operations available for AVX
registers in the supporting Intel CPU architecture.

The computational environment was an Intel(R) Xeon(R) CPU E5-2660
v4@2.40GHz (CPU frequency scaling set for best performance in all comput-
ing cores), with CentOS Linux 3.10.0-327.e17.x86_64 and Intel Compiler icpc
17.0.4 20170411. We ran all the experiments using a single process (single-core),
to execute 30 independent runs of each interpreter.

4.1 Evaluation

As explained above, both the SIMD and MIMD interpreters are compiled with
the same optimization flags and use the same in-place two-argument operators
and stack-based approaches. Therefore, in the experiments we evaluate only
the improvement obtained by using the MIMD operators in the evaluation of
individuals (ignoring the time to generate the strings).

Langdon and Banzhaf [3] defined Genetic Programming Operations per Sec-
ond (GPops/sec), a metric for measuring the speed of a Genetic Program-
ming implementation. GPop is the number of instructions performed by an
individual, including the number of variables, times the number of cases in
the dataset. Thus, for an individual ind=a b + and a dataset with 1K cases,
GPop = 3% 1,000 = 3,000.

Each operator proposed here is a single Genetic Programming operation.
However, we must compare the number of instructions, as the MIMD interpreter
may execute several of them at a time. According to Table|[I] the operators with
three arguments execute two instructions (for instance, +, +). Therefore, two
G Pop are counted for these operators. Similarly, three instructions are counted
for the operators with four arguments.

8 V. de Melo et al.

To compare the G Pops/sec of the two interpreters, we executed the Wilcoxon
Rank-Sum Test assuming a significance level of o = 0.05. Thus, if p-value < «,
then the difference between the performances is considered significant and the
interpreter with the highest median is the winner.

4.2 Analysis of each operator

In this first analysis, we compare the performance of SIMD and MIMD operators
according to the implementation shown in Table [I} We did 1K independent runs
of each operator for a dataset with 1M cases. For each run, we first copy data
from temporary arrays to the required variables a, b, ¢, and d, and then execute
the calculation. For the operations with only three arguments, we do not assign
any value to d. This copy is to simulate pushing data onto the stack, in order
to have a more realistic scenario. The average running times for each operator
are shown in Table [2] As one may observe, for operators with three arguments,
the speedup was approximately 17%, while for four arguments, the speedup was
close to 25%. The average overall speedup was approximately 20%. This value is
the expected speedup of the real-case scenario, as the tested equations combine
two, three, and four argument operators.

As shown in Table [2] the speedup remains more or less the same inside the
same class of operators (three argument and four argument operators). Thus,
allowing only eight four argument operators should not introduce any bias to-
wards a specific speedup value, while also providing a higher total speedup than
that provided only by three argument operators.

Table 2. Running time of each operator.

Opcode SIMD MIMD Speedup Opcode SIMD MIMD Speedup

A 138 118 1.169 M 137 117 1.171
B 138 118 1.169 N 137 117 1.171
C 138 120 1.150 O 137 117 1.171
D 144 122 1.180 P 138 119 1.160
E 138 118 1.169 Q 191 152 1.257
F 138 118 1.169 R 191 152 1.257
G 138 118 1.169 S 191 152 1.257
H 140 119 1.176 T 192 153 1.255
I 138 118 1.169 U 191 152 1.257
J 136 116 1.172 \Y% 191 152 1.257
K 136 116 1.172 W 191 152 1.257
L 137 117 1.171 X 192 153 1.255

Average 155.75 129.417 1.198

4.3 Analysis of the interpreter

In this section, we investigate whether the MIMD interpreter achieves the ex-
pected 20% speedup observed in the individual analysis of the previous section.

A MIMD interpreter for Genetic Programming 9

In Figure [2] we present a plot of the overall results. The plot is a median
of 30 independent runs for each configuration and shows how the number of
GPops/sec varies according to the number of evaluations allowed and the size
of the dataset.

7 —
6 —
3
@
£
=
2
o 5
%)
c
o
o 4 —
MIMD =
SIMD =
3 —
10000
5000
<
@é& o000 16405 5e+05 1€+06
%, 100 5000 10000

1000
100 500

Dataset size

Fig. 2. Performance with respect to dataset size and number of evaluations.

First of all, the performance of the two interpreters show a similar pattern,
which is an indirect indication that the MIMD operators are working properly.

As one can notice, the MIMD interpreter is able to outperform the SIMD
interpreter in all configurations, executing more G Pops/sec. A pattern that can
be extracted from the plot is that the performance grows from 100 cases to 500
cases, stays stable for 1K cases and then starts dropping. The performance for
1M is lower than that with 100 cases. This is probably explained by the fact
that larger datasets require more swap operations between memory and cache,
decreasing the impact in performance from the MIMD operators.

The performance difference between the two interpreters is significant, but it
also decreases as the dataset size increases. A possible explanation is again that,
for larger datasets, the data swap between memory and cache is so frequent that
the performance gain obtained with the MIMD operators is negligible. This is a
crucial point, that suggests that further investigations are needed to find ways
of reducing such swap and eventually increase the number of GPops/sec even
with larger datasets.

As for the number of evaluations, the results do not vary significantly when
the population size increases. This behavior is expected as both interpreters are
just evaluating more individuals on the same data.

10 V. de Melo et al.

The different GPops/sec can be better observed in Figure [3] which shows
Violin Plots comparing the distribution of performances of the SIMD and MIMD
interpreters for the 30 runs, and the p-value of the Wilcoxon Rank-Sum Test,
for each dataset size and number of evaluations allowed.

Size=100 Size=500 Size=1000 Size=5000 Size=10000 Size=50000 Size=100000 Size=500000 Size=1000000

p=26e-15 p=15e10 p=<2e-16 p=<2e-16 p=<2e-16 p=6e-16 p=14e-12 p=29e-09 p=3.7e11
50 ¢ $ T Ive
— _— i
)5 Y o> RS B - T IEe
p=<26-16 p=14e-13 p=<2e-16 p=<2e-16 p=<2e-16 p=<2e-16 p=<2e-16 p=3e-11 p=3e-11
75 i ags
—_ [-
50 T
S —r —_— T —
o p=81e16 p=16e12 p=<2e16 p=14e13 p=<2e-16 p=<2e-16 p=<2e-16 p=3e-11 p=3e-11
215 . i
a] ——— PR
g i
o — -
I B B s aad T —— d
p=<2e-16 p=<2e-16 p=<2e-16 p=<2e-16 p =<2e-16 p=<2e-16 p=<2e-16 p=3e-11 p=3e-11
75 — o
50 - H
&
—_— - g
—_—— —_— . 8
p=<2e-16 p=<2e-16 p=<2e-16 p=<2e16 p=57e-14 p=<2e-16 p=<2e-16 p=3e-11 p=3e-11
50 ! - i
—_— g
—_— o 1 g

MIMD SIMD ~ MIMD SIMD ~ MIMD SIMD MIMD SIMD ~ MIMD SIMD ~ MIMD SIMD MIMD SIMD MIMD SIMD MIMD SIMD
Interpreter

Fig. 3. Distributions of performances with respect to dataset size and number of eval-
uations.

As one can see, all the performance gains obtained by the proposed MIMD
interpreter are statistically significant. The performance differences show the
same pattern for all tested numbers of evaluations, as previously discussed when
analyzing Figure [2| with the MIMD interpreter processing consistently more
instructions per second.

The speedups obtained by the MIMD interpreter are presented in Figure
(top), where there is a line for each number of evaluations, depending to the
dataset size. Again, there is no significant difference between the trends obtained
with different numbers of evaluations, which was expected. However, differently
from what happened to the number of GPops/sec, here the speedup is large on
two dataset sizes (100 and 5K), but also decreases as the dataset size grows.

A MIMD interpreter for Genetic Programming 11

The unexpected behavior was observed for datasets of sizes 500 and 1K,
that showed a substantial reduction in the speedup. In order to try to clarify
this issue, we used PAPI(R) - Performance Application Programming Interface,
an API which allows to access hardware counters to measure several aspects
related to performance analysis, and obtain information about cache sizes and
cache misses.

Figure [4] (bottom) shows the cache miss rate evaluated for three cache mem-
ory levels: L1, L2 and L3 over GPop (L #isses /GPop) for a population of 100
individuals. For the CPU used in our tests, this cache memory levels has 448KB,
3.5MB, and 35MB capacity, respectively. From the figure, it is possible to note
three important facts: a) L1 miss rate increases, starting at dataset size 500 up
to 5K, where it achieves a steady state; b) L2 miss rate increases, starting at
dataset size 5K up to 50K, then it plateaus until 500K, when it increases again;
¢) L3 miss rate increases, starting at dataset size 1M.

The L1 miss rate increase at dataset size 500 causes no significant perfor-
mance variation on G Pops/sec. Until dataset size 5K, the G Pops/sec rate con-
tinues to increase, due to an increase in the total number of operations. With
a small number of GPop and, consequently, a small number of instructions is-
sued, loop initialization, controlling instructions and array indexing influence the
performance. However, as the array size increases, these controlling instructions
become irrelevant.

The L1 and L2 miss rates that abruptly grow at dataset size 5K significantly
decreases the performance, as already seen in Figures [2|and 3| The L2 miss rate
continues to increase up to 50K. This L2 cache miss rate behavior decreases the
G Pops/sec rate quite in the same way (see Figure. The L2 miss rate (as well
as the performance in GPops/sec) reaches a stable state at 50K, up to 500K,
but start to increase again at 1M, together with an L3 miss rate increase. This
effect causes a further performance decrease.

Comparing the cache miss rate for SIMD and MIMD, it is possible to ob-
serve similar trends for both. However, the cache misses counts for L1 and L2 are
greater in SIMD than MIMD: this is because SIMD uses more loops and load/s-
tore operations to deal with two or more single math instructions, as opposed to
MIMD, where more math instructions are combined into a unique instruction.

5 Conclusions and future work

In this paper, we proposed a MIMD interpreter for GP, and evaluated its perfor-
mance compared to that of a traditional SIMD interpreter. The proposed MIMD
interpreter is based on a fusion of the four arithmetical functions into MIMD
operators, which allow to execute up to three instructions in a single pass. Here,
we tested only a few combinations of these functions, as the number of com-
binations increases exponentially with the number of functions. For instance,
including sin, cos, log, etc. would create thousands of operators. Therefore, we
recommend implementing the operators that provide the highest speedups.

12 V. de Melo et al.

Evaluations
“@= 100

12 e 500
= 1000
e 5000

$& 10000

Speedup

1.0
100 500 1000 5000 10000 50000 le+05 5e+05 le+06

Dataset size

0.15

Cache/Interpreter
-®- LI/MIMD
4 L1/SIMD

0.10

4 L2/MIMD
~}- Lsivp
8 L3/MIMD

-* L3/SIMD

0.05

Cache Misses/GPop

0.00

100 500 1000 5000 10000 50000 1e+05 Se+05 le+06
Dataset size

Fig. 4. Top: speedups (MIMD over SIMD) with respect to dataset size and number
of evaluations (individuals tested). Bottom: Cache misses of different cache levels and
interpreters per GPop.

Our experiments show that a median of 7.5 GPops/sec was achieved in a
single CPU core running at 2.4Ghz. Further improvements might be obtained by
extending the proposed implementation to use parallel programming on multi-
core CPUs and GPU co-processing. Algorithm and hardware acceleration could
also be combined. In most of the times, algorithm speedup techniques always
promote better results in parallel codes, however, a more detailed evaluation is
required in order to check if the algorithm developed does not limit the concur-
rency, by requiring extra communication or synchronization.

We claim that swap operations between memory and cache are responsible
for some of the observed effects, and show some supporting evidence in the cache
miss rates. In future work, we could provide more metrics to justify that. We
also want to investigate the impact of the proposed MIMD operators on actual
GP runs. In this case, there is the necessity of parsing the tree into the list of

A MIMD interpreter for Genetic Programming 13

strings used by the interpreter, a step that is easily done by traversing the tree
and identifying operators used in sequence in order to substitute them by one
of the proposed operators. In this case, if more four argument operators were
allowed, we should also have higher speedups, as the total speedup corresponds
to an average between individual operators speedups.

Acknowledgements

This work was supported by Grant #2016/07095-5, Sao Paulo Research Foun-
dation (FAPESP).

References

10.

11.

12.

13.

. Koza, J.R.: Genetic programming as a means for programming computers by

natural selection. Statistics and Computing 4(2) (Jun 1994) 87-112

. Chitty, D.M.: Fast parallel genetic programming: multi-core CPU versus many-core

GPU. Soft Computing 16(10) (2012) 1795-1814

Langdon, W.B., Banzhaf, W.: A SIMD Interpreter for Genetic Programming on
GPU Graphics Cards. In: Genetic Programming, Berlin, Heidelberg, Springer
Berlin Heidelberg (2008) 73-85

Fukunaga, A., Stechert, A., Mutz, D.: A Genome Compiler for High Performance
Genetic Programming. In: Genetic Programming 1998: Proceedings of the Third
Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, Morgan
Kaufmann (1998) 86-94

Nordin, P.: A Compiling Genetic Programming System that Directly Manipulates
the Machine Code. In: Advances in Genetic Programming. MIT Press, Cambridge,
MA (1994) 311-331

Fernéndez, F., Spezzano, G., Tomassini, M., Vanneschi, L.: 6. In: Parallel Genetic
Programming. Wiley-Blackwell, Hoboken, NJ (2005) 127-153

Eklund, S.E.: Time series forecasting using massively parallel genetic programming.
In: Proceedings International Parallel and Distributed Processing Symposium, New
York, IEEE (Apr 2003) 1-5

Heywood, M.IL., Zincir-Heywood, A.N.: Register Based Genetic Programming
on FPGA Computing Platforms. In: Genetic Programming, Berlin, Heidelberg,
Springer Berlin Heidelberg (2000) 44-59

Cano, A., Ventura, S.: GPU-parallel Subtree Interpreter for Genetic Programming.
In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Com-
putation. GECCO ’14, New York, NY, USA, ACM (2014) 887-894

Chitty, D.M.: Faster GPU-based genetic programming using a two-dimensional
stack. Soft Computing 21(14) (Jul 2017) 38593878

da Silva, C.P., Dias, D.M., Bentes, C., Pacheco, M.A.C., Cupertino, L.F.: Evolving
GPU Machine Code. Journal of Machine Learning Research 16 (2015) 673-712
Vasicek, Z., Slany, K.: Efficient Phenotype Evaluation in Cartesian Genetic Pro-
gramming. In: Genetic Programming, Berlin, Heidelberg, Springer Berlin Heidel-
berg (2012) 266-278

Augusto, D.A., Barbosa, H.J.: Accelerated parallel genetic programming tree eval-
uation with OpenCL. Journal of Parallel and Distributed Computing 73(1) (2013)
86 — 100

14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

V. de Melo et al.

Harding, S.L., Banzhaf, W.: Distributed Genetic Programming on GPUs us-
ing CUDA. In: Workshop on Parallel Architectures and Bioinspired Algorithms,
Raleigh, NC, USA, Universidad Complutense de Madrid (Sep 2009) 1-10

Maitre, O., Lachiche, N.; Collet, P.: Fast Evaluation of GP Trees on GPGPU by
Optimizing Hardware Scheduling. In: Genetic Programming, Berlin, Heidelberg,
Springer Berlin Heidelberg (2010) 301-312

Robilliard, D., Marion, V., Fonlupt, C.: High Performance Genetic Programming
on GPU. In: Proceedings of the 2009 Workshop on Bio-inspired Algorithms for
Distributed Systems. BADS ’09, New York, NY, USA, ACM (2009) 85-94
Robilliard, D., Marion-Poty, V., Fonlupt, C.: Population Parallel GP on the G80
GPU. In: Genetic Programming, Berlin, Heidelberg, Springer Berlin Heidelberg
(2008) 98-109

Robilliard, D., Marion-Poty, V., Fonlupt, C.: Genetic programming on graphics
processing units. Genetic Programming and Evolvable Machines 10(4) (Oct 2009)
447

Harding, S., Banzhaf, W.: Implementing Cartesian Genetic Programming Clas-
sifiers on Graphics Processing Units Using GPU.NET. In: Proceedings of the
13th Annual Conference Companion on Genetic and Evolutionary Computation.
GECCO '11, New York, NY, USA, ACM (2011) 463-470

Staats, K., Pantridge, E., Cavaglia, M., Milovanov, 1., Aniyan, A.: TensorFlow
Enabled Genetic Programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. GECCO ’17, New York, NY, USA, ACM
(2017) 1872-1879

Chitty, D.M.: A Data Parallel Approach to Genetic Programming Using Pro-
grammable Graphics Hardware. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation. GECCO ’07, New York, NY, USA, ACM
(2007) 1566-1573

Harding, S., Banzhaf, W.: Fast Genetic Programming on GPUs. In: Proceedings
of the 10th European Conference on Genetic Programming. EuroGP’07, Berlin,
Heidelberg, Springer-Verlag (2007) 90-101

Keith, M.J., Martin, M.C.: Genetic Programming in C++: Implementation Issues.
In: Advances in Genetic Programming. MIT Press, Cambridge, MA (1994) 285-310

	A MIMD interpreter for Genetic Programming

